JP5425570B2 - Processing method and apparatus for trunnion of tripod type constant velocity joint - Google Patents

Processing method and apparatus for trunnion of tripod type constant velocity joint Download PDF

Info

Publication number
JP5425570B2
JP5425570B2 JP2009210328A JP2009210328A JP5425570B2 JP 5425570 B2 JP5425570 B2 JP 5425570B2 JP 2009210328 A JP2009210328 A JP 2009210328A JP 2009210328 A JP2009210328 A JP 2009210328A JP 5425570 B2 JP5425570 B2 JP 5425570B2
Authority
JP
Japan
Prior art keywords
workpiece
grindstone
boss
outer peripheral
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009210328A
Other languages
Japanese (ja)
Other versions
JP2011056632A (en
Inventor
太一 安形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2009210328A priority Critical patent/JP5425570B2/en
Publication of JP2011056632A publication Critical patent/JP2011056632A/en
Application granted granted Critical
Publication of JP5425570B2 publication Critical patent/JP5425570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、横断面が楕円形その他の非真円形状をしたワークの外周面を研削により加工する方法に関する。   The present invention relates to a method for processing an outer peripheral surface of a work having an elliptical cross section or other non-circular shape by grinding.

特許文献1に、カムを有する揺動軸とワーク主軸を同期回転させることにより、非真円形状の加工を行う装置が記載されている。   Patent Document 1 describes an apparatus that performs non-circular machining by synchronously rotating a swing shaft having a cam and a workpiece spindle.

特開昭58−181558号公報JP 58-181558 A

ワーク主軸及び砥石切込み台にNCを搭載した工作機を用いて楕円円柱を加工する場合、ワーク主軸の回転位相に合わせて、砥石切込み台を同期制御することができるため、従来の非NC機での揺動軸やカム機構装置は不要となる。しかし、砥石切込み台を高速揺動しながら切込み動作を行うため、砥石切込み台は、指令に対する応答性が優れていることが要求される。楕円形状を高精度で安定して得るには、砥石切込み台の揺動を低速(主軸回転数を下げる)での加工が必要であり、加工能率が悪くなり、加工サイクル時間が増大する。   When machining an elliptic cylinder using a machine tool equipped with NC on the workpiece spindle and grinding wheel cutting table, the grinding wheel cutting table can be controlled synchronously according to the rotation phase of the workpiece spindle. The oscillating shaft and the cam mechanism device are not required. However, in order to perform the cutting operation while swinging the grindstone cutting table at high speed, the grindstone cutting table is required to have excellent response to commands. In order to obtain an elliptical shape with high accuracy and stability, it is necessary to machine the grinding wheel cutting table at a low speed (lowering the spindle speed), the machining efficiency is deteriorated, and the machining cycle time is increased.

この発明の目的は、非真円形状の研削加工において、加工精度を安定させ、加工能率を向上させることにある。   An object of the present invention is to stabilize machining accuracy and improve machining efficiency in non-round grinding.

この発明は、回転軸線に垂直な断面が非真円形状であるようなワークの外周面を研削するにあたり、NC工作機を用い、ワーク主軸の回転位相に合わせてワークと砥石の相対位置を制御しつつクリープフィード研削することにより、課題を解決したものである。ここで、クリープフィード研削とは、砥石に所定の輪郭を形成しておき、低速で工作物を送って一度の切込みで仕上げ研削する作業をいう(JISB0106)。
すなわち、この発明は、軸心部にセレーション孔を形成したボスと、ボスの円周方向に等間隔に配置した複数の脚軸とからなるトラニオンにおける前記脚軸の外周面を研削する加工方法であって、前記外周面は、前記脚軸の回転軸線に垂直な断面の輪郭が非真円で、前記ボスの軸線方向を向いた非加工部と前記ボスの円周方向を向いた楕円形状の部分からなり、ワークを保持するためのチャッキング装置と回転駆動装置を備えたワーク主軸と、砥石を保持し、駆動装置によって往復移動可能な砥石切込み台に固定した砥石主軸とを有するNC工作機を用い、前記チャッキング装置により前記セレーション孔の内径を把握するとともにクランパーで固定して、加工対象たる脚軸をワーク主軸と同軸となるように位置決めし、ワーク主軸の回転位相に合わせてワークと砥石の相対位置を制御しつつクリープフィード研削することを特徴とする。
This invention uses an NC machine tool to control the relative position of the workpiece and the grindstone in accordance with the rotational phase of the workpiece spindle when grinding the outer peripheral surface of a workpiece whose cross section perpendicular to the rotational axis is non-circular. However, the problem is solved by creep feed grinding. Here, creep feed grinding refers to an operation in which a predetermined contour is formed on a grindstone, a workpiece is sent at a low speed, and finish grinding is performed with a single cut (JISB0106).
That is, the present invention is a processing method for grinding an outer peripheral surface of the leg shaft in a trunnion including a boss formed with a serration hole in an axial center portion and a plurality of leg shafts arranged at equal intervals in the circumferential direction of the boss. The outer peripheral surface has a non-circular outline in a cross section perpendicular to the rotation axis of the leg shaft, and an unprocessed portion facing the axial direction of the boss and an elliptical shape facing the circumferential direction of the boss. NC machine tool comprising a workpiece spindle having a chucking device for holding a workpiece and a rotary drive device, and a grindstone spindle that holds the grindstone and is fixed to a grindstone cutting table that can be reciprocated by the drive device. The chucking device grasps the inner diameter of the serration hole and fixes it with a clamper, and positions the leg shaft to be machined so as to be coaxial with the workpiece spindle. Characterized by creep feed grinding while controlling the relative position of the workpiece and the grinding wheel in accordance with the.

