JP2005028556A - Machining method of free curved surface - Google Patents

Machining method of free curved surface Download PDF

Info

Publication number
JP2005028556A
JP2005028556A JP2003273415A JP2003273415A JP2005028556A JP 2005028556 A JP2005028556 A JP 2005028556A JP 2003273415 A JP2003273415 A JP 2003273415A JP 2003273415 A JP2003273415 A JP 2003273415A JP 2005028556 A JP2005028556 A JP 2005028556A
Authority
JP
Japan
Prior art keywords
workpiece
grinding
lines
axis
angle correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003273415A
Other languages
Japanese (ja)
Inventor
Seitaro Asanuma
沼 成太郎 淺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M & J Kk
Original Assignee
M & J Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M & J Kk filed Critical M & J Kk
Priority to JP2003273415A priority Critical patent/JP2005028556A/en
Publication of JP2005028556A publication Critical patent/JP2005028556A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for far more efficiently and precisely performing finish machining of a workpiece having free-form surface than an automatic machining with a ball end mill irrespective of level of skill or level of mastership of an operator when machining the workpiece having free curved surface. <P>SOLUTION: When the neutral direction of a wheel spindle 7 is set to be Y axis and the surface orthogonal to the Y axis is set to be a XZ plane, the line of intersection between imaginary surfaces S<SB>1</SB>, S<SB>2</SB>, etc. parallel to the XZ plane and the workpiece 4 is set with a predetermined pitch P according to the grinding width as the lines C<SB>1</SB>, C<SB>2</SB>, etc.of the grinding direction based on a three-dimensional form data of the workpiece 4. The line orthogonal to at least adjacent two lines of the grinding direction is set with a predetermined pitch as the angle correction lines A<SB>1</SB>, A<SB>2</SB>, etc. and the tool path is set by matching the center of the wheel spindle 7 with the position to offset the angle correction lines A<SB>1</SB>, A<SB>2</SB>, etc. interposed by the two lines of the grinding direction from their positions to the normal direction of the workpiece 4 by the amount of radius r of the grinding wheel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コンプレッサブレードなどの自由曲面を有する工作物を加工する自由曲面加工方法に関する。 The present invention relates to a free curved surface machining method for machining a workpiece having a free curved surface such as a compressor blade.

コンプレッサブレードなどの自由曲面を有する工作物を自動加工するために、従来は、ボールエンドミルをNCフライス盤やマシニングセンターに取り付けて、その工作物の三次元形状データに基づいて高速加工することが試みられている。 In order to automatically machine a workpiece having a free-form surface such as a compressor blade, conventionally, an attempt has been made to attach a ball end mill to an NC milling machine or a machining center and perform high-speed machining based on the three-dimensional shape data of the workpiece. Yes.

ボールエンドミルは,先端が半球状をしているので、ブレードのような複雑な形状を有する工作物でも、表側と裏側の片面ずつであれば、自由度3のNC加工機を用いてXYZの三軸座標制御を行うだけで加工することができる。 Since the tip of the ball end mill has a hemispherical shape, even a workpiece having a complicated shape such as a blade is required to use three NC processing machines with three degrees of freedom if the front side and the back side are each one side. Machining can be performed simply by controlling the axis coordinates.

しかしながら、ボールエンドミルは加工面積が狭いため、生産性が低いだけでなく、工具の摩耗が早く工具の交換を頻繁に行わなければならないという問題があった。
このため、生産性を向上させる場合には、粗加工を機械に行わせ、仕上加工のみを熟練した作業者に手作業で行わせている場合もある。
However, since the ball end mill has a small processing area, not only is the productivity low, but there is a problem that the tool wears quickly and the tool must be changed frequently.
For this reason, in order to improve productivity, there are cases where rough machining is performed by a machine and only finishing is performed manually by a skilled worker.

