JP3834493B2 - Compound grinding method and apparatus - Google Patents

Compound grinding method and apparatus Download PDF

Info

Publication number
JP3834493B2
JP3834493B2 JP2001283547A JP2001283547A JP3834493B2 JP 3834493 B2 JP3834493 B2 JP 3834493B2 JP 2001283547 A JP2001283547 A JP 2001283547A JP 2001283547 A JP2001283547 A JP 2001283547A JP 3834493 B2 JP3834493 B2 JP 3834493B2
Authority
JP
Japan
Prior art keywords
grinding
angle
outer peripheral
workpiece
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001283547A
Other languages
Japanese (ja)
Other versions
JP2003094300A (en
Inventor
公裕 坂
誠司 各務
弘幸 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2001283547A priority Critical patent/JP3834493B2/en
Publication of JP2003094300A publication Critical patent/JP2003094300A/en
Application granted granted Critical
Publication of JP3834493B2 publication Critical patent/JP3834493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、砥石車を用いて工作物を複合研削する方法及び装置に関する。
【0002】
【従来の技術】
従来、ツールホルダ等のV溝、外周面、端面及びテーパ面を研削する場合には、図1に示すように、プレーンタイプの円筒研削盤によりV溝1及び外周面2を研削し、アンギュラタイプの円筒研削盤により端面3及びテーパ部4の研削を行うことが一般的に知られている。
【0003】
【発明が解決しようとする課題】
上記、従来の研削方法及び装置においては、V溝及び外周面を専用に研削するプレーンタイプ円筒研削盤と端面及びテーパ部を専用に研削するアンギュラタイプ円筒研削盤の2台が必要で、設備投資費が高くなり、V溝及び外周面の研削と端面及びテーパ部の研削を別の研削盤で行うので、工作物をチャックし直さなければならず、寸法のバラツキが生じ易く、かつ研削加工のサイクルタイムが長くなる問題があった。
【0004】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に記載の発明の構成上の特徴は、軸線に対して第1角度をなす第1側面を有し、該第1角度より小さい第2角度をなす第2側面と前記第1角度より大きい第3角度をなす第3側面とにより形成されるV溝が前記第1側面から軸線方向に所定距離隔てて形成された工作物を前記工作物軸線回りに支持して回転駆動し、前記第1及び第3側面に対応する寸法にドレスされた第1及び第3研削側面と、前記第2側面に対応する寸法に対して軸線方向送り研削代だけ多くドレスされた第2研削側面が形成された砥石車を前記工作物に対して前記第2角度より大きく前記第1角度より小さい移動角度で前進端位置まで相対的に送り移動させて、前記第1側面及び前記第3側面を前記第1研削側面及び第3研削側面により所定寸法に研削加工するとともに、前記第2側面を所定寸法に対して前記軸線方向送り研削代だけ残して前記第2研削側面により研削加工し、前記砥石車が前進端位置に位置した状態で前記工作物と前記砥石車とを前記軸線方向に相対的に送り移動させて前記第2側面を前記第2研削側面により前記軸線方向送り研削代だけ研削加工することである。
【0005】
請求項2に係る発明の構成上の特徴は、軸線方向に延在する第1外周面、該第1外周面から前記軸線に対して第1角度で半径方向に延出する第1側面、該第1角度より小さい第2角度で延出する第2側面と前記第1角度より大きい第3角度で延出する第3側面とにより形成されるV溝、前記第1及び第2側面の延出端を接続する第2外周面、前記V溝底部をなす第3外周面及び前記第3外側面の延出端に接続する第4外周面が形成された工作物を前記工作物軸線回りに支持して回転駆動し、前記第1及び第3側面に対応する寸法にドレスされた第1及び第3研削面と、前記第2側面に対応する寸法に対して軸線方向送り研削代だけ多くドレスされた第2研削側面と、前記第1乃至第4外周面に夫々対応する第1乃至第4研削外周面が形成された砥石車を前記工作物に対して前記第2角度より大きく前記第1角度より小さい移動角度で前進端位置まで相対的に送り移動させて、前記第1側面、前記第3側面及び前記第1乃至第4外周面を前記第1研削側面、第3研削側面及び第1乃至第4研削外周面により所定寸法に研削加工するとともに、前記第2側面を所定寸法に対して前記軸線方向送り研削代だけ残して前記第2研削側面により研削加工し、前記砥石車が前進端位置に位置した状態で前記工作物と前記砥石車とを前記軸線方向に相対的に送り移動させて前記第2側面を前記第2研削側面により前記軸線方向送り研削代だけ研削加工することである。
【0006】
請求項3に係る発明の構成上の特徴は、請求項2に記載の複合研削方法において、前記砥石車を前記工作物に対して前記移動角度で相対的に送り移動させ、前記第1外周研削面により研削加工される前記第1外周面の外径が所定寸法になったことを検出する測定装置からの信号により前記砥石車を前記前進端位置に停止させることである。
【0007】
請求項4に係る発明の構成上の特徴は、請求項1乃至3のいずれかに記載した複合研削方法において、前記工作物の前記第1乃至第3側面に対応する第1乃至第3ドレス側面が形成されたドレッサを前記工作物軸線と平行な軸線回りに支持して回転駆動し、前記砥石車を前記ドレッサに対して前記軸線と直角な方向にドレス前進端位置まで相対的にドレス送り移動させて、前記研石車の前記第1研削側面及び前記第3研削側面を前記第1ドレス側面及び第3ドレス側面により所定寸法にドレスするとともに、前記第2研削側面を前記第2ドレス側面によりドレスし、前記砥石車がドレス前進端位置に位置した状態で前記ドレッサと前記砥石車とを前記軸線方向に相対的にドレス送り移動させて前記第2研削側面を前記第2ドレス側面により前記軸線方向送り研削代だけ多くドレスすることである。
【0008】
請求項5に係る発明の構成上の特徴は、軸線に対して第1角度をなす第1側面を有し、該第1角度より小さい第2角度をなす第2側面と前記第1角度より大きい第3角度をなす第3側面とにより形成されるV溝が前記第1側面から軸線方向に所定距離隔てて形成された工作物を前記工作物軸線回りに支持して回転駆動する工作物支持装置と、前記第1及び第3側面に対応する寸法にドレスされた第1及び第3研削面と、前記第2側面に対応する寸法に対して軸線方向送り研削代だけ多くドレスされた第2研削側面が形成された砥石車を支承して回転駆動する砥石台と、前記第2角度より大きく前記第1角度より小さい移動角度で前記砥石台を工作物支持装置に対して相対的に移動させる第1移動手段と、前記工作物支持装置と前記砥石台とを前記軸線方向に相対的に移動させる第2移動手段と、前記砥石台を前記工作物支持装置に対して前記第1移動手段により前記移動角度で前進端位置まで相対的に送り移動させて、前記第1側面及び前記第3側面を前記第1研削側面及び第3研削側面により所定寸法に研削加工するとともに、前記第2側面を所定寸法に対して前記軸線方向送り研削代だけ残して前記第2研削側面により研削加工する第1送り制御手段と、前記砥石台が前進端位置に位置した状態で前記工作物支持装置を前記第2移動手段により前記砥石台に対して前記軸線方向に送り移動させて前記第2側面を前記第2研削側面により前記軸線方向送り研削代だけ研削加工する第2送り制御手段とを備えたことである。
【0009】
請求項6に係る発明の構成上の特徴は、軸線方向に延在する第1外周面、該第1外周面から前記軸線に対して第1角度で半径方向に延出する第1側面、該第1角度より小さい第2角度で延出する第2側面と前記第1角度より大きい第3角度で延出する第3側面とにより形成されるV溝、前記第1及び第2側面の延出端を接続する第2外周面、前記V溝底部をなす第3外周面及び前記第3外側面の延出端に接続する第4外周面が形成された工作物を前記工作物軸線回りに支持して回転駆動する工作物支持装置と、前記第1及び第3側面に対応する寸法にドレスされた第1及び第3研削面と、前記第2側面に対応する寸法に対して軸線方向送り研削代だけ多くドレスされた第2研削側面と、前記第1乃至第4外周面に夫々対応する第1乃至第4研削外周面が形成された砥石車を支承して回転駆動する砥石台と、前記第2角度より大きく前記第1角度より小さい移動角度で前記砥石台を工作物支持装置に対して相対的に移動させる第1移動手段と、前記工作物支持装置と前記砥石台とを前記軸線方向に相対的に移動させる第2移動手段と、前記砥石台を前記工作物支持装置に対して前記第1移動手段により前記移動角度で前進端位置まで相対的に送り移動させて、前記第1側面、前記第3側面及び前記第1乃至第4外周面を前記第1研削側面、第3研削側面及び第1乃至第4研削外周面により所定寸法に研削加工するとともに、前記第2側面を所定寸法に対して前記軸線方向送り研削代だけ残して前記第2研削側面により研削加工する第1送り制御手段と、前記砥石台が前進端位置に位置した状態で前記工作物支持装置と前記砥石台とを前記第2移動手段により前記軸線方向に相対的に送り移動させて前記第2側面を前記第2研削側面により前記軸線方向送り研削代だけ研削加工する第2送り制御手段とを備えたことである。
【0010】
請求項7に係る発明の構成上の特徴は、請求項6に記載の複合研削装置において、前記第1移動手段は、前記第1外周研削面により研削加工される前記第1外周面の外径が所定寸法になったことを検出する測定装置からの信号により前記砥石車を前記前進端位置に停止させることである。
【0011】
【発明の作用・効果】
上記のように構成した請求項1に係る発明においては、第1側面を有し、第2側面と第3側面とによりV溝が形成された工作物を工作物軸線回りに回転駆動し、第1乃至第3研削側面を有する砥石車を工作物に対して軸線が第2側面となす第2角度より大きく第1側面となす第1角度より小さい移動角度で前進端位置まで相対的に送り移動させて、第1側面及び第3側面を第1研削側面及び第3研削側面により所定寸法に研削加工するとともに、第2側面を軸線方向送り研削代だけ残して第2研削側面により研削加工し、砥石車が前進端位置に位置した状態で工作物と砥石車とを軸線方向に相対的に送り移動させて第2側面を第2研削側面により軸線方向送り研削代だけ研削加工するので、1台の研削装置で第1側面とV溝を形成する第2,第3側面を研削することが可能で設備投資費を低く押さえることができ、研削工程が2台の研削盤に分割されていないので研削工程間に生じる寸法のバラツキをなくすことができる。
【0012】
上記のように構成した請求項2に係る発明においては、第1側面を有し、第2側面と第3側面とによりV溝が形成され、第1乃至第3側面に接続する第1乃至第4外周面を有する工作物を工作物軸線回りに回転駆動し、第1乃至第3研削側面及び第1乃至第4研削外周面が形成された砥石車を工作物に対して軸線が第2側面となす第2角度より大きく第1側面となす第1角度より小さい移動角度で前進端位置まで相対的に送り移動させて、第1側面、第3側面及び第1乃至第4外周面を第1研削側面、第3研削側面及び第1乃至第4研削外周面により所定寸法に研削加工し、第2側面を所定寸法に対して軸線方向送り研削代だけ残して第2研削側面により研削加工し、砥石車が前進端位置に位置した状態で工作物と砥石車とを軸線方向に相対的に送り移動させて第2側面を第2研削側面により軸線方向送り研削代だけ研削加工するので、1台の研削装置で複合面を研削をすることが可能で設備投資費を低く押さえることができる。また、第1乃至第3側面及び第1乃至第4外周面を1台の研削盤で高精度に短時間に研削加工することができる。
【0013】
上記のように構成した請求項3に係る発明においては、砥石車を工作物に対して所定の移動角度で相対的に送り移動させて第1外周面の外径が所定寸法になったことを測定装置で検出して、砥石車を前進端位置に正確に停止させるので、第1外周面の高い寸法精度を確保することができるとともに、複合研削による他の部位の高い寸法精度も確保することができる。
【0014】
上記のように構成した請求項4に係る発明においては、ドレッサの第1乃至第3ドレス側面を工作物軸線と平行な軸線回りに回転駆動し、砥石車をドレッサに対して前記軸線と直角な方向にドレス前進端位置まで相対的にドレス送り移動させて、研石車の第1研削側面及び第3研削側面を第1ドレス側面及び第3ドレス側面により所定寸法にドレスするとともに、第2研削側面を第2ドレス側面によりドレスし、砥石車がドレス前進端位置に位置した状態でドレッサと砥石車とを軸線方向に相対的にドレス送り移動させ、砥石車の前進端位置における軸線方向相対送りにより第2研削面が工作物の第2側面を研削する軸線方向送り研削代に応じた量だけ第2研削側面を第2ドレス側面によりドレスするので、複合研削面を有する砥石車を高精度に効率的にドレスすることができる。
【0015】
上記のように構成した請求項5に係る発明においては、第1側面を有し、第2側面と第3側面とによりV溝が形成された工作物を工作物支持装置により工作物軸線回りに回転駆動し、第1乃至第3研削側面が形成された砥石車を砥石台に支承して回転駆動し、第1移動手段により軸線が第2側面となす第2角度より大きく第1側面となす第1角度より小さい移動角度で砥石台を工作物支持装置に対して相対的に送り移動させて、第1側面及び第3側面を第1研削側面及び第3研削側面により所定寸法に研削加工するとともに、第2側面を所定寸法に対して軸線方向送り研削代だけ残して第2研削側面により研削加工し、砥石台が前進端位置に位置した状態で工作物支持装置を砥石台に対して軸線方向に相対的に送り移動させて第2側面を第2研削側面により軸線方向送り研削代だけ研削加工するので、1台の研削装置で第1側面とV溝を形成する第2,第3側面を研削することが可能で設備投資費を低く押さえることができ、研削工程が2台の研削盤に分割されていないので研削工程間に生じる寸法のバラツキをなくすことができる
【0016】
上記のように構成した請求項6に係る発明においては、第1側面を有し、第2側面と第3側面とによりV溝が形成され、第1乃至第3側面に接続する第1乃至第4外周面を有する工作物を工作物支持装置により工作物軸線回りに回転駆動し、第1乃至第3研削側面及び第1乃至第4研削外周面が形成された砥石車を砥石台に支承して回転駆動し、第1移動手段により軸線が第2側面となす第2角度より大きく第1側面となす第1角度より小さい移動角度で砥石台を工作物支持装置に対し相対的に送り移動させて、第1側面及び第3側面及び第1乃至第4外周面を第1研削側面、第3研削側面及び第1乃至第4研削外周面により所定寸法に研削加工するとともに、第2側面を所定寸法に対して軸線方向送り研削代だけ残して第2研削側面により研削加工し、砥石台が前進端位置に位置した状態で工作物支持装置を砥石台に対して軸線方向に相対的に移動させて、第2側面を第2研削側面により軸線方向送り研削代だけ研削加工するので、1台の研削装置で複合面を研削することが可能で設備投資費を低く押さえることができるとともに、第1乃至第3側面及び第1乃至第4外周面を1台の研削盤で高精度に短時間に研削加工することができる。
【0017】
上記のように構成した請求項7に係る発明においては、第1移動手段は、第1外周面の外径が所定寸法になったことを測定装置が検出し、その信号により砥石車を前進端位置に停止させるので、第1外周面の高い寸法精度を確保することができるとともに、複合研削による他の部位の高い寸法精度も確保することができる。
【0018】
【実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図2において、10は工作物WであるツールホルダのV溝やテーパ部等の側面及び外周面を同時に研削することができる複合研削装置であり、T字型のベッド15上のX軸方向(左右方向)に工作物支持装置16、Z軸方向(前後方向)に砥石台17が摺動可能に載置されている。
【0019】
工作物支持装置16は、T字型のベッド15上にX軸方向に延在されたX軸ガイドレール24,25上にテーブル26が摺動可能に載置され、該テーブル26上に主軸台35及び心押台36が載置されて構成されている。主軸台35のセンタ軸の先端には超硬センタ37が取り付けられ、心押台36に取り付けられている超硬センタ38との間で工作物Wを支持する。センタ軸には回転面板40が回転可能に支承され、該回転面板40が主軸モータ34により回転駆動されて回し金を介して工作物WをX軸線回りに回転するようになっている。
【0020】
工作物Wは、図3に示すように、軸線方向に延在するテーパ状の第1外周面11、該第1外周面11から軸線に対して90度である第1角度αで半径方向に延出する第1側面21、該第1角度α(90度)より小さい60度である第2角度βで延出する第2側面22と第1角度α(90度)より大きい120度である第3角度γで延出する第3側面23とにより形成されるV溝、第1側面21及び第2側面22の延出端を接続する第2外周面12、V溝底部をなす第3外周面13及び第3側面23の延出端に接続する第4外周面14で形成されている。
【0021】
T字型ベッド15上に傾斜して固定された砥石台ベース41上には、X軸方向に対して第2角度β(60度)より大きく第1角度α(90度)より小さい角度をなすZ軸方向に延在するZ軸ガイドレール42,43が設けられ、砥石台17はZ軸ガイドレール42,43上に摺動可能に載置されている。砥石台17には砥石軸7が回転可能に軸承され、砥石軸7の先端に砥石車Gが装着され、砥石軸7は砥石モータ6により回転駆動される。砥石車Gの外周面には、工作物Wの第1乃至第3側面21〜23及び第1乃至第4外周面11〜14に対応する第1乃至第3研削側面71〜73及び第1乃至第4研削外周面61〜64が形成されている。
【0022】
砥石台17は、Z軸サーボモータ45によりボールネジ機構46を介してZ軸ガイドレール42,43上をZ軸方向に工作物支持装置16に対して相対的に移動される。Z軸ガイドレール42,43、Z軸サーボモータ45及びボールネジ機構46等によって、第2角度β(60度)より大きく第1角度α(90度)より小さい移動角度で砥石台17を工作物支持装置16に対して相対的に移動させる第1移動手段20が構成される。工作物支持装置16のテーブル26は、X軸サーボモータ28によりボールネジ機構29を介してX軸ガイドレール24,25上をX軸方向に砥石台17と相対的に移動される。X軸ガイドレール24,25、X軸サーボモータ28及びボールネジ機構29によって、工作物支持装置16と砥石台17とを軸線方向に相対的に移動させる第2移動手段30が構成される。
【0023】
T字型ベッド15上で工作物支持装置16を挟んで砥石台17と反対側前面の中央付近には測定装置18が取り付けられている。測定装置18は、工作物Wの第1側面21に接触して工作物WのX軸方向位置を測定する端面測定装置8と第1外周面11の外径を研削中に測定する外径測定装置9とにより構成されている。端面測定装置8及び外径測定装置9は図略の進退装置によって側定位置と退避位置との間で夫々進退可能となっている。端面測定装置8及び外形測定装置9は測定位置において測定子が工作物Wの第1側面21及び第1外周面11の外径に接触し、内蔵されている差動トランスが接触子の変位量を電気的に検出して電気信号として第1側面21のX軸方向の位置及び第1外周面11の外径を後述の数値制御装置51へ出力するようになっている。外径測定装置9は、工作物Wの第1外周面11の外径が砥石車Gの第1研削外周面61により所定寸法に研削されたことを検出し、後述の数値制御装置51に信号をフィードバックして、砥石車Gを前進端位置60に停止させる。
【0024】