この発明は、トリポード型等速ジョイントのトラニオンにおける脚軸の加工に適用したものである。トラニオン脚軸の横断面形状に楕円(長径+短径)を採用したタイプの従来のトリポード型等速ジョイントでは、長径・短径比が訳1.01であったが、新たに開発したトリポード型等速ジョイントは、超楕円タイプで長径・短径比が約1.17と大きいため、楕円研削時の揺動ストロークが長くなり、従来のトリポード型等速ジョイント用研削盤では加工対応不可であった。このため、NC円筒研削盤の砥石切込み台がNCであることに着目し、加えて主軸をNC化すれば、楕円形状加工が可能であるとの判断のもと、トリポード型等速ジョイントの脚軸加工方法の開発を始めたものである。そして、通常のプランジカット研削であれば、砥石切込み台の制御が複雑になることや高速揺動時の追従性に難ありとの問題点に着目して、クリープフィードを採用したものである。なお、砥石切込み台の高速揺動時の追従性を向上させるには、スライドを抵抗の少ないリニアモータにすることも考えらえるが、コスト面その他で解決すべき問題点がある。 This invention is applied to the processing of leg shafts in a trunnion of a tripod constant velocity joint . In the conventional tripod type constant velocity joint that adopts an ellipse (major axis + minor axis) in the cross-sectional shape of the trunnion leg shaft, the ratio of major axis to minor axis was 1.01, but the newly developed tripod type The constant-velocity joint is a super-elliptical type with a major axis / minor axis ratio of about 1.17, so the swing stroke during elliptical grinding is longer, and the conventional tripod type constant velocity joint grinder cannot process it. It was. For this reason, paying attention to the fact that the grindstone cutting base of the NC cylindrical grinder is NC, in addition, the leg of the tripod type constant velocity joint is determined based on the judgment that elliptical machining is possible if the spindle is made NC. Development of a shaft machining method was started. In the case of ordinary plunge cut grinding, the creep feed is employed, focusing on the problems that the control of the grindstone cutting base becomes complicated and the followability at high speed swinging is difficult. In order to improve the followability when the grindstone cutting table swings at high speed, it is conceivable to use a linear motor with a low resistance for the slide, but there are problems to be solved in terms of cost and the like.

請求項2の発明は、請求項1の加工方法において、ワーク主軸に対して砥石切込み台を移動させることを特徴とするものである。従来の非真円円柱加工研削盤は、主軸部に揺動軸を設けて、この揺動軸と主軸をカムにより同期させて、楕円形状を作っていたのに対して、砥石切込み台とワーク主軸をNC軸とし、これら2軸を同期制御させて、楕円形状を創造するのである。これによれば、従来の揺動軸およびカム機構装置を省略できるというメリットがある。また、通常のNC円筒研削盤であれば、切込み位置精度向上のため、砥石切込み台はNC化されており、したがってそれを共用するようにすれば新たなNC軸を追加せずに済む。ただし、主軸については、通常のNC円筒研削盤は非NCであるため、これはNC化する必要がある。加えて、従来の機構であれば、カム部接触部品の摩耗により、形状精度に悪影響を与えていたのに対して、NC駆動方式であれば、カムは不要であり、安定した形状精度が得られる。 The invention of claim 2 is the machining method according to claim 1, it is characterized in that moving the grindstone depth cutting board with respect to the workpiece spindle. Conventional non-circular cylindrical machining grinders are provided with a rocking shaft in the main shaft, and the rocking shaft and the main shaft are synchronized by a cam to make an elliptical shape. The main axis is the NC axis, and the two axes are synchronously controlled to create an elliptical shape. According to this, there is an advantage that the conventional swing shaft and the cam mechanism device can be omitted. Further, in the case of a normal NC cylindrical grinder, the grindstone cutting table is made NC to improve the cutting position accuracy. Therefore, if it is shared, it is not necessary to add a new NC shaft. However, since the normal NC cylindrical grinder is non-NC with respect to the main shaft, it needs to be NC. In addition, the conventional mechanism had an adverse effect on the shape accuracy due to wear of the cam contact parts, whereas the NC drive system does not require a cam, and a stable shape accuracy can be obtained. It is done.

請求項3の発明は、請求項1または2の加工方法において、アンギュラフィードであることを特徴とするものである。アンギュラフィードとは、ワーク主軸に対して直角以外の角度をなす方向に砥石を切り込むことをいう。たとえば、ワーク主軸に対して直交する方向に砥石を切り込むストレートフィードではワークやチャッキング装置と砥石が干渉する場合に、そのような干渉を避けるためにアンギュラフィードを採用することができる。 A third aspect of the present invention, the machining method according to claim 1 or 2, characterized in that it is angular feed. Angular feed refers to cutting a grindstone in a direction that forms an angle other than a right angle with respect to the work spindle. For example, in the case of a straight feed in which a grindstone is cut in a direction perpendicular to the work spindle, when the work or chucking device and the grindstone interfere with each other, an angular feed can be employed to avoid such interference.

