JPH0521707B2 - - Google Patents
Info
- Publication number
- JPH0521707B2 JPH0521707B2 JP58181587A JP18158783A JPH0521707B2 JP H0521707 B2 JPH0521707 B2 JP H0521707B2 JP 58181587 A JP58181587 A JP 58181587A JP 18158783 A JP18158783 A JP 18158783A JP H0521707 B2 JPH0521707 B2 JP H0521707B2
- Authority
- JP
- Japan
- Prior art keywords
- grinding
- grinding wheel
- workpiece
- truing
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006073 displacement reaction Methods 0.000 claims description 26
- 238000001514 detection method Methods 0.000 claims description 11
- 238000003860 storage Methods 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 4
- 241000252084 Anguilla Species 0.000 claims 1
- 238000004513 sizing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008602 contraction Effects 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000006061 abrasive grain Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B47/00—Drives or gearings; Equipment therefor
- B24B47/22—Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
本発明はアンギユラ研削盤における位置補正装
置に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a position correction device for an angular grinding machine.
<従来技術>
一般に工作物の円筒部の研削と同時に肩部を研
削加工する場合、工作物の円筒部を研削する円筒
部研削面と、肩部端面を研削する肩部研削面とを
有するアンギユラ形の砥石車を備えたアンギユラ
研削盤によつて工作物の加工を行うが、かかる研
削盤において、砥石軸の熱伸縮、研削中における
研削面の摩耗等によつて砥石車の円筒部研削面と
肩部研削面の交点である頂部の位置が変位し、こ
れによつて砥石頂部が通る径路の位置が工作物軸
線と平行な方向に変位すると、工作物の円筒部が
所定の寸法まで研削された時の肩部研削面の位置
が一定とならず、肩部端面を所定の寸法に正確に
研削できなくなる。<Prior art> Generally, when grinding the shoulder portion of a workpiece at the same time as grinding the cylindrical portion of the workpiece, an angular grinder having a cylindrical portion grinding surface for grinding the cylindrical portion of the workpiece and a shoulder portion grinding surface for grinding the shoulder end surface is used. Workpieces are processed using an angular grinding machine equipped with a shaped grinding wheel, but in such a grinding machine, the grinding surface of the cylindrical part of the grinding wheel is damaged due to thermal expansion and contraction of the grinding wheel shaft, wear of the grinding surface during grinding, etc. When the position of the top, which is the intersection of the shoulder grinding surface and the shoulder grinding surface, is displaced, and as a result, the position of the path through which the top of the grinding wheel passes is displaced in a direction parallel to the workpiece axis, the cylindrical part of the workpiece is ground to a predetermined dimension. The position of the shoulder grinding surface is not constant when the shoulder is ground, making it impossible to accurately grind the shoulder end surface to a predetermined dimension.
このため、従来のアンギユラ研削盤において
は、第1図に示すようにツルーイン時における切
込み量を大きめに取り、ツルーイング後において
砥石車Gの頂部Pの砥石車軸線と平行な方向の位
置が常に同じ位置となるようにしていた。 For this reason, in conventional angular grinding machines, the depth of cut is set large during truing, as shown in Figure 1, so that the position of the top P of the grinding wheel G in the direction parallel to the grinding wheel axis is always the same after truing. I was trying to position it.
しかしながら、このようなツルーイングを行う
と、一方の研削面Gbにおいて適正な切込みを与
えると、他方の研削面Gaにおいては必要以上に
砥粒層が除去されることになり、立方晶窒化硼素
等の硬質材料を砥粒とする高価な砥石車ではこの
ようなツルーイングを行うことは好ましくなく、
第2図に示すように各研削面Ga,Gbとも研削面
のうねりを除去できる最小の切込量でツルーイン
グを行うことが必要となる。ところがこのような
ツルーイングを行うと第2図に示すように、砥石
車Gの頂部Pの位置が一定にならず、工作物の肩
部端面を所定の寸法に高精度に研削できなくなる
問題がある。 However, when such truing is performed, if an appropriate depth of cut is given on one ground surface Gb, more of the abrasive grain layer is removed than necessary on the other ground surface Ga, and cubic boron nitride, etc. It is not desirable to perform this type of truing with expensive grinding wheels that use hard material as abrasive grains.
As shown in Fig. 2, it is necessary to perform truing on each of the ground surfaces Ga and Gb with the minimum depth of cut that can remove the waviness of the ground surface. However, when such truing is performed, as shown in Fig. 2, the position of the top P of the grinding wheel G is not constant, and there is a problem that it becomes impossible to grind the shoulder end face of the workpiece to a predetermined dimension with high precision. .
<発明の目的>
そこで本発明は、砥石車の頂部の位置が砥石軸
の熱伸縮等によつて変位しても、工作物の肩部端
面を高精度に研削加工できるようにして、必要最
小限のツルーイングにより、工作物の肩部端面を
高精度に加工できるようにすることを目的とする
ものである。<Purpose of the Invention> Therefore, the present invention is capable of grinding the shoulder end face of a workpiece with high precision even if the position of the top of the grinding wheel is displaced due to thermal expansion and contraction of the grinding wheel shaft. The purpose of this is to enable highly accurate machining of the shoulder end face of a workpiece by limited truing.
<発明の構成>
本発明はアンギユラ形砥石車を保持する砥石台
に備えられたツルーイング工具と、このツルーイ
ング工具を前記アンギユラ形砥石車の軸線方向お
よび軸線と直交する方向にそれぞれ移動する移動
装置と、この移動装置を前記アンギユラ形砥石車
の互いに直交する一対の研削面と対応する形状デ
ータによつて駆動するツルーイング工具制御手段
と、前記一対の研削面の前記砥石車切込み方向の
位置をそれぞれツルーイング直前、直後に検出す
る研削面検出手段と、この研削面検出手段にて検
出された研削面の前記砥石車切込み方向の各々の
位置を記憶する位置記憶手段と、前記記憶手段に
記憶されたツルーイング直前に検出された位置
と、前回ツルーイング直後に検出された位置から
前記一対の研削面が交差する頂部の砥石軸線と平
行な方向の変位を演算する第1演算手段と前記記
憶手段に記憶されたツルーイング直前に検出され
た位置と、前回ツルーイング直後に検出された位
置から前記一対の研削面が交差する頂部の工作物
軸線と平行な方向の変位を演算する第2演算手段
と、前記第1演算手段にて演算された頂部の砥石
軸線と平行な方向の変位に基づいて前記形状デー
タを砥石軸線と平行な方向に移動補正する形状デ
ータ補正手段と、前記第2演算手段にて演算され
た頂部の工作物軸線と平行な方向の変位に基づい
て前記前記工作物の主軸軸線方向の位置を補正し
て砥石車の頂部を通る砥石車の経路が工作物上に
設定された理論通過点を通るようにする位置補正
手段を設けたものである。<Structure of the Invention> The present invention includes a truing tool provided on a grinding wheel head that holds an angular grinding wheel, and a moving device that moves the truing tool in an axial direction of the angular grinding wheel and in a direction orthogonal to the axis, respectively. , a truing tool control means for driving the moving device according to shape data corresponding to a pair of mutually orthogonal grinding surfaces of the angular grinding wheel, and a truing tool control means for driving the moving device according to shape data corresponding to a pair of mutually orthogonal grinding surfaces of the angular grinding wheel, and truing the position of the pair of grinding surfaces in the cutting direction of the grinding wheel, respectively. A grinding surface detection means for detecting immediately before and after, a position storage means for storing each position of the grinding surface detected by the grinding surface detection means in the cutting direction of the grinding wheel, and a truing stored in the storage means. A first calculation means for calculating a displacement in a direction parallel to the axis of the top grinding wheel where the pair of grinding surfaces intersect from the position detected immediately before and the position detected immediately after the previous truing, and the first calculation means stores the displacement in the storage means. a second calculation means for calculating a displacement in a direction parallel to the workpiece axis at the top where the pair of grinding surfaces intersect from a position detected immediately before truing and a position detected immediately after the previous truing; and the first calculation means. shape data correction means for correcting the shape data in a direction parallel to the grinding wheel axis based on the displacement of the top part in a direction parallel to the grinding wheel axis calculated by the means; and a top part calculated by the second calculation means. The position of the workpiece in the direction of the spindle axis is corrected based on the displacement in the direction parallel to the workpiece axis, so that the path of the grinding wheel passing through the top of the grinding wheel passes through a theoretical passing point set on the workpiece. This is provided with a position correction means for doing so.
これにより、必要最小限のツルーイングを実施
することができ、さらに頂部の位置が変化して
も、頂部が通る経路の工作物に対する相対位置は
一定になり、工作物の肩部端面を高精度に研削加
工できる。 This makes it possible to carry out the minimum amount of truing required, and even if the position of the top changes, the relative position of the path that the top passes with respect to the workpiece remains constant, making it possible to accurately align the shoulder end face of the workpiece. Can be grinded.
<実施例>
以下本発明の実施例を図面に基づいて説明す
る。第3図において、11は主軸台12と心押台
13とにより工作物Wを支持する工作物テーブル
で、この工作物テーブル11はベツド10上の前
方に形成された案内面15,16に沿つて工作物
Wの軸線と平行なZ軸方向へ摺動可能に案内され
ており、サーボモータ17によつて回転される送
りねじ18が螺合している。なお、19はベツド
10上に設置された端面定寸装置を示す。<Examples> Examples of the present invention will be described below based on the drawings. In FIG. 3, reference numeral 11 denotes a workpiece table that supports a workpiece W by a headstock 12 and a tailstock 13. It is slidably guided in the Z-axis direction parallel to the axis of the workpiece W, and a feed screw 18 rotated by a servo motor 17 is screwed together. Note that 19 indicates an end face sizing device installed on the bed 10.
一方、ベツド10の後方には、砥石台20が案
内面21,22により主軸軸線OSに対して一定
の角度θをなして斜行するX軸方向へ摺動可能に
案内され、サーボモータ23によつて回転される
送りねじ25が螺合しており、この砥石台20の
前方側部に、工作物Wの軸線と平行な円筒部研削
面Gaとこの研削面Gaと直交する肩部研削面Gbと
を有するアンギユラ形の砥石車Gが軸架されてい
る。 On the other hand, behind the bed 10, a grindstone head 20 is guided by guide surfaces 21 and 22 so as to be slidable in the X-axis direction, which runs obliquely at a constant angle θ with respect to the spindle axis OS. A feed screw 25 that is rotated by the grinding wheel is screwed together, and a cylindrical grinding surface Ga parallel to the axis of the workpiece W and a shoulder grinding surface perpendicular to the grinding surface Ga are provided on the front side of the grindstone head 20. An anguilla-shaped grinding wheel G having Gb is mounted on the shaft.
一方、前記砥石台20の側部後方には第4図〜
第6図に示されるように、倣い形のツルーイング
装置30砥石車砥削面の表面位置を検出する表面
位置検出装置40とが取付けられている。 On the other hand, at the rear side of the whetstone head 20, there are shown in FIG.
As shown in FIG. 6, a tracing type truing device 30 is attached with a surface position detection device 40 for detecting the surface position of the grinding surface of the grinding wheel.
ツルーイング装置30は第4図に示されるよう
にシリンダ31により、砥石車Gの軸線と平行な
方向に移動されるトラバース台32上に、テンプ
レート33に倣つて砥石車Gの軸線と直交する方
向に進退する進退台35を案内し、この進退台3
5の先端にツルーイング車Tを軸架したツルーイ
ングヘツド36が取付けられている。そして、進
退台35にはツルーイングヘツド36と一体のラ
ム部37に螺合し、サーボモータ38によつて回
転される送りねじ38aが設けられている。ま
た、テンプレート33を支持する支持台34はサ
ーボモータ39によつて回転される送りねじ39
が螺合し、サーボモータ39の回転により砥石車
Gの軸線と平行な方向の位置が調整されるように
なつている。 As shown in FIG. 4, the truing device 30 is placed on a traverse table 32 that is moved by a cylinder 31 in a direction parallel to the axis of the grinding wheel G, and is moved in a direction perpendicular to the axis of the grinding wheel G by following a template 33. Guide the advancing/retracting platform 35 to advance and retreat, and this advancing/retracting platform 3
A truing head 36 on which a truing vehicle T is mounted is attached to the tip of the truing head 5. The advancing/retracting table 35 is provided with a feed screw 38a that is screwed into a ram portion 37 integral with the truing head 36 and rotated by a servo motor 38. Further, the support base 34 supporting the template 33 has a feed screw 39 rotated by a servo motor 39.
are screwed together, and the position of the grinding wheel G in a direction parallel to the axis of the grinding wheel G is adjusted by rotation of the servo motor 39.
一方、表面位置検出装置40は、第6図に示す
ように、シリンダ41によつて一定距離にだけ砥
石車Gの軸線と平行な方向にシフトされるシフト
台42上に、砥石Gの軸線と直交する方向に移動
可能で、先端部に接触子Sを取付けたラム43を
配設し、このラム34の後端にターボモータ44
によつて回転される送りねじ45を螺合した構成
である。そして、前記接触子Sの先端には、研削
面Ga,Gbと平行な当接面をそれぞれ形成した第
1接触部Saと第2接触部Sbが形成されるととも
に、その基部には振動センサ46が取付けられ、
第1接触部Saおよび第2接触部Sbの砥石車Gへ
の接触を振動によつて検出するようになつてい
る。 On the other hand, as shown in FIG. 6, the surface position detection device 40 is mounted on a shift table 42 that is shifted by a cylinder 41 by a certain distance in a direction parallel to the axis of the grinding wheel G. A ram 43 that is movable in orthogonal directions and has a contact S attached to its tip is disposed, and a turbo motor 44 is attached to the rear end of this ram 34.
It has a structure in which a feed screw 45 that is rotated by is screwed together. A first contact portion Sa and a second contact portion Sb are formed at the tip of the contactor S, and a first contact portion Sa and a second contact portion Sb are formed with contact surfaces parallel to the ground surfaces Ga and Gb, respectively, and a vibration sensor 46 is formed at the base thereof. is installed,
Contact of the first contact portion Sa and the second contact portion Sb with the grinding wheel G is detected by vibration.
次に制御回路について説明すると、第7図にお
いて50はコンピユータであり、このコンピユー
タ50にはメモリ51が接続されるとともに、コ
ンピユータ50に接続されたインタフエイスIF
1には、データ入力装置52と、振動センサ46
からの信号により、接触検出子Sが砥石車Gに接
触したことを検出する接触検出回路53と、端面
定寸装置19の出力が零になつたことを検出する
定寸回路54とが接続されている。また、インタ
フエイスIF2には、サーボモータ23,17,
38,39,44をそれぞれ駆動するための駆動
ユニツトDUX,DUZ,DUU,DUV,DUWが接
続されている。 Next, to explain the control circuit, 50 in FIG. 7 is a computer, a memory 51 is connected to this computer 50, and an interface IF connected to the computer 50
1 includes a data input device 52 and a vibration sensor 46.
A contact detection circuit 53 that detects that the contact detector S has contacted the grinding wheel G is connected to a sizing circuit 54 that detects that the output of the end face sizing device 19 has become zero. ing. The interface IF2 also includes servo motors 23, 17,
Drive units DUX, DUZ, DUU, DUV, and DUW are connected to drive the motors 38, 39, and 44, respectively.
今、コンピユータ50にツルーイング指令が与
えられると、コンピユータ50は第8図に示す処
理を行う。 Now, when a truing command is given to the computer 50, the computer 50 performs the processing shown in FIG.
ステツプ1000ステツプ116は、砥石車Gの各研
削面Ga及びGbの接触子の原点に対する位置を検
出するためのステツプであり、U軸に対してパル
ス分配を行うことにより、第10図aに1点鎖線
で示す状態にある接触市子を砥石車Gの中心軸線
に向かつて移動させる。そして、第1接触部Sa
が研削面Gaに当接した時には、接触子駆動装置
を停止させて、その送り量をステツプ104におい
てMRとして記憶する。このMRの値は、接触子
Sの原点を基準とした場合の研削面Gaの位置を
表す。ステツプ106で接触子を原点へ復帰させた
後、次に研削面Gbの位置を測定するために、第
10図bに示すように、シフト用シリンダを作動
させて接触子Sを図上右側にシフトさせて、第2
接触部SbをV軸方向即ち砥石軸と平行な方向に
於ける所定の位置までシフトさせる。そしてステ
ツプ110で前述と同様に、接触するまで接触子を
送り込んだ後、その送り量をNRとして記憶す
る。このNRの値は、接触子Sの原点を基準とし
た研削面Gbの位置を示す。その後、ステツプ116
において、接触子Sは原点に復帰される。このよ
うにしてツルーイング直前の研削面の位置が接触
子Sの移動量として検出される。 Step 1000 Step 116 is a step for detecting the position of each grinding surface Ga and Gb of the grinding wheel G with respect to the origin of the contact, and by distributing pulses to the U axis, 1 in FIG. The contact plate in the state shown by the dotted chain line is moved toward the central axis of the grinding wheel G. And the first contact part Sa
When it comes into contact with the grinding surface Ga, the contact drive device is stopped and the feed amount is stored as MR in step 104. This value of MR represents the position of the ground surface Ga with the origin of the contact S as a reference. After returning the contact to the origin in step 106, in order to measure the position of the grinding surface Gb, the shift cylinder is operated to move the contact S to the right side in the figure, as shown in FIG. 10b. Shift, second
The contact portion Sb is shifted to a predetermined position in the V-axis direction, that is, in a direction parallel to the grindstone axis. Then, in step 110, as described above, after the contact is fed until it makes contact, the amount of feed is stored as NR. This value of NR indicates the position of the grinding surface Gb with respect to the origin of the contact S. Then step 116
At , the contact S is returned to its origin. In this way, the position of the grinding surface immediately before truing is detected as the amount of movement of the contact S.
次にステツプ118において、MR−MO、NR−
NOの演算を行つて各接触部Sa,Sbの送り量の変
位A、Bを求める。即ち、後述するように、
MO、NOは、前回のツルーイングの直後におい
て測定した各接触部Sa,Sbが研削面Ga,Gbに接
触するまでの移動量の記憶値であり、ステツプ
118で計算したA及びBの値は、第10図a,b
に図示するように各研削面Ga,GbのU軸方向の
変位をそれぞれ表している。 Next, in step 118, MR-MO, NR-
Calculate NO to find the displacements A and B of the feed amount of each contact portion Sa and Sb. That is, as described later,
MO and NO are the memorized values of the amount of movement of each contact part Sa and Sb until they contact the ground surfaces Ga and Gb, which were measured immediately after the previous truing, and are the values for the step
The values of A and B calculated in 118 are shown in Figure 10 a and b.
As shown in the figure, the displacement of each grinding surface Ga, Gb in the U-axis direction is shown.
次にステツプ120において、下記(1)、(2)式によ
り砥石車Gの頂部PのU軸方向とV軸方向の変位
量△U、△Vをそれぞれ算出するとともに、(3)式
により、頂部Pが通る径路Rの工作物Wの軸線と
平行なZ軸方向の変位量△Zを算出する。 Next, in step 120, the displacements △U and △V of the top P of the grinding wheel G in the U-axis direction and the V-axis direction are calculated using the following equations (1) and (2), and using equation (3), The amount of displacement ΔZ in the Z-axis direction parallel to the axis of the workpiece W of the path R through which the top P passes is calculated.
△V=(A−B)sinθ・cosθ …(1)
△U=Asin2θ+Bcos2θ …(2)
△Z=(A−B)cosθ …(3)
なお、第11図は、研削面Ga,Gbの半径方向
変位量A、Bと各軸方向の変位量△V,△U,△
Zの関係を示す図である。 △V=(A-B) sinθ・cosθ...(1) △U=Asin 2 θ+Bcos 2 θ...(2) △Z=(A-B) cosθ...(3) In addition, Fig. 11 shows the ground surface Ga , Gb radial displacement A, B and each axial displacement △V, △U, △
It is a figure showing the relationship of Z.
このように砥石車Gの頂部Pの各軸方向のずれ
量△V,△U,△Zが演算されるとステツプ122
において、サーボモータ39を作動させてテンプ
レート33を△VだけV軸方向へ移動させ、テン
プレートの頂部を砥石車Gの頂部Pの位置変化に
応じて移動させる。次にステツプ124において、
サーボモータ44を駆動し、ツルーイング工具を
△U+Cだけ法線方向(U軸方向)に前進させて
ツルーイング車Tを研削面Gaに対して一定の切
込量Cだけ砥石車Gの軸線側に近い位置に位置決
めする。 When the deviation amounts △V, △U, △Z of the top P of the grinding wheel G in each axial direction are calculated in this way, the process proceeds to step 122.
At this time, the servo motor 39 is operated to move the template 33 by ΔV in the V-axis direction, and the top of the template is moved in accordance with the change in the position of the top P of the grinding wheel G. Next, in step 124,
Drive the servo motor 44 to advance the truing tool by △U+C in the normal direction (U-axis direction), and move the truing wheel T closer to the axis of the grinding wheel G by a certain amount of cut C to the grinding surface Ga. position.
次に、ステツプ126において、トラバース用シ
リンダ41を作動させて、テンプレート33をな
ぞりながらツルーイング工具Tを移動させて砥石
車面Ga,Gbを研削する。研削後、トラバース用
シリンダ41を、逆方向に作動させてツルーイン
グ工具TをV軸方向の正方向に原点位置まで移動
させてツルーイングを終了する。その後、ステツ
プ130において、砥石台を法線方向に△U+Cだ
け前進させる。これにより、研削面Gaの工作物
W側からの見た位置はツルーイング前の研削面
Gaの位置と同じになる。 Next, in step 126, the traverse cylinder 41 is operated to move the truing tool T while tracing the template 33 to grind the grinding wheel surfaces Ga and Gb. After grinding, the traverse cylinder 41 is operated in the opposite direction to move the truing tool T in the positive direction of the V-axis to the origin position, thereby completing the truing. Thereafter, in step 130, the grindstone head is advanced by ΔU+C in the normal direction. As a result, the position of the ground surface Ga viewed from the workpiece W side is the ground surface before truing.
It will be the same position as Ga.
次にステツプ132から144は、ツルーイング直後
の研削面に対して接触子Sを当接させて、研削面
Ga,Gbの位置を接触子の原点を基準として測定
し記憶する過程である。ステツプ134は前述のス
テツプ100、102と同様である。又、ステツプ136
では、その検出された移動量を、前回のツルーイ
ング直後の研削面の位置としてMOに記憶する。
ステツプ138で、接触子を原点へ復帰させた後、
Kだけ接触子を−V方向にシフトして、ステツプ
140で他の研削面Gbについて、同じ様に送り量を
測定する。その値は、ステツプ142においてNO
に記憶される。次に、ステツプ144で、接触子
Sを原点復帰させて終了する。以上のような処理
によつて砥石車は、その軸方向の変位による誤差
を補正して精度よく研削面Ga,Gbのツルーイン
グを行うことができる。 Next, in steps 132 to 144, the contact S is brought into contact with the ground surface immediately after truing, and the ground surface is
This is the process of measuring and storing the positions of Ga and Gb with the origin of the contact as a reference. Step 134 is similar to steps 100 and 102 described above. Also, step 136
Then, the detected movement amount is stored in the MO as the position of the grinding surface immediately after the previous truing.
After returning the contact to the origin in step 138,
Shift the contact by K in the -V direction and step
140, measure the feed amount in the same way for the other grinding surface Gb. Its value is set to NO in step 142.
is memorized. Next, in step 144, the contact S is returned to the origin, and the process ends. Through the above-described processing, the grinding wheel can correct errors caused by displacement in the axial direction and accurately true the grinding surfaces Ga and Gb.
そして、上記の処理によつて研削面Ga,Gbの
ツルーイングが完了すると、ステツプ146におい
て、前記したステツプ120にて演算した変位量△
Zを補正値レジスタCVRに加算して、工作物テ
ーブル11の補正移動量CVを更新する。この補
正値レジスタVCRは、新しい砥石車Gを取付け、
砥石車Gの頂部Pとテンプレート33の頂部との
間の位置関係を整合させた時点で零リセツトさ
れ、この後、ツルーイングの度に変位量△Zが累
積加算される。したがつて、補正値レジスタ
VCRの値は、砥石車の熱伸縮等によつて位置変
化が生じることのないテンプレート33の頂部を
基準とした、砥石車Gの頂部Pが通る径路Rの工
作物W軸線と平行な方向の位置ずれ量を表すこと
になる。 When the trueing of the ground surfaces Ga and Gb is completed through the above processing, in step 146, the displacement amount △ calculated in step 120 is determined.
Z is added to the correction value register CVR to update the correction movement amount CV in the workpiece table 11. This correction value register VCR is installed with a new grinding wheel G,
It is reset to zero when the positional relationship between the top P of the grinding wheel G and the top of the template 33 is matched, and thereafter, the displacement ΔZ is cumulatively added every time truing is performed. Therefore, the correction value register
The value of VCR is determined in the direction parallel to the axis of the workpiece W on the path R through which the top P of the grinding wheel G passes, with the top of the template 33 whose position does not change due to thermal expansion and contraction of the grinding wheel G as a reference. It represents the amount of positional deviation.
一方、コンピユータ50に加工指令が与えられ
ると、コンピユータ50は第9図に示すテーブル
位置決め処理を行つた後、図略の加工プログラム
を実行する。 On the other hand, when a machining command is given to the computer 50, the computer 50 performs the table positioning process shown in FIG. 9, and then executes a machining program (not shown).
ステツプ200において端面定寸装置19を前進
させて第12図に示すように端面定寸装置19の
フイーラが工作物Wの基準面Wsと係合可能な状
態とし、この後ステツプ202においてZ軸にパル
ス分配を行つて端面定寸装置19の出力が零とな
る位置に工作物テーブル11を位置決めする。こ
れにより、工作物Wの基準端面Wsを通る平面が、
熱変位がない状態での砥石車Gの頂部が通る径路
ROとの主軸軸線OSの交点CPOに位置する。 In step 200, the end face sizing device 19 is advanced so that the feeler of the end face sizing device 19 can engage with the reference surface Ws of the workpiece W as shown in FIG. Pulse distribution is performed to position the workpiece table 11 at a position where the output of the end face sizing device 19 is zero. As a result, the plane passing through the reference end surface Ws of the workpiece W is
The path taken by the top of the grinding wheel G when there is no thermal displacement
It is located at the intersection point CPO of the main axis OS with RO.
さらに、この後ステツプ204において、基準端
面Wsと肩部端面Wbとの間の工作物軸線方向と平
行な方向のずれ量L、円筒部Waの仕上げ直径D
とに基づいてテーブルシフト量Sを(4)式によ
S=L−(D/2tanθ) …(4)
つて演算するとともに、ステツプ206において、
このシフト量Sから、ツルーイング時に算出した
テーブル補正量CVを減算し、テーブル移動量Zl
を演算する。 Furthermore, in step 204, the amount of deviation L between the reference end surface Ws and the shoulder end surface Wb in the direction parallel to the workpiece axis direction, and the finished diameter D of the cylindrical portion Wa are determined.
Based on this, the table shift amount S is calculated by formula (4) as S=L-(D/2tanθ)...(4), and in step 206,
From this shift amount S, the table correction amount CV calculated at the time of truing is subtracted, and the table movement amount Zl is calculated.
Calculate.
そして、この後、ステツプ208においてZ軸に
パルス分配を行い、工作物Wを移動量Zlだけ、第
12図において左側へ移動する。 Then, in step 208, pulse distribution is performed on the Z axis, and the workpiece W is moved to the left in FIG. 12 by a movement amount Zl.
これにより、砥石車GのRが、研削完了時にお
ける肩部端面Waと円筒部Wbの交点を通る位置
に工作物Wが位置決めされる。 As a result, the workpiece W is positioned at a position where R of the grinding wheel G passes through the intersection of the shoulder end surface Wa and the cylindrical portion Wb at the time of completion of grinding.
このように工作物W形状によつて決まる工作物
テーブル11のシフト量Sを、砥石車Gの頂部P
の熱変位量に比例したCVによつて補正して工作
物テーブル11の移動量Zlを算出しているため、
かかる位置決め動作後においては、砥石車Gの頂
部P熱変位に関わらず、頂部Pの通る径路Rが、
仕上げ時の肩部端面Waと円筒部Wbの交点を通
る状態となる。 In this way, the shift amount S of the workpiece table 11 determined by the shape of the workpiece W is determined by the top P of the grinding wheel G.
Since the movement amount Zl of the workpiece table 11 is calculated by correcting it by CV proportional to the thermal displacement amount,
After such a positioning operation, regardless of the thermal displacement of the top P of the grinding wheel G, the path R taken by the top P is
It passes through the intersection of the shoulder end face Wa and the cylindrical part Wb during finishing.
したがつて、これに続く加工プログラムの実行
のより研削面Gaを円筒部Waに係合させ、図略の
定寸装置からの信号に基づき、円筒部Waを仕上
げ寸法まで研削すると、これにより、肩部端面
Wbが指定された仕上げ寸法に高精度に研削され
ることになる。 Therefore, by executing the machining program that follows, the grinding surface Ga is engaged with the cylindrical part Wa, and the cylindrical part Wa is ground to the finished dimension based on a signal from a sizing device (not shown). Shoulder end face
Wb will be ground to the specified finish dimensions with high precision.
<発明の効果>
以上述べたように本発明においては、砥石車の
頂部の変位を検出し、この変位に基づいてツルー
イング工具の動作を補正するとともに、工作物と
砥石車との間の相対位置を補正して砥石車の頂部
の通る経路が工作物に設定された理論通過点を通
るようにしたので砥石軸の熱伸縮等に起因して砥
石の頂部が変化しても必要最小限の取り代で研削
面のツルーイングを行うことができ、かつ工作物
の肩部端面の加工精度を悪化させることがなくな
り、砥石車の消耗量を増大させることなく、工作
物の加工精度を向上できる利点がある。<Effects of the Invention> As described above, in the present invention, the displacement of the top of the grinding wheel is detected, the movement of the truing tool is corrected based on this displacement, and the relative position between the workpiece and the grinding wheel is corrected. The path taken by the top of the grinding wheel is corrected so that it passes through the theoretical passing point set on the workpiece, so even if the top of the grinding wheel changes due to thermal expansion and contraction of the grinding wheel shaft, the path taken by the top of the grinding wheel can be minimized. This has the advantage that the grinding surface can be trued in a short period of time, and the machining accuracy of the shoulder end face of the workpiece is not deteriorated, and the machining accuracy of the workpiece can be improved without increasing the wear amount of the grinding wheel. be.
第1図は、砥石車Gの頂部Pの位置が変化しな
いツルーイングを示す図、第2図は、砥石車Gの
消費量を少なくしたツルーイングを示す図、第3
図〜第12図は本発明の実施例を示すもので、第
3図は研削盤の概略平面図、第4図は第3図にお
けるツルーイング装置30の拡大図、第5図は第
4図におけるV−V線断面矢視図、第6図は第5
図における−線断面矢視図、第7図は制御回
路を示すブロツク図、第8図、第9図は第7図に
おけるコンピユータ50の動作を示すフローチヤ
ート、第10図a,bは表面位置検出動作時にお
ける接触子Sと砥石車Gの位置関係を示す図、第
11図は研削面Ga,Gbの変位と頂部Pの変位の
関係を示す図、第12図は工作物Wの位置決め動
作を説明するための説明図である。
11……工作物テーブル、12……主軸台、1
3……心押台、17……サーボモータ、20……
砥石台、23……サーボモータ、30……ツルー
イング装置、40……表面位置検出装置、50…
…コンピユータ、53……接触検出回路、G……
砥石車、P……頂部、R……径路、S……接触
子、T……ツルーイング車。
FIG. 1 is a diagram showing truing in which the position of the top P of the grinding wheel G does not change, FIG. 2 is a diagram showing truing in which the consumption amount of the grinding wheel G is reduced, and FIG.
12 show embodiments of the present invention, FIG. 3 is a schematic plan view of a grinding machine, FIG. 4 is an enlarged view of the truing device 30 in FIG. 3, and FIG. 5 is an enlarged view of the truing device 30 in FIG. V-V line cross-sectional view, Figure 6 is the 5th
7 is a block diagram showing the control circuit, FIGS. 8 and 9 are flowcharts showing the operation of the computer 50 in FIG. 7, and FIGS. 10a and 10b are surface positions. A diagram showing the positional relationship between the contact S and the grinding wheel G during the detection operation, FIG. 11 is a diagram showing the relationship between the displacement of the grinding surfaces Ga and Gb and the displacement of the top P, and FIG. 12 is the positioning operation of the workpiece W. It is an explanatory diagram for explaining. 11... Workpiece table, 12... Headstock, 1
3... Tailstock, 17... Servo motor, 20...
Grinding wheel head, 23... Servo motor, 30... Truing device, 40... Surface position detection device, 50...
...Computer, 53...Contact detection circuit, G...
Grinding wheel, P...Top, R...Route, S...Contact, T...Truing wheel.
Claims (1)
工作物の軸線方向位置決めを行い、この後、互い
に直交する一対の研削面を有するアンギユラ形砥
石車を主軸軸線と交差する方向から切込んで前記
工作物上の肩部端面を加工するようにしたアンギ
ユラ研削盤において、前記アンギユラ形砥石車を
保持する砥石台に備えられたツルーイング工具と
このツルーイング工具を前記アンギユラ形砥石車
の軸線方向および軸線と直交する方向にそれぞれ
移動する移動装置と、この移動装置を前記アンギ
ユラ形砥石車の互いに直交する一対の研削面と対
応する形状データによつて駆動するツルーイング
工具制御手段と、前記一対の研削面の前記砥石車
切込み方向の位置をそれぞれツルーイング直前、
直後に検出する研削面検出手段と、この研削面検
出手段にて検出された研削面の前記砥石車切込み
方向の各々の位置を記憶する位置記憶手段と、前
記記憶手段に記憶されたツルーイング直前に検出
された位置と、前回ツルーイング直後に検出され
た位置から前記一対の研削面が交差する頂部の砥
石軸線と平行な方向の変位を演算する第1演算手
段と、前記記憶手段に記憶されたツルーイング直
前に検出された位置と、前回ツルーイング直後に
検出された位置から前記一対の研削面が交差する
頂部の工作物軸線と平行な方向の変位を演算する
第2演算手段と、前記第1演算手段にて演算され
た頂部の砥石軸線と平行な方向の変位に基づいて
前記形状データを砥石軸線と平行な方向に移動補
正する形状データ補正手段と、前記第2演算手段
にて演算された頂部の工作物軸線と平行な方向の
変位に基づいて前記工作物の主軸軸線方向の位置
を補正して砥石車の頂部を通る砥石車の経路が工
作物上に設定された理論通過点を通るようにする
位置補正手段を設けたことを特徴とするアンギユ
ラ研削盤における位置補正装置。 2 前記位置補正手段は、前記工作物を保持し、
工作物軸線と平行な方向へ移動可能な工作物テー
ブルと、第2演算手段にて演算された頂部の工作
物軸線と平行な方向の変位に基づいて前記工作物
テーブルの位置を補正するテーブル位置補正手段
とからなることを特徴とする特許請求の範囲第1
項記載のアンギユラ研削盤における位置補正装
置。[Claims] 1. The workpiece is moved in a direction parallel to the spindle axis to position the workpiece in the axial direction, and then an angular grinding wheel having a pair of grinding surfaces perpendicular to each other is moved to intersect with the spindle axis. In this angular grinding machine, the truing tool is installed on a grinding wheel head that holds the angular grinding wheel, and the truing tool is connected to the angular grinding wheel. a moving device that moves in the axial direction of the wheel and a direction perpendicular to the axis, and a truing tool control means that drives the moving device based on shape data corresponding to a pair of mutually orthogonal grinding surfaces of the angular grinding wheel; , the positions of the pair of grinding surfaces in the cutting direction of the grinding wheel are respectively immediately before truing,
a grinding surface detection means for detecting immediately after, a position storage means for storing each position of the grinding surface detected by the grinding surface detection means in the cutting direction of the grinding wheel, and a position storage means for storing each position of the grinding surface detected by the grinding surface detection means immediately before truing, which is stored in the storage means immediately before truing. a first calculation means for calculating a displacement in a direction parallel to the axis of the top grinding wheel where the pair of grinding surfaces intersect from the detected position and the position detected immediately after the previous truing; and a truing stored in the storage means. a second calculation means for calculating a displacement in a direction parallel to the workpiece axis at the top where the pair of grinding surfaces intersect from the position detected immediately before and the position detected immediately after the previous truing; and the first calculation means shape data correction means for correcting the shape data in a direction parallel to the grinding wheel axis based on the displacement of the top part in a direction parallel to the grinding wheel axis calculated by the second calculation means; The position of the workpiece in the direction of the spindle axis is corrected based on the displacement in the direction parallel to the workpiece axis so that the path of the grinding wheel passing through the top of the grinding wheel passes through a theoretical passing point set on the workpiece. A position correction device for an angular grinding machine, characterized in that a position correction means is provided for adjusting the position. 2. The position correction means holds the workpiece,
a workpiece table that is movable in a direction parallel to the workpiece axis; and a table position that corrects the position of the workpiece table based on the displacement of the top part in the direction parallel to the workpiece axis calculated by a second calculation means. Claim 1, characterized in that it consists of a correction means.
A position correction device for an anguilla grinding machine as described in 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18158783A JPS6071162A (en) | 1983-09-29 | 1983-09-29 | Position correcting device in angular grinding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18158783A JPS6071162A (en) | 1983-09-29 | 1983-09-29 | Position correcting device in angular grinding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6071162A JPS6071162A (en) | 1985-04-23 |
JPH0521707B2 true JPH0521707B2 (en) | 1993-03-25 |
Family
ID=16103414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18158783A Granted JPS6071162A (en) | 1983-09-29 | 1983-09-29 | Position correcting device in angular grinding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6071162A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61257771A (en) * | 1985-05-10 | 1986-11-15 | Toyoda Mach Works Ltd | Feed controller for grinding machine |
JP2553874B2 (en) * | 1987-07-24 | 1996-11-13 | アミテック株式会社 | Belt sander machine |
JPH07164315A (en) * | 1993-12-10 | 1995-06-27 | Toyoda Mach Works Ltd | Grinding device |
JPH11114823A (en) * | 1997-10-16 | 1999-04-27 | Tsugami Corp | Grinding device |
CN103072058B (en) * | 2013-01-14 | 2015-03-11 | 义乌琳多饰品有限公司 | Self-compensating adjusting device of faller gill position in automatic diamond polishing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58132606A (en) * | 1982-02-02 | 1983-08-08 | Toyoda Mach Works Ltd | Apparatus for setting coordinate value of fixed position of end surface |
-
1983
- 1983-09-29 JP JP18158783A patent/JPS6071162A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58132606A (en) * | 1982-02-02 | 1983-08-08 | Toyoda Mach Works Ltd | Apparatus for setting coordinate value of fixed position of end surface |
Also Published As
Publication number | Publication date |
---|---|
JPS6071162A (en) | 1985-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0241872A (en) | Numerical control grinder | |
JPH07205023A (en) | Confirming method for dressing of superfine particle grinding wheel in nc grinding device | |
JPS6033006A (en) | Truing device for cylindrical grinding wheel | |
JPS58132460A (en) | Numerical controller for angular grinder | |
CA2221156A1 (en) | Improvements in and relating to machine tools | |
JPH05111851A (en) | Gear measuring method and gear grinder commonly used for gear measurement | |
JPH04348869A (en) | Correction device for angular grinding wheel | |
JPH0521707B2 (en) | ||
JP2020179432A (en) | Grinding method and grinder | |
JP3627225B2 (en) | Truing device for grinding wheel | |
EP0950214B1 (en) | Method of controlling a machine tool | |
JP3777825B2 (en) | Precision grinding machine and grinding wheel radius measurement method | |
JP2597219B2 (en) | NC grinding machine | |
JP3834493B2 (en) | Compound grinding method and apparatus | |
JP2786879B2 (en) | Internal grinding device | |
JPS62282865A (en) | Accurate measuring method after workpiece machined | |
JP3385666B2 (en) | Grinding equipment | |
JP3241453B2 (en) | Grinding method | |
JP2000127038A (en) | Sizing grinding control method for twin-head grinding machine and its device | |
JP3812869B2 (en) | Cylindrical grinding method and apparatus | |
JP2741459B2 (en) | Grinding machine with thermal displacement compensator | |
JP2542084B2 (en) | Method for correcting the grinding surface of the grinding wheel | |
JPH0215345B2 (en) | ||
JP3170938B2 (en) | Grinding method | |
JP4581647B2 (en) | Truing method and grinding machine |