JP2014168761A - Gas and liquid mixing device and bath hot water supply device - Google Patents

Gas and liquid mixing device and bath hot water supply device Download PDF

Info

Publication number
JP2014168761A
JP2014168761A JP2013042684A JP2013042684A JP2014168761A JP 2014168761 A JP2014168761 A JP 2014168761A JP 2013042684 A JP2013042684 A JP 2013042684A JP 2013042684 A JP2013042684 A JP 2013042684A JP 2014168761 A JP2014168761 A JP 2014168761A
Authority
JP
Japan
Prior art keywords
gas
liquid mixing
unit
liquid
liquid flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013042684A
Other languages
Japanese (ja)
Other versions
JP5692259B2 (en
Inventor
Shiro Takeuchi
史朗 竹内
Kenichi Hemmi
憲一 逸見
Junichiro Hoshizaki
潤一郎 星崎
Takashi Hata
隆志 秦
Yusuke Nishiuchi
悠祐 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Institute of National Colleges of Technologies Japan
Original Assignee
Mitsubishi Electric Corp
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Institute of National Colleges of Technologies Japan filed Critical Mitsubishi Electric Corp
Priority to JP2013042684A priority Critical patent/JP5692259B2/en
Publication of JP2014168761A publication Critical patent/JP2014168761A/en
Application granted granted Critical
Publication of JP5692259B2 publication Critical patent/JP5692259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Percussion Or Vibration Massage (AREA)
  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas and liquid mixing device capable of suppressing generated fine bubbles from increasing in diameter even when a gas introduction amount increases, and a bath hot water supply device with the same.SOLUTION: A gas and liquid mixing device 1A includes: a revolving liquid flow generation part 3 which generates a revolving liquid flow in a flow passage of a liquid; a revolving liquid flow acceleration part 4 which reduces the revolving diameter of the revolving liquid flow; a gas introduction part 6A which introduces a gas from outside; a gas and liquid mixing part 5A which generate fine bubbles by making the revolving liquid flow and the gas introduced by the gas introduction part 6A flow together; and introduced gas dispersing means 7A of dispersing the gas flowing together with the revolving liquid flow.

Description

本発明は、導入気体を微細化して液体に混合可能な気液混合装置およびこれを備えた風呂給湯装置に関する。   The present invention relates to a gas-liquid mixing apparatus capable of refining an introduced gas and mixing it with a liquid, and a bath water heater provided with the same.

液中に気体を均一に混合したり、微細気泡を発生したりする手段として、例えばベンチュリー式、キャビテーション式、加圧溶解式、旋回流式などの気液混合装置が用いられている。ベンチュリー式のものは、流路にくびれ部分を設け、該くびれ部分で流速が上がり負圧が形成されることで外部より気体を吸気し、くびれが広がる部分で圧力が上昇するために気泡が微細化されるという原理を利用している(例えば、特許文献1参照)。キャビテーション式のものは、ポンプ内に気液混合体を送り、例えば超音波振動を与えることでキャビテーションを利用して気泡を発生させる。また、加圧溶解式のものは、液体を流れる配管外から導入した外気をコンプレッサ等で加圧して液中に溶解し、減圧開放時に気泡が再析出する方式であり、装置が大型化するが、大量の気体を溶解させることが可能である。また、旋回流式のものは、液体の旋回流を形成し、気体と合一させることで、旋回流により気体がせん断破砕されて微細化される(例えば、特許文献2参照)。   As means for uniformly mixing a gas in a liquid or generating fine bubbles, for example, a Venturi type, a cavitation type, a pressure dissolution type, a swirl type or the like is used. Venturi type has a constricted part in the flow path, the flow rate increases at the constricted part and negative pressure is formed, so that gas is sucked in from the outside, and the pressure rises in the part where the constriction spreads, so the bubbles are fine (For example, refer to Patent Document 1). In the cavitation type, a gas-liquid mixture is sent into a pump, and bubbles are generated using cavitation by applying ultrasonic vibration, for example. The pressure-dissolving type is a method in which the outside air introduced from outside the pipe through which the liquid flows is pressurized with a compressor or the like and dissolved in the liquid, and bubbles reprecipitate when the pressure is released. It is possible to dissolve a large amount of gas. Further, in the swirl type, a swirl flow of liquid is formed and combined with the gas, so that the gas is sheared and pulverized by the swirl flow (see, for example, Patent Document 2).

特開2007−144394号公報JP 2007-144394 A 特許第4525890号公報Japanese Patent No. 4525890

微細気泡の発生量を増大するためには、気体導入量を増加する必要がある。一方で、液流を形成するポンプの仕様が制限される場合においては、経路内の流量、揚程、液圧等が限定されてしまう。旋回力は、流量、揚程、および液圧に大きく依存するため、得られる旋回力も限られてしまう。気体導入量を増加すると、導入された気体の全量をせん断しきれないため、大きい気泡も混ざって生成されてしまうという課題がある。   In order to increase the generation amount of fine bubbles, it is necessary to increase the gas introduction amount. On the other hand, in the case where the specifications of the pump that forms the liquid flow are limited, the flow rate in the path, the head, the hydraulic pressure, and the like are limited. Since the turning force largely depends on the flow rate, the head, and the hydraulic pressure, the obtained turning force is limited. When the gas introduction amount is increased, the entire amount of the introduced gas cannot be sheared, so that there is a problem that large bubbles are also generated.

本発明は、上述のような課題を解決するためになされたもので、気体導入量が増大しても、生成する微細気泡の径の拡大を抑制することができる気液混合装置、およびこれを備えた風呂給湯装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and a gas-liquid mixing device capable of suppressing the expansion of the diameter of the generated fine bubbles even when the amount of gas introduction increases, and the It aims at providing the provided hot-water supply apparatus.

本発明に係る気液混合装置は、液体の流路内に旋回液流を生成する旋回液流生成部と、旋回液流の旋回径を縮径させる旋回液流加速部と、外部から気体を取り込む気体導入部と、旋回液流と、気体導入部から取り込まれた気体とを合流させることにより、微細気泡を発生させる気液混合部と、旋回液流に合流する気体を分散させる導入気体分散手段と、を備えたものである。   A gas-liquid mixing apparatus according to the present invention includes a swirling liquid flow generating unit that generates a swirling liquid flow in a liquid flow path, a swirling liquid flow accelerating unit that reduces the swirling diameter of the swirling liquid flow, and gas from the outside. The gas introduction part to be introduced, the swirling liquid flow, and the gas taken in from the gas introduction part are joined to form a gas-liquid mixing part for generating fine bubbles, and the introduction gas dispersion to disperse the gas to be joined to the swirling liquid flow Means.

本発明によれば、気体導入量が増大しても、生成する微細気泡の径の拡大を抑制することが可能となる。   According to the present invention, it is possible to suppress the expansion of the diameter of the generated fine bubbles even if the gas introduction amount is increased.

本発明の実施の形態1の気液混合装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 1 of this invention. 図1に示す気液混合装置の一部を拡大した図である。It is the figure which expanded a part of gas-liquid mixing apparatus shown in FIG. 図1に示す気液混合装置が備える固定翼の斜視図である。It is a perspective view of the fixed wing | blade with which the gas-liquid mixing apparatus shown in FIG. 1 is provided. 本発明の実施の形態2の気液混合装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 2 of this invention. 本発明の実施の形態2の気液混合装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 2 of this invention. 図4中のX−X線断面図(横断面図)である。FIG. 6 is a cross-sectional view (transverse cross-sectional view) taken along line XX in FIG. 4. 本発明の実施の形態3の気液混合装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 3 of this invention. 図7中のY−Y線断面図(横断面図)である。It is the YY sectional view taken on the line in FIG. 本発明の風呂給湯装置の実施の形態を示す構成図である。It is a block diagram which shows embodiment of the bath hot-water supply apparatus of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
図1は、本発明の実施の形態1の気液混合装置を示す縦断面図である。図2は、図1に示す気液混合装置の一部を拡大した図である。図3は、図1に示す気液混合装置が備える固定翼の斜視図である。これらの図に示す本実施形態の気液混合装置1Aは、液体の流路に設けられ、液体中に気体を導入して混合させるものである。
Embodiment 1 FIG.
1 is a longitudinal sectional view showing a gas-liquid mixing apparatus according to Embodiment 1 of the present invention. FIG. 2 is an enlarged view of a part of the gas-liquid mixing apparatus shown in FIG. FIG. 3 is a perspective view of a fixed wing provided in the gas-liquid mixing apparatus shown in FIG. A gas-liquid mixing apparatus 1A of the present embodiment shown in these drawings is provided in a liquid flow path, and introduces and mixes gas into the liquid.

図1に示すように、気液混合装置1Aは、液体の流れを旋回させる旋回液流生成部3と、旋回液流生成部3で生成した旋回液流を縮径させる旋回液流加速部4と、旋回液流加速部4の下流側に設けられた気液混合部5Aと、外部から気体を取り込む気体導入部6Aと、導入気体分散手段7Aと、拡径部9とを備えている。図1において、液体は、気液混合装置1A内を左から右へ進行する。この液体の進行方向を、以下、「進行方向TD」と称する。   As shown in FIG. 1, the gas-liquid mixing apparatus 1 </ b> A includes a swirl liquid flow generation unit 3 that swirls the liquid flow, and a swirl liquid flow acceleration unit 4 that reduces the diameter of the swirl liquid flow generated by the swirl liquid flow generation unit 3. And a gas-liquid mixing part 5A provided on the downstream side of the swirling liquid flow acceleration part 4, a gas introduction part 6A for taking in gas from the outside, an introduction gas dispersion means 7A, and a diameter expansion part 9. In FIG. 1, the liquid proceeds from the left to the right in the gas-liquid mixing apparatus 1A. Hereinafter, the traveling direction of the liquid is referred to as “traveling direction TD”.

旋回液流生成部3は、進行方向TDと平行な直線を中心とする略円柱状の内部空間を有している。旋回液流生成部3の内径は、進行方向TDに沿ってほぼ一定になっている。図3に示すように、旋回液流生成部3内には、固定翼8が設置されている。本実施形態では、複数(図示の構成では2枚)の固定翼8が設けられている。各固定翼8は、旋回液流生成部3の流路の内壁に固定されている。気液混合装置1Aに流入した液流は、固定翼8を通過することにより、旋回液流生成部3の軸線を中心に旋回させられ、旋回液流が生成される。固定翼8は、上流部は進行方向TDにほぼ平行方向に形成され、下流部では進行方向TDに略垂直な方向に立ち上がる円弧形状をなすように形成されている。この円弧形状の弦角が小さいほど、急速な立ち上がり形状になるため、高速の旋回液流速を形成することができる点で好ましい。その一方で、弦角が小さい翼形状では、圧力損失が高くなってしまい、また、流路の開口面積が小さくなるために毛髪などの異物が翼間に詰まりやすくなる。図示の構成では、2枚の固定翼8間に、異物が通過可能な隙間10を設けていることにより、異物の詰まりを抑制することができる。   The swirling liquid flow generation unit 3 has a substantially cylindrical internal space centered on a straight line parallel to the traveling direction TD. The inner diameter of the swirling liquid flow generating unit 3 is substantially constant along the traveling direction TD. As shown in FIG. 3, fixed wings 8 are installed in the swirling liquid flow generation unit 3. In the present embodiment, a plurality (two in the illustrated configuration) of fixed wings 8 are provided. Each fixed blade 8 is fixed to the inner wall of the flow path of the swirling liquid flow generating unit 3. The liquid flow that has flowed into the gas-liquid mixing apparatus 1 </ b> A passes through the fixed blade 8, and is swirled around the axis of the swirling liquid flow generating unit 3 to generate a swirling liquid flow. The fixed wing 8 is formed so that the upstream portion is formed in a direction substantially parallel to the traveling direction TD, and the downstream portion is formed in an arc shape that rises in a direction substantially perpendicular to the traveling direction TD. The smaller the chord angle of the arc shape, the faster the rising shape, which is preferable in that a high-speed swirling fluid flow rate can be formed. On the other hand, in a wing shape with a small chord angle, pressure loss is high, and since the opening area of the flow path is small, foreign matters such as hair are easily clogged between the wings. In the illustrated configuration, the clogging of foreign matter can be suppressed by providing a gap 10 through which the foreign matter can pass between the two fixed blades 8.

旋回液流加速部4は、旋回液流生成部3の下流側に、旋回液流生成部3に対し同心的に設けられている。旋回液流加速部4の内径は、進行方向TDに向かって内径が連続的あるいは多段的に縮小している。本実施形態の旋回液流加速部4は、略円錐状(略円錐台状)の内部空間を有している。旋回液流加速部4の上流端の内径は、旋回液流生成部3の内径に等しくなっている。旋回液流加速部4の内径が最も小さくなった最小内径部分は、旋回液流加速部4の下流端に位置する。   The swirl liquid flow acceleration unit 4 is provided concentrically with the swirl liquid flow generation unit 3 on the downstream side of the swirl liquid flow generation unit 3. The inner diameter of the swirling liquid flow acceleration unit 4 is continuously or multistagely reduced in the traveling direction TD. The swirling fluid flow acceleration unit 4 of the present embodiment has a substantially conical (substantially truncated cone) internal space. The inner diameter of the upstream end of the swirl fluid flow acceleration unit 4 is equal to the inner diameter of the swirl fluid flow generation unit 3. The minimum inner diameter portion where the inner diameter of the swirling liquid flow acceleration unit 4 is the smallest is located at the downstream end of the swirling liquid flow acceleration unit 4.

旋回液流生成部3で生成された旋回液流は、旋回液流加速部4を通過して旋回径が縮径されることにより加速される。旋回液流加速部4では、旋回液流を、圧力損失をなるべく少なくして縮径させることにより高速化することが望ましい。そのためには、旋回液流加速部4の内壁面は、高密度で粗度の小さい材料で形成されていることが望ましい。   The swirling liquid flow generated by the swirling liquid flow generating unit 3 is accelerated by passing through the swirling liquid flow accelerating unit 4 and reducing the swirling diameter. In the swirling fluid flow acceleration unit 4, it is desirable to increase the speed of the swirling fluid flow by reducing the diameter while reducing the pressure loss as much as possible. For this purpose, it is desirable that the inner wall surface of the swirling liquid flow acceleration unit 4 is formed of a material having high density and low roughness.

気液混合部5Aは、旋回液流加速部4の下流側に、旋回液流加速部4に対し同心的に設けられている。気液混合部5Aの内径は、旋回液流加速部4の最小内径とほぼ同じ径(図1中のαで示す長さ)になっている。本実施形態では、気液混合部5Aの下流側には、進行方向TDに向かって内径が連続的に拡大する拡径部9が設けられている。   The gas-liquid mixing unit 5 </ b> A is provided concentrically with the swirl liquid flow acceleration unit 4 on the downstream side of the swirl liquid flow acceleration unit 4. The inner diameter of the gas-liquid mixing section 5A is substantially the same diameter (length indicated by α in FIG. 1) as the minimum inner diameter of the swirling liquid flow acceleration section 4. In the present embodiment, an enlarged diameter portion 9 whose inner diameter continuously increases toward the traveling direction TD is provided on the downstream side of the gas-liquid mixing portion 5A.

気体導入部6Aは、気液混合部5Aの外周部から外方へ突出するように形成されている。この気体導入部6Aには、気液混合部5A内に導入される気体が通る流路となる気体通路6aが形成されている。気体通路6aは、気液混合部5Aの外周側から気液混合部5A内に貫通するように形成されている。図示の構成では、気体通路6aは、進行方向TDに対しほぼ直交する方向になっているが、気体通路6aが進行方向TDに対して傾斜していてもよい。また、図示を省略するが、気体導入部6Aには、運転停止時などに液体が気体導入部6Aへ逆流することを防ぐための逆止弁が設けられていることが好ましい。   6 A of gas introduction parts are formed so that it may protrude outward from the outer peripheral part of 5 A of gas-liquid mixing parts. A gas passage 6a serving as a flow path through which the gas introduced into the gas-liquid mixing unit 5A passes is formed in the gas introduction unit 6A. The gas passage 6a is formed so as to penetrate from the outer peripheral side of the gas-liquid mixing unit 5A into the gas-liquid mixing unit 5A. In the illustrated configuration, the gas passage 6a is in a direction substantially orthogonal to the traveling direction TD, but the gas passage 6a may be inclined with respect to the traveling direction TD. Although not shown, it is preferable that the gas introduction unit 6A is provided with a check valve for preventing the liquid from flowing back to the gas introduction unit 6A when the operation is stopped.

旋回液流加速部4で加速された旋回液流が気液混合部5A内に流入することにより、気液混合部5A内に負圧が発生し、この負圧により気体導入部6Aから気体が気液混合部5A内に自然吸気される。気液混合部5A内では、加速された旋回液流と、気体導入部6Aから導入された気体とが合流(合一)することにより、微細気泡が生成される。本実施形態では、気体が旋回液流によりせん断破砕され、微細化されて液体中に効率良く混合するので、大量の微細気泡を効率良く生成することができる。   When the swirling liquid flow accelerated by the swirling liquid flow accelerating unit 4 flows into the gas-liquid mixing unit 5A, a negative pressure is generated in the gas-liquid mixing unit 5A, and the gas is introduced from the gas introduction unit 6A by this negative pressure. Naturally sucked into the gas-liquid mixing unit 5A. In the gas-liquid mixing unit 5A, the accelerated swirling liquid flow and the gas introduced from the gas introduction unit 6A join (unify) to generate fine bubbles. In the present embodiment, the gas is sheared and crushed by the swirling liquid flow, and is refined and mixed efficiently in the liquid, so that a large amount of fine bubbles can be efficiently generated.

図2に示すように、本実施形態における導入気体分散手段7Aは、気体が通過可能な複数の孔7aを有するメッシュ状または多孔質状の板状部材で構成されている。導入気体分散手段7Aは、気体導入部6Aと気液混合部5Aとの境界部付近、すなわち、気体導入部6Aの出口付近に設けられている。また、本実施形態では、導入気体分散手段7Aは、気体通路6aの出口を覆うように配置されている。気体導入部6Aから導入された気体は、導入気体分散手段7Aの孔7aを通って気液混合部5A内に流入し、旋回液流に合流する。   As shown in FIG. 2, the introduction gas dispersion means 7A in the present embodiment is configured by a mesh-like or porous plate-like member having a plurality of holes 7a through which gas can pass. The introduction gas dispersion means 7A is provided near the boundary between the gas introduction part 6A and the gas-liquid mixing part 5A, that is, near the outlet of the gas introduction part 6A. In the present embodiment, the introduction gas dispersion means 7A is disposed so as to cover the outlet of the gas passage 6a. The gas introduced from the gas introduction part 6A flows into the gas-liquid mixing part 5A through the hole 7a of the introduction gas dispersion means 7A, and joins the swirl liquid flow.

気液混合装置1Aに流入する液流の流量が大きい場合や、気液混合装置1Aの下流の圧力が低い場合には、気体導入部6Aから流入する気体量は増大する。そのように気体導入量が増大したときでも、導入された気体が、旋回液流に合流する際に、導入気体分散手段7Aの複数の孔7aを通って分散されることにより、気体(気泡)の表面積がほぼ一定になり、その気泡が旋回液流により更にせん断される。このため、旋回液流によりせん断されて生成する微細気泡の径もほぼ一定に維持することができ、径の大きい微細気泡(例えば気泡径が100μm以上)が混じって生成することを確実に抑制することができる。特に、本実施形態では、導入気体分散手段7Aをメッシュ状または多孔質状の部材で構成したことにより、導入された気体を、多数の孔7aに通して細かく分散させることができる。これにより、径の大きい微細気泡の生成をより確実に抑制することができる。   When the flow rate of the liquid flow flowing into the gas-liquid mixing apparatus 1A is large, or when the pressure downstream of the gas-liquid mixing apparatus 1A is low, the amount of gas flowing in from the gas introduction unit 6A increases. Even when the amount of introduced gas increases as described above, the introduced gas is dispersed through the plurality of holes 7a of the introduction gas dispersion means 7A when joining the swirling liquid flow. And the bubbles are further sheared by the swirling liquid flow. For this reason, the diameter of the fine bubbles generated by being sheared by the swirling liquid flow can be maintained substantially constant, and the generation of a mixture of fine bubbles having a large diameter (for example, a bubble diameter of 100 μm or more) is reliably suppressed. be able to. In particular, in the present embodiment, the introduced gas dispersion means 7A is constituted by a mesh-like or porous member, so that the introduced gas can be finely dispersed through the numerous holes 7a. Thereby, the production | generation of a microbubble with a large diameter can be suppressed more reliably.

実施の形態2.
次に、図4乃至図6を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図4および図5は、それぞれ、本発明の実施の形態2の気液混合装置を示す縦断面図である。図4の切断面と、図5の切断面とは、直交している。図6は、図4中のX−X線断面図(横断面図)である。
Embodiment 2. FIG.
Next, the second embodiment of the present invention will be described with reference to FIG. 4 to FIG. 6. The description will focus on the differences from the first embodiment described above, and the same or corresponding parts will be denoted by the same reference numerals. The description is omitted. 4 and 5 are longitudinal sectional views showing a gas-liquid mixing apparatus according to Embodiment 2 of the present invention. The cut surface of FIG. 4 and the cut surface of FIG. 5 are orthogonal to each other. 6 is a cross-sectional view (transverse cross-sectional view) taken along line XX in FIG.

図4および図5に示すように、本実施の形態2の気液混合装置1Bは、旋回液流生成部3と、旋回液流加速部4と、気液混合部5Bと、気体導入部6Bと、導入気体分散手段7Bと、拡径部9とを備えている。   As shown in FIGS. 4 and 5, the gas-liquid mixing device 1B of the second embodiment includes a swirling liquid flow generating unit 3, a swirling liquid flow accelerating unit 4, a gas-liquid mixing unit 5B, and a gas introducing unit 6B. And an introduction gas dispersion means 7B and an enlarged diameter portion 9.

気液混合部5Bは、旋回液流加速部4の下流側に、旋回液流加速部4に対し同心的に設けられている。気液混合部5Bの内径は、旋回液流加速部4の最小内径に比べて大きくなっている。本実施形態では、気液混合部5Bの内径は、進行方向TDに沿ってほぼ一定になっている。すなわち、気液混合部5Bは、略円柱状の内部空間を有している。   The gas-liquid mixing unit 5 </ b> B is provided concentrically with the swirl liquid flow acceleration unit 4 on the downstream side of the swirl liquid flow acceleration unit 4. The inner diameter of the gas-liquid mixing section 5B is larger than the minimum inner diameter of the swirling liquid flow acceleration section 4. In the present embodiment, the inner diameter of the gas-liquid mixing unit 5B is substantially constant along the traveling direction TD. That is, the gas-liquid mixing part 5B has a substantially cylindrical internal space.

また、気液混合装置1Bには、旋回液流加速部4の内周面の下流端4a(すなわち旋回液流加速部4の最小内径部分の内周)から外周側に広がって気液混合部5Bの内周面の上流端5aに繋がる内壁面として、リング状の壁面2が形成されている。図示の構成では、リング状の壁面2は、進行方向TDに対し垂直な円環状の平面をなしている。リング状の壁面2は、図示の構成に限らず、その一部または全部が曲面で構成されていてもよい。また、気液混合部5Bの内周面とリング状の壁面2との角部や、旋回液流加速部4の内周面とリング状の壁面2との角部に、R(アール)形状のような丸みを設けてもよい。   Further, the gas-liquid mixing device 1B has a gas-liquid mixing unit that extends from the downstream end 4a of the inner peripheral surface of the swirling liquid flow acceleration unit 4 (that is, the inner periphery of the minimum inner diameter portion of the swirling liquid flow acceleration unit 4) to the outer peripheral side. A ring-shaped wall surface 2 is formed as an inner wall surface connected to the upstream end 5a of the inner peripheral surface of 5B. In the illustrated configuration, the ring-shaped wall surface 2 forms an annular plane perpendicular to the traveling direction TD. The ring-shaped wall surface 2 is not limited to the illustrated configuration, and a part or all of the ring-shaped wall surface 2 may be configured by a curved surface. In addition, an R (R) shape is formed at the corner between the inner peripheral surface of the gas-liquid mixing unit 5B and the ring-shaped wall surface 2 or at the corner between the inner peripheral surface of the swirling liquid flow acceleration unit 4 and the ring-shaped wall surface 2. You may provide roundness like.

図6に示すように、気体導入部6Bは、気液混合部5Bの内周面の接線方向に沿って気体を気液混合部5B内に流入させるように構成されている。すなわち、気体導入部6Bは、以下のように構成されている。気体導入部6Bの中心線を気液混合部5B内に延長した直線は、気液混合部5Bの中心を通らず、中心からずれた位置を通る。また、進行方向TDと直交する平面で気液混合部5Bおよび気体導入部6Bを切断した図6のような断面において、気体導入部6Bの内壁のうち気液混合部5Bの中心からの距離が遠い方の内壁6bは、気液混合部5Bの内周面の接線になっている。あるいは、上記断面において、内壁6bが気液混合部5Bの内周面の接線に必ずしも完全に一致していなくても良く、内壁6bの近傍で内壁6bに並行する流線を気液混合部5B内に延長した直線が、気液混合部5Bの内径以下であって旋回液流加速部4の最小内径より大きい直径の円の接線になっていればよい。   As shown in FIG. 6, the gas introduction part 6B is configured to allow gas to flow into the gas-liquid mixing part 5B along the tangential direction of the inner peripheral surface of the gas-liquid mixing part 5B. That is, the gas introduction part 6B is configured as follows. A straight line obtained by extending the center line of the gas introduction part 6B into the gas-liquid mixing part 5B does not pass through the center of the gas-liquid mixing part 5B but passes through a position shifted from the center. Further, in the cross section as shown in FIG. 6 in which the gas-liquid mixing unit 5B and the gas introduction unit 6B are cut along a plane orthogonal to the traveling direction TD, the distance from the center of the gas-liquid mixing unit 5B is the inner wall of the gas introduction unit 6B. The far inner wall 6b is tangent to the inner peripheral surface of the gas-liquid mixing part 5B. Or in the said cross section, the inner wall 6b does not necessarily correspond to the tangent of the internal peripheral surface of the gas-liquid mixing part 5B, and the streamline parallel to the inner wall 6b in the vicinity of the inner wall 6b is shown in the gas-liquid mixing part 5B. The straight line extending inward may be a tangent to a circle having a diameter that is equal to or smaller than the inner diameter of the gas-liquid mixing unit 5B and larger than the minimum inner diameter of the swirling liquid flow acceleration unit 4.

このようにして、気体導入部6Bが気液混合部5Bの内周面の接線方向に沿って気体を気液混合部5B内に流入させるように構成されていることにより、図6に示すように、気体導入部6Bを通って気液混合部5Bに流入した気体を、気液混合部5Bの内周面に沿って所定の方向(本実施形態では、図6中で反時計回り)に効率良く旋回させることができる。   As shown in FIG. 6, the gas introduction part 6B is configured to flow the gas into the gas-liquid mixing part 5B along the tangential direction of the inner peripheral surface of the gas-liquid mixing part 5B. In addition, the gas that has flowed into the gas-liquid mixing unit 5B through the gas introduction unit 6B is moved in a predetermined direction along the inner peripheral surface of the gas-liquid mixing unit 5B (in this embodiment, counterclockwise in FIG. 6). It can be turned efficiently.

導入気体分散手段7Bは、気液混合部5B内に同心的に設けられている。導入気体分散手段7Bは、気体が通過可能な複数の孔を側面に有する、筒状部材(円筒状部材)で構成されている。特に、導入気体分散手段7Bは、気体が通過可能な多数の孔を有するメッシュ状または多孔質状の部材で構成されていることが好ましい。導入気体分散手段7Bの内径は、旋回液流加速部4の最小内径とほぼ同じであることが好ましい。気体導入部6Bから気液混合部5B内に流入した気体は、気液混合部5Bの内周面と、導入気体分散手段7Bの外周面との間を通って旋回可能である。   The introduction gas dispersion means 7B is provided concentrically in the gas-liquid mixing unit 5B. The introduction gas dispersion means 7B is composed of a cylindrical member (cylindrical member) having a plurality of holes through which gas can pass on the side surface. In particular, the introduction gas dispersion means 7B is preferably composed of a mesh-like or porous member having a large number of holes through which gas can pass. The inner diameter of the introduction gas dispersion means 7B is preferably substantially the same as the minimum inner diameter of the swirling liquid flow acceleration unit 4. The gas that has flowed into the gas-liquid mixing unit 5B from the gas introduction unit 6B can swivel between the inner peripheral surface of the gas-liquid mixing unit 5B and the outer peripheral surface of the introduction gas dispersion means 7B.

次に、本実施の形態2の気液混合装置1Bの動作について説明する。旋回液流加速部4で加速された旋回液流が気液混合部5B内に流入することにより、気液混合部5B内に負圧が発生し、この負圧により気体導入部6Bから気体が気液混合部5B内に自然吸気される。気液混合部5B内では、加速された旋回液流と、気体導入部6Bから導入された気体とが合流(合一)して、微細気泡が生成される。図6に示すように、気液混合部5Bに流入した気体は、気液混合部5Bの内周面に沿って、旋回液流と同方向に旋回する。このようにして、気液混合部5Bの内周面に沿って旋回する気体と、気液混合部5B内に流入した旋回液流とが接触することにより、気体がせん断破砕されて微細化される。   Next, operation | movement of the gas-liquid mixing apparatus 1B of this Embodiment 2 is demonstrated. When the swirl liquid flow accelerated by the swirl liquid flow acceleration unit 4 flows into the gas-liquid mixing unit 5B, a negative pressure is generated in the gas-liquid mixing unit 5B, and the gas is introduced from the gas introduction unit 6B by this negative pressure. Naturally sucked into the gas-liquid mixing unit 5B. In the gas-liquid mixing unit 5B, the accelerated swirling liquid flow and the gas introduced from the gas introduction unit 6B merge (unify) to generate fine bubbles. As shown in FIG. 6, the gas that has flowed into the gas-liquid mixing unit 5B swirls in the same direction as the swirling liquid flow along the inner peripheral surface of the gas-liquid mixing unit 5B. Thus, the gas swirling along the inner peripheral surface of the gas-liquid mixing unit 5B and the swirling liquid flow flowing into the gas-liquid mixing unit 5B come into contact with each other, whereby the gas is sheared and pulverized. The

旋回液流加速部4から気液混合部5Bに流入した直後の旋回液流の直径は、旋回液流加速部4の最小内径にほぼ等しい。一方、気液混合部5Bの内径は、旋回液流加速部4の最小内径より大きい。これにより、気液混合部5B内では、旋回液流の外側に、気体導入部6Bから導入された気体の流路として機能するリング状(円環状)の空間を確保できる。このような構成により、旋回液流の流れを妨げることなく吸気することができるので、吸気量を増大することができる。また、気体導入部6Bから導入された気体が、旋回液流の外周側を旋回するように吸気されるため、旋回液流と導入気体との接触面積を増大することができる。その結果、旋回液流によりせん断される気体量が増加するため、微細気泡の生成量も増加する。   The diameter of the swirl liquid flow immediately after flowing into the gas-liquid mixing unit 5B from the swirl liquid flow acceleration unit 4 is substantially equal to the minimum inner diameter of the swirl liquid flow acceleration unit 4. On the other hand, the inner diameter of the gas-liquid mixing unit 5B is larger than the minimum inner diameter of the swirling liquid flow acceleration unit 4. Thereby, in the gas-liquid mixing part 5B, the ring-shaped (annular) space which functions as a flow path of the gas introduced from the gas introduction part 6B can be secured outside the swirling liquid flow. With such a configuration, the intake air can be increased without disturbing the flow of the swirling liquid flow, so that the intake air amount can be increased. Further, since the gas introduced from the gas introduction part 6B is sucked so as to swirl around the outer periphery of the swirling liquid flow, the contact area between the swirling liquid flow and the introduced gas can be increased. As a result, the amount of gas that is sheared by the swirling liquid flow increases, and the amount of fine bubbles generated also increases.

また、旋回液流加速部4の下流端4aと、気液混合部5Bの上流端5aとの境界の段差部は、リング状の壁面2によって閉じられており、気体導入部6Bからの気体の流入部のみ開口する構造とすることで、気液混合部5B内および気体導入部6B内での乱流形成を抑制することができる。その結果、旋回液流加速部4の最小内径部分の付近で形成される負圧を損失なく気体導入部6Bでも形成できる。   Further, the stepped portion at the boundary between the downstream end 4a of the swirling liquid flow accelerating unit 4 and the upstream end 5a of the gas-liquid mixing unit 5B is closed by the ring-shaped wall surface 2, and the gas from the gas introducing unit 6B By adopting a structure in which only the inflow part is opened, turbulent flow formation in the gas-liquid mixing part 5B and the gas introduction part 6B can be suppressed. As a result, the negative pressure formed in the vicinity of the minimum inner diameter portion of the swirling fluid flow acceleration unit 4 can be formed even in the gas introduction unit 6B without loss.

気液混合部5B内に形成される負圧は、気液混合部5Bの上流端で最も大きく、下流に進むにつれて負圧は弱まる。本実施形態では、気体導入部6Bの気体導入部6Bが、気液混合部5Bの上流端付近に連通するように構成している。これにより、負圧の大きい位置で吸気することができるので、吸気量を増大させることができ、気体溶解量および微細気泡生成量も増大させることができる。また、本実施形態では、図5に示すように、気体導入部6Bが気液混合部5Bの内壁に形成する開口がリング状の壁面2に接して形成されており、リング状の壁面2と気体導入部6Bの内壁とが段差無く連続している。これにより、吸気量を更に増大させることができ、気体溶解量および微細気泡生成量も更に増大させることができる。   The negative pressure formed in the gas-liquid mixing unit 5B is the largest at the upstream end of the gas-liquid mixing unit 5B, and the negative pressure decreases as it goes downstream. In the present embodiment, the gas introduction part 6B of the gas introduction part 6B is configured to communicate with the vicinity of the upstream end of the gas-liquid mixing part 5B. Thereby, since intake can be performed at a position where the negative pressure is large, the intake amount can be increased, and the gas dissolution amount and the fine bubble generation amount can also be increased. Further, in the present embodiment, as shown in FIG. 5, the opening formed by the gas introduction part 6B on the inner wall of the gas-liquid mixing part 5B is formed in contact with the ring-shaped wall surface 2, and the ring-shaped wall surface 2 and The inner wall of the gas introduction part 6B is continuous without a step. Thereby, the amount of intake air can be further increased, and the amount of dissolved gas and the amount of generated fine bubbles can be further increased.

気体導入部6Bから気液混合部5B内に導入された気体は、導入気体分散手段7Bの側面の複数の孔を通って、旋回液流に合流(合一)する。気液混合装置1Bに流入する液流の流量が大きい場合や、気液混合装置1Bの下流の圧力が低い場合には、気体導入部6Bから流入する気体量は増大する。そのように気体導入量が増大したときでも、導入された気体が、旋回液流に合流する際に、導入気体分散手段7Bの側面の複数の孔を通って分散されることにより、気体(気泡)の表面積がほぼ一定になり、その気泡が旋回液流により更にせん断される。このため、旋回液流によりせん断されて生成する微細気泡の径もほぼ一定に維持することができ、径の大きい微細気泡(例えば気泡径が100μm以上)が混じって生成することを確実に抑制することができる。また、本実施の形態2では、導入気体分散手段7Bをメッシュ状または多孔質状の部材で構成したことにより、導入された気体を、導入気体分散手段7Bの側面の多数の孔に通して細かく分散させることができる。これにより、径の大きい微細気泡の生成をより確実に抑制することができる。   The gas introduced from the gas introduction part 6B into the gas-liquid mixing part 5B joins (joins) the swirl liquid flow through a plurality of holes on the side surface of the introduction gas dispersion means 7B. When the flow rate of the liquid flow flowing into the gas-liquid mixing device 1B is large or when the pressure downstream of the gas-liquid mixing device 1B is low, the amount of gas flowing in from the gas introduction unit 6B increases. Even when the amount of introduced gas is increased, the introduced gas is dispersed through the plurality of holes on the side surface of the introduction gas dispersion means 7B when it joins the swirling liquid flow. ) Becomes substantially constant, and the bubbles are further sheared by the swirling liquid flow. For this reason, the diameter of the fine bubbles generated by being sheared by the swirling liquid flow can be maintained substantially constant, and the generation of a mixture of fine bubbles having a large diameter (for example, a bubble diameter of 100 μm or more) is reliably suppressed. be able to. Further, in the second embodiment, since the introduction gas dispersion means 7B is configured by a mesh-like or porous member, the introduced gas is finely passed through many holes on the side surface of the introduction gas dispersion means 7B. Can be dispersed. Thereby, the production | generation of a microbubble with a large diameter can be suppressed more reliably.

一般的には、気体導入部6Bが気液混合部5Bの内壁に形成する開口が広いほど、吸気量を増大することができる。しかしながら、気液混合部5B内の下流側ほど負圧が小さくなるため、気体導入部6Bが気液混合部5Bの内壁に形成する開口の大きさを進行方向TDに沿って測った長さ(図5中のβで示す長さ)を長くして、この開口を下流側に広げるように構成すると、気体導入部6Bに作用する負圧が小さくなり、好ましくない。特に、気液混合装置1Bより下流側の流路の圧力損失が大きい場合には、気液混合部5B内で下流側に向かって負圧が低下する率が大きくなるため、気体導入部6Bが気液混合部5Bの内壁に形成する開口を下流側に広げることは好ましくない。このような事項に鑑みて、本実施の形態2では、気体導入部6Bが気液混合部5Bの内壁に形成する開口の大きさを進行方向TDに沿って測った長さβが、この開口の大きさを気液混合部5Bの内径に等しい直径の円に沿って測った円弧の長さより短くすることが好ましい。このような構成により、気体導入部6Bが気液混合部5Bの内壁に形成する開口を下流側に広げることなく開口面積を大きくすることができるので、吸気量を増大させることができ、気体溶解量および微細気泡生成量も増大させることができる。   In general, the larger the opening formed in the inner wall of the gas-liquid mixing unit 5B by the gas introduction unit 6B, the larger the intake amount. However, since the negative pressure decreases toward the downstream side in the gas-liquid mixing unit 5B, the length of the opening formed in the inner wall of the gas-liquid mixing unit 5B by the gas introduction unit 6B measured along the traveling direction TD ( It is not preferable to increase the length (indicated by β in FIG. 5) and widen the opening toward the downstream side because the negative pressure acting on the gas introducing portion 6B is reduced. In particular, when the pressure loss in the flow path on the downstream side of the gas-liquid mixing device 1B is large, the rate at which the negative pressure decreases toward the downstream side in the gas-liquid mixing unit 5B increases. It is not preferable to widen the opening formed in the inner wall of the gas-liquid mixing part 5B to the downstream side. In view of such matters, in the second embodiment, the length β of the size of the opening formed in the inner wall of the gas-liquid mixing unit 5B by the gas introduction unit 6B measured along the traveling direction TD is the opening β. Is preferably shorter than the length of the arc measured along a circle having a diameter equal to the inner diameter of the gas-liquid mixing part 5B. With such a configuration, the opening area can be increased without widening the opening formed in the inner wall of the gas-liquid mixing section 5B by the gas introduction part 6B, so that the intake air amount can be increased and the gas dissolution can be increased. The amount and the amount of fine bubbles generated can also be increased.

実施の形態3.
次に、図7および図8を参照して、本発明の実施の形態3について説明するが、上述した実施の形態との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図7は、本発明の実施の形態3の気液混合装置を示す縦断面図である。図8は、図7中のY−Y線断面図(横断面図)である。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIGS. 7 and 8. The description will focus on the differences from the above-described embodiment, and the same or corresponding parts will be denoted by the same reference numerals. The description is omitted. FIG. 7 is a longitudinal sectional view showing a gas-liquid mixing apparatus according to Embodiment 3 of the present invention. 8 is a cross-sectional view (transverse cross-sectional view) taken along the line YY in FIG.

図7に示すように、本実施の形態3の気液混合装置1Cは、旋回液流生成部3と、旋回液流加速部4と、気液混合部5Cと、気体導入部6Cと、導入気体分散手段7Cと、拡径部9とを備えている。   As shown in FIG. 7, the gas-liquid mixing device 1C of the third embodiment includes a swirling liquid flow generating unit 3, a swirling liquid flow accelerating unit 4, a gas-liquid mixing unit 5C, a gas introducing unit 6C, and an introduction. A gas dispersing means 7C and an enlarged diameter portion 9 are provided.

気液混合部5Cは、旋回液流加速部4の下流側に、旋回液流加速部4に対し同心的に設けられている。気液混合部5Cの内径は、旋回液流加速部4の最小内径に比べて大きくなっている。本実施形態では、気液混合部5Cの内径は、進行方向TDに沿ってほぼ一定になっている。すなわち、気液混合部5Cは、略円柱状の内部空間を有している。   The gas-liquid mixing unit 5 </ b> C is provided concentrically with the swirl liquid flow acceleration unit 4 on the downstream side of the swirl liquid flow acceleration unit 4. The inner diameter of the gas-liquid mixing unit 5C is larger than the minimum inner diameter of the swirling liquid flow acceleration unit 4. In the present embodiment, the inner diameter of the gas-liquid mixing unit 5C is substantially constant along the traveling direction TD. That is, the gas-liquid mixing unit 5C has a substantially cylindrical internal space.

また、気液混合装置1Cには、旋回液流加速部4の内周面の下流端4a(すなわち旋回液流加速部4の最小内径部分の内周)から外周側に広がって気液混合部5Cの内周面の上流端5aに繋がる内壁面として、リング状の壁面2が形成されている。図示の構成では、リング状の壁面2は、進行方向TDに対し垂直な円環状の平面をなしている。   Further, the gas-liquid mixing device 1C has a gas-liquid mixing unit that extends from the downstream end 4a of the inner peripheral surface of the swirling liquid flow acceleration unit 4 (that is, the inner periphery of the minimum inner diameter portion of the swirling liquid flow acceleration unit 4) to the outer peripheral side. A ring-shaped wall surface 2 is formed as an inner wall surface connected to the upstream end 5a of the inner peripheral surface of 5C. In the illustrated configuration, the ring-shaped wall surface 2 forms an annular plane perpendicular to the traveling direction TD.

図8に示すように、気体導入部6Cは、実施の形態2と同様に、気液混合部5Cの内周面の接線方向に沿って気体を気液混合部5C内に流入させるように構成されている。気体導入部6Cが気液混合部5Cの内周面の接線方向に沿って気体を気液混合部5C内に流入させるように構成されていることにより、気体導入部6Cを通って気液混合部5Cに流入した気体を、気液混合部5Cの内周面に沿って所定の方向(本実施形態では、図6中で反時計回り)に効率良く旋回させることができる。   As shown in FIG. 8, the gas introduction part 6C is configured to cause gas to flow into the gas-liquid mixing part 5C along the tangential direction of the inner peripheral surface of the gas-liquid mixing part 5C, as in the second embodiment. Has been. The gas introduction part 6C is configured to flow gas into the gas-liquid mixing part 5C along the tangential direction of the inner peripheral surface of the gas-liquid mixing part 5C, so that the gas-liquid mixing is performed through the gas introduction part 6C. The gas flowing into the part 5C can be efficiently swirled in a predetermined direction (in the present embodiment, counterclockwise in FIG. 6) along the inner peripheral surface of the gas-liquid mixing part 5C.

図7に示すように、導入気体分散手段7Cは、気体通路7dおよび複数の孔7bを有している。気体通路7dは、気液混合部5C内に流入した気体を、リング状の壁面2に沿って旋回させる円筒状あるいは円環状の通路である。複数の孔7bは、気体通路7dの、リング状の壁面2に対向する壁面を貫通する孔である。図8に示すように、本実施形態では、4個の孔7bが、気液混合部5Cの中心に対する角度が等間隔(90°間隔)になるように配置されている。   As shown in FIG. 7, the introduction gas dispersion means 7C has a gas passage 7d and a plurality of holes 7b. The gas passage 7d is a cylindrical or annular passage that swirls the gas flowing into the gas-liquid mixing unit 5C along the ring-shaped wall surface 2. The plurality of holes 7b are holes that penetrate the wall surface of the gas passage 7d that faces the ring-shaped wall surface 2. As shown in FIG. 8, in the present embodiment, the four holes 7b are arranged so that the angles with respect to the center of the gas-liquid mixing unit 5C are equally spaced (90 ° intervals).

次に、本実施の形態3の気液混合装置1Cの動作について説明する。旋回液流加速部4で加速された旋回液流が気液混合部5C内に流入することにより、気液混合部5C内に負圧が発生し、この負圧により気体導入部6Cから気体が気液混合部5C内に自然吸気される。気液混合部5C内では、加速された旋回液流と、気体導入部6Cから導入された気体とが合流(合一)して、微細気泡が生成される。図8に示すように、気液混合部5Cに流入した気体は、導入気体分散手段7Cの気体通路7d内を旋回液流と同方向に旋回し、孔7bから出て旋回を続けながら旋回液流に合流し、せん断破砕されて微細気泡になる。   Next, operation | movement of 1 C of gas-liquid mixing apparatuses of this Embodiment 3 is demonstrated. When the swirling liquid flow accelerated by the swirling liquid flow accelerating unit 4 flows into the gas-liquid mixing unit 5C, a negative pressure is generated in the gas-liquid mixing unit 5C, and the gas is introduced from the gas introduction unit 6C by this negative pressure. Naturally sucked into the gas-liquid mixing unit 5C. In the gas-liquid mixing unit 5C, the accelerated swirling liquid flow and the gas introduced from the gas introduction unit 6C join (unify) to generate fine bubbles. As shown in FIG. 8, the gas flowing into the gas-liquid mixing section 5C swirls in the gas passage 7d of the introduction gas dispersion means 7C in the same direction as the swirling liquid flow, and continues to swirl while leaving the hole 7b. It joins the flow and is sheared and crushed into fine bubbles.

気液混合装置1Cに流入する液流の流量が大きい場合や、気液混合装置1Cの下流の圧力が低い場合には、気体導入部6Cから流入する気体量は増大する。そのように気体導入量が増大したときでも、導入された気体が、旋回液流に合流する際に、導入気体分散手段7Cの複数の孔7bを通って分散されることにより、気体(気泡)の表面積がほぼ一定になり、その気泡が旋回液流により更にせん断される。このため、旋回液流によりせん断されて生成する微細気泡の径もほぼ一定に維持することができ、径の大きい微細気泡(例えば気泡径が100μm以上)が混じって生成することを確実に抑制することができる。また、本実施の形態3によれば、孔7bから、気体が、液流の進行方向TDと同一方向に流入できるため、吸引される気体量が増大でき、生成する微細気泡の数も増大できる。   When the flow rate of the liquid flow flowing into the gas-liquid mixing device 1C is large or when the pressure downstream of the gas-liquid mixing device 1C is low, the amount of gas flowing in from the gas introduction unit 6C increases. Even when the amount of introduced gas increases as described above, the introduced gas is dispersed through the plurality of holes 7b of the introduction gas dispersion means 7C when joining the swirling liquid flow. And the bubbles are further sheared by the swirling liquid flow. For this reason, the diameter of the fine bubbles generated by being sheared by the swirling liquid flow can be maintained substantially constant, and the generation of a mixture of fine bubbles having a large diameter (for example, a bubble diameter of 100 μm or more) is reliably suppressed. be able to. Further, according to the third embodiment, since the gas can flow from the hole 7b in the same direction as the liquid flow traveling direction TD, the amount of sucked gas can be increased and the number of fine bubbles to be generated can be increased. .

以上説明した実施の形態1乃至3の気液混合装置は、何れも、気体を空気、液体を水とすることで、微細気泡発生装置として好適に用いることが可能である。また、本発明の気液混合装置は、例えば、工場の製造工程における部品洗浄装置や、生体活性化を目的とした溶存酸素富化装置などとしても好ましく用いることができる。   Any of the gas-liquid mixing apparatuses according to the first to third embodiments described above can be suitably used as a microbubble generator by using gas as air and liquid as water. Moreover, the gas-liquid mixing apparatus of the present invention can be preferably used as, for example, a parts washing apparatus in a factory manufacturing process, a dissolved oxygen enrichment apparatus for the purpose of bioactivation, and the like.

実施の形態4.
次に、図9を参照して、本発明の実施の形態4について説明するが、上述した実施の形態との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図9は、本発明の風呂給湯装置の実施の形態を示す構成図である。
Embodiment 4 FIG.
Next, the fourth embodiment of the present invention will be described with reference to FIG. 9. The description will focus on the differences from the above-described embodiment, and the same or corresponding parts will be described with the same reference numerals. Omitted. FIG. 9 is a block diagram showing an embodiment of the bath water heater of the present invention.

図9に示すように、本実施形態の風呂給湯装置150は、熱源機としてのヒートポンプユニット110と、タンクユニット120とを備えている。ヒートポンプユニット110は、冷媒を圧縮する圧縮機11と、放熱器に相当する沸き上げ用熱交換器12と、膨張弁13と、蒸発器14と、これらを環状に接続する循環配管15とによって構成された冷凍サイクル部17を有している。冷凍サイクル部17では、二酸化炭素等の冷媒が圧縮機11で圧縮されて高温、高圧となった後に沸き上げ用熱交換器12で放熱し、膨張弁13で減圧され、蒸発器14で吸熱してガス状態となって圧縮機11に吸入される。冷媒として二酸化炭素を用いる場合、高圧側では二酸化炭素の臨界圧を超える条件下で運転することが好ましい。   As shown in FIG. 9, the bath water heater 150 of the present embodiment includes a heat pump unit 110 as a heat source unit and a tank unit 120. The heat pump unit 110 includes a compressor 11 that compresses a refrigerant, a heating heat exchanger 12 that corresponds to a radiator, an expansion valve 13, an evaporator 14, and a circulation pipe 15 that connects these in an annular shape. The refrigeration cycle unit 17 is provided. In the refrigeration cycle unit 17, a refrigerant such as carbon dioxide is compressed by the compressor 11 to become a high temperature and a high pressure and then radiated by the boiling heat exchanger 12, depressurized by the expansion valve 13, and absorbed by the evaporator 14. The gas is then drawn into the compressor 11. When carbon dioxide is used as the refrigerant, it is preferable to operate on the high pressure side under conditions that exceed the critical pressure of carbon dioxide.

一方、タンクユニット120は、貯湯タンク20、給水管路30、貯湯用循環管路40、タンク側循環管路50、風呂側循環管路60、追焚き用熱交換器70、第1給湯管路75、風呂側湯水混合弁80a、一般側湯水混合弁80b、第2給湯管路90、第3給湯管路95等を有している。   On the other hand, the tank unit 120 includes a hot water storage tank 20, a water supply line 30, a hot water circulation line 40, a tank side circulation line 50, a bath side circulation line 60, a reheating heat exchanger 70, and a first hot water supply line. 75, a bath-side hot / cold water mixing valve 80a, a general hot-water / water mixing valve 80b, a second hot-water supply line 90, a third hot-water supply line 95, and the like.

貯湯タンク20は、給水管路30から供給される水を貯留すると共にヒートポンプユニット110で沸き上げられた湯を貯留する積層式のタンクである。この貯湯タンク20の下部には、給水管路30が接続される水導入口20aと、貯湯用循環管路40の往き管40aが接続される水導出口20bとが設けられている。貯湯タンク20の上部には、貯湯用循環管路40の戻り管40bが接続される温水導入口20cと、第1給湯管路75が接続される温水導出口20dとが設けられている。貯湯タンク20は、給水管路30からの給水により常に満水状態に保たれる。   The hot water storage tank 20 is a stacked tank that stores water supplied from the water supply pipe 30 and stores hot water boiled by the heat pump unit 110. In the lower part of the hot water storage tank 20, a water inlet 20 a to which the water supply pipe 30 is connected and a water outlet 20 b to which the forward pipe 40 a of the hot water circulation pipe 40 is connected are provided. At the upper part of the hot water storage tank 20, a hot water inlet 20 c to which the return pipe 40 b of the hot water circulation pipe 40 is connected and a hot water outlet 20 d to which the first hot water supply pipe 75 is connected are provided. The hot water storage tank 20 is always kept in a full state by supplying water from the water supply pipe 30.

図示を省略しているが、貯湯タンク20の上部には、貯湯タンク20からタンク側循環管路50、第1給湯管路75に流入する湯の温度を検出するための温度センサが取り付けられている。また、貯湯タンク20の周面部には、貯湯タンク20内の湯水の温度を検出するための複数の温度センサが互いに異なる取付け高さをもって取り付けられている。   Although not shown, a temperature sensor for detecting the temperature of hot water flowing from the hot water storage tank 20 into the tank side circulation pipe 50 and the first hot water supply pipe 75 is attached to the upper part of the hot water storage tank 20. Yes. A plurality of temperature sensors for detecting the temperature of the hot water in the hot water storage tank 20 are attached to the peripheral surface portion of the hot water storage tank 20 with different mounting heights.

給水管路30は、市水等の水を貯湯タンク20、風呂側湯水混合弁80a、一般側湯水混合弁80b、および一般給湯先180に供給する管路であり、減圧弁25と第1〜第3給水管部30a〜30cとを有している。減圧弁25は、第1給水管部30aの途中に設けられて、水道等の水源からの水圧を所定値に減じる。第1給水管部30aは、水源と貯湯タンク20の水導入口20aとを繋ぎ、第2給水管部30bは、減圧弁25で第1給水管部30aから分岐して該第1給水管部30aと風呂側湯水混合弁80a、一般側湯水混合弁80bとを繋ぎ、第3給水管部30cは、減圧弁25の上流側で第1給水管部30aから分岐して該第1給水管部30aと一般給湯先180とを繋ぐ。図示を省略しているが、第2給水管部30bには、該第2給水管部30b内の水の温度を検出するための温度センサが設けられている。   The water supply line 30 is a line for supplying water such as city water to the hot water storage tank 20, the bath-side hot / cold water mixing valve 80 a, the general hot water / water mixing valve 80 b, and the general hot water supply destination 180. It has 3rd water supply pipe parts 30a-30c. The pressure reducing valve 25 is provided in the middle of the first water supply pipe section 30a, and reduces the water pressure from a water source such as a water supply to a predetermined value. The 1st water supply pipe part 30a connects the water source and the water inlet 20a of the hot water storage tank 20, and the 2nd water supply pipe part 30b branches from the 1st water supply pipe part 30a with the pressure-reduction valve 25, and this 1st water supply pipe part 30a is connected to the bath-side hot / cold water mixing valve 80a and the general-side hot / cold water mixing valve 80b, and the third water supply pipe 30c is branched from the first water supply pipe 30a upstream of the pressure reducing valve 25. 30a and general hot water supply destination 180 are connected. Although not shown, the second water supply pipe portion 30b is provided with a temperature sensor for detecting the temperature of the water in the second water supply pipe portion 30b.

一般給湯先180とは、使用者が手で直接操作して開栓する(センサを感応させて開栓する場合を含む)給湯先であり、例えば、洗面台や流し台の蛇口、浴室のシャワー等である。   The general hot water supply 180 is a hot water supply that a user operates directly by hand (including the case where the sensor is opened in response to a sensor), for example, a sink, a sink faucet, a bathroom shower, etc. It is.

貯湯用循環管路40は、貯湯タンク20下部の水導出口20bからヒートポンプユニット110の沸き上げ用熱交換器12を経由して貯湯タンク20上部の温水導入口20cに達する管路であり、貯湯用送水ポンプ33および電動式の三方弁35が設けられた往き管40aと、戻り管40bと、三方弁35で往き管40aから分岐したバイパス管40cとを有している。上記の往き管40aは水導出口20bと沸き上げ用熱交換器12とを繋ぎ、戻り管40bは沸き上げ用熱交換器12と温水導入口20cとを繋ぎ、バイパス管40cは三方弁35と戻り管40bとを繋ぐ。   The hot water storage circulation line 40 is a pipe line that reaches the hot water inlet 20c at the upper part of the hot water storage tank 20 from the water outlet 20b at the lower part of the hot water storage tank 20 via the heat exchanger 12 for heating of the heat pump unit 110. It has a forward pipe 40a provided with a water supply pump 33 and an electric three-way valve 35, a return pipe 40b, and a bypass pipe 40c branched from the forward pipe 40a by the three-way valve 35. The forward pipe 40a connects the water outlet 20b and the boiling heat exchanger 12, the return pipe 40b connects the boiling heat exchanger 12 and the hot water inlet 20c, and the bypass pipe 40c is connected to the three-way valve 35. The return pipe 40b is connected.

タンク側循環管路50は、貯湯タンク20上部の温水導出口20dから追焚き用熱交換器70を経由して貯湯タンク20下部に達する管路であり、往き管50aと、タンク側送水ポンプ45が設けられた戻り管50bとを有している。往き管50aは温水導出口20dと追焚き用熱交換器70上部の温水導入口70aとを繋ぎ、戻り管50bは追焚き用熱交換器70下部の温水導出口70bと貯湯タンク20の下部とを繋ぐ。   The tank-side circulation pipe 50 is a pipe that reaches the lower part of the hot water storage tank 20 from the hot water outlet 20d at the upper part of the hot water storage tank 20 via the reheating heat exchanger 70. The forward pipe 50a and the tank side water supply pump 45 And a return pipe 50b. The forward pipe 50a connects the hot water outlet 20d and the hot water inlet 70a above the reheating heat exchanger 70, and the return pipe 50b connects the hot water outlet 70b below the reheating heat exchanger 70 and the lower part of the hot water storage tank 20. Connect.

風呂側循環管路60(風呂循環路)は、浴槽170から追焚き用熱交換器70を経由して浴槽170に戻る管路であり、往き管60aおよび戻り管60bを有している。往き管60aは浴槽170と追焚き用熱交換器70下部の浴水導入口70cとを繋ぎ、戻り管60bは追焚き用熱交換器70上部の浴水導出口70dと浴槽170とを繋ぐ。往き管60aには、追焚き用熱交換器70側から上流側(浴槽170側)に向かって、フロースイッチ53、水位センサ55、および風呂側送水ポンプ57(循環ポンプ)がこの順番で設けられている。また、図示を省略しているが、当該往き管60aには、該往き管60a内の湯水の温度を検出するための温度センサも設けられている。   The bath-side circulation line 60 (bath circulation line) is a line that returns from the bathtub 170 to the bathtub 170 via the reheating heat exchanger 70, and includes a forward pipe 60a and a return pipe 60b. The forward pipe 60 a connects the bathtub 170 and the bath water introduction port 70 c below the reheating heat exchanger 70, and the return pipe 60 b connects the bath water outlet 70 d above the reheating heat exchanger 70 and the bathtub 170. The forward pipe 60a is provided with a flow switch 53, a water level sensor 55, and a bath-side water supply pump 57 (circulation pump) in this order from the reheating heat exchanger 70 side to the upstream side (tub 170 side). ing. Although not shown, the forward pipe 60a is also provided with a temperature sensor for detecting the temperature of hot water in the forward pipe 60a.

フロースイッチ53は、往き管60aでの水流の有無を検出する。水位センサ55は、該水位センサ55の取付け位置を基準にした往き管60a内の水圧から浴槽170での浴水の水位を検出する。風呂側送水ポンプ57は、浴槽170内から浴水を導出して風呂側循環管路60に循環させ、浴槽170内に戻す。そして、図示を省略した上記の温度センサは、往き管60a内の浴水の温度を検出する。往き管60aおよび戻り管60bと、浴槽170との連結部には、浴槽アダプタ165が設けられている。   The flow switch 53 detects the presence or absence of water flow in the forward pipe 60a. The water level sensor 55 detects the water level of the bath water in the bathtub 170 from the water pressure in the forward pipe 60a based on the mounting position of the water level sensor 55. The bath-side water supply pump 57 draws bath water from the bathtub 170, circulates it in the bath-side circulation pipe 60, and returns it to the bathtub 170. The temperature sensor (not shown) detects the temperature of the bath water in the forward pipe 60a. A bathtub adapter 165 is provided at a connecting portion between the forward pipe 60 a and the return pipe 60 b and the bathtub 170.

浴槽アダプタ165内には、往き管60aと戻り管60bとが接続できるように2つの配管接続部が備えられている。浴槽アダプタ165と戻り管60bとの接続部の付近の戻り管60bの途中には、本発明の気液混合装置を適用した第一の微細気泡発生装置1Dが配置されている。第一の微細気泡発生装置1Dの構成としては、例えば、前述した実施の形態1乃至3の何れかの気液混合装置を適用することができる。第一の微細気泡発生装置1Dが備える気体導入部に連通する吸気部には、開閉可能な電磁弁61が設けられている。   In the bathtub adapter 165, two pipe connection portions are provided so that the forward pipe 60a and the return pipe 60b can be connected. In the middle of the return pipe 60b in the vicinity of the connection portion between the bathtub adapter 165 and the return pipe 60b, a first microbubble generator 1D to which the gas-liquid mixing device of the present invention is applied is arranged. As the configuration of the first fine bubble generating device 1D, for example, the gas-liquid mixing device according to any one of the first to third embodiments described above can be applied. A solenoid valve 61 that can be opened and closed is provided in an intake section that communicates with a gas introduction section provided in the first microbubble generator 1D.

往き管60aの下流端付近(追焚き用熱交換器70の浴水導入口70cと、フロースイッチ53との間)には、第二の微細気泡発生装置54が配置されている。第二の微細気泡発生装置54の吸気部には、開閉可能な電磁弁56が設けられている。風呂側湯水混合弁80aと往き管60aとを接続する第2給湯管路90の途中には、第三の微細気泡発生装置58が配置されている。第三の微細気泡発生装置58の吸気部には、開閉可能な電磁弁59が設けられている。第二の微細気泡発生装置54および第三の微細気泡発生装置58は、本発明の気液混合装置で構成されていなくても良いが、自然吸気方式の微細気泡発生装置で構成されている。   Near the downstream end of the forward pipe 60a (between the bath water inlet 70c of the reheating heat exchanger 70 and the flow switch 53), a second fine bubble generating device 54 is disposed. An electromagnetic valve 56 that can be opened and closed is provided in the intake portion of the second microbubble generator 54. In the middle of the second hot water supply pipe line 90 connecting the bath-side hot / cold water mixing valve 80a and the forward pipe 60a, a third fine bubble generating device 58 is arranged. An electromagnetic valve 59 that can be opened and closed is provided in the intake portion of the third microbubble generator 58. The second microbubble generator 54 and the third microbubble generator 58 may not be configured by the gas-liquid mixing device of the present invention, but are configured by a naturally aspirated microbubble generator.

風呂給湯装置150は、制御部100と、浴室や台所の壁等に設置されるリモコン装置101とを更に備えている。使用者は、リモコン装置101にて、給湯温度の設定や各種運転モードの設定等を行うことができる。制御部100は、上述した各センサで検出された情報、および、リモコン装置101から送信された情報に基づいて、ヒートポンプユニット110、貯湯用送水ポンプ33、三方弁35、タンク側送水ポンプ45、風呂側送水ポンプ57、風呂側湯水混合弁80a、一般側湯水混合弁80b、電磁弁61,56,59を制御することにより、風呂給湯装置150の各種の動作制御を行う。   The bath water heater 150 further includes a control unit 100 and a remote control device 101 installed on the wall of a bathroom or kitchen. The user can set the hot water supply temperature and various operation modes using the remote control device 101. Based on the information detected by each of the sensors described above and the information transmitted from the remote control device 101, the control unit 100 performs heat pump unit 110, hot water storage water pump 33, three-way valve 35, tank-side water pump 45, bath By controlling the side water pump 57, the bath-side hot / cold water mixing valve 80a, the general-side hot / cold water mixing valve 80b, and the electromagnetic valves 61, 56, and 59, various operations of the bath hot water supply device 150 are controlled.

浴槽170に給湯する場合には、貯湯タンク20から供給される高温の湯と給水管路30から供給される水とが風呂側湯水混合弁80aにて設定温度となるように混合され、その混合された湯が第2給湯管路90、風呂側循環管路60を通って送られ、浴槽アダプタ165を介して浴槽170内に供給される。   When hot water is supplied to the bathtub 170, the hot water supplied from the hot water storage tank 20 and the water supplied from the water supply pipe 30 are mixed at the bath side hot water mixing valve 80a so as to reach a set temperature, and the mixing is performed. The hot water is sent through the second hot water supply pipe 90 and the bath-side circulation pipe 60 and supplied into the bathtub 170 through the bathtub adapter 165.

一般給湯先180に給湯する場合には、貯湯タンク20から供給される高温の湯と給水管路30から供給される水とが一般側湯水混合弁80bにて設定温度となるように混合され、その混合された湯が第3給湯管路95を通って送られて一般給湯先180に供給される。   When hot water is supplied to the general hot water supply 180, the hot water supplied from the hot water storage tank 20 and the water supplied from the water supply pipe 30 are mixed at the general hot water mixing valve 80b so as to reach a set temperature, The mixed hot water is sent through the third hot water supply pipe 95 and supplied to the general hot water supply destination 180.

浴槽170内の浴水を保温または昇温する追焚き運転時には、タンク側送水ポンプ45および風呂側送水ポンプ57が駆動される。これにより、浴槽170から浴槽アダプタ165を通って往き管60aに吸入された浴水が追焚き用熱交換器70に送られ、貯湯タンク20からはタンク側循環管路50により高温の湯が追焚き用熱交換器70に供給され、追焚き用熱交換器70にて浴水が加熱される。この加熱された浴水は、戻り管60bを通って浴槽170へ戻り、浴槽アダプタ165から浴槽170内に流入する。この際、第一の微細気泡発生装置1Dの電磁弁61を開くことにより、第一の微細気泡発生装置1Dにて空気を浴水中に混合し、大量の微細気泡を発生させて浴槽170内に供給することができる。風呂側送水ポンプ57を継続して駆動することにより、第一の微細気泡発生装置1Dにて連続して微細気泡を発生することができるため、浴槽170内の微細気泡濃度を増大化することができる。この際、タンク側送水ポンプ45を駆動せずに風呂側送水ポンプ57のみを駆動し、追焚き運転を伴わずに第一の微細気泡発生装置1Dから浴槽170内に微細気泡を供給する運転のみを行っても良い。   During the reheating operation in which the bath water in the bathtub 170 is kept warm or heated, the tank-side water pump 45 and the bath-side water pump 57 are driven. As a result, the bath water drawn from the bathtub 170 through the bathtub adapter 165 to the outgoing pipe 60 a is sent to the reheating heat exchanger 70, and hot water is added from the hot water storage tank 20 through the tank-side circulation line 50. The water is supplied to the soaking heat exchanger 70, and the bath water is heated in the soaking heat exchanger 70. The heated bath water returns to the bathtub 170 through the return pipe 60 b and flows into the bathtub 170 from the bathtub adapter 165. At this time, by opening the electromagnetic valve 61 of the first microbubble generator 1D, air is mixed in the bath water in the first microbubble generator 1D to generate a large amount of microbubbles in the bathtub 170. Can be supplied. By continuously driving the bath-side water supply pump 57, it is possible to continuously generate fine bubbles in the first fine bubble generating apparatus 1D, and thus the concentration of fine bubbles in the bathtub 170 can be increased. it can. At this time, only the bath-side water pump 57 is driven without driving the tank-side water pump 45, and only the operation for supplying the fine bubbles from the first micro-bubble generating device 1D into the bathtub 170 without the follow-up operation. May be performed.

また、風呂給湯装置150は、入浴後に浴槽170内の浴水を排水するときには、第二の微細気泡発生装置54の電磁弁56を開き、風呂側送水ポンプ57を駆動することにより、第二の微細気泡発生装置54にて発生した微細気泡を追焚き用熱交換器70および戻り管60b内に供給し、これらの内部の皮脂汚れを洗浄除去する機能を有している。   Moreover, when draining the bath water in the bathtub 170 after bathing, the bath water heater 150 opens the electromagnetic valve 56 of the second microbubble generator 54 and drives the bath-side water supply pump 57 to thereby The microbubbles generated by the microbubble generator 54 are supplied into the tracking heat exchanger 70 and the return pipe 60b, and have a function of cleaning and removing sebum dirt inside these.

また、風呂給湯装置150は、入浴後に浴槽170内の浴水を排水するときには、第2給湯管路90から注水しながら第三の微細気泡発生装置58の電磁弁59を開くことにより、第三の微細気泡発生装置58にて発生した微細気泡を往き管60a内に供給し、その内部の皮脂汚れを洗浄除去する機能を有している。   Moreover, when draining the bath water in the bathtub 170 after bathing, the bath water heater 150 opens the electromagnetic valve 59 of the third microbubble generator 58 while pouring water from the second hot water supply pipe 90, thereby providing the third The fine bubbles generated by the fine bubble generator 58 are supplied into the forward pipe 60a and have a function of cleaning and removing sebum dirt inside.

1A,1B,1C 気液混合装置、1D 微細気泡発生装置、2 リング状の壁面、3 旋回液流生成部、4 旋回液流加速部、4a 下流端、5A,5B,5C 気液混合部、5a 上流端、6A,6B,6C 気体導入部、6a 気体通路、6b 内壁、7A,7B,7C 導入気体分散手段、7a,7b 孔、7d 気体通路、8 固定翼、9 拡径部、10 隙間、11 圧縮機、12 沸き上げ用熱交換器、13 膨張弁、14 蒸発器、15 循環配管、17 冷凍サイクル部、20 貯湯タンク、20a 水導入口、20b 水導出口、20c 温水導入口、20d 温水導出口、25 減圧弁、30 給水管路、30a 第1給水管部、30b 第2給水管部、30c 第3給水管部、33 貯湯用送水ポンプ、35 三方弁、40 貯湯用循環管路、40a 往き管、40b 戻り管、40c バイパス管、45 タンク側送水ポンプ、50 タンク側循環管路、50a 往き管、50b 戻り管、53 フロースイッチ、54 第二の微細気泡発生装置、55 水位センサ、56 電磁弁、57 風呂側送水ポンプ、58 第三の微細気泡発生装置、59 電磁弁、60 風呂側循環管路、60a 往き管、60b 戻り管、61 電磁弁、70 追焚き用熱交換器、70a 温水導入口、70b 温水導出口、70c 浴水導入口、70d 浴水導出口、75 第1給湯管路、80a 風呂側湯水混合弁、80b 一般側湯水混合弁、90 第2給湯管路、95 第3給湯管路、100 制御部、101 リモコン装置、110 ヒートポンプユニット、120 タンクユニット、150 風呂給湯装置、165 浴槽アダプタ、170 浴槽、180 一般給湯先 1A, 1B, 1C gas-liquid mixing device, 1D fine bubble generator, 2 ring-shaped wall surface, 3 swirling liquid flow generating unit, 4 swirling liquid flow accelerating unit, 4a downstream end, 5A, 5B, 5C gas-liquid mixing unit, 5a upstream end, 6A, 6B, 6C gas introduction part, 6a gas passage, 6b inner wall, 7A, 7B, 7C introduction gas dispersion means, 7a, 7b hole, 7d gas passage, 8 fixed wing, 9 enlarged diameter part, 10 gap , 11 Compressor, 12 Heat exchanger for boiling, 13 Expansion valve, 14 Evaporator, 15 Circulation piping, 17 Refrigeration cycle section, 20 Hot water storage tank, 20a Water inlet, 20b Water outlet, 20c Hot water inlet, 20d Hot water outlet, 25 pressure reducing valve, 30 water supply pipe, 30a first water supply pipe, 30b second water supply pipe, 30c third water supply pipe, 33 hot water storage water pump, 35 three-way valve, 40 hot water circulation pipe 40a forward pipe, 40b return pipe, 40c bypass pipe, 45 tank side water supply pump, 50 tank side circulation pipe, 50a forward pipe, 50b return pipe, 53 flow switch, 54 second fine bubble generator, 55 water level sensor, 56 Solenoid valve, 57 Bath side water pump, 58 Third fine bubble generator, 59 Solenoid valve, 60 Bath side circulation pipe, 60a Outward pipe, 60b Return pipe, 61 Solenoid valve, 70 Heat exchanger for reheating, 70a Hot water inlet, 70b Hot water outlet, 70c Bath water inlet, 70d Bath water outlet, 75 First hot water supply line, 80a Bath side hot water mixing valve, 80b General side hot water mixing valve, 90 Second hot water supply line, 95 3rd hot water supply pipe, 100 control unit, 101 remote control device, 110 heat pump unit, 120 tank unit, 150 bath hot water supply device, 1 5 tub adapter, 170 bathtubs, 180 generally hot water destination

Claims (7)

液体の流路内に旋回液流を生成する旋回液流生成部と、
前記旋回液流の旋回径を縮径させる旋回液流加速部と、
外部から気体を取り込む気体導入部と、
前記旋回液流と、前記気体導入部から取り込まれた気体とを合流させることにより、微細気泡を発生させる気液混合部と、
前記旋回液流に合流する気体を分散させる導入気体分散手段と、
を備える気液混合装置。
A swirl liquid flow generating unit that generates a swirl liquid flow in the liquid flow path;
A swirl liquid flow acceleration unit for reducing the swirl diameter of the swirl liquid flow;
A gas introduction part for taking in gas from the outside;
A gas-liquid mixing unit that generates fine bubbles by joining the swirling liquid flow and the gas taken in from the gas introduction unit;
Introduction gas dispersion means for dispersing the gas that joins the swirling liquid flow;
A gas-liquid mixing device.
前記導入気体分散手段は、気体が通過可能なメッシュ状または多孔質状の部材で構成される請求項1記載の気液混合装置。   The gas-liquid mixing device according to claim 1, wherein the introduction gas dispersion means is configured by a mesh-like or porous member through which gas can pass. 前記導入気体分散手段は、前記気体導入部の出口付近に設けられている請求項1または2記載の気液混合装置。   The gas-liquid mixing device according to claim 1 or 2, wherein the introduction gas dispersion means is provided in the vicinity of an outlet of the gas introduction portion. 前記気液混合部は、前記旋回液流加速部の最小内径より大きい内径を有し、
前記旋回液流加速部の内周面の下流端から外周側に広がって前記気液混合部の内周面の上流端に繋がるリング状の壁面が形成され、
前記気体導入部は、前記気液混合部の内周面の接線方向に沿って気体を前記気液混合部内に流入させる請求項1記載の気液混合装置。
The gas-liquid mixing part has an inner diameter larger than the minimum inner diameter of the swirling liquid flow acceleration part,
A ring-shaped wall surface extending from the downstream end of the inner peripheral surface of the swirling liquid flow accelerating portion to the outer peripheral side and connected to the upstream end of the inner peripheral surface of the gas-liquid mixing portion is formed,
The gas-liquid mixing device according to claim 1, wherein the gas introduction unit causes a gas to flow into the gas-liquid mixing unit along a tangential direction of an inner peripheral surface of the gas-liquid mixing unit.
前記導入気体分散手段は、前記気液混合部内に配置され、気体が通過可能な複数の孔を側面に有する筒状部材で構成され、
前記気体導入部から前記気液混合部内に流入した気体が、前記気液混合部の内周面と前記筒状部材の外周面との間を旋回可能である請求項4記載の気液混合装置。
The introduction gas dispersion means is arranged in the gas-liquid mixing part, and is composed of a cylindrical member having a plurality of holes on the side surface through which gas can pass.
The gas-liquid mixing device according to claim 4, wherein the gas flowing into the gas-liquid mixing unit from the gas introduction unit can swivel between an inner peripheral surface of the gas-liquid mixing unit and an outer peripheral surface of the cylindrical member. .
前記気体分散手段は、
前記気液混合部に流入した気体を前記リング状の壁面に沿って旋回させる気体通路と、
前記気体通路の、前記リング状の壁面に対向する隔壁に形成され、気体が通過可能な複数の孔と、
を有する請求項4記載の気液混合装置。
The gas dispersion means includes
A gas passage that swirls the gas flowing into the gas-liquid mixing section along the ring-shaped wall;
A plurality of holes formed in a partition wall facing the ring-shaped wall surface of the gas passage, through which gas can pass;
The gas-liquid mixing apparatus of Claim 4 which has these.
浴槽内から導出された湯水を循環させて前記浴槽内に戻す風呂循環路と、
前記風呂循環路内の湯水を循環させる循環ポンプと、
前記風呂循環路の途中に設けられた請求項1乃至6の何れか1項記載の気液混合装置と、
を備える風呂給湯装置。
A bath circuit that circulates hot water derived from the bath and returns it to the bath,
A circulation pump for circulating hot water in the bath circulation path;
The gas-liquid mixing device according to any one of claims 1 to 6, provided in the middle of the bath circulation path,
A bath water heater equipped with.
JP2013042684A 2013-03-05 2013-03-05 Gas-liquid mixing device and bath water heater Active JP5692259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042684A JP5692259B2 (en) 2013-03-05 2013-03-05 Gas-liquid mixing device and bath water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042684A JP5692259B2 (en) 2013-03-05 2013-03-05 Gas-liquid mixing device and bath water heater

Publications (2)

Publication Number Publication Date
JP2014168761A true JP2014168761A (en) 2014-09-18
JP5692259B2 JP5692259B2 (en) 2015-04-01

Family

ID=51691600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042684A Active JP5692259B2 (en) 2013-03-05 2013-03-05 Gas-liquid mixing device and bath water heater

Country Status (1)

Country Link
JP (1) JP5692259B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559127B1 (en) * 2015-03-11 2015-10-07 김가람 Microbubble spiral accelaration equipment and microbubble apparatus thereby
CN105642144A (en) * 2014-11-14 2016-06-08 北京汇丰隆生物科技发展有限公司 A general diluting method and a general diluting device
JP6047210B1 (en) * 2015-09-18 2016-12-21 Npo法人エコロジカル・ファーストエイド Aeration stirrer
CN107096405A (en) * 2017-06-08 2017-08-29 江苏天宇石化冶金设备有限公司 A kind of high efficient gas and liquid blender
CN109737537A (en) * 2018-12-29 2019-05-10 陕西师范大学 A kind of household moistens oxygen-enriched atomising device and method
JP2019147086A (en) * 2018-02-26 2019-09-05 ウォーターナビ株式会社 Fine bubble generation method and device
CN111792740A (en) * 2020-08-12 2020-10-20 福州水研环境科技有限公司 High-concentration organic wastewater treatment device and treatment method
CN111825148A (en) * 2020-08-12 2020-10-27 福州水研环境科技有限公司 Treatment device and treatment method for black and odorous water body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110898699B (en) * 2019-12-04 2020-12-15 四川大学 Microbubble generating device based on bubble fusion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205228A (en) * 1997-12-30 2003-07-22 Hirobumi Onari Turning type fine bubbles production apparatus
JP2007313466A (en) * 2006-05-29 2007-12-06 Hitachi Plant Technologies Ltd Emulsifying apparatus
JP2011240210A (en) * 2010-05-14 2011-12-01 Maindorei Gijutsu Kagaku Kenkyusho:Kk Mechanism for generating microbubble
JP2012187496A (en) * 2011-03-10 2012-10-04 Kumamoto Univ Apparatus of mixing fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205228A (en) * 1997-12-30 2003-07-22 Hirobumi Onari Turning type fine bubbles production apparatus
JP2007313466A (en) * 2006-05-29 2007-12-06 Hitachi Plant Technologies Ltd Emulsifying apparatus
JP2011240210A (en) * 2010-05-14 2011-12-01 Maindorei Gijutsu Kagaku Kenkyusho:Kk Mechanism for generating microbubble
JP2012187496A (en) * 2011-03-10 2012-10-04 Kumamoto Univ Apparatus of mixing fluid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642144A (en) * 2014-11-14 2016-06-08 北京汇丰隆生物科技发展有限公司 A general diluting method and a general diluting device
KR101559127B1 (en) * 2015-03-11 2015-10-07 김가람 Microbubble spiral accelaration equipment and microbubble apparatus thereby
JP6047210B1 (en) * 2015-09-18 2016-12-21 Npo法人エコロジカル・ファーストエイド Aeration stirrer
CN107096405A (en) * 2017-06-08 2017-08-29 江苏天宇石化冶金设备有限公司 A kind of high efficient gas and liquid blender
JP2019147086A (en) * 2018-02-26 2019-09-05 ウォーターナビ株式会社 Fine bubble generation method and device
CN109737537A (en) * 2018-12-29 2019-05-10 陕西师范大学 A kind of household moistens oxygen-enriched atomising device and method
CN111792740A (en) * 2020-08-12 2020-10-20 福州水研环境科技有限公司 High-concentration organic wastewater treatment device and treatment method
CN111825148A (en) * 2020-08-12 2020-10-27 福州水研环境科技有限公司 Treatment device and treatment method for black and odorous water body
CN111825148B (en) * 2020-08-12 2024-05-03 福州水研环境科技有限公司 Black and odorous water body treatment device and treatment method
CN111792740B (en) * 2020-08-12 2024-05-03 福州水研环境科技有限公司 High-concentration organic wastewater treatment device and treatment method

Also Published As

Publication number Publication date
JP5692259B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5692259B2 (en) Gas-liquid mixing device and bath water heater
JP5794338B2 (en) Gas-liquid mixing device and bath water heater
JP5692258B2 (en) Fine bubble generator and bath water heater
JP4636420B2 (en) Microbubble generator
RU2759473C1 (en) Microbubble generator cavitator, microbubble generator and washing machine
JP5737363B2 (en) Gas-liquid mixing device and bath water heater
JP6064842B2 (en) Ejector device and pipe cleaning device
JP6156128B2 (en) Gas-liquid mixing device and bath water heater
WO2021098833A1 (en) Micro-bubble spray head and washing apparatus having same
JP5578205B2 (en) Gas-liquid mixing device and bath water heater
JP6197179B2 (en) Bath adapter and water heater
JP5794245B2 (en) Fine bubble generator and bath water heater
JP2017225948A (en) Fluid mixer
JP2010162149A (en) Fine air bubble generating device for bathtub and method of generating fine air bubbles for bathtub
JP5794326B2 (en) Bath water heater
JP5776801B2 (en) Fixed swirler, bubble generating device and bath water heater using the fixed swirler
JP5749194B2 (en) Bath water heater
JP7343100B2 (en) Micro bubble generator
JP5854945B2 (en) Water heater
JP5534774B2 (en) Hot water supply system
JP2013113453A (en) Bath water heater
JPH1182919A (en) Steam desuperheater
JP6263737B2 (en) Bath adapter and water heater
JP6191011B2 (en) Bath adapter and water heater
KR20230118022A (en) Fine bubble generating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5692259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250