請求項4の発明は、請求項1、2または3の加工方法において、ワークの回転軸を含む断面における外周面形状が直線であることを特徴とするものである。前記直線は、ワークの外周面がストレートな円筒面形状である場合には一本の直線となるが、段付きの円筒面形状である場合には二本以上の直線となる。また、ワークの回転軸と平行な直線に限らず、回転軸に対して角度をなす直線も含まれる。後者の場合、ワークの外周面形状はテーパである。 A fourth aspect of the present invention, the machining method of claim 1, 2 or 3, the outer peripheral surface shape of the cross section including the rotation axis of the workpiece is characterized in that it is straight. The straight line becomes one straight line when the outer peripheral surface of the workpiece has a straight cylindrical surface shape, but becomes two or more straight lines when it has a stepped cylindrical surface shape. Further, not only a straight line parallel to the rotation axis of the workpiece but also a straight line that forms an angle with respect to the rotation axis is included. In the latter case, the outer peripheral surface shape of the workpiece is a taper.

請求項5の発明は、請求項1、2または3の加工方法において、ワークの回転軸を含む断面における外周面形状が曲線であることを特徴とするものである。曲線の具体例としては凸円弧や凹円弧を挙げることができる。 The invention of claim 5 is the machining method according to claim 1, 2 or 3, characterized in that the outer peripheral surface shape of the cross section including the rotation axis of the workpiece is curved. Specific examples of the curve include a convex arc and a concave arc.

請求項6の発明は、請求項1、2または3の加工方法において、ワークの回転軸を含む断面における外周面形状が直線と曲線の組み合わせであることを特徴とするものである。ここでも曲線の具体例としては凸円弧や凹円弧を挙げることができる。 According to a sixth aspect of the invention, the machining method of claim 1, 2 or 3, in which the outer peripheral surface shape of the cross section including the rotation axis of the workpiece characterized in that it is a combination of straight lines and curves. Again, examples of curves include convex arcs and concave arcs.

請求項7の発明は、請求項1〜6のいずれか1項の加工方法において、ワークの回転軸に垂直な断面における外周面が楕円形状であることを特徴とするものである。ここで、楕円とは、字義通りの楕円に限らず、いわゆる卵形や長円形などと呼ばれる形状含むものとする。 According to a seventh aspect of the invention, the machining method of any one of claims 1 to 6, the outer peripheral surface in a cross section perpendicular to the axis of rotation of the workpiece is characterized in that an elliptical shape. Here, the ellipse is not limited to the literal ellipse but includes a shape called a so-called oval or oval.

請求項8の発明は、請求項1〜6のいずれか1項の加工方法において、ワークの回転軸に垂直な断面における外周面形状が真円と楕円の組み合わせであることを特徴とするものである。 The invention of claim 8 is the machining method of any one of claims 1-6, which is characterized in that the outer peripheral surface shape in a cross-section perpendicular to the axis of rotation of the workpiece is a combination of true circles and ellipses It is.

請求項9の発明は、軸心部にセレーション孔を形成したボスと、前記ボスの半径方向に突出した複数の脚軸とからなる等速ジョイント用トラニオンにおける前記脚軸の外周面を研削する加工装置であって、前記外周面は、前記脚軸の回転軸線に垂直な断面の輪郭が非真円であり、
前記トラニオンをワークとして保持するためのチャッキング装置と回転駆動装置を備えたワーク主軸と、回転駆動装置によって回転駆動される砥石を保持し、駆動装置によって往復移動可能な砥石切込み台に固定した砥石軸とを有するNC工作機を有し、
前記チャッキング装置により前記セレーション孔の内径を把握するとともにクランパーで固定することにより、前記脚軸の一つが前記ワーク主軸と同軸となるように前記ワークの位置決めをし、前記ワーク主軸の回転位相に合わせて前記ワークと前記砥石の相対位置を制御しつつクリープフィード研削することを特徴とするものである。
The invention according to claim 9 is a process of grinding an outer peripheral surface of the leg shaft in a trunnion for a constant velocity joint comprising a boss having a serration hole formed in an axial center portion and a plurality of leg shafts protruding in the radial direction of the boss. The outer peripheral surface has a non-circular outline in cross section perpendicular to the rotation axis of the leg shaft,
A grindstone that holds a work spindle provided with a chucking device and a rotation driving device for holding the trunnion as a workpiece, and a grindstone that is rotationally driven by the rotation driving device, and is fixed to a grindstone cutting table that can be reciprocated by the driving device. An NC machine tool with a shaft,
By grasping the inner diameter of the serration hole by the chucking device and fixing with a clamper, the workpiece is positioned so that one of the leg shafts is coaxial with the workpiece spindle, and the rotational phase of the workpiece spindle is adjusted. In addition, creep feed grinding is performed while controlling the relative position of the workpiece and the grindstone .