しかし、例えばジェットエンジン等は、その空気圧縮部に少しずつ直径の異なる10数段のコンプレッサ用の静翼と回転翼が配され、各段には数十枚ずつブレードが取り付けられているため、10数種類のブレードを数十枚ずつ、合計数百枚も加工しなければならない。
このような場合は、いくら仕上加工だけといっても作業者の負担が大きく、しかも、その熟練度、習熟度により翼面の品質が左右されてしまい、加工精度を一定の品質に維持することが困難であるという問題があった。
However, for example, a jet engine or the like is provided with 10 or more stages of stationary vanes and rotating blades for compressors having different diameters in the air compression part, and dozens of blades are attached to each stage. Dozens of types of blades, dozens of each, must be processed in hundreds.
In such a case, no matter how much finishing processing is performed, the burden on the operator is great, and the quality of the blade surface is influenced by the skill level and proficiency level, and the processing accuracy must be maintained at a constant quality. There was a problem that was difficult.

そこで本発明は、自由曲面を有する工作物を加工する際に、作業者の熟練度や習熟度にかかわらず、その仕上加工をボールエンドミルによる自動加工よりもはるかに効率良く高精度に行うことを技術的課題としている。 Therefore, the present invention, when machining a workpiece having a free-form surface, performs the finishing process much more efficiently and accurately than the automatic machining by the ball end mill, regardless of the skill level or proficiency level of the operator. It is a technical issue.

本発明は、自由曲面を有する工作物の三次元形状データに従ってホイール状の砥石を回転させながら移動させ、その円柱外周面で被削材を研削することにより所望形状に仕上げる自由曲面加工方法であって、砥石軸の中立方向をY軸とし、これに直交する面をXZ面としたときに、前記工作物の三次元形状データに基づき、XZ面と平行な仮想面と工作物との交線を研削方向線として研削幅に応じた所定ピッチで設定すると共に、少なくとも隣接する二本の研削方向線に直交する線を角度補正線として所定ピッチで設定し、その二本の研削方向線で挟まれた角度補正線をその位置から工作物の法線方向に砥石半径分オフセットさせた位置に砥石軸の中心を一致させて工具パスを設定することを特徴とする。 The present invention is a free-form surface machining method in which a wheel-shaped grindstone is rotated and moved in accordance with the three-dimensional shape data of a workpiece having a free-form surface, and a workpiece is ground on the outer peripheral surface of the cylinder to finish a desired shape. Then, when the neutral direction of the grinding wheel axis is the Y axis and the plane orthogonal to this is the XZ plane, the intersection of the virtual plane parallel to the XZ plane and the workpiece based on the three-dimensional shape data of the workpiece Is set at a predetermined pitch according to the grinding width as a grinding direction line, and at least a line orthogonal to two adjacent grinding direction lines is set as an angle correction line at a predetermined pitch and sandwiched between the two grinding direction lines. The tool path is set by aligning the center of the grindstone axis with the position where the angle correction line is offset from the position in the normal direction of the workpiece by the grindstone radius.

本発明の自由曲面加工方法によれば、ホイール状の砥石の円柱外周面で被削材を研削する際に、砥石軸の中心がオフセットされた角度補正線に一致するように工具パスが設定される。
このように工具パスを設定すると、砥石軸の中心は工作物表面に設定された角度補正線からその法線方向に対して砥石半径分オフセットされているので、その砥石軸に取り付けられた砥石の円柱外周面は、角度補正線で三次元形状データに接して、その接線が角度補正線と正確に重なるので、隣接する研削方向線の間が三次元形状データ通りに高精度で研削される。
同様にして、夫々の研削方向線の間を順次研削していくことにより、被削材が三次元形状データ通りに研削されて、所望形状の工作物を効率良く高精度に仕上ることができるという効果がある。
According to the free curved surface machining method of the present invention, when the work material is ground on the cylindrical outer peripheral surface of the wheel-shaped grindstone, the tool path is set so that the center of the grindstone axis coincides with the offset angle correction line. The
When the tool path is set in this way, the center of the grindstone shaft is offset from the angle correction line set on the workpiece surface by the grindstone radius with respect to the normal direction, so that the grindstone attached to the grindstone shaft The cylindrical outer peripheral surface is in contact with the three-dimensional shape data with the angle correction line, and the tangent line accurately overlaps with the angle correction line, so that the adjacent grinding direction lines are ground with high accuracy according to the three-dimensional shape data.
Similarly, by sequentially grinding between the respective grinding direction lines, the work material is ground according to the three-dimensional shape data, and a workpiece having a desired shape can be efficiently and accurately finished. effective.

本例では、自由曲面を有する工作物を加工する場合に作業者の熟練度や習熟度にかかわらず、仕上加工をボールエンドミルを用いる自動加工よりもはるかに効率良く高精度に行うという目的を、ホイール状の砥石を用いた研削加工をすることにより実現した。 In this example, when machining a workpiece having a free-form surface, regardless of the skill level or proficiency level of the operator, the purpose of performing the finishing process much more efficiently and accurately than the automatic machining using a ball end mill, This was achieved by grinding using a wheel-shaped grindstone.

図1は本発明方法に使用する工作機械の概念図、図2は本発明方法の切削方向線と角度補正線の関係を示す説明図、図3は工具パスの設定方法を示す説明図、図4は工作物の曲面形状と工具パスの位置を示す説明図である。
本例では、XYZの直交3軸と、θ、θの直交回転2軸を有する5軸数値制御のマシニングセンターなどの工作機械を用いて、自由曲面を有するコンプレッサブレード(工作物)を加工する場合について説明する。
FIG. 1 is a conceptual diagram of a machine tool used in the method of the present invention, FIG. 2 is an explanatory diagram showing the relationship between cutting direction lines and angle correction lines of the method of the present invention, and FIG. 3 is an explanatory diagram showing a tool path setting method. 4 is an explanatory diagram showing the curved surface shape of the workpiece and the position of the tool path.
In this example, a compressor blade (workpiece) having a free-form surface is machined using a machine tool such as a 5-axis numerical control machining center having three orthogonal axes of XYZ and two orthogonal rotation axes of θ X and θ Z. The case will be described.

工作機械1は、粗加工した被削材2をクランプし、NC制御装置3から読み出されたコンプレッサブレード(工作物)4の三次元形状データに従ってホイール状の砥石5を回転させながらその砥石軸7を移動させて、砥石5の円柱外周面6で被削材2を研削するようになっている。
なお、本例の砥石5は、ダイヤモンド砥粒あるいはCBN砥粒をビトリファイド等のバインダーを用いてホイール状に成形されたものを用いている。
そして、砥石軸7の中立方向を水平方向Y軸とし、これに直交する水平方向をX軸、鉛直方向をZ面としたときに、砥石軸7及びクランプされた被削材2が、XYZの直交3軸方向と、X軸回りθ及びZ軸回りθの5軸に対して相対的に位置制御可能に配されている。
The machine tool 1 clamps the rough-cut work material 2 and rotates the wheel-shaped grindstone 5 according to the three-dimensional shape data of the compressor blade (workpiece) 4 read from the NC control device 3 while rotating the grindstone shaft. 7 is moved, and the workpiece 2 is ground by the cylindrical outer peripheral surface 6 of the grindstone 5.
The grindstone 5 of this example uses diamond abrasive grains or CBN abrasive grains formed into a wheel shape using a binder such as vitrified.
Then, when the neutral direction of the grindstone shaft 7 is the horizontal Y-axis, the horizontal direction orthogonal to this is the X-axis, and the vertical direction is the Z-plane, the grindstone shaft 7 and the clamped work material 2 are XYZ Position control is relatively possible with respect to three orthogonal axes and five axes of X axis around θ X and Z axis around θ Z.

NC制御装置3では、予め入力されているコンプレッサブレード4の三次元形状データに基づき、以下に示す手順で、砥石軸7の工具パスを設定する。
まず、クランプされた被削材2と同じ位置に、ブレード4を固定したと仮定したときの三次元形状データに基づき、XZ面と平行な仮想面S、S…とブレード4の交線を研削方向線C、C…として研削幅Pに応じた所定ピッチで設定し、夫々の研削方向線C、C…に直交する角度補正線A、A…を仕上面粗度に応じたピッチで設定し、夫々の交点を算出する。
The NC control device 3 sets the tool path of the grindstone shaft 7 according to the following procedure based on the three-dimensional shape data of the compressor blade 4 input in advance.
First, based on the three-dimensional shape data when it is assumed that the blade 4 is fixed at the same position as the clamped work material 2, the intersection line between the virtual surfaces S 1 , S 2 . the set at a predetermined pitch corresponding to the grinding width P as grinding direction line C 1, C 2 ..., grinding direction line C 1 of each, C 2 ... orthogonal to the angle correction lines a 1, a 2 ... the finished surface roughness The pitch is set according to the degree, and each intersection is calculated.

次に、その交点座標に基づき、隣接する二本の研削方向線C、Cn+1に挟まれた角度補正線A、A…をその位置からブレード4の翼面の法線方向に砥石半径r分だけオフセットさせ、その位置に砥石軸軌跡線CPn1、CPn2…を設定する。
そして、このように設定された砥石軸軌跡線CPn1、CPn2…を連続させることにより工具パス8を設定し、この工具パス8に従い各砥石軸軌跡線CPn1、CPn2…に砥石軸7の中心が重なるように工作機械1をX、Y、Z、θ、θの5軸で制御する。
Next, based on the intersection coordinates, the angle correction lines A 1 , A 2 ... Sandwiched between the two adjacent grinding direction lines C n , C n + 1 are moved from the position to the normal direction of the blade surface of the blade 4. Offset is made by the radius r, and the grindstone axis locus lines CP n1 , CP n2 ... Are set at the positions.
Then, the tool path 8 is set by continuing the grindstone axis trajectory lines CP n1 , CP n2 ... Thus set, and the grindstone axis trajectory lines CP n1 , CP n2 . The machine tool 1 is controlled with five axes of X, Y, Z, θ X , and θ Z so that the centers of the two overlap.

このように工具パス8を設定すれば、砥石軸7の中心はブレード4の表面に設定された角度補正線A、A…からその法線方向に対して砥石半径r分オフセットされた位置を角度補正線A、A…と平行に通過していくことになる。
したがって、その砥石軸7に取り付けられた砥石5の円柱外周面6は、角度補正線A、A…で三次元形状データに接して、その接線と角度補正線A、A…が正確に重なるので、隣接する研削方向線C、Cの間が三次元形状データ通りに高精度で研削される。
同様にして、隣接する夫々の研削方向線C、Cn+1の間を順次研削していくことにより、被削材3が三次元形状データ通りに研削されて、所望形状のブレード4を極めて効率良く高精度に仕上ることができるという効果がある。
When the tool path 8 is set in this way, the center of the grindstone shaft 7 is offset from the angle correction lines A 1 , A 2 ... Set on the surface of the blade 4 by the grindstone radius r relative to the normal direction. Through the angle correction lines A 1 , A 2 ...
Thus, the cylindrical outer peripheral surface 6 of the grinding wheel 5 attached to its wheel spindle 7 is the angle correction lines A 1, A 2 ... in contact with the three-dimensional shape data, the tangent and the angle correction lines A 1, A 2 ... is Since it overlaps correctly, between the adjacent grinding direction lines C 1 and C 2 is ground with high accuracy according to the three-dimensional shape data.
Similarly, by sequentially grinding between adjacent grinding direction lines C n and C n + 1 , the work material 3 is ground according to the three-dimensional shape data, so that the blade 4 having a desired shape is extremely efficient. There is an effect that it can finish well with high precision.

なお、上述の説明では、工作物としてコンプレッサブレード4を加工する場合について説明したが、本発明は自由曲面を有する任意の形状の工作物に適用可能である。
また、粗加工した被削材の仕上加工を行う場合について説明したが、工作物によっては粗加工することなく、最初から仕上加工を行うようにしても良い。
In the above description, the case where the compressor blade 4 is machined as a workpiece has been described. However, the present invention is applicable to a workpiece having an arbitrary shape having a free-form surface.
Moreover, although the case where the finishing process of the rough-cut work material was performed was demonstrated, you may be made to perform a finishing process from the beginning, without roughing depending on a workpiece.

以上述べたように、本発明によれば、コンプレッサブレードのように熟練した作業者によらなければ高精度で加工することが困難な工作物でも、その作業者の熟練度や習熟度にかかわりなく、高精度且つ高生産効率で機械仕上加工を行う用途に適用できる。 As described above, according to the present invention, even a workpiece that is difficult to machine with high precision unless it is obtained by a skilled worker such as a compressor blade, regardless of the skill level and proficiency level of the worker. It can be applied to a machine finishing process with high accuracy and high production efficiency.

本発明方法に使用する工作機械の概念図。The conceptual diagram of the machine tool used for this invention method. 切削方向線と角度補正線を示す説明図。Explanatory drawing which shows a cutting direction line and an angle correction line. 工具パスの設定方法を示す説明図。Explanatory drawing which shows the setting method of a tool path. 工作物の曲面形状と工具パスの位置を示す説明図。Explanatory drawing which shows the curved surface shape of a workpiece, and the position of a tool path.

符号の説明Explanation of symbols

1 工作機械
2 被削材
3 NC制御装置
4 コンプレッサブレード(工作物)
5 砥石
6 円柱外周面
7 砥石軸
8 工具パス
… XZ面と平行な仮想面
… 研削方向線
… 角度補正線


1 Machine Tool 2 Work Material 3 NC Controller 4 Compressor Blade (Workpiece)
5 Whetstone 6 Cylindrical outer peripheral surface
7 Wheel axis
8 Tool path S 1 ... Virtual plane parallel to XZ plane C 1 ... Grinding direction line A 1 ... Angle correction line


Claims (1)

自由曲面を有する工作物の三次元形状データに従ってホイール状の砥石を回転させながら移動させ、その円柱外周面で被削材を研削することにより所望形状に仕上げる自由曲面加工方法であって、
砥石軸の中立方向をY軸とし、これに直交する面をXZ面としたときに、前記工作物の三次元形状データに基づき、XZ面と平行な仮想面と工作物との交線を研削方向線として研削幅に応じた所定ピッチで設定すると共に、少なくとも隣接する二本の研削方向線に直交する線を角度補正線として所定ピッチで設定し、その二本の研削方向線で挟まれた角度補正線をその位置から工作物の法線方向に砥石半径分オフセットさせた位置に砥石軸の中心を一致させて工具パスを設定することを特徴とする自由曲面加工方法。


A free-form surface processing method for moving a wheel-shaped grindstone while rotating it according to the three-dimensional shape data of a workpiece having a free-form surface, and grinding the work material on the outer peripheral surface of the cylinder, to finish the desired shape,
Based on the three-dimensional shape data of the workpiece, the intersection of the virtual plane parallel to the XZ plane and the workpiece is ground when the neutral direction of the grinding wheel axis is the Y axis and the plane orthogonal to the Y axis is the XZ plane. A direction line is set at a predetermined pitch according to the grinding width, and at least a line orthogonal to two adjacent grinding direction lines is set as an angle correction line at a predetermined pitch and sandwiched between the two grinding direction lines A free curved surface machining method, wherein a tool path is set by aligning a center of a grindstone axis with a position obtained by offsetting an angle correction line from the position in the normal direction of the workpiece by a grindstone radius.


JP2003273415A 2003-07-11 2003-07-11 Machining method of free curved surface Pending JP2005028556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273415A JP2005028556A (en) 2003-07-11 2003-07-11 Machining method of free curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273415A JP2005028556A (en) 2003-07-11 2003-07-11 Machining method of free curved surface

Publications (1)

Publication Number Publication Date
JP2005028556A true JP2005028556A (en) 2005-02-03

Family

ID=34210662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273415A Pending JP2005028556A (en) 2003-07-11 2003-07-11 Machining method of free curved surface

Country Status (1)

Country Link
JP (1) JP2005028556A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105157A (en) * 2008-11-03 2010-05-13 General Electric Co <Ge> Visual feedback for airfoil polishing
JP2010522089A (en) * 2007-03-20 2010-07-01 スネクマ How to repair a workpiece such as a turbomachine blade of a dam blade
CN101985201A (en) * 2010-10-25 2011-03-16 中信重工机械股份有限公司 Method for manufacturing specially-shaped curved surface of main steam inlet and outlet connecting pipe
CN105537879A (en) * 2016-01-27 2016-05-04 西安北方光电科技防务有限公司 Machining method used for thin-wall cavity type magnesium-lithium alloy part
WO2017008836A1 (en) * 2015-07-13 2017-01-19 Rollomatic Sa Grinding machine and method for machining a workpiece
CN108480730A (en) * 2018-05-30 2018-09-04 中南大学 The milling clamping tooling of large complicated carved component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522089A (en) * 2007-03-20 2010-07-01 スネクマ How to repair a workpiece such as a turbomachine blade of a dam blade
JP2010105157A (en) * 2008-11-03 2010-05-13 General Electric Co <Ge> Visual feedback for airfoil polishing
CN101985201A (en) * 2010-10-25 2011-03-16 中信重工机械股份有限公司 Method for manufacturing specially-shaped curved surface of main steam inlet and outlet connecting pipe
WO2017008836A1 (en) * 2015-07-13 2017-01-19 Rollomatic Sa Grinding machine and method for machining a workpiece
CN107750197A (en) * 2015-07-13 2018-03-02 瑞士路劳曼迪有限公司 Grinder and the method for workpieces processing
US10207382B2 (en) 2015-07-13 2019-02-19 Rollomatic Sa Grinding machine and method for machining a workpiece
CN107750197B (en) * 2015-07-13 2020-10-30 瑞士路劳曼迪有限公司 Grinding machine and method for machining a workpiece
EP3322557B1 (en) 2015-07-13 2022-03-23 Rollomatic SA Grinding method for machining a workpiece
CN105537879A (en) * 2016-01-27 2016-05-04 西安北方光电科技防务有限公司 Machining method used for thin-wall cavity type magnesium-lithium alloy part
CN108480730A (en) * 2018-05-30 2018-09-04 中南大学 The milling clamping tooling of large complicated carved component

Similar Documents

Publication Publication Date Title
JP5213442B2 (en) Raster cutting technology for ophthalmic lenses
US8827611B2 (en) Free form cutting machine
JP2004090215A (en) Gear tooth and thread grinder
US9592581B2 (en) Tool grinder
JP2005028556A (en) Machining method of free curved surface
JP2010029947A (en) Compound end mill and processing method using compound end mill
JP4261493B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP4712586B2 (en) NC machine tool
JPH06206112A (en) Working for large-sized runner vane blade surface
JP5425570B2 (en) Processing method and apparatus for trunnion of tripod type constant velocity joint
JP2011177850A (en) Truing method for grind stone for grinding gear and gear grinding machine
JP2002086355A (en) Grinding method with computer nc grinder
JP2001353645A (en) Cutting edge forming method and grinding machining device of machining tool
JP2003231001A (en) Lens shape machining method and device thereof
JP2786879B2 (en) Internal grinding device
JP2008126358A (en) Cutting device and cutting method
JP2009285781A (en) Working method of inside diameter of workpiece in compound working machine
JP3295114B2 (en) How to set the position of the wheel head in a double-head grinding machine
JPH01264767A (en) Grindstone automatic exchanging cnc tool grinding machine
KR101538795B1 (en) A workpiece cutting method of tool axis rotation
JPH11207612A (en) Grinding center and working method using the same
JP2000190221A (en) Control method and moving route producing method of tool
JP2002160103A (en) Curved surface machine method and its device
JP3255437B2 (en) Processing method and processing apparatus for workpiece having three-dimensional curved surface
JP2017013158A (en) Cutter, cutting method and annular tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A131 Notification of reasons for refusal

Effective date: 20060502

Free format text: JAPANESE INTERMEDIATE CODE: A131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612