JP6156128B2 - Gas-liquid mixing device and bath water heater - Google Patents

Gas-liquid mixing device and bath water heater Download PDF

Info

Publication number
JP6156128B2
JP6156128B2 JP2013264022A JP2013264022A JP6156128B2 JP 6156128 B2 JP6156128 B2 JP 6156128B2 JP 2013264022 A JP2013264022 A JP 2013264022A JP 2013264022 A JP2013264022 A JP 2013264022A JP 6156128 B2 JP6156128 B2 JP 6156128B2
Authority
JP
Japan
Prior art keywords
gas
liquid mixing
liquid
flow
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013264022A
Other languages
Japanese (ja)
Other versions
JP2015120100A (en
Inventor
史朗 竹内
史朗 竹内
憲一 逸見
憲一 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013264022A priority Critical patent/JP6156128B2/en
Publication of JP2015120100A publication Critical patent/JP2015120100A/en
Application granted granted Critical
Publication of JP6156128B2 publication Critical patent/JP6156128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Percussion Or Vibration Massage (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Description

本発明は、導入気体を微細化して液体に混合可能な気液混合装置およびこれを備えた風呂給湯装置に関する。   The present invention relates to a gas-liquid mixing apparatus capable of refining an introduced gas and mixing it with a liquid, and a bath water heater provided with the same.

液中に気体を均一に混合したり、微細気泡を発生したりする手段として、例えばベンチュリー式、キャビテーション式、加圧溶解式、旋回流式などの気液混合装置が用いられている。ベンチュリー式のものは、流路にくびれ部分を設け、該くびれ部分で流速が上がり負圧が形成されることで外部より空気を吸気し、くびれが広がる部分で圧力が上昇するために気泡が微細化されるという原理を利用している(例えば、特許文献1参照)。キャビテーション式のものは、ポンプ内に気液混合体を送り、例えば超音波振動を与えることでキャビテーションを利用して気泡を発生させる。また、加圧溶解式のものは、液体を流れる配管外から導入した外気をコンプレッサ等で加圧して液中に溶解し、減圧開放時に気泡が再析出する方式であり、装置が大型化するが、大量の気体を溶解させることが可能である。また、旋回流式のものは、液体の旋回流を形成し、気体と合一させることで、旋回流により気体がせん断破砕されて微細化される(例えば、特許文献2参照)。   As means for uniformly mixing a gas in a liquid or generating fine bubbles, for example, a Venturi type, a cavitation type, a pressure dissolution type, a swirl type or the like is used. Venturi type has a constricted part in the flow path, the flow velocity increases at the constricted part and negative pressure is formed, so air is sucked in from the outside, and the pressure rises in the part where the constriction spreads, so the bubbles are fine (For example, refer to Patent Document 1). In the cavitation type, a gas-liquid mixture is sent into a pump, and bubbles are generated using cavitation by applying ultrasonic vibration, for example. The pressure-dissolving type is a method in which the outside air introduced from outside the pipe through which the liquid flows is pressurized with a compressor or the like and dissolved in the liquid, and bubbles reprecipitate when the pressure is released. It is possible to dissolve a large amount of gas. Further, in the swirl type, a swirl flow of liquid is formed and combined with the gas, so that the gas is sheared and pulverized by the swirl flow (see, for example, Patent Document 2).

特開2007−144394号公報JP 2007-144394 A 特許第4525890号公報Japanese Patent No. 4525890

液流を形成するポンプの仕様が制限される場合においては、経路内の流量、および揚程や液圧等が限定されてしまう。流路のくびれ部分等に形成される負圧により気体を吸入する自然吸気を行う気液混合装置の場合、液体の流量増加に伴って、気液混合装置内の負圧が大きくなり、気体導入量が増加する。その結果、液体の旋回流が気体を十分に微細化しきれなくなることで、気液混合効率が悪化する。また、主流である液体に気体が混合されるときに、液体の旋回流が、気体導入量の増加によって乱されることで、気液の混合量が低下してしまう。   When the specifications of the pump that forms the liquid flow are limited, the flow rate in the path, the head, the hydraulic pressure, and the like are limited. In the case of a gas-liquid mixing device that performs natural aspiration to suck in gas by the negative pressure formed in the constricted part of the flow path etc., the negative pressure in the gas-liquid mixing device increases as the liquid flow rate increases, and gas introduction The amount increases. As a result, the gas-liquid mixing efficiency is deteriorated because the swirling flow of the liquid cannot sufficiently miniaturize the gas. Moreover, when gas is mixed with the liquid which is the main flow, the swirl flow of the liquid is disturbed by the increase in the gas introduction amount, so that the gas-liquid mixing amount is reduced.

本発明は、上述のような課題を解決するためになされたもので、液体の流量が大きい場合にも気液混合効率の低下を抑制することのできる気液混合装置およびこれを備えた風呂給湯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and a gas-liquid mixing apparatus capable of suppressing a decrease in gas-liquid mixing efficiency even when the flow rate of liquid is large, and a bath hot water provided with the same. An object is to provide an apparatus.

本発明に係る気液混合装置は、液体の流路に設けられ、気体を液体中に導入して混合させる気液混合装置であって、液体の進行方向に向かって内径が縮小する縮径部と、縮径部の下流側に、縮径部に対し同心的に設けられ、縮径部の最小内径より大きい内径を有する気液混合部と、気液混合部の内部に連通する気体通路を有し、該気体通路を通して気液混合部の内部に気体を導入する気体導入部と、気体通路に設けられ、気体の流れを乱す乱流促進部と、を備え、乱流促進部は、気体通路の長手方向の一部において気体通路の内壁に設けられた凹部と凸部との少なくとも一方で構成されているものである。 A gas-liquid mixing apparatus according to the present invention is a gas-liquid mixing apparatus that is provided in a liquid flow path and introduces gas into the liquid and mixes the gas-liquid mixing apparatus. And a gas-liquid mixing portion provided concentrically with the reduced diameter portion on the downstream side of the reduced diameter portion and having an inner diameter larger than the minimum inner diameter of the reduced diameter portion, and a gas passage communicating with the inside of the gas-liquid mixing portion. A gas introduction part that introduces gas into the gas-liquid mixing part through the gas passage, and a turbulent flow promotion part that is provided in the gas passage and disturbs the flow of the gas. a it shall consist of at least one of the concave and convex portions provided on the inner wall of the gas passage in the longitudinal direction of the part of the passage.

本発明によれば、液体の流量が大きい場合にも気液混合効率の低下を抑制することが可能となる。   According to the present invention, it is possible to suppress a decrease in gas-liquid mixing efficiency even when the liquid flow rate is large.

本発明の実施の形態1の気液混合装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の気液混合装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 1 of this invention. 図1中のM部を拡大した図である。It is the figure which expanded the M section in FIG. 図1中のM部を拡大した図である。It is the figure which expanded the M section in FIG. 本発明の実施の形態1の気液混合装置を示す横断面図である。It is a cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の気液混合装置を示す横断面図である。It is a cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の気液混合装置の変形例を示す横断面図である。It is a cross-sectional view which shows the modification of the gas-liquid mixing apparatus of Embodiment 1 of this invention. 比較例の気液混合装置を示す横断面図である。It is a cross-sectional view which shows the gas-liquid mixing apparatus of a comparative example. 本発明の実施の形態2の気液混合装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 2 of this invention. 本発明の実施の形態2の気液混合装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the gas-liquid mixing apparatus of Embodiment 2 of this invention. 本発明の実施の形態2の気液混合装置の入口部内に設置された固定翼の斜視図である。It is a perspective view of the fixed wing | blade installed in the inlet part of the gas-liquid mixing apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の風呂給湯装置を示す構成図である。It is a block diagram which shows the bath hot-water supply apparatus of Embodiment 3 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。また、本発明は、以降に示す各実施の形態のあらゆる組み合わせを含むものとする。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. In addition, the present invention includes all combinations of the embodiments described below.

実施の形態1.
図1および図2は、それぞれ、本発明の実施の形態1の気液混合装置を示す縦断面図である。図1の切断面と、図2の切断面とは、直交している。図3および図4は、共に、図1中のM部を拡大した図である。図5および図6は、共に、図1中のA−A線断面図(横断面図)である。これらの図に示す本実施の形態1の気液混合装置1は、液体の流路に設けられ、液体中に気体を導入して混合させるものである。
Embodiment 1 FIG.
1 and 2 are longitudinal sectional views showing a gas-liquid mixing apparatus according to Embodiment 1 of the present invention. The cut surface in FIG. 1 and the cut surface in FIG. 2 are orthogonal to each other. 3 and 4 are both enlarged views of the M part in FIG. 5 and 6 are both cross-sectional views (cross-sectional views) taken along line AA in FIG. The gas-liquid mixing device 1 of the first embodiment shown in these drawings is provided in a liquid flow path, and introduces and mixes gas into the liquid.

図1および図2に示すように、気液混合装置1は、液体が流れるための内部空間を有する縮径部4と、縮径部4に対し下流側に設けられた気液混合部5と、リング部2と、気液混合部5の外周側から気液混合部5内に気体を導入する通路を形成する気体導入部6と、気液混合部5の下流側に設けられた拡径部7と、縮径部4に対し上流側に設けられた入口部3とを備えている。図1および図2において、液体は、入口部3、縮径部4、気液混合部5および拡径部7の内部を左から右へ進行する。この液体の進行方向を、以下、「進行方向TD」と称する。   As shown in FIGS. 1 and 2, the gas-liquid mixing apparatus 1 includes a reduced diameter portion 4 having an internal space for flowing a liquid, and a gas-liquid mixing portion 5 provided on the downstream side of the reduced diameter portion 4. , Ring portion 2, gas introduction portion 6 that forms a passage for introducing gas into gas-liquid mixing portion 5 from the outer peripheral side of gas-liquid mixing portion 5, and diameter expansion provided on the downstream side of gas-liquid mixing portion 5 A portion 7 and an inlet portion 3 provided on the upstream side with respect to the reduced diameter portion 4 are provided. 1 and 2, the liquid proceeds from the left to the right inside the inlet portion 3, the reduced diameter portion 4, the gas-liquid mixing portion 5, and the enlarged diameter portion 7. Hereinafter, the traveling direction of the liquid is referred to as “traveling direction TD”.

入口部3は、進行方向TDと平行な直線を中心とする略円柱状の内部空間を有している。入口部3の内径は、進行方向TDに沿ってほぼ一定になっている。縮径部4は、入口部3の下流側に、入口部3に対し同心的に設けられている。縮径部4の内径は、進行方向TDに向かって内径が連続的あるいは多段的に縮小(漸減)している。すなわち、縮径部4は、略円錐状(略円錐台状)の内部空間を有している。縮径部4の上流端の内径は、入口部3の内径に等しくなっている。縮径部4の内径が最も小さくなった最小内径部4aは、縮径部4の下流端に位置する。   The inlet 3 has a substantially cylindrical internal space centered on a straight line parallel to the traveling direction TD. The inner diameter of the inlet portion 3 is substantially constant along the traveling direction TD. The reduced diameter portion 4 is provided concentrically with the inlet portion 3 on the downstream side of the inlet portion 3. The inner diameter of the reduced diameter portion 4 is reduced (gradually reduced) continuously or in multiple stages in the traveling direction TD. That is, the reduced diameter portion 4 has a substantially conical (substantially truncated cone) internal space. The inner diameter of the upstream end of the reduced diameter portion 4 is equal to the inner diameter of the inlet portion 3. The minimum inner diameter portion 4 a where the inner diameter of the reduced diameter portion 4 is the smallest is located at the downstream end of the reduced diameter portion 4.

気液混合部5は、縮径部4の下流側(直下)に、縮径部4に対し同心的に設けられている。気液混合部5の内径は、縮径部4の最小内径、すなわち最小内径部4aの内径よりも大きくなっている。本実施の形態1では、気液混合部5の内径は、進行方向TDに沿ってほぼ一定になっている。すなわち、気液混合部5は、略円柱状の内部空間を有している。   The gas-liquid mixing part 5 is provided concentrically with the reduced diameter part 4 on the downstream side (directly below) of the reduced diameter part 4. The inner diameter of the gas-liquid mixing section 5 is larger than the minimum inner diameter of the reduced diameter section 4, that is, the inner diameter of the minimum inner diameter section 4a. In the first embodiment, the inner diameter of the gas-liquid mixing unit 5 is substantially constant along the traveling direction TD. That is, the gas-liquid mixing unit 5 has a substantially cylindrical internal space.

リング部2は、縮径部4の内周面の下流端(すなわち最小内径部4aの内周)から外周側に広がって気液混合部5の内周面の上流端5aに繋がる内壁面である。リング部2は、図示の構成に限らず、その一部または全部が曲面で構成されていてもよい。また、気液混合部5の内周面とリング部2との角部や、縮径部4の内周面とリング部2との角部に、R(アール)形状のような丸みを設けてもよい。   The ring portion 2 is an inner wall surface that extends from the downstream end of the inner peripheral surface of the reduced diameter portion 4 (that is, the inner periphery of the minimum inner diameter portion 4 a) to the outer peripheral side and is connected to the upstream end 5 a of the inner peripheral surface of the gas-liquid mixing unit 5. is there. The ring portion 2 is not limited to the illustrated configuration, and a part or all of the ring portion 2 may be configured by a curved surface. Further, roundness such as an R (R) shape is provided at the corner between the inner peripheral surface of the gas-liquid mixing portion 5 and the ring portion 2 and at the corner between the inner peripheral surface of the reduced diameter portion 4 and the ring portion 2. May be.

気体導入部6は、気液混合部5の外周部から外方へ突出するように形成されている。この気体導入部6には、気液混合部5内に導入される気体が通る流路となる気体通路6aが形成されている。気体通路6aは、気液混合部5の外周側から気液混合部5の内壁(内周面)に向かって貫通するように形成され、気液混合部5内に連通している。本実施の形態1では、図1に示すように、気体通路6aは、気液混合部5の上流端付近(すなわち、気液混合部5と縮径部4との境界付近)に連通している。また、本実施の形態1では、気体通路6aは、気体の流れ方向に対し垂直な断面の形状および断面積が気体の流れ方向に沿ってほぼ一定であるように形成されている。本実施の形態1では、図2に示すように、気体通路6aは、気体の流れ方向に対し垂直な断面の形状が略長方形となるように形成されている。また、図示を省略するが、気体導入部6には、運転停止時などに液体が気体通路6aへ逆流することを防ぐための逆止弁が設けられていることが好ましい。   The gas introduction part 6 is formed so as to protrude outward from the outer peripheral part of the gas-liquid mixing part 5. The gas introduction part 6 is formed with a gas passage 6 a serving as a passage through which the gas introduced into the gas-liquid mixing part 5 passes. The gas passage 6 a is formed so as to penetrate from the outer peripheral side of the gas-liquid mixing unit 5 toward the inner wall (inner peripheral surface) of the gas-liquid mixing unit 5, and communicates with the gas-liquid mixing unit 5. In the first embodiment, as shown in FIG. 1, the gas passage 6 a communicates with the vicinity of the upstream end of the gas-liquid mixing unit 5 (that is, the vicinity of the boundary between the gas-liquid mixing unit 5 and the reduced diameter portion 4). Yes. In the first embodiment, the gas passage 6a is formed such that the cross-sectional shape and the cross-sectional area perpendicular to the gas flow direction are substantially constant along the gas flow direction. In the first embodiment, as shown in FIG. 2, the gas passage 6a is formed so that the shape of the cross section perpendicular to the gas flow direction is substantially rectangular. Although not shown, the gas introduction unit 6 is preferably provided with a check valve for preventing the liquid from flowing back to the gas passage 6a when the operation is stopped.

気体通路6aの図1中のM部には、気体の流れを乱す乱流促進部18が設けられている。乱流促進部18は、気体通路6aの、気液混合部5に近い部分に設けられる。図3に示すように、乱流促進部18は、気体通路6aの内壁面に設けられた凹部で構成される。あるいは、図4に示すように、乱流促進部18は、気体通路6aの内壁面に設けられた凸部で構成される。乱流促進部18の上流側の気体通路6aの断面形状および断面積と、乱流促進部18の下流側の気体通路6aの断面形状および断面積とは、ほぼ同じである。   A turbulent flow promoting portion 18 that disturbs the gas flow is provided at the M portion of the gas passage 6a in FIG. The turbulent flow promoting unit 18 is provided in a portion of the gas passage 6 a close to the gas-liquid mixing unit 5. As shown in FIG. 3, the turbulent flow promoting portion 18 is configured by a recess provided on the inner wall surface of the gas passage 6a. Or as shown in FIG. 4, the turbulent flow promotion part 18 is comprised by the convex part provided in the inner wall face of the gas channel | path 6a. The cross-sectional shape and cross-sectional area of the gas passage 6a on the upstream side of the turbulent flow promoting portion 18 are substantially the same as the cross-sectional shape and cross-sectional area of the gas passage 6a on the downstream side of the turbulent flow promoting portion 18.

なお、図1および図2では、便宜上、入口部3、縮径部4、気液混合部5および拡径部7の中心線(軸線)を含む切断面でそれらを切断した断面形状と、気体導入部6の断面形状とを組み合わせて示している。すなわち、図1および図2中では、入口部3、縮径部4、気液混合部5および拡径部7の切断面と、気体導入部6の切断面とは、同一平面ではない。また、図1および図2では、乱流促進部18の図示を省略している。   1 and 2, for convenience, a cross-sectional shape obtained by cutting them along a cut surface including the center line (axis line) of the inlet portion 3, the reduced diameter portion 4, the gas-liquid mixing portion 5, and the enlarged diameter portion 7, and gas The cross-sectional shape of the introduction part 6 is shown in combination. That is, in FIG. 1 and FIG. 2, the cut surfaces of the inlet portion 3, the reduced diameter portion 4, the gas-liquid mixing portion 5 and the enlarged diameter portion 7 and the cut surface of the gas introduction portion 6 are not coplanar. Moreover, in FIG. 1 and FIG. 2, illustration of the turbulent flow promoting unit 18 is omitted.

図5および図6に示すように、本実施の形態1では、気体通路6aは、気液混合部5の内周面の接線方向に沿って延びるように構成されている。すなわち、気体通路6aは、以下のように構成されている。図5に示すように、気体通路6aの中心線を気液混合部5内に延長した直線ELは、気液混合部5の中心Oを通らず、中心Oからずれた位置を通る。また、進行方向TDと直交する平面で気液混合部5および気体導入部6を切断した断面において、気体通路6aの内壁のうち気液混合部5の中心Oからの距離が遠い方の内壁6bは、気液混合部5の内周面の接線になっている。あるいは、上記断面において、内壁6bが気液混合部5の内周面の接線に必ずしも完全に一致していなくても良く、内壁6bの近傍で内壁6bに並行する流線を気液混合部5内に延長した直線SLが、気液混合部5の内径以下であって縮径部4の最小内径(最小内径部4aの内径)より大きい直径の円CLの接線になっていればよい。   As shown in FIGS. 5 and 6, in the first embodiment, the gas passage 6 a is configured to extend along the tangential direction of the inner peripheral surface of the gas-liquid mixing unit 5. That is, the gas passage 6a is configured as follows. As shown in FIG. 5, the straight line EL obtained by extending the center line of the gas passage 6 a into the gas-liquid mixing unit 5 does not pass through the center O of the gas-liquid mixing unit 5 but passes through a position shifted from the center O. Moreover, in the cross section which cut | disconnected the gas-liquid mixing part 5 and the gas introduction part 6 in the plane orthogonal to the advancing direction TD, the inner wall 6b of the one where the distance from the center O of the gas-liquid mixing part 5 is far among the inner walls of the gas passage 6a. Is a tangent to the inner peripheral surface of the gas-liquid mixing part 5. Or in the said cross section, the inner wall 6b does not necessarily correspond to the tangent of the internal peripheral surface of the gas-liquid mixing part 5, and the streamline parallel to the inner wall 6b in the vicinity of the inner wall 6b is shown in the gas-liquid mixing part 5. It is sufficient that the straight line SL extended inward is a tangent to a circle CL having a diameter that is equal to or smaller than the inner diameter of the gas-liquid mixing section 5 and larger than the minimum inner diameter of the reduced diameter section 4 (the inner diameter of the minimum inner diameter section 4a).

上記構成により、気体導入部6は、気液混合部5の内周面の接線方向に沿って気体を気液混合部5内に流入させる。このため、図6に示すように、気体導入部6の気体通路6aを通って気液混合部5に流入した気体を、気液混合部5の内周面に沿って所定の方向(本実施の形態1では、図5および図6中で反時計回り)に効率良く旋回させることができる。   With the above configuration, the gas introduction unit 6 causes the gas to flow into the gas-liquid mixing unit 5 along the tangential direction of the inner peripheral surface of the gas-liquid mixing unit 5. For this reason, as shown in FIG. 6, the gas that has flowed into the gas-liquid mixing unit 5 through the gas passage 6a of the gas introduction unit 6 flows along the inner peripheral surface of the gas-liquid mixing unit 5 in a predetermined direction (this embodiment). In the first embodiment, it can be efficiently turned counterclockwise in FIGS. 5 and 6.

次に、本実施の形態1の気液混合装置1の動作について説明する。気液混合装置1に流入した液体の流れ(以下、「液流」と称する)は、入口部3から縮径部4へ進行し、縮径部4において流速が加速される。縮径部4では、流入した液流を、圧力損失を少なくして縮径することにより高速化することが望ましい。そのためには、縮径部4の内壁面は、高密度で粗度の小さい材料で形成されていることが望ましい。   Next, operation | movement of the gas-liquid mixing apparatus 1 of this Embodiment 1 is demonstrated. A liquid flow (hereinafter referred to as “liquid flow”) flowing into the gas-liquid mixing apparatus 1 proceeds from the inlet 3 to the reduced diameter portion 4, and the flow velocity is accelerated in the reduced diameter portion 4. In the reduced diameter portion 4, it is desirable to increase the speed of the inflowing liquid flow by reducing the diameter with reduced pressure loss. For this purpose, it is desirable that the inner wall surface of the reduced diameter portion 4 is formed of a material having high density and low roughness.

縮径部4で加速された液流が最小内径部4aから気液混合部5内に流入することにより、気液混合部5内に負圧が発生し、この負圧により気体導入部6から気体が気液混合部5内に自然吸気される。気液混合部5内では、加速された液流と、気体導入部6から導入された気体とが合一して微細気泡が生成され、気体が液体中に溶解する。液体の流量が大きいほど、気液混合部5内に発生する負圧が大きくなり、気体導入部6から気液混合部5内に導入される吸気量が多くなる。   The liquid flow accelerated by the reduced diameter part 4 flows into the gas-liquid mixing part 5 from the minimum inner diameter part 4a, thereby generating a negative pressure in the gas-liquid mixing part 5, and this negative pressure causes the gas introduction part 6 to The gas is naturally sucked into the gas-liquid mixing unit 5. In the gas-liquid mixing unit 5, the accelerated liquid flow and the gas introduced from the gas introduction unit 6 are combined to generate fine bubbles, and the gas is dissolved in the liquid. As the liquid flow rate increases, the negative pressure generated in the gas-liquid mixing unit 5 increases, and the amount of intake air introduced from the gas introduction unit 6 into the gas-liquid mixing unit 5 increases.

図3または図4に示すように、気体の流れが気液混合部5内に導入される直前で、乱流促進部18にて、気体の渦流VFが生成される。渦流VFが生成されることで、気体の流れの、液流に直交する流速成分は減少する。その結果、気液混合部5内で液流に気体が混合される際に生じる圧力損失が減少する。このため、液体の流量が大きい場合、すなわち気体導入量が多い場合であっても、気液混合部5内の液流が導入気体によって乱されることを抑制でき、液流が気体をせん断破砕する効率の低下を抑制できる。このように、本実施の形態1の気液混合装置1によれば、液体の流量が大きく、気体導入量が多い場合であっても、気液混合部5内で液流が気体をせん断破砕する効率を良好に維持することができるので、微細気泡生成量および気液混合量を十分に増加させることができる。また、液流に直交する成分以外の気体の流速成分が増加することで、気体が気液混合部5へ流入するときに全方位に広がる。その結果、気体と液流との接触面積が増加して、微細気泡生成量および気液混合量を増加させることができる。本実施の形態1によれば、上述のような効果を簡単な構造で達成することができるので、信頼性および耐久性に優れるとともに、製造コストの増加を抑制できる。   As shown in FIG. 3 or FIG. 4, a gas vortex VF is generated in the turbulence promoting unit 18 immediately before the gas flow is introduced into the gas-liquid mixing unit 5. By generating the vortex VF, the flow velocity component of the gas flow orthogonal to the liquid flow decreases. As a result, the pressure loss generated when the gas is mixed with the liquid flow in the gas-liquid mixing unit 5 is reduced. Therefore, even when the liquid flow rate is large, that is, when the gas introduction amount is large, the liquid flow in the gas-liquid mixing unit 5 can be prevented from being disturbed by the introduced gas, and the liquid flow shears and crushes the gas. Decrease in efficiency can be suppressed. As described above, according to the gas-liquid mixing apparatus 1 of the first embodiment, even when the liquid flow rate is large and the gas introduction amount is large, the liquid flow shears and crushes the gas in the gas-liquid mixing unit 5. Therefore, the fine bubble generation amount and the gas-liquid mixing amount can be sufficiently increased. Moreover, when the flow velocity component of gas other than the component orthogonal to a liquid flow increases, when gas flows into the gas-liquid mixing part 5, it spreads in all directions. As a result, the contact area between the gas and the liquid flow increases, and the amount of fine bubbles generated and the amount of gas-liquid mixture can be increased. According to the first embodiment, since the above-described effect can be achieved with a simple structure, the reliability and durability are excellent, and an increase in manufacturing cost can be suppressed.

液体の流量が小さく、気液混合部5内の負圧が小さいときには、気体の流速が遅いため、乱流促進部18で発生する渦流VFが小さい。液体の流量が大きくなり、気液混合部5内の負圧が大きくなるにつれて、乱流促進部18で発生する渦流VFも大きくなる。このため、乱流促進部18を設けることで、液体の流量の増加に対する、気液混合部5内に流入する気体の流速および吸気量の増加幅を適正かつ自動的に抑制できる。よって、本実施の形態1の気液混合装置1では、液体の流量が大きい場合に過剰な吸気によって大きい径の気泡が生成することを確実に抑制することができ、生成する気泡径を小さく維持することができ、気液混合効率を高めることができる。   When the flow rate of the liquid is small and the negative pressure in the gas-liquid mixing unit 5 is small, the flow rate of the gas is slow, so the vortex flow VF generated in the turbulence promoting unit 18 is small. As the liquid flow rate increases and the negative pressure in the gas-liquid mixing unit 5 increases, the vortex flow VF generated in the turbulence promoting unit 18 also increases. For this reason, by providing the turbulent flow promoting unit 18, it is possible to appropriately and automatically suppress the increase in the flow rate of the gas flowing into the gas-liquid mixing unit 5 and the amount of intake air with respect to the increase in the liquid flow rate. Therefore, in the gas-liquid mixing device 1 according to the first embodiment, it is possible to reliably suppress the generation of bubbles having a large diameter due to excessive intake when the flow rate of the liquid is large, and keep the generated bubble diameter small. Gas-liquid mixing efficiency can be increased.

乱流促進部18を構成する凹部または凸部は、気体通路6aの内壁の周方向に沿って間隔をあけて複数個所に設けられることが望ましい。これにより、乱流促進部18で発生する渦流VFの量を適度な量に調整することができる。ただし、本発明では、そのような構成に限らず、乱流促進部18を構成する凹部または凸部が気体通路6aの内壁の周方向に沿って連続して設けられていても良い。また、乱流促進部18が、気体通路6aの内壁面に設けられた凹部および凸部の双方を備えていても良い。   It is desirable that the concave portions or the convex portions constituting the turbulent flow promoting portion 18 are provided at a plurality of positions at intervals along the circumferential direction of the inner wall of the gas passage 6a. Thereby, the quantity of the eddy current VF which generate | occur | produces in the turbulent flow promotion part 18 can be adjusted to an appropriate quantity. However, the present invention is not limited to such a configuration, and the concave portion or the convex portion constituting the turbulent flow promoting portion 18 may be provided continuously along the circumferential direction of the inner wall of the gas passage 6a. Moreover, the turbulent flow promotion part 18 may be provided with both the recessed part and convex part which were provided in the inner wall face of the gas channel | path 6a.

なお、液体の流量が大きい場合に過剰な吸気を抑制する方法として、気体導入部6の途中に弁を設け、この弁の開度を調整する構成とした場合には、この弁に異物・汚れなどが堆積し、経年により気体通路6aが閉塞するおそれがある。これに対し、本実施の形態1では、そのような弁を設ける必要がないので、異物・汚れなどの堆積による気体通路6aの閉塞を確実に抑制することができる。また、上記弁の開度を小さくした場合、吸気量が大きく減少することで、微細気泡生成量および気液混合量が大きく低下する。これに対し、本実施の形態1では、吸気量を大きく減少させることがないので、微細気泡生成量および気液混合量を十分に確保することができる。   As a method of suppressing excessive intake when the flow rate of liquid is large, a valve is provided in the middle of the gas introduction unit 6 to adjust the opening of the valve. There is a possibility that the gas passage 6a is blocked due to aging. On the other hand, in this Embodiment 1, since it is not necessary to provide such a valve, obstruction | occlusion of the gas path 6a by accumulation of a foreign material, dirt, etc. can be suppressed reliably. Further, when the opening degree of the valve is reduced, the amount of intake air and the amount of gas-liquid mixture are greatly reduced because the amount of intake air is greatly reduced. On the other hand, in the first embodiment, since the intake air amount is not greatly reduced, the amount of fine bubbles generated and the gas-liquid mixture amount can be sufficiently ensured.

図6中の破線の矢印は、気体導入部6から気液混合部5内に流入した気体の流れを示している。図6に示すように、気液混合部5に流入した気体は、気液混合部5の内周面に沿って旋回する。このようにして、気液混合部5の内周面に沿って旋回する気体と、最小内径部4aから気液混合部5内に流入した液流とが接触することにより、気体が効率良くせん断破砕され、微細化されて液体中に効率良く混合し、液体への気体の溶解量が増加する。   The broken-line arrows in FIG. 6 indicate the flow of gas that has flowed into the gas-liquid mixing unit 5 from the gas introduction unit 6. As shown in FIG. 6, the gas flowing into the gas-liquid mixing unit 5 swirls along the inner peripheral surface of the gas-liquid mixing unit 5. In this way, the gas swirling along the inner peripheral surface of the gas-liquid mixing part 5 and the liquid flow flowing into the gas-liquid mixing part 5 from the minimum inner diameter part 4a come into contact with each other, whereby the gas is efficiently sheared. It is crushed, refined and mixed efficiently in the liquid, and the amount of gas dissolved in the liquid increases.

縮径部4から気液混合部5に流入した直後の液流の直径は、最小内径部4aの内径にほぼ等しい。一方、気液混合部5の内径は、最小内径部4aの内径より大きい。これにより、気液混合部5内では、液流の外周側に、気体導入部6から導入された気体の流路として機能するリング状の空間が形成される。このような構成により、液流を妨げることなく吸気することができるので、円滑に吸気することができる。また、気体導入部6から導入された気体が、液流の外周側を旋回するように吸気されるため、液流と導入気体との接触面積を増大することができる。その結果、液流によりせん断される気体量が増加するため、微細気泡生成量も増加し、溶解量も増加する。   The diameter of the liquid flow immediately after flowing into the gas-liquid mixing part 5 from the reduced diameter part 4 is substantially equal to the inner diameter of the minimum inner diameter part 4a. On the other hand, the inner diameter of the gas-liquid mixing part 5 is larger than the inner diameter of the minimum inner diameter part 4a. Thereby, in the gas-liquid mixing part 5, the ring-shaped space which functions as a flow path of the gas introduce | transduced from the gas introduction part 6 is formed in the outer peripheral side of a liquid flow. With such a configuration, since the intake can be performed without hindering the liquid flow, the intake can be performed smoothly. Moreover, since the gas introduced from the gas introduction part 6 is sucked so as to swirl around the outer periphery of the liquid flow, the contact area between the liquid flow and the introduced gas can be increased. As a result, the amount of gas sheared by the liquid flow increases, so that the amount of fine bubbles generated increases and the amount of dissolution also increases.

また、縮径部4の下流端(最小内径部4a)と、気液混合部5の上流端5aとの境界の段差部がリング部2によって閉じられていることで、気液混合部5内での乱流形成を抑制することができる。その結果、縮径部4の最小内径部4a付近で形成される負圧を損失なく気体導入部6でも形成できるとともに、速い旋回流で気体をせん断することができ、気体の溶解量が増大し、また微細化を促進することができる。   Further, the step portion at the boundary between the downstream end (minimum inner diameter portion 4 a) of the reduced diameter portion 4 and the upstream end 5 a of the gas-liquid mixing portion 5 is closed by the ring portion 2. The formation of turbulent flow can be suppressed. As a result, the negative pressure formed in the vicinity of the minimum inner diameter portion 4a of the reduced diameter portion 4 can be formed even in the gas introduction portion 6 without loss, and the gas can be sheared with a fast swirling flow, and the amount of dissolved gas increases. Further, miniaturization can be promoted.

また、本実施の形態1では、気液混合部5の内径が進行方向TDに沿ってほぼ一定に維持されていることにより、互いに接触しつつ進行方向TDに向かって進行する液流と気体との接触状態を一定にすることができ、気体の溶解を均一化することができる。   Further, in the first embodiment, since the inner diameter of the gas-liquid mixing unit 5 is maintained substantially constant along the traveling direction TD, the liquid flow and gas that proceed toward the traveling direction TD while being in contact with each other. The contact state can be made constant, and the dissolution of gas can be made uniform.

また、気液混合部5の内周面に沿って旋回する気体の流れに引き込まれるようにして、液流も同方向に旋回する。図6中の実線の矢印は、気液混合部5内で旋回する液流を示している。このようにして、気液混合部5内では、外周側に気体の旋回流が形成され、その内周側に液体の旋回流が形成される。気体通路6aから気液混合部5内に導入される気体は、旋回する液流に誘引されるようにして気液混合部5内に流入するので、円滑に吸気することができ、気体溶解量および微細気泡生成量を増大させることができる。   Further, the liquid flow also swirls in the same direction so as to be drawn into the gas flow swirling along the inner peripheral surface of the gas-liquid mixing unit 5. A solid line arrow in FIG. 6 indicates a liquid flow swirling in the gas-liquid mixing unit 5. In this manner, in the gas-liquid mixing unit 5, a gas swirl flow is formed on the outer peripheral side, and a liquid swirl flow is formed on the inner peripheral side thereof. Since the gas introduced into the gas-liquid mixing unit 5 from the gas passage 6a flows into the gas-liquid mixing unit 5 so as to be attracted by the swirling liquid flow, the gas can be sucked smoothly and the amount of dissolved gas In addition, the amount of fine bubbles generated can be increased.

気液混合部5内に形成される負圧は、気液混合部5の上流側で最も大きく、下流に進むにつれて負圧は弱まる。本実施の形態1では、気体導入部6の気体通路6aが、気液混合部5の上流端5aの付近に連通するように構成している。これにより、負圧の大きい位置で吸気することができるので、液体の流量が小さい場合であっても、十分な吸気量を確保することができ、気体溶解量および微細気泡生成量も十分確保することができる。また、本実施の形態1では、図1に示すように、気体通路6aが気液混合部5の内壁に形成する開口がリング部2に接して形成されており、リング部2と気体通路6aの内壁とが段差無く連続している。これにより、円滑に吸気することができ、気体溶解量および微細気泡生成量をさらに増大させることができる。   The negative pressure formed in the gas-liquid mixing unit 5 is greatest on the upstream side of the gas-liquid mixing unit 5, and the negative pressure decreases as it proceeds downstream. In the first embodiment, the gas passage 6 a of the gas introduction unit 6 is configured to communicate with the vicinity of the upstream end 5 a of the gas-liquid mixing unit 5. As a result, since the intake can be performed at a position where the negative pressure is large, a sufficient intake amount can be ensured even when the flow rate of the liquid is small, and the gas dissolution amount and the fine bubble generation amount can be sufficiently ensured. be able to. Moreover, in this Embodiment 1, as shown in FIG. 1, the opening which gas path 6a forms in the inner wall of the gas-liquid mixing part 5 is formed in contact with the ring part 2, and the ring part 2 and gas path 6a are formed. The inner wall is continuous with no steps. Thereby, it can inhale smoothly and can further increase the amount of gas dissolution and the amount of fine bubble generation.

一般的には、気体通路6aが気液混合部5の内壁に形成する開口が広いほど、吸気量が増大する。しかしながら、気液混合部5内の下流側ほど負圧が小さくなるため、気体通路6aが気液混合部5の内壁に形成する開口の大きさを進行方向TDに沿って測った長さ(図2中のeで示す長さ)を長くして、この開口を下流側に広げるように構成すると、気体通路6aに作用する負圧が小さくなり、好ましくない。特に、気液混合装置1より下流側の液体流路の圧力損失が大きい場合には、気液混合部5内で下流側に向かって負圧が低下する率が大きくなるため、気体通路6aが気液混合部5の内壁に形成する開口を下流側に広げることは好ましくない。このような事項に鑑みて、本実施の形態1では、気体通路6aが気液混合部5の内壁に形成する開口の大きさを進行方向TDに沿って測った長さeが、この開口の大きさを気液混合部5の内径に等しい直径の円に沿って測った円弧の長さf(図6参照)に比べて短くすることが望ましい。このような構成により、気体通路6aが気液混合部5の内壁に形成する開口を下流側に広げることなく開口面積を大きくすることができる。その結果、液体の流量が小さい場合であっても、十分な吸気量を確保することができ、気体溶解量および微細気泡生成量も十分確保することができる。   In general, the larger the opening formed by the gas passage 6a in the inner wall of the gas-liquid mixing unit 5, the larger the intake amount. However, since the negative pressure decreases toward the downstream side in the gas-liquid mixing unit 5, the length of the opening formed in the inner wall of the gas-liquid mixing unit 5 by the gas passage 6a is measured along the traveling direction TD (FIG. It is not preferable to increase the length (indicated by e in 2) and widen the opening toward the downstream side because the negative pressure acting on the gas passage 6a is reduced. In particular, when the pressure loss in the liquid flow path downstream of the gas-liquid mixing device 1 is large, the rate at which the negative pressure decreases toward the downstream side in the gas-liquid mixing unit 5 increases, so the gas passage 6a It is not preferable to widen the opening formed in the inner wall of the gas-liquid mixing part 5 to the downstream side. In view of such matters, in the first embodiment, the length e of the opening of the gas passage 6a formed in the inner wall of the gas-liquid mixing unit 5 measured along the traveling direction TD is the length e of the opening. It is desirable to make the size shorter than the arc length f (see FIG. 6) measured along a circle having a diameter equal to the inner diameter of the gas-liquid mixing unit 5. With such a configuration, it is possible to increase the opening area without expanding the opening formed in the inner wall of the gas-liquid mixing unit 5 by the gas passage 6a to the downstream side. As a result, even when the flow rate of the liquid is small, a sufficient intake amount can be ensured, and the gas dissolution amount and the fine bubble generation amount can be sufficiently ensured.

図7は、本発明の実施の形態1の気液混合装置1の変形例を示す横断面図である。図7に示す気液混合装置1Aは、図1から図6に示す気液混合装置1と比べて、気体通路6aの幅(進行方向TDと直交する方向の幅)を拡幅していること以外は同様である。   FIG. 7 is a cross-sectional view showing a modification of the gas-liquid mixing apparatus 1 according to Embodiment 1 of the present invention. The gas-liquid mixing apparatus 1A shown in FIG. 7 is wider than the gas-liquid mixing apparatus 1 shown in FIGS. 1 to 6 except that the width of the gas passage 6a (the width in the direction orthogonal to the traveling direction TD) is widened. Is the same.

図7に示す気液混合装置1Aは、図1から図6に示す気液混合装置1に比べて、気体通路6aの幅が拡幅されているため、液体の流量が小さい場合であっても、十分な吸気量を確保し易い。ただし、気体通路6aの幅を図7に示す気液混合装置1Aよりも更に拡幅すると、気体通路6aから流入する気体の流れの一部が、気液混合部5内での液流の旋回方向と逆方向となることにより、液流の旋回が抑制され、気液混合効率が低下する場合がある。これを避けるため、次のような関係を満足することが好ましい。図7に示す気液混合装置1Aでは、気体通路6aの出口となる開口の大きさを気液混合部5の内径に等しい直径の円に沿って測った円弧の長さfは、気液混合部5の内径に等しい直径の円の円周の1/4に等しい長さになっている。気体通路6aの幅が、図7に示す気液混合装置1A以下であれば、気体通路6aから流入する気体の流れの一部が、気液混合部5内での液流の旋回方向と逆方向となることはない。そこで、本発明では、気体通路6aの出口となる開口の大きさを気液混合部5の内径に等しい直径の円に沿って測った円弧の長さfは、気液混合部5の内径に等しい直径の円の円周の1/4以下の長さであることが好ましい。気体通路6aの出口となる開口の大きさがこのような範囲であれば、気体通路6aから流入する気体の流れが、気液混合部5内での液流の旋回方向と逆方向となることがないので、液流の旋回を妨げることがなく、気液混合効率の低下を確実に抑制できる。   Since the gas-liquid mixing apparatus 1A shown in FIG. 7 has a wider gas passage 6a than the gas-liquid mixing apparatus 1 shown in FIGS. 1 to 6, even if the liquid flow rate is small, It is easy to secure a sufficient intake amount. However, if the width of the gas passage 6a is further increased as compared with the gas-liquid mixing device 1A shown in FIG. 7, a part of the gas flow flowing in from the gas passage 6a is swirled in the gas-liquid mixing section 5 In the opposite direction, the swirling of the liquid flow is suppressed, and the gas-liquid mixing efficiency may be reduced. In order to avoid this, it is preferable to satisfy the following relationship. In the gas-liquid mixing apparatus 1A shown in FIG. 7, the length f of the arc measured by measuring the size of the opening serving as the outlet of the gas passage 6a along a circle having a diameter equal to the inner diameter of the gas-liquid mixing unit 5 is The length is equal to ¼ of the circumference of a circle having a diameter equal to the inner diameter of the portion 5. If the width of the gas passage 6a is equal to or less than the gas-liquid mixing device 1A shown in FIG. 7, a part of the gas flow flowing in from the gas passage 6a is opposite to the swirling direction of the liquid flow in the gas-liquid mixing unit 5. There is no direction. Therefore, in the present invention, the length f of the arc obtained by measuring the size of the opening serving as the outlet of the gas passage 6 a along a circle having a diameter equal to the inner diameter of the gas-liquid mixing unit 5 is equal to the inner diameter of the gas-liquid mixing unit 5. The length is preferably ¼ or less of the circumference of a circle of equal diameter. If the size of the opening serving as the outlet of the gas passage 6a is in such a range, the flow of the gas flowing in from the gas passage 6a is opposite to the swirling direction of the liquid flow in the gas-liquid mixing unit 5. Therefore, it is possible to reliably suppress a decrease in gas-liquid mixing efficiency without disturbing the swirling of the liquid flow.

図8は、比較例の気液混合装置を示す横断面図である。図8に示す比較例の気液混合装置では、気体導入部16の気体通路16aの中心線を気液混合部5内へ延長した直線が気液混合部5の中心を通るように構成されている。このような比較例の気液混合装置では、気体通路16aから気液混合部5内へ導入された気体の流れが気液混合部5内の液流と直接衝突し、液流が乱されるため、液流が気体をせん断破砕する効率が低くなる。その結果、気体溶解量および微細気泡生成量が少なくなる。   FIG. 8 is a cross-sectional view showing a gas-liquid mixing apparatus of a comparative example. In the gas-liquid mixing apparatus of the comparative example shown in FIG. 8, a straight line obtained by extending the center line of the gas passage 16 a of the gas introduction part 16 into the gas-liquid mixing part 5 passes through the center of the gas-liquid mixing part 5. Yes. In such a gas-liquid mixing apparatus of the comparative example, the gas flow introduced from the gas passage 16a into the gas-liquid mixing unit 5 directly collides with the liquid flow in the gas-liquid mixing unit 5, and the liquid flow is disturbed. Therefore, the efficiency with which the liquid flow shears and crushes the gas is reduced. As a result, the amount of dissolved gas and the amount of generated fine bubbles are reduced.

実施の形態2.
次に、図9から図11を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図9および図10は、それぞれ、本発明の実施の形態2の気液混合装置を示す縦断面図である。図9の切断面と、図10の切断面とは、直交している。
Embodiment 2. FIG.
Next, the second embodiment of the present invention will be described with reference to FIG. 9 to FIG. 11. The difference from the above-described first embodiment will be mainly described, and the same parts or corresponding parts will be denoted by the same reference numerals. The description is omitted. 9 and 10 are longitudinal sectional views showing the gas-liquid mixing apparatus according to Embodiment 2 of the present invention. The cut surface in FIG. 9 and the cut surface in FIG. 10 are orthogonal to each other.

図9および図10に示す本実施の形態2の気液混合装置1Bは、旋回流生成手段としての固定翼8が入口部3内に設置されていること以外は、実施の形態1の気液混合装置1と同様である。本実施の形態2の気液混合装置1Bでは、液体が入口部3を通過する際に固定翼8によって入口部3の軸線を中心に旋回させられ、液体が旋回流となって縮径部4に流入する。縮径部4では、この旋回流が加速される。この旋回流の旋回方向は、気体導入部6から気液混合部5内に導入された気体の旋回方向と同じ方向である。このような構成により、本実施の形態2では、気液混合部5内の液流の旋回をより高速化することができるので、気液混合部5内で旋回する液流に誘引されるようにして気体通路6aからの気体が気液混合部5内に導入されるという効果がより顕著に発揮される。よって、液流が気体をせん断破砕する効率をさらに向上することができ、気体溶解量および微細気泡生成量もさらに増大させることができる。   The gas-liquid mixing apparatus 1B of the second embodiment shown in FIGS. 9 and 10 is the same as that of the first embodiment except that the fixed wing 8 serving as the swirling flow generating means is installed in the inlet 3. The same as the mixing apparatus 1. In the gas-liquid mixing device 1B according to the second embodiment, the liquid is swung around the axis of the inlet portion 3 by the fixed blade 8 when the liquid passes through the inlet portion 3, so that the liquid becomes a swirling flow and the reduced diameter portion 4 Flow into. In the reduced diameter portion 4, this swirl flow is accelerated. The swirl direction of the swirl flow is the same as the swirl direction of the gas introduced from the gas introduction unit 6 into the gas-liquid mixing unit 5. With this configuration, in the second embodiment, the swirling of the liquid flow in the gas-liquid mixing unit 5 can be further accelerated, so that the liquid flow swirling in the gas-liquid mixing unit 5 is attracted. Thus, the effect that the gas from the gas passage 6a is introduced into the gas-liquid mixing unit 5 is more remarkably exhibited. Therefore, the efficiency with which the liquid flow shears and crushes the gas can be further improved, and the amount of dissolved gas and the amount of fine bubbles generated can be further increased.

図11は、入口部3内に設置された固定翼8の斜視図である。図11に示すように、本実施の形態2では、複数(図示の構成では2枚)の固定翼8が設けられており、各固定翼8は、流路(入口部3)の内壁に固定されている。このような固定翼8を液体が通過する時に液流がねじられて旋回流が形成される。固定翼8の上流側の端部は、液体の進行方向TDと略並行に形成される。そして、固定翼8は、下流側に向かって進行方向TDに略垂直な方向に立ち上がる円弧形状をなすように形成される。この円弧形状の弦角は小さいほど液体の進行方向TDに対して急速な立ち上がり形状になるため、高速の旋回流速を形成することができる点で好ましい。その一方で、弦角が小さい翼形状では、圧力損失が高くなってしまい、また、流路の開口面積は小さくなるために毛髪などの異物が翼間に詰まりやすくなる。図示の構成では、2枚の固定翼8間に、異物が通過可能な隙間10を設けていることにより、異物の詰まりを抑制することができる。   FIG. 11 is a perspective view of the fixed wing 8 installed in the inlet portion 3. As shown in FIG. 11, in the second embodiment, a plurality (two in the illustrated configuration) of fixed wings 8 are provided, and each fixed wing 8 is fixed to the inner wall of the flow path (inlet portion 3). Has been. When the liquid passes through such a fixed blade 8, the liquid flow is twisted to form a swirling flow. The upstream end of the fixed wing 8 is formed substantially in parallel with the liquid traveling direction TD. And the fixed wing | blade 8 is formed so that the circular arc shape which stands | starts up in the direction substantially perpendicular | vertical to the advancing direction TD toward the downstream side. The smaller the chord angle of the arc shape, the faster the rising shape with respect to the liquid traveling direction TD, which is preferable in that a high swirling flow velocity can be formed. On the other hand, in a wing shape with a small chord angle, pressure loss is high, and since the opening area of the flow path is small, foreign matters such as hair are easily clogged between the wings. In the illustrated configuration, the clogging of foreign matter can be suppressed by providing a gap 10 through which the foreign matter can pass between the two fixed blades 8.

以上説明した実施の形態1および2の気液混合装置によれば、気液の合流圧力損失を低減して、気体導入部6から気体を効率良く導入することができる。そのため、気液の混合効率を向上することができ、微細化される気体の量も増大することができる。   According to the gas-liquid mixing apparatus of the first and second embodiments described above, the gas-liquid converging pressure loss can be reduced and the gas can be efficiently introduced from the gas introduction unit 6. Therefore, the gas-liquid mixing efficiency can be improved, and the amount of gas to be refined can be increased.

実施の形態1および2の気液混合装置を含め、本発明の気液混合装置は、気体を空気、液体を水とすることで、微細気泡発生装置として好適に用いることが可能である。また、本発明の気液混合装置は、微細気泡発生装置に限らず、例えば、工場の製造工程における部品洗浄装置や、生体活性化を目的とした溶存酸素富化装置などとしても好ましく用いることができる。   The gas-liquid mixing apparatus of the present invention, including the gas-liquid mixing apparatus of Embodiments 1 and 2, can be suitably used as a fine bubble generating apparatus by using gas as air and liquid as water. In addition, the gas-liquid mixing device of the present invention is not limited to the fine bubble generating device, and is preferably used, for example, as a parts cleaning device in a factory manufacturing process, a dissolved oxygen enrichment device for the purpose of bioactivation, and the like. it can.

また、本発明の気液混合装置では、気体導入部を複数設け、複数の気体導入部が気液混合部の周方向の異なる位置に繋がるように構成しても良い。そのようにして気体導入部を複数設けることにより、液体と気体との接触面積が増加するため、気体の溶解量がさらに増大し、微細化される気体の量もさらに増大する。   Moreover, in the gas-liquid mixing apparatus of this invention, you may comprise so that multiple gas introduction parts may be provided and several gas introduction parts may be connected to the position where the circumferential direction of a gas-liquid mixing part differs. By providing a plurality of gas introducing portions in this manner, the contact area between the liquid and the gas increases, so that the amount of dissolved gas further increases and the amount of gas to be refined further increases.

実施の形態3.
次に、図12を参照して、本発明の実施の形態3について説明するが、上述した実施の形態との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図12は、本発明の風呂給湯装置の実施の形態を示す構成図である。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. 12. The description will focus on the differences from the above-described embodiment, and the same or corresponding parts will be described with the same reference numerals. Omitted. FIG. 12 is a block diagram showing an embodiment of the bath water heater of the present invention.

図12に示すように、本実施の形態3の風呂給湯装置150は、熱源機としてのヒートポンプユニット110と、タンクユニット120とを備えている。ヒートポンプユニット110は、冷媒を圧縮する圧縮機11と、放熱器に相当する沸き上げ用熱交換器12と、膨張弁13と、蒸発器14と、これらを環状に接続する循環配管15とによって構成された冷凍サイクル部17を有している。冷凍サイクル部17では、二酸化炭素等の冷媒が圧縮機11で圧縮されて高温、高圧となった後に沸き上げ用熱交換器12で放熱し、膨張弁13で減圧され、蒸発器14で吸熱してガス状態となって圧縮機11に吸入される。冷媒として二酸化炭素を用いる場合、高圧側では該二酸化炭素の臨界圧を超える条件下で運転することが好ましい。   As shown in FIG. 12, the bath water heater 150 according to the third embodiment includes a heat pump unit 110 as a heat source unit and a tank unit 120. The heat pump unit 110 includes a compressor 11 that compresses a refrigerant, a heating heat exchanger 12 that corresponds to a radiator, an expansion valve 13, an evaporator 14, and a circulation pipe 15 that connects these in an annular shape. The refrigeration cycle unit 17 is provided. In the refrigeration cycle unit 17, a refrigerant such as carbon dioxide is compressed by the compressor 11 to become a high temperature and a high pressure and then radiated by the boiling heat exchanger 12, depressurized by the expansion valve 13, and absorbed by the evaporator 14. The gas is then drawn into the compressor 11. When carbon dioxide is used as the refrigerant, it is preferable to operate on the high pressure side under conditions that exceed the critical pressure of the carbon dioxide.

一方、タンクユニット120は、貯湯タンク20、給水管路30、貯湯用循環管路40、タンク側循環管路50、風呂側循環管路60、追焚き用熱交換器70、第1給湯管路75、風呂側湯水混合弁80a、一般側湯水混合弁80b、第2給湯管路90、第3給湯管路95等を有している。   On the other hand, the tank unit 120 includes a hot water storage tank 20, a water supply line 30, a hot water circulation line 40, a tank side circulation line 50, a bath side circulation line 60, a reheating heat exchanger 70, and a first hot water supply line. 75, a bath-side hot / cold water mixing valve 80a, a general hot-water / water mixing valve 80b, a second hot-water supply line 90, a third hot-water supply line 95, and the like.

貯湯タンク20は、給水管路30から供給される水を貯留すると共にヒートポンプユニット110で沸き上げられた湯を貯留する積層式のタンクである。この貯湯タンク20の下部には、給水管路30が接続される水導入口20aと、貯湯用循環管路40の往き管40aが接続される水導出口20bとが設けられている。貯湯タンク20の上部には、貯湯用循環管路40の戻り管40bが接続される温水導入口20cと、第1給湯管路75が接続される温水導出口20dとが設けられている。貯湯タンク20は、給水管路30からの給水により常に満水状態に保たれる。   The hot water storage tank 20 is a stacked tank that stores water supplied from the water supply pipe 30 and stores hot water boiled by the heat pump unit 110. In the lower part of the hot water storage tank 20, a water inlet 20 a to which the water supply pipe 30 is connected and a water outlet 20 b to which the forward pipe 40 a of the hot water circulation pipe 40 is connected are provided. At the upper part of the hot water storage tank 20, a hot water inlet 20 c to which the return pipe 40 b of the hot water circulation pipe 40 is connected and a hot water outlet 20 d to which the first hot water supply pipe 75 is connected are provided. The hot water storage tank 20 is always kept in a full state by supplying water from the water supply pipe 30.

図示を省略しているが、貯湯タンク20の上部には、貯湯タンク20からタンク側循環管路50、第1給湯管路75に流入する湯の温度を検出するための温度センサが取り付けられている。また、貯湯タンク20の周面部には、貯湯タンク20内の湯水の温度を検出するための複数の温度センサが互いに異なる取付け高さをもって取り付けられている。   Although not shown, a temperature sensor for detecting the temperature of hot water flowing from the hot water storage tank 20 into the tank side circulation pipe 50 and the first hot water supply pipe 75 is attached to the upper part of the hot water storage tank 20. Yes. A plurality of temperature sensors for detecting the temperature of the hot water in the hot water storage tank 20 are attached to the peripheral surface portion of the hot water storage tank 20 with different mounting heights.

給水管路30は、市水等の水を貯湯タンク20、風呂側湯水混合弁80a、一般側湯水混合弁80b、および一般給湯先180に供給する管路であり、減圧弁25と第1〜第3給水管部30a〜30cとを有している。減圧弁25は、第1給水管部30aの途中に設けられて、水道等の水源からの水圧を所定値に減じる。第1給水管部30aは、水源と貯湯タンク20の水導入口20aとを繋ぎ、第2給水管部30bは、減圧弁25で第1給水管部30aから分岐して該第1給水管部30aと風呂側湯水混合弁80a、一般側湯水混合弁80bとを繋ぎ、第3給水管部30cは、減圧弁25の上流側で第1給水管部30aから分岐して該第1給水管部30aと一般給湯先180とを繋ぐ。図示を省略しているが、第2給水管部30bには、該第2給水管部30b内の水の温度を検出するための温度センサが設けられている。   The water supply line 30 is a line for supplying water such as city water to the hot water storage tank 20, the bath-side hot / cold water mixing valve 80 a, the general hot water / water mixing valve 80 b, and the general hot water supply destination 180. It has 3rd water supply pipe parts 30a-30c. The pressure reducing valve 25 is provided in the middle of the first water supply pipe section 30a, and reduces the water pressure from a water source such as a water supply to a predetermined value. The 1st water supply pipe part 30a connects the water source and the water inlet 20a of the hot water storage tank 20, and the 2nd water supply pipe part 30b branches from the 1st water supply pipe part 30a with the pressure-reduction valve 25, and this 1st water supply pipe part 30a is connected to the bath-side hot / cold water mixing valve 80a and the general-side hot / cold water mixing valve 80b, and the third water supply pipe 30c is branched from the first water supply pipe 30a upstream of the pressure reducing valve 25. 30a and general hot water supply destination 180 are connected. Although not shown, the second water supply pipe portion 30b is provided with a temperature sensor for detecting the temperature of the water in the second water supply pipe portion 30b.

一般給湯先180とは、使用者が手で直接操作して開栓する(センサを感応させて開栓する場合を含む)給湯先であり、例えば、洗面台や流し台の蛇口、浴室のシャワー等である。   The general hot water supply 180 is a hot water supply that a user operates directly by hand (including the case where the sensor is opened in response to a sensor), for example, a sink, a sink faucet, a bathroom shower, etc. It is.

貯湯用循環管路40は、貯湯タンク20下部の水導出口20bからヒートポンプユニット110の沸き上げ用熱交換器12を経由して貯湯タンク20上部の温水導入口20cに達する管路であり、貯湯用送水ポンプ33および電動式の三方弁35が設けられた往き管40aと、戻り管40bと、三方弁35で往き管40aから分岐したバイパス管40cとを有している。上記の往き管40aは水導出口20bと沸き上げ用熱交換器12とを繋ぎ、戻り管40bは沸き上げ用熱交換器12と温水導入口20cとを繋ぎ、バイパス管40cは三方弁35と戻り管40bとを繋ぐ。   The hot water storage circulation line 40 is a pipe line that reaches the hot water inlet 20c at the upper part of the hot water storage tank 20 from the water outlet 20b at the lower part of the hot water storage tank 20 via the heat exchanger 12 for heating of the heat pump unit 110. It has a forward pipe 40a provided with a water supply pump 33 and an electric three-way valve 35, a return pipe 40b, and a bypass pipe 40c branched from the forward pipe 40a by the three-way valve 35. The forward pipe 40a connects the water outlet 20b and the boiling heat exchanger 12, the return pipe 40b connects the boiling heat exchanger 12 and the hot water inlet 20c, and the bypass pipe 40c is connected to the three-way valve 35. The return pipe 40b is connected.

タンク側循環管路50は、貯湯タンク20上部の温水導出口20dから追焚き用熱交換器70を経由して貯湯タンク20下部に達する管路であり、往き管50aと、タンク側送水ポンプ45が設けられた戻り管50bとを有している。往き管50aは温水導出口20dと追焚き用熱交換器70上部の温水導入口70aとを繋ぎ、戻り管50bは追焚き用熱交換器70下部の温水導出口70bと貯湯タンク20の下部とを繋ぐ。   The tank-side circulation pipe 50 is a pipe that reaches the lower part of the hot water storage tank 20 from the hot water outlet 20d at the upper part of the hot water storage tank 20 via the reheating heat exchanger 70. The forward pipe 50a and the tank side water supply pump 45 And a return pipe 50b. The forward pipe 50a connects the hot water outlet 20d and the hot water inlet 70a above the reheating heat exchanger 70, and the return pipe 50b connects the hot water outlet 70b below the reheating heat exchanger 70 and the lower part of the hot water storage tank 20. Connect.

風呂側循環管路60(風呂循環路)は、浴槽170から追焚き用熱交換器70を経由して浴槽170に戻る管路であり、往き管60aおよび戻り管60bを有している。往き管60aは浴槽170と追焚き用熱交換器70下部の浴水導入口70cとを繋ぎ、戻り管60bは追焚き用熱交換器70上部の浴水導出口70dと浴槽170とを繋ぐ。往き管60aには、追焚き用熱交換器70側から上流側(浴槽170側)に向かって、フロースイッチ53、水位センサ55、および風呂側送水ポンプ57がこの順番で設けられている。また、図示を省略しているが、当該往き管60aには、該往き管60a内の湯水の温度を検出するための温度センサも設けられている。   The bath-side circulation line 60 (bath circulation line) is a line that returns from the bathtub 170 to the bathtub 170 via the reheating heat exchanger 70, and includes a forward pipe 60a and a return pipe 60b. The forward pipe 60 a connects the bathtub 170 and the bath water introduction port 70 c below the reheating heat exchanger 70, and the return pipe 60 b connects the bath water outlet 70 d above the reheating heat exchanger 70 and the bathtub 170. The forward pipe 60a is provided with a flow switch 53, a water level sensor 55, and a bath-side water supply pump 57 in this order from the reheating heat exchanger 70 side to the upstream side (tub 170 side). Although not shown, the forward pipe 60a is also provided with a temperature sensor for detecting the temperature of hot water in the forward pipe 60a.

フロースイッチ53は、往き管60aでの水流の有無を検出する。水位センサ55は、該水位センサ55の取付け位置を基準にした往き管60a内の水圧から浴槽170での浴水の水位を検出する。風呂側送水ポンプ57は、浴槽170内から浴水を導出して風呂側循環管路60に循環させ、浴槽170内に戻す。そして、図示を省略した上記の温度センサは、往き管60a内の浴水の温度を検出する。往き管60aおよび戻り管60bと、浴槽170との連結部には、浴槽アダプタ165が設けられている。   The flow switch 53 detects the presence or absence of water flow in the forward pipe 60a. The water level sensor 55 detects the water level of the bath water in the bathtub 170 from the water pressure in the forward pipe 60a based on the mounting position of the water level sensor 55. The bath-side water supply pump 57 draws bath water from the bathtub 170, circulates it in the bath-side circulation pipe 60, and returns it to the bathtub 170. The temperature sensor (not shown) detects the temperature of the bath water in the forward pipe 60a. A bathtub adapter 165 is provided at a connecting portion between the forward pipe 60 a and the return pipe 60 b and the bathtub 170.

浴槽アダプタ165内には、往き管60aと戻り管60bとが接続できるように2つの配管接続部が備えられている。浴槽アダプタ165と戻り管60bとの接続部の付近の戻り管60bの途中には、本発明の気液混合装置が第一の微細気泡発生装置1Dとして配置されている。第一の微細気泡発生装置1Dの構成としては、例えば、前述した実施の形態1または2の気液混合装置を適用することができる。第一の微細気泡発生装置1Dが備える気体導入部6に連通する吸気部には、開閉可能な電磁弁61が設けられている。   In the bathtub adapter 165, two pipe connection portions are provided so that the forward pipe 60a and the return pipe 60b can be connected. In the middle of the return pipe 60b in the vicinity of the connection portion between the bathtub adapter 165 and the return pipe 60b, the gas-liquid mixing device of the present invention is arranged as the first microbubble generator 1D. As the configuration of the first fine bubble generating device 1D, for example, the gas-liquid mixing device of the first or second embodiment described above can be applied. An electromagnetic valve 61 that can be opened and closed is provided in the intake section that communicates with the gas introduction section 6 included in the first microbubble generator 1D.

往き管60aの下流端付近(追焚き用熱交換器70の浴水導入口70cと、フロースイッチ53との間)には、第二の微細気泡発生装置54が配置されている。第二の微細気泡発生装置54の吸気部には、開閉可能な電磁弁56が設けられている。風呂側湯水混合弁80aと往き管60aとを接続する第2給湯管路90の途中には、第三の微細気泡発生装置58が配置されている。第三の微細気泡発生装置58の吸気部には、開閉可能な電磁弁59が設けられている。第二の微細気泡発生装置54および第三の微細気泡発生装置58は、本発明の気液混合装置で構成されていなくても良いが、自然吸気方式の微細気泡発生装置で構成されている。   Near the downstream end of the forward pipe 60a (between the bath water inlet 70c of the reheating heat exchanger 70 and the flow switch 53), a second fine bubble generating device 54 is disposed. An electromagnetic valve 56 that can be opened and closed is provided in the intake portion of the second microbubble generator 54. In the middle of the second hot water supply pipe line 90 connecting the bath-side hot / cold water mixing valve 80a and the forward pipe 60a, a third fine bubble generating device 58 is arranged. An electromagnetic valve 59 that can be opened and closed is provided in the intake portion of the third microbubble generator 58. The second microbubble generator 54 and the third microbubble generator 58 may not be configured by the gas-liquid mixing device of the present invention, but are configured by a naturally aspirated microbubble generator.

風呂給湯装置150は、制御部100と、浴室や台所の壁等に設置されるリモコン装置101とをさらに備えている。使用者は、リモコン装置101にて、給湯温度の設定や各種運転モードの設定等を行うことができる。制御部100は、上述した各センサで検出された情報、および、リモコン装置101から送信された情報に基づいて、ヒートポンプユニット110、貯湯用送水ポンプ33、三方弁35、タンク側送水ポンプ45、風呂側送水ポンプ57、風呂側湯水混合弁80a、一般側湯水混合弁80b、電磁弁61,56,59を制御することにより、風呂給湯装置150の各種の動作制御を行う。   The bath water heater 150 further includes a control unit 100 and a remote control device 101 installed on the wall of a bathroom or kitchen. The user can set the hot water supply temperature and various operation modes using the remote control device 101. Based on the information detected by each of the sensors described above and the information transmitted from the remote control device 101, the control unit 100 performs heat pump unit 110, hot water storage water pump 33, three-way valve 35, tank-side water pump 45, bath By controlling the side water pump 57, the bath-side hot / cold water mixing valve 80a, the general-side hot / cold water mixing valve 80b, and the electromagnetic valves 61, 56, and 59, various operations of the bath hot water supply device 150 are controlled.

浴槽170に給湯する場合には、貯湯タンク20から供給される高温の湯と給水管路30から供給される水とが風呂側湯水混合弁80aにて設定温度となるように混合され、その混合された湯が第2給湯管路90、風呂側循環管路60を通って送られ、浴槽アダプタ165を介して浴槽170内に供給される。   When hot water is supplied to the bathtub 170, the hot water supplied from the hot water storage tank 20 and the water supplied from the water supply pipe 30 are mixed at the bath side hot water mixing valve 80a so as to reach a set temperature, and the mixing is performed. The hot water is sent through the second hot water supply pipe 90 and the bath-side circulation pipe 60 and supplied into the bathtub 170 through the bathtub adapter 165.

一般給湯先180に給湯する場合には、貯湯タンク20から供給される高温の湯と給水管路30から供給される水とが一般側湯水混合弁80bにて設定温度となるように混合され、その混合された湯が第3給湯管路95を通って送られて一般給湯先180に供給される。   When hot water is supplied to the general hot water supply 180, the hot water supplied from the hot water storage tank 20 and the water supplied from the water supply pipe 30 are mixed at the general hot water mixing valve 80b so as to reach a set temperature, The mixed hot water is sent through the third hot water supply pipe 95 and supplied to the general hot water supply destination 180.

浴槽170内の浴水を保温または昇温する追焚き運転時には、タンク側送水ポンプ45および風呂側送水ポンプ57が駆動される。これにより、浴槽170から浴槽アダプタ165を通って往き管60aに吸入された浴水が追焚き用熱交換器70に送られ、貯湯タンク20からはタンク側循環管路50により高温の湯が追焚き用熱交換器70に供給され、追焚き用熱交換器70にて浴水が加熱される。この加熱された浴水は、戻り管60bを通って浴槽170へ戻り、浴槽アダプタ165から浴槽170内に流入する。この際、第一の微細気泡発生装置1Dの電磁弁61を開くことにより、第一の微細気泡発生装置1Dにて空気を浴水中に混合し、大量の微細気泡を発生させて浴槽170内に供給することができる。風呂側送水ポンプ57を継続して駆動することにより、第一の微細気泡発生装置1Dにて連続して微細気泡を発生することができるため、浴槽170内の微細気泡濃度を増大化することができる。この際、タンク側送水ポンプ45を駆動せずに風呂側送水ポンプ57のみを駆動し、追焚き運転を伴わずに第一の微細気泡発生装置1Dから浴槽170内に微細気泡を供給する運転のみを行っても良い。   During the reheating operation in which the bath water in the bathtub 170 is kept warm or heated, the tank-side water pump 45 and the bath-side water pump 57 are driven. As a result, the bath water drawn from the bathtub 170 through the bathtub adapter 165 to the outgoing pipe 60 a is sent to the reheating heat exchanger 70, and hot water is added from the hot water storage tank 20 through the tank-side circulation line 50. The water is supplied to the soaking heat exchanger 70, and the bath water is heated in the soaking heat exchanger 70. The heated bath water returns to the bathtub 170 through the return pipe 60 b and flows into the bathtub 170 from the bathtub adapter 165. At this time, by opening the electromagnetic valve 61 of the first microbubble generator 1D, air is mixed in the bath water in the first microbubble generator 1D to generate a large amount of microbubbles in the bathtub 170. Can be supplied. By continuously driving the bath-side water supply pump 57, it is possible to continuously generate fine bubbles in the first fine bubble generating apparatus 1D, and thus the concentration of fine bubbles in the bathtub 170 can be increased. it can. At this time, only the bath-side water pump 57 is driven without driving the tank-side water pump 45, and only the operation for supplying the fine bubbles from the first micro-bubble generating device 1D into the bathtub 170 without the follow-up operation. May be performed.

また、風呂給湯装置150は、入浴後に浴槽170内の浴水を排水するときには、第二の微細気泡発生装置54の電磁弁56を開き、風呂側送水ポンプ57を駆動することにより、第二の微細気泡発生装置54にて発生した微細気泡を追焚き用熱交換器70および戻り管60b内に供給し、これらの内部の皮脂汚れを洗浄除去する機能を有している。このような構成の場合に、風呂側循環管路60において第二の微細気泡発生装置54の下流側に位置する第一の微細気泡発生装置1Dの圧力損失が仮に大きいとすると、第二の微細気泡発生装置54内で負圧が形成されにくくなり、第二の微細気泡発生装置54の自然吸気が困難となるという問題がある。これに対し、本発明の気液混合装置で構成された第一の微細気泡発生装置1Dは、圧力損失が低いという特長を有しているため、第二の微細気泡発生装置54内で負圧が形成されにくくなることがなく、第二の微細気泡発生装置54の自然吸気を良好に行うことができる。   Moreover, when draining the bath water in the bathtub 170 after bathing, the bath water heater 150 opens the electromagnetic valve 56 of the second microbubble generator 54 and drives the bath-side water supply pump 57 to thereby The microbubbles generated by the microbubble generator 54 are supplied into the tracking heat exchanger 70 and the return pipe 60b, and have a function of cleaning and removing sebum dirt inside these. In the case of such a configuration, if the pressure loss of the first microbubble generator 1D located downstream of the second microbubble generator 54 in the bath-side circulation pipe 60 is assumed to be large, the second microbubble generator There is a problem that it becomes difficult to form a negative pressure in the bubble generating device 54, and it is difficult to naturally inhale the second fine bubble generating device 54. On the other hand, the first microbubble generator 1D configured by the gas-liquid mixing apparatus of the present invention has a feature that the pressure loss is low, so that the negative pressure is generated in the second microbubble generator 54. Is not easily formed, and natural suction of the second microbubble generator 54 can be performed satisfactorily.

また、風呂給湯装置150は、入浴後に浴槽170内の浴水を排水するときには、第2給湯管路90から注水しながら第三の微細気泡発生装置58の電磁弁59を開くことにより、第三の微細気泡発生装置58にて発生した微細気泡を往き管60a内に供給し、その内部の皮脂汚れを洗浄除去する機能を有している。   Moreover, when draining the bath water in the bathtub 170 after bathing, the bath water heater 150 opens the electromagnetic valve 59 of the third microbubble generator 58 while pouring water from the second hot water supply pipe 90, thereby providing the third The fine bubbles generated by the fine bubble generator 58 are supplied into the forward pipe 60a and have a function of cleaning and removing sebum dirt inside.

1,1A,1B 気液混合装置、1D 第一の微細気泡発生装置、2 リング部、3 入口部、4 縮径部、4a 最小内径部、5 気液混合部、5a 上流端、6 気体導入部、6a 気体通路、6b 内壁、7 拡径部、8 固定翼、10 隙間、11 圧縮機、12 沸き上げ用熱交換器、13 膨張弁、14 蒸発器、15 循環配管、16 気体導入部、16a 気体通路、17 冷凍サイクル部、18 乱流促進部、20 貯湯タンク、20a 水導入口、20b 水導出口、20c 温水導入口、20d 温水導出口、25 減圧弁、30 給水管路、30a 第1給水管部、30b 第2給水管部、30c 第3給水管部、33 貯湯用送水ポンプ、35 三方弁、40 貯湯用循環管路、40a 往き管、40b 戻り管、40c バイパス管、45 タンク側送水ポンプ、50 タンク側循環管路、50a 往き管、50b 戻り管、53 フロースイッチ、54 第二の微細気泡発生装置、55 水位センサ、56 電磁弁、57 風呂側送水ポンプ、58 第三の微細気泡発生装置、59 電磁弁、60 風呂側循環管路、60a 往き管、60b 戻り管、61 電磁弁、70 追焚き用熱交換器、70a 温水導入口、70b 温水導出口、70c 浴水導入口、70d 浴水導出口、75 第1給湯管路、80a 風呂側湯水混合弁、80b 一般側湯水混合弁、90 第2給湯管路、95 第3給湯管路、100 制御部、101 リモコン装置、110 ヒートポンプユニット、120 タンクユニット、150 風呂給湯装置、165 浴槽アダプタ、170 浴槽、180 一般給湯先 1, 1A, 1B gas-liquid mixing device, 1D first fine bubble generating device, 2 ring portion, 3 inlet portion, 4 reduced diameter portion, 4a minimum inside diameter portion, 5 gas-liquid mixing portion, 5a upstream end, 6 gas introduction Part, 6a gas passage, 6b inner wall, 7 expanded diameter part, 8 fixed blade, 10 gap, 11 compressor, 12 heat exchanger for boiling, 13 expansion valve, 14 evaporator, 15 circulation piping, 16 gas introduction part, 16a gas passage, 17 refrigeration cycle section, 18 turbulence promotion section, 20 hot water storage tank, 20a water inlet, 20b water outlet, 20c hot water inlet, 20d hot water outlet, 25 pressure reducing valve, 30 water supply line, 30a first 1 water supply pipe section, 30b second water supply pipe section, 30c third water supply pipe section, 33 hot water storage water pump, 35 three-way valve, 40 hot water circulation circuit, 40a forward pipe, 40b return pipe, 40c bypass pipe, 45 Tank side water pump, 50 Tank side circulation line, 50a Outward pipe, 50b Return pipe, 53 Flow switch, 54 Second microbubble generator, 55 Water level sensor, 56 Solenoid valve, 57 Bath side water pump, 58 3rd Microbubble generator, 59 solenoid valve, 60 bath side circulation line, 60a forward pipe, 60b return pipe, 61 solenoid valve, 70 heat exchanger for reheating, 70a hot water inlet, 70b hot water outlet, 70c bath water Inlet port, 70d bath water outlet port, 75 first hot water supply line, 80a bath side hot water mixing valve, 80b general side hot water mixing valve, 90 second hot water supply line, 95 third hot water supply line, 100 control unit, 101 remote control Equipment, 110 heat pump unit, 120 tank unit, 150 bath water heater, 165 bathtub adapter, 170 bathtub, 180

Claims (12)

液体の流路に設けられ、気体を前記液体中に導入して混合させる気液混合装置であって、
前記液体の進行方向に向かって内径が縮小する縮径部と、
前記縮径部の下流側に、前記縮径部に対し同心的に設けられ、前記縮径部の最小内径より大きい内径を有する気液混合部と、
前記気液混合部の内部に連通する気体通路を有し、該気体通路を通して前記気液混合部の内部に前記気体を導入する気体導入部と、
前記気体通路に設けられ、前記気体の流れを乱す乱流促進部と、
を備え、
前記乱流促進部は、前記気体通路の長手方向の一部において前記気体通路の内壁に設けられた凹部と凸部との少なくとも一方で構成されている気液混合装置。
A gas-liquid mixing device that is provided in a liquid flow path and introduces and mixes gas into the liquid,
A reduced diameter portion whose inner diameter is reduced toward the traveling direction of the liquid;
A gas-liquid mixing part provided concentrically with the reduced diameter part on the downstream side of the reduced diameter part and having an inner diameter larger than a minimum inner diameter of the reduced diameter part;
A gas passage that communicates with the interior of the gas-liquid mixing section, and a gas introduction section that introduces the gas into the gas-liquid mixing section through the gas passage;
A turbulence promoting part provided in the gas passage, for disturbing the flow of the gas;
With
The turbulent flow promoting unit is a gas-liquid mixing device configured by at least one of a concave portion and a convex portion provided on an inner wall of the gas passage in a part of a longitudinal direction of the gas passage.
前記乱流促進部よりも上流側の前記気体通路の断面形状および断面積と、前記乱流促進部よりも下流側の前記気体通路の断面形状および断面積とが同じである請求項1に記載の気液混合装置。 And a cross-sectional shape and cross-sectional area of the upstream side of the gas passage than said turbulence promoting portion, according to claim 1 and a cross-sectional shape and cross-sectional area of the downstream side the gas passage than the turbulent flow promoting portion is the same Gas-liquid mixing device. 前記乱流促進部は、渦流を発生させる請求項1または請求項2に記載の気液混合装置。   The gas-liquid mixing device according to claim 1, wherein the turbulent flow promoting unit generates a vortex flow. 前記気体通路は、前記気液混合部の内周面の接線方向に延びる請求項1から請求項3のいずれか一項に記載の気液混合装置。   The gas-liquid mixing device according to any one of claims 1 to 3, wherein the gas passage extends in a tangential direction of an inner peripheral surface of the gas-liquid mixing unit. 前記気液混合部の内部で、液流の外周側に、前記気体が流れる空間が形成される請求項1から請求項4のいずれか一項に記載の気液混合装置。   The gas-liquid mixing apparatus according to any one of claims 1 to 4, wherein a space in which the gas flows is formed on an outer peripheral side of the liquid flow inside the gas-liquid mixing unit. 前記液体の旋回流を前記縮径部の内部に形成する旋回流生成手段を備える請求項1から請求項5のいずれか一項に記載の気液混合装置。   The gas-liquid mixing device according to any one of claims 1 to 5, further comprising a swirling flow generating unit that forms a swirling flow of the liquid inside the reduced diameter portion. 前記気体導入部から流入した前記気体が前記気液混合部の内部で旋回し、その旋回方向は、前記旋回流生成手段により形成される前記液体の旋回流の旋回方向と同じ方向である請求項6に記載の気液混合装置。   The gas flowing in from the gas introduction part swirls inside the gas-liquid mixing part, and the swirl direction is the same direction as the swirl direction of the swirl flow of the liquid formed by the swirl flow generating means. 6. The gas-liquid mixing apparatus according to 6. 前記気体導入部を複数備え、
前記複数の前記気体導入部は、前記気液混合部の周方向の異なる位置に繋がっている請求項1から請求項7のいずれか一項に記載の気液混合装置。
A plurality of the gas introduction parts are provided,
The gas-liquid mixing device according to any one of claims 1 to 7, wherein the plurality of gas introduction units are connected to different positions in the circumferential direction of the gas-liquid mixing unit.
前記気液混合部の内径は、前記進行方向に沿って一定である請求項1から請求項8のいずれか一項に記載の気液混合装置。   The gas-liquid mixing apparatus according to any one of claims 1 to 8, wherein an inner diameter of the gas-liquid mixing unit is constant along the traveling direction. 前記気体通路は、前記気液混合部の上流端付近に連通している請求項1から請求項のいずれか一項に記載の気液混合装置。 The gas-liquid mixing device according to any one of claims 1 to 9 , wherein the gas passage communicates with the vicinity of an upstream end of the gas-liquid mixing unit. 空気を前記気体として導入することにより前記液体中に微細気泡を発生可能である請求項1から請求項1のいずれか一項に記載の気液混合装置。 Gas-liquid mixing device according to claim 1 which is capable of generating fine bubbles in the liquid by introducing air as the gas to one of claims 1 0. 浴槽内から導出された湯水を循環させて前記浴槽内に戻す風呂循環路と、
前記風呂循環路内の湯水を循環させる循環ポンプと、
前記風呂循環路の途中に設けられた請求項1乃至1のいずれか一項に記載の気液混合装置と、
を備える風呂給湯装置。
A bath circuit that circulates hot water derived from the bath and returns it to the bath,
A circulation pump for circulating hot water in the bath circulation path;
The gas-liquid mixing device according to any one of claims 1 to 11, provided in the middle of the bath circulation path,
A bath water heater equipped with.
JP2013264022A 2013-12-20 2013-12-20 Gas-liquid mixing device and bath water heater Active JP6156128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264022A JP6156128B2 (en) 2013-12-20 2013-12-20 Gas-liquid mixing device and bath water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264022A JP6156128B2 (en) 2013-12-20 2013-12-20 Gas-liquid mixing device and bath water heater

Publications (2)

Publication Number Publication Date
JP2015120100A JP2015120100A (en) 2015-07-02
JP6156128B2 true JP6156128B2 (en) 2017-07-05

Family

ID=53532290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264022A Active JP6156128B2 (en) 2013-12-20 2013-12-20 Gas-liquid mixing device and bath water heater

Country Status (1)

Country Link
JP (1) JP6156128B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102015024683B1 (en) * 2015-09-25 2022-04-26 Cylzer S.A Carbonation duct for mixing a gas and a beverage and carbonation process
JP7003840B2 (en) * 2018-05-22 2022-01-21 三菱電機株式会社 Hot water storage type water heater
JP6714651B2 (en) * 2018-07-26 2020-06-24 株式会社エムテック Gas-liquid mixing device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206096A (en) * 1983-05-11 1984-11-21 Toray Ind Inc Aerating apparatus
JPH0747115B2 (en) * 1991-11-05 1995-05-24 長廣 仁蔵 Fine bubble generating method and fine bubble generating apparatus
JP2792015B2 (en) * 1994-05-20 1998-08-27 和泉電気株式会社 Gas dissolution equipment
JP2005028306A (en) * 2003-07-07 2005-02-03 Institute Of Computational Fluid Dynamics Gas-liquid mixing device, and sewage purifying device
JP2005125302A (en) * 2003-10-27 2005-05-19 Anemosu:Kk Diffuser
JP4619316B2 (en) * 2006-04-27 2011-01-26 シャープ株式会社 Gas-liquid mixing device
JP5133556B2 (en) * 2006-12-07 2013-01-30 株式会社横田製作所 Microbubble generator
JP2008168221A (en) * 2007-01-12 2008-07-24 Toshiba Corp Method for generating microbubble and microbubble generating device
JP5173513B2 (en) * 2008-03-25 2013-04-03 三菱電機株式会社 Micro-bubble generating device and water heater with reheating function using the same
GB2471280B (en) * 2009-06-22 2011-08-31 Hydroventuri Ltd Apparatus and method for introducing a gas into a liquid
JP2012164560A (en) * 2011-02-08 2012-08-30 Panasonic Corp Plasma generating device, and cleaning/purifying device and small electric appliance using plasma generating device
JP2013022575A (en) * 2011-07-26 2013-02-04 Shibaura Mechatronics Corp Gas-liquid mixer and gas-liquid mixing method

Also Published As

Publication number Publication date
JP2015120100A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5692259B2 (en) Gas-liquid mixing device and bath water heater
JP5794338B2 (en) Gas-liquid mixing device and bath water heater
EP2354337B1 (en) Sanitary washing apparatus
JP5692258B2 (en) Fine bubble generator and bath water heater
JP4636420B2 (en) Microbubble generator
JP6064842B2 (en) Ejector device and pipe cleaning device
JP5737363B2 (en) Gas-liquid mixing device and bath water heater
JP6156128B2 (en) Gas-liquid mixing device and bath water heater
US9759217B2 (en) Self-priming centrifugal pump
JP5578205B2 (en) Gas-liquid mixing device and bath water heater
KR20170096674A (en) micro-bubble generator
JP2015161491A (en) water heater
JP5794245B2 (en) Fine bubble generator and bath water heater
JP5794326B2 (en) Bath water heater
JP5776801B2 (en) Fixed swirler, bubble generating device and bath water heater using the fixed swirler
JP5854945B2 (en) Water heater
EP2818805B1 (en) Bath hot water supply device
JP2000051107A (en) Bubble generator
JP2003521612A (en) Equipment building and equipment operation method
JP5534774B2 (en) Hot water supply system
JP5546501B2 (en) Distributor and heat pump device
JPH09287593A (en) Centrifugal pump and automatic water supply pump device using the same
JPH1182919A (en) Steam desuperheater
JP5477430B2 (en) Fixed swirler, bubble generating device and bath water heater using the fixed swirler
TW201516272A (en) Ejector pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6156128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250