この発明によれば、クリープフィード研削を採用することで、ワーク1回転で加工が完了するため、切込み台の高速揺動は不要であり、非真円形状の形状精度が安定して容易に得られる。しかも、サイクルタイムが短縮されて加工能率も向上する。   According to the present invention, by adopting creep feed grinding, machining is completed with one rotation of the workpiece, so that high-speed rocking of the incision table is unnecessary, and non-circular shape accuracy can be obtained stably and easily. It is done. In addition, the cycle time is shortened and the machining efficiency is improved.

ストレートフィードの説明図であって、(A)は平面図、(B)は正面図、(C)は側面図である。It is explanatory drawing of a straight feed, Comprising: (A) is a top view, (B) is a front view, (C) is a side view. アンギュラフィードの説明図であって、(A)は平面図、(B)は正面図、(C)は側面図である。It is explanatory drawing of an angular feed, Comprising: (A) is a top view, (B) is a front view, (C) is a side view. (A)はトラニオンの一部破断正面図、(B)は側面図、(C)は脚軸の平面図、(D)は図3(B)の脚軸根元部拡大図である。(A) is a partially broken front view of the trunnion, (B) is a side view, (C) is a plan view of the leg shaft, and (D) is an enlarged view of the leg shaft root portion of FIG. 3 (B). (A)は軸端突起付きのトラニオンの一部破断正面図、(B)は側面図、(C)は図4(B)の脚軸先端部拡大図、(D)は脚軸の平面図、(E)は図4(B)の脚軸根元部拡大図である。(A) is a partially broken front view of a trunnion with a shaft end protrusion, (B) is a side view, (C) is an enlarged view of the tip of the leg shaft of FIG. 4 (B), and (D) is a plan view of the leg shaft. , (E) is an enlarged view of the base part of the leg shaft of FIG. 4 (B).

以下、トリポード型等速ジョイントの構成要素であるトラニオンの脚軸を研削加工する場合を例にとって、この発明の実施の形態を説明する。   Hereinafter, an embodiment of the present invention will be described by taking as an example a case where a leg shaft of a trunnion that is a constituent element of a tripod type constant velocity joint is ground.

まず、ワークの例について述べるならば、図3はトリポード型等速ジョイントのトラニオン10を示す。トラニオン10は、軸心部にセレーション(またはスプライン、以下同じ)孔14を形成したボス12と、ボス12の円周方向に等間隔に配置した3本の脚軸16とからなり、図3(B)から分かるように各脚軸16はボス12から半径方向に突出している。   First, an example of a workpiece will be described. FIG. 3 shows a trunnion 10 of a tripod constant velocity joint. The trunnion 10 includes a boss 12 in which a serration (or spline, hereinafter the same) hole 14 is formed in an axial center portion, and three leg shafts 16 arranged at equal intervals in the circumferential direction of the boss 12. As can be seen from B), each leg shaft 16 protrudes from the boss 12 in the radial direction.

図3(C)から分かるように、脚軸16の軸線に垂直な断面すなわち横断面の18b部は楕円形状である。18a部は非加工部(前加工残り部)であり、外周面の一部のみ楕円形状を加工してある。図3(D)に示すように、脚軸16の根元部18dは研削切り上がり逃げR部で凹円弧形状となっている。脚軸16の軸線を含む断面すなわち縦断面における外周面は、図3(A)(B)(D)から分かるように、軸線と平行な直線及び曲線である。   As can be seen from FIG. 3C, the section 18b of the cross section perpendicular to the axis of the leg shaft 16, that is, the cross section, is elliptical. 18a part is a non-processed part (pre-process remaining part), and only the part of the outer peripheral surface has processed the elliptical shape. As shown in FIG. 3D, the base portion 18d of the leg shaft 16 has a concave arc shape at the grinding round-up relief R portion. As can be seen from FIGS. 3A, 3B, and 3D, the outer peripheral surface of the cross section including the axis of the leg shaft 16, that is, the vertical cross section, is a straight line and a curve parallel to the axis.

図4に示すトラニオン10´は、脚軸16の軸端付近に突起18cが形成してある点で、図3のトラニオン10と相違している。図4(D)から分かるように、脚軸16の軸線に垂直な断面すなわち横断面の18b部は楕円形状である。18a部は非加工部(前加工残り部)であり、外周面の一部のみ楕円形状を加工している。突起18cは、脚軸16の外周面のうち、楕円部18bに設けてあり、楕円部と同心で、かつ、それよりもわずかに大径である。なお、この2つの直線は、軸線と角度なす直線で結ばれている。脚軸16の軸線を含む断面すなわち縦断面における外周面は、図4(A)(B)(E)から分かるように軸線と平行及び角度をなす直線、及び曲線である。図4の実施例の場合、外周面の母線は長短2本の直線とテーパ及び曲線の組み合わせである。   The trunnion 10 ′ shown in FIG. 4 is different from the trunnion 10 of FIG. 3 in that a projection 18c is formed near the end of the leg shaft 16. As can be seen from FIG. 4D, the cross section perpendicular to the axis of the leg shaft 16, that is, the 18b portion of the cross section is elliptical. 18a part is a non-processed part (pre-process remaining part), and is processing the elliptical shape only for a part of outer peripheral surface. The protrusion 18c is provided on the elliptical portion 18b of the outer peripheral surface of the leg shaft 16, is concentric with the elliptical portion, and has a slightly larger diameter. These two straight lines are connected by a straight line formed at an angle with the axis. As can be seen from FIGS. 4A, 4B, and 4E, the outer peripheral surface of the cross section including the axis of the leg shaft 16, that is, the longitudinal cross section, is a straight line and a curve that are parallel to and angled with the axis. In the embodiment of FIG. 4, the bus on the outer peripheral surface is a combination of two long and short straight lines, a taper, and a curved line.

次に、図1に概略構成を示す加工装置について述べる。この加工装置は、NC(数値制御)工作機の主要部を構成するワーク主軸20と砥石軸30を含んでいる。ワーク主軸20は、NC工作機の架台等の静止部材(図示省略)に固定してあり、一方の端部に、ワーク26を保持するためのチャッキング装置22を備えている。チャッキング装置22は図1(B)に矢印で示すように回転軸線28を中心にして回転自在である。ワーク主軸20のもう一方の端部(図1(A)では上端部)に、回転駆動装置として主軸用NCモータ24が取り付けてある。   Next, a processing apparatus having a schematic configuration shown in FIG. 1 will be described. This machining apparatus includes a work spindle 20 and a grindstone shaft 30 that constitute the main part of an NC (numerical control) machine tool. The work spindle 20 is fixed to a stationary member (not shown) such as a base of an NC machine tool, and is provided with a chucking device 22 for holding the work 26 at one end. The chucking device 22 is rotatable about a rotation axis 28 as indicated by an arrow in FIG. A main shaft NC motor 24 is attached to the other end of the work main shaft 20 (upper end in FIG. 1A) as a rotation drive device.

図1ではチャッキング装置22の詳細は省略してあるが、ワーク26は図3および図4に関連して上に述べたトラニオン10、10´であって、セレーション孔14の内径をコレットチャックにて把握し、さらにクランパーにて上部から固定するタイプである。そして、加工する脚軸16をワーク主軸20と同軸となるように位置決めする。   Although details of the chucking device 22 are omitted in FIG. 1, the workpiece 26 is the trunnion 10, 10 ′ described above with reference to FIGS. 3 and 4, and the inner diameter of the serration hole 14 is set to the collet chuck. This is a type that is grasped and fixed from above with a clamper. Then, the leg shaft 16 to be processed is positioned so as to be coaxial with the work spindle 20.

砥石軸30は砥石切込み台32に固定してあり、その砥石切込み台32は、たとえばリニアスライド機構とボールねじ機構を利用して、符号38で示すX軸方向に往復移動可能に、上記静止部材に取り付けてある。砥石切込み台32を移動させるための駆動装置として砥石切込み台用NCモータ34が同じく静止部材に設置してある。砥石軸30はスピンドルを内蔵しており、モータ35で回転駆動される。砥石軸30は端面に砥石36を保持している。砥石36は、加工能率向上のため、CBN砥石を採用してもよい。砥石36の外周の断面形状は、ワーク26の仕上げ形状を転写した形状となっている。 The grindstone shaft 30 is fixed to a grindstone cutting table 32, and the grindstone cutting table 32 is capable of reciprocating in the X-axis direction indicated by reference numeral 38 by using, for example, a linear slide mechanism and a ball screw mechanism. It is attached to. As a driving device for moving the grindstone cutting table 32, a grindstone cutting table NC motor 34 is also installed on the stationary member. The grindstone shaft 30 has a built-in spindle and is rotationally driven by a motor 35 . The grindstone shaft 30 holds a grindstone 36 on its end surface. As the grindstone 36, a CBN grindstone may be adopted to improve the processing efficiency. The cross-sectional shape of the outer periphery of the grindstone 36 is a shape obtained by transferring the finished shape of the work 26.

砥石の選定と対策について述べるならば、一般砥石であるWA砥石を用いてテストを行ったところ、研削抵抗大による砥石異常磨耗が発生し、砥石軸駆動動力異常となった。そこで、耐摩耗性に優れるCBN砥石に変更したところ、砥石軸駆動動力は安定し、加工精度は良好となった。しかし、CBN砥石は硬度大のためドレッシングに難があり、良好な切れ味は得られず、加工能率は必ずしも向上しない。その対策として、砥石及びダイヤモンドロールのスペック見直し、ドレス条件・加工条件の見直しを行うことにより、満足できる加工能率を得ることができる。   When the selection of the grindstone and the countermeasures are described, when a test was performed using a WA grindstone, which is a general grindstone, abnormal grinding wheel wear due to large grinding resistance resulted in grinding wheel shaft drive power abnormality. Then, when it changed to the CBN grindstone excellent in abrasion resistance, the grindstone shaft drive power became stable and the processing accuracy became good. However, since the CBN grindstone has a high hardness, it is difficult to dress, a good sharpness cannot be obtained, and the processing efficiency is not necessarily improved. As countermeasures, satisfactory processing efficiency can be obtained by reviewing the specifications of the grindstone and diamond roll and reviewing the dressing conditions and processing conditions.

図1に示す状態から、主軸用NCモータ24が始動すると、図1(B)に矢印で示すようにワーク主軸20が回転してチャッキング装置22とともにワーク26を回転させる。また、砥石軸30のスピンドルが回転して砥石36を回転させる。砥石切込み台用NCモータ34が始動すると、砥石切込み台32が、図1(A)ではX軸方向、NCモータ34の回転方向によって図1(A)の左または右方向に移動する。この砥石切込み台32の移動方向および移動量は、ワークの回転軸に同期させて、あらかじめNC制御装置にプログラムしてある。すなわち、所望の非真円形状を得るため、NC制御により、ワーク主軸20の回転と同期して砥石切込み台32を移動軸38方向に移動させ、ワーク主軸20の回転軸28の位相と砥石36の位置を関連付けている。   When the spindle NC motor 24 is started from the state shown in FIG. 1, the workpiece spindle 20 rotates as shown by an arrow in FIG. 1B to rotate the workpiece 26 together with the chucking device 22. Further, the spindle of the grindstone shaft 30 rotates to rotate the grindstone 36. When the grinding wheel cutting table NC motor 34 starts, the grinding wheel cutting table 32 moves in the X-axis direction in FIG. 1A and in the left or right direction in FIG. 1A depending on the rotation direction of the NC motor 34. The moving direction and moving amount of the grindstone cutting base 32 are programmed in advance in the NC controller in synchronization with the rotation axis of the workpiece. That is, in order to obtain a desired non-round shape, the grindstone cutting base 32 is moved in the direction of the movement axis 38 in synchronization with the rotation of the workpiece spindle 20 by NC control, and the phase of the rotation axis 28 of the workpiece spindle 20 and the grinding wheel 36 are moved. Is associated with the position.

加工は、クリープフィード方式で行い、ワーク26が1回転すると完了する。加工条件を例示するならば次のとおりである。
ワーク材料:SCM420H
ワーク接線方向の切込速度:30mm/s
砥石:ビトリファイドCBN砥石 粒度#100 集中度150
砥石周速 加工時:60m/s
砥石周速 ドレスツルーイング時:31m/s
研削液:水溶性エマルションタイプ
ドレッサー:トラバース方式のロータリーダイヤモンド
ドレッサー回転数:5000m-1
The processing is performed by a creep feed method, and is completed when the work 26 rotates once. Examples of processing conditions are as follows.
Work material: SCM420H
Cutting speed in workpiece tangential direction: 30mm / s
Whetstone: Vitrified CBN whetstone particle size # 100 Concentration 150
Grinding wheel peripheral speed Processing: 60m / s
Wheel peripheral speed During dress truing: 31 m / s
Grinding fluid: Water-soluble emulsion type Dresser: Traverse rotary diamond Dresser rotation speed: 5000m -1

図1はワーク主軸20の回転軸28に対して直交する方向(X軸38方向)に砥石36の切込みを与えるいわゆるストレートフィードの例である。これに対して、図2に示すように、ワーク主軸20の回転軸28に対して斜めに砥石36の切込みを与えるアンギュラフィードを採用することも可能である。たとえば、アンギュラフィードを採用することによって、ワーク主軸20のチャッキング装置22と砥石36の干渉を避けることができる。   FIG. 1 shows an example of a so-called straight feed in which a grindstone 36 is cut in a direction orthogonal to the rotation axis 28 of the work spindle 20 (X-axis 38 direction). On the other hand, as shown in FIG. 2, it is possible to employ an angular feed that cuts the grindstone 36 obliquely with respect to the rotating shaft 28 of the work spindle 20. For example, by employing an angular feed, interference between the chucking device 22 of the work spindle 20 and the grindstone 36 can be avoided.

楕円長径の寸法管理用として、ポストプロセスゲージを採用してもよい。通常の研削盤で用いる寸法測定ゲージは、インプロセスゲージを用いるが、ここでは、ワーク1回転で加工完了するクリープフィードを採用しているため、通常のインプロセスは不可であり、加工した値をフィードバックして制御するポストプロセスとする。しかし、この方式では、ドレス直後や機械停止直後の寸法は、温度特性により不安定となる。その対策として、ワーク1軸を加工する際に、寸法公差内に入るまでn回転加工する方式を採用することが考えられる。1回転目は、正寸よりプラス目に測定しながら加工し、2回転目でその値を盛り込んで加工する方式である。これを寸法公差内に入るまでn回繰り返す。もっとも、このようにすることで寸法精度の安定化は図られるが、サイクルタイムが増えるため、前述した停止直後のみとするのが好ましい。   A post process gauge may be employed for managing the dimensions of the ellipse major axis. An in-process gauge is used as the dimension measurement gauge used in a normal grinder, but here, since a creep feed that completes processing with one rotation of the workpiece is adopted, normal in-process is impossible, and the processed value is The post process is controlled by feedback. However, in this method, the dimensions immediately after dressing and immediately after the machine stops are unstable due to temperature characteristics. As a countermeasure, it is conceivable to adopt a method of performing n-rotating machining until one of the workpieces is processed within the dimensional tolerance. The first rotation is a method in which processing is performed while measuring the positive size from the exact size, and processing is performed by incorporating the value in the second rotation. This is repeated n times until it is within the dimensional tolerance. However, although the dimensional accuracy can be stabilized by doing in this way, the cycle time is increased, and therefore it is preferable that the dimensional accuracy is set only immediately after the stop.

10 トラニオン
12 ボス
14 セレーション孔
16 脚軸
18a 楕円の非加工部
18b 楕円の加工部
18c 突起
18d 脚軸根元部(研削切り上がり逃げR部)
18e 突起外側テーパ部
18f 突起内側テーパ部
20 ワーク主軸
22 チャッキング装置
24 NCモータ
26 ワーク
28 回転軸
30 砥石軸
32 砥石切込み台
34 NCモータ
36 砥石
38 移動軸
10 trunnion 12 boss 14 serration hole 16 leg shaft 18a ellipse non-machined part 18b ellipse machined part 18c projection 18d leg shaft root part (grinding up relief part R)
18e Protrusion outer taper portion 18f Protrusion inner taper portion 20 Work spindle 22 Chucking device 24 NC motor 26 Work 28 Rotating shaft 30 Grinding wheel shaft 32 Grinding wheel cutting base 34 NC motor 36 Grinding wheel 38 Moving shaft

Claims (9)

軸心部にセレーション孔を形成したボスと、ボスの円周方向に等間隔に配置した複数の脚軸とからなるトラニオンにおける前記脚軸の外周面を研削する加工方法であって、前記外周面は、前記脚軸の回転軸線に垂直な断面の輪郭が非真円で、前記ボスの軸線方向を向いた非加工部と前記ボスの円周方向を向いた楕円形状の部分からなり、
ワークを保持するためのチャッキング装置と回転駆動装置を備えたワーク主軸と、砥石を保持し、駆動装置によって往復移動可能な砥石切込み台に固定した砥石主軸とを有するNC工作機を用い、前記チャッキング装置により前記セレーション孔の内径を把握するとともにクランパーで固定して、加工対象たる脚軸をワーク主軸と同軸となるように位置決めし、ワーク主軸の回転位相に合わせてワークと砥石の相対位置を制御しつつクリープフィード研削するトリポード型等速ジョイントのトラニオンの加工方法。
A processing method of grinding an outer peripheral surface of the leg shaft in a trunnion comprising a boss having serration holes formed in an axial center portion and a plurality of leg shafts arranged at equal intervals in the circumferential direction of the boss, Is a non-circular outline of the cross section perpendicular to the rotation axis of the leg shaft, and consists of a non-processed portion facing the axial direction of the boss and an elliptical portion facing the circumferential direction of the boss,
A workpiece spindle provided with a chucking device and the rotary drive device for holding a workpiece, holds the grinding wheel, using the NC machine tool and a grinding wheel spindle fixed to the grindstone depth cutting board reciprocally movable by a drive, wherein The chucking device grasps the inner diameter of the serration hole and fixes it with a clamper to position the leg shaft to be machined so that it is coaxial with the workpiece spindle, and the relative position of the workpiece and the grindstone according to the rotation phase of the workpiece spindle Of trunnion of tripod type constant velocity joint that performs creep feed grinding while controlling the pressure.
ワーク主軸に対して砥石切込み台を移動させる請求項1の加工方法。 Machining method of claim 1 for moving the grinding wheel cross-slide with respect to the workpiece spindle. アンギュラフィードによる請求項1または2の加工方法。 Machining method according to claim 1 or 2 by angular feed. ワークの軸線を含む断面における外周面形状が直線である請求項1、2または3の加工方法。 How machining according to claim 1, 2 or 3 the outer peripheral surface shape in the cross section including the axial line of the workpiece is linear. ワークの軸線を含む断面における外周面形状が曲線である請求項1、2または3の加工方法。 How machining according to claim 1, 2 or 3 the outer peripheral surface shape in the cross section including the axial line of the workpiece is curved. ワークの軸線を含む断面における外周面形状が直線と曲線の組み合わせである請求項1、2または3の加工方法。 How machining according to claim 1, 2 or 3 the outer peripheral surface shape is a combination of straight and curved in a cross section including the axis of the workpiece. ワークの軸線に垂直な断面における外周面形状が楕円形状である請求項1〜6のいずれか1項の加工方法。 Machining method of any one of claims 1 to 6 an outer peripheral surface shape in the vertical cross-section is elliptical to the axis of the workpiece. ワークの軸線に垂直な断面における外周面形状が真円と楕円の組み合わせである請求項1〜6のいずれか1項の加工方法。 How machining of any one of claims 1 to 6 an outer peripheral surface shape is a combination of true circles and ellipses in a cross-section perpendicular to the axis of the workpiece. 軸心部にセレーション孔を形成したボスと、前記ボスの半径方向に突出した複数の脚軸とからなる等速ジョイント用トラニオンにおける前記脚軸の外周面を研削する加工装置であって、前記外周面は、前記脚軸の回転軸線に垂直な断面の輪郭が非真円で、前記ボスの軸線方向を向いた非加工部と前記ボスの円周方向を向いた楕円形状の部分からなり、
前記トラニオンをワークとして保持するためのチャッキング装置と回転駆動装置を備えたワーク主軸と、回転駆動装置によって回転駆動される砥石を保持し、駆動装置によって往復移動可能な砥石切込み台に固定した砥石軸とを有するNC工作機を有し、
前記チャッキング装置により前記セレーション孔の内径を把握するとともにクランパーで固定することにより、前記脚軸の一つが前記ワーク主軸と同軸となるように前記ワークの位置決めをし、前記ワーク主軸の回転位相に合わせて前記ワークと前記砥石の相対位置を制御しつつクリープフィード研削する、加工装置
A processing device for grinding an outer peripheral surface of the leg shaft in a trunnion for a constant velocity joint comprising a boss having a serration hole formed in an axial center portion and a plurality of leg shafts protruding in the radial direction of the boss, The surface has a non-circular outline of a cross section perpendicular to the rotation axis of the leg shaft, and is composed of a non-processed portion facing the axial direction of the boss and an elliptical portion facing the circumferential direction of the boss,
A grindstone that holds a work spindle provided with a chucking device and a rotation driving device for holding the trunnion as a workpiece, and a grindstone that is rotationally driven by the rotation driving device, and is fixed to a grindstone cutting table that can be reciprocated by the driving device. An NC machine tool with a shaft,
By grasping the inner diameter of the serration hole by the chucking device and fixing with a clamper, the workpiece is positioned so that one of the leg shafts is coaxial with the workpiece spindle, and the rotational phase of the workpiece spindle is adjusted. A processing apparatus that performs creep feed grinding while controlling the relative position between the workpiece and the grindstone .
JP2009210328A 2009-09-11 2009-09-11 Processing method and apparatus for trunnion of tripod type constant velocity joint Active JP5425570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009210328A JP5425570B2 (en) 2009-09-11 2009-09-11 Processing method and apparatus for trunnion of tripod type constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009210328A JP5425570B2 (en) 2009-09-11 2009-09-11 Processing method and apparatus for trunnion of tripod type constant velocity joint

Publications (2)

Publication Number Publication Date
JP2011056632A JP2011056632A (en) 2011-03-24
JP5425570B2 true JP5425570B2 (en) 2014-02-26

Family

ID=43944883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009210328A Active JP5425570B2 (en) 2009-09-11 2009-09-11 Processing method and apparatus for trunnion of tripod type constant velocity joint

Country Status (1)

Country Link
JP (1) JP5425570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6051698B2 (en) * 2012-09-04 2016-12-27 株式会社ニデック Eyeglass lens processing equipment
CN106799651A (en) * 2017-02-15 2017-06-06 洛阳信成精密机械有限公司 A kind of pipe communicated wire Inner arc arrangement for grinding
CN114986333B (en) * 2022-06-07 2023-08-15 上海航天设备制造总厂有限公司 Automatic rotary indexing mechanism for box body with complex structure and use method of automatic rotary indexing mechanism

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270065A (en) * 1985-05-27 1986-11-29 Honda Motor Co Ltd Cam grinding method
JPS6237925U (en) * 1985-08-23 1987-03-06
JPH08192350A (en) * 1995-01-13 1996-07-30 Amada Washino Co Ltd Grinding method and grinder therefor
JP3644068B2 (en) * 1995-03-03 2005-04-27 豊田工機株式会社 Non-circular workpiece grinder
JPH09314464A (en) * 1996-05-31 1997-12-09 Ntn Corp Chucking device of trunnion in tri-port joint
JP2000288894A (en) * 1999-04-07 2000-10-17 Toshiba Mach Co Ltd Non-circular grinding apparatus
JP4045738B2 (en) * 2000-12-05 2008-02-13 日本精工株式会社 Processing method and apparatus for trunnion for toroidal type continuously variable transmission
JP4110406B2 (en) * 2003-09-25 2008-07-02 日本精工株式会社 Processing method of trunnion of toroidal type continuously variable transmission

Also Published As

Publication number Publication date
JP2011056632A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP7224399B2 (en) Work chamfering device, gear machining center equipped with same, and machining method using work chamfering device
JP5401757B2 (en) Processing equipment
JP2009528177A (en) Method for flank grinding of a tool for threading and grinding machine for carrying out the method
JP5239251B2 (en) Traverse grinding apparatus and processing method
JP5425570B2 (en) Processing method and apparatus for trunnion of tripod type constant velocity joint
CN107695883B (en) Shaping and trimming device and shaping and trimming method
JP2006035387A (en) Method and apparatus for grinding cam with re-entrant surface
JPH05200625A (en) Device and method for precisely machining spur gear
JP2005254333A (en) Cylindrical grinding machine and grinding method
JP5428497B2 (en) Grinding wheel forming method
JP2011177850A (en) Truing method for grind stone for grinding gear and gear grinding machine
JP6430217B2 (en) Profile grinding machine
JP2002086355A (en) Grinding method with computer nc grinder
JP2005028556A (en) Machining method of free curved surface
JP2001353645A (en) Cutting edge forming method and grinding machining device of machining tool
JP6565380B2 (en) Cutting device, cutting method and annular tool
JP6561596B2 (en) Cutting apparatus and cutting method
JP2008110458A (en) Manufacturing method of end mill having circular arc blade
JP2021013989A (en) Grinding processing method using grindstone
JPH05138513A (en) Cylinder grinder equipped with wheel spindle stocks facing each other
JP2000024899A (en) Traction surface grinding method for half-toroidal cvt disc
RU2456124C2 (en) Method of planing
JP3812869B2 (en) Cylindrical grinding method and apparatus
JP2010201539A (en) Grindstone forming method
JP6888382B2 (en) Machine Tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5425570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250