数値制御装置51には、制御指令及び加工条件等を入力する入力装置50が接続されており、第1,第2送り制御手段52,53及び第1,第2ドレス送り制御手段54,55を備えている。各送り制御手段52〜55は、インターフェース56を介してX軸及びZ軸駆動回路57,58からX軸及びZ軸サーボモータ28,45に駆動信号を発信するとともに、X軸及びZ軸サーボモータ28,45の回転から工作物支持装置16及び砥石台17のX軸及びZ軸方向位置をX軸及びZ軸エンコーダ27,44により検出しインターフェース56を介して数値制御装置51にフィードバックするようになっている。第1送り制御手段52は、第1移動手段20により砥石台17を第2角度より大きく第1角度より小さい移動角度で前進端位置60まで工作物支持装置16に対して相対的に送り移動して、工作物Wの第1側面21、第3側面23及び第1乃至第4外周面11〜14を砥石車Gの第1研削側面71、第3研削側面73及び第1乃至第4研削外周側面61〜64により所定寸法に研削加工するとともに、図4に示すように、第2側面22を所定寸法に対して後述する軸線方向送り研削代(d22)残して(d21)だけ研削加工する。
【0025】
第2送り制御手段53は、砥石台17が前進端位置60に位置した状態で、工作物支持装置16と砥石台17とを軸線方向、即ちX軸方向に相対的に送り移動させて、工作物Wの第2側面22を砥石車Gの第2研削側面72により残りの軸線方向送り研削代(d22)だけ研削加工するようになっている。このときの砥石台17と工作物支持装置16とのX軸線方向の相対移動量(L)は、第2角度はβ度であるので、L=d22/sinαとなる。
【0026】
ドレッサ装置19はドレッサ台31に回転軸33が回転可能に支承され、回転軸33の先端にダイヤモンドロールDが装着されている。ドレッサ台31は、工作物支持装置16の主軸台35に固着され、回転軸33がドレッサ駆動モータ47により駆動されてダイヤモンドロールDが工作物軸線と平行なX軸線回りに回転駆動される。ダイヤモンドロールDには、図5に示すように、砥石車Gの第1乃至第3研削側面71〜73をドレスするための第1乃至第3ドレス側面74〜76、第2乃至第4研削外周面62〜64をドレスするための第2乃至第4ドレス外周面65〜67及び第1研削外周面61をドレスするための大径テーパ状の第1ドレス外周面68が形成されている。第1乃至第3ドレス側面74〜76及び第2乃至第4ドレス外周面65〜67の断面位置寸法は、工作物Wの第1乃至第3側面21〜23及び第2乃至第4外周面12〜14の断面位置寸法と同一である。第1ドレス送り手段54は、第1移動手段20により砥石台17を工作物支持装置16に対して相対的に送り移動させて砥石車Gの第1研削側面71及び第3研削側面73を第1ドレス側面74及び第3ドレス側面76により所定寸法にドレスし、第2研削側面72を第2ドレス側面75により所定量ドレスする。第2ドレス送り制御手段55は、第1ドレス送り制御手段54により、ドレス前進端位置69に砥石車Gが到達した状態で、工作物支持装置16と砥石台17を第2移動手段30によりX軸線方向に相対的にドレス送り移動させて第2研削側面72を第2ドレス側面75により軸線方向送り研削代(d22)に応じた量だけドレスする。
【0027】
上記のように構成した複合研削装置の作動を複合研削方法とともに、図6に示す複合研削装置の作動のフローチャートに基づいて説明する。先ず、作業者が工作物Wを工作物支持装置16の主軸台35の超硬センタ37と心押台36の超硬センタ38との間に取り付け、回し金で回転面板40に取り付ける。次に、数値制御装置51に取り付けられているスタート釦を押すことにより、工作物Wの研削サイクルがスタートする。工作物WをX軸方向に位置決めするために、測定装置18の端面測定装置8が側定位置に前進され、工作物支持装置16がX軸サーボモータ28により右方に移動される。工作物Wの第1側面21が端面測定装置8の測定子に接触して第1側面21のX軸方向の位置が検出され、数値制御装置51に送信されて研削位置と比較される。第1側面21が研削位置に移動して端面測定装置8からの検出信号が研削位置と一致すると、数値制御装置51はX軸サーボモータ28を停止して工作物支持装置16延いては工作物Wを研削位置に位置決めする(ステップ77)。工作物WのX軸方向位置決めが完了すると端面測定装置8は退避位置に後退し、主軸モータ34が駆動されて工作物Wが回転面板40により回し金を介して回転駆動される(ステップ78)。
【0028】
Z軸サーボモータ45が駆動され、ボールネジ機構46を介して砥石台17がZ軸ガイドレール42,43に案内されて工作物Wに向かって早送り速度、粗研削送り速度、精研削送り速度で前進され(ステップ79)、砥石モータ6により回転駆動されている砥石車Gの第1乃至第3研削側面71〜73及び第1乃至第4研削外周面61〜64が工作物Wの第1乃至第3側面21〜23及び第1乃至第4外周面11〜14を粗研削及び精研削加工する(ステップ80)。第1研削外周面61が第1外周面11を僅かに粗研削して黒皮を除去したとき、外径測定装置9が測定位置に前進されて接触子が第1外周面11に接触してその外径を測定し、第1外周面11の外径に対応する電気信号を数値制御装置51に送信する。数値制御装置51は外径測定装置9から入力される第1外周面11の外径に応じて砥石台17の送り速度を粗研削送り速度から精研削送り速度に変え、第1外周面11の外径が所定寸法になったときZ軸サーボモータ45を停止して砥石台17延いては砥石車Gを前進端位置60に停止させる(ステップ81)。このとき、第2研削側面72は、軸線方向送り研削代(d22)に相当する量だけ多くドレスされているので、第2側面22は所定寸法に対して軸線送り研削代(d22)だけ残して第2研削側面72により研削加工される。続いて、外径測定装置9が退避位置に後退した後、工作物支持装置17を砥石台16に対してX軸線方向に移動量L=d22/sinαだけ研削送りして第2側面を第2研削側面72により所定寸法に仕上る(ステップ82)。その後、砥石台17が原位置に後退し、工作物支持装置16が原位置に移動し、工作物Wの回転が停止されて(ステップ83)、工作物Wの一連の複合研削加工が終了する。
【0029】
次に砥石車Gのドレス方法及び装置について図7のフローチャートに基づいて説明する。数値制御装置51にドレスのスタートを指令すると、砥石車Gのドレスサイクルがスタートする。工作物支持装置16及び砥石台17がドレス開始位置に位置決めされ、ドレスモータ47が駆動されてダイヤモンドロールDが回転駆動される(ステップ85)。
【0030】
X軸及びZ軸サーボモータ28,45が同時2軸制御されて駆動され、ボールネジ機構29,46を介して工作物支持装置16及び砥石台17がX軸及びZ軸ガイドレール24,25及び42,43に案内されて互いに関連して移動され、砥石モータ6により回転駆動される砥石車Gの第1研削外周面61をダイヤモンドロールDの第1ドレス外周面68によりテーパ状にドレスする(ステップ86)。第1研削外周面61のドレス後、X軸及びZ軸サーボモータ28,45の駆動により、第1乃至第3研削側面71〜73と第1乃至第3ドレス側面74〜76とがX軸線方向に整列して対向する図5に示す位置に工作物支持装置16及び砥石台17を位置決めする。次に、X軸及びZ軸サーボモータ28,45を同時2軸制御して、砥石車GをダイヤモンドロールDに対してZ軸線と直角な方向に相対的に前進させ、第1研削側面71を第1ドレス側面74により端面ドレスし(ステップ87)、前進端付近で第2、第3研削側面72,73及び第2乃至第4研削外周面62〜64を第2,第3ドレス側面75,76及び第2乃至第4ドレス外周面65〜67により所定寸法に総型ドレスする(ステップ88)。前進端位置69でZ軸サーボモータ45延いては砥石台17を停止させ(ステップ89)、工作物支持装置16をX軸サーボモータ28により左方にX軸線方向移動量L=d22/sinαだけ移動して第2研削側面72を第2ドレス側面により軸線方向送り研削代(d22)だけドレスして所定寸法に仕上る(ステップ90)。最後に端面70と第1ドレス側面74とをX軸線方向に整列させて、砥石車GをダイヤモンドロールDに対して直角方向に前進させ、端面70を第1ドレス側面74により端面ドレスして砥石車Gのドレスを終了する(ステップ91)。砥石台17及び工作物支持装置16が原位置に移動し、ダイヤモンドロールDの回転が停止される(ステップ92)。
【0031】
なお、上記の実施形態では、工作物支持装置16の軸線であるX軸に対して砥石台17を第2角度β(60度)より大きく第1角度α(90度)より小さい移動角度でZ軸方向に研削移動するようにZ軸ガイドレール42,43を配置したが、Z軸ガイドレールをX軸に対して直角に配置して、砥石台17をX軸に対して直角なZ軸方向に移動するようにし、工作物支持装置16と砥石台17の移動を数値制御により同時2軸制御して砥石台17を工作物支持装置16に対して前述の移動角度で相対的に送り移動させるようにしてもよい。
【図面の簡単な説明】
【図1】 従来の分割された研削工程を示す図である。
【図2】 本発明に係わる複合研削装置の平面図である。
【図3】 砥石車により工作物を研削する関係を示す図である。
【図4】 工作物の研削代を示す図である。
【図5】 砥石車とダイヤモンドロールの関係を示す図である。
【図6】 工作物の研削工程を示す図である。
【図7】 砥石車のドレス工程を示す図である。
【符号の説明】
8・・・端面測定装置、9・・・外径測定装置、10・・・複合研削装置、11〜14・・・第1〜第4外周面、15・・・T字型ベッド、16・・・工作物支持装置、17・・・砥石台、18・・・測定装置、19・・・ドレッサ装置、20・・・第1移動手段、21〜23・・・第1〜第3側面、26・・・テーブル、30・・・第2移動手段、31・・・ドレッサ台、35・・・主軸台、36・・・心押台、41・・・砥石台ベース、51・・・数値制御装置、52,53・・・第1,第2送り制御手段、54,55・・・第1,第2ドレス送り制御手段、60・・・前進端位置、61〜64・・・第1〜第4研削外周面、65〜68・・・第1〜第4ドレス外周側面、69・・・ドレス前進端位置、70・・・端面、71〜73・・・第1〜第3研削側面、74〜76・・・第1〜第3ドレス側面、α・・・第1角度、β・・・第2角度、γ・・・第3角度、D・・・ダイヤモンドロール、G・・・砥石車、d22・・・軸線方向送り研削代、L・・・軸線方向移動量、W・・・工作物。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for complex grinding a workpiece using a grinding wheel.
[0002]
[Prior art]
Conventionally, when grinding V-grooves, outer peripheral surfaces, end surfaces and tapered surfaces of tool holders, etc., as shown in FIG. It is generally known that the end face 3 and the tapered portion 4 are ground by a cylindrical grinder.
[0003]
[Problems to be solved by the invention]
The conventional grinding method and apparatus described above require two units, a plain type cylindrical grinder that grinds the V-groove and outer peripheral surface exclusively, and an angular type cylindrical grinder that grinds the end surface and taper portion exclusively. The cost increases, and grinding of the V-groove and the outer peripheral surface and the grinding of the end face and the taper portion are performed by another grinding machine. Therefore, the workpiece must be re-chucked, and the dimensional variation is likely to occur. There was a problem that the cycle time became long.
[0004]
[Means for Solving the Problems]
  In order to solve the above-mentioned problem, the structural feature of the invention described in claim 1 is that a first side surface forming a first angle with respect to the axis has a first side which forms a second angle smaller than the first angle. A V-groove formed by two side surfaces and a third side surface having a third angle larger than the first angle is supported around the workpiece axis line and formed at a predetermined distance in the axial direction from the first side surface. And rotationally drive the firstas well asCorresponds to the third aspectFirst and third grinding side surfaces dressed in dimensions, and second grinding side surfaces dressed more by the axial feed grinding allowance than the dimensions corresponding to the second side surfacesIs moved relative to the work piece at a movement angle larger than the second angle and smaller than the first angle with respect to the workpiece, and the first side surface and the third side surface are moved. The first side surface and the third side surface are ground to a predetermined size, and the second side surface isSaidGrinding is performed by the second grinding side face while leaving only the axial feed grinding allowance, and the workpiece and the grinding wheel are relatively fed and moved in the axial direction in a state where the grinding wheel is located at the forward end position. The second side surface is ground by the second grinding side surface by the axial feed grinding allowance.
[0005]
  The structural feature of the invention according to claim 2 is that a first outer peripheral surface extending in the axial direction, a first side surface extending radially from the first outer peripheral surface at a first angle with respect to the axis, A V-groove formed by a second side surface extending at a second angle smaller than the first angle and a third side surface extending at a third angle larger than the first angle, and extending the first and second side surfaces A workpiece having a second outer peripheral surface connecting ends, a third outer peripheral surface forming the bottom of the V-groove, and a fourth outer peripheral surface connecting to the extending end of the third outer surface is supported around the workpiece axis. And rotationally drive the firstas well asThird sideFirst and third grinding surfaces dressed in a dimension corresponding to the second grinding surface, and a second grinding side surface dressed by an axial feed grinding allowance more than the dimension corresponding to the second side surface;Corresponding to each of the first to fourth outer peripheral surfacesDoThe grinding wheel on which the first to fourth grinding outer peripheral surfaces are formed is relatively moved to the forward end position with a movement angle larger than the second angle and smaller than the first angle with respect to the workpiece. The one side surface, the third side surface, and the first to fourth outer peripheral surfaces are ground to a predetermined dimension by the first grinding side surface, the third grinding side surface, and the first to fourth grinding outer peripheral surfaces, and the second side surface is For a given dimensionSaidGrinding is performed by the second grinding side face while leaving only the axial feed grinding allowance, and the workpiece and the grinding wheel are relatively fed and moved in the axial direction in a state where the grinding wheel is located at the forward end position. The second side surface is ground by the second grinding side surface by the axial feed grinding allowance.
[0006]
A structural feature of the invention according to claim 3 is the composite grinding method according to claim 2, wherein the grinding wheel is moved relative to the workpiece at the moving angle, and the first peripheral grinding is performed. The grinding wheel is stopped at the forward end position by a signal from a measuring device that detects that the outer diameter of the first outer peripheral surface ground by the surface has reached a predetermined dimension.
[0007]
  A structural feature of the invention according to claim 4 is the composite grinding method according to any one of claims 1 to 3, wherein the first to third dress side surfaces corresponding to the first to third side surfaces of the workpiece. The dresser formed with a support is rotated around an axis parallel to the workpiece axis, and the grinding wheel is moved relative to the dresser in a direction perpendicular to the axis to the dress advance end position. Then, the first grinding side surface and the third grinding side surface of the grinding wheel are dressed to a predetermined size by the first dress side surface and the third dress side surface, and the second grinding side surface is dressed by the second dress side surface. The dresser and the grinding wheel are moved relative to each other in the axial direction in a state where the grinding wheel is located at the dress advance end position, and the second grinding side surface is moved forward by the second dress side surface. The axial direction FeedMore grinding costIs to dress.
[0008]
  The structural feature of the invention according to claim 5 is that it has a first side surface that forms a first angle with respect to the axis, a second side surface that forms a second angle smaller than the first angle, and is larger than the first angle. A workpiece support device for rotating and driving a workpiece in which a V-groove formed by a third side surface forming a third angle is formed at a predetermined distance in the axial direction from the first side surface around the workpiece axis. And the firstas well asCorresponds to the third aspectFirst and third grinding surfaces dressed in dimensions, and second grinding side surfaces dressed more by an axial feed grinding allowance than the dimensions corresponding to the second side surfacesAnd a first wheel for moving the wheel head relative to the workpiece support device at a movement angle larger than the second angle and smaller than the first angle. The moving means, the second moving means for relatively moving the workpiece support device and the grindstone table in the axial direction, and the movement of the grindstone table with respect to the workpiece support device by the first moving means. The first side surface and the third side surface are ground to a predetermined dimension by the first grinding side surface and the third grinding side surface, and the second side surface is predetermined dimension. AgainstSaidA first feed control means for grinding by the second grinding side face while leaving only an axial feed grinding allowance; and the workpiece support device is moved by the second moving means in the state where the grinding wheel base is located at the forward end position. Second feed control means for feeding and moving the second side surface with respect to the table in the axial direction by the second grinding side surface by the axial feed grinding amount.
[0009]
  A structural feature of the invention according to claim 6 is that a first outer peripheral surface extending in the axial direction, a first side surface extending radially from the first outer peripheral surface at a first angle with respect to the axis, A V-groove formed by a second side surface extending at a second angle smaller than the first angle and a third side surface extending at a third angle larger than the first angle, and extending the first and second side surfaces A workpiece having a second outer peripheral surface connecting ends, a third outer peripheral surface forming the bottom of the V-groove, and a fourth outer peripheral surface connecting to the extending end of the third outer surface is supported around the workpiece axis. A workpiece support device that is rotationally driven, and the firstas well asThird sideFirst and third grinding surfaces dressed in a dimension corresponding to the second grinding surface, and a second grinding side surface dressed by an axial feed grinding allowance more than the dimension corresponding to the second side surface;Corresponding to each of the first to fourth outer peripheral surfacesDoA grinding wheel base that supports and rotates the grinding wheel on which the first to fourth grinding outer peripheral surfaces are formed, and the grinding wheel base with respect to the workpiece support device at a movement angle larger than the second angle and smaller than the first angle. First moving means for relatively moving, second moving means for relatively moving the workpiece support device and the grindstone table in the axial direction, and the grindstone table with respect to the workpiece support device. The first moving means is relatively moved to the forward end position at the moving angle, and the first side surface, the third side surface, and the first to fourth outer peripheral surfaces are moved to the first ground side surface and third ground surface. The side surface and the first to fourth grinding outer peripheral surfaces are ground to a predetermined dimension, and the second side surface is ground with respect to the predetermined dimension.SaidFirst feed control means for grinding by the second grinding side face while leaving only an axial feed grinding allowance, and the workpiece support device and the grinding wheel base in the state where the grinding wheel base is positioned at the forward end position. And a second feed control means for moving the second side surface relative to the axial direction by the moving means and grinding the second side surface by the second grinding side surface by the axial feed grinding allowance.
[0010]
A structural feature of the invention according to claim 7 is the composite grinding apparatus according to claim 6, wherein the first moving means is an outer diameter of the first outer peripheral surface ground by the first outer peripheral ground surface. Is that the grinding wheel is stopped at the forward end position by a signal from a measuring device that detects that a predetermined dimension has been reached.
[0011]
[Operation and effect of the invention]
  In the invention according to claim 1 configured as described above, a workpiece having a first side surface and having a V groove formed by the second side surface and the third side surface is driven to rotate around the workpiece axis, The grinding wheel having the first to third grinding side faces is moved relative to the workpiece to the forward end position at a movement angle larger than the second angle formed by the second side face and smaller than the first angle formed by the first side face. The first side surface and the third side surface are ground to a predetermined dimension by the first grinding side surface and the third grinding side surface, and the second side surface is ground by the second grinding side surface while leaving only the axial feed grinding allowance, With the grinding wheel positioned at the forward end position, the workpiece and the grinding wheel are moved relative to each other in the axial direction, and the second side is ground by the second grinding side for the axial feed grinding allowance. Forming a first side surface and a V-groove with 3 side can be suppressed low capital expenditure can be ground and dimensional variation occurring between the grinding process because the grinding process is not divided into two grindersCan be eliminated.
[0012]
In the invention according to claim 2 configured as described above, the first through the first side surfaces have the first side surface, the V side groove is formed by the second side surface and the third side surface, and are connected to the first through third side surfaces. A workpiece having four outer peripheral surfaces is rotationally driven around the workpiece axis, and the grinding wheel on which the first to third grinding side surfaces and the first to fourth grinding outer peripheral surfaces are formed has an axis line with respect to the workpiece. The first side surface, the third side surface, and the first to fourth outer peripheral surfaces are moved to a forward end position relatively at a moving angle larger than the second angle and smaller than the first angle formed with the first side surface. Grinding to a predetermined dimension by the grinding side face, the third grinding side face and the first to fourth grinding outer peripheral faces, and grinding the second side face by the second grinding side face while leaving only the axial feed grinding allowance with respect to the predetermined dimension, With the grinding wheel in the forward end position, the workpiece and the grinding wheel are relative to each other in the axial direction. Since the second side surface is ground by an axial feed grinding allowance by the second grinding side surface, it is possible to grind the composite surface with a single grinding device, and the equipment investment cost can be kept low. . In addition, the first to third side surfaces and the first to fourth outer peripheral surfaces can be ground with high accuracy in a short time by one grinder.
[0013]
In the invention according to claim 3 configured as described above, the outer diameter of the first outer peripheral surface becomes a predetermined dimension by moving the grinding wheel relative to the workpiece at a predetermined movement angle. Since it is detected by the measuring device and the grinding wheel is accurately stopped at the forward end position, it is possible to ensure high dimensional accuracy of the first outer peripheral surface and also ensure high dimensional accuracy of other parts by composite grinding. Can do.
[0014]
In the invention according to claim 4 configured as described above, the first to third dress side surfaces of the dresser are rotationally driven around an axis parallel to the workpiece axis, and the grinding wheel is perpendicular to the axis with respect to the dresser. The dressing is moved relative to the dress advance end position in the direction, and the first grinding side surface and the third grinding side surface of the grinding wheel are dressed to a predetermined dimension by the first dress side surface and the third dress side surface, and the second grinding is performed. Dress the side with the second dress side and move the dresser and grinding wheel relative to each other in the axial direction with the grinding wheel positioned at the dress forward end position, and move in the axial relative direction at the forward end position of the grinding wheel. The second grinding surface dresses the second grinding side with the second dressing side by an amount corresponding to the axial feed grinding allowance for grinding the second side of the workpiece. It can be efficiently dress.
[0015]
In the invention according to claim 5 configured as described above, a workpiece having a first side surface and having a V-groove formed by the second side surface and the third side surface is moved around the workpiece axis by the workpiece support device. The grindstone wheel having the first to third grinding side surfaces is rotationally driven and is rotationally driven by being supported on the grindstone table, and the first moving means makes the first side surface larger than the second angle formed by the second side surface. The wheel head is moved relative to the workpiece support device at a movement angle smaller than the first angle, and the first side surface and the third side surface are ground to a predetermined dimension by the first grinding side surface and the third grinding side surface. At the same time, the second side surface is ground by the second grinding side surface while leaving only an allowance for feed grinding in the axial direction with respect to a predetermined dimension, and the workpiece support device is axially aligned with respect to the wheel base with the wheel head positioned at the forward end position. Move the second side relative to the direction Since the grinding is carried out by the axial feed grinding allowance on the cut side, it is possible to grind the first side and the second and third sides forming the V-groove with a single grinding machine, thereby reducing the capital investment cost. And because the grinding process is not divided into two grinding machines, the dimensional variation that occurs during the grinding processCan be eliminated.
[0016]
  In the invention which concerns on Claim 6 comprised as mentioned above, it has a 1st side surface and is divided into a 2nd side surface and a 3rd side surface.ThanA workpiece having V-grooves and having first to fourth outer peripheral surfaces connected to the first to third side surfaces is rotationally driven around the workpiece axis by the workpiece support device, and the first to third grinding side surfaces and the The grinding wheel on which the first to fourth grinding outer peripheral surfaces are formed is supported on a grinding wheel base and driven to rotate, and the first moving means makes the axis larger than the second angle formed by the second side surface and by the first angle formed by the first side surface. The grindstone is moved relative to the workpiece support device at a small movement angle, and the first side surface, the third side surface, and the first to fourth outer peripheral surfaces are moved to the first grinding side surface, the third grinding side surface, and the first to first side surfaces. The grinding wheel is ground to the predetermined dimension by the fourth grinding outer peripheral surface, and the grinding wheel base is positioned at the forward end position by grinding the second side surface while leaving the second side surface by an axial feed grinding allowance with respect to the predetermined dimension. With the workpiece support device relative to the grinding wheel base in the axial direction Since the second side surface is ground by an axial feed grinding allowance by the second grinding side surface, it is possible to grind the composite surface with a single grinding device and keep the capital investment cost low, The first to third side surfaces and the first to fourth outer peripheral surfaces can be ground with high accuracy in a short time by one grinder.
[0017]
In the invention according to claim 7 configured as described above, the first moving means detects that the outer diameter of the first outer peripheral surface has become a predetermined dimension, and the grinding wheel is moved forward by the signal. Since it is stopped at the position, high dimensional accuracy of the first outer peripheral surface can be secured, and high dimensional accuracy of other parts by composite grinding can be secured.
[0018]
Embodiment
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 2, reference numeral 10 denotes a composite grinding apparatus capable of simultaneously grinding a side surface and an outer peripheral surface of a tool holder, which is a workpiece W, such as a V-groove and a tapered portion, and the X-axis direction on the T-shaped bed 15 ( The workpiece support device 16 is slidably mounted in the left-right direction) and the grindstone base 17 is slidable in the Z-axis direction (front-back direction).
[0019]
The workpiece support device 16 has a table 26 slidably mounted on X-axis guide rails 24, 25 extending in the X-axis direction on a T-shaped bed 15, and a headstock on the table 26. 35 and a tailstock 36 are mounted. A carbide center 37 is attached to the tip of the center shaft of the spindle stock 35 and supports the workpiece W with the carbide center 38 attached to the tailstock 36. A rotating face plate 40 is rotatably supported on the center shaft, and the rotating face plate 40 is rotationally driven by a main shaft motor 34 to rotate the workpiece W around the X-axis line through a rotating metal.
[0020]
As shown in FIG. 3, the workpiece W has a tapered first outer peripheral surface 11 extending in the axial direction, and a radial direction at a first angle α which is 90 degrees from the first outer peripheral surface 11 to the axis. The first side surface 21 that extends, the second side surface 22 that extends at a second angle β that is 60 degrees smaller than the first angle α (90 degrees), and 120 degrees that is larger than the first angle α (90 degrees). A V-groove formed by the third side surface 23 extending at the third angle γ, a second outer peripheral surface 12 connecting the extended ends of the first side surface 21 and the second side surface 22, and a third outer periphery forming the bottom of the V-groove. A fourth outer peripheral surface 14 connected to the extending ends of the surface 13 and the third side surface 23 is formed.
[0021]
On the grindstone base 41 that is inclined and fixed on the T-shaped bed 15, an angle larger than the second angle β (60 degrees) and smaller than the first angle α (90 degrees) is formed with respect to the X-axis direction. Z-axis guide rails 42 and 43 extending in the Z-axis direction are provided, and the grinding wheel platform 17 is slidably mounted on the Z-axis guide rails 42 and 43. A grinding wheel shaft 7 is rotatably supported on the grinding wheel base 17, and a grinding wheel G is mounted on the tip of the grinding wheel shaft 7. The grinding wheel shaft 7 is driven to rotate by a grinding wheel motor 6. On the outer peripheral surface of the grinding wheel G, the first to third grinding side surfaces 71 to 73 and the first to third side surfaces corresponding to the first to third side surfaces 21 to 23 and the first to fourth outer peripheral surfaces 11 to 14 of the workpiece W are provided. Fourth grinding outer peripheral surfaces 61 to 64 are formed.
[0022]
The grinding wheel platform 17 is moved relative to the workpiece support device 16 in the Z-axis direction on the Z-axis guide rails 42 and 43 via the ball screw mechanism 46 by the Z-axis servo motor 45. The grinding wheel platform 17 is supported by the Z-axis guide rails 42 and 43, the Z-axis servo motor 45, the ball screw mechanism 46, and the like at a movement angle larger than the second angle β (60 degrees) and smaller than the first angle α (90 degrees). First moving means 20 is configured to move relative to the device 16. The table 26 of the workpiece support device 16 is moved relative to the grindstone table 17 in the X-axis direction on the X-axis guide rails 24 and 25 via the ball screw mechanism 29 by the X-axis servomotor 28. The X-axis guide rails 24 and 25, the X-axis servo motor 28, and the ball screw mechanism 29 constitute second moving means 30 that relatively moves the workpiece support device 16 and the grindstone table 17 in the axial direction.
[0023]
On the T-shaped bed 15, a measuring device 18 is attached in the vicinity of the center of the front surface opposite to the grinding wheel platform 17 with the workpiece support device 16 interposed therebetween. The measuring device 18 is in contact with the first side surface 21 of the workpiece W to measure the position of the workpiece W in the X-axis direction and the outer diameter measurement of the outer diameter of the first outer peripheral surface 11 during grinding. The apparatus 9 is comprised. The end face measuring device 8 and the outer diameter measuring device 9 can be moved back and forth between a fixed position and a retracted position by an advancing / retreating device (not shown). In the end face measuring device 8 and the external shape measuring device 9, the measuring element contacts the outer diameter of the first side surface 21 and the first outer peripheral surface 11 of the workpiece W at the measuring position, and the built-in differential transformer is the displacement amount of the contacting element. Is detected, and the position of the first side surface 21 in the X-axis direction and the outer diameter of the first outer peripheral surface 11 are output as electric signals to a numerical controller 51 described later. The outer diameter measuring device 9 detects that the outer diameter of the first outer peripheral surface 11 of the workpiece W has been ground to a predetermined size by the first grinding outer peripheral surface 61 of the grinding wheel G, and sends a signal to the numerical control device 51 described later. Is fed back to stop the grinding wheel G at the forward end position 60.
