JP2014192475A - 窒化物光半導体素子及び光半導体装置 - Google Patents

窒化物光半導体素子及び光半導体装置 Download PDF

Info

Publication number
JP2014192475A
JP2014192475A JP2013068953A JP2013068953A JP2014192475A JP 2014192475 A JP2014192475 A JP 2014192475A JP 2013068953 A JP2013068953 A JP 2013068953A JP 2013068953 A JP2013068953 A JP 2013068953A JP 2014192475 A JP2014192475 A JP 2014192475A
Authority
JP
Japan
Prior art keywords
optical semiconductor
type
nitride optical
nitride
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013068953A
Other languages
English (en)
Inventor
Hironori Yanagisawa
浩徳 柳澤
Susumu Tanmachi
進 反町
Tsuyoshi Ogura
剛 小倉
Kazunori Saito
和徳 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumentum Japan Inc
Original Assignee
Oclaro Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oclaro Japan Inc filed Critical Oclaro Japan Inc
Priority to JP2013068953A priority Critical patent/JP2014192475A/ja
Publication of JP2014192475A publication Critical patent/JP2014192475A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】動作電圧のばらつきが小さく、n型電極についてもオーミック接触を取りやすくする。
【解決手段】窒化物光半導体素子は、n型GaN基板1と、n型GaN基板1のGa面側に積層したn型バッファ層2と、n型クラッド層3と、活性層5と、上部にストライプ状のリッジ構造21を有するp型クラッド層7と、少なくともリッジ構造21の上部に形成したp型第1電極10及びp型第2電極11と、p型クラッド層7におけるリッジ構造21以外の少なくとも一部の領域からn型バッファ層2に達するまでエッチングして露出したバッファ層の露出面2A上に形成したn型電極12と、を有する。
【選択図】図3

Description

本発明は、窒化物光半導体素子及び光半導体装置に関する。
窒化物系半導体レーザの実用化初期においては、サファイア基板上にバッファ層を介して窒化物半導体層を成長させていた。また、異種基板上に窒化物半導体層を厚く成長し、異種基板を除去して得た窒化物半導体基板上に半導体レーザを形成する例もあった(特許文献1を参照)。
近年では、GaN基板の開発の進展により入手が容易となったn型GaN基板を用いて窒化物系半導体レーザを作製することで、サファイア基板を用いた場合よりもエピ層内の転位密度や欠陥を低減でき、さらに劈開による平滑な共振器端面を容易に作製できることから、レーザの高性能化、高品質化、高歩留化が図れるようになった(特許文献2を参照)。一般的に用いられるn型GaN基板は、(0001)C面を主面とする基板で、ガリウム(Ga)面と窒素(N)面を有しており、Ga面に対して結晶成長を行う。この場合、p型電極に関しては、基板側にn型窒化物半導体を成長し、表面側にp型窒化物半導体を成長した上で、表面側(Ga面側)にp型電極を形成している。また、n型電極に関しては、基板が導電性であることを利用して基板側裏面を研磨して露出したN面側にn型電極を形成している。
また、実用化している窒化系半導体レーザは電流注入領域を制限して所望の特性を得るために殆どの場合リッジストライプ構造を採用している。特に、特許文献2に記載されているように、p型クラッド層の途中まで表面層をエッチングしてリッジを形成した構造が主流である。
特開2002−100830号公報 特開2009−194295号公報
引用文献1に記載の窒化物半導体基板はサファイア基板と窒化物半導体の格子不整が大きいため、転位密度が7×1017cm−3と大きくなっており、レーザの信頼度を向上させる上で隘路となる。
また、特許文献2に記載のn型GaN基板上に作製する窒化物半導体レーザでは、n型電極は基板のN面側に形成され、N面側にはバッファ層が設けられないため、n型GaN基板の基板キャリア濃度のロット間及び厚さ方向のばらつきの影響を受けて動作電圧がばらつきやすい上に、n型電極が形成されるN面はGa面と比較してオーミック接触が取りにくいという問題がある。そしてこれらの問題が、特性歩留を低下させる原因となることがある。
本発明は上記の課題に鑑みて為されたものであり、その目的は、動作電圧のばらつきが小さく、n型電極についてもオーミック接触の取りやすい窒化物光半導体素子及び光半導体装置を提供することにある。
(1)本発明に係る窒化物光半導体素子は、n型GaN基板と、前記n型GaN基板のGa面側に積層したn型半導体のバッファ層と、前記n型バッファ層に積層された、n型半導体の第1クラッド層、活性層、そして上部にストライプ状のリッジ構造を有するp型半導体の第2クラッド層と、少なくとも前記リッジ構造の上部に形成したp型電極と、前記n型バッファ層が露出しているバッファ層の露出面と、前記バッファ層の露出面に設けられたn型電極と、を有することを特徴とする。
(2)(1)に記載の窒化物光半導体素子において、前記n型GaN基板と、前記バッファ層と、前記第1クラッド層と、前記活性層と、前記第2クラッド層とを含み構成されるレーザの共振器の端面を劈開で形成したことを特徴としてもよい。
(3)(2)に記載の窒化物光半導体素子において、前記バッファ層の露出面を、前記レーザの共振器の端面よりも内側に形成したことを特徴としてもよい。
(4)(3)に記載の窒化物光半導体素子において、前記第2クラッド層において前記共振器の端面と接する劈開近傍領域については、前記リッジ構造の上部と同じ高さに形成したことを特徴としてもよい。
(5)(4)に記載の窒化物光半導体素子において、前記リッジ構造のストライプと平行な方向についての前記劈開近傍領域の幅は、前記リッジ構造のストライプと垂直な方向の幅以下であることを特徴としてもよい。
(6)(2)に記載の窒化物光半導体素子において、前記バッファ層の露出面を、前記レーザの共振器の端面まで達するように形成したことを特徴としてもよい。
(7)(1)乃至(6)のいずれかに記載の窒化物光半導体素子において、前記バッファ層に形成された前記n型電極の外側であって、前記リッジ構造とは反対側にスクライブ用の加工を施してチップ化されることを特徴としてもよい。
(8)(1)乃至(7)のいずれかに記載の窒化物光半導体素子において、前記n型GaN基板の前記リッジが形成された面とは逆の面に形成されたダイボンド用パッドを有することを特徴としてもよい。
(9)本発明に係る光半導体装置は、(1)乃至(8)のいずれかに記載の窒化物光半導体素子と、サブマウントとを備え、前記窒化物光半導体素子の前記リッジが形成された面とは逆の面側を前記サブマウントに向けてマウントしたことを特徴としてもよい。
本発明によれば、n型GaN基板のGa面側に成長させたバッファ層にn型電極を形成するようにしたことで、動作電圧のばらつきが小さく、n型電極についてもオーミック接触が取りやすくなるため、良好な特性が得られる。
第1の実施形態に係る窒化物光半導体素子の平面図である。 第1の実施形態に係る窒化物光半導体素子の斜視図である。 第1の実施形態に係る窒化物光半導体素子のA−A’断面図である。 第1の実施形態に係る窒化物光半導体素子のB−B’断面図である。 窒化物光半導体素子の製造工程を説明する図である。 窒化物光半導体素子の製造工程を説明する図である。 窒化物光半導体素子の製造工程を説明する図である。 窒化物光半導体素子の製造工程を説明する図である。 窒化物光半導体素子の製造工程を説明する図である。 窒化物光半導体素子の製造工程を説明する図である。 窒化物光半導体素子の製造工程を説明する図である。 窒化物光半導体素子の製造工程を説明する図である。 窒化物光半導体素子のスクライブ位置を説明する図である。 第2の実施形態に係る窒化物光半導体素子の平面図である。 第2の実施形態に係る窒化物光半導体素子の斜視図である。 第3の実施形態に係る窒化物光半導体素子の平面図である。 第3の実施形態に係る窒化物光半導体素子のC−C’断面図である。 第1の実施形態に係る窒化物光半導体素子の電極形状を変形した例である。 第2の実施形態に係る窒化物光半導体素子の電極形状を変形した例である 窒化物光半導体素子にワイヤを接続した状態を表す断面図である。 窒化物光半導体素子をサブマウントにマウントした状態を表す斜視図である。 窒化物光半導体素子を搭載した光半導体装置の外観図である。
以下、本発明の実施の形態(以下、実施形態)について、図面を参照して説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。
[第1の実施形態]
図1には、本発明の第1の実施形態に係る窒化物光半導体素子E1(窒化物系半導体レーザ)の平面図(上面図)を、図2には、窒化物光半導体素子E1の一端面近傍の斜視図を、図3には、図1のA−A’における断面図を、図4には、図1のB−B’における断面図を示した。
図1及び図2に示されるように、第1の実施形態に係る窒化物光半導体素子E1においては、上面にP型電極と、N型電極が設けられている。p型電極は、p型第1電極10とp型第2電極11とを含み、p型第1電極10は、窒化物光半導体素子E1のリッジストライプに面して設けられており、p型第2電極11は、p型第1電極10と、リッジストライプのリッジ底面と同じ高さの面に形成された保護膜9とに面して設けられている。また、n型電極12は、リッジストライプに対してp型電極が設けられていない側をエッチングして形成したn型バッファ層2の露出面2Aに設けられている。
ここで、窒化物光半導体素子E1の内部構成について図3及び図4を参照しながら説明する。
図3には、窒化物光半導体素子E1のA−A’における断面図を、図4には、窒化物光半導体素子E1のB−B’における断面図を示した。図3及び4に示されるように、窒化物光半導体素子E1は、p型電極が形成される領域(p型電極形成領域)側においては、n型GaN基板1上に、SiドープGaNから構成されるn型バッファ層2、SiドープAlGaNから構成されるn型クラッド層3、SiドープGaNから構成されるn型ガイド層4、InGaNから構成される多重量子井戸構造を有する活性層5、MgドープAlGaN(Al組成比率=10%)から構成される電子ブロック層6、MgドープAlGaN(Al組成比率=4%)から構成され、リッジ構造21を有するp型クラッド層7、MgハイドープAlGaNから構成され、リッジ上部に設けられたp型コンタクト層8、SiNから構成され、リッジ底部に設けられた保護膜9、p型コンタクト層8と保護膜9の上に設けられるp型第1電極10、p型第1電極10と保護膜9の上に設けられるp型第2電極11が形成される。なお、図3及び図4に示されるように、p型電極形成領域については、窒化物光半導体素子E1の中央部(例えばA−A’)と、端部(例えばB−B’)とにおいて同じ構成を有している。
また、図3に示されるように、窒化物光半導体素子E1は、n型電極12が形成される領域(n型電極形成領域)側においては、n型GaN基板1上に、n型バッファ層2、n型バッファ層2の上にn型電極12がそれぞれ形成される。なお、図3及び図4に示されるように、n型電極形成領域は、窒化物光半導体素子E1の共振器方向の中央部(例えばA−A’)には設けられているが、端部(例えばB−B’)には設けられていない。そして、図2に示されるように、窒化物光半導体素子E1は端面において段差の少ない断面形状となっており、これにより劈開面にステップが発生することを抑制することができる。例えば端面にいたるまでA−A‘のようにn型電極形成領域が形成されている場合は、端面付近にリッジ部とn型電極形成領域との間の大きな段差が形成されることとなる。大きな段差がある場合にチップ化のための劈開において、応力が段差部に集中するために、綺麗な劈開面とならずステップが形成される恐れがある。ステップは光出力の減少等の不具合が発生する。しかし本実施例のように端面付近にはn型電極形成領域を設けないことで、端面の段差を低減し、ステップの発生を抑制することができる。
[製造方法についての説明]
次に、本実施形態に係る窒化物光半導体素子E1の製造方法について図5A〜図5Iを参照しながら説明する。
まず、図5Aに示されるように、n型GaN基板1上に、SiドープGaNからなるn型バッファ層2、SiドープAlGaNからなるn型クラッド層3、SiドープGaNからなるn型ガイド層4、InGaN多重量子井戸構造からなる活性層5、MgドープAlGaN(Al組成比=10%)からなる電子ブロック層6、MgドープAlGaN(Al組成比=4%)からなるp型クラッド層7、及びMgハイドープAlGaNからなるp型コンタクト層8を、一般的な有機金属気相成長法を用いて順次成長させる。なお、図5A〜図5Iでは簡単のため、n型バッファ層2、n型クラッド層3、n型ガイド層4、活性層5、電子ブロック層6の図示を省略している。
次に、図5Bに示されるように、CVD法を用いてp型コンタクト層8の上部にPSG膜22を堆積した後、PSG膜22の上部に形成したフォトレジスト膜をマスクにしたエッチングでPSG膜22をパターニングする。パターニングされたPSG膜22は、ストライプ状のパターンを有している。
さらに、図5Bに示されるように、ストライプ状にパターン化されたPSG膜22をマスクに用いて、基板表面の成長層をp型クラッド層7の途中まで、具体的にはp型クラッド層7を30〜40nm程度残す深さまでエッチングして、p型コンタクト層8を最頂部とする共振器幅7μmの凸状のリッジ21を形成する。MgドープAlGaNにより構成されるp型クラッド層7のドライエッチングには、例えば塩素系のガスを使用する。
次に、図5Cに示されるように、リッジ上部、リッジ側面及びリッジ底部から延在するp型クラッド層7の表面にレジストマスクを形成し、イオンミリングもしくはドライエッチング等を行い、リッジ底部から延在する平面の一部にn型バッファ層2の表面を露出させる。このとき、n型バッファ層2の露出面2Aには、後のチップ化のためのスクライブキズが形成される。エッチング領域は、レーザ端面となる領域及びその近傍を含まない位置に設定される。
次に、図5Dに示されるように、ECRスパッタ法で、厚さ160nmのSiNを保護膜9として全面に形成する。
そして、リッジの側面及びリッジ底面から延在する平面にレジストを形成し、形成したレジストをマスクとしてフッ酸系のエッチング液でリッジ上のPSG膜22を除去する。これにより、PSG膜22上のSiNも除去されて、リッジ上部が露出する。
次に、図5Eに示されるように、Pd/Ti/Pt/Auをこの順に蒸着にて被着し、リフトオフ法でパターニングしてリッジ上部、リッジ側面及びリッジ底部から延在する平面の一部にp型第1電極10を形成する。
次に、図5Fに示されるように、p型第1電極10上及びリッジ底部から延在する平面の一部にMo/Auをこの順に蒸着にて被着し、リフトオフ法でパターニングしてボンディングパッド用のp型第2電極11を形成する。
次に、図5Gに示されるように、エッチングにより露出したn型バッファ層2の露出面2Aの一部にNi/Al/Ni/Ti/Pt/Auをこの順に蒸着にて被着するとともに、リフトオフ法でパターニングして、n型電極12を形成する。
次に、図5Hに示されるように、基板厚が90umになるようにn型GaN基板1の裏面(N面)を研磨して薄層化し、この裏面にTi/Pt/Auをこの順に蒸着にて被着し、ダイボンド用パッド15を形成する。最後に電極の安定のため、500℃、10分のアニールを行う。
次に、完成したウエハを矩形に整形し、リッジ底部から延在する平面とウエハエッジの交わる領域にレーザスクライブにより劈開用のキズを入れ、バー状に劈開する。バーの幅即ち共振器長は例えば800umとする。このように劈開すると(すなわち、図1におけるB−B’の構成を有する箇所で劈開すると)、n型電極形成領域の段差が存在する部分を避けているので、端面にステップが発生しにくい。実際に劈開面を微分干渉顕微鏡で観察した場合においても、ステップの発生は殆どなく、平坦な端面が得られることが分かっている。
次にバーの劈開面の内、レーザ出射側の端面に反射率4%の低反射膜を形成し、出射側と反対の端面に反射率95%の高反射膜を形成する。低反射膜は例えば膜厚50nmのSiO2により形成し、高反射膜は例えば、膜厚69nmのSiO2と膜厚36nmのTiO2を3周期積層することで形成することとしてよい。
最後に、図5Iに示されるように、複数の窒化物光半導体素子E1が形成されたバー30に対して、それぞれのn側バッファ層2の露出面2Aにレーザスクライブによりチップ化用のスクライブキズ31を形成し、スクライブキズ31の位置でチップ化することにより、図1の上面構造、図2の端面近傍構造、並びに図3及び図4の断面形状を有する窒化物光半導体素子E1が得られる。
[第2の実施形態]
次に、本発明の第2の実施形態に係る窒化物光半導体素子E2について説明する。図6には、本発明の第2の実施形態に係る窒化物光半導体素子E2の平面図(上面図)を、図7には、窒化物光半導体素子E2の一端面近傍の斜視図を示した。
図6及び図7に示されるように、第2の実施形態に係る窒化物光半導体素子E2は、n型クラッド層3のエッチング領域が窒化物光半導体素子E2の端面にまで達しており、エッチングによるn型クラッド層3の露出面2Aに形成されるn型電極12も窒化物光半導体素子E2の端面にまで達するように形成されている点で第1の実施形態とは異なるが他の点では共通した構成を有している。すなわち、第2の実施形態に係る窒化物光半導体素子E2の断面形状については、図3で説明した通りであるためここでの繰り返しの説明は省略する。本構造とすることで、露出面の形成おいて実施例1のような堀込みではなく、ウエハ全体にわたるストライプ上の掘り込みとなるため、プロセス的に安定した寸法で作成できるなどの利点がある。
[第3の実施形態]
次に、本発明の第3の実施形態に係る窒化物光半導体素子E3について説明する。図8は本発明の第3の実施形態に係る窒化物光半導体素子E3の一端面の斜視図、図9は図8のC−C’における断面図を示した。なお、第3の実施形態に係る窒化物光半導体素子E3についても、n型GaN基板1上への結晶成長からPSG膜形成までは第1の実施形態と同一であるため、繰り返しの説明は省略する。
第3の実施形態に係る窒化物光半導体素子E3においては、PSG膜のパターンニングにおいて、リッジストライプ状の部分に加えて、チップ化時に端面となる劈開近傍領域33もPSG膜が残るようにパターンニングする。例えば、劈開近傍領域33の幅はリッジストライプ幅と略同じ7umとしてよい。これ以降の工程は、第1の実施形態で説明したものと同一である。図8及び図9に示されるように、窒化物光半導体素子E3の劈開面が表面と交差する線は、リッジストライプ上部の延長部を含めて直線となり、通常のリッジの0.5um程度の段差もなくなる。これにより、リッジ部の段差で発生する顕微鏡では観察できない程度の微小なステップの発生も抑制でき、より信頼度が向上する。実際に、本形態に係る窒化物光半導体素子E3の信頼度試験によれば、5000時間以上安定に動作したことが確認されている。
[変形例]
図10には、第1の実施形態に係る窒化物光半導体素子E1のp型第1電極10及びp型第2電極11を、窒化物光半導体素子E1の端面から後退させた例(窒化物光半導体素子E1A)を示した。
また、図11には、第3の実施形態に係る窒化物光半導体素子E3のp型第1電極10及びp型第2電極11を、窒化物光半導体素子E3の端面から後退させた例(窒化物光半導体素子E3A)を示した。
[光半導体装置について]
次に、以上説明した本発明の実施形態に係る窒化物光半導体素子101を搭載した光半導体装置の例について説明する。なお、以下の窒化物光半導体素子101には上述した窒化物光半導体素子E1〜E3のいずれか、又はこれらの変形例を用いることとしてよい。
図12には、光半導体装置における窒化物光半導体素子101のマウント部分についての断面図を示した。図12に示されるように、窒化物光半導体素子101をダイボンディングにより窒化物光半導体素子101のダイボンド用パッド側をマウント面として、AlNからなるサブマウント17上にはんだ16を用いてマウントし、さらに窒化物光半導体素子101がマウントされたサブマウント17を、例えばφ5.6mmのTo−CANステム上にマウントする。さらに窒化物光半導体素子101のn型電極12、及びp型第2電極11に、それぞれAuワイヤ18,19をボンディングして配線する。n型電極12へのワイヤボンディングにおいては、n型電極形成領域のチップ側面側に段差がないため、ボンディング強度の低下は見られない。なお、このレーザ素子の特性及び信頼度を評価したところ、動作電圧のばらつきは従来の1/2に低減していた。これは、不純物濃度の制御性が良く、またオーミック接触を取りやすいn型バッファ層2のGa面側にn型電極12を形成したことで改善できたものである。また、信頼度についても、端面ステップに起因する頓死は起こらず、1000時間以上安定に動作したことが確認された。
図13には、窒化物光半導体素子101の外観斜視図を示した。図13に示されるように、窒化物光半導体素子101はメサストライプを有し、窒化物光半導体素子101(詳しくはその下面)には、サブマウント17が接合されている。サブマウント17は、AlN、SiC、CuWなどのセラミックで構成されている。サブマウント17は、窒化物光半導体素子101の発光時に発生する熱をその外部に放散するための放熱板としての機能と、窒化物光半導体素子101を支持するための支持基板としての機能を兼ねている。なお、サブマウント17の表面にはサブマウント電極113が形成されており、p型第2電極11とリード106cとはAuワイヤ18で接続され、n型電極12とリード106bとはAuワイヤ19で接続されている。窒化物光半導体素子101は、Auワイヤ18とAuワイヤ19にて通電され発光する。このときダイボンド用パッド側に電気が流れないように、サブマウント17のサブマウント電極113はワイヤ18、ワイヤ19とは絶縁された状態としている。
図14には、本発明の実施形態に係る(GaN系)窒化物光半導体素子101を内蔵する光半導体装置200の一部断面の斜視図を示した。
図14に示すように、サブマウント17は、ヒートブロック203に取り付けられている。ヒートブロック203は、例えばCuなどの熱伝導性が良好な金属からなる。ヒートブロック203の一面に、サブマウント17が半田(図示せず)を介して固定されている。
ヒートブロック203は、例えばロウ材(図示せず)を介して、ステム204(詳しくはその上面)に固定されている。ヒートブロック203は、ステム204の上面中央部又はその近傍に搭載されている。ヒートブロック203を介して、ステム204にサブマウント17が取り付けられている。あるいは、サブマウント17とステム204との間にヒートブロック203が介在する。ステム204は、円盤状になっており、例えば直径が5.6mm程度、厚さが1.0mm程度のFe合金からなる。
窒化物光半導体素子101は、メサストライプ114の長さに沿った方向の両端面からレーザビームを出射する。そのため、窒化物光半導体素子101を支持するサブマウント17は、そのチップ実装面がステム204の上面に対して垂直な方向を向くように、ヒートブロック203に固定されている。
ステム204の窒化物光半導体素子101が搭載された面とその反対面を貫通して、第1リード106c及び第2リード106bを含むリードがステム204に設けられている。第1リード106c及び第2リード106bは、窒化物光半導体素子101が搭載された面とは反対側で外部端子となる。
第1リード106cには、ステム204の窒化物光半導体素子101が搭載された側から突出する部分に、p型電極と接続したAuワイヤがボンディングされている。また、第2リード106bには、窒化物光半導体素子101が搭載された側から突出する部分に、n型電極12と接続したAuワイヤがボンディングされている。ボンディングはいずれも、ウェッジボンディングとしてもよいし、ボールボンディングとしてもよい。
図14に示すように、ステム204の上面側で窒化物光半導体素子101をキャップ209が覆って、窒化物光半導体素子101を収容するパッケージ(封止容器)が構成されている。キャップ209の周縁部にはフランジ部205が設けられ、フランジ部205でキャップ209はステム204の上面に固定されている。キャップ209の上面中央部分には、穴208(例えば丸穴)が形成されており、レーザビームを透過するガラス板207が穴208に接合されている。窒化物光半導体素子101の端面(図1では上側の端面)から出射されたレーザビーム(前方光)は、キャップ209の穴208を通じて外部に出射される。
以上説明した通り、本実施形態においては、転位密度が低いn型GaNの自立基板を用いて転位が信頼度与える影響を回避しつつ、基板上のエピタキシャル成長層で不純物濃度が良く制御された成長層にn型電極12を形成して動作電圧のばらつきを低減することとした。ここで、自立基板としては、ハイドライドVPE法または、アモノサーマル法で成長した基板を用いることより、基板全面に渡り転位密度を低くすることができる。また、エピタキシャル成長層としては、基板に接して形成するn型GaNバッファ層が適している。このとき基板の裏面側(N面側)から層を露出させるためには、基板を制御性よく研磨してバッファ層内で止めなければならず困難であるが、結晶成長面側(Ga面側)からバッファ層を露出させるためには、基板上に成長した結晶成長層の数umをエッチングすればよく、バッファ層内でエッチングを停止することは容易であることに鑑み、n型電極は結晶成長面側に形成することとした。
また、本発明の一態様においては、n型電極を形成する面を露出させるときに、端面近傍はエッチングしないで残す構造を採用した。この構造によれば、n型電極を形成する窓部の窪みを表面側に周期的に形成し、窓部の外側を劈開すれば、大きな段差の無い領域で劈開することになり、端面ステップの発生を抑制することができる。
また、チップ分割のスクライブキズを窓部の外側に形成してチップ分割を行うと、チップの共振器端面と直交する側面の高さはn型電極形成面より高くなる。n型電極を表側に形成することにより一般にチップの幅は大きくなり、基板1枚当たりから取得できるチップ数が減少してしまうため、n型電極形成の窓領域幅はできるだけ小さくすることが望ましい。しかし、窓領域幅を小さくすると、レーザをパッケージ内に組み立てるときにワイヤボンディングが窓領域からはみ出す可能性が高くなる。このため、ボンディングがチップ側面側のn型電極形成窓部の段差に掛かりやすくなり、ボンディング強度の低下、段差を壊して素子を劣化させる等の不具合が想定される。この対策として、チップ分割のスクライブキズをn型電極形成窓部内のn型電極形成面に設けることとした。このようにチップを分割すると、チップ側面側のn型電極形成窓部の段差がなく略平らな面にワイヤボンディングすることになり、上記不具合は回避できる。
本発明の第1実施形態に係る窒化物光半導体素子E1でも、リッジストライプの段差は残るが、通常高さが0.5um程度と低いためステップの発生頻度は少なく、発生しても微小であり多くの場合実用上問題にならない。しかし、特に高信頼性が要求されるような用途の場合、リッジ部段差起因のステップも問題になる場合がある。この対策として、第3の実施形態に係る窒化物光半導体素子E3のように、リッジ形成のエッチング時に端面近傍をエッチングしないで残すことにより、端面の劈開面に段差がない構造を採用することができる。なお、端面近傍にエッチングしないで残る領域があると、レーザ光の非点較差の原因となるので、領域幅はストライプ幅と略同程度以下であることが望ましい。例えば、領域幅は劈開の精度から4um以上とすることが望ましい。以上の構成によれば、端面に発生するステップを完全に抑制できるため非常に信頼度のよいレーザを実現できる。
本発明は、上述した実施形態に限定されるものではなく種々の変形が可能である。また、実施形態で説明した構成は、実質的に同一の構成、同一の作用効果を奏する構成又は同一の目的を達成することができる構成で置き換えることができる。
E1,E2,E3,E1A,E3A,101 窒化物光半導体素子、1 n型GaN基板、2 n型バッファ層、2A 露出面、3 n型クラッド層、4 n型ガイド層、5 活性層、6 電子ブロック層、7 p型クラッド層、8 p型コンタクト層、9 保護膜、10 p型第1電極、11 p型第2電極、12 n型電極、15 ダイボンド用パッド、16 はんだ、17 サブマウント、18,19 Auワイヤ、21 リッジ構造、22 PSG膜、30 バー、31 スクライブキズ、33 劈開近傍領域、106c 第1リード、106b 第2リード、113 サブマウント電極、114 メサストライプ、200 光半導体装置、203 ヒートブロック、204 ステム、205 フランジ部、207 ガラス板、208 穴、209 キャップ。

Claims (9)

  1. n型GaN基板と、
    前記n型GaN基板のGa面側に積層したn型半導体のバッファ層と、
    前記n型バッファ層に積層された、n型半導体の第1クラッド層、活性層、そして上部にストライプ状のリッジ構造を有するp型半導体の第2クラッド層と、
    少なくとも前記リッジ構造の上部に形成したp型電極と、
    前記n型バッファ層が露出しているバッファ層の露出面と、
    前記バッファ層の露出面に設けられたn型電極と、
    を有することを特徴とする窒化物光半導体素子。
  2. 請求項1に記載の窒化物光半導体素子であって、
    前記n型GaN基板と、前記バッファ層と、前記第1クラッド層と、前記活性層と、前記第2クラッド層とを含み構成されるレーザの共振器の端面を劈開で形成した
    ことを特徴とする窒化物光半導体素子。
  3. 請求項2に記載の窒化物光半導体素子であって、
    前記バッファ層の露出面を、前記レーザの共振器の端面よりも内側に形成した
    ことを特徴とする窒化物光半導体素子。
  4. 請求項3に記載の窒化物光半導体素子であって、
    前記第2クラッド層において前記共振器の端面と接する劈開近傍領域については、前記リッジ構造の上部と同じ高さに形成した
    ことを特徴とする窒化物光半導体素子。
  5. 請求項4に記載の窒化物光半導体素子であって、
    前記リッジ構造のストライプと平行な方向についての前記劈開近傍領域の幅は、前記リッジ構造のストライプと垂直な方向の幅以下である
    ことを特徴とする窒化物光半導体素子。
  6. 請求項2に記載の窒化物光半導体素子であって、
    前記バッファ層の露出面を、前記レーザの共振器の端面まで達するように形成した
    ことを特徴とする窒化物光半導体素子。
  7. 請求項1乃至6のいずれかに記載の窒化物光半導体素子であって、
    前記バッファ層に形成された前記n型電極の外側であって、前記リッジ構造とは反対側にスクライブ用の加工を施してチップ化される
    ことを特徴とする窒化物光半導体素子。
  8. 請求項1乃至7のいずれかに記載の窒化物光半導体素子であって、
    前記n型GaN基板の前記リッジが形成された面とは逆の面に形成されたダイボンド用パッドを有する
    ことを特徴とする窒化物光半導体素子。
  9. 請求項1乃至8のいずれかに記載の窒化物光半導体素子と、サブマウントとを備え、
    前記窒化物光半導体素子の前記リッジが形成された面とは逆の面側を前記サブマウントに向けてマウントした
    ことを特徴とする光半導体装置。
JP2013068953A 2013-03-28 2013-03-28 窒化物光半導体素子及び光半導体装置 Pending JP2014192475A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013068953A JP2014192475A (ja) 2013-03-28 2013-03-28 窒化物光半導体素子及び光半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013068953A JP2014192475A (ja) 2013-03-28 2013-03-28 窒化物光半導体素子及び光半導体装置

Publications (1)

Publication Number Publication Date
JP2014192475A true JP2014192475A (ja) 2014-10-06

Family

ID=51838438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068953A Pending JP2014192475A (ja) 2013-03-28 2013-03-28 窒化物光半導体素子及び光半導体装置

Country Status (1)

Country Link
JP (1) JP2014192475A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056489A1 (ja) * 2013-10-17 2015-04-23 シャープ株式会社 熱アシスト磁気記録ヘッド、半導体レーザ素子及び半導体レーザ素子の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177175A (ja) * 1997-05-26 1999-07-02 Nichia Chem Ind Ltd 窒化物半導体素子
JP2002100830A (ja) * 2000-07-18 2002-04-05 Nichia Chem Ind Ltd 窒化ガリウム系発光素子
JP2002158405A (ja) * 2000-11-17 2002-05-31 Sharp Corp 窒化物半導体発光素子、光ピックアップ装置、および、発光装置
JP2003046201A (ja) * 2001-08-02 2003-02-14 Sony Corp 半導体レーザー素子の製造方法及び半導体レーザー素子
JP2005142546A (ja) * 2003-10-14 2005-06-02 Nichia Chem Ind Ltd 半導体レーザ素子
JP2008205507A (ja) * 2006-10-16 2008-09-04 Mitsubishi Electric Corp 半導体光素子の製造方法
JP2009023853A (ja) * 2007-07-17 2009-02-05 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びその製造方法、並びにiii−v族窒化物系半導体デバイス
JP2011054677A (ja) * 2009-08-31 2011-03-17 Toshiba Corp 半導体発光素子
JP2012186336A (ja) * 2011-03-07 2012-09-27 Opnext Japan Inc 窒化物半導体レーザ装置の製造方法
JP2012238660A (ja) * 2011-05-10 2012-12-06 Sharp Corp 窒化物半導体レーザ素子の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177175A (ja) * 1997-05-26 1999-07-02 Nichia Chem Ind Ltd 窒化物半導体素子
JP2002100830A (ja) * 2000-07-18 2002-04-05 Nichia Chem Ind Ltd 窒化ガリウム系発光素子
JP2002158405A (ja) * 2000-11-17 2002-05-31 Sharp Corp 窒化物半導体発光素子、光ピックアップ装置、および、発光装置
JP2003046201A (ja) * 2001-08-02 2003-02-14 Sony Corp 半導体レーザー素子の製造方法及び半導体レーザー素子
JP2005142546A (ja) * 2003-10-14 2005-06-02 Nichia Chem Ind Ltd 半導体レーザ素子
JP2008205507A (ja) * 2006-10-16 2008-09-04 Mitsubishi Electric Corp 半導体光素子の製造方法
JP2009023853A (ja) * 2007-07-17 2009-02-05 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びその製造方法、並びにiii−v族窒化物系半導体デバイス
JP2011054677A (ja) * 2009-08-31 2011-03-17 Toshiba Corp 半導体発光素子
JP2012186336A (ja) * 2011-03-07 2012-09-27 Opnext Japan Inc 窒化物半導体レーザ装置の製造方法
JP2012238660A (ja) * 2011-05-10 2012-12-06 Sharp Corp 窒化物半導体レーザ素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056489A1 (ja) * 2013-10-17 2015-04-23 シャープ株式会社 熱アシスト磁気記録ヘッド、半導体レーザ素子及び半導体レーザ素子の製造方法

Similar Documents

Publication Publication Date Title
US8861561B2 (en) Semiconductor laser chip, semiconductor laser device, and semiconductor laser chip manufacturing method
JP4169821B2 (ja) 発光ダイオード
JP4909533B2 (ja) 半導体レーザ素子及びその製造方法
EP3154139B1 (en) Light emitting element
JP2008141187A (ja) 窒化物半導体レーザ装置
JP6094632B2 (ja) 半導体レーザ素子
US8659051B2 (en) Semiconductor light emitting device and method for manufacturing thereof
JP2007165726A (ja) 半導体発光ダイオード
JP4862386B2 (ja) 半導体発光ダイオード
JP2009004524A (ja) 窒化物系半導体レーザ素子及び窒化物系半導体レーザ素子の作製方法
US20110013659A1 (en) Semiconductor laser device and method of manufacturing the same
KR101136239B1 (ko) 레이저 다이오드 제조방법
JP2013102043A (ja) 半導体レーザ素子、及び、半導体レーザ素子の作製方法
JP2014192475A (ja) 窒化物光半導体素子及び光半導体装置
JP4890509B2 (ja) 半導体発光素子の製造方法
JP5053102B2 (ja) 窒化物半導体発光素子、窒化物半導体発光装置及びその製造方法
KR100786530B1 (ko) 반도체 레이저 다이오드 및 그 제조방법
JP2011238749A (ja) 窒化物半導体レーザ素子、およびそれを用いた光ディスク装置ならびに画像表示装置
JP2011228350A (ja) 窒化物半導体レーザ素子およびその製造方法、ならびに光ディスク装置、および画像表示装置
JP2011023406A (ja) 窒化物半導体レーザ素子
KR20060025211A (ko) 사파이어 기판 식각 방법을 이용한 수직형 전극 구조를가지는 레이저 다이오드 및 그 제조 방법
KR101921262B1 (ko) 반도체 레이저 발광소자
JP5236789B2 (ja) 半導体発光素子の製造方法
JP6100567B2 (ja) 半導体発光素子とその製造方法
JP2010129581A (ja) 窒化物系半導体レーザ素子及びその作製方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404