JP2014180202A - 強化マグネット - Google Patents

強化マグネット Download PDF

Info

Publication number
JP2014180202A
JP2014180202A JP2014076233A JP2014076233A JP2014180202A JP 2014180202 A JP2014180202 A JP 2014180202A JP 2014076233 A JP2014076233 A JP 2014076233A JP 2014076233 A JP2014076233 A JP 2014076233A JP 2014180202 A JP2014180202 A JP 2014180202A
Authority
JP
Japan
Prior art keywords
magnet
coil
composite body
binder
washer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014076233A
Other languages
English (en)
Other versions
JP5895015B2 (ja
Inventor
David Michael Jones
マイケル ジョーンズ ディヴィッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyson Technology Ltd
Original Assignee
Dyson Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyson Technology Ltd filed Critical Dyson Technology Ltd
Publication of JP2014180202A publication Critical patent/JP2014180202A/ja
Application granted granted Critical
Publication of JP5895015B2 publication Critical patent/JP5895015B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/0221Mounting means for PM, supporting, coating, encapsulating PM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

【課題】電気機械のロータで使用するのに好適な強化マグネットを提供すること。
【解決手段】マグネット(1)は、複合本体(2)と、該本体(2)内に埋め込まれた複数のワッシャ(16)とを備え、本体(2)は磁性粉体及びバインダーから形成され、複数のワッシャ(16)はバインダーにより本体(2)内部に埋め込まれ、且つ、本体(2)内で軸方向に間隔を置いて配置され、ワッシャ(16)は、本体(2)内のボア(4)を囲む。更に、マグネット(1)の製造方法が提供される。
【選択図】図3