[0024]
The numerical controller 51 is connected to an input device 50 for inputting control commands, machining conditions, and the like. The first and second feed control means 52 and 53 and the first and second dress feed control means 54 and 55 are connected to the numerical control device 51. I have. The feed control means 52 to 55 transmit drive signals from the X-axis and Z-axis drive circuits 57 and 58 to the X-axis and Z-axis servomotors 28 and 45 via the interface 56, and the X-axis and Z-axis servomotors. The X-axis and Z-axis direction positions of the workpiece support device 16 and the grindstone table 17 are detected by the X-axis and Z-axis encoders 27 and 44 from the rotations 28 and 45 and fed back to the numerical control device 51 via the interface 56. It has become. The first feed control means 52 feeds and moves the grindstone platform 17 relative to the workpiece support device 16 to the advance end position 60 at a movement angle larger than the second angle and smaller than the first angle by the first movement means 20. The first side surface 21, the third side surface 23, and the first to fourth outer peripheral surfaces 11 to 14 of the workpiece W are used as the first grinding side surface 71, the third grinding side surface 73, and the first to fourth outer peripheral surfaces of the grinding wheel G. While grinding to a predetermined dimension by the side surfaces 61 to 64, as shown in FIG.twenty two) Leave (dtwenty one) Grind only.
[0025]
The second feed control means 53 moves the workpiece support device 16 and the grindstone table 17 relatively in the axial direction, that is, in the X-axis direction while the grindstone table 17 is positioned at the forward end position 60, thereby The second side surface 22 of the workpiece W is fed by the second grinding side surface 72 of the grinding wheel G to the remaining axial feed grinding amount (dtwenty two) Only to grind. The relative movement amount (L) in the X-axis direction between the grinding wheel platform 17 and the workpiece support device 16 at this time is L = d because the second angle is β degrees.twenty two/ Sinα.
[0026]
In the dresser device 19, a rotary shaft 33 is rotatably supported on a dresser base 31, and a diamond roll D is attached to the tip of the rotary shaft 33. The dresser table 31 is fixed to the spindle table 35 of the workpiece support device 16, and the rotary shaft 33 is driven by a dresser drive motor 47, so that the diamond roll D is rotated around the X axis parallel to the workpiece axis. As shown in FIG. 5, the diamond roll D has first to third dress side surfaces 74 to 76 for dressing the first to third grinding side surfaces 71 to 73 of the grinding wheel G, and second to fourth grinding outer circumferences. Second to fourth dress outer peripheral surfaces 65 to 67 for dressing the surfaces 62 to 64 and a large-diameter tapered first dress outer peripheral surface 68 for dressing the first grinding outer peripheral surface 61 are formed. The cross-sectional position dimensions of the first to third dress side surfaces 74 to 76 and the second to fourth dress outer peripheral surfaces 65 to 67 are the first to third side surfaces 21 to 23 and the second to fourth outer peripheral surface 12 of the workpiece W. It is the same as the cross-sectional position dimension of -14. The first dress feeding means 54 feeds and moves the grinding wheel base 17 relative to the workpiece support device 16 by the first moving means 20 to move the first grinding side surface 71 and the third grinding side surface 73 of the grinding wheel G to the first. The first dress side surface 74 and the third dress side surface 76 are dressed to a predetermined size, and the second ground side surface 72 is dressed by the second dress side surface 75 by a predetermined amount. The second dress feed control means 55 moves the workpiece support device 16 and the grindstone table 17 by the second moving means 30 in the state where the grinding wheel G has reached the dress advance end position 69 by the first dress feed control means 54. The second grinding side surface 72 is moved in the axial direction by the dressing movement relative to the axial direction by the second dressing side surface 75 (dtwenty two) Dress as much as you need.
[0027]
The operation of the composite grinding apparatus configured as described above will be described together with the composite grinding method based on the flowchart of the operation of the composite grinding apparatus shown in FIG. First, an operator attaches the workpiece W between the carbide center 37 of the headstock 35 and the carbide center 38 of the tailstock 36 of the workpiece support device 16, and attaches the workpiece W to the rotating face plate 40 with a screwdriver. Next, by pressing a start button attached to the numerical control device 51, the grinding cycle of the workpiece W starts. In order to position the workpiece W in the X-axis direction, the end face measuring device 8 of the measuring device 18 is advanced to a fixed position, and the workpiece support device 16 is moved to the right by the X-axis servomotor 28. The first side surface 21 of the workpiece W comes into contact with the probe of the end surface measuring device 8 and the position of the first side surface 21 in the X-axis direction is detected and transmitted to the numerical control device 51 to be compared with the grinding position. When the first side face 21 moves to the grinding position and the detection signal from the end face measuring device 8 coincides with the grinding position, the numerical control device 51 stops the X-axis servo motor 28 to extend the workpiece support device 16 and the workpiece. W is positioned at the grinding position (step 77). When the positioning of the workpiece W in the X-axis direction is completed, the end face measuring device 8 is retracted to the retracted position, the spindle motor 34 is driven, and the workpiece W is rotated by the rotating face plate 40 via the rotating metal (step 78). .
[0028]
The Z-axis servo motor 45 is driven, and the grinding wheel base 17 is guided by the Z-axis guide rails 42 and 43 through the ball screw mechanism 46 and advances toward the workpiece W at a fast feed speed, a rough grinding feed speed, and a fine grinding feed speed. (Step 79), the first to third grinding side surfaces 71 to 73 and the first to fourth grinding outer peripheral surfaces 61 to 64 of the grinding wheel G being driven to rotate by the grinding wheel motor 6 are the first to fourth grinding surfaces of the workpiece W. The three side surfaces 21 to 23 and the first to fourth outer peripheral surfaces 11 to 14 are subjected to rough grinding and fine grinding (step 80). When the first grinding outer peripheral surface 61 slightly coarsely grinds the first outer peripheral surface 11 to remove the black skin, the outer diameter measuring device 9 is advanced to the measurement position, and the contactor contacts the first outer peripheral surface 11. The outer diameter is measured, and an electrical signal corresponding to the outer diameter of the first outer peripheral surface 11 is transmitted to the numerical controller 51. The numerical controller 51 changes the feed rate of the grindstone table 17 from the coarse grinding feed rate to the fine grinding feed rate in accordance with the outer diameter of the first outer circumferential surface 11 input from the outer diameter measuring device 9. When the outer diameter reaches a predetermined dimension, the Z-axis servo motor 45 is stopped, the grinding wheel base 17 is extended, and the grinding wheel G is stopped at the forward end position 60 (step 81). At this time, the second grinding side surface 72 has an axial feed grinding allowance (dtwenty two) Is dressed by an amount corresponding to a predetermined amount, so that the second side surface 22 has an axial feed grinding allowance (dtwenty twoAnd the second grinding side surface 72 is ground. Subsequently, after the outer diameter measuring device 9 is retracted to the retracted position, the workpiece support device 17 is moved in the X-axis direction with respect to the grindstone table 16 by an amount L = d.twenty two/ Sin α is ground and fed, and the second side surface is finished to a predetermined dimension by the second grinding side surface 72 (step 82). Thereafter, the grinding wheel base 17 is moved back to the original position, the workpiece support device 16 is moved to the original position, the rotation of the workpiece W is stopped (step 83), and a series of complex grinding of the workpiece W is completed. .
[0029]
Next, a dressing method and apparatus for the grinding wheel G will be described based on the flowchart of FIG. When the numerical controller 51 is instructed to start dressing, the dressing cycle of the grinding wheel G starts. The workpiece support device 16 and the grindstone platform 17 are positioned at the dress start position, the dress motor 47 is driven, and the diamond roll D is rotated (step 85).
[0030]
The X-axis and Z-axis servomotors 28 and 45 are driven by two-axis control at the same time, and the workpiece support device 16 and the grindstone table 17 are moved via the ball screw mechanisms 29 and 46 to the X-axis and Z-axis guide rails 24, 25 and 42. , 43 and moved in relation to each other, and the first grinding outer peripheral surface 61 of the grinding wheel G rotated by the grinding wheel motor 6 is dressed in a taper shape by the first dress outer peripheral surface 68 of the diamond roll D (step) 86). After dressing the first grinding outer peripheral surface 61, the first to third grinding side surfaces 71 to 73 and the first to third dress side surfaces 74 to 76 are driven in the X-axis direction by driving the X-axis and Z-axis servomotors 28 and 45. The workpiece support device 16 and the grindstone platform 17 are positioned at the positions shown in FIG. Next, the X-axis and Z-axis servomotors 28 and 45 are simultaneously controlled in two axes to move the grinding wheel G forward relative to the diamond roll D in a direction perpendicular to the Z-axis, and the first grinding side surface 71 is moved. End dressing is performed by the first dress side surface 74 (step 87), and the second and third grinding side surfaces 72 and 73 and the second to fourth grinding outer peripheral surfaces 62 to 64 are connected to the second and third dress side surfaces 75 and 75 in the vicinity of the forward end. 76 and the second to fourth dress outer peripheral surfaces 65 to 67 are dressed to a predetermined size (step 88). At the forward end position 69, the Z-axis servo motor 45 and the grinding wheel base 17 are stopped (step 89), and the workpiece support device 16 is moved to the left by the X-axis servo motor 28 in the X-axis direction movement amount L = d.twenty two/ Sin α and the second grinding side surface 72 is moved in the axial direction by the second dress side surface.twenty two) And finish to a predetermined size (step 90). Finally, the end face 70 and the first dress side face 74 are aligned in the X-axis direction, the grinding wheel G is advanced in the direction perpendicular to the diamond roll D, and the end face 70 is end face dressed by the first dress side face 74 and the grindstone. The dress of the car G is finished (step 91). The grinding wheel base 17 and the workpiece support device 16 are moved to the original positions, and the rotation of the diamond roll D is stopped (step 92).
[0031]
In the above embodiment, the grindstone table 17 is moved at a movement angle larger than the second angle β (60 degrees) and smaller than the first angle α (90 degrees) with respect to the X axis that is the axis of the workpiece support device 16. The Z-axis guide rails 42 and 43 are arranged so as to move in the axial direction. However, the Z-axis guide rail is arranged at a right angle to the X axis, and the grinding wheel base 17 is perpendicular to the X axis. The movement of the workpiece support device 16 and the grindstone table 17 is simultaneously controlled by two axes by numerical control, and the grindstone table 17 is moved relative to the workpiece support device 16 at the aforementioned movement angle. You may do it.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional divided grinding process.
FIG. 2 is a plan view of a composite grinding apparatus according to the present invention.
FIG. 3 is a diagram showing the relationship of grinding a workpiece with a grinding wheel.
FIG. 4 is a diagram showing a grinding allowance for a workpiece.
FIG. 5 is a diagram showing the relationship between a grinding wheel and a diamond roll.
FIG. 6 is a diagram showing a grinding process of a workpiece.
FIG. 7 is a diagram showing a dressing process of a grinding wheel.
[Explanation of symbols]
8 ... End face measuring device, 9 ... Outer diameter measuring device, 10 ... Composite grinding device, 11-14 ... First to fourth outer peripheral surfaces, 15 ... T-shaped bed, 16. ..Workpiece support device, 17 ... Wheel head, 18 ... Measurement device, 19 ... Dresser device, 20 ... First moving means, 21-23 ... First to third side surfaces, 26 ... Table, 30 ... Second moving means, 31 ... Dresser base, 35 ... Spindle base, 36 ... Tailstock, 41 ... Grinding wheel base, 51 ... Numerical value Control device, 52, 53 ... first and second feed control means, 54, 55 ... first and second dress feed control means, 60 ... forward end position, 61 to 64 ... first -4th grinding outer peripheral surface, 65-68 ... 1st-4th dress outer peripheral side surface, 69 ... Dress advance end position, 70 ... End surface, 71-73 ... 1st-3rd grinding side surface, 74-76 ... 1st-3rd dress side surface, (alpha) ... 1st angle, (beta) ... 2nd angle, (gamma) ... 3rd angle, D ... Diamond roll, G ... grinding wheel, dtwenty two... Axial feed grinding allowance, L ... Axis movement, W ... Workpiece.

Claims (7)

軸線に対して第1角度をなす第1側面を有し、該第1角度より小さい第2角度をなす第2側面と前記第1角度より大きい第3角度をなす第3側面とにより形成されるV溝が前記第1側面から軸線方向に所定距離隔てて形成された工作物を前記工作物軸線回りに支持して回転駆動し、前記第1及び第3側面に対応する寸法にドレスされた第1及び第3研削側面と、前記第2側面に対応する寸法に対して軸線方向送り研削代だけ多くドレスされた第2研削側面が形成された砥石車を前記工作物に対して前記第2角度より大きく前記第1角度より小さい移動角度で前進端位置まで相対的に送り移動させて、前記第1側面及び前記第3側面を前記第1研削側面及び第3研削側面により所定寸法に研削加工するとともに、前記第2側面を所定寸法に対して前記軸線方向送り研削代だけ残して前記第2研削側面により研削加工し、前記砥石車が前進端位置に位置した状態で前記工作物と前記砥石車とを前記軸線方向に相対的に送り移動させて前記第2側面を前記第2研削側面により前記軸線方向送り研削代だけ研削加工することを特徴とする複合研削方法。A first side surface having a first angle with respect to the axis and having a second side surface having a second angle smaller than the first angle and a third side surface having a third angle larger than the first angle are formed. A V-shaped groove formed at a predetermined distance in the axial direction from the first side surface is driven to rotate around the workpiece axis, and is dressed in dimensions corresponding to the first and third side surfaces . A grinding wheel having a first grinding surface and a third grinding side surface, and a second grinding side surface that is dressed more than the dimension corresponding to the second side surface by an axial feed grinding allowance, and the second angle with respect to the workpiece. The first side surface and the third side surface are ground to a predetermined size by the first grinding side surface and the third grinding side surface by relatively feeding and moving to a forward end position at a movement angle larger and smaller than the first angle. And the second side surface with respect to a predetermined dimension. Leaving only the axial feed grinding allowance is grinding by the second grinding side causes the grinding wheel relative feed movement of said workpiece in a state of being positioned in the forward end position and the grinding wheel in the axial direction Then, the second side surface is ground by the second grinding side surface by the axial feed grinding amount. 軸線方向に延在する第1外周面、該第1外周面から前記軸線に対して第1角度で半径方向に延出する第1側面、該第1角度より小さい第2角度で延出する第2側面と前記第1角度より大きい第3角度で延出する第3側面とにより形成されるV溝、前記第1及び第2側面の延出端を接続する第2外周面、前記V溝底部をなす第3外周面及び前記第3外側面の延出端に接続する第4外周面が形成された工作物を前記工作物軸線回りに支持して回転駆動し、前記第1及び第3側面に対応する寸法にドレスされた第1及び第3研削面と、前記第2側面に対応する寸法に対して軸線方向送り研削代だけ多くドレスされた第2研削側面と、前記第1乃至第4外周面に夫々対応する第1乃至第4研削外周面が形成された砥石車を前記工作物に対して前記第2角度より大きく前記第1角度より小さい移動角度で前進端位置まで相対的に送り移動させて、前記第1側面、前記第3側面及び前記第1乃至第4外周面を前記第1研削側面、第3研削側面及び第1乃至第4研削外周面により所定寸法に研削加工するとともに、前記第2側面を所定寸法に対して前記軸線方向送り研削代だけ残して前記第2研削側面により研削加工し、前記砥石車が前進端位置に位置した状態で前記工作物と前記砥石車とを前記軸線方向に相対的に送り移動させて前記第2側面を前記第2研削側面により前記軸線方向送り研削代だけ研削加工することを特徴とする複合研削方法。A first outer peripheral surface extending in the axial direction, a first side surface extending radially from the first outer peripheral surface at a first angle with respect to the axis, and a second angle extending at a second angle smaller than the first angle. A V-groove formed by two side surfaces and a third side surface extending at a third angle greater than the first angle, a second outer peripheral surface connecting the extending ends of the first and second side surfaces, and the V-groove bottom portion A workpiece formed with a fourth outer peripheral surface connected to an extended end of the third outer peripheral surface and the third outer surface is supported around the workpiece axis, and is driven to rotate. The first and third side surfaces The first and third grinding surfaces dressed to the dimensions corresponding to the second side surface, the second grinding side surfaces dressed more than the dimension corresponding to the second side surface by the axial feed grinding allowance, and the first to fourth the first to grinding wheel fourth grinding the outer peripheral surface is formed respectively corresponding to the outer peripheral surface with respect to the workpiece second The first side surface, the third side surface, and the first to fourth outer peripheral surfaces are moved to the first grinding side surface, the first outer surface by relatively moving to the forward end position at a movement angle larger than the angle and smaller than the first angle. with grinding to a predetermined size by 3 grinding the side surface and the first to fourth grinding the outer peripheral surface, wherein all but said axial feed grinding allowance of the second side surface to a predetermined size by grinding by the second grinding side face, With the grinding wheel positioned at the forward end position, the workpiece and the grinding wheel are relatively fed and moved in the axial direction so that the second side surface is fed by the second grinding side surface by the axial feed grinding allowance. A composite grinding method characterized by grinding. 請求項2に記載の複合研削方法において、前記砥石車を前記工作物に対して前記移動角度で相対的に送り移動させ、前記第1外周研削面により研削加工される前記第1外周面の外径が所定寸法になったことを検出する測定装置からの信号により前記砥石車を前記前進端位置に停止させることを特徴とする複合研削方法。 3. The composite grinding method according to claim 2, wherein the grinding wheel is moved relative to the workpiece at the moving angle and is ground by the first outer peripheral grinding surface. A composite grinding method, wherein the grinding wheel is stopped at the forward end position by a signal from a measuring device that detects that the diameter has reached a predetermined dimension. 請求項1乃至3のいずれかに記載した複合研削方法において、前記工作物の前記第1乃至第3側面に対応する第1乃至第3ドレス側面が形成されたドレッサを前記工作物軸線と平行な軸線回りに支持して回転駆動し、前記砥石車を前記ドレッサに対して前記軸線と直角な方向にドレス前進端位置まで相対的にドレス送り移動させて、前記研石車の前記第1研削側面及び前記第3研削側面を前記第1ドレス側面及び第3ドレス側面により所定寸法にドレスするとともに、前記第2研削側面を前記第2ドレス側面によりドレスし、前記砥石車がドレス前進端位置に位置した状態で前記ドレッサと前記砥石車とを前記軸線方向に相対的にドレス送り移動させて前記第2研削側面を前記第2ドレス側面により前記軸線方向送り研削代だけ多くドレスすることを特徴とする複合研削方法。4. The composite grinding method according to claim 1, wherein a dresser formed with first to third dress side surfaces corresponding to the first to third side surfaces of the workpiece is parallel to the workpiece axis. The first grinding side surface of the grinding wheel is supported by rotating around the axis, the dressing wheel is moved relative to the dresser in a direction perpendicular to the axis to the dress advance end position, and the grinding wheel is moved. And the third grinding side is dressed to a predetermined size by the first dress side and the third dress side, the second grinding side is dressed by the second dress side, and the grinding wheel is positioned at the dress forward end position. to many the dresser and in the state with the grinding wheel by said axial feed grinding allowance of the second grinding sides by relatively dress feed movement by said second address side in the axial direction dress The grinding wherein the. 軸線に対して第1角度をなす第1側面を有し、該第1角度より小さい第2角度をなす第2側面と前記第1角度より大きい第3角度をなす第3側面とにより形成されるV溝が前記第1側面から軸線方向に所定距離隔てて形成された工作物を前記工作物軸線回りに支持して回転駆動する工作物支持装置と、前記第1及び第3側面に対応する寸法にドレスされた第1及び第3研削面と、前記第2側面に対応する寸法に対して軸線方向送り研削代だけ多くドレスされた第2研削側面が形成された砥石車を支承して回転駆動する砥石台と、前記第2角度より大きく前記第1角度より小さい移動角度で前記砥石台を工作物支持装置に対して相対的に移動させる第1移動手段と、前記工作物支持装置と前記砥石台とを前記軸線方向に相対的に移動させる第2移動手段と、前記砥石台を前記工作物支持装置に対して前記第1移動手段により前記移動角度で前進端位置まで相対的に送り移動させて、前記第1側面及び前記第3側面を前記第1研削側面及び第3研削側面により所定寸法に研削加工するとともに、前記第2側面を所定寸法に対して前記軸線方向送り研削代だけ残して前記第2研削側面により研削加工する第1送り制御手段と、前記砥石台が前進端位置に位置した状態で前記工作物支持装置を前記第2移動手段により前記砥石台に対して前記軸線方向に送り移動させて前記第2側面を前記第2研削側面により前記軸線方向送り研削代だけ研削加工する第2送り制御手段とを備えたことを特徴とする複合研削装置。A first side surface having a first angle with respect to the axis and having a second side surface having a second angle smaller than the first angle and a third side surface having a third angle larger than the first angle are formed. A workpiece support device that supports and rotates a workpiece having a V-groove formed at a predetermined distance in the axial direction from the first side surface, and dimensions corresponding to the first and third side surfaces. Rotating and driving a grinding wheel having a first grinding surface and a third grinding surface, and a second grinding side surface which is dressed more than the dimension corresponding to the second side surface by an axial feed grinding allowance. A grinding wheel base, first moving means for moving the grinding wheel base relative to the workpiece support device at a movement angle larger than the second angle and smaller than the first angle, the workpiece support device and the grinding wheel Second moving the table relative to the axial direction Moving the wheel head and the grindstone table relative to the workpiece support device by the first moving means at the moving angle to the forward end position, and moving the first side surface and the third side surface to the first side. with grinding to size by 1 grinding the side surface and the third ground side, a first feed control means for grinding by the second grinding side face leaving only the axial feed grinding allowance of the second side surface relative to a predetermined dimension The workpiece support device is moved in the axial direction with respect to the grinding wheel table by the second moving means in a state where the grinding wheel table is positioned at the forward end position, and the second side surface is moved to the second grinding side surface. And a second feed control means for grinding only the axial feed grinding allowance. 軸線方向に延在する第1外周面、該第1外周面から前記軸線に対して第1角度で半径方向に延出する第1側面、該第1角度より小さい第2角度で延出する第2側面と前記第1角度より大きい第3角度で延出する第3側面とにより形成されるV溝、前記第1及び第2側面の延出端を接続する第2外周面、前記V溝底部をなす第3外周面及び前記第3外側面の延出端に接続する第4外周面が形成された工作物を前記工作物軸線回りに支持して回転駆動する工作物支持装置と、前記第1及び第3側面に対応する寸法にドレスされた第1及び第3研削面と、前記第2側面に対応する寸法に対して軸線方向送り研削代だけ多くドレスされた第2研削側面と、前記第1乃至第4外周面に夫々対応する第1乃至第4研削外周面が形成された砥石車を支承して回転駆動する砥石台と、前記第2角度より大きく前記第1角度より小さい移動角度で前記砥石台を工作物支持装置に対して相対的に移動させる第1移動手段と、前記工作物支持装置と前記砥石台とを前記軸線方向に相対的に移動させる第2移動手段と、前記砥石台を前記工作物支持装置に対して前記第1移動手段により前記移動角度で前進端位置まで相対的に送り移動させて、前記第1側面、前記第3側面及び前記第1乃至第4外周面を前記第1研削側面、第3研削側面及び第1乃至第4研削外周面により所定寸法に研削加工するとともに、前記第2側面を所定寸法に対して前記軸線方向送り研削代だけ残して前記第2研削側面により研削加工する第1送り制御手段と、前記砥石台が前進端位置に位置した状態で前記工作物支持装置と前記砥石台とを前記第2移動手段により前記軸線方向に相対的に送り移動させて前記第2側面を前記第2研削側面により前記軸線方向送り研削代だけ研削加工する第2送り制御手段とを備えたことを特徴とする複合研削装置。A first outer peripheral surface extending in the axial direction, a first side surface extending radially from the first outer peripheral surface at a first angle with respect to the axis, and a second angle extending at a second angle smaller than the first angle. A V-groove formed by two side surfaces and a third side surface extending at a third angle greater than the first angle, a second outer peripheral surface connecting the extending ends of the first and second side surfaces, and the V-groove bottom portion A workpiece support device configured to support and rotate the workpiece having a third outer circumferential surface and a fourth outer circumferential surface connected to the extending end of the third outer surface around the workpiece axis, The first and third grinding surfaces dressed in dimensions corresponding to the first and third side surfaces; the second grinding side surface dressed more than the dimension corresponding to the second side surfaces by an axial feed grinding allowance; and first through by supporting the first through grinding wheel fourth grinding the outer peripheral surface is formed respectively corresponding to the fourth outer peripheral face A grindstone table that is driven to roll, a first moving means that moves the grindstone table relative to the workpiece support device at a movement angle larger than the second angle and smaller than the first angle, and the workpiece support device. A second moving means for relatively moving the grindstone table in the axial direction; and the grindstone table is relatively moved to the forward end position at the moving angle by the first moving means with respect to the workpiece support device. The first side surface, the third side surface, and the first to fourth outer peripheral surfaces are moved to a predetermined size by the first grinding side surface, the third grinding side surface, and the first to fourth grinding outer peripheral surfaces. the machine tool and the first feed control means for grinding by the second grinding side face leaving only the axial feed grinding allowance for a given size of the second aspect, in a state where the wheel head is positioned at the forward end position Object support device and said abrasive And a second feed control means for grinding the second side surface by the second grinding side surface by the axial feed grinding amount by moving the base relative to the axial direction by the second movement means. A composite grinding apparatus characterized by that. 請求項6に記載の複合研削装置において、前記第1移動手段は、前記第1外周研削面により研削加工される前記第1外周面の外径が所定寸法になったことを検出する測定装置からの信号により前記砥石車を前記前進端位置に停止させることを特徴とする複合研削装置。 The composite grinding apparatus according to claim 6, wherein the first moving unit is configured to detect that an outer diameter of the first outer peripheral surface ground by the first outer peripheral ground surface has become a predetermined dimension. The grinding wheel is stopped at the forward end position by a signal of
JP2001283547A 2001-09-18 2001-09-18 Compound grinding method and apparatus Expired - Fee Related JP3834493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001283547A JP3834493B2 (en) 2001-09-18 2001-09-18 Compound grinding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283547A JP3834493B2 (en) 2001-09-18 2001-09-18 Compound grinding method and apparatus

Publications (2)

Publication Number Publication Date
JP2003094300A JP2003094300A (en) 2003-04-03
JP3834493B2 true JP3834493B2 (en) 2006-10-18

Family

ID=19107022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283547A Expired - Fee Related JP3834493B2 (en) 2001-09-18 2001-09-18 Compound grinding method and apparatus

Country Status (1)

Country Link
JP (1) JP3834493B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521244B2 (en) * 2004-10-28 2010-08-11 ミクロン精密株式会社 Two-step continuous grinding method and apparatus
EP1974859B1 (en) * 2005-12-22 2014-02-12 JTEKT Corporation A cylindrical grinding machine with a wheel truing apparatus and a truing method
CN114074278A (en) * 2021-11-11 2022-02-22 辽宁机电职业技术学院 Weight removing machine based on dynamic balance mechanism of rotor shaft of turbocharger

Also Published As

Publication number Publication date
JP2003094300A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US8360819B2 (en) Method for grinding a machine part, and grinding machine for carrying out said method
RU2540284C2 (en) Circular grinding of long thin round rods
JP3787248B2 (en) Method and apparatus for controlling sizing of machine tool
CN201493650U (en) On-line detection center for external thread processing
CN101569979A (en) Processing method and processing center for detecting external thread on line
JPH0899242A (en) Machine tool for combined working
CN111823139A (en) Method for dressing grinding wheel and grinding wheel dressing device
JP4140574B2 (en) Method and apparatus for grinding a cam having a concave surface
CN111843622B (en) Grinding method and grinding machine
JP3834493B2 (en) Compound grinding method and apparatus
JP5395570B2 (en) Cylindrical grinding method and apparatus
CN203956651U (en) A kind of high precision numerical control cylindrical roller fine grinding superfinishing integrated machine tool
JPH11320299A (en) Outer diameter polish finishing device of commutator processing machine
JP3555146B2 (en) Grinding method
JP3385666B2 (en) Grinding equipment
JP3241453B2 (en) Grinding method
JP2000042878A (en) Cylindrical grinding machine, work spindle therefor, grinding wheel spindle and work method for flat drill by this cylindrical grinding machine
JPH1190799A (en) Machine tool for crank pin machining and machining method for crank pin
JP4838441B2 (en) Cylindrical workpiece grinding apparatus having repetitive profile and cylindrical workpiece shift plunge grinding method
JPH0521707B2 (en)
JP3866951B2 (en) Processing method and processing apparatus
JP3812869B2 (en) Cylindrical grinding method and apparatus
JP4539557B2 (en) Method and apparatus for controlling sizing of machine tool
JPH02284865A (en) Internal grinding attachment
JP2003094293A (en) Abnormality detection method for measurement device of machining device and machining device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees