JP4539557B2 - Method and apparatus for controlling sizing of machine tool - Google Patents

Method and apparatus for controlling sizing of machine tool Download PDF

Info

Publication number
JP4539557B2
JP4539557B2 JP2005379985A JP2005379985A JP4539557B2 JP 4539557 B2 JP4539557 B2 JP 4539557B2 JP 2005379985 A JP2005379985 A JP 2005379985A JP 2005379985 A JP2005379985 A JP 2005379985A JP 4539557 B2 JP4539557 B2 JP 4539557B2
Authority
JP
Japan
Prior art keywords
tool
machining
sizing
grinding
predetermined amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005379985A
Other languages
Japanese (ja)
Other versions
JP2006095687A5 (en
JP2006095687A (en
Inventor
雅裕 井▲土▼
謙治 松葉
康成 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005379985A priority Critical patent/JP4539557B2/en
Publication of JP2006095687A publication Critical patent/JP2006095687A/en
Publication of JP2006095687A5 publication Critical patent/JP2006095687A5/ja
Application granted granted Critical
Publication of JP4539557B2 publication Critical patent/JP4539557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

本発明は、複数の工具台にそれぞれ具備された工具により工作物の異なる加工箇所を同時に各々独立して加工することのできる工作機械の定寸研削制御方法及びその装置に関する。 The present invention relates to a sizing grinding control method and apparatus for a machine tool capable of simultaneously and independently machining different machining locations of a workpiece with tools respectively provided on a plurality of tool stands .

2つの砥石台によりクランク軸の異なるクランクピンを同時に各々独立して研削することのできるツインヘッドクランクピン研削方法は特開昭54−71495号公報により既に知られているが、この場合、加工部分であるクランク軸のクランクピン部分はクランク軸のジャーナル部を中心に旋回するので加工部分を直接測定しながら加工を行う場合には、後述する追従式の定寸装置を使用し、各加工部分が所定寸法に至る毎に定寸装置から発せられる信号に基づいて対応する砥石台の送りを制御する方法が採用される。   A twin head crankpin grinding method that can grind crankpins having different crankshafts simultaneously and independently by two grindstone heads is already known from Japanese Patent Application Laid-Open No. 54-71495. The crankpin part of the crankshaft is pivoted around the journal part of the crankshaft, so when machining while directly measuring the machining part, use a follow-up type sizing device described later, and each machining part A method of controlling the feed of the corresponding grinding wheel base on the basis of a signal generated from the sizing device every time a predetermined dimension is reached is adopted.

上述のツインヘッドクランクピン研削盤においては、各砥石台による加工は独立して行われるので、工作物の状態、砥石の状態等により各砥石台による研削加工が同時に進行できないことがある。従って、一方がスパークアウト、即ち切り込みを零としても、工作物には他方の砥石台の砥石から工作物に抵抗が掛かっており、工作物が撓んだ状態となっているため、スパークアウトがされなくなってしまい、クランクピンの仕上げ精度、真円度に影響を及ぼすこととなる。また、他方がスパークアウト完了まで一方の砥石台をスパークアウト状態に維持しておくと、切り込み過ぎとなってしまう。   In the above-described twin head crankpin grinding machine, since the processing by each grinding wheel base is performed independently, the grinding processing by each grinding wheel base may not proceed simultaneously depending on the state of the workpiece, the state of the grinding wheel, and the like. Therefore, even if one side is sparked out, that is, the cut is zero, the work piece is resisted by the grindstone of the other grindstone table, and the work piece is in a bent state. This will affect the finishing accuracy and roundness of the crankpin. Moreover, if the other grindstone base is maintained in the spark-out state until the other has completed the spark-out, it will be overcut.

そこで、本発明の目的は、複数の工具台にそれぞれ具備された工具により工作物の異なる加工箇所を同時に各々独立して加工することのできる工作機械において、高精度な加工、特に、仕上げ精度、真円度向上ができる定寸加工制御方法及びそのための装置を提供することである。 Accordingly, an object of the present invention is to provide high-precision machining, particularly finishing accuracy, in a machine tool that can simultaneously and independently machine different machining locations of a workpiece with tools respectively provided on a plurality of tool stands . A sizing processing control method capable of improving the roundness and an apparatus therefor.

上記の課題を解決するため、請求項1に記載の発明の構成上の特徴は、複数の異なる加工箇所を有する工作物を回転駆動可能に支持し、工具を具備する複数の工具台を各工具が各加工箇所に整列対向する位置に各々割出し、各工具が前記異なる加工箇所をそれぞれ加工するように各工具台を各々独立して前後動させ、複数の定寸装置を設けて各工具により加工される各加工箇所の寸法測定を行い、各定寸装置により測定された各加工箇所の寸法により各工具台の進退移動を制御する工作機械の加工制御方法であって、現工程において、第一の前記工具により加工され目標寸法に達したことが第一の前記定寸装置により検出された加工箇所と対応する第一の前記工具台を所定量後退させ、第二の前記工具により加工され目標寸法に達したことが第二の前記定寸装置により検出された加工箇所と対応する第二の前記工具台を所定量後退させ、第一,第二の前記工具台が所定量後退した後に第一,第二の前記工具台を同時に前進させて次工程の加工を行うことである。 In order to solve the above-described problem, the structural feature of the invention described in claim 1 is that a workpiece having a plurality of different machining locations is rotatably supported, and a plurality of tool platforms including tools are provided for each tool. Are indexed at positions facing each machining location, and each tool base is independently moved back and forth so that each tool processes each of the different machining locations, and a plurality of sizing devices are provided for each tool. A machining control method for a machine tool that measures the dimensions of each machining location to be machined and controls the advance and retreat movement of each tool base by the dimensions of each machining location measured by each sizing device . The first tool table corresponding to the machining location detected by the first sizing device that has been processed by one of the tools and has reached the target dimension is retracted by a predetermined amount and processed by the second tool. Reaching the target dimension Second the sizing was the second the tool stand and the corresponding detected machining spot by the device by a predetermined amount backward, first and second of said tool after the first, second the tool stand is retracted a predetermined amount It is to process the next process by moving the stage forward simultaneously.

請求項2に記載の発明の構成上の特徴は、請求項1において、前記現工程が最終工程の前工程であり、前記次工程が前記最終工程であることである。The structural feature of the invention described in claim 2 is that, in claim 1, the current process is a pre-process of a final process, and the next process is the final process.

請求項3に記載の発明の構成上の特徴は、少なくとも2つの加工箇所を有する工作物を回転駆動可能に支持し、砥石を具備する2つの砥石台を各砥石が各加工箇所に整列対向する位置に各々割出し、各工具が前記異なる加工箇所をそれぞれ研削加工するように各砥石台を各々独立して前後動させ、2つの定寸装置を設けて各砥石により研削加工される各加工箇所の寸法測定を行い、各定寸装置により測定された各加工箇所の寸法により各砥石台の進退移動を制御するツインヘッド研削盤の定寸加工制御方法であって、最終のスパークアウト研削工程を行う前工程において、第一の前記砥石により研削加工され目標寸法に達したことが第一の前記定寸装置により検出された加工箇所と対応する第一の前記砥石台を所定量後退させ、第二の前記砥石により研削加工され目標寸法に達したことが第二の前記定寸装置により検出された加工箇所と対応する第二の前記砥石台を所定量後退させ、第一,第二の前記砥石台が所定量後退した後に第一,第二の前記砥石台を同時に前進させて前記最終のスパークアウト研削工程の研削加工を行うことである。 The structural feature of the invention described in claim 3 is that a workpiece having at least two machining points is supported so as to be rotationally driven, and each grindstone is aligned and opposed to each machining point on two grindstone tables provided with a grindstone. Each machining location indexed at each position, each grinding wheel table is moved back and forth independently so that each tool grinds each different machining location, and two sizing devices are provided to grind each grinding stone. This is a twin-head grinding machine sizing control method that controls the advance and retreat movement of each grinding wheel base according to the dimensions of each machining location measured by each sizing device, and the final spark-out grinding process in step before performing, by a predetermined amount retracting the first said wheel head corresponding to the detected machining spot that reaches the first of the target dimension is grinding by the grinding wheel by a first of the measuring device, the The second abrasive The second said wheel head, which has been reached in the grinding target dimension corresponds with machining spot detected by the second of the measuring device by a predetermined amount retracted by the first, second the wheel head is Tokoro After the fixed amount of retreat, the first and second grinding wheel heads are simultaneously advanced to perform grinding in the final spark-out grinding process.

請求項4に記載の発明の構成上の特徴は、複数の異なる加工箇所を有する工作物を回転駆動可能に支持する工作物支持装置と、工具を具備する複数の工具台と、該工具台が前後方向に摺動自在に載置され各工具が各加工箇所と整列対向する位置に長手方向に割出されるテーブルと、各工具により加工される各加工箇所の寸法測定を行う複数の定寸装置とを備える工作機械において、各工具が前記異なる加工箇所をそれぞれ加工するように前記各工具台を各々独立して前後動させるとともに、各定寸装置により測定された各加工箇所の寸法により各工具台の進退移動を制御する工作機械の制御装置であって、最終工程の前工程において、第一の前記工具により加工され目標寸法に達したことが第一の前記定寸装置により検出された加工箇所と対応する第一の前記工具台を所定量後退させ、第二の前記工具により加工され目標寸法に達したことが第二の前記定寸装置により検出された加工箇所と対応する第二の前記工具台を所定量後退させ、第一,第二の前記工具台が所定量後退した後に第一,第二の前記工具台を同時に前進させて前記最終工程の加工を行う制御装置を備えることである。 The structural features of the invention according to claim 4 are: a workpiece support device that rotatably supports a workpiece having a plurality of different machining locations; a plurality of tool tables provided with tools; and A table that is slidably mounted in the front-rear direction and in which each tool is indexed in the longitudinal direction at a position facing and aligned with each machining location, and a plurality of sizing devices that measure the dimensions of each machining location machined by each tool And each tool base is independently moved back and forth so that each tool processes the different processing points, and each tool is measured according to the size of each processing point measured by each sizing device. A machine tool control device for controlling advancing and retreating of a table, wherein the first sizing device detects that it has been processed by the first tool and has reached a target dimension in a step before the final step. Pair with location First the tool post by a predetermined amount retracted, the second of the tool stand that has reached the processed target dimension by a second of the tool corresponding to the machining spot, which is detected by the second of the measuring device for And a control device that performs the final process by simultaneously moving the first and second tool tables forward after the first and second tool tables have moved back by a predetermined amount.

上述のように構成した請求項1に係る発明においては、工作物の異なる加工箇所を各工具がそれぞれ加工するように、各工具台は各々独立して前後動される。現工程において第一の工具により加工され目標寸法に達したことが第一の定寸装置により検出された加工箇所と対応する第一の工具台は所定量後退され、第二の工具により加工され目標寸法に達したことが第二の定寸装置により検出された加工箇所と対応する第二の工具台は所定量後退され、第一,第二の工具台が所定量後退した後に第一,第二の工具台が同時に前進されて次工程の加工を行う。これにより、複数の工具台の各々独立した前後動により同一の工作物の異なる加工箇所を同時に独立して加工することができるとともに、次工程において工作物に掛かる加工抵抗が均一となるので、真円度等に悪影響を与える恐れがなく、高精度の加工を行うことができる。 In the invention according to claim 1 configured as described above, the respective tool stands are moved back and forth independently so that the respective tools respectively process different processing portions of the workpiece. The first tool table corresponding to the machining location detected by the first sizing device is processed by the first tool in the current process and detected to have reached the target dimension by a predetermined amount, and processed by the second tool. The second tool base corresponding to the machining location detected by the second sizing device to reach the target dimension is retracted by a predetermined amount, and after the first and second tool bases have retracted by a predetermined amount , The second tool rest is advanced simultaneously to perform the next process. As a result, different machining locations of the same workpiece can be simultaneously and independently machined by independent back and forth movements of a plurality of tool stands, and the machining resistance applied to the workpiece in the next process becomes uniform. There is no risk of adversely affecting the circularity and the like, and high-precision machining can be performed.

上述のように構成した請求項2に係る発明においては、最終工程の前工程において、第一の工具により加工され目標寸法に達したことが第一の定寸装置により検出された加工箇所と対応する第一の工具台を所定量後退させ、第二の工具により加工され目標寸法に達したことが第二の定寸装置により検出された加工箇所と対応する第二の工具台を所定量後退させ、第一,第二の工具台が所定量後退した後に第一,第二の工具台を同時に前進させて最終工程の加工を行うので、第一,第二の加工箇所の仕上げ寸法を高精度に加工することができる。 In the invention according to claim 2 configured as described above, it corresponds to the machining position detected by the first sizing device that the target dimension has been processed by the first tool in the previous process of the final process. The first tool base is retracted by a predetermined amount, and the second tool base corresponding to the machining location detected by the second sizing device is processed by the second tool and has reached the target dimension by a predetermined amount. is, first, the first after the second tool post is retracted a predetermined amount, since advanced second tool post to simultaneously perform processing in the final step, high first, the finish dimension of the second machining position It can be processed with high accuracy.

上述のように構成した請求項3に係る発明においては、工作物の異なる加工箇所を各砥石がそれぞれ研削加工するように、第一,第二の砥石台は各々独立して前後動される。最終のスパークアウト研削工程の前工程において第一の砥石により研削加工され目標寸法に達したことが第一の定寸装置により検出された加工箇所と対応する第一の砥石台は所定量後退され、第二の砥石により研削加工され目標寸法に達したことが第二の定寸装置により検出された加工箇所と対応する第二の砥石台は所定量後退され、第一,第二の砥石台が所定量後退した後に第一,第二の砥石台が同時に前進されて最終のスパークアウト研削工程の研削加工が行われる。これにより、第一,第二の砥石台の各々独立した前後動により同一の工作物の異なる加工箇所を同時に独立して研削加工することができるとともに、最終のスパークアウト研削工程において工作物に掛かる研削抵抗が均一となるので、真円度等に悪影響を与える恐れがなく、第一,第二の加工箇所の仕上げ寸法を高精度に研削加工することができる。 In the invention according to claim 3 configured as described above, the first and second grindstone bases are independently moved back and forth so that each grindstone grinds different machining points of the workpiece. The first grindstone table corresponding to the machining location detected by the first sizing device that has been ground by the first grindstone and reached the target dimension in the previous process of the final spark-out grinding process is retracted by a predetermined amount. The second grindstone table corresponding to the machining location detected by the second sizing device after being ground by the second grindstone and having reached the target dimension is retracted by a predetermined amount, and the first and second grindstone tables After the predetermined amount of retraction, the first and second grinding wheel heads are simultaneously advanced to perform the grinding process in the final spark-out grinding process. As a result, different machining points of the same workpiece can be simultaneously and independently ground by independent back and forth movements of the first and second grinding wheel platforms, and the workpiece is applied to the workpiece in the final spark-out grinding process. Since the grinding resistance becomes uniform, there is no possibility of adversely affecting the roundness and the like, and the finishing dimensions of the first and second machining locations can be ground with high accuracy.

上述のように構成した請求項4に係る発明においては、工作物の異なる加工箇所を各工具がそれぞれ加工するように、各工具台は各々独立して前後動される。最終工程の前工程において第一の工具により加工され目標寸法に達したことが第一の定寸装置により検出された加工箇所と対応する第一の工具台は所定量後退され、第二の工具により加工され目標寸法に達したことが第二の定寸装置により検出された加工箇所と対応する第二の工具台は所定量後退され、第一,第二の工具台が所定量後退した後に第一,第二の工具台が同時に前進されて最終工程の加工を行う。これにより、第一,第二の工具台の各々独立した前後動により同一の工作物の異なる加工箇所を同時に独立して加工することができるとともに、最終工程において工作物に掛かる加工抵抗が均一となるので、真円度等に悪影響を与える恐れがなく、高精度の加工を行うことができる。

In the invention which concerns on Claim 4 comprised as mentioned above, each tool stand is independently moved back and forth so that each tool may each process the process location from which a workpiece differs. The first tool table corresponding to the machining location detected by the first sizing device that has been processed by the first tool and reached the target dimension in the previous process of the final process is retracted by a predetermined amount, and the second tool After the second tool rest corresponding to the machining position detected by the second sizing device is processed by the second sizing device and is moved back by a predetermined amount, after the first and second tool stands are moved back by a predetermined amount. The first and second tool rests are simultaneously advanced to perform the final process. As a result, different machining points of the same workpiece can be simultaneously and independently machined by independent back-and-forth movements of the first and second tool stands, and the machining resistance applied to the workpiece in the final process is uniform. Therefore, there is no possibility of adversely affecting the roundness and the like, and high-precision machining can be performed.

以下に本発明の工作機械の定寸加工制御方法を、ツインヘッドクランクピン研削盤に適用した実施例を図1〜図8について説明する。   An embodiment in which the machine tool sizing control method of the present invention is applied to a twin head crankpin grinding machine will be described below with reference to FIGS.

ツインヘッドクランクピン研削盤はその平面図を図1に示すように左右2つの加工ヘッドである砥石台8、9を左右方向・前後方向に摺動自在に設け、その砥石台8、9の砥石軸と平行する位置に工作物であるクランクシャフトWを支持する主軸台18及び心押台17が設置されている。すなわち、ベッド1上にはその長手左右方向(Z軸方向)のZ軸案内レール2上に右側砥石台8を載置する右側Z軸テーブル6が送りねじ3により摺動自在に設けられ、それと同列にベッド1上の長手左右方向(Z軸方向)に左側砥石台9を載置する左側Z軸テーブル7が送りねじ4により摺動自在に設けられている。左右のそれぞれのZ軸テーブル6、7には、砥石14、15を回転駆動自在に具備する砥石台8、9が前記長手左右方向(Z軸方向)と直交する前後方向(X軸方向)にそれぞれの送りねじ12、13により摺動自在に設けられている。   As shown in FIG. 1, the twin head crankpin grinding machine is provided with grinding wheel bases 8 and 9 which are two right and left machining heads so as to be slidable in the left and right directions and the front and rear directions. A headstock 18 and a tailstock 17 that support a crankshaft W, which is a workpiece, are installed at positions parallel to the axis. That is, on the bed 1, a right Z-axis table 6 for placing the right grindstone table 8 on the Z-axis guide rail 2 in the longitudinal left-right direction (Z-axis direction) is slidably provided by the feed screw 3. In the same row, a left Z-axis table 7 on which the left grindstone base 9 is placed in the left-right direction (Z-axis direction) on the bed 1 is slidably provided by a feed screw 4. In each of the left and right Z-axis tables 6 and 7, grindstone tables 8 and 9 provided with grindstones 14 and 15 are rotatably driven in a longitudinal direction (X-axis direction) orthogonal to the longitudinal left-right direction (Z-axis direction). The feed screws 12 and 13 are slidably provided.

前記左右砥石台8、9の前方長手方向に主軸台18、心押し台17が設置されており、その間に工作物であるクランクシャフトWを一対のセンターにより支持するようになっている。主軸台18にはクランクシャフト回転駆動用のサーボモータ18Mが設けられ、チャック等によりクランクシャフトWの軸端を把持して回転駆動できるように構成され、一方心押し台17はそのセンターによりクランクシャフトWの軸芯を支持するように構成されている。   A headstock 18 and a tailstock 17 are installed in the front longitudinal direction of the left and right grindstone heads 8 and 9, and a crankshaft W, which is a workpiece, is supported by a pair of centers therebetween. The spindle stock 18 is provided with a servo motor 18M for driving the rotation of the crankshaft so that the shaft end of the crankshaft W can be gripped and rotated by a chuck or the like. It is configured to support the W core.

前記各送りネジにはエンコーダ付きのサーボモータが設けられ、後に説明する制御装置により制御される。すなわち、長手左右方向(Z軸方向)に右側砥石台8を載置する右側Z軸テーブル6を移動するための送りねじ3の端部にはエンコーダ70付きのサーボモータ60が設けられ、左側Z軸テーブル7のための送りねじ4にはエンコーダ72付きのサーボモータ68が設けられている。また、左右のそれぞれのZ軸テーブル6、7上には、砥石台8、9の前後方向(X軸方向)摺動用の送りねじ12、13の端部にエンコーダ50、52付きサーボモータ44、48が設けられている。砥石台8、9には砥石14、15が回転駆動されるように支持されており、当然砥石駆動用の駆動モータが砥石台8、9に内蔵されている。   Each feed screw is provided with a servo motor with an encoder, and is controlled by a control device described later. That is, a servo motor 60 with an encoder 70 is provided at the end of the feed screw 3 for moving the right Z-axis table 6 on which the right grindstone table 8 is placed in the longitudinal left-right direction (Z-axis direction). The feed screw 4 for the axis table 7 is provided with a servo motor 68 with an encoder 72. On the left and right Z-axis tables 6 and 7, servo motors 44 with encoders 50 and 52 are attached to end portions of feed screws 12 and 13 for sliding in the front-rear direction (X-axis direction) of the grinding wheel bases 8 and 9, respectively. 48 is provided. The grindstones 8 and 9 are supported so that the grindstones 14 and 15 are rotationally driven. Of course, a driving motor for driving the grindstone is built in the grindstone tables 8 and 9.

本発明の実施例に係るツインヘッドクランクピン研削盤の概略の構成は以上のようになっており、工作物であるクランクシャフトWを主軸台18、心押し台17間に支持し、左右Z軸テーブル6,7をサーボモータ60、68により砥石14、15がクランクシャフトWの加工位置、図1ではクランクピンCP(イ)及びCP(ハ)と整列対向する位置に割出す。次に主軸台18のエンコーダ18E付き主軸駆動サーボモータ18Mを回転しクランクシャフトWを制御回転させる。その際クランクシャフトWはその軸受部の軸芯、即ち、ジャーナルCP(ホ)中心で回転されるので、加工箇所であるクランクピンCP(イ)〜CP(ハ)はジャーナルCP(ホ)を中心とする公転旋回運動をすることになる。そして、左右両テーブル6、7上のX軸方向送りネジ12、13を各サーボモータ44、48により前進後退をさせる。その際、加工箇所であるクランクピンCP(イ)、(ハ)は公転旋回しているので、制御手段により主軸サーボモータ18Mの回転と同期させて砥石台8、9を前後動させながら回転砥石14、15により研削加工を行う。研削作業にあわせて砥石台8,9のサーボモータ44、48により切込み前進運動を与え、徐々に最終仕上げ寸法に仕上げるように作動する。   The schematic configuration of the twin head crankpin grinding machine according to the embodiment of the present invention is as described above. The crankshaft W as a workpiece is supported between the headstock 18 and the tailstock 17, and the left and right Z axes The tables 6 and 7 are indexed by the servo motors 60 and 68 at the positions where the grindstones 14 and 15 are aligned and opposed to the processing positions of the crankshaft W, in FIG. 1, the crankpins CP (A) and CP (C). Next, the spindle drive servomotor 18M with the encoder 18E of the headstock 18 is rotated to control and rotate the crankshaft W. At that time, the crankshaft W is rotated about the axis of the bearing portion, that is, the center of the journal CP (e), so that the crank pins CP (a) to CP (c) which are machining points are centered on the journal CP (e). Will make a revolving turning motion. The X-axis direction feed screws 12 and 13 on the left and right tables 6 and 7 are moved forward and backward by the servo motors 44 and 48, respectively. At that time, since the crankpins CP (A) and (C) which are the machining locations are revolving and rotating, the grindstones 8 and 9 are moved back and forth in synchronization with the rotation of the spindle servomotor 18M by the control means. 14 and 15 are used for grinding. In accordance with the grinding operation, the servo motors 44 and 48 of the grinding wheel bases 8 and 9 give a cutting forward motion, and operate to gradually finish to the final finished dimensions.

また、本発明の実施例のツインヘッドクランクピン研削盤には、仕上げ寸法を制御するために各砥石台8、9の上面には、図2に示すように定寸装置20が載置されている。この定寸装置20は、公転旋回するクランクピンに絶えず接触しながら追従して加工箇所の寸法測定を行う形式の公知の追従式定寸装置(例えば、イタリア、マーポス社製)であり、以下、図2に基づいて説明する。   Further, in the twin head crankpin grinding machine of the embodiment of the present invention, a sizing device 20 is placed on the upper surface of each grindstone base 8 and 9 as shown in FIG. 2 in order to control the finishing dimension. Yes. This sizing device 20 is a well-known following type sizing device (for example, manufactured by Marposs, Italy) of a type that measures the dimensions of a processing part by following the crank pin that revolves and turns continuously. This will be described with reference to FIG.

砥石台9の上面に定寸装置20の支持部材21が載置され、該支持部材21に枢支され砥石15の前方に延びる第1アーム22の先端に第2アーム23が枢支され、更に第2アーム23の先端に約直角に採寸用の測定棒28が固定されている。該測定棒28は、その先端に固定され、加工箇所であるクランクピンCP(ハ)の外周に接触するVブロック25と、その中心に進退自在に設けられたプローブ27とからなり、該プローブ27の前進後退を電気的に検出して電気信号として出力する構造となっている。   A support member 21 of the sizing device 20 is placed on the upper surface of the grindstone table 9, and a second arm 23 is pivotally supported at the tip of a first arm 22 that is pivotally supported by the support member 21 and extends forward of the grindstone 15. A measuring rod 28 for measuring is fixed to the tip of the second arm 23 at a right angle. The measuring rod 28 is composed of a V block 25 fixed to the tip thereof and in contact with the outer periphery of a crank pin CP (c) as a machining location, and a probe 27 provided at the center thereof so as to be able to advance and retract. The forward / backward movement is electrically detected and output as an electrical signal.

該Vブロック25の先端にはガイド部材26が固定されており、測定棒28のVブロック25がクランクピンCP(ハ)に係合するためのガイドの役目をしている。定寸装置20には、休止位置(2点鎖線位置)と測定位置(実線位置)とに測定棒28を移動するための作動装置が設けられている。   A guide member 26 is fixed to the tip of the V block 25, and serves as a guide for engaging the V block 25 of the measuring rod 28 with the crankpin CP (c). The sizing device 20 is provided with an operating device for moving the measuring rod 28 to a rest position (two-dot chain line position) and a measurement position (solid line position).

砥石台9の上面には油圧シリンダ31が設けられ、前記第1アーム22の後端に垂直に、しかもオフセットして取付けられた操作片30を前記シリンダ31のピストン32により押圧することにより第1アーム22を上方へ回動させ、図2に2点鎖線で示される休止位置に保たれる。この時第2アーム23は第1アーム22先端に枢支されているのみであるので位置が保てないため、第1アーム22の先端部下方に第3アーム24が固定されており、第3アーム24先端の支持突起29により休止位置において第2アーム23の位置を保つように構成されている。2点鎖線の休止位置から、油圧シリンダ31のピストン32を戻すことにより徐々に測定棒28が降下しクランクピンCP(ハ)の位置にくると、まずガイド部材26がクランクピンCP(ハ)に接触し、ガイド部材26に沿ってクランクピンCP(ハ)がVブロック25に係合するようになっており、その時点では第2アーム23は第3アーム24の支持突起29から離れて自由に回動できるようになっている。即ち、クランクピンCP(ハ)が1点鎖線に示される軌跡に沿って公転旋回運動するに応じて常にVブロック25が係合するようになっている。   A hydraulic cylinder 31 is provided on the upper surface of the grindstone base 9, and the operation piece 30 mounted perpendicularly and offset to the rear end of the first arm 22 is pressed by the piston 32 of the cylinder 31 to thereby provide the first. The arm 22 is rotated upward and maintained at a rest position indicated by a two-dot chain line in FIG. At this time, since the second arm 23 is only pivotally supported at the tip of the first arm 22, the position cannot be maintained. Therefore, the third arm 24 is fixed below the tip of the first arm 22. The position of the second arm 23 is maintained at the rest position by the support protrusion 29 at the tip of the arm 24. When the measuring rod 28 is gradually lowered by returning the piston 32 of the hydraulic cylinder 31 from the rest position of the two-dot chain line and comes to the position of the crankpin CP (c), the guide member 26 is first moved to the crankpin CP (c). The crank pin CP (c) is engaged with the V block 25 along the guide member 26, and at this time, the second arm 23 is free to move away from the support protrusion 29 of the third arm 24. It can be turned. That is, the V block 25 is always engaged as the crankpin CP (c) revolves along a locus indicated by a one-dot chain line.

次に本発明の実施例のツインヘッドクランクピン研削盤の制御装置を説明する。図3に示すように、本制御系は、数値制御装置置78を備えており、数値制御装置78は、右側砥石制御用CPU80及び左側砥石制御用CPU90、ROMI09、RAM111がバス88を介して相互に接続可能に構成されている。   Next, a control device for a twin head crankpin grinder according to an embodiment of the present invention will be described. As shown in FIG. 3, the present control system includes a numerical controller device 78. The numerical controller 78 includes a right grinding wheel control CPU 80, a left grinding wheel control CPU 90, a ROMI 09, and a RAM 111 that are connected to each other via a bus 88. It is configured to be connectable to.

右側砥石制御用CPU80には、インターフェース82を介し、X軸サーボモータ用制御回路84、Z軸サーボモータ用制御回路86が接続されている。X軸サーボモータ用制御回路84には、右側X軸サーボモータ44が接続され、この右側X軸サーボモ一タ44には、前述したようにエンコーダ50が配置され、このエンコーダ50は、X軸サーボモータ用制御回路84に接続されている。Z軸サーボモータ用制御回路86には、右側Z軸サーボモータ60が接続され右側Z軸サーボモータは、前述したエンコーダ70が配置され、このエンコーダダ70は、Z軸サ一ボモータ用制御回路86に接続されている。   An X-axis servo motor control circuit 84 and a Z-axis servo motor control circuit 86 are connected to the right grinding wheel control CPU 80 via an interface 82. A right X-axis servo motor 44 is connected to the X-axis servo motor control circuit 84, and the encoder 50 is arranged on the right X-axis servo motor 44 as described above. A motor control circuit 84 is connected. The Z-axis servo motor control circuit 86 is connected to the right Z-axis servo motor 60, and the right Z-axis servo motor is provided with the encoder 70 described above. The encoder 70 is connected to the Z-axis servo motor control circuit 86. It is connected to the.

また、左側砥石制御用CPU90には、インターフェース92を介して、X軸サーボモータ用制御回路94、Z軸サーボモータ用制御回路96、主軸サーボモータ用制御回路98が接続されている。X軸サーボモータ用制御回路94には、左側X軸サーボモータ48が接続されこの左側X軸サーボモ一タ48には、エンゴーダ52が配置され、このエンコーダ52は、X軸サーボモータ用制御回路94に接続されている。Z軸サーボモータ用制御回路96には、左側Z軸サーボモータ68が接続されこの左側Z軸サーボモータにはエンコーダ72が配置され、このエンコーダ72は、Z軸サーボモータ用制御回路96に接続されている。   Further, an X-axis servo motor control circuit 94, a Z-axis servo motor control circuit 96, and a main-axis servo motor control circuit 98 are connected to the left grindstone control CPU 90 via an interface 92. A left X-axis servo motor 48 is connected to the X-axis servo motor control circuit 94, and an engoer 52 is disposed in the left X-axis servo motor 48, and the encoder 52 includes an X-axis servo motor control circuit 94. It is connected to the. The Z-axis servo motor control circuit 96 is connected to the left Z-axis servo motor 68, and the left Z-axis servo motor is provided with an encoder 72. The encoder 72 is connected to the Z-axis servo motor control circuit 96. ing.

主軸サーボモ一夕用制御回路98には、主軸サーボモータ18Mが配置され、この主軸サーボモータ18Mには、エンコーダ18Eが配置され、このエンコーダ18Eは、主軸サーボモータ用制御回路98に接続されている。また,上記バス88には、インターフェース101を介して、CRT103及びテンキー105等を備えた入出力装置107が接続れている。ROM109には、システム制御プログラムなどが記億され、RAM111には加工プログラムなどが記憶されている。更に数値制御装置78のほかに、バス88にはシーケンスコントローラ112がインターフェース113を介して接続され、また左右両砥石台に設けられた左右の定寸装置20L,20RがA−D変換器を含むインターフェース114を介して接続されている。   The spindle servo motor control circuit 98 is provided with a spindle servo motor 18M. The spindle servo motor 18M is provided with an encoder 18E. The encoder 18E is connected to the spindle servo motor control circuit 98. . Further, an input / output device 107 having a CRT 103 and a numeric keypad 105 is connected to the bus 88 via an interface 101. The ROM 109 stores system control programs and the like, and the RAM 111 stores processing programs and the like. In addition to the numerical control device 78, a sequence controller 112 is connected to the bus 88 via an interface 113, and the left and right sizing devices 20L and 20R provided on both the left and right grinding wheel platforms include A-D converters. It is connected via the interface 114.

次に、本発明の特徴である具体的制御方式について、その制御ステップを示す図4のフローチャートに沿って説明する。まず加工開始120の信号により左右の砥石台8、9を、それぞれ加工箇所のクランクピンCP(イ)、CP(ハ)に整列させるために割出しを行う(121)。次に両砥石台8,9を早送り前進(122)させ、砥石14,15がクランクピンCP(イ),CP(ハ)の加工部分に接触した段階から両砥石台8,9は粗研削送り前進(123)となり、一定量研削した段階から一端砥石台20の前進を停止して、定寸装置20をそれぞれのクランクピンCP(イ),CP(ハ)の部分の挿入する(124)。そして、精研削送り前進(125)を行い精研削を行う。   Next, a specific control method that is a feature of the present invention will be described with reference to the flowchart of FIG. 4 showing the control steps. First, indexing is performed in order to align the left and right grinding wheel bases 8 and 9 with the crank pins CP (A) and CP (C) at the machining locations in accordance with a signal of machining start 120 (121). Next, both the grinding wheel bases 8 and 9 are fast-forwarded and advanced (122), and the grinding wheel bases 8 and 9 are coarsely fed from the stage where the grinding stones 14 and 15 come into contact with the processed portions of the crank pins CP (A) and CP (C). Advancement (123) is made, and the advancement of the grindstone table 20 is stopped once after a certain amount of grinding, and the sizing device 20 is inserted into the respective crank pins CP (A) and CP (C) (124). Then, fine grinding feed forward (125) is performed to perform fine grinding.

精研削では定寸装置20により寸法値測定を行い、先に一方のクランクピン(例えばCP(イ))が精研削終了の目標寸法に達すると、即ちどちらか一方の定寸装置20から定寸信号が出力されると(126)、対応した砥石台8を0.1mm〜0.5mmの所定量だけ後退(127)させ、クランクピンCP(イ)から砥石14を離隔させる。その間、他方の砥石台9は継続して精研削加工を行っており、この他方のクランクピンCP(ハ)が精研削終了の目標寸法に達すると(128)、即ち他方の定寸装置20から定寸信号が出力されると、対応する砥石台9も0.1mm〜0.5mmの所定量だけ後退(129)させ、クランクピンCP(ハ)から砥石15を離隔させる。   In precision grinding, the dimension value is measured by the sizing device 20, and when one of the crank pins (for example, CP (a)) reaches the target dimension for finishing the precise grinding, that is, the sizing from either one of the sizing devices 20 is performed. When a signal is output (126), the corresponding grindstone base 8 is retracted (127) by a predetermined amount of 0.1 mm to 0.5 mm, and the grindstone 14 is separated from the crankpin CP (A). In the meantime, the other grinding wheel base 9 continues to perform precision grinding, and when the other crank pin CP (c) reaches the target dimension for finishing fine grinding (128), that is, from the other sizing device 20. When the fixed-size signal is output, the corresponding grindstone base 9 is also retracted (129) by a predetermined amount of 0.1 mm to 0.5 mm, and the grindstone 15 is separated from the crankpin CP (c).

そして、同時に両砥石台8,9を後退した量(0.1mm〜0,5mm)だけ前進(130)させ、同時にスパークアウト(131)を行い、クランクピンCP(イ),CP(ハ)の研削加工を終了し、左右の砥石台8,9を一定量後退させた後(132)に定寸装置を休止位置に戻して(133)砥石台8,9を後退(134)させる。さらに、ステップ(135)にて、次のクランクピンCP(ロ),CP(ニ)の研削加工が残っている際には(NO)となり、再び最初のステップに戻り、両砥石台をクランクピンCP(ロ),CP(ニ)に整列させる位置に砥石台8,9を割り出し(121)、同様の研削サイクルが実行され、全てのクランクピンの研削加工が終了すれば、両砥石台が原位置に復帰(136)して全ての研削サイクルが終了(137)する。   At the same time, both the grindstone heads 8 and 9 are advanced (130) by the retracted amount (0.1 mm to 0.5 mm), and at the same time, the spark-out (131) is performed, and the crank pins CP (A) and CP (C) After the grinding process is finished and the left and right grinding wheel platforms 8 and 9 are retracted by a certain amount (132), the sizing device is returned to the rest position (133), and the grinding wheel platforms 8 and 9 are retracted (134). Further, in step (135), when grinding of the next crank pins CP (B) and CP (D) remains (NO), the process returns to the first step again, and both wheel heads are connected to the crank pins. The grinding wheel bases 8 and 9 are indexed to positions to be aligned with CP (B) and CP (D) (121), the same grinding cycle is executed, and when grinding of all the crank pins is completed, both grinding wheel bases are restored to the original positions. Return to position (136) and all grinding cycles are completed (137).

以上の研削サイクルは図5に図示されており、上の線は左右の砥石台8,9による切り込み量を示し、下の線はクランクピンCP(イ),CP(ハ)の径変化を示す。なお、図5の上の線はあくまで砥石台の切り込み量のみを表示したものであり、前述したように砥石台8,9はクランクピンCPの旋回運動に同期してX軸方向に前後移動しながら所望の切り込み量が与えてられて研削加工を行っている。   The above grinding cycle is shown in FIG. 5. The upper line shows the amount of cut by the left and right grinding wheel bases 8 and 9, and the lower line shows the diameter change of the crank pins CP (A) and CP (C). . Note that the upper line in FIG. 5 only shows the cutting amount of the grinding wheel head, and as described above, the grinding wheel bases 8 and 9 move back and forth in the X-axis direction in synchronization with the turning motion of the crank pin CP. However, a desired cutting amount is given and grinding is performed.

早送り前進から加工部分に砥石が接触した段階(a)からクランクピンCPの8回転程度の間粗研削送り前進となり、一定量研削した段階(b)から一端砥石台20の前進を停止して定寸装置20を挿入し(b〜c)、次に、精研削送り前進でクランクピンを5回転程度研削しながら定寸装置20により寸法測定を行う。そして、先に精研削終了目標寸法に達した時点、(d1)でそのクランクピンCP(イ)に対応した砥石台8を所定量(0.1mm〜0.5mm)後退させ(e1)、他方のクランクピンCP(ハ)は継続して精研削を行って、精研削終了目標寸法に達したら(d2)、同じくこのクランクピンCP(ハ)に対応した砥石台9も所定量(0.1mm〜0.5mm)後退させる(e2)。なお、図5のd1−e1−f1−g1、d2−d2−f1−g1の各間の長さは分かり易いよう拡大表記してある。   From the stage (a) where the grindstone comes into contact with the machining portion from the rapid feed forward, the coarse grinding feed forward is performed for about 8 revolutions of the crank pin CP, and the advance of the grindstone base 20 is stopped and fixed once from the stage (b) after a fixed amount of grinding. The sizing device 20 is inserted (b to c), and then the dimension measurement is performed by the sizing device 20 while the crankpin is ground for about 5 rotations in the fine grinding feed forward. When the precision grinding finish target dimension is reached first, the grindstone base 8 corresponding to the crankpin CP (A) is retracted by a predetermined amount (0.1 mm to 0.5 mm) at (d1) (e1), The crankpin CP (c) is continuously subjected to precise grinding, and when the precision grinding finish target size is reached (d2), the grindstone base 9 corresponding to the crankpin CP (c) is also set to a predetermined amount (0.1 mm). Retreat (e2). Note that the lengths between d1-e1-f1-g1 and d2-d2-f1-g1 in FIG. 5 are enlarged for easy understanding.

そして、両砥石台8,9が後退したことを確認したら、これら両砥石台8,9を後退した量(0.1mm〜0.5mm)だけ同時に前進させる(f1〜g1、f2〜g2)ことで、両砥石14,15により同時にスパークアウトを工作物1〜2回転分程度行いクランクピンCP(イ),CP(ハ)の研削を終了(h1,h2)、砥石台8,9を後退させる。   And if it confirms that both whetstone bases 8 and 9 retreated, both these whetstone bases 8 and 9 shall be advanced simultaneously (f1-g1, f2-g2) by the retreated amount (0.1 mm-0.5 mm). Then, both the grindstones 14 and 15 simultaneously perform the spark-out for about one or two rotations of the workpiece, finish the grinding of the crankpins CP (i) and CP (c) (h1, h2), and retract the grindstone tables 8 and 9 .

本発明の場合、それぞれ個別に制御されている左右2つの砥石台8、9により別のクランクピンCP(イ)及びCP(ハ)を同時研削するものであり、その加工進捗度が異なることになる。したがって、各クランクピンCP(イ)及びCP(ハ)の直径寸法は図5の下方の線で現されるような軌跡を辿ることになる。工作物WであるクランクピンCP(イ),CP(ハ)の研削前の直径がDbで、仕上げ直径がDfで、その差が取り代となる。   In the case of the present invention, different crankpins CP (A) and CP (C) are simultaneously ground by the two left and right grinding wheel bases 8 and 9 that are individually controlled, and the processing progress is different. Become. Therefore, the diameter dimension of each crankpin CP (A) and CP (C) follows a locus as shown by the lower line in FIG. The crank pins CP (A) and CP (C), which are the workpieces W, have a diameter before grinding of Db and a finished diameter of Df.

最初の粗研削、続いて精研削が行われるが2つの砥石台8,9による研削加工は全く同じではないので、粗研削終了時の寸法と仕上げ寸法Dfとの差Δd1,Δd2には差異がでる。従って、精研削時に定寸研削を行うと、当然のことながら、精研削終了の目標寸法(Df+Δd3)に達するまでの時間にも差異が生じることとなる。   The first rough grinding and then the fine grinding are performed, but the grinding work by the two grinding wheel bases 8 and 9 is not exactly the same, so there is a difference in the difference Δd1 and Δd2 between the dimension at the end of the rough grinding and the finishing dimension Df. Out. Therefore, if fixed-size grinding is performed during precision grinding, it will be understood that there is a difference in the time required to reach the target dimension (Df + Δd3) for completion of precision grinding.

この際、先に精研削終了の目標寸法に達した側の砥石台8を続けて次工程のスパークアウト、即ち、砥石台8の切り込み量を零にして砥石14から工作物に対する抵抗を無くして工作物の撓み分の仕上げ加工を行っても、他方の砥石台9はまだ精研削加工中で切り込みを与えているため、工作物Wは未だ撓んだ状態である。従って、工作物Wの撓みが戻る、即ちスプリングバックを期待して行うスパークアウトが殆ど効果が無くなってしまい、思うようにスパークアウトを行うことが出来ず、クランクピンCP(イ)の仕上げ精度、真円度が悪くなってしまう。   At this time, the grinding wheel base 8 that has reached the target dimension for finishing fine grinding first is continued, and the next process is sparked out, that is, the cutting amount of the grinding wheel base 8 is made zero to eliminate the resistance from the grinding wheel 14 to the workpiece. Even if the finishing process for the deflection of the workpiece is performed, the workpiece W is still bent because the other grinding wheel base 9 is still incised during the fine grinding process. Therefore, the deflection of the workpiece W returns, that is, the spark-out performed in anticipation of springback is almost ineffective, and the spark-out cannot be performed as expected, and the finishing accuracy of the crankpin CP (A) Roundness will deteriorate.

そこで、本発明の特徴として、先に精研削終了目標寸法に達した側の砥石台8を一端所定量だけ後退させ、他方が精研削終了目標寸法になるまで待機させる。この際、砥石台8は切り込み前進は行っていないが、工作物の回転に応じてX軸方向に前後移動している。そして、他方のクランクピンCP(ハ)の測定寸法が精研削目標寸法に達すると、この対応する砥石台9も所定量後退させることにより、工作物Wに掛かる抵抗を無くし、工作物の撓みを排除する。   Therefore, as a feature of the present invention, the grindstone table 8 that has reached the fine grinding end target dimension first is retracted by a predetermined amount at one end, and waits until the other reaches the fine grinding end target dimension. At this time, the grindstone table 8 is not moving forward but moving back and forth in the X-axis direction according to the rotation of the workpiece. When the measurement dimension of the other crank pin CP (c) reaches the precision grinding target dimension, the corresponding grinding wheel base 9 is also retracted by a predetermined amount, so that the resistance applied to the workpiece W is eliminated and the workpiece is bent. Exclude.

その後、両砥石台8,9を後退した分だけ前進させることにより、同時に工作物Wの1〜2回転分のスパークアウト、即ち工作物の撓み分のΔd3だけ研削加工を行う。(図5のΔd3は分かり易いように拡大表示してあり、実際には微少量である。)従って、スパークアウト時には、2つの砥石台によるクランクシャフトWに掛かる負荷が偏ることがないため、精度の高い最終仕上げ加工を行うことが可能となる。   Thereafter, both the grinding wheel heads 8 and 9 are moved forward by the retracted amount, so that the workpiece W is simultaneously subjected to a spark-out for one to two revolutions, that is, grinding is performed by Δd3 corresponding to the deflection of the workpiece. (Δd3 in FIG. 5 is enlarged for easy understanding, and is actually a very small amount.) Therefore, since the load applied to the crankshaft W by the two grinding wheel bases is not biased at the time of sparking out, accuracy is improved. It is possible to perform a high final finishing process.

次に、本発明に掛かる定寸加工制御方法の第2の実施の形態を図6について説明する。概略は図4と同様であり、まず加工開始(140)の信号により左右の砥石台を、それぞれ加工箇所であるクランクピンCP(イ)、CP(ハ)に整列させるために割出しを行う(141)。次に両砥石台8,9を早送り前進させ(142)、砥石が各々のクランクピンの加工部分に接触した段階から両砥石台は粗研削送り前進(143)となり、一定量研削した段階で定寸装置20をクランクピン部分に挿入する(144)。そして、寸法測定を行いながら、精研削送り前進(145)で精研削を行う。左右のクランクピンCP(イ),CP(ハ)の測定寸法のどちらか一方が先に精研削終了目標寸法に達すると(146)、その対応する砥石台8は所定量後退(147)させ、継続して精研削加工を行っている他方のクランクピンCP(ハ)が精研削終了目標寸法に達するまで待機させる。   Next, a second embodiment of the sizing processing control method according to the present invention will be described with reference to FIG. The outline is the same as in FIG. 4. First, indexing is performed in order to align the left and right grinding wheel bases with the crank pins CP (A) and CP (C), which are the machining locations, according to the signal of machining start (140) ( 141). Next, both the wheel heads 8 and 9 are fast-forwarded (142), and when the wheels come into contact with the processed parts of the respective crank pins, both wheel heads are moved forward to coarse grinding (143). The dimensioning device 20 is inserted into the crankpin portion (144). Then, the fine grinding is performed in the fine grinding feed forward (145) while measuring the dimensions. When one of the measured dimensions of the left and right crankpins CP (A) and CP (C) reaches the precision grinding target size first (146), the corresponding grinding wheel base 8 is retracted by a predetermined amount (147), The other crankpin CP (c), which is continuously performing the fine grinding, is kept waiting until the fine grinding finish target dimension is reached.

そして、他方のクランクピンCP(ハ)の測定値が精研削終了目標寸法に達したら(148)、対応する砥石台9の切り込み量を零とし、且つ所定量だけ後退していた一方の砥石台8は後退した分だけ前進させ(149)、両砥石台ともに工作物1〜2回転分のスパークアウト(150)を行う。この際、一方の砥石台8がスパークアウトを行う位置にまで前進する間、他方の砥石台9は切り込み量が零、即ちスパークアウト状態となっているため、左右のスパークアウト時間に多少の差異が生じるが、後退量は極僅かであるため、さして影響はない。また、最終ステップの切り込み量、即ち精研削工程の切り込み量の設定が少ない場合(例えばφ2μm/rev)では、工作物に掛かる負荷が小さいため、撓み量も少ない、即ちスプリングバックにより戻る量も小さいために多少スパークアウト時間が長くなっても加工精度、真円度に特に影響はない。   Then, when the measured value of the other crank pin CP (c) reaches the precise grinding end target dimension (148), the grinding wheel base 9 which has been cut back by a predetermined amount with the cutting amount of the corresponding grinding wheel base 9 set to zero. 8 is advanced by the retreated amount (149), and both the grinding wheel heads perform a spark-out (150) for one or two rotations of the workpiece. At this time, while one of the grinding wheel bases 8 moves forward to a position where the sparking is performed, the other grinding wheel base 9 has a cut amount of zero, that is, is in a spark-out state, so there is a slight difference between the left and right spark-out times. However, there is no influence because the amount of retreat is very small. In addition, when the cutting amount of the final step, that is, the cutting amount of the fine grinding process is small (for example, φ2 μm / rev), since the load applied to the workpiece is small, the amount of bending is small, that is, the amount returned by springback is small Therefore, even if the spark-out time is somewhat longer, there is no particular effect on the processing accuracy and roundness.

以後の動作ステップ(151)〜ステップ(156)は図4の場合のステップ(132)〜ステップ(137)と同じであるので説明は省略する。これにより、砥石台を後退させる時間を短縮することができるため、サイクルタイムの短縮が図れる。   Subsequent operation steps (151) to (156) are the same as steps (132) to (137) in FIG. As a result, the time for retreating the grindstone can be shortened, so that the cycle time can be shortened.

次に、本発明に掛かる定寸加工制御方法の第3の実施の形態を図7について説明する。概略は図4及び図6と同様であるため、異なる箇所のみ説明する。ステップ(160)からステップ(166)は図4のステップ(120)からステップ(126)と同じである。   Next, a third embodiment of the sizing processing control method according to the present invention will be described with reference to FIG. Since the outline is the same as FIG. 4 and FIG. 6, only different points will be described. Steps (160) to (166) are the same as steps (120) to (126) in FIG.

ステップ(166)にて左右の砥石台8,9のどちらかが先に精研削目標寸法に達したら、左右の砥石台8,9を一旦所定量(0.1mm〜0.5mm)後退させる(167)。そして、まだ精研削目標寸法に達していない側の砥石台9のみ再度切り込み前進を行い(168)、精研削終了目標寸法に達したら(169)、再度所定量後退させた後(170)、左右の砥石台8,9を後退させた所定量だけ同時に前進(171)させて、左右の砥石14,15によりクランクピンCP(イ),CP(ハ)のスパークアウトを同時に行う(172)。 When one of the left and right grinding wheel bases 8 and 9 first reaches the precision grinding target dimension in step (166), the left and right grinding wheel bases 8 and 9 are temporarily retracted by a predetermined amount (0.1 mm to 0.5 mm) ( 167). Then, only the grindstone table 9 on the side that has not yet reached the precise grinding target dimension is cut again and advanced (168), and when the precise grinding end target dimension is reached (169), it is retracted by a predetermined amount again (170), The grindstone bases 8 and 9 are simultaneously moved forward (171) by a predetermined amount, and the left and right grindstones 14 and 15 simultaneously spark out the crank pins CP (i) and CP (c) (172).

以下のステップ(173)から(178)は図4のステップ(132)から(136)と同じである。図4、図5の実施の形態においては、先に精研削目標寸法に達した側の砥石台8を後退した際、工作物Wに掛かる抵抗が変化し、工作物Wの撓み量が変化してしまうため、他方の砥石台9における精研削加工の途中で撓みが変化することにより、加工精度に影響を及ぼすことがあるが、図6に示した第3の実施の形態によれば、一方が定寸に達した時点で左右の砥石台を同時に後退させ、改めて残りの研削を行うようにしたものであるため、より精度の高い研削加工が可能となる。   The following steps (173) to (178) are the same as steps (132) to (136) in FIG. In the embodiment of FIGS. 4 and 5, when the grindstone table 8 on the side that has previously reached the precision grinding target dimension is retracted, the resistance applied to the workpiece W changes and the amount of deflection of the workpiece W changes. Therefore, a change in the bending during the fine grinding process in the other grinding wheel table 9 may affect the machining accuracy. However, according to the third embodiment shown in FIG. Since the left and right grindstone heads are simultaneously retracted and the remaining grinding is performed again when the diameter reaches a fixed size, more accurate grinding can be performed.

次に、本発明に掛かる定寸加工制御方法の第4の実施の形態を図8について説明する。概略は図4と同様であり、粗研削加工においても定寸加工制御を行うものである。まず加工開始(180)の信号により左右の砥石台8,9を、それぞれ加工箇所であるクランクピンCP(イ)、CP(ハ)に整列させるために割出しを行う(181)。次に両砥石台8,9を早送り前進させ(182)、砥石14,15が各々のクランクピンCP(イ),CP(ハ)の加工部分に接触して工作物表面の黒皮が加工された状態で定寸装置20をクランクピンCP(イ),CP(ハ)の部分の挿入する(183)。そして、寸法測定を行いながら、両砥石台は粗研削送り前進(184)となり、左右のクランクピンCP(イ),CP(ハ)の測定寸法のどちらか一方が先に粗研削終了目標寸法に達すると(185)、その対応する砥石台8は所定量後退(186)させ、他方のクランクピンCP(ハ)が粗研削終了目標寸法に達するまで待機させる。   Next, a fourth embodiment of the sizing processing control method according to the present invention will be described with reference to FIG. The outline is the same as that in FIG. 4, and sizing control is also performed in rough grinding. First, indexing is performed in order to align the left and right grinding wheel bases 8 and 9 with the crank pins CP (A) and CP (C), which are the machining locations, in accordance with a signal of machining start (180) (181). Next, both the grinding wheel bases 8 and 9 are fast-forwarded and moved forward (182), and the grinding wheels 14 and 15 come into contact with the processed portions of the respective crank pins CP (A) and CP (C) to process the black skin on the workpiece surface. Then, the sizing device 20 is inserted into the crankpins CP (A) and CP (C) (183). Then, while performing the dimension measurement, both grinding wheel heads are moved forward in rough grinding (184), and either one of the measured dimensions of the left and right crank pins CP (A) and CP (C) is set to the target dimension for finishing rough grinding first. When it reaches (185), the corresponding grindstone table 8 is retracted by a predetermined amount (186), and waits until the other crankpin CP (c) reaches the rough grinding end target dimension.

そして、他方のクランクピンCP(ハ)の測定値が粗研削終了目標寸法に達したら(187)、所定量後退させていた一方の砥石台8を前進させ(188)、左右の砥石台8,9を精研削送り前進してクランクピンCP(イ),CP(ハ)の精研削を行う(189)。以下、ステップ(190)からステップ(201)は図4の第1の実施例と同じである。従って、全体の取代が少ない場合でも、撓みの影響が無く、より高精度な研削加工が可能となる。   When the measured value of the other crank pin CP (c) reaches the rough grinding end target dimension (187), the one grindstone table 8 that has been retracted by a predetermined amount is advanced (188), and the left and right grindstone tables 8, Then, 9 is finely fed, and the crankpins CP (A) and CP (C) are finely ground (189). Hereinafter, steps (190) to (201) are the same as those in the first embodiment of FIG. Therefore, even when the total machining allowance is small, there is no influence of bending, and more accurate grinding can be performed.

(その他の実施例)前記の実施例はツインヘッドクランクピン研削盤に適用したものであるが、本発明の加工制御方法は、クランクピン研削に限らず、同一の工作物の2つもしくはそれ以上の加工箇所を同時に加工するものであれば適応可能であり、例えば、クランクピンとジャーナルの同時加工、プランジカットの出来る円筒研削盤、カム研削盤、カッター工具を用いたピンミラーやカムミラーにも適用できるものである。   (Other Embodiments) Although the above embodiment is applied to a twin head crankpin grinding machine, the machining control method of the present invention is not limited to the crankpin grinding, and two or more of the same workpiece are used. Can be applied to any part that can be processed at the same time, such as simultaneous processing of crank pins and journals, cylindrical grinders capable of plunge cutting, cam grinders, pin mirrors and cam mirrors using cutter tools It is.

本発明のツインヘッドクランクピン研削盤の平面図。The top view of the twin head crankpin grinder of this invention. 本発明のツインヘッドクランクピン研削盤における定寸装置を現す側面図。The side view showing the sizing apparatus in the twin head crankpin grinding machine of this invention. 本発明のツインヘッドクランクピン研削盤の定寸加工制御装置を示すブロック図。The block diagram which shows the fixed-size process control apparatus of the twin head crankpin grinding machine of this invention. 本発明のツインヘッドクランクピン研削盤の定寸加工制御の制御フローチャート。The control flowchart of the sizing process control of the twin head crankpin grinding machine of this invention. 本発明のツインヘッドクランクピン研削盤の定寸加工制御のサイクル線図。FIG. 3 is a cycle diagram of sizing processing control of the twin head crankpin grinding machine of the present invention. 第2の実施の形態における定寸加工制御方法の制御フローチャート。The control flowchart of the sizing processing control method in 2nd Embodiment. 第3の実施の形態における定寸加工制御方法の制御フローチャート。The control flowchart of the sizing processing control method in 3rd Embodiment. 第4の実施の形態における定寸加工制御方法の制御フローチャート。The control flowchart of the sizing processing control method in 4th Embodiment.

符号の説明Explanation of symbols

1: ベッド
8: 右砥石台
9: 左砥石台
14: 右砥石
15: 左砥石
17: 心押し台
18: 主軸台
22: 定寸装置
25: Vブロック
28: 測定棒
27: プローブ
78: 数値制御装置
1: Bed 8: Right grinding wheel base 9: Left grinding wheel base 14: Right grinding wheel 15: Left grinding wheel 17: Tailstock 18: Spindle base 22: Sizing device 25: V block 28: Measuring rod 27: Probe 78: Numerical control apparatus

Claims (4)