Description

本発明は、限定ではないが、電気機械のロータで使用するのに好適な強化マグネットに関する。
電気機械のロータは、シャフトが貫通して固定されるボアを有するマグネットを含むことができる。ロータが回転すると、半径方向の力がマグネットに応力を加える。残念ながら、ほとんどのマグネットは比較的脆弱で、過剰な引張応力を受けた場合には破砕されることになる。その結果として、マグネットの引張強さによって電気機械の速度が制限される可能性がある。
第1の態様において、本発明は、複合本体と、該本体内に埋め込まれ且つ本体内のボアを囲む少なくとも1つの強化要素とを備えるマグネットを提供する。
強化要素は、複合本体よりも大きな半径方向剛性及び軸方向引張強さを有し、従って、本体内で生じる半径方向及び円周方向応力に対抗するよう機能する。結果として、マグネットは、複合本体の破砕を生じることなく高速度で回転することができる。
シャフトに固定されるマグネットを有する従来のロータは、マグネットに圧縮力を加える外側スリーブを含むことができる。しかしながら、結果として得られる応力により、マグネットがクリープを引き起こす可能性がある。結果として、圧縮力の大きさは、時間と共に減少する可能性がある。最終的には、圧縮力は、マグネットに作用する半径方向の力に対抗するには不十分であり、従って、マグネットが破砕される可能性がある。強化要素を複合本体内に埋め込むことにより、マグネットにプレストレスを与える必要もなく、強化されたマグネットが得られる。その結果として、半径方向力に耐えるマグネットの能力は、時間と共に漸減しない。
強化要素は、コイル及びワッシャのうちの1つとすることができる。マグネットが回転磁界(例えば、電気機械のステータからの)に曝された場合には、導電体から形成される場合にコイル内に渦電流が誘起される可能性がある。渦電流は、回転軸に平行なループで循環する傾向がある。螺旋形又は平坦な環状体のいずれかである強化要素は、軸方向にいかなる連続した経路を含まない。その結果として、強化要素に誘起されるあらゆる渦電流は比較的小さなものとなる。
強化要素は、半径方向、すなわちボアの長手方向軸線に垂直な方向で厚みが最大になるのがよい。その結果、強化要素は、より大きな半径方向剛性を有する。加えて、強化要素の軸方向厚みは、半径方向剛性を損なうことなく比較的小さく維持されることができる。従って、より多くの強化要素を複合本体内に埋め込むこともできる。或いは、強化要素がコイルである場合、より多くの巻線を利用することができる。更に、強化要素と複合本体との間により大きな境界部が生成される。その結果として、引張応力は、複合本体から強化要素に良好に伝達されることができる。
強化要素は、ボアに隣接するのがよく、すなわち、複合本体及び強化要素の内径がほぼ同じであるということである。マグネットが回転すると、ボアにおいて引張応力が最大となる。強化要素をボアに隣接して配置することにより、強化要素は、最大の引張応力に良好に対抗することができる。
強化要素は、複合本体の両端間に延びるコイルを含むのがよい。或いは、マグネットは、複合本体の長さに沿って軸方向に間隔を置いて配置される複数のワッシャを備えるのがよい。結果として、強化要素は、複合本体の長さに沿った半径方向及び円周方向の応力に対抗するよう機能する。
強化要素は、リボンから形成されたコイルを含むのがよい。従って、コイルは、コイルの長手方向軸線に垂直な方向で厚みが最大となる。その結果、コイルの軸方向の厚みは、半径方向剛性を損なうことなく比較的小さく維持されることができる。更に、コイルと複合本体との間により大きな境界部が生成される。
マグネットは、使用中及び/又は製造中に熱膨張及び熱収縮を受ける可能性がある。複合本体及び強化要素の熱膨張係数の差違により、複合本体内に低密度領域が形成される場合があり、これはマグネットの引張強さを弱める可能性がある。従って、強化要素は、複合本体の熱膨張係数の2倍よりも大きくない熱膨張係数を有することができる。
強化要素は、金属又はプリプレグ材料から形成することができ、これらの両方は通常、比較的高い剛性及び引張強さを有し、ほとんどの磁性複合材料と良好な結合を形成する傾向がある。
第2の態様において、本発明は、前出の段落のうちのいずれか1つにおいて説明されたようなマグネットのボア内に固定されるシャフトを備えたロータを提供する。
強化要素は、ロータの回転により生じる半径方向及び円周方向応力に対抗するよう機能する。その結果として、マグネットを破砕することなくより高い回転速度を実施することができる。
第3の態様において、本発明は、マグネットの製造方法を提供し、該方法は、ピンを有するモールドを準備する段階と、ピン上に強化要素を載置する段階と、モールド内にバインダーがコーティングされた磁性粉体を導入する段階と、粉体及び強化要素を圧縮する段階と、を含む。
従って、強化要素が内部に埋め込まれた複合本体を備えたマグネットが得られる。ピンは、複合本体内にボアを生成する役割を果たす。ピン上に強化要素を載置することにより、強化要素は複合本体内のボアを囲む。
強化要素は、コイル及びワッシャのうちの1つを含むのがよい。磁性粉体の圧縮中に圧縮を行うコイルを利用することにより、マグネットの全長に沿って延びた強化要素を有するマグネットを得ることができる。同様に、磁性粉体によりピンに沿って軸方向に間隔を置いて配置されたワッシャを利用することにより、マグネットの長さに沿って埋め込まれた強化要素を有するマグネットを得ることができる。
強化要素は、コイルの長手方向軸線に垂直な方向で厚みが最大となる、リボンから形成されたコイルを含むのがよい。リボンは、バインダーがコイルに結合できるより大きな表面積を提示する。加えて、比較的脆弱な圧縮強度を有するコイルは、半径方向剛性を損なうことなく用いることができる。従って、コイルは、マグネットを形成するのに必要な圧縮力に影響を及ぼさない。加えて、マグネットがモールドから取り出されるときには、コイルの復元力は比較的弱く、従って、軸方向内部応力は比較的小さい。
第4の態様において、本発明は、マグネットの製造方法を提供し、該方法は、リングマグネットのペア間にワッシャを配置する段階と、ワッシャ及びリングマグネットの少なくとも1つが有する硬化性バインダーを硬化する段階と、を含む。
従って、ワッシャが内部に埋め込まれた複合本体を備えた一体構造のマグネットが得られる。リングマグネットよりも大きな半径方向剛性及び半径方向引張強さを有するワッシャは、複合本体上に作用する半径方向及び円周方向応力に対抗するよう機能する。
ワッシャは、プリプレグ材料、すなわち、バインダーで含浸された強化繊維の複合材から形成することができる。プリプレグ材料は通常、比較的高い剛性及び引張強さを有する。加えて、プリプレグ材料のバインダーは一般に粘着性がある。従って、ワッシャは、リングマグネット間に配置され、バインダーを硬化するためにオーブンなどに好都合に移動させることができる組立体を生成することができる。
本方法は、複数のリングマグネットを準備し、リングマグネットの各ペア間にワッシャを配置する段階を含むことができる。結果として、より長い強化マグネットを得ることができる。
本発明によるマグネットの断面図である。 マグネットの製造の各段階を示す図である。 本発明による別のマグネットの断面図である。 別のマグネットの製造の各段階を示す図である。
ここで、本発明を十分に理解できるようにするために、例示として添付図面を参照しながら本発明の実施形態を説明する。
図1のマグネット1は、コイル3が埋め込まれた複合本体2を含む。複合本体2は、円筒形状であり、第1の端部5から第2の端部6まで本体2を貫通して延びる中央ボア4を含む。複合本体2は、磁性粉体7及びバインダー8から形成される。
コイル3は、螺旋形状であり、半径方向、すなわちコイル3の長手方向軸線に垂直な方向で厚みが最大となるリボンから形成される。コイル3は、複合本体2内部に埋め込まれ、バインダー8により本体2に結合される。コイル3は、複合本体2の全長に沿って第1の端部5から第2の端部6まで延びる。コイル3はボア4を囲み、ボア4と同軸である。その上、複合本体2及びコイル3の内径はほぼ同じであり、コイル3がボア4に隣接するようにする。
マグネット1は、電気機械のロータの一部を形成することができる。詳細には、シャフトは、例えば、接着によってボア4内に固定することができる。ロータが回転すると、半径方向の力がマグネット1に半径方向及び円周方向で応力を加える。コイル3が存在しない場合、結果として生じる歪みにより複合本体2が破砕及び破壊される可能性がある。コイル3は、複合本体2よりも大きな半径方向剛性及び半径方向引張強さを有する。従って、コイル3は、複合本体2に作用する半径方向及び円周方向の応力に対抗するように働く。結果として、他の場合にはマグネット1の破砕をもたらす場合がある複合本体2の過剰な歪みを回避することができる。
ほとんどのバインダーは、剪断応力への対抗には比較的良好であるが、純粋な引張応力への対抗には比較的不十分である。コイル3を複合本体2内に埋め込むことによって、コイル3とバインダー8との間に境界部が生成され、半径方向及び円周方向に延びる。その結果として、マグネット1が半径方向の力を受けたときに、バインダー8とコイル3との間に剪断力が生成される。従って、バインダー8は、応力を複合本体2からコイル3に効果的に伝達することができる。対照的に、コイル3が円筒形スリーブと置き換えられた場合、スリーブとバインダー8との間の境界部は、軸方向にだけ延びることになる。その結果、マグネット1が半径方向力を受けたときに、スリーブとバインダー8との間に純粋な引張応力が生成される。結果として、バインダー8とスリーブとの間の結合が作用しなくなる可能性がある。
コイル3をリボンから形成することにより、バインダー8は、より大きな表面積にわたりコイル3に結合される。加えて、リボンは、半径方向で最も厚みがあるので、バインダー8とコイル3との間により大きな半径方向の境界部が生成される。結果として、バインダー8は、半径方向及び円周方向の応力を複合本体2からコイル3に良好に伝達することができる。コイル3の半径方向剛性も増大する。結果として、コイル3の軸方向厚みを減少できる。これにより、コイル3の巻線数をより多くすることが可能となり、複合本体2が更に強化される。その上、比較的脆弱な軸方向剛性を有するコイル3は、半径方向剛性を損なうことなく用いることができる。
以下で詳細に説明するように、このことはマグネット1の製造に役立ち、軸方向の内部応力が低減される。
マグネット1の回転中に発生する半径方向及び円周方向の応力は、複合本体2のボア4において最大となる。コイル3をボア4に隣接して配置することにより、コイル3は、応力が最大となる場所で応力に良好に対抗することができる。
マグネット1が磁界内で回転すると、又は回転磁界(例えば、電気機械のステータからの)に曝されると、導電体から形成される場合にはコイル3内に渦電流が誘起されることになる。渦電流は、回転軸に平行なループで循環する傾向がある。螺旋形のコイル3は、軸方向にいかなる連続した経路を含まない。その結果として、コイル3に誘起されるあらゆる渦電流は比較的小さなものとなる。加えて、コイル3をリボンから形成することにより、コイル3の軸方向厚みは比較的小さく維持され、従って、あらゆる渦電流の大きさを更に低減することができる。
シャフトに固定されるマグネットを有する従来のロータは、マグネットに圧縮力を加える外側スリーブを含むことができる。しかしながら、結果として得られる応力により、マグネットがクリープを引き起こす可能性がある。結果として、圧縮力の大きさは、時間と共に減少する可能性がある。最終的には、圧縮力は、マグネットに作用する半径方向の力に対抗するには不十分であり、従って、マグネットが破砕される可能性がある。対照的に、コイル3を複合本体2内に埋め込むことにより、マグネット1にプレストレスを与える必要もなく、強化マグネット1が得られる。その結果として、半径方向力に耐えるマグネット1の能力は、時間と共に漸減しない。更に、スリーブは、完全に省くことができ、従って、より安価で軽量のロータを実現することができる。次に、マグネット1の製造方法を図2を参照しながら説明する。
円筒形外壁11及びベース13から直立する中央円筒ピン12を有するモールド10が提供される。コイル3は、モールド10のピン12上に載置される。次いで、バインダーがコーティングされた磁性粉体14がモールド10内に導入される。粉体14は、コイルシステム内のギャップ内に入り込み、コイル3の頂部を覆う。次いで、プレス機15が下向きの力を加え、モールド内でコイル3及び磁性粉体14を圧縮し、一体構造のマグネット1を形成するようにする。次に、マグネット1は、モールド10から取り外されてオーブン内に載置され、加熱されてバインダーを硬化する。
バインダーがコーティングされた磁性粉体14の圧密中に圧縮するコイル3を利用することによって、本体2の全長にそって延びる埋め込みコイル3を有する複合本体2が得られる。製造公差(例えば、モールド10に導入される粉体14の量、モールド10内の粉体14の分布、及び下向きの力の大きさの許容誤差)の結果として、仕上げマグネット1の長さの公差が存在する。加えて、コイル3の初期の長さの公差がある。しかしながら、コイル3は、バインダーがコーティングされた磁性粉体14と共に圧縮されるので、仕上げマグネット1は、製造公差に関係なく複合本体2の全長に沿って延びる埋め込みコイル3を有する。
コイル3をリボンから形成することには、マグネット1の製造の観点から2つの点で有利である。第1に、リボンは、バインダー8がコイル3に結合できる大きな表面積を提示する。第2に、半径方向剛性を損なうことなく比較的脆弱な軸方向剛性を有するコイル3を用いることができる。比較的脆弱な軸方向剛性を有することで、コイル3は、マグネット1を形成するのに必要な圧縮力に影響を及ぼさない。加えて、マグネット1がモールド10から取り出されるときには、コイル3の復元力は比較的弱い。従って、硬化前又は硬化中にマグネット1が破壊される危険がほとんどない。加えて、マグネット1内の軸方向内部応力は比較的小さい。
上述の実施形態のコイル3は弾性があり、すなわち、圧縮時にはコイル3が復元力を生成する。しかしながら、コイル3は、必ずしも弾性である必要はない。マグネット1を製造する際には、コイル3が圧縮可能であることだけが重要である。コイル3が弾性であることは重要ではない。実際には、コイル3を利用するには、仕上げマグネット1内の軸方向内部応力が最小限になるように非弾性であるか、又は弾性がほとんどないことが有利である。
上述の方法を利用するときに、コイル3が最初にモールド10内に載置され、次いで、磁性粉体14が導入される。結果として、コイルの底部巻線を囲む磁性粉体14は比較的少ない。従って、圧縮時にコイルの復元力によりコイル3の底端部が複合本体2の下端部6を突き破るようにする恐れがある。この状況が生じるのを避けるために、コイル3を挿入する前に少量の磁性粉体14をモールド10内に載置することができる。或いは、コイル3は、直線状に軸方向に延びる端部で終端することができる。その結果、マグネット1は、上述と同様の手法で製造される。コイル3の直線状端部により、磁性粉体14がコイル3の末端巻線の下方及び上方の両方に混入することが確保される。
上述の方法において、成形後にマグネット1が取り出され、オーブン内に載置されてバインダー8を硬化する。しかしながら、硬化するために全てのバインダーが高温を必要とする訳ではない。例えば、バインダー8は、プレス機15により加えられる圧縮力下で硬化することができ、又は、バインダー8は室温で硬化することができる。従って、成形後に高温でマグネット1を硬化することは必須ではない。
圧縮成形は、マグネット1が比較的少量のバインダー8を用いて製造できる点で利点がある。結果として、比較的良好な磁気特性を有するマグネット1を得ることができる。それでも尚、マグネット1はまた、射出成形により製造してもよい。例えば、磁性粉体7及びバインダー8の複合材料を加熱して溶融物を生成し、次にこれを、コイル3を収容するモールドに射出する。射出成形により不規則な形状のマグネットを形成できるようになるが、溶融物が必要な粘度を有するようにするために、一般的には比較的大量のバインダーが必要とされる。この結果、磁気特性が良好ではないマグネットがもたらされる。
複合本体2に使用される磁性粉体7及びバインダー8の特定の選択は、本発明に関連するとはみなされない。結合マグネットの製造において従来利用されていた磁性粉体7及びバインダー8を用いてもよい。
コイル3は、後続の回転中にマグネット1に作用する半径方向及び円周方向応力に対抗することを目的としている。従って、コイル3の材料の選択、並びにコイル3の厚み及びピッチは、応力の大きさに依存することになる。コイル3の好適な候補は、比較的高い剛性及び引張強さを有し、バインダー8との良好な結合を形成することになるほとんどの金属を含む。それでも尚、プラスチックを含む他の材料も同様に用いることができる。
マグネット1を高温で硬化することにより、マグネット1の有意な熱膨張が生じる可能性がある。或いは、マグネット1が作動するのに必要な温度範囲が、有意な熱膨張を生じさせる可能性がある。複合本体2及びコイル3の熱膨張係数は異なる可能性が高い。結果として、複合本体2及びコイル3は、異なる量で膨張及び収縮することになる。高温では、複合本体2は軟化し、従って、複合本体2の粘性変形によって複合本体2及びコイル3の熱膨張のいかなる差違に対応することができる。しかしながら、マグネット1が冷えると複合本体2が硬くなる。従って、複合本体2及びコイル3の熱収縮の差を複合本体2の粘性変形によって完全に対応できる可能性は低い。コイル3が複合本体2よりも大きな熱膨張係数を有する場合、コイル3は、冷却中により大きな量で収縮することになる。上述のように、ほとんどのバインダーは、剪断応力への対抗に比較的良好であるが、純粋な引張応力への対抗には比較的不十分である。その結果として、マグネット1が冷えると、コイル3の外側縁部において複合本体2内に低密度領域が生成される。
低密度領域のサイズ及び密度は、とりわけ、複合本体2及びコイル3の熱膨張係数の差によって決まる。詳細には、熱膨張係数の差が大きくなると、低密度領域のサイズが大きくなり、及び/又は低密度領域の密度は小さくなる。低密度領域のサイズが大きくなり、及び/又はコイル3のピッチが小さくなると、コイル3の1つの巻線の周りに形成される低密度領域が隣接する巻線の周りに形成される低密度領域と結合するようになる。最終結果として、連続した低密度領域がコイル3の周りに配置されることになる。この連続した低密度領域は、複合本体2の引張強さを弱める。結果として、マグネット1の回転中に生じる引張応力により、複合本体2が低密度領域にて2つに分割される可能性がある。
出願人は、マグネット1がコイル3に導入された引張応力に曝されると、コイル3の熱膨張係数が複合本体2の熱膨張係数の2倍を上回ったとき、及び/又はコイル3のピッチが1mm未満であるときに複合本体2の故障の可能性が有意に大きくなることを見出した。このように、低密度領域に起因したマグネット1の故障は、他の多くの要因によって決定付けられることになる。例えば、マグネット1が硬化する特定の温度、その後にマグネット1が冷却される速度、及び複合本体2の粘度は全て、低密度領域のサイズ及び密度に影響を及ぼす可能性が高い。それでも尚、熱膨張係数が複合本体2の熱膨張係数の2倍を上回らない、及び/又はピッチが1mmよりも小さくないコイル3を利用することは、有利とすることができる。
ここまでは、複合本体2内に埋め込まれたコイル3を有するマグネット1を参照してきた。しかしながら、複合本体2内に1つ又は複数の別の強化要素を埋め込むことによって、マグネット1を強化することもできる。例示として、図3は、複合本体2内に複数のワッシャ16が埋め込まれたマグネット1を示している。ワッシャ16は、ボア4を囲み、ボア4の長さに沿って軸方向に間隔を置いて配置される。半径方向で最大の厚みがあるワッシャ16は、コイル3の上述のものと全く同じ利点をもたらす。実際に、コイル3は、複数のリンクしたワッシャとみなすことができる。
ワッシャ16を利用することにより、内径及び外径が複合本体2と一致する強化要素を有することができる。その結果、バインダー8は、より大きな表面積にわたって各強化要素に結合される。結果として、複合本体2に作用する引張応力は、強化要素に良好に伝達することができる。加えて、バインダー8は、一般に剪断応力への対抗に比較的良好であるので、複合本体2内の熱的に誘起される低密度領域が排除され、或いはサイズを有意に低減することができる。更に、ワッシャ16は半径方向に厚みがあるので、半径方向剛性を損なうことなく、軸方向に薄い強化要素を利用することが可能である。それでも尚、ワッシャの内径及び外径が複合本体2の内径及び外径と一致することは必須ではない。
埋め込みワッシャ16を有するマグネット1は、コイル3について上述したものと同様の手法で製造することができる。例えば、バインダーがコーティングされた磁性粉体14をモールドに導入することができ、その後、ワッシャ16をモールド10のピン12上に載置する。次に、追加の磁性粉体14をモールド10内に導入してワッシャ16を覆うようにし、その後、追加のワッシャ16をピン12上に載置する。このプロセスは、モールド10が必要なレベルに充填されるまで繰り返される。次いで、プレス機15が下向きの力を加え、モールド10内で磁性粉体14及びワッシャ16を圧縮し、一体構造のマグネット1を形成するようにする。必要であれば、マグネット1をモールド10から取り外し、オーブン内に載置して加熱し、バインダー8を硬化することができる。
次に、埋め込みワッシャ16を有するマグネット1の変形例の製造方法を図4を参照しながら説明する。複数のリングマグネット17をジグ19のピン18上に載置する。各リングマグネット17は、磁性粉体7とバインダー8との複合材料から形成され、硬化又は半硬化にすることができる。ワッシャ16はリングマグネット17の各ペアの間に配置する。ワッシャ16は、プリプレグ材料、すなわち、バインダーで含浸された強化繊維(例えば、カーボン、アラミド、又はガラス繊維)の複合材から形成される。各ワッシャ16は、比較的薄く、プリプレグテープ又はシートをスタンピングすることにより形成することができる。次いで、プレス機20がリングマグネット17及びワッシャ16に下向きの力を加え、一体構造のマグネット1を形成するようにする。下向きの力は比較的小さく、粘着性のあるワッシャ16がリングマグネット17と良好な表面接触を形成するのを確保することだけを目的としている。次に、マグネット1をジグ19から取り外し、オーブン内に載置して高温で硬化させる。
ワッシャ16にプリプレグ材料を使用することには複数の利点がある。第1に、プリプレグ材料は通常、比較的高い剛性及び引張強さを有する。第2に、高剛性及び引張強さを有する他の材料、特に金属と比べると、プリプレグ材料の熱膨張係数は、複合本体2の熱膨張係数により厳密に一致する可能性が高い。第3に、プリプレグ材料のバインダーは、一般に粘着性がある。その結果として、リングマグネット17間にワッシャ16を配置した後、結果として得られる組立体は、ジグ19から持ち上げて硬化のためにオーブン内に載置するのに好都合とすることができる。それでも尚、上述の利点にもかかわらず、ワッシャ16をプリプレグ材料から形成することは必須ではない。例えば、ワッシャ16は金属から形成してもよい。
ワッシャ16がプリプレグ材料から形成されているかどうか、或いは、リングマグネット17が硬化又は半硬化されているかどうかに関係なく、ワッシャ16及びリングマグネット17の少なくとも1つが硬化性バインダーを含むことが重要である。マグネット1は、リングマグネット17間にワッシャ16を配置してバインダーを硬化することにより製造することができる。使用されるバインダーのタイプに応じて、例えば、熱、圧力、UV光など、バインダーを硬化するのに様々な選択肢を利用することができる。
用語「ワッシャ」は、平坦な環状体を意味するものと理解されたい。しかしながら、環状体が円形であることは必須ではない。例えば、環状体は方形又は六角形であってもよい。このことは、ワッシャ16がプリプレグテープ又はシートからスタンプされるときに、プリプレグ材料をより効率的に用いることができる。従って、より一般的な意味では、用語「ワッシャ」は孔を有する平坦な要素を意味すると理解されたい。
本発明は、以下のような態様であっても良い。
[1]
複合本体と、該本体内に埋め込まれ且つ本体内のボアを囲む少なくとも1つの強化要素とを備えるマグネット。
[2]
前記強化要素が、コイル及びワッシャのうちの1つである、上記[1]に記載のマグネット。
[3]
前記強化要素が、半径方向に厚みが最大になる、上記[1]又は[2]
に記載のマグネット。
[4]
前記強化要素が、前記ボアに隣接している、上記[1]乃至[3]のいずれか1項に記載のマグネット。
[5]
前記強化要素が、前記本体の両端部間に延びるコイルである、上記[1]乃至[4]のいずれか1項に記載のマグネット。
[6]
前記強化要素が、リボンから形成されたコイルである、上記[1]乃至[5]のいずれか1項に記載のマグネット。
[7]
前記マグネットが、軸方向に間隔を置いて配置され且つ各々がワッシャからなる複数の強化要素を備える、上記[1]乃至[6]のいずれか1項に記載のマグネット。
[8]
前記強化要素が、前記複合本体の熱膨張係数の2倍よりも大きくない熱膨張係数を有する、上記[1]乃至[7]のいずれか1項に記載のマグネット。
[9]
上記[1]乃至[8]のいずれか1項に記載のマグネットのボア内に固定されるシャフトを備えたロータ。
[10]
マグネットの製造方法であって、
ピンを有するモールドを準備する段階と、
前記ピン上に強化要素を載置する段階と、
前記モールド内にバインダーでコーティングされた磁性粉体を導入する段階と、
前記粉体及び前記強化要素を圧縮する段階と、
を含む方法。
[11]
前記強化要素が、コイル及びワッシャのうちの1つである、上記[10]に記載のマグネット。
[12]
マグネットの製造方法であって、
一対のリングマグネット間にワッシャを配置する段階と、
前記ワッシャ及び前記リングマグネットの少なくとも1つが有する硬化性バインダーを硬化する段階と、
を含む、方法。
[13]
前記ワッシャがプリプレグ材料から形成される、上記[12]に記載の方法。
1 マグネット
2 複合本体
3 コイル
4 中央ボア
5 第1の端部
6 第2の端部
7 磁性粉体
8 バインダー

Claims (6)

  1. マグネットに固定されるシャフトを備えたロータであって、
    前記マグネットは、ボアを有する複合本体と、該複合本体内に埋め込まれた複数の強化要素とを備え、前記シャフトは前記ボア内に固定され、前記複合本体は磁性粉体及びバインダーから形成され、前記複数の強化要素は前記バインダーにより前記複合本体内部に埋め込まれ、且つ、前記複合本体内で軸方向に間隔を置いて配置され、前記各強化要素は前記複合本体内の前記ボアを囲むワッシャである、ロータ。
  2. 前記各ワッシャは、半径方向に厚みが最大になる、請求項1に記載のロータ。
  3. 前記各ワッシャが、前記ボアに隣接している、請求項1又は2に記載のロータ。
  4. 前記各ワッシャが、前記複合本体の熱膨張係数の2倍よりも大きくない熱膨張係数を有する、請求項1乃至3のいずれか1項に記載のロータ。
  5. マグネットの製造方法であって、
    ピンを有するモールドを準備する段階と、
    前記ピン上に複数のワッシャを載置する段階と、
    前記複数のワッシャが磁性粉体によって前記ピンに沿って軸方向に間隔を置いて配置されるように、前記モールド内にバインダーでコーティングされた前記磁性粉体を導入する段階と、
    前記粉体及び前記ワッシャを軸方向に圧縮する段階と、
    を含む方法。
  6. 前記ワッシャがプリプレグ材料から形成される、請求項5に記載の方法。
JP2014076233A 2010-09-23 2014-04-02 強化マグネット Expired - Fee Related JP5895015B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1016006.7 2010-09-23
GBGB1016006.7A GB201016006D0 (en) 2010-09-23 2010-09-23 A reinforced magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011207423A Division JP5578733B2 (ja) 2010-09-23 2011-09-22 強化マグネット

Publications (2)

Publication Number Publication Date
JP2014180202A true JP2014180202A (ja) 2014-09-25
JP5895015B2 JP5895015B2 (ja) 2016-03-30

Family

ID=43127841

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011207423A Expired - Fee Related JP5578733B2 (ja) 2010-09-23 2011-09-22 強化マグネット
JP2014076233A Expired - Fee Related JP5895015B2 (ja) 2010-09-23 2014-04-02 強化マグネット

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011207423A Expired - Fee Related JP5578733B2 (ja) 2010-09-23 2011-09-22 強化マグネット

Country Status (7)

Country Link
US (2) US8736410B2 (ja)
EP (2) EP2942797A1 (ja)
JP (2) JP5578733B2 (ja)
KR (1) KR101430543B1 (ja)
CN (2) CN104953741B (ja)
GB (2) GB201016006D0 (ja)
WO (1) WO2012038716A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20121606A1 (it) * 2012-09-26 2014-03-27 Mavel Srl Metodo per fabbricare un rotore per motori elettrici e rotore realizzato con tale metodo
JP2015186333A (ja) * 2014-03-24 2015-10-22 日東電工株式会社 永久磁石及び永久磁石の製造方法
CN105608971A (zh) * 2016-03-25 2016-05-25 贵州励天科技发展有限公司 一种电磁推进装置
WO2018014141A1 (de) * 2016-07-18 2018-01-25 Bomatec Holding Ag Segmentierte permanentmagnete
WO2018160894A1 (en) 2017-03-02 2018-09-07 Kohler Co. Handwashing station
CN110752724A (zh) * 2019-12-02 2020-02-04 北京泓慧国际能源技术发展有限公司 永磁电机转子制造方法、电机转子和永磁电机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144557A (ja) * 1985-12-18 1987-06-27 Toshiba Corp ステツピングモ−タ回転子鉄心
JPS6338304U (ja) * 1986-08-29 1988-03-11
JPH1075555A (ja) * 1996-01-31 1998-03-17 Fuji Xerox Co Ltd モータとその製造方法
JPH10210691A (ja) * 1997-01-21 1998-08-07 Isuzu Ceramics Kenkyusho:Kk 発電機におけるロータの構造及びロータの製造方法
JP2000030934A (ja) * 1998-07-16 2000-01-28 Nippon Densan Corp マグネット体及びこれを用いたモータ
JP2004197157A (ja) * 2002-12-18 2004-07-15 Toyota Central Res & Dev Lab Inc 一体成形複合部材、その製造方法及び電磁駆動装置
JP2004311771A (ja) * 2003-04-08 2004-11-04 Ricoh Co Ltd 長尺マグネット及びその製造方法とマグネットローラ並びに画像形成装置
WO2009051559A1 (en) * 2007-10-16 2009-04-23 Magnetic Components Sweden Ab Powder based soft magnetic inductive component, and a method and a device for production thereof

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR798073A (fr) * 1934-11-29 1936-05-08 Aimant permanent destiné au stator ou au rotor des petites machines électriques
US3482156A (en) * 1966-07-19 1969-12-02 Nachum Porath Permanent magnet rotor type motor and control therefor
US3659129A (en) * 1970-09-15 1972-04-25 Gen Electric Insulated bar dynamoelectric machine and method of forming
US3882442A (en) 1973-01-12 1975-05-06 Motor Wheel Corp Transducer device for electrically operated brakes
GB1414949A (en) * 1974-02-05 1975-11-19 Laing Ingeborg Rotary magnetic machines
US4065190A (en) 1974-05-03 1977-12-27 Skf Industrial Trading And Development Company, B.V. Self adjusting elevating temperature bearing and housing
DE2608421C3 (de) * 1976-03-01 1979-01-18 Siemens Ag, 1000 Berlin Und 8000 Muenchen Dauermagneterregter Innenläufer für eine Synchronmaschine
US4406958A (en) * 1981-04-06 1983-09-27 The Superior Electric Company Stepping motors with disc magnet
SE455010B (sv) * 1982-03-31 1988-06-13 Skf Ab Nav for flektar samt forfarande for framstellning av navet
JPS60130811A (ja) * 1983-12-19 1985-07-12 Matsushita Electric Ind Co Ltd ロ−タリ−トランス及びその製造方法
JPS6318950A (ja) * 1986-07-11 1988-01-26 Matsushita Electric Ind Co Ltd 永久磁石回転子
CH674278A5 (ja) * 1987-10-16 1990-05-15 Portescap
JPH01129741A (ja) * 1987-11-13 1989-05-23 Mitsubishi Metal Corp ローター用マグネット
SE501855C2 (sv) * 1990-11-19 1995-06-06 Skf Ab Gjutgods med ingjuten armering, samt förfarande för framställning av ett sådant gjutgods
JP3108931B2 (ja) * 1991-03-15 2000-11-13 株式会社トーキン インダクタ及びその製造方法
SE500596C2 (sv) * 1992-05-05 1994-07-18 Atlas Copco Tools Ab Elektrisk synkronmotor
US5448123A (en) * 1992-05-05 1995-09-05 Atlas Copco Tools Ab Electric synchronous motor
JP3139148B2 (ja) 1992-07-24 2001-02-26 昭和電工株式会社 樹脂組成物
KR950703223A (ko) * 1992-09-07 1995-08-23 데릭 제임스 맥코맥 섬유 보강 회전자(a fibre reinforced rotor)
JPH0641380U (ja) * 1992-09-11 1994-05-31 セイコーエプソン株式会社 永久磁石ローター
GB9313943D0 (en) * 1993-07-06 1993-08-18 British Nuclear Fuels Plc Rotors
US6259180B1 (en) * 1996-07-02 2001-07-10 Schlenker Enterprises, Ltd. Motor including embedded permanent magnet rotor and method for making the same
GB2297870A (en) * 1995-02-09 1996-08-14 British Nuclear Fuels Plc An energy storage and conversion apparatus
AU6231296A (en) * 1995-06-17 1997-01-15 Urenco (Capenhurst) Limited A rotor
JPH08237915A (ja) * 1995-12-14 1996-09-13 Fuji Koki Seisakusho:Kk 電動モータ
KR0164995B1 (ko) * 1995-12-26 1999-01-15 정몽원 본드자석의 제조방법
CN1173062A (zh) * 1996-08-01 1998-02-11 陈启星 带加强结构的磁性套筒式电机
EP0854558A3 (en) * 1997-01-21 2000-07-12 Isuzu Ceramics Research Institute Co., Ltd. Structure of a rotor for generators and method of manufacturing the same rotor
SE521340C2 (sv) * 1999-03-26 2003-10-21 Inmotion Technologies Ab Permanentmagnetrotor till en elektrisk höghastighetsmotor
AU4679600A (en) * 1999-04-28 2000-11-10 Allison Advanced Development Company Fiber reinforced composite material system
US6137390A (en) 1999-05-03 2000-10-24 Industrial Technology Research Institute Inductors with minimized EMI effect and the method of manufacturing the same
JP3670575B2 (ja) 2000-01-12 2005-07-13 Tdk株式会社 コイル封入圧粉コアの製造方法およびコイル封入圧粉コア
JP2002319520A (ja) * 2001-04-20 2002-10-31 Murata Mfg Co Ltd インダクタ及びその製造方法
US20030137210A1 (en) * 2001-08-17 2003-07-24 Southall Otway Archer Integrated commutator and slip-ring with sense magnet
WO2004008607A1 (ja) * 2002-07-10 2004-01-22 Hitachi, Ltd. 磁石モータ
JP2005312103A (ja) * 2004-04-16 2005-11-04 Sumitomo Electric Ind Ltd 圧粉磁心の製造方法
US7679252B2 (en) * 2005-04-13 2010-03-16 Aisin Seiki Kabushiki Kaisha Magnet embedded motor, rotor unit, and method for manufacturing rotor unit
GB0518787D0 (en) * 2005-09-15 2005-10-26 Khoo Wee K Reinforced discs for magnetic bearings and electrical machines
JP2009535530A (ja) * 2006-05-02 2009-10-01 ロール インコーポレイテッド ナノ補強材を用いた複合材料中に用いられる補強繊維トウの修飾
US20080044680A1 (en) * 2006-08-18 2008-02-21 Maglev Technologies, Llc Magnetic composites
IT1391357B1 (it) * 2008-10-07 2011-12-13 P R Nastri Trasportatori S N C Di Rubino Vincenzo & Rubino Attilio Materiale composito rilevabile mediante metal detector, articolo in tale materiale composito e metodo di ottenimento di detto articolo

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144557A (ja) * 1985-12-18 1987-06-27 Toshiba Corp ステツピングモ−タ回転子鉄心
JPS6338304U (ja) * 1986-08-29 1988-03-11
JPH1075555A (ja) * 1996-01-31 1998-03-17 Fuji Xerox Co Ltd モータとその製造方法
JPH10210691A (ja) * 1997-01-21 1998-08-07 Isuzu Ceramics Kenkyusho:Kk 発電機におけるロータの構造及びロータの製造方法
JP2000030934A (ja) * 1998-07-16 2000-01-28 Nippon Densan Corp マグネット体及びこれを用いたモータ
JP2004197157A (ja) * 2002-12-18 2004-07-15 Toyota Central Res & Dev Lab Inc 一体成形複合部材、その製造方法及び電磁駆動装置
JP2004311771A (ja) * 2003-04-08 2004-11-04 Ricoh Co Ltd 長尺マグネット及びその製造方法とマグネットローラ並びに画像形成装置
WO2009051559A1 (en) * 2007-10-16 2009-04-23 Magnetic Components Sweden Ab Powder based soft magnetic inductive component, and a method and a device for production thereof

Also Published As

Publication number Publication date
GB2483967B (en) 2014-12-31
KR20130039343A (ko) 2013-04-19
JP5895015B2 (ja) 2016-03-30
US8736410B2 (en) 2014-05-27
US20120074806A1 (en) 2012-03-29
GB201115159D0 (en) 2011-10-19
EP2942797A1 (en) 2015-11-11
CN103140901A (zh) 2013-06-05
US20130146206A1 (en) 2013-06-13
GB201016006D0 (en) 2010-11-10
CN104953741A (zh) 2015-09-30
CN104953741B (zh) 2018-09-25
CN103140901B (zh) 2016-02-17
JP5578733B2 (ja) 2014-08-27
EP2619777B1 (en) 2015-11-04
KR101430543B1 (ko) 2014-08-14
US8741088B2 (en) 2014-06-03
GB2483967A (en) 2012-03-28
WO2012038716A1 (en) 2012-03-29
JP2012069951A (ja) 2012-04-05
EP2619777A1 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5895015B2 (ja) 強化マグネット
US5382859A (en) Stator and method of constructing same for high power density electric motors and generators
CN107453503B (zh) 保持构件、转子以及旋转电机
JP5456749B2 (ja) マグネット組立体の製造方法
CN110771011A (zh) 转子组件及其制造方法
CN110556944A (zh) 粘结转子轴
US20240195245A1 (en) Rotor
KR20020021674A (ko) 회전 전기 기계 및 회전 전기 기계용 부재의 제조 방법
KR101291019B1 (ko) 회전 전기 기계 및 회전 전기 기계의 제조 방법
EP2050179A1 (en) A motor rotor and a method of manufacturing the same
US9641030B2 (en) Methods of manufacturing rotors having interfering sintered magnets and carbon filament sheaths for electric motors
CN110036555B (zh) 电机的转子及用于组装和拆卸转子的方法
JP4879419B2 (ja) 樹脂封止型電動モータ固定子の製造方法及び樹脂封止用金型
JP2023175094A (ja) 回転電機用ロータの製造方法及び回転電機用ロータ
JP2010279130A (ja) 電磁コイル
JP2023132503A (ja) 電動機の回転子
CN115244823A (zh) 转子铁芯以及转子铁芯的制造方法
JP2019087569A (ja) シャフト一体型ボンド磁石及びその製造方法
CN112771765A (zh) 定子线圈、定子线圈的制造方法以及旋转电机
JPH0485903A (ja) 超電導マグネツトコイルの製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5895015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees