JP2011240210A - Mechanism for generating microbubble - Google Patents

Mechanism for generating microbubble Download PDF

Info

Publication number
JP2011240210A
JP2011240210A JP2010111771A JP2010111771A JP2011240210A JP 2011240210 A JP2011240210 A JP 2011240210A JP 2010111771 A JP2010111771 A JP 2010111771A JP 2010111771 A JP2010111771 A JP 2010111771A JP 2011240210 A JP2011240210 A JP 2011240210A
Authority
JP
Japan
Prior art keywords
flow
collision member
throttle
cross
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010111771A
Other languages
Japanese (ja)
Inventor
Yasutaka Sakamoto
泰孝 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAINDOREI GIJUTSU KAGAKU KENKYUSHO KK
Original Assignee
MAINDOREI GIJUTSU KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAINDOREI GIJUTSU KAGAKU KENKYUSHO KK filed Critical MAINDOREI GIJUTSU KAGAKU KENKYUSHO KK
Priority to JP2010111771A priority Critical patent/JP2011240210A/en
Publication of JP2011240210A publication Critical patent/JP2011240210A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a mechanism for generating microbubbles exhibiting a dramatically enhanced effect of micronizing bubbles, sufficiently achieving the micronization of bubbles even upon generating high-concentration bubbles by pressurizing/dissolving a gas.SOLUTION: A flow discharged from a throttle 21J into an expanded section 151 spreads in the outward direction in the expanded section 151 to form an outward flow flowing along the outer circumferential area of the expanded section 151. On the circumference of a flow-intake port 152p, a section 153 for turning the outward flow is formed to cause the outward flow to turn inwards in the radial direction based on the difference of the cross sections of the expanded section 151 and the flow-intake section 152, and hence the outward flow having been turned therein flows backward in a swirl together with the bubbles into the expanded section 151. As a result, the bubbles contained in the liquid stay in the expanded section 151 together with the swirling flow and are vigorously stirred, whereby the bubbles can sufficiently and finely be crushed.

Description

本発明は、微小気泡発生機構に関するものである。   The present invention relates to a microbubble generation mechanism.

水中に形成される気泡は、そのサイズによりミリバブルあるいはマイクロバブル(さらには、マイクロ・ナノバブルおよびナノバブル等)に分類されている。ミリバブルはある程度の巨大な気泡であり、水中を急速に上昇して最終的には水面で破裂して消滅する。これに対して、直径が50μm以下の気泡は、微細であるが故に水中での滞在時間が長く、気体の溶解能力にも優れているため水中においてさらに縮小していき、ついには水中で消滅(完全溶解)する特殊な性質を有し、これをマイクロバブルと称することが一般化しつつある(非特許文献1)。   Bubbles formed in water are classified into millibubbles or microbubbles (further, micro / nano bubbles, nano bubbles, etc.) depending on their sizes. Millibubbles are huge bubbles to some extent, which rise rapidly in water and eventually rupture and disappear at the surface of the water. On the other hand, bubbles with a diameter of 50 μm or less are fine, so they have a long residence time in water and are excellent in gas dissolving ability, so they further shrink in water, and finally disappear in water ( It has a special property of completely dissolving), and it is becoming common to call this microbubble (Non-patent Document 1).

近年、こうした微小気泡が多くの用途に応用され、例えば浴槽用の気泡水流噴出部やシャワー等に組み込みが可能な微小気泡発生装置が種々提案されている(特許文献1〜4)。基本的には、ベンチュリ管などの絞り機構に水流水を供給し、該絞り機構を高流速化して通過する際にベルヌーイの原理に由来して生ずる減圧効果により、水に溶解していた空気を微小気泡として析出させるキャビテーション方式が採用されている。また、予め気体を水に加圧溶解して絞り機構に供給すれば減圧発泡に伴う気泡析出量が増加し、より高濃度の微小気泡を得ることができる。   In recent years, such microbubbles have been applied to many applications, and various microbubble generators that can be incorporated into, for example, a bubble water jetting section for a bathtub or a shower have been proposed (Patent Documents 1 to 4). Basically, water is supplied to a throttling mechanism such as a venturi pipe, and the air dissolved in the water is removed by the pressure reducing effect caused by Bernoulli's principle when passing through the throttling mechanism at a high flow rate. A cavitation system that precipitates as microbubbles is adopted. Further, if the gas is previously dissolved in water under pressure and supplied to the squeezing mechanism, the amount of bubble deposition accompanying decompression foaming increases, and finer bubbles with a higher concentration can be obtained.

特開2008− 73432号公報JP 2008-73432 A 特開2007−209509号公報JP 2007-209509 A 特開2007− 50341号公報JP 2007-50341 A 特開2006−116518号公報JP 2006-116518 A

インターネットホームページ(http://unit.aist.go.jp/emtech-ri/26env-fluid/pdf/takahashi.pdfマイクロバブルおよびナノバブルに関する研究')Internet homepage (http://unit.aist.go.jp/emtech-ri/26env-fluid/pdf/takahashi.pdfResearch on microbubbles and nanobubbles')

しかし、上記従来の微小気泡発生機構では、絞り機構通過後の水流中に析出した気泡をさらに微粉砕するための流れ要素として、絞り孔を通過した水流自体の開放・乱流化に伴なう渦発生のみしか期待できず、気泡の微細化レベルも十分でない欠点がある。また、気体を加圧溶解して高濃度の気泡を発生させようとした場合は、気体の急激な析出による気泡粗大化が特に進みやすいのが問題である。   However, in the conventional microbubble generation mechanism, as the flow element for further finely pulverizing the bubbles deposited in the water flow after passing through the throttle mechanism, the water flow itself that has passed through the throttle hole is associated with opening / turbulence. Only vortex generation can be expected, and there is a drawback that the level of bubble refinement is not sufficient. In addition, when trying to generate high-concentration bubbles by pressure-dissolving the gas, it is a problem that the bubble coarsening due to the rapid precipitation of the gas is particularly likely to proceed.

本発明の課題は、気泡の微細化効果が劇的に向上し、気体を加圧溶解して高濃度の気泡を発生させる場合においても、気泡の微細化を十分に達成できる微小気泡発生機構を提供することにある。   The object of the present invention is to provide a microbubble generation mechanism that can sufficiently achieve the miniaturization of bubbles even when the effect of micronization of bubbles is dramatically improved and gas is pressurized and dissolved to generate high-concentration bubbles. It is to provide.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の微小気泡発生機構は、
液体入口と液体出口とを有し、液体入口から液体出口に向かう流路が内部に形成された中空の流路形成部材を備え、該流路形成部材の流路が、
流れ方向にて液体入口と液体出口との間に形成され、該液体入口と液体出口とのいずれよりも小断面積かつ高流速となるように形成された絞り部と、
絞り部よりも断面積が大きくなるように、絞り部に続いて形成される拡大部と、
流れ受入口が拡大部よりも小断面積であって、かつ、流れ方向と直交する平面への投影にて該流れ受入口が絞り部の開口と互いに重なりを生ずるように拡大部に続く形で形成され、絞り部から拡大部に放出される流れを流れ受入口にて受け入れて液体出口に導く流れ受入部と、
流れ受入口の周囲に形成され、拡大部に放出される流れのうち該拡大部外周領域に沿って流れる外方流れを旋回させつつ拡大部側へ戻す外方流れ旋回部と、を有することを特徴とする。
In order to solve the above problems, the microbubble generation mechanism of the present invention is:
A flow path forming member having a liquid inlet and a liquid outlet and having a flow path from the liquid inlet toward the liquid outlet formed therein;
A throttling portion formed between the liquid inlet and the liquid outlet in the flow direction, and having a smaller cross-sectional area and a higher flow velocity than both of the liquid inlet and the liquid outlet;
An enlarged portion formed subsequent to the throttle portion so that the cross-sectional area is larger than the throttle portion;
The flow receiving port has a smaller cross-sectional area than that of the enlarged portion, and follows the enlarged portion so that the flow receiving port overlaps the opening of the throttle portion when projected onto a plane orthogonal to the flow direction. A flow receiving portion that is formed and receives the flow discharged from the throttle portion to the enlarged portion at the flow receiving port and leads to the liquid outlet;
An outer flow swirl portion formed around the flow receiving port and swirling the outer flow flowing along the outer peripheral region of the enlarged portion of the flow discharged to the enlarged portion, and returning the swirl to the enlarged portion side. Features.

上記本発明の微小気泡発生機構においては、流路の途上に設けた絞り部を液体が通過する際に、液体中に溶解している気体は減圧析出して気泡を生ずる。また、絞り部に供給される時点で液体中に存在していた気泡は絞り部内を高速で通過する際により微細な気泡に粉砕される。前述した如く、従来の微小気泡発生機構においては、絞り部を通過後の水流中に析出した気泡をさらに微粉砕するための流れ要素が考慮されておらず、析出気泡の成長や、もともと粗大な状態で存在していた気泡の粉砕が十分に進まないことから、微小気泡を効率よく生成することができなかった。   In the microbubble generation mechanism of the present invention, when the liquid passes through the throttle portion provided in the middle of the flow path, the gas dissolved in the liquid is deposited under reduced pressure to generate bubbles. In addition, the bubbles present in the liquid at the time of being supplied to the throttle unit are crushed into finer bubbles when passing through the throttle unit at a high speed. As described above, in the conventional microbubble generation mechanism, the flow element for further finely pulverizing the bubbles precipitated in the water flow after passing through the throttle portion is not considered, and the growth of the precipitated bubbles and the originally coarse are not considered. Since the pulverization of the bubbles that existed in the state did not proceed sufficiently, microbubbles could not be generated efficiently.

しかしながら、本発明の微小気泡発生機構では、以下のような気泡の微粉砕機能を有した特有の流れ要素を形成し、上記の問題を解決することに成功した。すなわち、絞り部から拡大部に放出された流れは拡大部内にて外方へ広がり、拡大部外周領域に沿って流れる外方流れを生ずる。そして、流れ受入口の周囲には、拡大部と流れ受入部との断面積差に基づき、この外方流れを半径方向内向きに旋回させる外方流れ旋回部が形成されており、旋回した外方流れは渦を巻きつつ気泡とともに拡大部内に逆流する。その結果、液体中に含まれる気泡は拡大部内に渦流とともに留まり、激しく撹拌されることにより微粉砕を十分に進行させることができる。   However, the microbubble generation mechanism of the present invention has succeeded in solving the above problems by forming a unique flow element having the following function of finely pulverizing bubbles. That is, the flow discharged from the narrowed portion to the enlarged portion spreads outward in the enlarged portion, and generates an outward flow that flows along the outer peripheral area of the enlarged portion. In addition, an outer flow swirling part that swirls the outward flow inward in the radial direction is formed around the flow receiving port based on the cross-sectional area difference between the enlarged portion and the flow receiving part. The direction flow flows back into the enlarged portion together with the bubbles while spiraling. As a result, the bubbles contained in the liquid stay together with the vortex in the enlarged portion and can be sufficiently pulverized by being vigorously stirred.

上記本発明の効果は、加圧溶解により液体中に気体を強制溶解させる場合に特に顕著に発揮される。具体的には、気体を液体と混合しつつ加圧して液体に気体を強制溶解させることにより気体濃度を上昇させた加圧濃縮気体溶解液を発生させる加圧溶解ユニットと、加圧溶解ユニットから加圧濃縮気体溶解液を減圧しつつ流出させる液体流出管とを設けることができ、該液体流出管上に流路形成部材を設けることができる。このようにすることで、絞り部に供給される液体中の溶存気体濃度が加圧溶解により高められ、キャビテーション効果により析出する気泡の数形成密度を大幅に高めることができる。加圧濃縮気体溶解液の場合、気泡が析出した時の周囲の溶存液体濃度が高いため、気泡が急速に成長しやすい傾向になる。しかし、本発明においては上記のごとく、絞り部通過後の液体が比較的粗大な気泡を含んでいても、外方流れ旋回部の作用により、拡大部内に発生する渦流にこれを巻き込んで微粉砕するので、加圧溶解特有の高濃度の気泡を均一に微細化することができ、微小で長寿命の気泡を極めて効率よく大量に発生させることができる。   The effect of the present invention is particularly prominent when the gas is forcibly dissolved in the liquid by pressure dissolution. Specifically, from a pressure dissolution unit that generates a pressurized concentrated gas solution in which the gas concentration is increased by forcibly dissolving the gas in the liquid by mixing the liquid with the liquid and forcibly dissolving the gas. A liquid outflow pipe for allowing the pressurized concentrated gas solution to flow out while reducing the pressure can be provided, and a flow path forming member can be provided on the liquid outflow pipe. By doing in this way, the dissolved gas density | concentration in the liquid supplied to a throttle part is raised by pressure dissolution, and the number formation density of the bubble which precipitates by a cavitation effect can be raised significantly. In the case of a pressure-concentrated gas solution, since the concentration of dissolved liquid around the bubble is high, the bubble tends to grow rapidly. However, in the present invention, as described above, even if the liquid after passing through the constricted portion contains relatively coarse bubbles, it is pulverized by entraining it in the swirl generated in the enlarged portion by the action of the outward flow swirling portion. Therefore, the high-concentration bubbles peculiar to pressure dissolution can be uniformly miniaturized, and a large amount of fine and long-life bubbles can be generated extremely efficiently.

外方流れ旋回部の旋回流発生作用は、拡大部から流れ受入口を経て流れ受入部に移行する際の流路断面積の変化が急激であるほうがより顕著になる傾向にある。具体的には、流れ受入口の周囲にて拡大部から流れ受入部に向け流路断面積が階段状に変化すること、つまり、流れ受入口の周囲にて流路内周面が段付き形状となっていることが望ましいといえる。例えば、拡大部が円筒状に形成されている場合、流れ受入口が該拡大部に対し同心的に開口するとともに、拡大部を形成する壁部内周面と流れ受入部をなす壁部内周面とを接続する段部が外方流れ旋回部を形成するように構成するとよい。このようにすると、旋回流に基づく拡大部内部での渦流発生が流れ方向に関して対称形態となり、気泡粉砕を均一かつ効率的に進めることができる。   The swirl flow generating action of the outward flow swirl portion tends to become more conspicuous when the change in the cross-sectional area of the flow path is rapid when moving from the enlarged portion to the flow receiving portion via the flow receiving port. Specifically, the cross-sectional area of the flow path changes stepwise from the enlarged portion to the flow reception portion around the flow receiving port, that is, the inner peripheral surface of the flow channel has a stepped shape around the flow receiving port. It can be said that it is desirable. For example, when the enlarged portion is formed in a cylindrical shape, the flow receiving opening opens concentrically with respect to the enlarged portion, and the wall inner peripheral surface forming the enlarged portion and the wall inner peripheral surface forming the flow receiving portion, It is preferable that the stepped portion connecting the two forms an outward flow swirl. If it does in this way, the eddy current generation inside the expansion part based on a swirl flow will become a symmetrical form about a flow direction, and bubble crushing can be advanced uniformly and efficiently.

また、流路において絞り部の上流側に隣接する形で、拡大部よりも小断面積であって絞り部の最小部よりも大断面積となるように、流れ方向に断面積が均一の準備径小部を形成でき、該準備径小部の上流側に隣接して、流路断面積を該準備径小部の入口に向け連続的に縮小させる準備縮径部を形成することができる。液体流入口から供給される液体の流れは、準備縮径部により絞り部に向けて集約されるが、絞り部に到達する直前に、断面積が均一となる準備径小部により整流することで、絞り部を通過する液体の流れを高速かつ均一なものとでき、気泡の析出及び微細化をより促進することができる。   In addition, in the form adjacent to the upstream side of the throttle part in the flow path, the cross-sectional area is uniform in the flow direction so that the cross-sectional area is smaller than the enlarged part and larger than the smallest part of the throttle part. A small-diameter portion can be formed, and a preliminarily reduced diameter portion that continuously reduces the channel cross-sectional area toward the inlet of the preparatory-diameter small portion can be formed adjacent to the upstream side of the preparatory-diameter small portion. The flow of the liquid supplied from the liquid inlet is concentrated toward the throttle part by the preparation reduced diameter part, but is rectified by the preparation diameter small part having a uniform cross-sectional area immediately before reaching the throttle part. In addition, the flow of the liquid passing through the throttle portion can be made high-speed and uniform, and the precipitation and refinement of bubbles can be further promoted.

さらに、上記の流路に、流れ方向の全長にわたって絞り部よりも断面積が大きくなるように、絞り部の上流側に隣接して形成される準備拡大部と、該準備拡大部の上流側に隣接する形で周方向の段付き面を形成する形で接続され、該準備拡大部との接続側端部にて該準備拡大部よりも小断面積となり絞り部よりも大断面積となるように形成される流れ導入部とを設け、準備拡大部の流れ導入部との接続側の外周領域を、流れ導入部から準備拡大部内に直進する主流れの周囲を保護する流れバッファ空間とする構成が可能である。具体的には、流れ導入部を、液体入口に続く形で準備拡大部に接続する入口側導入部として形成し、準備拡大部を該入口側導入部との接続側にて液体入口よりも大断面積を有するとともに、下流側端部にて液体入口よりも流路断面積が小さく絞り部よりも流路断面積が大きくなるように断面積を漸減させる準備縮径部を有するものとして形成できる。   Further, in the above flow path, a preparation enlarged portion formed adjacent to the upstream side of the throttle portion so as to have a cross-sectional area larger than that of the throttle portion over the entire length in the flow direction, and an upstream side of the preparation enlarged portion It is connected in a form that forms a stepped surface in the circumferential direction in an adjacent form, so that the cross-sectional area is smaller than the preparatory enlarged portion at the connection side end with the preparatory enlarged portion, and is larger than the throttle portion. And a flow buffer space that protects the periphery of the main flow that travels straight from the flow introduction portion into the preparation expansion portion. Is possible. Specifically, the flow introduction part is formed as an inlet side introduction part connected to the preparation expansion part in a form following the liquid inlet, and the preparation expansion part is larger than the liquid inlet on the connection side with the inlet side introduction part. In addition to having a cross-sectional area, it can be formed as having a reduced diameter portion that gradually reduces the cross-sectional area so that the cross-sectional area is smaller than the liquid inlet at the downstream end and larger than the throttle portion. .

流路に絞り部を形成することによる幾何学的に必然の帰結として、絞り部の上流側にはこれに隣接して絞り部よりも断面積が大きい領域が形成される。上記の構成では、この領域を準備拡大部と称し、その準備拡大部の上流側に隣接する形で周方向の段付き面が形成されるよう、該準備拡大部との接続側端部にて該準備拡大部よりも小断面積となり絞り部よりも大断面積となる流れ導入部を形成する。つまり、絞り部の直前に形成される領域に、あえてそれよりも小断面積にて流れ導入部を段付き形態で接続するのである(絞り部の直前に形成される上記領域は流れ導入部との接続側にて流路断面積が不連続に拡大するので、「準備拡大部」と称するのである)。   As a result of geometrical necessity by forming the throttle part in the flow path, a region having a larger cross-sectional area than that of the throttle part is formed on the upstream side of the throttle part. In the above configuration, this region is referred to as a preparatory enlarged portion, and at a connection side end with the preparatory enlarged portion so that a stepped surface in the circumferential direction is formed adjacent to the upstream side of the preparatory enlarged portion. A flow introducing portion having a smaller cross-sectional area than the preparatory enlarged portion and a larger cross-sectional area than the throttle portion is formed. In other words, the flow introduction part is connected in a stepped form with a smaller cross-sectional area than the area formed immediately before the throttle part (the area formed just before the throttle part is the flow introduction part. Since the flow passage cross-sectional area discontinuously expands on the connection side, it is referred to as a “preparation expansion portion”.

流路断面積が上記のごとく不連続に拡大していることにより、準備拡大部の上流側端部において流れ導入部の接続開口周囲には流速の小さい淀み領域が流れバッファ空間として形成される。流れ導入部から準備拡大部内に直進する主流れの外周部は該流れバッファ空間で広がりながら主流れと逆向きに旋回して渦流を発生する。すなわち、上記流れバッファ空間では主流れの周囲を取り囲むように渦流が発生することで流路壁面との摩擦による主流れの圧力損失が軽減され、準備拡大部内部での液体流を高速に維持することができるようになる。準備拡大部自体を、絞り部に向けて断面積を漸減させる準備縮径部を含むものとして形成することで、絞り部に向けた液体流れの増速をスムーズに行うことができる。また、準備拡大部が入口側導入部との接続側にて液体入口よりも大断面積となることにより、準備拡大部の流れ導入部との接続側に形成される流れバッファ空間ひいては該流れバッファ空間で形成される渦流がより大きく顕著なものとなる。その結果、液体入口から流れ込む液体中に、比較的粗大な気泡が含有されている場合においても、流れバッファ空間に生ずる渦流によりこれを予備粉砕することが可能となる。   Since the cross-sectional area of the flow path is discontinuously enlarged as described above, a stagnation region having a small flow velocity is formed as a flow buffer space around the connection opening of the flow introduction portion at the upstream end portion of the preparation expansion portion. The outer peripheral portion of the main flow that goes straight from the flow introduction portion into the preparation expansion portion expands in the flow buffer space and swirls in the direction opposite to the main flow to generate a vortex flow. That is, in the flow buffer space, a vortex flow is generated so as to surround the main flow, thereby reducing the pressure loss of the main flow due to friction with the flow path wall surface, and maintaining the liquid flow inside the preparation expansion portion at high speed. Will be able to. By forming the preparation enlargement part itself as a part including a preparation reduced diameter part that gradually decreases the cross-sectional area toward the throttle part, it is possible to smoothly increase the speed of the liquid flow toward the throttle part. In addition, the preparation expansion portion has a larger cross-sectional area than the liquid inlet on the connection side with the inlet side introduction portion, so that the flow buffer space formed on the connection side with the flow introduction portion of the preparation expansion portion, and thus the flow buffer. The vortex formed in the space becomes larger and more prominent. As a result, even when a relatively coarse bubble is contained in the liquid flowing in from the liquid inlet, it can be preliminarily pulverized by the vortex generated in the flow buffer space.

入口側導入部は例えば円筒面状に形成することができる。また、準備拡大部の後端において、入口側導入部の接続側開口周囲をなす段付き面を、流れ方向と直交する切り立ち面状に形成され、準備絞り部の内周面は該段付き面との接続位置から絞り部に向けて流路断面積を連続的に減少させる傾斜面状に形成することができる。準備径小部は準備縮径部の出口側開口と等断面積を有するものとして形成することができる。   The inlet side introduction part can be formed in a cylindrical surface, for example. Further, at the rear end of the preparatory enlarged portion, a stepped surface that forms the periphery of the connection side opening of the inlet side introduction portion is formed in a vertical surface perpendicular to the flow direction, and the inner peripheral surface of the preparatory throttle portion is stepped. It can be formed in the shape of an inclined surface that continuously decreases the flow path cross-sectional area from the connection position with the surface toward the throttle portion. The small preparation diameter portion can be formed to have the same cross-sectional area as the outlet side opening of the preparation reduced diameter portion.

絞り部は、流路内に配置された衝突部材と、流路内にて衝突部材の先端部と対向する絞りギャップ形成部とを備え、衝突部材の外面と流路の内面との間に迂回流路部が形成されるとともに、衝突部材と絞りギャップ形成部との間には、迂回流路部よりも低流量かつ高流速となるように液体流を絞りつつ通過させる絞りギャップが形成された構造を有するものとして構成できる。   The throttling portion includes a collision member disposed in the flow path and a throttling gap forming section facing the front end of the collision member in the flow path, and bypasses between the outer surface of the collision member and the inner surface of the flow path. A flow path portion was formed, and a narrowing gap was formed between the collision member and the narrowing gap forming portion to allow the liquid flow to pass while being narrowed so as to have a lower flow rate and a higher flow velocity than the bypass flow path portion. It can be configured as having a structure.

上記の構成によると、流路内に衝突部材を設け、また、該流路内にて衝突部材の突出方向先端部と対向する絞りギャップ形成部を設ける。そして、衝突部材の外面と流路内面との間に迂回流路部を形成するとともに、衝突部材と絞りギャップ形成部との間には、迂回流路部よりも低流量かつ高流速となるように液体を絞りつつ通過させる絞りギャップを形成する。このような構造の絞り部に液体流を供給すると、液体流は絞りギャップにて絞られ流速が増加する。ギャップを通過する高速液体流はギャップ出口から解放され、ベルヌーイの原理に従いギャップ及びその下流側に負圧域を形成するので、そのキャビテーション(減圧)効果により液体流中の溶存気体が析出して気泡が発生する。   According to said structure, a collision member is provided in a flow path, and the aperture_diaphragm | restriction gap formation part facing the protrusion direction front-end | tip part of a collision member is provided in this flow path. A bypass flow path is formed between the outer surface of the collision member and the inner surface of the flow path, and the flow rate is lower and higher than the bypass flow path between the collision member and the throttle gap forming section. A squeezing gap that allows liquid to pass therethrough is formed. When a liquid flow is supplied to the throttle portion having such a structure, the liquid flow is throttled by the throttle gap and the flow velocity is increased. The high-speed liquid flow that passes through the gap is released from the gap outlet and forms a negative pressure region on the downstream side of the gap in accordance with Bernoulli's principle, so that dissolved gas in the liquid flow precipitates due to the cavitation (decompression) effect and bubbles Occurs.

例えば特許文献1、2のようなベンチュリ管などの周知の絞り機構を用いる方式では、微細な渦流を生ずるための乱流の発生効率が低く、気泡の相互衝突確率は増大しても微小気泡への粉砕自体は進みにくい傾向にある。液体中の気泡は固体粒子と異なり、相互衝突しても気泡の合体が生じやすい。特許文献1、2に開示された機構では渦流の発生効率が低いため、液体流中の気泡に対しては比較的マクロな撹拌効果が主体的となる。また、通過液体流の流速が不十分なため、絞り孔下流側の減圧レベルも小さく渦流の発生程度も小さい。従って、キャビテーションによる気泡析出量も少ないし、渦流に巻き込むことによる気泡粉砕も進みにくいので、微小気泡を十分に形成することができなかった。結局のところ、十分に縮小した微小気泡を得るには、絞り機構通過時に生じている比較的粒径の大きい気泡を長時間循環させて気体自体の溶解により気泡を縮小させる方法に頼らざるを得ない。その結果、微小気泡を高濃度に含んだ水を得るには気体を導入しながらの長時間の循環が必要となり、微小気泡含有水の製造能率が悪い欠点があった。   For example, in a method using a known throttling mechanism such as a venturi tube as in Patent Documents 1 and 2, the efficiency of generating turbulent flow for generating a fine vortex is low, and even if the mutual collision probability of bubbles increases, it becomes microbubbles. The grinding itself tends to be difficult to proceed. Unlike solid particles, bubbles in a liquid are likely to be combined even if they collide with each other. In the mechanisms disclosed in Patent Documents 1 and 2, since the generation efficiency of vortex is low, a relatively macro agitation effect is dominant for bubbles in the liquid flow. Further, since the flow velocity of the passing liquid flow is insufficient, the pressure reduction level downstream of the throttle hole is small and the degree of vortex generation is small. Therefore, the amount of bubble precipitation due to cavitation is small, and the bubble crushing due to the vortex flow is difficult to proceed, so that microbubbles cannot be sufficiently formed. After all, in order to obtain sufficiently reduced microbubbles, it is necessary to rely on a method of reducing the bubbles by dissolving the gas itself by circulating the bubbles with a relatively large particle size generated during passage through the throttle mechanism for a long time. Absent. As a result, in order to obtain water containing a high concentration of microbubbles, it is necessary to circulate for a long time while introducing gas, and there is a disadvantage that the production efficiency of water containing microbubbles is poor.

しかし、上記の構成では、従来のベンチュリ管やオリフィスなどの絞り孔以外の流路部分が存在しない構造ではなく、絞りギャップを形成する衝突部材と流路との間に、衝突部材にぶつけた液体流を迂回させる迂回流路部を形成したので、ギャップ通過時に流体抵抗が過度に増加せず、結果として該絞りギャップは従来よりもはるかに高速の液体流が通過する。これにより、絞りギャップ及びその下流でのキャビテーション(減圧)効果が大幅に高められ、溶存気体濃度が同じ液体流であってもより多量の気泡を析出させることができる。   However, in the above-described configuration, there is no structure in which a flow path portion other than a throttle hole, such as a conventional venturi tube or an orifice, does not exist, but the liquid that hits the collision member between the collision member forming the throttle gap and the flow path Since the bypass flow path portion for bypassing the flow is formed, the fluid resistance does not increase excessively when passing through the gap, and as a result, a liquid flow that is much faster than in the past passes through the throttle gap. As a result, the squeezing gap and the cavitation (decompression) effect downstream thereof are greatly enhanced, and a larger amount of bubbles can be deposited even in a liquid flow having the same dissolved gas concentration.

また、絞りギャップの通過流速が高速化することで、その下流側に立体広角的に拡がりながら形成される三次元的な負圧域の全体にわたって微小な渦流が多数形成される。また、これとは別に、衝突部材にぶつかって迂回流路部を通過した液体流が衝突部材の下流側に回りこみ、より大流量で激しい乱流が上記の負圧域に重畳して流れ込む。析出気泡を含む絞りギャップの通過流束は、これら2系統の乱流により三次元的に激しくランダムに撹拌されるとともに、析出した気泡を取り囲む多数の微小渦流がそれぞれ気泡を自身に引き込もうとする結果、気泡の微粉砕が大幅に促進される。   In addition, since the passage flow velocity of the throttle gap is increased, a large number of minute vortices are formed over the entire three-dimensional negative pressure region that is formed in a three-dimensional wide-angle area on the downstream side. Separately from this, the liquid flow that has collided with the collision member and passed through the detour channel portion flows around the downstream side of the collision member, and a violent turbulent flow with a larger flow rate is superimposed on the negative pressure region. The passing flux of the constriction gap containing the precipitated bubbles is vigorously and randomly stirred three-dimensionally by these two systems of turbulence, and a large number of micro vortices surrounding the precipitated bubbles attempt to draw the bubbles into themselves. , Bubble pulverization is greatly promoted.

拡大部は、その上流側端部が流れ方向にて衝突部材の軸断面中心よりも前方側に位置する部分と重なるように形成することができる。これにより、拡大部の内周面と、衝突部材の外周面との間には、絞りギャップに直接連通する形で、衝突部材の軸線方向(つまり、絞りギャップのギャップ対向方向)にてその外周面に沿う予備拡大領域が形成される。その結果、拡大部に発生する渦流がこの予備拡大領域に入り込んで、絞りギャップから放出される気泡が直ちに渦流に取り込まれ、気泡の微粉砕が一層促進される。   The enlarged portion can be formed such that the upstream end thereof overlaps with the portion located on the front side of the axial cross-sectional center of the collision member in the flow direction. As a result, between the inner peripheral surface of the enlarged portion and the outer peripheral surface of the collision member, the outer periphery in the axial direction of the collision member (that is, the gap facing direction of the throttle gap) is in direct communication with the throttle gap. A pre-expanded area along the surface is formed. As a result, the vortex generated in the enlarged portion enters the preliminary enlarged region, and the bubbles released from the throttle gap are immediately taken into the vortex, thereby further promoting the fine pulverization of the bubbles.

上記構造の絞り部において迂回流路部は、流路内にて液体流通方向から見て衝突部材の突出方向に関しその片側だけに形成することもできるが、液体流通方向から見て衝突部材の突出方向に関しその両側に迂回流路部を形成しておけば、気泡析出する下流側の負圧域に向け、衝突部材の両側から回り込み乱流が合流するので気泡粉砕効果が一層高められ、微小気泡をより効率的に発生することができ、また、より細径の微小気泡を得る上でも有利となる。   In the throttle portion having the above structure, the bypass flow path portion can be formed only on one side in the flow path when viewed from the liquid flow direction, but the collision member protrudes from the liquid flow direction. By forming detour channel sections on both sides of the direction, the bubble crushing effect is further enhanced by the turbulent flow coming from both sides of the collision member toward the negative pressure area on the downstream side where bubbles are deposited. Can be generated more efficiently, and it is advantageous in obtaining finer microbubbles.

衝突部材及び絞りギャップ形成部との絞りギャップを形成する各対向面の少なくともいずれかには減圧空洞を形成することができる。すなわち、衝突部材ないし絞りギャップ形成部の絞りギャップに臨む面に形成された減圧空洞は流速の小さい淀み空間として機能するので絞りギャップ内部との流速差が拡大し、ベルヌーイの原理によるキャビテーション(減圧)効果を著しく高めることができる。その結果、液体流中の溶存空気に由来した気泡析出量が増加し、液体流中の微小気泡の濃度を高めることができる。負圧域を十分に確保する観点から、減圧空洞の開口径は1mm以上であることが望ましく、深さは開口径よりも大きいことが望ましい。   A decompression cavity can be formed on at least one of the opposing surfaces that form the aperture gap between the collision member and the aperture gap forming portion. That is, the decompression cavity formed on the surface of the collision member or the diaphragm gap forming portion facing the diaphragm gap functions as a stagnation space with a small flow velocity, so that the flow velocity difference with the inside of the diaphragm gap increases, and cavitation (decompression) according to the Bernoulli principle The effect can be remarkably enhanced. As a result, the amount of bubble deposition resulting from dissolved air in the liquid stream increases, and the concentration of microbubbles in the liquid stream can be increased. From the viewpoint of sufficiently securing the negative pressure region, the opening diameter of the decompression cavity is desirably 1 mm or more, and the depth is desirably larger than the opening diameter.

また、減圧空洞を液体流中で共振させれば、該共振により超音波帯共鳴波が発生し、気泡析出のためのキャビテーションと、共鳴振動による気泡粉砕をさらに促進できる。円筒形の減圧空洞を形成する場合、共鳴波の帯域を超音波帯(100kHz以上)とする観点においては、その開口径を10mm未満(望ましくは4mm未満)とするのがよく、深さは開口径とほぼ等しいか、それよりも大きく設定する(望ましくは開口径のほぼ整数倍とする)のがよい。   Further, if the decompression cavity is resonated in the liquid flow, an ultrasonic band resonance wave is generated by the resonance, and cavitation for bubble deposition and bubble crushing by resonance vibration can be further promoted. In the case of forming a cylindrical decompression cavity, the opening diameter should be less than 10 mm (preferably less than 4 mm) and the depth should be opened from the viewpoint of setting the resonance wave band to an ultrasonic band (100 kHz or more). It is preferable to set it approximately equal to or larger than the aperture (preferably approximately an integral multiple of the aperture).

次に、衝突部材及び絞りギャップ形成部の絞りギャップを形成する各対向面の少なくともいずれかを、液体流入側にて該絞りギャップの間隔を上流側から下流側に向けて漸次縮小させる絞り傾斜面として形成することができる。これにより、絞りギャップの対向間隔が絞りギャップ入口からギャップ奥に向かうほど連続的に縮小するので、ギャップ奥に向けて液体流をスムーズに絞ることができ、ギャップ通過時の流量損失を低減して流速を高めることができる。また、衝突部材及び絞りギャップ形成部の絞りギャップを形成する各対向面の少なくともいずれかは、液体流出側にて該絞りギャップの間隔を上流側から下流側に向けて漸次拡大させる拡大傾斜面として形成することもできる。   Next, at least one of the opposing surfaces forming the narrowing gap of the collision member and the narrowing gap forming portion, the narrowing inclined surface that gradually reduces the distance of the narrowing gap from the upstream side to the downstream side on the liquid inflow side. Can be formed as As a result, the confronting distance of the narrowing gap continuously decreases from the narrowing gap inlet toward the back of the gap, so that the liquid flow can be smoothly narrowed toward the back of the gap, reducing the flow loss when passing through the gap. The flow rate can be increased. In addition, at least one of the opposing surfaces forming the aperture gap of the collision member and the aperture gap forming portion is an enlarged inclined surface that gradually increases the aperture gap distance from the upstream side to the downstream side on the liquid outflow side. It can also be formed.

衝突部材(あるいは後述の対向衝突部材)の流路内突出部分の外周面には、液体流剥離凹凸部を形成することができる。上記のような液体流剥離凹凸部を衝突部材の外周面に形成しておくことで、流路の中心軸線方向に流れ込む液体流が液体流剥離凹凸部を乗り越える際に液体流の剥離が生じやすくなり、液体流の乱流化をさらに促進することができる。液体流剥離凹凸部は、衝突部材の流路内突出部分の外周面に形成されたねじ山とすることができる。ねじ山は衝突部材の軸線を法線とする仮想面に対して一定の傾斜角を有しており、この仮想面と平行な向きにて衝突部材に向け液体流が流れ込むと、該液体流方向に対して傾斜した複数のねじ山を横切って衝突部材の下流側に回り込む。このとき、液体流が一方の谷側から反対の谷側へねじ山の稜線部を乗り越える際に、上記乱流化に貢献する液体流剥離が特に生じやすい。   A liquid flow separation uneven portion can be formed on the outer peripheral surface of the protruding portion in the flow path of the collision member (or an opposing collision member described later). By forming the liquid flow separation uneven part as described above on the outer peripheral surface of the collision member, the liquid flow that flows in the direction of the central axis of the flow path easily gets separated when the liquid flow separation uneven part is overcome. Thus, the turbulence of the liquid flow can be further promoted. The liquid flow separation uneven portion can be a thread formed on the outer peripheral surface of the protruding portion in the flow path of the collision member. The screw thread has a constant inclination angle with respect to a virtual plane whose normal is the axis of the collision member. When a liquid flow flows into the collision member in a direction parallel to the virtual plane, the liquid flow direction To the downstream side of the collision member across a plurality of threads that are inclined with respect to. At this time, the liquid flow separation that contributes to the turbulent flow is particularly likely to occur when the liquid flow crosses the ridge portion of the thread from one valley side to the opposite valley side.

微小気泡を十分なレベルで発生させるには、絞りギャップは、液体流入口と液体流出口との圧力差が例えば0.2MPaとなるように液体を供給したとき通過する液体流の最大流速が8m/秒以上(上限値には制限はないが、圧力差0.2MPaにて可能な上限値として、例えば50m/秒を例示できる)となるように調整されていることが望ましい。また、この場合、絞りギャップに発生する最大負圧は0.02MPa以上(理論上の上限値は0.1MPa)となっていることが望ましい。特に、前述の減圧空洞が形成されている場合は、前記圧力差が0.2MPaとなるように液体を供給したとき、該減圧空洞の全域を0.02MPa以上の負圧状態に容易に維持することができる。また、減圧空洞内の全域が該レベルの負圧状態となることで、回り込み乱流により衝突部材の下流側に隣接形成される負圧域も、0.02MPa以上の負圧状態に維持することが可能となる。いずれも、気泡析出のためのキャビテーション効果の顕著化に寄与する。絞りギャップや減圧空洞あるいはその下流側に形成される負圧域の負圧レベルは、より望ましくは0.05MPa以上となっているのがよい。   In order to generate microbubbles at a sufficient level, the throttle gap has a maximum flow velocity of 8 m when the liquid is supplied so that the pressure difference between the liquid inlet and the liquid outlet is 0.2 MPa, for example. / Second or more (the upper limit value is not limited, but it is desirable that the upper limit value at a pressure difference of 0.2 MPa is 50 m / second, for example). In this case, the maximum negative pressure generated in the aperture gap is preferably 0.02 MPa or more (theoretical upper limit is 0.1 MPa). In particular, when the aforementioned vacuum cavity is formed, when the liquid is supplied so that the pressure difference is 0.2 MPa, the entire area of the vacuum cavity is easily maintained in a negative pressure state of 0.02 MPa or more. be able to. Moreover, the negative pressure region formed adjacent to the downstream side of the collision member by the wrapping turbulent flow is maintained in the negative pressure state of 0.02 MPa or more by making the entire area in the decompression cavity into the negative pressure state of the level. Is possible. Both contribute to the remarkable cavitation effect for bubble precipitation. The negative pressure level of the throttle gap, the decompression cavity, or the negative pressure region formed downstream thereof is more preferably 0.05 MPa or more.

上記のような負圧発生条件で前記圧力差が例えば0.2MPaとなるように液体を供給すれば、上記特有構成の絞り部の場合、液体流出口から噴射される液体流に含まれる気泡の微細化に大きく貢献する。例えば円状軸断面を有する衝突部材を採用する場合、前記圧力差が0.2MPaとなるように10℃の水を供給したとき、該円状軸断面を有する衝突部材の外径と迂回流路部の流通断面積とは、迂回流路部内に配置された衝突部材に関するレイノルズ数が10000以上となるように調整されているとよい。   If the liquid is supplied so that the pressure difference becomes 0.2 MPa, for example, under the negative pressure generation condition as described above, in the case of the throttle portion having the above specific configuration, the bubbles contained in the liquid flow ejected from the liquid outlet port Greatly contributes to miniaturization. For example, when a collision member having a circular axial cross section is employed, when water at 10 ° C. is supplied so that the pressure difference is 0.2 MPa, the outer diameter and bypass flow path of the collision member having the circular axial cross section The flow cross-sectional area of the part is preferably adjusted so that the Reynolds number relating to the collision member disposed in the detour channel part is 10,000 or more.

円柱状断面の衝突部材を液体流中に配置したとき、衝突部材の外径をD、流速をU及び水の動粘性係数をνとしてレイノルズ数Reは、
Re=UD/ν(無次元数) ‥ (1)
にて表され、該円柱状断面の衝突部材周囲の流れはレイノルズ数Reが1500以上で乱流化することが知られており、特にReが10000以上のとき、回り込み乱流による気泡の微粉砕効果は飛躍的に高められるので、個数平均値レベルでの気泡粒径をさらに容易に縮小することができる。例えば、平均流速が8m/秒以上となるように迂回流路部の流通断面積が調整されていれば、円状軸断面を有する衝突部材の外径を1〜5mmに調整することによりレイノルズ数Reの値を10000以上の値に容易に確保できる。
When a collision member having a cylindrical cross section is arranged in a liquid flow, the Reynolds number Re is given by assuming that the outer diameter of the collision member is D, the flow velocity is U, and the kinematic viscosity coefficient of water is ν.
Re = UD / ν (Dimensionless number) (1)
It is known that the flow around the collision member having a cylindrical cross section is turbulent when the Reynolds number Re is 1500 or more, and particularly when the Re is 10,000 or more, the bubbles are finely pulverized by the wraparound turbulence. Since the effect is drastically enhanced, the bubble particle size at the number average value level can be more easily reduced. For example, if the flow cross-sectional area of the bypass channel is adjusted so that the average flow velocity is 8 m / sec or more, the Reynolds number can be adjusted by adjusting the outer diameter of the collision member having a circular axial cross section to 1 to 5 mm. The value of Re can be easily secured to a value of 10,000 or more.

特に、迂回流路部の流通断面積が、液体流入口に供給圧力0.55MPaにて10℃の水を供給したときの平均流速が18m/秒以上となるように調整され、円状軸断面を有する衝突部材の外径が1〜5mmに調整されていれば、迂回流路部内に配置された衝突部材に関するレイノルズ数Reは20000を超える値となる。そして、衝突部材が形成する絞りギャップでの通過液体流の最大流速が25m/秒以上となっていれば、噴射される液体流に含まれる微小気泡の数平均粒径を、電解質を積極添加しない淡水では従来実現不能と考えられていた1μm以下の値(例えば、1nm以上500nm以下の値、望ましくは1nm以上100nm以下の値、さらに望ましくは1nm以上50nm以下の値)に縮小することが可能となる。つまり、数平均値レベルにてナノバブル領域となる微小気泡を、複雑で高価なバブル発生装置を用いずとも容易に発生できる。また、上記の流速条件が充足されている状況下では、絞りギャップや減圧空洞あるいは下流側負圧域の負圧レベルは、0.05MPa以上にまで高めることができるので、発生可能な微小気泡の濃度も大幅に高められる。   In particular, the cross-sectional area of the bypass channel is adjusted so that the average flow velocity when supplying water at 10 ° C. at a supply pressure of 0.55 MPa to the liquid inlet is 18 m / sec or more, If the outer diameter of the collision member having a diameter is adjusted to 1 to 5 mm, the Reynolds number Re relating to the collision member arranged in the detour channel portion is a value exceeding 20000. If the maximum flow velocity of the passing liquid flow in the narrowing gap formed by the collision member is 25 m / sec or more, the electrolyte is not positively added to the number average particle diameter of the microbubbles contained in the jetted liquid flow. It can be reduced to a value of 1 μm or less (for example, a value of 1 nm to 500 nm, preferably a value of 1 nm to 100 nm, and more preferably a value of 1 nm to 50 nm), which has been conventionally considered impossible in fresh water. Become. That is, microbubbles that become nanobubble regions at the number average value level can be easily generated without using a complicated and expensive bubble generator. In addition, under the conditions where the above flow rate conditions are satisfied, the negative pressure level in the throttle gap, the decompression cavity, or the downstream negative pressure region can be increased to 0.05 MPa or more, so that microbubbles that can be generated can be generated. Concentration is also greatly increased.

次に、上記構成の絞り部において絞りギャップの間隔を縮小すればギャップ通過流量は減少する一方、迂回流路部へ流れ込む水量が増大する。従って、絞りギャップの通過流速が過度に減少しない範囲内で絞りギャップ間隔を縮小すれば、絞りギャップで発生した微小気泡の回り込み乱流による微小化効果が高められ、より細径の気泡を発生できる。他方、絞りギャップの間隔を拡大すれば、絞りギャップ内の流通抵抗が減少するので、迂回流路部も合わせ流路断面全体で得られる噴射流量を増やすことができる(この場合、ギャップ間隔の設定値によっては、絞りギャップ内の流速がやや不足傾向となる場合もあるが、噴射流量の確保が優先される場合には有利となる)。そこで、上記絞り部に、絞りギャップの間隔を変更可能に調整する絞りギャップ間隔調整機構を設けておけば、気泡細径化と噴射流量との要求レベルに応じて絞りギャップの間隔を適宜調整できる。   Next, if the gap between the throttle gaps is reduced in the throttle part having the above-described configuration, the flow rate through the gap is reduced while the amount of water flowing into the detour channel part is increased. Therefore, if the aperture gap interval is reduced within a range where the flow velocity of the aperture gap does not decrease excessively, the effect of miniaturization due to the turbulent flow of microbubbles generated in the aperture gap can be enhanced, and bubbles with a smaller diameter can be generated. . On the other hand, if the gap between the narrowing gaps is increased, the flow resistance in the narrowing gap is reduced, so that the flow rate of the injection can be increased over the entire cross-section of the bypass channel (in this case, the gap interval is set). Depending on the value, the flow velocity in the throttle gap may tend to be slightly insufficient, but it is advantageous when priority is given to securing the injection flow rate). Therefore, if the aperture gap adjusting mechanism for adjusting the aperture gap interval to be variable is provided in the aperture section, the aperture gap interval can be appropriately adjusted according to the required level of the bubble diameter reduction and the injection flow rate. .

絞りギャップ形成部は、流路の断面中心に関して衝突部材と反対側にて壁部内面から衝突部材に向けて突出する対向衝突部材として形成することができ、絞りギャップを衝突部材の突出方向先端部と対向衝突部材の突出方向先端部との間に形成することができる。例えば、衝突部材の先端面を流路壁部内周面と対向させて絞りギャップを形成してもよく、この場合は流路壁部の衝突部材との対向部分が絞りギャップ形成部を構成することとなる。しかし、この構成では、壁面摩擦による流量損失の大きい流路軸断面の外周縁領域に絞りギャップが位置するので、絞りギャップの通過流速も小さくなりがちである。しかし、対向衝突部材を設けることで絞りギャップの形成位置を流速の大きい断面中心側に近づけることができ、絞りギャップの通過流速が増大してキャビテーション効果が高められ、微小気泡をより効率的に発生させることができる。   The throttle gap forming portion can be formed as an opposing collision member that protrudes from the inner surface of the wall portion toward the collision member on the side opposite to the collision member with respect to the cross-sectional center of the flow path. And the front-end | tip part of the protrusion direction of an opposing collision member can be formed. For example, the throttle gap may be formed by making the front end surface of the collision member face the inner peripheral surface of the flow path wall. In this case, the portion of the flow path wall that faces the collision member constitutes the throttle gap forming portion. It becomes. However, in this configuration, since the throttle gap is located in the outer peripheral region of the cross section of the flow path shaft where the flow loss due to wall friction is large, the flow velocity through the throttle gap tends to be small. However, by providing an opposing collision member, the formation position of the narrowing gap can be brought closer to the center of the cross section where the flow velocity is large, the passage flow velocity of the narrowing gap is increased, the cavitation effect is enhanced, and microbubbles are generated more efficiently. Can be made.

また、衝突部材と対向衝突部材との少なくとも一方の絞りギャップに臨む先端部分には、先端に向かうほど径小となるテーパ状の周側面を有した縮径部を形成することができる。このような縮径部を設けることにより、次のような効果が達成される。
・衝突部材ないし対向衝突部材の縮径部の外周面先端付近においては、液体流の衝突迂回長が外周面基端付近よりも短くなり流速が増大する。また、縮径部外周面の液体流方向上流側に位置する部分は前述の絞り傾斜面を形成する。これにより、絞りギャップ付近の乱流発生効果がさらに高められ、微小気泡の発生効率がさらに向上する。
・衝突部材と対向衝突部材とに対し、液体流の衝突迂回による渦流ないし乱流の発生効果が、それらの対向方向と直交する面内だけでなく、対向方向と平行は面内(つまり、縮径部を絞りギャップ側に乗り越える方向)にも生じ、三次元的な気泡の微粉砕効果が一層高められる。
In addition, a reduced diameter portion having a tapered peripheral side surface that decreases in diameter toward the distal end can be formed at a distal end portion facing at least one throttle gap between the collision member and the opposing collision member. By providing such a reduced diameter portion, the following effects are achieved.
In the vicinity of the outer peripheral surface tip of the reduced diameter portion of the collision member or the opposing collision member, the collision bypass length of the liquid flow is shorter than that near the outer peripheral surface proximal end, and the flow velocity increases. Further, the portion located on the upstream side in the liquid flow direction on the outer peripheral surface of the reduced diameter portion forms the above-described throttle inclined surface. As a result, the effect of generating turbulence near the throttle gap is further enhanced, and the generation efficiency of microbubbles is further improved.
・ Effects of vortex flow or turbulent flow due to the detour of the liquid flow are not only in the plane perpendicular to the opposing direction but also in the plane parallel to the opposing direction (i.e., contraction). This also occurs in the direction of crossing the diameter portion to the narrowing gap side), and the three-dimensional bubble pulverizing effect is further enhanced.

対向衝突部材を設ける場合には、衝突部材及び対向衝突部材の一方又は双方に、絞りギャップに臨む先端面にギャップ形成方向に引っ込む前述の減圧空洞を形成できる。特に衝突部材及び対向衝突部材の一方に減圧空洞を形成し、他方には、その先端が減圧空洞の開口に臨む位置関係にて縮径部を形成する構成を採用すると、絞りギャップ内の液体流は該縮径部により大幅に速度を高めることができる。そして、その増速された液体流が減圧空洞内の淀み部分と接することで極めて大きな流速差が生じる。また、縮径部を乗り越える際に減圧空洞側に液体流が屈曲形態で迂回することで、該流速差の生ずる区間長も増大する(この効果は、縮径部の先端側の一部が減圧空洞の内部に入り込むように位置調整されている場合により顕著となる)。さらに、後述のごとく、この縮径部の形成により減圧空洞の共鳴効果をより顕著にできる可能性がある。いずれも、微小気泡の発生効率向上と、気泡径の更なる微小化に有効に貢献する。   In the case where the opposing collision member is provided, the above-described decompression cavity that retracts in the gap forming direction can be formed on one or both of the collision member and the opposing collision member at the tip surface facing the throttle gap. In particular, when a configuration is adopted in which a reduced pressure cavity is formed in one of the collision member and the opposing collision member and a reduced diameter portion is formed on the other side so that the tip of the collision member faces the opening of the reduced pressure cavity, the liquid flow in the throttle gap Can significantly increase the speed by the reduced diameter portion. The increased liquid flow comes into contact with the stagnation portion in the decompression cavity, so that a very large flow velocity difference is generated. Moreover, when the diameter of the reduced diameter portion is overcome, the liquid flow is diverted to the decompression cavity side in a bent form, so that the section length in which the flow velocity difference occurs is also increased (this effect is caused by a part of the reduced diameter portion on the tip side being decompressed). This is more noticeable when the position is adjusted to enter the interior of the cavity). Furthermore, as will be described later, there is a possibility that the resonance effect of the decompression cavity can be made more conspicuous by forming this reduced diameter portion. Both contribute effectively to improving the generation efficiency of microbubbles and further miniaturizing the bubble diameter.

具体的には、絞りギャップは、衝突部材の先端面にて減圧空洞の開口周縁部をなす周縁領域と縮径部のテーパ状の周側面とが対向することにより楔状断面を有し、かつ空間外周側が迂回流路部に開放する円環状のギャップ周縁空間と減圧空洞とが、減圧空洞の開口内周縁と縮径部の周側面との対向位置に形成される円環状のくびれギャップ部を介して互いに連通した構造をなすように構成できる。これにより、縮径部外周面の、液体流方向に関し絞りギャップの両側に位置する部分も補助的なギャップとして機能する。従って、絞りギャップを通過しない液体流も、該補助的なギャップを通過する際にキャビテーションを生じ、微小気泡の発生効率向上に寄与する。   Specifically, the narrowing gap has a wedge-shaped cross section when a peripheral region forming an opening peripheral portion of the decompression cavity and a tapered peripheral side surface of the reduced diameter portion are opposed to each other at the front end surface of the collision member, and An annular gap peripheral space whose outer peripheral side opens to the detour channel portion and a decompression cavity are formed via an annular constriction gap portion formed at a position opposed to the inner peripheral edge of the opening of the decompression cavity and the peripheral side surface of the reduced diameter portion. Therefore, it can be configured to communicate with each other. As a result, portions of the outer peripheral surface of the reduced diameter portion located on both sides of the throttle gap in the liquid flow direction also function as auxiliary gaps. Therefore, the liquid flow that does not pass through the narrowing gap also causes cavitation when passing through the auxiliary gap, thereby contributing to improvement in the generation efficiency of microbubbles.

なお、対向衝突部材を設ける場合、迂回流路部を衝突部材の外周面と対向衝突部材の外周面とにまたがる形で形成するとよい。これにより、衝突部材と対向衝突部材との双方が回り込み乱流の発生に寄与し、析出気泡の微粉砕効果が一層向上する。   In addition, when providing an opposing collision member, it is good to form a detour channel part in the form spanning the outer peripheral surface of a collision member and the outer peripheral surface of an opposing collision member. Thereby, both a collision member and a counter collision member wrap around and contribute to generation | occurrence | production of a turbulent flow, and the pulverization effect of precipitation bubbles improves further.

また、絞りギャップの液体流入側開口位置におけるギャップ間隔の中心をギャップ中心として定義したとき、流路の断面半径方向にて流路壁部の内面からギャップ中心までの距離が、断面中心からの距離よりも小さくならない範囲にて、該ギャップ中心が断面中心から半径方向に所定長オフセットするように絞りギャップの形成位置を調整しておくと、絞りギャップでの微小気泡の発生効率をさらに高めることができる。   Further, when the center of the gap interval at the liquid inflow side opening position of the throttle gap is defined as the gap center, the distance from the inner surface of the flow path wall portion to the gap center in the radial direction of the cross section of the flow path is the distance from the center of the cross section If the aperture gap formation position is adjusted so that the gap center is offset by a predetermined length in the radial direction from the center of the cross section within a range that does not become smaller than that, the generation efficiency of microbubbles in the aperture gap can be further increased. it can.

衝突部材と対向衝突部材とは各々、該流路形成部材の流路壁部に対し先端側が流路内に突出し、後端側が流路形成部材の外周面に露出するように、該流路壁部を貫通する形態にて配置することができる。そして、対向衝突部材は、外周面に雄ねじ部が形成されるとともに流路壁部に貫通形成された雌ねじ孔にねじ込まれる構成とすることができる。これにより、該雌ねじ孔内における該対向衝突部材の螺進量に応じて絞りギャップの間隔を調整することができる。また、衝突部材も同様のねじ部材として構成することで、流路断面内の絞りギャップの位置(特に、半径方向における断面中心からのオフセット量)を調整することも可能となる。この対向衝突部材の雄ねじ部も前述の液体流剥離凹凸部として活用することができる。   Each of the collision member and the opposing collision member has a flow path wall so that the front end side protrudes into the flow path with respect to the flow path wall portion of the flow path forming member and the rear end side is exposed on the outer peripheral surface of the flow path forming member. It can arrange | position in the form which penetrates a part. And the opposing collision member can be set as the structure screwed in the female screw hole penetrated and formed in the flow-path wall part while a male screw part is formed in an outer peripheral surface. Thereby, the space | interval of an aperture gap can be adjusted according to the screwing amount of this opposing collision member in this internal thread hole. In addition, by configuring the collision member as a similar screw member, it is also possible to adjust the position of the narrowing gap in the cross section of the flow path (in particular, the offset amount from the center of the cross section in the radial direction). The male screw portion of the opposing collision member can also be used as the liquid flow separation uneven portion described above.

本発明の微小気泡発生機構を用いた微小気泡含有液体生成装置の一構成例を示す模式図。The schematic diagram which shows one structural example of the liquid production | generation apparatus containing a microbubble using the microbubble generation mechanism of this invention. 気泡微小化ノズルの平面図及び横断面図。The top view and cross-sectional view of a bubble miniaturization nozzle. 気泡微小化ノズルの要部を拡大して示す横断面図。The cross-sectional view which expands and shows the principal part of a bubble miniaturization nozzle. 衝突部材を用いて形成する絞りギャップ構造の拡大軸断面図。The expanded-axis sectional view of the aperture gap structure formed using a collision member. 気体吸引ノズルの構造を示す横断面図。The cross-sectional view which shows the structure of a gas suction nozzle. 衝突部材による乱流形成作用を模式的に示す説明図。Explanatory drawing which shows typically the turbulent flow formation effect | action by a collision member. 複数の渦流により気泡が引き裂かれて微小化する概念を説明する図。The figure explaining the concept to which a bubble is torn and miniaturized by a plurality of eddy currents. 衝突部材及び対向衝突部材の作用説明図。Explanatory drawing of an effect | action of a collision member and a counter collision member. 衝突により気泡が合体する概念を説明する図。The figure explaining the concept that a bubble merges by collision. ギャップ周縁空間の作用説明図。Action explanatory drawing of gap peripheral space. 水流に及ぼすねじ山の作用説明図。Explanatory drawing of the action of the screw thread on the water flow. 水流剥離凹凸部をセレーション状に形成した衝突部材の一例を示す斜視図。The perspective view which shows an example of the collision member which formed the water flow peeling uneven | corrugated | grooved part in serrated form. 気泡微小化ノズル内の流れ解析結果を示すシミュレーション画像(横断面図)。The simulation image (cross-sectional view) which shows the flow analysis result in a bubble miniaturization nozzle. 気泡微小化ノズル内の流れ解析結果を示すシミュレーション画像(平面図)。The simulation image (plan view) which shows the flow analysis result in the bubble miniaturization nozzle. 気泡微小化ノズルの第一の変形例を示す横断面図。The cross-sectional view which shows the 1st modification of a bubble miniaturization nozzle. 気泡微小化ノズルの第二の変形例を示す横断面図。The cross-sectional view which shows the 2nd modification of a bubble miniaturization nozzle. 絞りギャップの第一の変形例を示す軸断面図。The axial sectional view showing the 1st modification of an aperture gap. 同じく第二の変形例を示す軸断面図。The axial sectional view which shows the 2nd modification similarly. 同じく第三の変形例を示す軸断面図。The axial sectional view which shows a 3rd modification similarly. 同じく第四の変形例を示す軸断面図。The axial sectional view which shows the 4th modification similarly. 同じく第五の変形例を示す軸断面図。The axial sectional view which shows the 5th modification similarly. 同じく第六の変形例を示す軸断面図及び平面図。The axial sectional view and top view showing the 6th modification similarly. 同じく第七の変形例を示す軸断面図及び横断面図。Similarly, an axial sectional view and a transverse sectional view showing a seventh modification. 同じく第八の変形例を示す軸断面図及び横断面図。Similarly, an axial sectional view and a transverse sectional view showing an eighth modification. 気泡微小化ノズルの第三の変形例を示す横断面図。The cross-sectional view which shows the 3rd modification of a bubble miniaturization nozzle.

以下、本発明を実施するための形態を添付の図面を用いて説明する。
図1は、本発明の微小気泡発生機構を使用した微小気泡含有液体生成装置の一構成例を示す模式図である。微小気泡含有液体生成装置1は、気泡導入媒体となる液体として水を採用するようになっており、原料水導入管路372(原料水の導入を開閉するバルブ2が設けられている)を介して主タンク319に原料水が供給される。なお、気泡導入媒体となる液体は、用途に応じて水以外のものを採用してもよい(例えば、アルコールのほか、ガソリン、軽油、重油などの化石燃料などを例示できるが、これらに限定されるものではない)。主タンク319の上面には大気開放口319Lが形成されており、内圧が大気圧に保たれるようになっている。また、符号319kはタンク内の微小気泡含有水を取り出すための取出し口である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic diagram showing an example of the configuration of a microbubble-containing liquid generating apparatus using the microbubble generating mechanism of the present invention. The microbubble-containing liquid generating apparatus 1 employs water as a liquid that serves as a bubble introduction medium, and passes through a raw water introduction pipe 372 (provided with a valve 2 that opens and closes the introduction of raw water). The raw water is supplied to the main tank 319. The liquid used as the bubble introduction medium may be other than water depending on the application (for example, fossil fuels such as gasoline, light oil, heavy oil, etc. in addition to alcohol, but are not limited thereto). Not) An air release port 319L is formed on the upper surface of the main tank 319 so that the internal pressure is maintained at atmospheric pressure. Reference numeral 319k denotes a take-out port for taking out water containing fine bubbles from the tank.

主タンク319からは循環管路313が延出しており、その末端がポンプ301の吸引側に接続されるとともに、その途上には気体吸引ノズル315が設けられている。気体吸引ノズル315には気体供給管309が接続されるとともに、気泡媒体となる気体が該気体供給管309を経て気体吸引ノズル315内に吸引され、循環管路313を通過する液体に混合・導入される。他方、ポンプ301の排出側からは加圧導入管路311が延出し、その末端が加圧溶解タンク310に接続される。気体吸引ノズル315にて気体が混合された液体はポンプ301により加圧溶解タンク310に圧送されるようになっている。加圧溶解タンク310では、気体と水とが混合しつつ加圧され、水に気体が強制溶解して気体濃度が上昇することにより加圧濃縮気体溶解水が発生する。つまり、気体吸引ノズル315と加圧溶解タンク310とが、気体と液体とを接触させた状態で加圧し、液体に気体を強制溶解させることにより気体濃度を上昇させた加圧濃縮気体溶解液を発生させる加圧溶解ユニットを構成する。   A circulation pipe 313 extends from the main tank 319, and its end is connected to the suction side of the pump 301, and a gas suction nozzle 315 is provided on the way. A gas supply pipe 309 is connected to the gas suction nozzle 315, and a gas serving as a bubble medium is sucked into the gas suction nozzle 315 through the gas supply pipe 309 and mixed and introduced into the liquid passing through the circulation line 313. Is done. On the other hand, a pressurized introduction line 311 extends from the discharge side of the pump 301, and its end is connected to the pressurized dissolution tank 310. The liquid mixed with gas by the gas suction nozzle 315 is pumped to the pressurized dissolution tank 310 by the pump 301. In the pressurized dissolution tank 310, gas and water are pressurized while being mixed, and the gas is forcibly dissolved in water to increase the gas concentration, thereby generating pressurized concentrated gas-dissolved water. In other words, the gas suction nozzle 315 and the pressurized dissolution tank 310 pressurize in a state where the gas and the liquid are in contact with each other, and the pressurized concentrated gas dissolved liquid in which the gas concentration is increased by forcibly dissolving the gas in the liquid. The pressure dissolution unit to be generated is configured.

加圧溶解タンク310からは、該加圧溶解タンク310内の加圧濃縮気体溶解水を減圧しつつ流出させる水流出管312が延出し、その末端が主タンク319に接続されている。該水流出管312上に本発明の微小気泡発生機構として構成された気泡微小化ノズル21が設けられ、加圧溶解タンク310から流出する加圧濃縮気体溶解水は気泡微小化ノズル21を通過することにより微小気泡含有水となって主タンク319に戻される。なお、水流出管312上にて気泡微小化ノズル21の上流側には、該気泡微小化ノズル21への加圧濃縮気体溶解水の送液圧力(ひいては、加圧溶解タンク310の内圧)を調整する圧力バルブ316が設けられている。   A water outflow pipe 312 for allowing the pressurized concentrated gas dissolved water in the pressurized dissolution tank 310 to flow out while reducing the pressure extends from the pressurized dissolution tank 310, and its end is connected to the main tank 319. A bubble miniaturization nozzle 21 configured as a microbubble generating mechanism of the present invention is provided on the water outflow pipe 312, and the pressurized concentrated gas-dissolved water flowing out from the pressure dissolution tank 310 passes through the bubble miniaturization nozzle 21. As a result, water containing microbubbles is returned to the main tank 319. In addition, on the upstream side of the bubble miniaturization nozzle 21 on the water outflow pipe 312, the liquid pressure of the pressurized concentrated gas-dissolved water to the bubble miniaturization nozzle 21 (and thus the internal pressure of the pressure dissolution tank 310) is set. A pressure valve 316 to adjust is provided.

図2Aは、気泡微小化ノズル21の構成例を示す平面図および横断面図である。また、図2Bは、その要部を拡大して示す横断面図である。気泡微小化ノズル21は液体入口31と液体出口106とを有し、液体入口31から液体出口106に向かう流路FPが内部に形成された中空の流路形成部材20を備える。なお、本実施形態において流路FPは、中心軸線Oに関する回転体形状に形成されており、流れ方向は中心軸線Oの向きに一致する。具体的には、流路FPは、以下のような要素を備えている。
・絞り部21J:流れ方向にて液体入口31と液体出口106との間に形成され、該液体入口31と液体出口106とのいずれよりも小断面積かつ高流速となるように形成されている。
・拡大部151:絞り部21Jよりも断面積が大きくなるように、絞り部21Jに続いて形成される。この実施形態では、拡大部151は流れ方向に断面積が均一となる均一断面部、具体的には円筒面として形成される。
FIG. 2A is a plan view and a cross-sectional view showing a configuration example of the bubble miniaturization nozzle 21. FIG. 2B is an enlarged cross-sectional view showing the main part. The bubble miniaturization nozzle 21 includes a liquid inlet 31 and a liquid outlet 106, and includes a hollow flow path forming member 20 in which a flow path FP from the liquid inlet 31 toward the liquid outlet 106 is formed. In the present embodiment, the flow path FP is formed in a rotating body shape with respect to the central axis O, and the flow direction coincides with the direction of the central axis O. Specifically, the flow path FP includes the following elements.
The throttle portion 21J is formed between the liquid inlet 31 and the liquid outlet 106 in the flow direction, and has a smaller cross-sectional area and a higher flow velocity than both the liquid inlet 31 and the liquid outlet 106. .
-Enlarged portion 151: formed subsequent to the narrowed portion 21J so that the cross-sectional area becomes larger than the narrowed portion 21J. In this embodiment, the enlarged portion 151 is formed as a uniform cross-section having a uniform cross-sectional area in the flow direction, specifically, a cylindrical surface.

・流れ受入部152:流れ受入口152pが拡大部151よりも小断面積であって、かつ、流れ方向と直交する平面への投影にて該流れ受入口152pが絞り部21Jの開口と互いに重なりを生ずるように拡大部151に続く形で形成され、絞り部21Jから拡大部151に放出される流れを流れ受入口152pにて受け入れて液体出口106に導く。この実施形態では、流れ受入部152も円筒面状に形成されている。 Flow receiving portion 152: The flow receiving port 152p has a smaller cross-sectional area than the enlarged portion 151, and the flow receiving port 152p overlaps with the opening of the constricted portion 21J when projected onto a plane orthogonal to the flow direction. The flow is formed following the enlarged portion 151 so as to generate the flow, and the flow discharged from the narrowed portion 21J to the enlarged portion 151 is received by the flow receiving port 152p and guided to the liquid outlet 106. In this embodiment, the flow receiving portion 152 is also formed in a cylindrical surface shape.

・外方流れ旋回部153:流れ受入口152pの周囲に形成され、拡大部151に放出される流れのうち該拡大部151外周領域に沿って流れる外方流れFSを旋回させつつ拡大部151側へ戻す。この実施形態では、拡大部151が円筒状に形成され、流れ受入口152pが該拡大部151に対し同心的に開口するとともに、拡大部151を形成する壁部内周面と流れ受入部152をなす壁部内周面とを接続する段部が外方流れ旋回部153を形成する。 Outward flow swirling unit 153: The flow is formed around the flow receiving port 152p, and the outer flow FS flowing along the outer peripheral region of the expanding unit 151 among the flow discharged to the expanding unit 151 is swirled while the expanding unit 151 side is swung. Return to. In this embodiment, the enlarged portion 151 is formed in a cylindrical shape, the flow receiving port 152p is concentrically opened with respect to the enlarged portion 151, and forms the flow receiving portion 152 with the inner peripheral surface of the wall forming the enlarged portion 151. A step portion connecting the inner peripheral surface of the wall portion forms the outward flow swirl portion 153.

・準備拡大部156:絞り部21Jよりも断面積が大きくなるように、絞り部21Jの上流側に隣接して形成される。
・流れ導入部150:準備拡大部156の上流側に隣接する形で周方向の段付き面を形成する形で接続され、該準備拡大部156との接続側端部にて該準備拡大部156よりも小断面積となり絞り部21Jよりも大断面積となるように形成される。
そして、準備拡大部156の流れ導入部150との接続側の外周領域が、流れ導入部150から準備拡大部156内に直進する主流れFMの周囲を保護する流れバッファ空間155を形成する。
Preparation enlarged portion 156: It is formed adjacent to the upstream side of the throttle portion 21J so that the cross-sectional area is larger than that of the throttle portion 21J.
Flow introduction part 150: Connected in the form of forming a stepped surface in the circumferential direction adjacent to the upstream side of the preparation enlargement part 156, and the preparation enlargement part 156 at the connection side end with the preparation enlargement part 156 The cross-sectional area is smaller than that of the narrowed portion 21J.
The outer peripheral region of the preparation expansion unit 156 on the connection side with the flow introduction unit 150 forms a flow buffer space 155 that protects the periphery of the main flow FM that goes straight from the flow introduction unit 150 into the preparation expansion unit 156.

流れ導入部150は、液体入口31に続く形で準備拡大部156に接続する円筒面状の入口側導入部(以下、入口側導入部150ともいう)として形成され、準備拡大部156は該入口側導入部150との接続側にて液体入口31よりも大断面積を有するとともに、下流側端部にて液体入口31よりも流路断面積が小さく絞り部21Jよりも流路断面積が大きくなるように断面積を漸減させる準備縮径部30を有する。また、準備縮径部30と絞り部21Jとの間には、液体入口31よりも流路断面積が小さく絞り部21Jよりも流路断面積が大きい、均一断面積の準備径小部157が形成されてなる。   The flow introducing portion 150 is formed as a cylindrical surface-side inlet-side introducing portion (hereinafter also referred to as the inlet-side introducing portion 150) connected to the preparation expanding portion 156 in a form following the liquid inlet 31, and the preparation expanding portion 156 is connected to the inlet expanding portion 156. The cross-sectional area is larger than that of the liquid inlet 31 on the connection side with the side introduction portion 150, and the flow passage cross-sectional area is smaller than that of the liquid inlet 31 at the downstream end portion and larger than that of the throttle portion 21J. Thus, it has a preliminarily reduced diameter portion 30 that gradually reduces the cross-sectional area. Further, between the prepared diameter-reduced portion 30 and the throttle portion 21J, there is a prepared diameter small portion 157 having a uniform cross-sectional area that has a channel cross-sectional area smaller than the liquid inlet 31 and larger than the throttle portion 21J. Formed.

準備拡大部156の後端において、入口側導入部150の接続側開口周囲をなす段付き面156fが流れ方向と直交する切り立ち面状に形成され、準備縮径部30の内周面は該段付き面156fとの接続位置から絞り部21Jに向けて流路断面積を連続的に減少させる傾斜面(ここでは、円錐面)状に形成されている。準備径小部157は準備縮径部30の出口側開口と等断面積を有するものとして形成されている。   At the rear end of the preparatory enlarged portion 156, a stepped surface 156f that forms the periphery of the connection side opening of the inlet side introduction portion 150 is formed as a vertical surface perpendicular to the flow direction, and the inner peripheral surface of the preparatory reduced diameter portion 30 is It is formed in the shape of an inclined surface (here, a conical surface) that continuously decreases the flow path cross-sectional area from the connection position with the stepped surface 156f toward the throttle portion 21J. The small preparation diameter portion 157 is formed to have the same cross-sectional area as the outlet side opening of the preparation reduced diameter portion 30.

なお、入口側導入部150の内径をD、準備拡大部156の上流側端部の内径をD、準備径小部157の内径をD、拡大部151の内径をD、流れ受入部152の内径をDとして、
<D
<D
>D
<D
となるように、各部の寸法が設定されている。また、本実施形態では、
>D>D(=D)>D
となるように設定されている。
In addition, the inner diameter of the inlet side introduction section 150 is D 1 , the inner diameter of the upstream end of the preparation expansion section 156 is D 2 , the inner diameter of the preparation diameter small section 157 is D 3 , and the inner diameter of the expansion section 151 is D 4 . the inner diameter of the part 152 as D 5,
D 1 <D 2 ;
D 3 <D 1 ;
D 4 > D 3 ;
D 5 <D 4 ;
The dimensions of each part are set so that In this embodiment,
D 2 > D 4 > D 1 (= D 5 )> D 3
It is set to become.

次に、絞り部21Jの構造について説明する。絞り部21Jは絞りギャップ21Gと迂回流路部251(図3)とからなる。絞りギャップ21Gを形成するのは、流路形成部材20内にて流路壁部25よりも半径方向内側に配置された衝突部材22と、流路FP内にて衝突部材22の突出方向先端部と対向する絞りギャップ形成部23とである。図3に示すように、気泡微小化ノズル21において衝突部材22の外周面と流路壁部25の内面との間に迂回流路部251が形成される。また、衝突部材22と絞りギャップ形成部23との間に絞りギャップ21Gは、迂回流路部251よりも低流量かつ高流速となるように水流を絞りつつ通過させるものとして形成される。   Next, the structure of the aperture 21J will be described. The restricting portion 21J includes an restricting gap 21G and a bypass channel portion 251 (FIG. 3). The narrowing gap 21G is formed by the collision member 22 disposed radially inward of the flow path wall 25 in the flow path forming member 20 and the forward end portion of the collision member 22 in the protrusion direction in the flow path FP. And a diaphragm gap forming portion 23 facing each other. As shown in FIG. 3, a detour channel portion 251 is formed between the outer peripheral surface of the collision member 22 and the inner surface of the channel wall portion 25 in the bubble miniaturization nozzle 21. In addition, the narrowing gap 21G is formed between the collision member 22 and the narrowing gap forming portion 23 so as to allow the water flow to pass while being narrowed so as to have a lower flow rate and a higher flow velocity than the bypass flow path portion 251.

流路形成部材20は、金属、セラミックあるいは樹脂にて構成される。図2Aに示すように、絞りギャップ形成部23は、流路FPの断面中心Oに関して衝突部材22と反対側にて壁部内面から衝突部材22に向けて突出する対向衝突部材(以下、対向衝突部材23ともいう)として形成され、絞りギャップ21G(図3)は衝突部材22の突出方向先端部と対向衝突部材23の突出方向先端部との間に形成されている。気泡微小化ノズル21の流路形成部材の両端は前後の配管に対し、例えばワンタッチ継ぎ手等により接続が可能である(ただし、ねじ継ぎ手など他の接続構造を採用してもよい)。   The flow path forming member 20 is made of metal, ceramic, or resin. As shown in FIG. 2A, the narrowing gap forming portion 23 is a counter-collision member (hereinafter referred to as counter-collision) that protrudes from the inner surface of the wall portion toward the collision member 22 on the side opposite to the collision member 22 with respect to the cross-sectional center O of the flow path FP. The diaphragm gap 21G (FIG. 3) is formed between the protruding end of the collision member 22 and the protruding end of the opposing collision member 23. Both ends of the flow path forming member of the bubble miniaturization nozzle 21 can be connected to the front and rear pipes by, for example, one-touch joints (however, other connection structures such as screw joints may be adopted).

衝突部材22及び対向衝突部材23はいずれも金属製(例えばステンレス鋼製:例えば、SUS316材)のねじ部材として構成され、いずれも流路壁部25に対し先端側が流路FP内に突出し、後端側が流路壁部25の外周面に露出するように該流路壁部25を貫通する形態にて配置されている。衝突部材22の外周面には雄ねじ部22tが形成され、流路壁部25に貫通形成された雌ねじ孔22uにねじ込まれている。該雌ねじ孔22u内における該衝突部材22の螺進量に応じて絞りギャップ21Gの間隔が調整可能である。また、対向衝突部材23の外周面にも雄ねじ部23tが形成され、流路壁部25に貫通形成された雌ねじ孔23uにねじ込まれている。該雌ねじ孔23u内における該対向衝突部材23の螺進量に応じて絞りギャップ21Gの間隔が調整可能である。また、衝突部材22と対向衝突部材23との双方を同一方向に螺進させれば、絞りギャップ21Gの、流路FPの軸断面半径方向における位置を変更することも可能である。これらの部材の螺進調整を容易にするために、流路壁部25外に突出する衝突部材22と対向衝突部材23との各頭部端面には六角レンチなどの工具を係合させる工具係合孔222,232がそれぞれ形成されている。また、流路形成部材20の外周面には、衝突部材22及び対向衝突部材23の外側端部を収容するためのスリーブ22S及び23Sが突出形成されている。   Each of the collision member 22 and the opposing collision member 23 is configured as a screw member made of metal (for example, stainless steel: for example, SUS316 material), and both of the front end side protrudes into the flow path FP with respect to the flow path wall portion 25, and It arrange | positions in the form which penetrates this flow-path wall part 25 so that an end side may be exposed to the outer peripheral surface of the flow-path wall part 25. FIG. A male threaded portion 22t is formed on the outer peripheral surface of the collision member 22, and is screwed into a female threaded hole 22u formed through the flow path wall 25. The interval of the aperture gap 21G can be adjusted according to the amount of screwing of the collision member 22 in the female screw hole 22u. A male threaded portion 23t is also formed on the outer peripheral surface of the opposing collision member 23, and is screwed into a female threaded hole 23u formed through the flow path wall 25. The interval of the throttle gap 21G can be adjusted according to the amount of screwing of the opposing collision member 23 in the female screw hole 23u. Further, if both the collision member 22 and the counter collision member 23 are screwed in the same direction, the position of the throttle gap 21G in the radial direction of the axial cross section of the flow path FP can be changed. In order to facilitate the adjustment of the screwing of these members, a tool mechanism that engages a tool such as a hexagon wrench with each head end surface of the collision member 22 and the opposing collision member 23 that protrudes outside the flow path wall portion 25. Joint holes 222 and 232 are respectively formed. Further, sleeves 22 </ b> S and 23 </ b> S for projecting the outer end portions of the collision member 22 and the opposing collision member 23 are formed on the outer peripheral surface of the flow path forming member 20.

なお、絞りギャップ21Gの間隔ないし位置を固定として調整を特に行なわない場合には、衝突部材22及び対向衝突部材23を流路壁部25に対し、インサート成型等により螺進不能に固定・一体化する構成も可能である。さらに、衝突部材22及び対向衝突部材23の一方のみを螺進操作可能として、他方を流路壁部25に螺進不能に固定一体化することもできる。   When adjustment is not particularly performed with the interval or position of the aperture gap 21G being fixed, the collision member 22 and the opposing collision member 23 are fixed and integrated with the flow path wall 25 so as not to be screwed by insert molding or the like. It is also possible to configure. Furthermore, only one of the collision member 22 and the opposing collision member 23 can be screwed, and the other can be fixed and integrated with the flow path wall portion 25 so as not to be screwed.

図3に示すように、衝突部材22には、絞りギャップ21Gに臨む先端面にギャップ形成方向に引っ込む減圧空洞221が形成されている。また、対向衝突部材23には先端が減圧空洞221の開口に臨む位置関係にて縮径部23kが形成されている(ただし、対向衝突部材23に減圧空洞を形成し、衝突部材22に縮径部を形成してもよい)。対向衝突部材23に形成された縮径部23kは、先端に向かうほど径小となるテーパ状の周側面231(具体的には円錐面)を有している。該テーパ状の周側面231の水流入側(流れ上流側)に位置する部分は、該絞りギャップ21Gの間隔を上流側から下流側に向けて漸次縮小させる絞り傾斜面を構成する。また、水流出側(流れ下流側)に位置する部分は、絞りギャップ21Gの間隔を上流側から下流側に向けて漸次拡大させる拡大傾斜面を構成する。衝突部材22と対向衝突部材23とは同心的に配置されている。また、減圧空洞221は衝突部材22の外周面と同心的な位置関係にある円筒面状の内周面を有する。また、縮径部23kは先端側の一部が減圧空洞221の内部に入り込むように軸線方向の位置が調整されている。   As shown in FIG. 3, the collision member 22 is formed with a decompression cavity 221 that is retracted in the gap forming direction at the tip surface facing the throttle gap 21G. Further, the opposing collision member 23 is formed with a reduced diameter portion 23k in such a positional relationship that the tip faces the opening of the decompression cavity 221 (however, the opposing collision member 23 is formed with a reduced pressure cavity and the collision member 22 has a reduced diameter. Part may be formed). The reduced diameter portion 23k formed on the opposing collision member 23 has a tapered peripheral side surface 231 (specifically, a conical surface) that decreases in diameter toward the tip. A portion of the tapered peripheral side surface 231 located on the water inflow side (upstream side of the flow) forms a throttle inclined surface that gradually reduces the interval of the throttle gap 21G from the upstream side toward the downstream side. Moreover, the part located in the water outflow side (flow downstream) comprises the expansion inclination surface which expands gradually the space | interval of the aperture gap 21G toward the downstream from the upstream. The collision member 22 and the opposing collision member 23 are disposed concentrically. The decompression cavity 221 has a cylindrical inner peripheral surface that is concentric with the outer peripheral surface of the collision member 22. Further, the position of the reduced diameter portion 23k is adjusted in the axial direction so that a part of the distal end side enters the inside of the decompression cavity 221.

絞りギャップ21Gは、衝突部材22の先端面にて減圧空洞221の開口周縁部をなす周縁領域224と縮径部23kのテーパ状の周側面231とが対向することにより楔状断面を有する円環状のギャップ周縁空間251nが形成されている。該ギャップ周縁空間251nの空間外周側は迂回流路部251に開放するとともに、減圧空洞221の開口内周縁と縮径部23kの周側面との対向位置に形成される円環状のくびれギャップ部21nを介して減圧空洞221と互いに連通した構造をなす。迂回流路部251は、流路FP内にて水流通方向から見て衝突部材22の突出方向に関しその両側に、それぞれ衝突部材22の外周面と対向衝突部材23の外周面とにまたがる形で形成されている。   The narrowing gap 21G has an annular shape having a wedge-shaped cross section when the peripheral region 224 forming the opening peripheral portion of the decompression cavity 221 and the tapered peripheral side surface 231 of the reduced diameter portion 23k are opposed to each other at the front end surface of the collision member 22. A gap peripheral space 251n is formed. The space outer peripheral side of the gap peripheral space 251n is opened to the bypass flow path portion 251, and an annular constriction gap portion 21n formed at an opposing position between the inner peripheral edge of the decompression cavity 221 and the peripheral side surface of the reduced diameter portion 23k. And a structure communicating with the decompression cavity 221 through each other. The detour channel portion 251 spans the outer peripheral surface of the collision member 22 and the outer peripheral surface of the opposing collision member 23 on both sides in the flow direction of the collision member 22 when viewed from the water flow direction in the flow channel FP. Is formed.

また、図2Bに示すように、絞り部21Jの下流側に形成される拡大部151は、その上流側端部が流れ方向にて衝突部材22(及び対向衝突部材23)の軸断面中心λよりも前方側に位置する部分と重なるように形成されている。   Further, as shown in FIG. 2B, the enlarged portion 151 formed on the downstream side of the throttle portion 21J has an upstream end thereof in the flow direction from the axial cross-sectional center λ of the collision member 22 (and the opposing collision member 23). Is also formed so as to overlap with a portion located on the front side.

次に、図4は、気体吸引ノズル315の内部構造を示す横断面図である(気泡微小化ノズル21と概念的に共通する構成要素には同一の符号を付与している)。該気体吸引ノズル315も、金属、セラミックあるいは樹脂にて構成され、液体入口31から液体出口106に向かう流路FPが内部に形成された中空の流路形成部材20を備える。流路FPは、具体的には、以下のような要素を備えている。
・絞り部21J:流れ方向にて液体入口31と液体出口106との間に形成され、該液体入口31と液体出口106とのいずれよりも小断面積かつ高流速となるように形成されている。
・準備拡大部156:絞り部21Jよりも断面積が大きくなるように、絞り部21Jの上流側に隣接して形成される。
・流れ導入部150:準備拡大部156の上流側に隣接する形で周方向の段付き面を形成する形で接続され、該準備拡大部156との接続側端部にて該準備拡大部156よりも小断面積となり絞り部21Jよりも大断面積となるように形成される。
そして、準備拡大部156の流れ導入部150との接続側の外周領域が、流れ導入部150から準備拡大部156内に直進する主流れの周囲を保護する流れバッファ空間155を形成する。
Next, FIG. 4 is a cross-sectional view showing the internal structure of the gas suction nozzle 315 (components that are conceptually common to the bubble miniaturization nozzle 21 are given the same reference numerals). The gas suction nozzle 315 is also made of metal, ceramic or resin, and includes a hollow flow path forming member 20 in which a flow path FP from the liquid inlet 31 to the liquid outlet 106 is formed. Specifically, the flow path FP includes the following elements.
The throttle portion 21J is formed between the liquid inlet 31 and the liquid outlet 106 in the flow direction, and has a smaller cross-sectional area and a higher flow velocity than both the liquid inlet 31 and the liquid outlet 106. .
Preparation enlarged portion 156: It is formed adjacent to the upstream side of the throttle portion 21J so that the cross-sectional area is larger than that of the throttle portion 21J.
Flow introduction part 150: Connected in the form of forming a stepped surface in the circumferential direction adjacent to the upstream side of the preparation enlargement part 156, and the preparation enlargement part 156 at the connection side end with the preparation enlargement part 156 The cross-sectional area is smaller than that of the narrowed portion 21J.
The outer peripheral region of the preparation expansion unit 156 on the connection side with the flow introduction unit 150 forms a flow buffer space 155 that protects the periphery of the main flow that goes straight from the flow introduction unit 150 into the preparation expansion unit 156.

準備拡大部156(内径d)は液体入口31(内径d)よりも流路断面積が小さく形成される。また、流れ導入部150は、液体入口31に続く形で準備拡大部156に接続する入口側導入部25Lと、該入口側導入部25Lと準備拡大部156との間に形成され、上流端側(内径d)にて準備拡大部156よりも流路断面積が大きく、下流端(内径d)にて準備拡大部156よりも流路断面積が小さくなるように、準備拡大部156に向けて断面積を漸減させる準備縮径部30とを有する。さらに、準備縮径部30と準備拡大部156との間に、絞り部21Jの最小部よりも大断面積であって入口側導入部25Lよりも小断面積となるように、流れ方向に断面積が均一の準備径小部157(内径d)が形成されている。該準備径小部157は準備縮径部30とともに流れ導入部150を形成するものであり、準備縮径部30の出口側開口と等断面積を有するものとして、ここでは円筒面状に形成されている。 The preparation enlarged portion 156 (inner diameter d 2 ) is formed to have a smaller channel cross-sectional area than the liquid inlet 31 (inner diameter d 1 ). The flow introduction part 150 is formed between the inlet side introduction part 25L connected to the preparation enlargement part 156 in a form following the liquid inlet 31, and between the inlet side introduction part 25L and the preparation enlargement part 156, and is connected to the upstream end side. The prepared enlarged portion 156 has a flow passage cross-sectional area larger than that of the prepared enlarged portion 156 at (inner diameter d 1 ) and smaller than that of the prepared enlarged portion 156 at the downstream end (inner diameter d 0 ). And a preliminarily reduced diameter portion 30 that gradually reduces the cross-sectional area. Further, the gap between the prepared reduced diameter portion 30 and the prepared enlarged portion 156 is cut in the flow direction so as to have a larger cross-sectional area than the minimum portion of the narrowed portion 21J and a smaller cross-sectional area than the inlet-side introduction portion 25L. A prepared diameter small portion 157 (inner diameter d 0 ) having a uniform area is formed. The prepared small diameter portion 157 forms the flow introducing portion 150 together with the prepared reduced diameter portion 30, and is formed in a cylindrical surface shape here as having the same cross-sectional area as the outlet side opening of the prepared reduced diameter portion 30. ing.

また、絞り部21Jに発生する負圧により、該絞り部21Jを流れる液体に気体を吸引導入するノズル通路226が絞り部21Jに連通する形で形成されている。そして、流路FPは、絞り部21Jよりも下流側の液体出口106に至るまでの区間26において流路断面積が一定、ここでは、円筒面状に形成されている。なお、準備拡大部156は、該区間26の絞り部21J側の延長面と一致する形で円筒面状に形成されている。   Further, a nozzle passage 226 that sucks and introduces gas into the liquid flowing through the throttle portion 21J due to the negative pressure generated in the throttle portion 21J is formed in communication with the throttle portion 21J. The channel FP has a constant channel cross-sectional area in the section 26 extending to the liquid outlet 106 on the downstream side of the restricting portion 21J, and is formed in a cylindrical surface here. The preparatory enlarged portion 156 is formed in a cylindrical surface shape so as to coincide with the extended surface of the section 26 on the narrowed portion 21J side.

気体吸引ノズル315の絞り部21Jの形成形態は、衝突部材22及び対向衝突部材23を用いて絞りギャップ21G及び迂回流路部251(図3)が形成される点において、図3を用いて説明した気泡微小化ノズル21の絞り部21Jと全く同じである。以下、その相違点についてのみ詳細に説明し、共通部分についての説明は省略する。   The formation form of the restricting portion 21J of the gas suction nozzle 315 will be described with reference to FIG. 3 in that the restricting gap 21G and the bypass flow passage portion 251 (FIG. 3) are formed using the collision member 22 and the opposing collision member 23. This is exactly the same as the narrowed portion 21J of the bubble miniaturized nozzle 21. Hereinafter, only the differences will be described in detail, and descriptions of common parts will be omitted.

すなわち、気体吸引ノズル315においては、衝突部材22にノズル通路226が形成されている。ノズル通路226は、該衝突部材22を(結果的には流路壁部25を)流路FP内への突出方向に貫通する形で、一端側が該衝突部材22の先端側にて絞りギャップ21G内に気体噴出口226dを開口し、他端側が流路壁部25を貫通して壁部外面に気体取入口226eを開口する形で形成されている(前述の工具係合孔222と減圧空洞221がノズル通路の一部を構成していると見ることもできる)。衝突部材22を収容するためのスリーブ22Sには、該スリーブ22S内の衝突部材22の端面よりも外側に外れた位置に気体供給孔309Jが貫通形成され、気体供給管309がここに接続される。なお、スリーブ22Sは、軸線方向に形成された衝突部材22の収容孔の開口はキャップ22Cにより密閉されている。気体供給管309に供給される気体の種別は特に限定されないが、例えば、空気、酸素、オゾン、炭酸ガス、水素などであり、また、それらの1種または2種以上、あるいは、さらにその他の希釈ガス(例えば、窒素、アルゴンなど)との混合ガスを採用可能である。これらのガスが、気体供給管309を経てノズル通路226の気体取入口226eに供給されると、絞りギャップ21G内に発生する水流負圧により、気体は該ノズル通路226を経て吸引取り込みされ、気体噴出孔226dから絞りギャップ21G内に噴出する。   That is, a nozzle passage 226 is formed in the collision member 22 in the gas suction nozzle 315. The nozzle passage 226 penetrates the collision member 22 (as a result, the flow path wall portion 25) in the protruding direction into the flow path FP, and one end side of the nozzle passage 226 is the throttle gap 21G at the front end side of the collision member 22. The gas injection port 226d is opened in the inside, and the other end side is formed so as to penetrate the flow path wall portion 25 and open the gas intake port 226e on the outer surface of the wall portion (the tool engagement hole 222 and the decompression cavity described above). 221 can also be seen as forming part of the nozzle passage). The sleeve 22S for accommodating the collision member 22 is formed with a gas supply hole 309J penetratingly formed at a position outside the end surface of the collision member 22 in the sleeve 22S, and the gas supply pipe 309 is connected thereto. . In the sleeve 22S, the opening of the accommodation hole of the collision member 22 formed in the axial direction is sealed with a cap 22C. The type of gas supplied to the gas supply pipe 309 is not particularly limited, but is, for example, air, oxygen, ozone, carbon dioxide, hydrogen, etc., and one or more of them, or further dilution A mixed gas with a gas (for example, nitrogen, argon, etc.) can be used. When these gases are supplied to the gas inlet 226e of the nozzle passage 226 through the gas supply pipe 309, the gas is sucked and taken in through the nozzle passage 226 by the negative water flow pressure generated in the throttle gap 21G. It ejects from the ejection hole 226d into the aperture gap 21G.

図4に示すように、流路形成部材20の下流側外周面には接続用雌ねじ部274が形成されている。また、上流側内周面には接続用雌ねじ部278uが形成されている。これら接続用雄ねじ部274及び接続用雌ねじ部278uにて、流路形成部材20は配管に対し螺合により接続される。なお、流通経路接続部はねじ部に限らず、必要な耐圧を確保できるものであれば、例えばワンタッチ継手など、周知の他の配管接続構造を採用してもよい。   As shown in FIG. 4, a connecting female thread portion 274 is formed on the outer peripheral surface on the downstream side of the flow path forming member 20. Further, a connecting female thread portion 278u is formed on the inner peripheral surface on the upstream side. The flow path forming member 20 is connected to the pipe by screwing at the connecting male screw portion 274 and the connecting female screw portion 278u. Note that the flow path connecting portion is not limited to the threaded portion, and other known pipe connecting structures such as a one-touch joint may be adopted as long as the necessary pressure resistance can be secured.

以下、図1の微小気泡含有液体生成装置1の動作について説明する。まず、バルブ2を開状態とし、主タンク319内に原料水を供給しつつポンプ301を動作させる。ポンプ301は、主タンク319から気体吸引ノズル315を介して原料水を吸引する。図4に示すように、原料水は気体吸引ノズル315を通過する際に、準備縮径部30にて流れを絞られ流速を上昇させた後、準備径小部157及び準備拡大部156を経て絞り部21Jに供給される。   Hereinafter, the operation of the microbubble-containing liquid generating apparatus 1 of FIG. 1 will be described. First, the valve 2 is opened, and the pump 301 is operated while supplying raw water into the main tank 319. The pump 301 sucks the raw water from the main tank 319 through the gas suction nozzle 315. As shown in FIG. 4, when the raw material water passes through the gas suction nozzle 315, the flow is reduced by the preparation reduced diameter portion 30 and the flow velocity is increased, and then the preparation water passes through the preparation diameter small portion 157 and the preparation enlarged portion 156. It is supplied to the diaphragm unit 21J.

流れ導入部150の末端をなす準備径小部157と準備拡大部156とは、両者の接続位置で段付き面を形成する形で不連続に断面積を増大させる。流路断面積が上記のごとく不連続に拡大していることにより、準備拡大部156の上流側端部において準備径小部157の接続開口周囲には流速の小さい淀み領域が流れバッファ空間155として形成される。準備径小部157から準備拡大部156内に直進する主流れFMの外周部は該流れバッファ空間155で広がりながら主流れFMと逆向きに旋回して渦流SWを発生する。すなわち、上記流れバッファ空間155では主流れFMの周囲を取り囲むように渦流SWが発生することで流路壁面との摩擦による主流れFMの圧力損失が軽減される。   The prepared diameter small portion 157 and the prepared enlarged portion 156 that form the end of the flow introducing portion 150 discontinuously increase the cross-sectional area by forming a stepped surface at the connection position between them. As the cross-sectional area of the flow path expands discontinuously as described above, a stagnation region with a low flow velocity is formed as a flow buffer space 155 around the connection opening of the preparation diameter small portion 157 at the upstream end of the preparation expansion portion 156. It is formed. The outer peripheral portion of the main flow FM that goes straight from the preparation diameter small portion 157 into the preparation expansion portion 156 spreads in the flow buffer space 155 and swirls in the direction opposite to the main flow FM to generate a vortex flow SW. That is, in the flow buffer space 155, the vortex SW is generated so as to surround the periphery of the main flow FM, thereby reducing the pressure loss of the main flow FM due to friction with the flow path wall surface.

すなわち、準備縮径部30で増速された液体流は、液体入口31よりも流路断面積が小さい準備拡大部156を経て絞り部21Jに供給されるが、高速の液体流は、準備拡大部156の流れバッファ空間155に形成される渦流SWにより損失が軽減され、高流速状態を十分に維持した状態で絞り部21Jに供給されるので、ノズル通路226を介した絞り部21Jへの気体吸引量を増大させることができる。なお、流路FPは、絞り部21Jよりも下流側の液体出口106に至るまでの区間26の全体が、流路断面積が一定の円筒面状に形成されている。つまり、絞り部21Jよりも下流では付加的な断面縮小部が形成されず、絞り部21Jの通過流速を高速に維持する上での配慮がなされている。   In other words, the liquid flow increased in speed by the preparatory diameter reducing unit 30 is supplied to the throttle unit 21J via the preparatory enlargement unit 156 having a smaller channel cross-sectional area than the liquid inlet 31, but the high-speed liquid flow is prepared and enlarged. Loss is reduced by the eddy current SW formed in the flow buffer space 155 of the portion 156 and is supplied to the throttle portion 21J in a state where the high flow rate state is sufficiently maintained, so that the gas to the throttle portion 21J via the nozzle passage 226 The amount of suction can be increased. Note that, in the channel FP, the entire section 26 extending to the liquid outlet 106 on the downstream side of the throttle portion 21J is formed in a cylindrical surface shape having a constant channel cross-sectional area. That is, no additional cross-sectional reduction portion is formed downstream of the throttle portion 21J, and consideration is given to maintaining the passage flow velocity of the throttle portion 21J at a high speed.

絞り部21Jでは、図3に示すごとく、衝突部材22と対向衝突部材23とにより、絞りギャップ21Gと迂回流路部251とを複合させた特有の構造が採用されており、絞りギャップ21Gへの気体吸引により形成される気泡の微小粉砕が顕著に進行する。その具体的な作用については、同様の絞りギャップ構造を採用する気泡微小化ノズル21を説明する際に詳述する。   As shown in FIG. 3, the restricting portion 21J employs a unique structure in which the restricting gap 21G and the bypass flow passage portion 251 are combined by the impact member 22 and the opposing impact member 23. The fine pulverization of bubbles formed by gas suction proceeds remarkably. The specific action will be described in detail when the bubble miniaturization nozzle 21 that adopts the same narrowing gap structure is described.

図1に戻り、こうして供給された気体は気体吸引ノズル315内で効率よく微細化され、微小気泡含有水となってポンプ301により加圧溶解タンク310へ圧送される。加圧溶解タンク310の出口側は、つまり、水流出管312上に設けられた圧力バルブ316により液体流出量が制限されているので、加圧溶解タンク310内に微小気泡含有水が圧送されれば液面上昇に伴いタンク内の圧力は上昇し、気泡状態で供給された気体の溶解が進行して加圧濃縮気体溶解液が生成する。気体溶解量はタンク内の圧力が上昇するほど増加するが、加圧導入管路311を経て加圧溶解タンク310へ流入する液体量と、圧力バルブ316から流出する液体量とが等しくなったところで加圧溶解タンク310内の液面上昇は停止し、内部圧力もほぼ一定となる。液体への気体溶解量を支配するタンク内圧は圧力バルブ316の開度により決定することができる。   Returning to FIG. 1, the gas thus supplied is efficiently refined in the gas suction nozzle 315, becomes water containing fine bubbles, and is pumped to the pressurized dissolution tank 310 by the pump 301. On the outlet side of the pressurized dissolution tank 310, that is, the liquid outflow amount is limited by the pressure valve 316 provided on the water outflow pipe 312, so that water containing microbubbles is pumped into the pressurized dissolution tank 310. As the liquid level rises, the pressure in the tank rises, and the dissolution of the gas supplied in the bubble state proceeds to produce a pressurized concentrated gas solution. The amount of dissolved gas increases as the pressure in the tank increases, but when the amount of liquid flowing into the pressurized dissolution tank 310 via the pressurized introduction pipe 311 and the amount of liquid flowing out of the pressure valve 316 become equal. The rise of the liquid level in the pressurized dissolution tank 310 is stopped, and the internal pressure becomes substantially constant. The tank internal pressure that governs the amount of gas dissolved in the liquid can be determined by the opening of the pressure valve 316.

そして、加圧溶解タンク310から圧力バルブ316を経て水流出管312に流れ出す加圧濃縮気体溶解液は、減圧されつつ図2Aの気泡微小化ノズル21に流れ込む。図2Bに示すように、この場合も入口側導入部150の末端と準備拡大部156をなす準備縮径部30とは、両者の接続位置で段付き面156fを形成する形で不連続に断面積を増大させる。これにより、準備縮径部30の上流側端部において入口側導入部150の接続開口周囲には流れバッファ空間155が形成され、より大きく顕著な渦流SWが発生する。該渦流SWが発生することで流路壁面との摩擦による主流れFMの圧力損失が軽減されるとともに、加圧溶解した過飽和の気体が比較的粗大な気泡となって析出していても、流れバッファ空間155に生ずる渦流SWによりこれを予備粉砕することが可能となる。加圧濃縮気体溶解水の場合、気泡が析出した時の周囲の溶存液体濃度が高いため、気泡が急速に成長しやすい傾向になる。しかしながら、流れバッファ空間155に生ずる渦流によりこれを予備粉砕し、その後、絞り部21Jの急速な流れに巻き込むことで気泡のさらなる微粉砕を行うことが可能となる。   The pressurized concentrated gas solution flowing out from the pressurized dissolution tank 310 through the pressure valve 316 to the water outflow pipe 312 flows into the bubble miniaturization nozzle 21 in FIG. 2A while being decompressed. As shown in FIG. 2B, in this case as well, the end of the inlet side introduction portion 150 and the preparation reduced diameter portion 30 forming the preparation enlarged portion 156 are discontinuously disconnected by forming a stepped surface 156f at the connection position between them. Increase area. As a result, a flow buffer space 155 is formed around the connection opening of the inlet side introduction portion 150 at the upstream end portion of the preliminarily reduced diameter portion 30, and a larger and more remarkable eddy current SW is generated. The generation of the vortex SW reduces the pressure loss of the main flow FM due to friction with the flow path wall surface, and even if the supersaturated gas dissolved under pressure is precipitated as relatively coarse bubbles, The swirl flow SW generated in the buffer space 155 can be preliminarily pulverized. In the case of pressurized concentrated gas-dissolved water, since the concentration of dissolved liquid around the bubble is high, the bubble tends to grow rapidly. However, the air bubbles can be further finely pulverized by preliminarily pulverizing the vortex generated in the flow buffer space 155 and then entraining the vortex in the rapid flow of the throttle portion 21J.

こうして準備縮径部30により増速され、粗大気泡が予備粉砕された水流は絞り部21Jに供給される。図7(B,C)に示すように、絞りギャップ21Gには水流負圧が発生し、そのキャビテーション効果により溶存気体が析出してギャップ通過水流WFには気泡BMが析出する。一方、図3において、水流はその全てが絞りギャップ21Gに供給されるわけではなく、相当部分が衝突部材22に衝突し迂回流路部251側へ迂回する。図5に示すように、この迂回する水流は、多数の小渦流SWEを三次元的に発生させつつ該衝突部材22の下流側に回り込む回り込み乱流CFを形成する。ギャップ通過水流WFに形成された析出気泡BMは、該回り込み乱流CFに巻き込まれて微小気泡BFに粉砕される。   Thus, the water flow speed-up by the preliminarily reduced diameter portion 30 and the coarse bubbles preliminarily pulverized is supplied to the throttle portion 21J. As shown in FIGS. 7B and 7C, a water flow negative pressure is generated in the throttle gap 21G, and dissolved gas is precipitated by the cavitation effect, and bubbles BM are precipitated in the gap passing water flow WF. On the other hand, in FIG. 3, not all of the water flow is supplied to the throttle gap 21G, and a corresponding portion collides with the collision member 22 and detours toward the detour channel portion 251. As shown in FIG. 5, this detouring water flow forms a wraparound turbulent flow CF that wraps around the downstream side of the collision member 22 while generating a large number of small vortex flows SWE three-dimensionally. The precipitated bubbles BM formed in the gap passing water flow WF are entangled in the wraparound turbulent flow CF and pulverized into the micro bubbles BF.

上記のごとく、衝突部材22を用いて絞りギャップ21Gを形成することにより、絞りギャップ21Gにて負圧を発生させるにとどまらず、衝突部材22に高速で衝突させ下流側に回り込ませることで激しい乱流を三次元的に発生させ、それによって絞りギャップ21Gの直下流域に多数の小渦流を密集して形成することができる。準備縮径部30(図2A)の通過により、図7のAに示すように、加圧濃縮気体溶解液の流れWFは、例えば10〜20m/秒前後に増速された形で絞りギャップ21Gに向けて流れ込む。他方、図3に示すように、絞りギャップ21Gを形成する衝突部材22及び対向衝突部材23は、流路壁部との間に、ぶつかった水流WFを迂回させる迂回流路部251を形成している。つまり、絞りギャップ21Gの外周縁が迂回流路部251に開放していることで、ギャップ通過時の流体抵抗が過度に増加せず、結果として、該絞りギャップ21Gを水流WFは、例えば25m/秒を超える高速で通過することができる。これにより、絞りギャップ21G内及びその下流の広い領域にわたって強い負圧域が発生し、流れWFに含有される溶存気体が析出して気泡BMが多量に発生する。   As described above, by forming the throttle gap 21G using the collision member 22, not only the negative pressure is generated in the throttle gap 21G, but also the collision member 22 collides at a high speed and wraps downstream, thereby causing severe disturbance. A flow is generated three-dimensionally, whereby a large number of small vortex flows can be formed densely in the region immediately downstream of the restricting gap 21G. As shown in FIG. 7A, the flow WF of the pressurized concentrated gas solution is increased by, for example, about 10 to 20 m / second by passing through the preliminarily reduced diameter portion 30 (FIG. 2A). Flow towards the. On the other hand, as shown in FIG. 3, the collision member 22 and the opposing collision member 23 that form the throttle gap 21G form a detour channel portion 251 that detours the water flow WF that collides with the channel wall portion. Yes. That is, since the outer peripheral edge of the throttle gap 21G is open to the detour channel portion 251, the fluid resistance at the time of passing through the gap does not increase excessively. As a result, the water flow WF in the throttle gap 21G is, for example, 25 m / It can pass at high speeds exceeding seconds. As a result, a strong negative pressure region is generated in the narrow gap 21G and a wide region downstream thereof, so that dissolved gas contained in the flow WF is precipitated and a large amount of bubbles BM are generated.

絞りギャップ21Gは、液体入口31と液体出口106との圧力差が例えば0.2MPaとなるように液体を供給したとき通過する液体流の最大流速が8m/秒以上(上限値には制限はないが、圧力差0.2MPaにて可能な上限値として、例えば50m/秒を例示できる)となるように調整されていることが望ましい。また、この場合、絞りギャップに発生する最大負圧は0.02MPa以上(理論上の上限値は0.1MPa)となっていることが望ましい。特に、衝突部材22に減圧空洞221が形成されている場合は、前記圧力差が0.2MPaとなるように液体を供給したとき、該減圧空洞221の全域を0.02MPa以上の負圧状態に容易に維持することができる。また、減圧空洞内221の全域が該レベルの負圧状態となることで、回り込み乱流により衝突部材22の下流側に隣接形成される負圧域も、0.02MPa以上の負圧状態に維持することが可能となる。いずれも、気泡析出のためのキャビテーション効果の顕著化に寄与する。絞りギャップ21Gや減圧空洞221あるいはその下流側に形成される負圧域の負圧レベルは、より望ましくは0.05MPa以上となっているのがよい。   The throttle gap 21G has a maximum liquid flow velocity of 8 m / sec or more when the liquid is supplied so that the pressure difference between the liquid inlet 31 and the liquid outlet 106 is, for example, 0.2 MPa (the upper limit is not limited). However, it is desirable that the upper limit possible at a pressure difference of 0.2 MPa is adjusted to be, for example, 50 m / sec. In this case, the maximum negative pressure generated in the aperture gap is preferably 0.02 MPa or more (theoretical upper limit is 0.1 MPa). In particular, when the pressure reducing cavity 221 is formed in the collision member 22, when the liquid is supplied so that the pressure difference becomes 0.2 MPa, the entire area of the pressure reducing cavity 221 is in a negative pressure state of 0.02 MPa or more. Can be easily maintained. In addition, since the entire region of the decompression cavity 221 is in the negative pressure state at the level, the negative pressure region formed adjacent to the downstream side of the collision member 22 by the wraparound turbulent flow is also maintained in a negative pressure state of 0.02 MPa or more. It becomes possible to do. Both contribute to the remarkable cavitation effect for bubble precipitation. The negative pressure level of the negative pressure region formed on the narrowing gap 21G or the decompression cavity 221 or downstream thereof is more preferably 0.05 MPa or more.

上記のような負圧発生条件で前記圧力差が例えば0.2MPaとなるように液体を供給すれば、上記特有構成の絞り部の場合、液体流出口から噴射される液体流に含まれる気泡の微細化に大きく貢献する。例えば円状軸断面を有する衝突部材22を採用する場合、前記圧力差が0.2MPaとなるように10℃の水を供給したとき、該円状軸断面を有する衝突部材22の外径と迂回流路部251の流通断面積とは、迂回流路部内に配置された衝突部材に関するレイノルズ数が10000以上となるように調整されているとよい。   If the liquid is supplied so that the pressure difference becomes 0.2 MPa, for example, under the negative pressure generation condition as described above, in the case of the throttle portion having the above specific configuration, the bubbles contained in the liquid flow ejected from the liquid outlet port Greatly contributes to miniaturization. For example, when the collision member 22 having a circular axial section is adopted, when water at 10 ° C. is supplied so that the pressure difference becomes 0.2 MPa, the outer diameter and the detour of the collision member 22 having the circular axial section are bypassed. The flow cross-sectional area of the flow path portion 251 is preferably adjusted so that the Reynolds number relating to the collision member disposed in the detour flow path portion is 10,000 or more.

円柱状断面の衝突部材22を液体流中に配置したとき、衝突部材の外径をD、流速をU及び水の動粘性係数をνとしてレイノルズ数Reは、
Re=UD/ν(無次元数) ‥ (1)
にて表され、該円柱状断面の衝突部材22の周囲の流れはレイノルズ数Reが1500以上で乱流化することが知られており、特にReが10000以上のとき、回り込み乱流による気泡の微粉砕効果は飛躍的に高められる。例えば、平均流速が8m/秒以上となるように迂回流路部の流通断面積が調整されていれば、円状軸断面を有する衝突部材の外径を1〜5mmに調整することによりレイノルズ数Reの値を10000以上の値に容易に確保できる。
When the collision member 22 having a cylindrical cross section is disposed in the liquid flow, the Reynolds number Re is given by assuming that the outer diameter of the collision member is D, the flow velocity is U, and the kinematic viscosity coefficient of water is ν.
Re = UD / ν (Dimensionless number) (1)
It is known that the flow around the collision member 22 having a cylindrical cross section is turbulent when the Reynolds number Re is 1500 or more, and particularly when Re is 10,000 or more, the flow of bubbles due to wraparound turbulence The pulverizing effect is greatly enhanced. For example, if the flow cross-sectional area of the bypass channel is adjusted so that the average flow velocity is 8 m / sec or more, the Reynolds number can be adjusted by adjusting the outer diameter of the collision member having a circular axial cross section to 1 to 5 mm. The value of Re can be easily secured to a value of 10,000 or more.

特に、迂回流路部251の流通断面積が、液体入口31に供給圧力0.55MPaにて10℃の水を供給したときの平均流速が18m/秒以上となるように調整され、円状軸断面を有する衝突部材22の外径が1〜5mmに調整されていれば、迂回流路部251内に配置された衝突部材22に関するレイノルズ数Reは20000を超える値となる。   In particular, the flow cross-sectional area of the detour channel portion 251 is adjusted so that the average flow velocity when the water at 10 ° C. is supplied to the liquid inlet 31 at a supply pressure of 0.55 MPa is 18 m / sec or more. If the outer diameter of the collision member 22 having a cross section is adjusted to 1 to 5 mm, the Reynolds number Re related to the collision member 22 arranged in the detour channel portion 251 becomes a value exceeding 20000.

こうして、図5に示すように、衝突部材22にぶつかって迂回流路部251を通過した水流WFは衝突部材22の下流側に回りこみ、前述のレイノルズ数Reのレベルから想定される大流量で激しい乱流CFを形成する。これにより、衝突部材22の下流側では、その全域にわたって微小な渦流SWE(乱流)が極めて高密度に形成される。また、渦流SWEの発生密度が高くなることで、負圧域は、絞りギャップ21G内部のみでなくその下流側にも立体広角的に大きく拡がって形成される。従って、図7のCに示すように、析出気泡BMを含む絞りギャップ21Gの通過流は、ギャップ下流側の負圧域にてさらに気泡析出を継続しながら多数の渦流により撹拌を受けることとなる。また、図9(図5のJ−J断面)に示すように、絞りギャップ21Gの周縁領域は、楔状断面を有し、かつ空間外周側が迂回流路部251に開放する円環状のギャップ周縁空間251nを形成し、特に、縮径部23kの外周面の、水流WFの方向に関し絞りギャップ21Gの両側に位置する部分も補助的なギャップとして機能する。従って、この補助的なギャップを通過する水流にもキャビテーションを生じ、発生した気泡BMが出口側で渦流SWEに巻き込まれ粉砕されるので、微小気泡の発生効率がさらに向上する。   Thus, as shown in FIG. 5, the water flow WF that has collided with the collision member 22 and passed through the detour channel portion 251 circulates downstream of the collision member 22, and has a large flow rate that is assumed from the Reynolds number Re level. A violent turbulent CF is formed. Thereby, on the downstream side of the collision member 22, a minute vortex SWE (turbulent flow) is formed at a very high density over the entire area. Further, since the generation density of the eddy current SWE is increased, the negative pressure region is formed not only inside the throttle gap 21G but also on the downstream side thereof so as to widen in a three-dimensional wide angle. Therefore, as shown in FIG. 7C, the passing flow of the constricted gap 21G including the precipitated bubbles BM is agitated by a large number of vortex flows while continuing bubble precipitation in the negative pressure region on the downstream side of the gap. . Further, as shown in FIG. 9 (the JJ cross section in FIG. 5), the peripheral region of the narrowing gap 21G has a wedge-shaped cross section, and an annular gap peripheral space in which the outer peripheral side of the space is open to the detour channel portion 251. 251n are formed, and in particular, portions of the outer peripheral surface of the reduced diameter portion 23k located on both sides of the throttle gap 21G with respect to the direction of the water flow WF also function as auxiliary gaps. Therefore, cavitation also occurs in the water flow passing through the auxiliary gap, and the generated bubble BM is caught in the vortex SWE on the outlet side and pulverized, so that the generation efficiency of microbubbles is further improved.

乱流化により発生する個々の渦流SWEは、渦外周よりも中心のほうが圧力が低いので、渦流SWEの周囲の流れを渦中心に引き込むように作用する。乱流下では上記のごとく、細かい多数の渦流SWEが三次元的に密集して形成されるので、図6の上に示すように、絞りギャップ通過時のキャビテーション効果により析出・成長した気泡BMは、複数の渦流SWEによる立体的な配位を常に受けた状態となる。各渦流SWEは気泡BMに対し、それぞれ自身の中心に向けて吸引力を作用させるので、図6の下に示すように、気泡BMはそれら周囲の渦流SWEにより四方八方に吸い込まれていわば「八つ裂き」状態となり、微小気泡BFへの粉砕が促進されるとともに気泡径の平均化が進行する。つまり、析出した気泡BM同士を衝突させて粉砕するというよりは、各々吸引力を有した多数の小渦流SWEにより取り囲み、互いに異なる複数方向に引きちぎるイメージである。また、負圧域がギャップ下流側にも大きく広がっていることで、一定レベル以上に成長した気泡粒子がこの負圧によって膨張し、破裂して微小化する効果も期待できる。   The individual vortex flow SWE generated by turbulent flow has a lower pressure at the center than at the outer periphery of the vortex, and therefore acts to draw the flow around the vortex flow SWE into the vortex center. Under the turbulent flow, as described above, a large number of fine eddy currents SWE are densely formed three-dimensionally. As shown in the upper part of FIG. 6, the bubble BM precipitated and grown by the cavitation effect at the time of passing through the throttle gap is A three-dimensional coordination by a plurality of eddy currents SWE is always received. Since each vortex SWE applies a suction force to the bubble BM toward the center of the bubble BM, as shown in the lower part of FIG. 6, the bubble BM is sucked in all directions by the surrounding vortex SWE. In this state, crushing into microbubbles BF is promoted and the bubble diameters are averaged. In other words, rather than colliding the precipitated bubbles BM with each other and pulverizing them, the image is surrounded by a large number of small eddy currents SWE each having a suction force and teared in a plurality of different directions. In addition, since the negative pressure region is greatly extended to the downstream side of the gap, it is possible to expect an effect that the bubble particles grown to a certain level or more are expanded by the negative pressure and burst to be miniaturized.

また、図10に示すごとく、衝突部材22(あるいは対向衝突部材23)の外周面は、本実施形態では雄ねじ部22t(23t)となっているが、個々の部材の外周面が平滑な円筒面ではなくねじ面となっていることも、乱流の発生効率を高める上で貢献している。すなわち、衝突部材22ないし対向衝突部材23は中心軸線が水流方向にほぼ直角となる位置関係で立設されているので、その外周面に形成されたねじ山(水流剥離凹凸部)22mは、衝突部材の軸線を法線とする仮想面VPに対して一定の傾斜角φ(例えば2゜以上15゜以下)を有している。この仮想面VPと平行な向きにて衝突部材に向け水流WFが流れ込むと、該水流方向に対して傾斜した複数のねじ山22mを横切って衝突部材の下流側に回り込む。このとき、水流WFが一方の谷側から反対の谷側へねじ山の稜線部22bを乗り越える際に、乱流化に貢献する水流剥離が生じやすい。なお、図11に示すように、水流剥離凹凸部を衝突部材22(ないし対向衝突部材23)の軸線方向に沿うセレーション部22SRとして形成することも可能である。   Further, as shown in FIG. 10, the outer peripheral surface of the collision member 22 (or the opposing collision member 23) is a male screw portion 22t (23t) in this embodiment, but the outer peripheral surface of each member is a smooth cylindrical surface. The fact that it is a threaded surface contributes to increasing the efficiency of turbulent flow generation. That is, since the collision member 22 or the opposing collision member 23 is erected in a positional relationship in which the central axis is substantially perpendicular to the water flow direction, the screw thread (water flow unevenness portion) 22m formed on the outer peripheral surface It has a certain inclination angle φ (for example, 2 ° or more and 15 ° or less) with respect to the virtual plane VP having the normal of the member axis. When the water flow WF flows toward the collision member in a direction parallel to the imaginary plane VP, the water flow WF crosses the plurality of screw threads 22m inclined with respect to the water flow direction and flows downstream of the collision member. At this time, when the water flow WF gets over the ridge line portion 22b of the thread from one valley side to the opposite valley side, water flow separation that contributes to turbulence is likely to occur. In addition, as shown in FIG. 11, it is also possible to form a water flow peeling uneven | corrugated | grooved part as a serration part 22SR along the axial direction of the collision member 22 (or opposing collision member 23).

また、この実施形態において重要な点は、衝突部材22の先端に絞りギャップ21Gに面する形で減圧空洞221が形成されている点である。該減圧空洞221により次のような作用・効果が期待できる。
・減圧空洞221内は高負圧域となり、キャビテーションによる気泡析出が促進されるとともに、析出した気泡の膨張による破裂も起こりやすいので、気泡の微小化に寄与する。
Further, an important point in this embodiment is that a pressure reducing cavity 221 is formed at the tip of the collision member 22 so as to face the throttle gap 21G. The following actions and effects can be expected from the decompression cavity 221.
-The inside of the decompression cavity 221 is in a high negative pressure region, and bubble precipitation by cavitation is promoted, and bursting due to expansion of the precipitated bubble is likely to occur, which contributes to miniaturization of the bubble.

・減圧空洞221が水流中で共振することにより超音波帯共鳴波が発生し、気泡析出のためのキャビテーションと、共鳴振動による気泡粉砕が促進される。要因としては、次のような機構が考えられる。図7に示すように、減圧空洞221に臨む対向衝突部材23の先端部が縮径していることで、該先端部に沿って乗り上げる水流は、例えば30m/秒を超える高速で減圧空洞221内に進入し、減圧空洞221の内壁面間で多重反射を繰り返す。この水流の多重反射により、減圧空洞221の形状から定まる固有周波数にて超音波帯共鳴波が励起こされる。例えば、減圧空洞221の内径dxを2mm、水中での音速cを1500m/秒と仮定すれば、空洞半径方向の振動の固有周波数は、多少粗い近似ではあるがc/2dxのほぼ整数倍とみなすことができる(音響工学原論(伊藤毅著、昭和30年)p.270〜271、コロナ社)。これにより、その最低次振動の周波数は約375kHzと計算でき、超音波帯振動となることがわかる。 An ultrasonic band resonance wave is generated by the resonance of the decompression cavity 221 in the water flow, and cavitation for bubble deposition and bubble crushing by resonance vibration are promoted. The following mechanisms can be considered as factors. As shown in FIG. 7, since the tip of the opposing collision member 23 facing the decompression cavity 221 is reduced in diameter, the water flow that runs along the tip is, for example, at a high speed exceeding 30 m / second in the decompression cavity 221. , And multiple reflection is repeated between the inner wall surfaces of the decompression cavity 221. Due to the multiple reflection of the water flow, an ultrasonic band resonance wave is excited at a natural frequency determined from the shape of the decompression cavity 221. For example, assuming that the inner diameter dx of the decompression cavity 221 is 2 mm and the sound velocity c in water is 1500 m / second, the natural frequency of vibration in the cavity radial direction is considered to be almost an integral multiple of c / 2dx although it is a somewhat rough approximation. (Acoustics engineering theory (by Satoshi Ito, 1955) p. 270-271, Corona). Thereby, the frequency of the lowest order vibration can be calculated to be about 375 kHz, and it is understood that the vibration is an ultrasonic band.

また、上記の構造の絞りギャップ21Gは気体吸引ノズル315にも設けられているが、気体吸引ノズル315では、ノズル通路226から吸引された気体が気泡となって水流に混入し、これが絞りギャップ21G内にて、上記した気泡微小化ノズル21と全く同様の機構、すなわち、回り込み乱流CFと減圧空洞221の作用により速やかに微粉砕される。また、ノズル通路226を該減圧空洞221内に開口させることで、減圧空洞221内の大きな負圧により外気吸引力が増強される効果もある。また、微小気泡含有水が循環供給される場合のように、絞りギャップ21Gに到達する水が溶存気体を含有している場合は、気泡微小化ノズル21と全く同様に、溶存気体が析出して気泡BMが生じ、これが回り込み乱流CFに巻き込まれて微小気泡に粉砕される。   The throttle gap 21G having the above-described structure is also provided in the gas suction nozzle 315. However, in the gas suction nozzle 315, the gas sucked from the nozzle passage 226 becomes bubbles and is mixed into the water flow, and this is the throttle gap 21G. Inside, it is pulverized quickly by the same mechanism as the above-described bubble miniaturization nozzle 21, that is, by the action of the wraparound turbulent flow CF and the decompression cavity 221. Further, by opening the nozzle passage 226 into the decompression cavity 221, there is an effect that the outside air suction force is enhanced by the large negative pressure in the decompression cavity 221. Further, when the water reaching the narrowing gap 21G contains dissolved gas as in the case where the water containing fine bubbles is circulated and supplied, the dissolved gas is precipitated just like the bubble miniaturizing nozzle 21. Bubbles BM are generated, and they are wrapped around the turbulent flow CF and crushed into micro bubbles.

次に、加圧濃縮気体溶解水が常圧での過飽和領域にまで気体を溶かしこんでいる場合には、絞りギャップ21Gを通過した後も粗大な気泡が残留する可能性がある。そこで図2Aの気泡微小化ノズル21では、こうした残留粗大気泡が、絞り部21Jの下流側に設けられた特有の流れ要素により効果的に微粉砕される。すなわち、図2Bに示すように、絞り部21Jから拡大部151に放出された流れは拡大部151内にて外方へ広がり、拡大部151外周領域に沿って流れる外方流れFSを生ずる。そして、流れ受入口152pの周囲には、拡大部151と流れ受入部152との断面積差に基づき、この外方流れFSを半径方向内向きに旋回させる外方流れ旋回部153が形成されており、旋回した外方流れは渦を巻きつつ気泡とともに拡大部151内に逆流する。その結果、液体中に含まれる気泡は拡大部151内に渦流とともに留まり、激しく撹拌されることにより微粉砕を十分に進行させることができるのである。   Next, when the pressurized concentrated gas-dissolved water dissolves the gas into the supersaturated region at normal pressure, coarse bubbles may remain even after passing through the throttle gap 21G. Therefore, in the bubble miniaturization nozzle 21 of FIG. 2A, such residual coarse bubbles are effectively pulverized by a specific flow element provided on the downstream side of the throttle portion 21J. That is, as shown in FIG. 2B, the flow discharged from the narrowed portion 21J to the enlarged portion 151 spreads outward in the enlarged portion 151 and generates an outward flow FS that flows along the outer peripheral area of the enlarged portion 151. An outer flow swirling portion 153 that swirls the outer flow FS radially inward is formed around the flow receiving port 152p based on the cross-sectional area difference between the enlarged portion 151 and the flow receiving portion 152. Thus, the swirling outward flow flows back into the enlarged portion 151 together with bubbles while winding. As a result, the bubbles contained in the liquid remain in the enlarged portion 151 together with the vortex and can be sufficiently pulverized by being vigorously stirred.

図12(横断面図)及び図13(平面図)は、図2Aに示す形状の気泡微小化ノズル21の流路内の流れを、市販の熱流体解析ソフトウェア(EFD.Lab、株式会社構造計画研究所製)を用いて解析したシミュレーション結果を示すものである。画像内の矢印は各所での流れの向きを示し、矢印の明度により流速をあらわしている(明度の大きい矢印ほど流速が大きいことを示す)。液体入口31と液体出口106との間に付与された圧力差は0.2MPaである。まず、絞り部21Jの上流側では、準備拡大部をなす準備縮径部156の流れバッファ空間155において、準備縮径部156の後端側段付き面156fに規制される形で主流れFMの接線方向に旋回する渦流SW1が、該主流れFMの軸線周りにこれを取り囲むように発生していることがわかる。該渦流SWによる流れ損失の軽減効果により、主流れFMは20m/秒を超える高速度で準備径小部157を経て絞り部21Jに流れ込む。その絞りギャップ21Gでの流速は25m/秒を大幅に超えることが該シミュレーション結果から確認できている。   FIG. 12 (cross-sectional view) and FIG. 13 (plan view) show the flow in the flow path of the bubble miniaturized nozzle 21 having the shape shown in FIG. 2A by using commercially available thermal fluid analysis software (EFD.Lab, Structural Planning Co., Ltd.). The simulation result analyzed using a laboratory is shown. The arrows in the image indicate the direction of the flow at each location, and the flow speed is indicated by the brightness of the arrow (the higher the brightness, the higher the flow speed). The pressure difference applied between the liquid inlet 31 and the liquid outlet 106 is 0.2 MPa. First, on the upstream side of the throttle portion 21J, in the flow buffer space 155 of the preparatory diameter reducing portion 156 that forms the preparatory expansion portion, the main flow FM is regulated by the stepped surface 156f on the rear end side of the preparatory diameter reducing portion 156. It can be seen that a vortex swirl swirling in a tangential direction is generated around the axis of the main flow FM. Due to the effect of reducing the flow loss due to the vortex SW, the main flow FM flows into the constricted portion 21J via the preparation diameter small portion 157 at a high speed exceeding 20 m / sec. It has been confirmed from the simulation results that the flow velocity at the aperture gap 21G greatly exceeds 25 m / sec.

図12に示すように、絞りギャップ21Gの下流側に形成された拡大部151では、絞りギャップ21Gの形成方向(つまり、衝突部材22と対向衝突部材23との対向方向)を図面の上下方向と定義したとき、絞りギャップ21Gの直後から下方(対向衝突部材23側)に向かい、拡大部151の下面に到達後は該下面に沿って流れ順方向に拡大部151の後端側へと流れる。そこで、段差状に形成された外方流れ旋回部153により上方へ旋回し、拡大部151の上面に沿って流れ逆方向に絞りギャップ21Gへと向かう大きな旋回流SW2が、拡大部151の内部空間をフルに活用する形で形成されていることがわかる。また、拡大部151の上流側端部が流れ方向にて衝突部材22の軸断面中心よりも前方側に位置する部分と重なるように形成されていることから、上記の旋回流SW2の上流側はこの重なり領域にも入り込み、旋回流SW2の上流側端縁が絞りギャップ21Gにより接近していることもわかる。これにより、絞りギャップ21Gから噴出する多量の気泡をより効果的に該旋回流SW2に取り込むことができ、気泡の微粉砕効果が高められている。図13に示すように、上記の旋回流SW2は、絞りギャップ21Gの両側に形成された迂回流路部251(図3)に対応して、衝突部材22の中心軸線に関し、両側に対をなして発生していることもわかる。   As shown in FIG. 12, in the enlarged portion 151 formed on the downstream side of the narrowing gap 21G, the direction in which the narrowing gap 21G is formed (that is, the facing direction between the collision member 22 and the opposing collision member 23) is the vertical direction in the drawing. When defined, the flow is directed downward (opposite collision member 23 side) immediately after the narrowing gap 21G, and after reaching the lower surface of the enlarged portion 151, flows along the lower surface in the forward direction toward the rear end side of the enlarged portion 151. Therefore, a large swirl flow SW2 that swirls upward by the outward flow swirl 153 formed in a step shape and flows in the reverse direction along the upper surface of the enlargement 151 toward the constriction gap 21G is the internal space of the enlargement 151. It can be seen that it is formed in a form that fully utilizes. Further, the upstream end of the swivel flow SW2 is formed so that the upstream end of the enlarged portion 151 overlaps with the portion located in front of the axial cross-sectional center of the collision member 22 in the flow direction. It can also be seen that the upstream edge of the swirl flow SW2 is closer to the restriction gap 21G by entering the overlapping region. Thereby, a large amount of bubbles ejected from the narrowing gap 21G can be taken into the swirl flow SW2 more effectively, and the effect of finely crushing the bubbles is enhanced. As shown in FIG. 13, the swirl flow SW2 is paired on both sides with respect to the central axis of the collision member 22 corresponding to the bypass flow path portions 251 (FIG. 3) formed on both sides of the throttle gap 21G. It can also be seen that it has occurred.

以下、気泡微小化ノズルの種々の変形例について説明する(すでに説明済みの部分と共通する要素には同一の符号を付与して詳細な説明は省略する)。図14に示す気泡微小化ノズル21の構成は、図2Aの構成とほぼ同じであるが、外方流れ旋回部153をpなす段付き面153rと、準備縮径部30の後端部外周縁155rの断面形状を湾曲形態(つまり、アール面状)に形成している。これにより、旋回する流れがよりスムーズとなり、旋回流の流速が上昇して気泡の微粉砕効果が高められている。   Hereinafter, various modifications of the bubble miniaturization nozzle will be described (elements common to those already described are given the same reference numerals and detailed description thereof will be omitted). The configuration of the bubble miniaturization nozzle 21 shown in FIG. 14 is substantially the same as the configuration of FIG. 2A, but the stepped surface 153 r that forms the outward flow swirl 153 and the outer peripheral edge of the rear end portion of the prepared reduced diameter portion 30. The cross-sectional shape of 155r is formed in a curved shape (that is, a rounded shape). As a result, the swirling flow becomes smoother, the flow velocity of the swirling flow is increased, and the effect of finely crushing the bubbles is enhanced.

図15は準備縮径部30の上流端側の内径を流れ導入部150の内径に一致させ、流れバッファ空間を省略した構成を示すものである。流れバッファ空間は省略されているものの、絞り部21Jよりも下流側の構成は図2Bとまったく同じであり、外方流れ旋回部153による拡大部151内の旋回流発生効果ひいては気泡微粉砕効果が同様に享受できることはいうまでもない。   FIG. 15 shows a configuration in which the inner diameter on the upstream end side of the preliminarily reduced diameter portion 30 is matched with the inner diameter of the flow introducing portion 150 and the flow buffer space is omitted. Although the flow buffer space is omitted, the configuration on the downstream side of the throttle portion 21J is exactly the same as in FIG. 2B, and the effect of generating the swirling flow in the enlarged portion 151 by the outward flow swirling portion 153 and the effect of finely pulverizing the bubbles are obtained. It goes without saying that it can be enjoyed similarly.

以下、絞りギャップ形成にかかる種々の変形例を示す。図16は、衝突部材22に形成する減圧空洞221内の水流をより滑らかにするために、空洞底部を湾曲面状に形成した例を示す。また、図17は、減圧空洞221の開口内周縁面を、対向衝突部材23の先端部のテーパ状周側面231に対応する座ぐり状のテーパ面1224とした例を示す。このテーパ面1224の形成により、対向衝突部材23の先端側に水流を導く効果が高められる。   Hereinafter, various modifications for forming the aperture gap will be described. FIG. 16 shows an example in which the bottom of the cavity is formed in a curved surface in order to make the water flow in the decompression cavity 221 formed in the collision member 22 smoother. FIG. 17 shows an example in which the opening inner peripheral surface of the decompression cavity 221 is a counterbore tapered surface 1224 corresponding to the tapered peripheral side surface 231 of the tip of the opposing collision member 23. By forming the tapered surface 1224, the effect of guiding the water flow to the tip side of the opposing collision member 23 is enhanced.

図18は、衝突部材22から減圧空洞221を省略し、先端面を平坦に形成した例を示す。対向衝突部材23の先端部にはテーパ状周側面231が形成されているが、衝突部材22と対向する先端面は平坦に形成されている。図19は、対向衝突部材23の先端面に浅い減圧空洞1232を形成した例を示す。衝突部材22には減圧空洞が形成されず、その先端部外周縁がテーパ状周側面225とされている。図20は、衝突部材22と対向衝突部材23とをくびれ連結部21Cにより軸線方向に一体結合し、そのくびれ連結部に絞りギャップ21G’を貫通形成した例を示す。   FIG. 18 shows an example in which the decompression cavity 221 is omitted from the collision member 22 and the tip surface is formed flat. A tapered peripheral side surface 231 is formed at the distal end portion of the opposing collision member 23, but the distal end surface facing the collision member 22 is formed flat. FIG. 19 shows an example in which a shallow decompression cavity 1232 is formed on the front end surface of the opposing collision member 23. The collision member 22 is not formed with a decompression cavity, and the outer peripheral edge of the tip is a tapered peripheral side surface 225. FIG. 20 shows an example in which the collision member 22 and the opposing collision member 23 are integrally connected in the axial direction by the constriction connecting portion 21C, and the constriction gap 21G 'is formed through the constriction connecting portion.

図21は、衝突部材22及び対向衝突部材23のいずれにも減圧空洞を形成せず、その平坦な対向面間に絞りギャップ21Gを形成するとともに、両部材の軸線を流路形成部材20の断面中心に対して片側に寄せて配置することで、迂回流路部251を衝突部材22(及び対向衝突部材23)の片側にのみ形成した例を示すものである。   FIG. 21 shows that neither the collision member 22 nor the opposing collision member 23 is formed with a decompression cavity, a narrowing gap 21G is formed between the flat opposed surfaces, and the axis of both members is the cross section of the flow path forming member 20. An example in which the detour channel portion 251 is formed only on one side of the collision member 22 (and the opposing collision member 23) is shown by being arranged close to one side with respect to the center.

さらに、図22は、対向衝突部材を廃止し、衝突部材22を流路形成部材20の壁部内面を絞りギャップ形成部20cとして、これに対向させる形で絞りギャップ21Gを形成した例である。衝突部材22の先端面は、流路形成部材20の壁部内面に対応する凸湾曲面状とされている。また、図23は、対向衝突部材123を衝突部材22よりも広幅に形成することで、対向衝突部材123の側方に迂回流路部251が生じないように構成した例を示すものである。   Furthermore, FIG. 22 is an example in which the opposing collision member is eliminated and the diaphragm gap 21G is formed in such a manner that the collision member 22 is opposed to the inner surface of the flow path forming member 20 as the throttle gap forming part 20c. The front end surface of the collision member 22 has a convex curved surface corresponding to the inner surface of the wall portion of the flow path forming member 20. FIG. 23 shows an example in which the opposing collision member 123 is formed so as to be wider than the collision member 22 so that the detour channel portion 251 is not formed on the side of the opposing collision member 123.

また、図24は、絞り部21Qを、通常のベンチュリ型絞り機構として形成した例を示す。   FIG. 24 shows an example in which the aperture 21Q is formed as a normal venturi-type aperture mechanism.

1 微小気泡含有液体生成装置
21 気泡微小化ノズル(微小気泡発生機構)
21J 絞り部
21G 絞りギャップ
21n くびれギャップ部
22 衝突部材
22t,23t 雄ねじ部
22m ねじ山(水流剥離凸部)
22u,23u 雌ねじ孔
23 対向衝突部材(絞りギャップ形成部)
23k 縮径部
30 準備縮径部
FP 流路
31 液体入口
106 液体出口
150 流れ導入部
151 拡大部
152 流れ受入部
FM 主流れ
FS 外方流れ
153 外方流れ旋回部
155 流れバッファ空間
156 準備拡大部
157 準備径小部
221 減圧空洞
226 ノズル通路
231 テーパ状周側面(絞り傾斜面、拡大傾斜面)
251 迂回流路部
310 加圧溶解タンク(加圧溶解ユニット)
312 水流出管
319 主タンク
1 Microbubble-containing liquid generator 21 Bubble miniaturization nozzle (microbubble generation mechanism)
21J Constriction part 21G Constriction gap 21n Constriction gap part 22 Collision member 22t, 23t Male thread part 22m Screw thread (water flow separation convex part)
22u, 23u Female screw hole 23 Opposing collision member (diaphragm gap forming portion)
23k Reduced diameter part 30 Prepared reduced diameter part FP flow path 31 Liquid inlet 106 Liquid outlet 150 Flow introducing part 151 Enlarged part 152 Flow receiving part FM Main flow FS Outer flow 153 Outer flow swirl part 155 Flow buffer space 156 Prepared enlarged part 157 Preparation diameter small portion 221 Depressurization cavity 226 Nozzle passage 231 Tapered circumferential side surface (aperture inclined surface, enlarged inclined surface)
251 Detour channel section 310 Pressure dissolution tank (pressure dissolution unit)
312 Water outflow pipe 319 Main tank

Claims (10)

液体入口と液体出口とを有し、前記液体入口から前記液体出口に向かう流路が内部に形成された中空の流路形成部材を備え、該流路形成部材の前記流路が、
流れ方向にて前記液体入口と前記液体出口との間に形成され、
該液体入口と液体出口とのいずれよりも小断面積かつ高流速となるように形成された絞り部と、
前記絞り部よりも断面積が大きくなるように、前記絞り部に続いて形成される拡大部と、
流れ受入口が前記拡大部よりも小断面積であって、かつ、流れ方向と直交する平面への投影にて該流れ受入口が前記絞り部の開口と互いに重なりを生ずるように前記拡大部に続く形で形成され、前記絞り部から前記拡大部に放出される流れを前記流れ受入口にて受け入れて前記液体出口に導く流れ受入部と、
前記流れ受入口の周囲に形成され、前記拡大部に放出される流れのうち該拡大部外周領域に沿って流れる外方流れを旋回させつつ前記拡大部側へ戻す外方流れ旋回部と、を有することを特徴とする微小気泡発生機構。
A flow path forming member having a liquid inlet and a liquid outlet and having a flow path from the liquid inlet toward the liquid outlet formed therein; and the flow path of the flow path forming member includes:
Formed between the liquid inlet and the liquid outlet in a flow direction;
A throttle portion formed to have a smaller cross-sectional area and a higher flow velocity than both the liquid inlet and the liquid outlet;
An enlarged portion formed subsequent to the throttle portion so that a cross-sectional area is larger than the throttle portion;
The flow receiving port has a smaller cross-sectional area than the enlarged portion, and the flow receiving port overlaps with the opening of the throttle portion when projected onto a plane orthogonal to the flow direction. A flow receiving portion that is formed in a continuous manner and receives the flow discharged from the throttle portion to the enlarged portion at the flow receiving port and guides it to the liquid outlet;
An outer flow swirl unit that is formed around the flow receiving port and returns to the enlargement unit side while swirling an outer flow flowing along the outer peripheral region of the enlargement unit in the flow discharged to the enlargement unit; A microbubble generating mechanism characterized by comprising:
気体を液体と混合しつつ加圧して前記液体に前記気体を強制溶解させることにより気体濃度を上昇させた加圧濃縮気体溶解液を発生させる加圧溶解ユニットと、
前記加圧溶解ユニットから前記加圧濃縮気体溶解液を減圧しつつ流出させる液体流出管とが設けられ、該液体流出管上に前記流路形成部材が設けられている請求項1記載の微小気泡発生機構。
A pressure dissolution unit for generating a pressurized concentrated gas solution in which the gas concentration is increased by forcibly dissolving the gas in the liquid by mixing the gas with the liquid and pressurizing the gas;
2. A microbubble according to claim 1, wherein a liquid outflow pipe for allowing the pressurized concentrated gas solution to flow out from the pressure dissolution unit while reducing pressure is provided, and the flow path forming member is provided on the liquid outflow pipe. Generation mechanism.
前記拡大部が円筒状に形成され、前記流れ受入口が該拡大部に対し同心的に開口するとともに、前記拡大部を形成する壁部内周面と前記流れ受入部をなす壁部内周面とを接続する段部が前記外方流れ旋回部を形成する請求項1又は請求項2に記載の微小気泡発生機構。 The enlarged portion is formed in a cylindrical shape, the flow receiving opening is concentrically opened with respect to the enlarged portion, and an inner peripheral surface of the wall portion forming the enlarged portion and an inner peripheral surface of the wall portion forming the flow receiving portion. The microbubble generation mechanism according to claim 1 or 2, wherein the connecting step portion forms the outward flow swirl portion. 前記流路において前記絞り部の上流側に隣接する形で、前記拡大部よりも小断面積であって前記絞り部の最小部よりも大断面積となるように、流れ方向に断面積が均一の準備径小部が形成されてなり、
該準備径小部の上流側に隣接して、流路断面積を該準備径小部の入口に向け連続的に縮小させる準備縮径部が形成されている請求項3記載の微小気泡発生機構。
The cross-sectional area is uniform in the flow direction so as to be adjacent to the upstream side of the throttle portion in the flow path, and have a smaller cross-sectional area than the enlarged portion and a larger cross-sectional area than the minimum portion of the throttle portion. The preparation diameter small part is formed,
4. A microbubble generating mechanism according to claim 3, wherein a preparatory diameter reducing portion is formed adjacent to the upstream side of the preparatory diameter small portion to continuously reduce the channel cross-sectional area toward the inlet of the preparatory diameter small portion. .
前記絞り部は、前記流路内に配置された衝突部材と、
前記流路内にて前記衝突部材の先端部と対向する絞りギャップ形成部とを備え、
前記衝突部材の外面と前記流路の内面との間に迂回流路部が形成されるとともに、前記衝突部材と前記絞りギャップ形成部との間には、前記迂回流路部よりも低流量かつ高流速となるように液体流を絞りつつ通過させる絞りギャップが形成された構造を有する請求項1ないし請求項4のいずれか1項に記載の微小気泡発生機構。
The throttle portion includes a collision member disposed in the flow path,
A throttle gap forming portion facing the tip of the collision member in the flow path,
A detour channel portion is formed between the outer surface of the collision member and the inner surface of the channel, and a lower flow rate than the detour channel portion is provided between the collision member and the throttle gap forming portion. The microbubble generating mechanism according to any one of claims 1 to 4, wherein the microbubble generating mechanism has a structure in which a constriction gap is formed to allow the liquid flow to pass while constricting so as to obtain a high flow velocity.
前記迂回流路部は、前記流路内にて水流通方向から見て前記衝突部材の突出方向に関しその両側に形成されている請求項5記載の微小気泡発生機構。 The micro-bubble generating mechanism according to claim 5, wherein the detour channel portion is formed on both sides of the collision member in the direction of water flow when viewed from the water flow direction. 前記衝突部材及び前記絞りギャップ形成部の前記絞りギャップを形成する各対向面の少なくともいずれかに減圧空洞が形成されている請求項5又は請求項6に記載の微小気泡発生機構。 The microbubble generating mechanism according to claim 5 or 6, wherein a decompression cavity is formed on at least one of the opposing surfaces forming the aperture gap of the collision member and the aperture gap forming portion. 前記絞りギャップ形成部は、前記流路の断面中心に関して前記衝突部材と反対側にて前記壁部内面から前記衝突部材に向けて突出する対向衝突部材として形成され、
前記絞りギャップが前記衝突部材の突出方向先端部と前記対向衝突部材の突出方向先端部との間に形成されている請求項5ないし請求項7のいずれか1項に記載の微小気泡発生機構。
The narrowing gap forming portion is formed as an opposing collision member that protrudes from the inner surface of the wall portion toward the collision member on the side opposite to the collision member with respect to the cross-sectional center of the flow path,
The microbubble generating mechanism according to any one of claims 5 to 7, wherein the throttle gap is formed between a protruding end portion of the collision member and a protruding end portion of the opposing collision member.
前記拡大部は、その上流側端部が流れ方向にて前記衝突部材の軸断面中心よりも前方側に位置する部分と重なるように形成されてなる請求項5ないし請求項8のいずれか1項に記載の微小気泡発生機構。 9. The expansion portion according to claim 5, wherein the enlarged portion is formed so that an upstream end portion thereof overlaps with a portion located on the front side of the axial cross-sectional center of the collision member in the flow direction. The microbubble generation mechanism described in 1. 前記流路には、前記絞り部よりも断面積が大きくなるように、前記絞り部の上流側に隣接して準備拡大部が形成され、
該準備拡大部の上流側に隣接する形で周方向の段付き面を形成する形で接続され、該準備拡大部との接続側端部にて該準備拡大部よりも小断面積となり前記絞り部よりも大断面積となるように流れ導入部が形成され、
前記準備拡大部の、前記流れ導入部との接続側外周領域が、前記流れ導入部から前記準備拡大部内に直進する主流れの周囲を保護する流れバッファ空間を形成するとともに、
前記流れ導入部は、前記液体入口に続く形で前記準備拡大部に接続する入口側導入部として形成され、
前記準備拡大部は該入口側導入部との接続側にて前記液体入口よりも大断面積を有するとともに、下流側端部にて前記液体入口よりも流路断面積が小さく前記絞り部よりも流路断面積が大きくなるように断面積を漸減させる準備縮径部を有する請求項1ないし請求項9のいずれか1項に記載の微小気泡発生機構。














In the flow path, a preparation enlarged portion is formed adjacent to the upstream side of the throttle portion so that a cross-sectional area is larger than that of the throttle portion,
Connected to form a stepped surface in the circumferential direction adjacent to the upstream side of the preparatory enlarged portion, and has a smaller cross-sectional area than the preparatory enlarged portion at the connection side end with the preparatory enlarged portion. The flow introduction part is formed to have a larger cross-sectional area than the part,
The outer peripheral area of the preparation expansion section on the connection side with the flow introduction section forms a flow buffer space that protects the periphery of the main flow that goes straight from the flow introduction section into the preparation expansion section,
The flow introduction part is formed as an inlet side introduction part connected to the preparation expansion part in a form following the liquid inlet,
The preparatory enlarged portion has a larger cross-sectional area than the liquid inlet on the connection side with the inlet-side introduction portion, and has a smaller channel cross-sectional area than the liquid inlet at the downstream end portion than the throttle portion. The microbubble generating mechanism according to any one of claims 1 to 9, further comprising a preparation diameter-reducing portion that gradually decreases the cross-sectional area so that the cross-sectional area of the flow path is increased.














JP2010111771A 2010-05-14 2010-05-14 Mechanism for generating microbubble Pending JP2011240210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111771A JP2011240210A (en) 2010-05-14 2010-05-14 Mechanism for generating microbubble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111771A JP2011240210A (en) 2010-05-14 2010-05-14 Mechanism for generating microbubble

Publications (1)

Publication Number Publication Date
JP2011240210A true JP2011240210A (en) 2011-12-01

Family

ID=45407439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111771A Pending JP2011240210A (en) 2010-05-14 2010-05-14 Mechanism for generating microbubble

Country Status (1)

Country Link
JP (1) JP2011240210A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012069A1 (en) * 2011-07-21 2013-01-24 株式会社シバタ Bubble generating mechanism and showerhead with bubble generating mechanism
JP2014168761A (en) * 2013-03-05 2014-09-18 Mitsubishi Electric Corp Gas and liquid mixing device and bath hot water supply device
CN107899441A (en) * 2017-12-22 2018-04-13 宁波聚清源环保科技有限公司 Micro bubble generation device
JP2019136671A (en) * 2018-02-13 2019-08-22 三菱電機株式会社 Cleaning device and gas-liquid mixer
JP6889957B1 (en) * 2020-11-02 2021-06-18 オオノ開發株式会社 Fine bubble generator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012069A1 (en) * 2011-07-21 2013-01-24 株式会社シバタ Bubble generating mechanism and showerhead with bubble generating mechanism
JP2015062906A (en) * 2011-07-21 2015-04-09 株式会社シバタ Bubble generating mechanism and shower head with bubble generating mechanism
JP2014168761A (en) * 2013-03-05 2014-09-18 Mitsubishi Electric Corp Gas and liquid mixing device and bath hot water supply device
CN107899441A (en) * 2017-12-22 2018-04-13 宁波聚清源环保科技有限公司 Micro bubble generation device
CN107899441B (en) * 2017-12-22 2024-05-07 宁波聚清源环保科技有限公司 Microbubble generating device
JP2019136671A (en) * 2018-02-13 2019-08-22 三菱電機株式会社 Cleaning device and gas-liquid mixer
JP7159567B2 (en) 2018-02-13 2022-10-25 三菱電機株式会社 Cleaning equipment and gas-liquid mixing equipment
JP6889957B1 (en) * 2020-11-02 2021-06-18 オオノ開發株式会社 Fine bubble generator
JP2022073661A (en) * 2020-11-02 2022-05-17 オオノ開發株式会社 Microbubble-generating device

Similar Documents

Publication Publication Date Title
JP5712292B2 (en) Bubble generation mechanism and shower head with bubble generation mechanism
JP5731650B2 (en) Bubble generation mechanism and shower head with bubble generation mechanism
JP2011240210A (en) Mechanism for generating microbubble
JP2011240268A (en) Mechanism for generating microbubbles
JP5669031B2 (en) Ultrafine bubble generator
WO2018100915A1 (en) Microbubble generating nozzle
JP2010075838A (en) Bubble generation nozzle
JP2010284619A (en) Microbubble generation apparatus and shower head
JP2010234242A (en) Fine bubble generator
JP2005052754A (en) Spray nozzle
JP2011240267A (en) Mechanism for generating microbubble
JP2011240211A (en) Mechanism for generating microbubbles
JP2011240209A (en) Mechanism for generating microbubble
JP3174668U (en) Shower nozzle that generates microbubbles of air and carbon dioxide
JP2019166493A (en) Fine bubble generation nozzle
US20210213400A1 (en) Gas-liquid mixing device
JP7092358B2 (en) Ultra-fine bubble generator and ultra-fine bubble generator
JP2008161829A (en) Bubble generator
JP4903292B1 (en) Swivel type micro bubble generator
JP5257586B2 (en) Swivel type micro bubble generator
JP2018089610A (en) Fine bubble generation nozzle
JP2011240270A (en) Emulsifying/mixing mechanism
JP2009178661A (en) Apparatus for discharging liquid
CN212468538U (en) Nozzle capable of realizing synergistic atomization of bubbles
JP5892208B2 (en) Microbubble generator