複数の異なる加工箇所を有する工作物を回転駆動可能に支持し、工具を具備する複数の工具台を各工具が各加工箇所に整列対向する位置に各々割出し、各工具が前記異なる加工箇所をそれぞれ加工するように各工具台を各々独立して前後動させ、複数の定寸装置を設けて各工具により加工される各加工箇所の寸法測定を行い、各定寸装置により測定された各加工箇所の寸法により各工具台の進退移動を制御する工作機械の加工制御方法であって、
現工程において、第一の前記工具により加工され目標寸法に達したことが第一の前記定寸装置により検出された加工箇所と対応する第一の前記工具台を所定量後退させ、第二の前記工具により加工され目標寸法に達したことが第二の前記定寸装置により検出された加工箇所と対応する第二の前記工具台を所定量後退させ、第一,第二の前記工具台が所定量後退した後に第一,第二の前記工具台を同時に前進させて次工程の加工を行うことを特徴とする工作機械の定寸加工制御方法。
A workpiece having a plurality of different machining locations is rotatably supported, and a plurality of tool stands provided with tools are indexed to positions where each tool is aligned and opposed to each machining location, and each tool has the different machining locations. Each tool base is moved back and forth independently so as to process each, and a plurality of sizing devices are provided to measure the dimensions of each machining site processed by each tool, and each machining measured by each sizing device A machining control method for a machine tool that controls the forward / backward movement of each tool table according to the size of a part,
In the current step, the first tool table corresponding to the machining location detected by the first sizing device to be processed by the first tool and having reached the target dimension is retracted by a predetermined amount, and the second The second tool table corresponding to the machining location detected by the second sizing device that has been processed by the tool and reached the target dimension is retracted by a predetermined amount, and the first and second tool tables are A sizing process control method for a machine tool , wherein the first and second tool rests are simultaneously advanced after a predetermined amount of retreat to perform the next process.
請求項1において、前記現工程が最終工程の前工程であり、前記次工程が前記最終工程であることを特徴とする工作機械の定寸加工制御方法。   2. The sizing process control method for a machine tool according to claim 1, wherein the current process is a pre-process of a final process, and the next process is the final process. 少なくとも2つの加工箇所を有する工作物を回転駆動可能に支持し、砥石を具備する2つの砥石台を各砥石が各加工箇所に整列対向する位置に各々割出し、各工具が前記異なる加工箇所をそれぞれ研削加工するように各砥石台を各々独立して前後動させ、2つの定寸装置を設けて各砥石により研削加工される各加工箇所の寸法測定を行い、各定寸装置により測定された各加工箇所の寸法により各砥石台の進退移動を制御するツインヘッド研削盤の定寸加工制御方法であって、最終のスパークアウト研削工程を行う前工程において、第一の前記砥石により研削加工され目標寸法に達したことが第一の前記定寸装置により検出された加工箇所と対応する第一の前記砥石台を所定量後退させ、第二の前記砥石により研削加工され目標寸法に達したことが第二の前記定寸装置により検出された加工箇所と対応する第二の前記砥石台を所定量後退させ、第一,第二の前記砥石台が所定量後退した後に第一,第二の前記砥石台を同時に前進させて前記最終のスパークアウト研削工程の研削加工を行うことを特徴とするツインヘッド研削盤の定寸加工制御方法。 A workpiece having at least two machining points is supported so as to be rotationally driven, and two whetstone bases equipped with a grindstone are indexed to positions where each grindstone is aligned and opposed to each machining point, and each tool has the different machining points. Each grindstone stand is moved back and forth independently so as to grind each, and two sizing devices are provided to measure the dimensions of each machining point ground by each grindstone and measured by each sizing device. This is a twin-head grinding machine sizing control method that controls the forward and backward movement of each grinding wheel head according to the dimensions of each machining point, and is ground by the first grinding wheel in the previous process of performing the final spark-out grinding process. this it has reached the target size of the first of said wheel head and the corresponding machining spot detected by the first of the measuring device by a predetermined amount backward, reaches the target size is grinding by a second of said grinding wheel There is a second of said wheel head a predetermined amount backward corresponding to the machining spot, which is detected by the second of the sizing device, the first after the first, second the wheel head is retracted a predetermined amount, the second A method for controlling sizing of a twin head grinder, wherein the grinding wheel head is advanced simultaneously to perform grinding in the final spark-out grinding process. 複数の異なる加工箇所を有する工作物を回転駆動可能に支持する工作物支持装置と、工具を具備する複数の工具台と、該工具台が前後方向に摺動自在に載置され各工具が各加工箇所と整列対向する位置に長手方向に割出されるテーブルと、各工具により加工される各加工箇所の寸法測定を行う複数の定寸装置とを備える工作機械の定寸加工制御装置において、
各工具が前記異なる加工箇所をそれぞれ加工するように前記各工具台を各々独立して前後動させるとともに、各定寸装置により測定された各加工箇所の寸法により各工具台の進退移動を制御する工作機械の制御装置であって、最終工程の前工程において、第一の前記工具により加工され目標寸法に達したことが第一の前記定寸装置により検出された加工箇所と対応する第一の前記工具台を所定量後退させ、第二の前記工具により加工され目標寸法に達したことが第二の前記定寸装置により検出された加工箇所と対応する第二の前記工具台を所定量後退させ、第一,第二の前記工具台が所定量後退した後に第一,第二の前記工具台を同時に前進させて前記最終工程の加工を行う制御装置を備えることを特徴とする工作機械の定寸加工制御装置。
A workpiece support device that rotatably supports a workpiece having a plurality of different machining locations, a plurality of tool tables provided with tools, and the tool table slidably mounted in the front-rear direction. In a sizing control device of a machine tool comprising a table indexed in the longitudinal direction at a position facing and aligned with a machining location, and a plurality of sizing devices that measure the dimensions of each machining location machined by each tool,
Each tool table is independently moved back and forth so that each tool processes each of the different machining locations, and the forward / backward movement of each tool platform is controlled by the dimensions of each machining location measured by each sizing device. A control device for a machine tool , wherein a first portion corresponding to a machining location detected by the first sizing device that has been processed by the first tool and has reached a target dimension in a step preceding the final step . The tool base is retracted by a predetermined amount, and the second tool base corresponding to the machining location detected by the second sizing device is processed by the second tool and has reached the target dimension by a predetermined amount. And a control device for processing the final process by simultaneously advancing the first and second tool stands after the first and second tool stands are retracted by a predetermined amount. Sizing processing control device.
JP2005379985A 2005-12-28 2005-12-28 Method and apparatus for controlling sizing of machine tool Expired - Fee Related JP4539557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379985A JP4539557B2 (en) 2005-12-28 2005-12-28 Method and apparatus for controlling sizing of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379985A JP4539557B2 (en) 2005-12-28 2005-12-28 Method and apparatus for controlling sizing of machine tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28072499A Division JP3787248B2 (en) 1999-09-30 1999-09-30 Method and apparatus for controlling sizing of machine tool

Publications (3)

Publication Number Publication Date
JP2006095687A JP2006095687A (en) 2006-04-13
JP2006095687A5 JP2006095687A5 (en) 2006-11-16
JP4539557B2 true JP4539557B2 (en) 2010-09-08

Family

ID=36235981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379985A Expired - Fee Related JP4539557B2 (en) 2005-12-28 2005-12-28 Method and apparatus for controlling sizing of machine tool

Country Status (1)

Country Link
JP (1) JP4539557B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940775B2 (en) * 2006-06-15 2012-05-30 株式会社不二越 Tape wrap device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54125591A (en) * 1978-06-23 1979-09-29 Ntn Toyo Bearing Co Ltd Grinding control method for use in complex grinding
JP2506679B2 (en) * 1986-08-16 1996-06-12 豊田工機株式会社 Depth feed control method for twin head type grinder
JP2800401B2 (en) * 1990-11-16 1998-09-21 株式会社デンソー Grinder
JP2774760B2 (en) * 1992-11-26 1998-07-09 ミクロン精密株式会社 Centerless grinding device for stepped workpiece and grinding method
JP3528197B2 (en) * 1993-03-29 2004-05-17 豊田工機株式会社 Grinding equipment
JPH1071546A (en) * 1997-06-19 1998-03-17 Micron Seimitsu Kk Centerless grinding method and centerless grinding device for grinding plural positions simultaneously

Also Published As

Publication number Publication date
JP2006095687A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP3787248B2 (en) Method and apparatus for controlling sizing of machine tool
JP4051872B2 (en) Measuring method of processing part and processing method
JP5277692B2 (en) Post-process sizing controller
EP1621287B1 (en) Method and apparatus for grinding cams with a re-entrant surface
JP2002307268A (en) Processing method and device for eccentric cylindrical part of work using measuring device
JP4730944B2 (en) Multi-head grinding machine and grinding method using multi-head grinding machine
JP2019042901A (en) Processing device and processing method using the same
JP4539557B2 (en) Method and apparatus for controlling sizing of machine tool
JP3687770B2 (en) Method and apparatus for controlling sizing of twin head grinder
JPH0890408A (en) Grinding method
US7901268B2 (en) Method for grinding journal section of workpiece
JP3836098B2 (en) Crank pin grinding method and grinding apparatus
JP4466142B2 (en) Machine tool with steady rest
JP3821345B2 (en) Crank pin grinding method and grinding apparatus
JP4157246B2 (en) Processing equipment
JP3982196B2 (en) Grinding machine equipped with steady rest and grinding method thereof
JP4400226B2 (en) Grinding method and grinding apparatus
JP3241453B2 (en) Grinding method
JP3834493B2 (en) Compound grinding method and apparatus
JP3812869B2 (en) Cylindrical grinding method and apparatus
JP2003094293A (en) Abnormality detection method for measurement device of machining device and machining device
JP3866951B2 (en) Processing method and processing apparatus
JP3385666B2 (en) Grinding equipment
JP3528197B2 (en) Grinding equipment
JP3731715B2 (en) How to create cylindrical cross-section contour data

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4539557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees