JP5776801B2 - Fixed swirler, bubble generating device and bath water heater using the fixed swirler - Google Patents

Fixed swirler, bubble generating device and bath water heater using the fixed swirler Download PDF

Info

Publication number
JP5776801B2
JP5776801B2 JP2014024958A JP2014024958A JP5776801B2 JP 5776801 B2 JP5776801 B2 JP 5776801B2 JP 2014024958 A JP2014024958 A JP 2014024958A JP 2014024958 A JP2014024958 A JP 2014024958A JP 5776801 B2 JP5776801 B2 JP 5776801B2
Authority
JP
Japan
Prior art keywords
swirl
cylindrical tube
blade
flow generating
swirl flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014024958A
Other languages
Japanese (ja)
Other versions
JP2014121707A (en
Inventor
憲一 逸見
憲一 逸見
史朗 竹内
史朗 竹内
星崎 潤一郎
潤一郎 星崎
隆志 秦
隆志 秦
悠祐 西内
悠祐 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Institute of National Colleges of Technologies Japan
Original Assignee
Mitsubishi Electric Corp
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Institute of National Colleges of Technologies Japan filed Critical Mitsubishi Electric Corp
Priority to JP2014024958A priority Critical patent/JP5776801B2/en
Publication of JP2014121707A publication Critical patent/JP2014121707A/en
Application granted granted Critical
Publication of JP5776801B2 publication Critical patent/JP5776801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体に旋回流を発生させる固定式旋回翼、該固定式旋回翼を用いた気泡発生装置及び風呂給湯装置に関する。   The present invention relates to a fixed swirler that generates a swirling flow in a fluid, a bubble generator using the fixed swirler, and a bath water heater.

従来技術として、例えば特許文献1に記載されているように、固定式旋回翼を用いることにより、有機廃液を旋回させて有機物を分解する装置や、水を旋回させて空気を破砕することにより気泡を発生する気泡発生装置が知られている。ここで、液体中に気体を均等に混合したり、微細気泡を発生させる手段としては、ベンチュリー式、キャビテーション式、加圧溶解式、旋回流式等が知られている。ベンチュリー式は、液体の流路にくびれ部分(絞り)を設け、当該くびれ部分で流速が上昇して負圧が形成される現象を利用して、外部からくびれ部分に空気を吸込んで微細気泡を発生させる。キャビテーション式は、例えばポンプ内に気液混合体を送り込んで超音波振動を与えることにより、キャビテーションを利用して気泡を発生させる。   As described in Patent Document 1, for example, as described in Patent Document 1, by using a fixed swirl blade, an organic waste liquid is swirled to decompose organic matter, or water is swirled to crush air to break up air bubbles. There is known a bubble generating device for generating a gas. Here, a venturi type, a cavitation type, a pressure dissolution type, a swirling type, etc. are known as means for uniformly mixing a gas in a liquid or generating fine bubbles. The Venturi type uses a phenomenon in which a constriction (throttle) is provided in the flow path of the liquid, and a negative pressure is formed by increasing the flow velocity in the constriction. generate. In the cavitation type, for example, a gas-liquid mixture is fed into a pump and ultrasonic vibration is applied to generate bubbles using cavitation.

また、加圧溶解式は、コンプレッサ等により加圧した空気を液中に溶解し、この液体の減圧開放時に気泡が再析出する現象を利用するもので、加圧溶解式の装置は大型化するが、大量の気体を溶解させることが可能である。また、旋回流式では、液体の旋回流を形成し、この旋回流を気体と合一させることにより、旋回流を利用して気体をせん断破砕し、微細気泡を発生させる。旋回流式の例としては、有機廃液等を旋回させて有機物分解をする装置や、旋回流により発生させた空気を利用する水浄化装置が知られている。   In addition, the pressure dissolution type uses a phenomenon in which air pressurized by a compressor or the like is dissolved in a liquid, and bubbles reprecipitate when the liquid is released under reduced pressure. However, it is possible to dissolve a large amount of gas. In the swirling flow type, a swirling flow of liquid is formed, and the swirling flow is united with the gas, whereby the gas is sheared using the swirling flow to generate fine bubbles. As an example of the swirling flow type, a device that decomposes organic matter by swirling organic waste liquid or the like, and a water purification device that uses air generated by swirling flow are known.

上記の気泡発生装置、有機物分解装置、水浄化装置等においては、装置としての機能を向上させるために、微細かつ多量の気泡を発生させることが重要である。この場合、液体の流量が比較的少ない装置においては、微細かつ多量の気泡を発生させるために旋回流式が用いられることが多い。旋回流式としては、円錐状の流路壁面に対して拡径側の接線方向から水流を導入し、当該流路壁面に沿って水流を旋回させる円錐面方式と、固定された翼により水流を旋回させて旋回流を形成する旋回翼方式とが知られている。これらの方式を比較した場合、旋回翼方式の方が圧損を抑制した状態で微細かつ多量の気泡を発生させることができる。   In the bubble generating device, the organic matter decomposing device, the water purification device, and the like, it is important to generate fine and large amount of bubbles in order to improve the function as the device. In this case, in an apparatus with a relatively small liquid flow rate, a swirling flow type is often used in order to generate fine and a large amount of bubbles. In the swirling flow method, a water flow is introduced from a tangential direction on the diameter expansion side to the conical channel wall surface and the water flow is swung along the channel wall surface by a fixed blade and a conical surface method. A swirl blade system that swirls to form a swirl flow is known. When these methods are compared, the swirl vane method can generate fine and large amount of bubbles in a state where pressure loss is suppressed.

特許第4019154号公報Japanese Patent No. 4019154

上述した従来技術では、旋回翼方式により発生する旋回流の旋回力を出来るだけ大きくしたいという要求がある。旋回力を向上させる手段としては、翼の大きさや枚数を増加させる方法が知られている。しかしながら、翼の大きさを増加させると、翼間の隙間(流体の流路)が相対的に狭くなるので、毛髪等の異物が前記隙間に詰まり易くなるという問題がある。また、異物の詰まりを抑制するために翼の枚数を減らして翼間の隙間を拡大すると、この隙間を通過する水流(即ち、翼から旋回力を受けずに隙間を素通りする水流)が増えることになり、水流の旋回力が低下するという問題がある。   In the prior art described above, there is a demand to increase the swirl force of swirl flow generated by the swirl vane system as much as possible. As means for improving the turning force, a method of increasing the size and number of blades is known. However, when the size of the wing is increased, the gap (fluid flow path) between the wings becomes relatively narrow, so that there is a problem that foreign matters such as hair are easily clogged in the gap. In addition, if the number of blades is reduced to reduce the clogging of foreign objects and the gap between the blades is enlarged, the water flow that passes through this gap (that is, the water flow that passes through the gap without receiving the turning force from the blade) increases. Therefore, there is a problem that the turning force of the water flow is reduced.

本発明は、上述のような課題を解決するためになされたもので、異物の詰まりを抑制しつつ、水流の旋回力を向上させることが可能な固定式旋回翼、該固定式旋回翼を用いた気泡発生装置及び風呂給湯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and uses a fixed swirl blade capable of improving the swirl force of a water flow while suppressing clogging of foreign matter, and the fixed swirl blade. An object of the present invention is to provide a bubble generator and a bath water heater.

本発明に係る固定式旋回翼は、流体が軸方向に流通する配管通路の少なくとも一部を構成する円筒管と、円筒管の内周側で径方向内向きに突出する部材であって、円筒管の上流側から下流側に向けて軸方向に延在しつつ周方向に沿って略螺旋状に傾斜する傾斜面と、傾斜面のうち最も上流側に位置する最上流端部とを有し、円筒管の周方向に間隔をもって配置された複数の旋回流発生翼と、旋回流発生翼の最上流端部に対応する軸方向位置で円筒管の内壁面から径方向内向きに突出した乱流発生段部と、を備え、乱流発生段部は、円筒管の内壁面に全周にわたって設けられた環状の段部により構成し、かつ、乱流発生段部は、円筒管の軸方向において旋回流発生翼の最上流端部と等しい位置か、または最上流端部よりも上流側であって乱流発生段部と最上流端部との軸方向距離が旋回流発生翼の軸方向の寸法よりも小さくなる位置に配置し、円筒管の軸方向からみて、旋回流発生翼の投影面積は、円筒管の内周側で旋回流発生翼の間に形成された隙間の投影面積以下に形成する構成としている。 A fixed swirl according to the present invention includes a cylindrical pipe that forms at least a part of a pipe passage through which fluid flows in an axial direction, and a member that protrudes radially inward on the inner peripheral side of the cylindrical pipe. An inclined surface that extends in the axial direction from the upstream side to the downstream side of the pipe and is inclined in a substantially spiral shape along the circumferential direction, and an uppermost stream end portion that is located on the most upstream side among the inclined surfaces , A plurality of swirl flow generating blades arranged at intervals in the circumferential direction of the cylindrical tube, and a turbulent projecting radially inward from the inner wall surface of the cylindrical tube at an axial position corresponding to the most upstream end of the swirl flow generating blade A turbulent flow generation step is formed by an annular step provided on the inner wall surface of the cylindrical tube, and the turbulence generation step is in the axial direction of the cylindrical tube. At the same position as the uppermost stream end of the swirl flow generator blade or upstream of the uppermost stream end The axial distance between the step portion and the most upstream end is disposed becomes smaller position than the axial dimension of the swirling flow generating vanes, as viewed in the axial direction of the cylindrical tube, the projected area of the whirling flow generating vanes, the cylindrical tube It is set as the structure formed below the projection area of the clearance gap formed between the swirl | vortex flow generation | occurrence | production blades in the inner peripheral side.

本発明によれば、乱流発生段部は、円筒管の全周にわたって旋回流発生翼の上流側に乱流を発生させることができる。この乱流により、旋回流発生翼の位置に誘導される水流を増加させ、旋回流発生翼と接触せずに当該翼の脇を通過する水流を相対的に減少させることができる。即ち、旋回流に寄与しない水流を減少させることができるので、固定式旋回翼による旋回流の発生能力を向上させることができる。これにより、例えば少数の旋回流発生翼を円筒管内に配置しただけでも、旋回流を十分に発生させることができ、円筒管内で旋回流発生翼以外の位置に形成される隙間流路の開口面積を大きく設定することができる。従って、異物が前記隙間流路に詰まるのを抑制しつつ、水流の旋回力を確保することができ、固定式旋回翼を安定的に作動させることができる。   According to the present invention, the turbulent flow generation step portion can generate turbulent flow upstream of the swirl flow generating blade over the entire circumference of the cylindrical tube. By this turbulent flow, the water flow induced to the position of the swirl flow generating blade can be increased, and the water flow passing through the side of the blade without contacting the swirl flow generating blade can be relatively decreased. That is, since the water flow that does not contribute to the swirl flow can be reduced, the ability of the swirl flow to be generated by the fixed swirl blade can be improved. Thereby, for example, even if a small number of swirl flow generating blades are arranged in the cylindrical tube, the swirl flow can be sufficiently generated, and the opening area of the gap channel formed at a position other than the swirl flow generating blades in the cylindrical tube Can be set large. Therefore, it is possible to secure the swirl force of the water flow while suppressing the clogging of the foreign matter in the gap flow path, and to stably operate the fixed swirl vane.

本発明の実施の形態1による気泡発生装置を模式的に示す断面図である。It is sectional drawing which shows typically the bubble generator by Embodiment 1 of this invention. 図1中に示す固定式旋回翼の旋回翼構造体を単体で示す斜視図である。It is a perspective view which shows the swirl | wing structure of the fixed swirl | wing blade shown in FIG. 固定式旋回翼を中心軸線に沿って破断した状態を示す断面図である。It is sectional drawing which shows the state which fractured | ruptured the fixed swirl | wing blade along the central axis. 固定式旋回翼を上流側からみた正面図である。It is the front view which looked at the fixed swirl blade from the upstream side. 旋回流発生翼と乱流発生段部との位置関係の設定例を示す説明図である。It is explanatory drawing which shows the example of a setting of the positional relationship of a swirl flow generation blade and a turbulent flow generation step part. 図5中の各設定例により実現される気泡発生装置の吸気量を示す特性線図である。FIG. 6 is a characteristic diagram showing the intake air amount of the bubble generating device realized by each setting example in FIG. 5. 本発明の実施の形態2による固定式旋回翼を示す断面図である。It is sectional drawing which shows the fixed swirl | wing blade by Embodiment 2 of this invention. 本発明の実施の形態3による固定式旋回翼の旋回翼構造体を単体で示す斜視図である。It is a perspective view which shows the swirl | wing structure of the fixed swirl | wing blade by Embodiment 3 of this invention alone. 図8中の旋回翼構造体を上流側からみた正面図である。It is the front view which looked at the swirl | wing structure in FIG. 8 from the upstream. 本発明の実施の形態4による固定式旋回翼の旋回翼構造体を単体で示す斜視図である。It is a perspective view which shows the swirl | wing structure of the fixed swirl | wing blade by Embodiment 4 of this invention alone. 本発明の実施の形態5による貯湯式給湯機を示す構成図である。It is a block diagram which shows the hot water storage type water heater by Embodiment 5 of this invention.

実施の形態1.
以下、図1乃至図6を参照して、本発明の実施の形態1について説明する。なお、本明細書で使用する各図においては、共通する要素に同一の符号を付し、重複する説明を省略するものとする。図1は、本発明の実施の形態1による気泡発生装置を模式的に示す断面図である。この図に示すように、気泡発生装置1は、水(流体)が流通する配管通路Pに設置されるもので、固定式旋回翼10、縮径部2、空気導入部3及び気泡発生部4を備えている。固定式旋回翼10は、配管通路P内を流れる水に旋回流を発生させるもので、その構成については後述する。
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. In each drawing used in this specification, common elements are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 is a cross-sectional view schematically showing a bubble generator according to Embodiment 1 of the present invention. As shown in this figure, the bubble generating device 1 is installed in a pipe passage P through which water (fluid) flows, and includes a fixed swirl blade 10, a reduced diameter portion 2, an air introducing portion 3, and a bubble generating portion 4. It has. The fixed swirl vane 10 generates a swirl flow in the water flowing in the pipe passage P, and the configuration thereof will be described later.

縮径部2は、固定式旋回翼10により発生させた旋回流の半径を縮小して旋回流を高速化するもので、固定式旋回翼10(円筒管11)の下流側に同軸に接続され、この接続部位から略円錐状に縮径している。空気導入部3は、縮径部2の下流側(最縮径部)に径方向外側から空気を導入するための通路であり、縮径部2の下流側に設けられている。気泡発生部4は、例えば流入側が略円錐状に縮径した円筒管等により形成され、縮径部2の下流側に同軸に接続されている。気泡発生部4は、固定式旋回翼10により発生させた旋回流と、空気導入部3から導入された空気とを利用して、水中に微細気泡を発生させる。   The reduced diameter portion 2 reduces the radius of the swirl flow generated by the fixed swirl vane 10 to speed up the swirl flow, and is coaxially connected to the downstream side of the fixed swirl vane 10 (cylindrical tube 11). The diameter of the connection portion is reduced to a substantially conical shape. The air introduction portion 3 is a passage for introducing air from the radially outer side to the downstream side (the most reduced diameter portion) of the reduced diameter portion 2, and is provided on the downstream side of the reduced diameter portion 2. The bubble generating part 4 is formed of, for example, a cylindrical tube whose inflow side has a diameter reduced to a substantially conical shape, and is connected coaxially to the downstream side of the reduced diameter part 2. The bubble generation unit 4 generates fine bubbles in water using the swirl flow generated by the fixed swirl blade 10 and the air introduced from the air introduction unit 3.

次に、気泡発生装置1の基本的な動作について説明する。まず、配管通路P内を軸方向に流れる水が固定式旋回翼10の円筒管11に流入すると、この水流には、固定式旋回翼10の作用により旋回流が発生する。円筒管11から流出した旋回流は、縮径部2を通過することにより旋回半径が縮小しつつ、旋回方向の流速が上昇する。この結果、縮径部2と空気導入部3との間には圧力差(負圧)が生じるので、縮径部2の下流側には、前記圧力差により空気導入部3から空気が吸い込まれる。吸い込まれた空気は、旋回流が合一する位置で旋回流によりせん断され、気泡発生部4内に微細気泡を発生させる。   Next, the basic operation of the bubble generator 1 will be described. First, when water flowing in the axial direction in the pipe passage P flows into the cylindrical tube 11 of the fixed swirl vane 10, a swirl flow is generated in the water flow by the action of the fixed swirl vane 10. The swirling flow that has flowed out of the cylindrical tube 11 passes through the reduced diameter portion 2 and the swirling radius is reduced, while the flow velocity in the swirling direction is increased. As a result, a pressure difference (negative pressure) is generated between the reduced diameter portion 2 and the air introduction portion 3, so that air is sucked into the downstream side of the reduced diameter portion 2 from the air introduction portion 3 due to the pressure difference. . The sucked air is sheared by the swirling flow at a position where the swirling flow is united, and fine bubbles are generated in the bubble generating unit 4.

次に、図2乃至図4を参照しつつ、固定式旋回翼10の構成について説明する。図2は、図1中に示す固定式旋回翼の旋回翼構造体を単体で示す斜視図である。また、図3は、固定式旋回翼を中心軸線に沿って破断した状態を示す断面図(縦断面図)であり、図4は、固定式旋回翼を上流側からみた正面図である。これらの図に示すように、固定式旋回翼10は、配管通路Pの途中に同軸に接続されて配管通路Pの少なくとも一部を構成する円筒管11と、円筒管11の内周側に設けられた旋回翼構造体12とを備えている。円筒管11は、図3に示すように、軸方向の両側が開口した筒状に形成されており、内壁面11Aを有している。そして、円筒管11の軸方向の一端側(上流側)は流体の流入端となり、軸方向の他端側(下流側)は流体の流出端となっている。   Next, the configuration of the fixed swirl blade 10 will be described with reference to FIGS. 2 to 4. FIG. 2 is a perspective view showing the swirler structure of the fixed swirler shown in FIG. 1 alone. FIG. 3 is a cross-sectional view (longitudinal sectional view) showing a state in which the fixed swirl blade is broken along the central axis, and FIG. 4 is a front view of the fixed swirl blade as viewed from the upstream side. As shown in these drawings, the fixed swirl blade 10 is provided on the inner peripheral side of the cylindrical tube 11 and a cylindrical tube 11 that is coaxially connected in the middle of the piping passage P and forms at least a part of the piping passage P. The swirl wing structure 12 is provided. As shown in FIG. 3, the cylindrical tube 11 is formed in a cylindrical shape with both axial sides open, and has an inner wall surface 11 </ b> A. One end side (upstream side) of the cylindrical tube 11 in the axial direction is a fluid inflow end, and the other end side (downstream side) in the axial direction is a fluid outflow end.

また、旋回翼構造体12は、内側筒体13、旋回流発生翼14及び乱流発生段部15を備えている。内側筒体13は、円筒管11の内周側に旋回流発生翼14を固定し、乱流発生段部15を形成するための部材である。内側筒体13は、円筒管11よりも小径な円筒状に形成され、円筒管11の内周側に回転を規制した状態で同軸に嵌合されている。旋回流発生翼14は、円筒管11内を軸方向に流通する水に旋回力を付与して旋回流を発生させるもので、図2及び図3に示すように、断面が略円弧状に湾曲した板材により形成され、内側筒体13の内壁面13Aから径方向内向きに突出している。   The swirl vane structure 12 includes an inner cylinder 13, a swirl flow generating blade 14, and a turbulent flow generation step 15. The inner cylinder 13 is a member for fixing the swirl flow generating blade 14 on the inner peripheral side of the cylindrical tube 11 and forming the turbulent flow generation step portion 15. The inner cylinder 13 is formed in a cylindrical shape having a smaller diameter than the cylindrical tube 11, and is fitted coaxially to the inner peripheral side of the cylindrical tube 11 in a state where rotation is restricted. The swirl flow generating blade 14 generates a swirl flow by applying a swirl force to the water flowing in the axial direction in the cylindrical tube 11, and the cross section thereof is curved in a substantially arc shape as shown in FIGS. It is formed by the plate | board material which protruded, and protrudes in the radial direction inward from 13 A of inner wall surfaces of the inner side cylinder 13. As shown in FIG.

また、旋回流発生翼14は、円筒管11(内側筒体13)の上流側から下流側に向けて軸方向に延在しつつ周方向に沿って略螺旋状に傾斜する傾斜面14Aと、傾斜面14Aのうち最も上流側に位置する最上流端部14Bとを有している。そして、旋回流発生翼14の断面形状は、図3に示すように、最上流端部14Bに近い上流側の部位が水流の方向(円筒管11の軸方向)に沿って延在し、最上流端部14Bから離れるにつれて水流と垂直な方向に立上がるように湾曲している。   Further, the swirl flow generating blade 14 has an inclined surface 14A that extends in the axial direction from the upstream side to the downstream side of the cylindrical tube 11 (inner cylindrical body 13) and is inclined in a substantially spiral shape along the circumferential direction, It has the most upstream end part 14B located in the most upstream side among the inclined surfaces 14A. As shown in FIG. 3, the cross-sectional shape of the swirl flow generating blade 14 is such that the upstream portion close to the most upstream end portion 14B extends along the direction of water flow (the axial direction of the cylindrical tube 11). It curves so that it may stand up in the direction perpendicular to the water flow as it moves away from the upstream end portion 14B.

一方、旋回流発生翼14は、図4に示すように、例えば円筒管11の周方向に90°の間隔をもって2枚配置され、これら2枚の旋回流発生翼14は、それぞれ円筒管11の軸方向からみて約90°の中心角を有している。これにより、旋回流発生翼14の間には、円筒管11の軸方向からみて約90°の中心角を有する略扇形状の隙間流路(翼間流路)16が形成されている。なお、本実施の形態では、2枚の旋回流発生翼14を用いる場合を例示したが、本発明はこれに限らず、内側筒体13の内周側に1枚の旋回流発生翼または3枚以上の旋回流発生翼を突設する構成としてもよい。また、本発明において、旋回流発生翼14及び翼間流路16の中心角は、90°に限定されるものではなく、任意の適切な角度に設定すればよいものである。さらに、内側筒体13、旋回流発生翼14及び乱流発生段部15は、樹脂材料等により一体成形してもよい。   On the other hand, as shown in FIG. 4, for example, two swirl flow generating blades 14 are arranged at an interval of 90 ° in the circumferential direction of the cylindrical tube 11. It has a central angle of about 90 ° when viewed from the axial direction. As a result, a substantially fan-shaped gap channel (inter-blade channel) 16 having a central angle of about 90 ° when viewed from the axial direction of the cylindrical tube 11 is formed between the swirl flow generating blades 14. In the present embodiment, the case where two swirl flow generating blades 14 are used has been exemplified. However, the present invention is not limited to this, and one swirl flow generating blade or 3 on the inner peripheral side of the inner cylindrical body 13. It is good also as a structure which protrudes the swirl | vortex flow generating blade more than a sheet. In the present invention, the central angle of the swirl flow generating blade 14 and the inter-blade channel 16 is not limited to 90 °, but may be set to any appropriate angle. Furthermore, the inner cylindrical body 13, the swirl flow generating blade 14 and the turbulent flow generating step portion 15 may be integrally formed of a resin material or the like.

乱流発生段部15は、図3に示すように、旋回流発生翼14の上流側で乱流を発生させるもので、円筒管11の内壁面11Aから径方向内向きに突出している。なお、本実施の形態では、内側筒体13の軸方向の端面により乱流発生段部15を構成した場合を例示しており、乱流発生段部15は、円筒管11の全周にわたって環状に延在している。また、乱流発生段部15は、円筒管11内での軸方向位置が旋回流発生翼14の最上流端部14Bと等しくなるか、または、最上流端部14Bよりも上流側となるように配置されている。なお、図1及び図3では、乱流発生段部15を最上流端部14Bよりも上流側に配置した場合を例示している。   As shown in FIG. 3, the turbulent flow generation step portion 15 generates turbulent flow upstream of the swirl flow generating blade 14, and protrudes radially inward from the inner wall surface 11 </ b> A of the cylindrical tube 11. In the present embodiment, the case where the turbulent flow generation step 15 is configured by the axial end face of the inner cylinder 13 is illustrated, and the turbulence generation step 15 is annular over the entire circumference of the cylindrical tube 11. It extends to. Further, the turbulent flow generation step portion 15 has an axial position in the cylindrical tube 11 that is equal to the most upstream end portion 14B of the swirling flow generating blade 14 or upstream of the most upstream end portion 14B. Is arranged. 1 and 3 exemplify a case where the turbulent flow generation step portion 15 is arranged on the upstream side of the most upstream end portion 14B.

次に、本実施の形態による固定式旋回翼10の作動について説明する。まず、円筒管11に流入した水は、基本的に、内側筒体13の内壁面13A及び旋回流発生翼14の傾斜面14Aにより周方向に案内されて旋回流となる。この旋回流は、翼間流路16を介して旋回流発生翼14の下流側に流出する。このとき、円筒管11の内壁面11Aの近傍を流れる水流は、図3に示すように、乱流発生段部15に衝突し、旋回流発生翼14の上流側に乱流を発生させる。この乱流は、旋回流発生翼14の最上流端部14Bの近傍を流れる水流や、旋回流発生翼14の上流側から翼間流路16に向けて流れる水流の流れに乱れを生じさせる。   Next, the operation of the fixed swirl blade 10 according to the present embodiment will be described. First, the water flowing into the cylindrical tube 11 is basically guided in the circumferential direction by the inner wall surface 13A of the inner cylinder 13 and the inclined surface 14A of the swirling flow generating blade 14 to become a swirling flow. This swirling flow flows out downstream of the swirling flow generating blade 14 through the inter-blade channel 16. At this time, the water flow flowing in the vicinity of the inner wall surface 11 </ b> A of the cylindrical tube 11 collides with the turbulent flow generation step portion 15 and generates a turbulent flow upstream of the swirl flow generating blade 14 as shown in FIG. 3. This turbulent flow causes turbulence in the flow of water flowing near the uppermost stream end 14B of the swirl flow generating blade 14 or the flow of water flowing from the upstream side of the swirl flow generating blade 14 toward the inter-blade channel 16.

この結果、円筒管11の内部を流れる水流のうち、旋回流発生翼14の最上流端部14Bに接触して傾斜面14Aに誘導される水流は増加し、旋回流発生翼14と接触せずに翼間流路16を通過する水流は、相対的に減少する傾向が生じる。即ち、乱流発生段部15によれば、翼間流路16を軸方向に通り抜けて旋回流に寄与しない水流を減少させることができるので、旋回流発生翼14による旋回流の発生能力を向上させ、水流の旋回力を増加させることができる。これにより、例えば90°程度の中心角を有する旋回流発生翼14を2枚配置しただけでも、旋回流を十分に発生させることができ、翼間流路16の開口面積(中心角)を大きく設定することができる。   As a result, of the water flow flowing inside the cylindrical tube 11, the water flow that is brought into contact with the uppermost stream end 14 </ b> B of the swirl flow generating blade 14 and guided to the inclined surface 14 </ b> A increases and does not contact the swirl flow generating blade 14. The water flow passing through the inter-blade channel 16 tends to decrease relatively. That is, according to the turbulent flow generation step portion 15, the water flow that does not contribute to the swirl flow through the inter-blade channel 16 in the axial direction can be reduced, so that the swirl flow generation blade 14 can improve the swirl flow generation capability. And the swirl force of the water flow can be increased. Thereby, for example, even if only two swirling flow generating blades 14 having a central angle of about 90 ° are arranged, a swirling flow can be sufficiently generated, and the opening area (center angle) of the inter-blade channel 16 is increased. Can be set.

従って、本実施の形態によれば、水中に異物が存在する環境でも、異物が翼間流路16に詰まるのを抑制しつつ、水流の旋回力を確保することができ、固定式旋回翼10を安定的に作動させることができる。この結果、旋回流を利用して微細気泡を安定的に発生させ、気泡発生装置1の性能及び信頼性を向上させることができる。   Therefore, according to the present embodiment, even in an environment where foreign matter exists in the water, the turning force of the water flow can be secured while suppressing the foreign matter from clogging the inter-blade channel 16, and the fixed swirl blade 10. Can be operated stably. As a result, fine bubbles can be stably generated using the swirling flow, and the performance and reliability of the bubble generator 1 can be improved.

次に、図5及び図6を参照して、旋回流発生翼14と乱流発生段部15との位置関係について説明する。図5は、旋回流発生翼と乱流発生段部との位置関係の設定例を示す説明図である。また、図6は、図5中の各設定例により実現される気泡発生装置の吸気量を示す特性線図である。なお、図5及び図6は、旋回流発生翼14の翼長(円筒管11の軸方向における旋回流発生翼14の寸法)を6mmに設定した場合を例示している。また、図5中に例示した軸方向距離Lは、円筒管11の軸方向における旋回流発生翼14の下流側の端部と乱流発生段部15との間の距離として定義される。さらに、図6において、気泡発生装置1の吸気量(mL/min)とは、気泡発生装置1の作動時に空気導入部3から吸い込まれる空気の流量を示している。   Next, the positional relationship between the swirl flow generating blade 14 and the turbulent flow generation step 15 will be described with reference to FIGS. 5 and 6. FIG. 5 is an explanatory diagram showing a setting example of the positional relationship between the swirl flow generating blade and the turbulent flow generation step. FIG. 6 is a characteristic diagram showing the intake air amount of the bubble generating device realized by each setting example in FIG. 5 and 6 exemplify a case where the blade length of the swirl flow generating blade 14 (the dimension of the swirl flow generating blade 14 in the axial direction of the cylindrical tube 11) is set to 6 mm. The axial distance L illustrated in FIG. 5 is defined as the distance between the downstream end of the swirl flow generating blade 14 and the turbulent flow generation step 15 in the axial direction of the cylindrical tube 11. Further, in FIG. 6, the intake amount (mL / min) of the bubble generating device 1 indicates the flow rate of air sucked from the air introduction unit 3 when the bubble generating device 1 is operated.

図6に示すように、気泡発生装置1の吸気量は、軸方向距離Lが翼長と等しい場合に最大となり、軸方向距離Lが大きくなるほど減少する傾向がある。この傾向は、軸方向距離Lが大きくなると、乱流発生段部15で発生した乱流が旋回流発生翼14に到達するまでに整流されて乱流の効果が減少することを意味している。また、軸方向距離Lが翼長よりも小さい場合、即ち、乱流発生段部15が旋回流発生翼14の最上流端部14Bよりも下流側に配置されている場合には、乱流発生段部15で発生した乱流が最上流端部14B(傾斜面14A)に対して十分に作用しない。   As shown in FIG. 6, the intake amount of the bubble generating device 1 becomes maximum when the axial distance L is equal to the blade length, and tends to decrease as the axial distance L increases. This tendency means that when the axial distance L is increased, the turbulent flow generated in the turbulent flow generation step portion 15 is rectified before reaching the swirl flow generating blade 14 and the effect of the turbulent flow is reduced. . Further, when the axial distance L is smaller than the blade length, that is, when the turbulent flow generation step portion 15 is arranged downstream of the most upstream end portion 14B of the swirl flow generation blade 14, turbulent flow is generated. The turbulent flow generated in the step portion 15 does not sufficiently act on the most upstream end portion 14B (inclined surface 14A).

従って、乱流発生段部15は、図5中に実線で示すように、最上流端部14Bと等しい軸方向位置に配置するのが最適である。また、構造上の制約等により最適な配置が難しい場合には、少なくとも乱流発生段部15を最上流端部14Bに対して上流側に配置し、かつ、軸方向距離Lを可能な限り小さく設定するのが好ましい。上記配置によれば、乱流発生段部15で発生した乱流を最上流端部14Bの近傍の水流に効果的に作用させることができ、乱流発生段部15の機能を最大限に発揮させることができる。   Therefore, the turbulent flow generation stage 15 is optimally disposed at the same axial position as the most upstream end 14B, as indicated by the solid line in FIG. Further, when optimal arrangement is difficult due to structural constraints, at least the turbulent flow generation step portion 15 is arranged upstream of the most upstream end portion 14B, and the axial distance L is made as small as possible. It is preferable to set. According to the above arrangement, the turbulent flow generated in the turbulent flow generation step portion 15 can be effectively applied to the water flow near the uppermost stream end portion 14B, and the function of the turbulent flow generation step portion 15 is maximized. Can be made.

また、本実施の形態によれば、内側筒体13の内周側に旋回流発生翼14を設け、内側筒体13の端面により乱流発生段部15を構成している。これにより、例えば内側筒体13、旋回流発生翼14及び乱流発生段部15を、旋回翼構造体12として単一の部品により形成することができ、固定式旋回翼10の構造を簡略化して組立性を向上させることができる。また、内側筒体13を用いることにより、円筒管11の内部に環状の乱流発生段部15を容易に形成することができ、当該段部の加工性を向上させることができる。また、乱流発生段部15を環状に形成することにより、円筒管11の全周にわたって乱流を安定的に発生させ、乱流の効果を最大限に発揮させることができる。   Further, according to the present embodiment, the swirl flow generating blades 14 are provided on the inner peripheral side of the inner cylinder 13, and the turbulent flow generation step portion 15 is configured by the end surface of the inner cylinder 13. Thereby, for example, the inner cylinder 13, the swirling flow generating blade 14 and the turbulent flow generating step portion 15 can be formed as a swirling blade structure 12 by a single component, and the structure of the fixed swirling blade 10 is simplified. Assembling can be improved. Moreover, by using the inner cylinder 13, the annular turbulent flow generation step 15 can be easily formed inside the cylindrical tube 11, and the workability of the step can be improved. In addition, by forming the turbulent flow generation step portion 15 in an annular shape, it is possible to stably generate turbulent flow over the entire circumference of the cylindrical tube 11 and maximize the effect of turbulent flow.

実施の形態2.
次に、図7を参照して、本発明の実施の形態2について説明する。本実施の形態は、乱流発生段部を円筒管の内壁面に突設したことを特徴としている。図7は、本発明の実施の形態2による固定式旋回翼を示す断面図である。この図に示すように、本実施の形態による固定式旋回翼20では、内側筒体13を使用せず、円筒管11の内壁面11Aに旋回流発生翼14′及び環状の乱流発生段部21を突設している。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. This embodiment is characterized in that a turbulent flow generation step is provided on the inner wall surface of the cylindrical tube. FIG. 7 is a sectional view showing a fixed swirl vane according to Embodiment 2 of the present invention. As shown in this figure, in the fixed swirl vane 20 according to the present embodiment, the inner cylinder 13 is not used, and the swirl flow generating vane 14 ′ and the annular turbulent flow generating step portion are formed on the inner wall surface 11 A of the cylindrical tube 11. 21 is projected.

ここで、旋回流発生翼14′は、前記実施の形態1の旋回流発生翼14とほぼ同様に構成され、傾斜面14A′及び最上流端部14B′を有している。しかし、旋回流発生翼14′の外径寸法は、旋回流発生翼14と比較して、内側筒体13が存在しない分だけ大きく形成されている。また、乱流発生段部21は、円筒管11の全周にわたって内壁面11Aから径方向内向きに突出している。   Here, the swirl flow generating blade 14 'is configured in substantially the same manner as the swirl flow generating blade 14 of the first embodiment, and has an inclined surface 14A' and a most upstream end portion 14B '. However, the outer diameter dimension of the swirl flow generating blade 14 ′ is larger than that of the swirl flow generating blade 14 by an amount corresponding to the absence of the inner cylinder 13. Further, the turbulent flow generation step portion 21 protrudes radially inward from the inner wall surface 11 </ b> A over the entire circumference of the cylindrical tube 11.

このように構成される本実施の形態でも、前記実施の形態1とほぼ同様の作用効果を得ることができる。また、内側筒体13を使用しない分だけ、旋回流発生翼14の外径寸法を大きくすることができ、旋回流の発生能力を向上させることができる。   In the present embodiment configured as described above, it is possible to obtain substantially the same operational effects as in the first embodiment. Further, the outer diameter dimension of the swirl flow generating blade 14 can be increased by the amount not using the inner cylindrical body 13, and the swirl flow generation capability can be improved.

実施の形態3.
次に、図8及び図9を参照して、本発明の実施の形態3について説明する。本実施の形態は、乱流発生段部を円弧状に形成したことを特徴としている。図8は、本発明の実施の形態3による固定式旋回翼の旋回翼構造体を単体で示す斜視図である。また、図9は、図8中の旋回翼構造体を上流側からみた正面図である。これらの図に示すように、本実施の形態による固定式旋回翼30は、前記実施の形態1とほぼ同様に、円筒管11(図3参照)の内周側に嵌合される内側筒体31を備えている。内側筒体31の全長のうちの上流部分は、例えば周方向の2箇所で径方向内向きに屈曲しており、この部分は、内側筒体31の内周側に突出した2枚の旋回流発生翼32を形成している。
Embodiment 3 FIG.
Next, Embodiment 3 of the present invention will be described with reference to FIGS. This embodiment is characterized in that the turbulent flow generation step portion is formed in an arc shape. FIG. 8 is a perspective view showing a single swirl structure of a fixed swirl according to the third embodiment of the present invention. FIG. 9 is a front view of the swirler structure in FIG. 8 as viewed from the upstream side. As shown in these drawings, the fixed swirl vane 30 according to the present embodiment is an inner cylindrical body that is fitted to the inner peripheral side of the cylindrical tube 11 (see FIG. 3), as in the first embodiment. 31 is provided. The upstream part of the total length of the inner cylinder 31 is bent radially inward at two places in the circumferential direction, for example, and this part has two swirl flows protruding toward the inner circumference of the inner cylinder 31. A generating blade 32 is formed.

旋回流発生翼32は、実施の形態1の旋回流発生翼14とほぼ同様に構成され、傾斜面32A及び最上流端部32Bを有している。また、内側筒体31の全周のうち各旋回流発生翼32の間に位置する2箇所の部分は、径方向に屈曲することなく軸方向に延在しており、これらの部分の端面は、例えば2個の乱流発生段部33を構成している。乱流発生段部33は、円筒管11の内壁面11Aに沿って延びる円弧状の突起として形成され、内壁面11Aから径方向内向きに突出するように構成されている。また、各乱流発生段部33は、旋回流発生翼32の上流側で、かつ、円筒管11の周方向において各翼間流路16に対応する位置にそれぞれ配置されている。   The swirling flow generating blade 32 is configured in substantially the same manner as the swirling flow generating blade 14 of the first embodiment, and has an inclined surface 32A and a most upstream end portion 32B. Further, two portions located between the swirl flow generating blades 32 in the entire circumference of the inner cylindrical body 31 extend in the axial direction without being bent in the radial direction, and end faces of these portions are For example, two turbulent flow generation stages 33 are formed. The turbulent flow generation step portion 33 is formed as an arc-shaped projection extending along the inner wall surface 11A of the cylindrical tube 11, and is configured to protrude radially inward from the inner wall surface 11A. Further, each turbulent flow generation step portion 33 is disposed on the upstream side of the swirl flow generating blade 32 and at a position corresponding to each inter-blade channel 16 in the circumferential direction of the cylindrical tube 11.

このように構成される本実施の形態でも、旋回流発生翼32と接触せずに翼間流路16を通過しようとする水流に対して、乱流発生段部33で発生した乱流を作用させることができ、前記実施の形態1とほぼ同様の作用効果を得ることができる。   Also in the present embodiment configured as described above, the turbulent flow generated in the turbulent flow generation step 33 acts on the water flow that is about to pass through the inter-blade channel 16 without being in contact with the swirl flow generating blade 32. Therefore, substantially the same effect as in the first embodiment can be obtained.

実施の形態4.
次に、図10を参照して、本発明の実施の形態4について説明する。本実施の形態は、乱流発生段部に窪み部を設けたことを特徴としている。図10は、本発明の実施の形態4による固定式旋回翼の旋回翼構造体を単体で示す斜視図である。この図に示すように、本実施の形態による固定式旋回翼40では、乱流発生段部15に例えば2個の窪み部41が設けられている。窪み部41は、例えば矩形状の凹溝として形成され、円筒管11の上流側に面した乱流発生段部15の表面から下流側に向けて軸方向に窪んでいる。また、窪み部41は、各旋回流発生翼14の傾斜面14Aの上流側(好ましくは、各旋回流発生翼14の最上流端部14Bが内側筒体13の内壁面13Aと接続される位置)にそれぞれ配置されている。なお、図10では、窪み部41を最上流端部14Bから少しずれた位置に形成した場合を例示している。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described with reference to FIG. The present embodiment is characterized in that a recess is provided in the turbulent flow generation step. FIG. 10 is a perspective view showing a swirl structure for a fixed swirl according to a fourth embodiment of the present invention. As shown in this figure, in the fixed swirl blade 40 according to the present embodiment, for example, two dent portions 41 are provided in the turbulent flow generation step portion 15. The recess 41 is formed as, for example, a rectangular recess, and is recessed in the axial direction from the surface of the turbulent flow generation step 15 facing the upstream side of the cylindrical tube 11 toward the downstream side. Further, the recess 41 is located upstream of the inclined surface 14A of each swirl flow generating blade 14 (preferably, the position where the most upstream end portion 14B of each swirl flow generating blade 14 is connected to the inner wall surface 13A of the inner cylindrical body 13. ). In addition, in FIG. 10, the case where the hollow part 41 is formed in the position a little shifted from the most upstream end part 14B is illustrated.

窪み部41によれば、次のような作用効果を得ることができる。まず、円筒管11の周縁部を流れる水流は、乱流発生段部15の位置と比較して圧力損失が小さい窪み部41に流入し易くなる。この水流は、窪み部41から旋回流発生翼14の傾斜面14A(最上流端部14B)に誘導され、傾斜面14Aに沿って流通しつつ旋回流を形成する。このように、窪み部41は、周囲の水流を旋回流発生翼14の傾斜面14Aに誘導するので、傾斜面14Aに沿って流れる水流を増加させることができる。従って、実施の形態1の効果に加えて、旋回流の発生能力を更に向上させることができる。   According to the hollow part 41, the following effects can be obtained. First, the water flow flowing through the peripheral edge of the cylindrical tube 11 is likely to flow into the recess 41 where the pressure loss is small compared to the position of the turbulent flow generation step portion 15. This water flow is guided from the hollow portion 41 to the inclined surface 14A (uppermost flow end portion 14B) of the swirl flow generating blade 14, and forms a swirl flow while flowing along the inclined surface 14A. Thus, since the hollow part 41 guides the surrounding water flow to the inclined surface 14A of the swirl flow generating blade 14, the water flow flowing along the inclined surface 14A can be increased. Therefore, in addition to the effects of the first embodiment, the ability to generate a swirling flow can be further improved.

また、窪み部41から傾斜面14Aに誘導された水流は、傾斜面14Aに沿って流れる距離が長いほど、大きな旋回力を付与される。このため、窪み部41の形成位置は、円筒管11の軸方向(上流側)からみて、旋回流発生翼14の最上流端部14Bと重なり合う位置(最上流端部14Bが内側筒体13の内壁面13Aと接続される位置)に設定するのが最適である。また、構造上の制約等により最適な配置が難しい場合には、少なくとも最上流端部14Bと窪み部41とが形成する中心角が45°以内となるような位置に窪み部41を形成するのが好ましい。これにより、窪み部41による水流の誘導効果を最大限に発揮させることができる。   Further, the water flow guided from the depression 41 to the inclined surface 14A is given a larger turning force as the distance flowing along the inclined surface 14A is longer. For this reason, the formation position of the hollow portion 41 is a position where the uppermost flow end portion 14B of the swirling flow generating blade 14 overlaps with the uppermost flow end portion 14B as viewed from the axial direction (upstream side) of the cylindrical tube 11 It is optimal to set it at a position connected to the inner wall surface 13A. In addition, when optimal arrangement is difficult due to structural restrictions or the like, the depression 41 is formed at a position where the central angle formed by at least the most upstream end portion 14B and the depression 41 is within 45 °. Is preferred. Thereby, the induction | guidance | derivation effect of the water flow by the hollow part 41 can be exhibited to the maximum.

実施の形態5.
次に、図11を参照して、本発明の実施の形態5について説明する。本実施の形態は、前記実施の形態1乃至4の何れかによる固定式旋回翼を備えた気泡発生装置を、風呂給湯装置としての貯湯式給湯機に適用したことを特徴としている。図11は、本発明の実施の形態5による貯湯式給湯機を示す構成図である。本実施の形態による貯湯式給湯機50は、ヒートポンプユニット51、貯湯タンク52、沸き上げ回路53、循環熱交換器55、追焚き回路56、浴槽58、風呂側循環回路59、気泡発生装置70等を備えている。
Embodiment 5 FIG.
Next, a fifth embodiment of the present invention will be described with reference to FIG. The present embodiment is characterized in that the bubble generating device provided with the fixed swirl blade according to any one of the first to fourth embodiments is applied to a hot water storage type water heater as a bath water heater. FIG. 11 is a configuration diagram showing a hot water storage type hot water heater according to Embodiment 5 of the present invention. The hot water storage type hot water heater 50 according to the present embodiment includes a heat pump unit 51, a hot water storage tank 52, a boiling circuit 53, a circulation heat exchanger 55, a reheating circuit 56, a bathtub 58, a bath side circulation circuit 59, a bubble generation device 70, and the like. It has.

ヒートポンプユニット51は、例えば圧縮機、空気冷媒熱交換器、膨張弁、水冷媒熱交換器、冷媒循環配管等を備えており、冷媒サイクル(ヒートポンプサイクル)を構成している。ヒートポンプユニット51と貯湯タンク52とは、両者間に湯水を循環させる沸き上げ回路53を介して互いに接続されており、沸き上げ回路53は、沸き上げ循環ポンプ54を備えている。ヒートポンプユニット51は、貯湯タンク52の下部から沸き上げ回路53を介して取出した低温水を加熱して高温水を生成し、この高温水を沸き上げ回路53から貯湯タンク52の上部に流入させる。   The heat pump unit 51 includes, for example, a compressor, an air refrigerant heat exchanger, an expansion valve, a water refrigerant heat exchanger, a refrigerant circulation pipe, and the like, and constitutes a refrigerant cycle (heat pump cycle). The heat pump unit 51 and the hot water storage tank 52 are connected to each other via a boiling circuit 53 that circulates hot water between them, and the boiling circuit 53 includes a boiling circulation pump 54. The heat pump unit 51 heats the low-temperature water taken out from the lower part of the hot water storage tank 52 via the boiling circuit 53 to generate high-temperature water, and flows the high-temperature water into the upper part of the hot water storage tank 52 from the boiling circuit 53.

貯湯タンク52と循環熱交換器55の1次側とは、両者間に湯水を循環させる追焚き回路56を介して互いに接続されており、追焚き回路56は、追焚き循環ポンプ57を備えている。また、循環熱交換器55の2次側と浴槽58とは、両者間に湯水を循環させる風呂側循環回路59を介して互いに接続されている。風呂側循環回路59は、冷めた浴槽水を浴槽58から流出させる行き管60と、循環熱交換器55により加熱された浴槽水を浴槽58に戻す戻り管61と、例えば行き管60に設けられた風呂側循環ポンプ62とを備えている。   The hot water storage tank 52 and the primary side of the circulation heat exchanger 55 are connected to each other via a reheating circuit 56 that circulates hot water between them, and the reheating circuit 56 includes a recirculation circulation pump 57. Yes. The secondary side of the circulation heat exchanger 55 and the bathtub 58 are connected to each other via a bath-side circulation circuit 59 that circulates hot water between them. The bath-side circulation circuit 59 is provided in the outgoing pipe 60 that causes the cooled bathtub water to flow out of the bathtub 58, the return pipe 61 that returns the bathtub water heated by the circulating heat exchanger 55 to the bathtub 58, and the outgoing pipe 60, for example. And a bath-side circulation pump 62.

気泡発生装置70は、例えば図1に示す気泡発生装置1と同様の構成を有し、実施の形態1乃至4で例示した固定式旋回翼10,20,30,40の何れかを備えている。そして、気泡発生装置70は、図11に示すように、戻り管61に設置されている。戻り管61は、図1中の配管通路Pと同様の構成により、気泡発生装置70に接続されている。また、戻り管61は、気泡発生装置70の下流側で浴槽58の壁面部に取付けられた浴槽アダプタ80に接続されている。   The bubble generator 70 has, for example, the same configuration as the bubble generator 1 shown in FIG. 1 and includes any of the fixed swirl blades 10, 20, 30, and 40 exemplified in the first to fourth embodiments. . And the bubble generator 70 is installed in the return pipe 61, as shown in FIG. The return pipe 61 is connected to the bubble generating device 70 by the same configuration as the piping passage P in FIG. The return pipe 61 is connected to a bathtub adapter 80 attached to the wall surface of the bathtub 58 on the downstream side of the bubble generating device 70.

次に、気泡発生装置70の動作について説明する。まず、給湯機の追焚き運転時には、追焚き循環ポンプ57及び風呂側循環ポンプ62が作動する。これにより、貯湯タンク52内に貯留された高温水は、循環熱交換器55の1次側を流通しつつ、追焚き回路56を循環する。また、浴槽58内で冷えた浴槽水は、行き管60を介して循環熱交換器55の2次側に導入され、1次側の高温水と熱交換することにより加熱された後に、戻り管61及び気泡発生装置70を介して浴槽58に戻される。この浴槽水が気泡発生装置70を通過するときには、気泡発生装置70により浴槽水中に微細気泡が発生され、浴槽58には、暖められた浴槽水と共に微細気泡が放出される。   Next, the operation of the bubble generator 70 will be described. First, during the reheating operation of the water heater, the recirculation circulation pump 57 and the bath side circulation pump 62 are operated. Thereby, the high-temperature water stored in the hot water storage tank 52 circulates in the reheating circuit 56 while flowing through the primary side of the circulating heat exchanger 55. The bathtub water cooled in the bathtub 58 is introduced into the secondary side of the circulating heat exchanger 55 through the outgoing pipe 60 and heated by exchanging heat with the high-temperature water on the primary side, and then returned to the return pipe. 61 and the bubble generating device 70 are returned to the bathtub 58. When the bathtub water passes through the bubble generating device 70, fine bubbles are generated in the bathtub water by the bubble generating device 70, and the fine bubbles are released into the bathtub 58 together with the warmed bath water.

このように構成される本実施の形態によれば、気泡発生装置70により浴槽58内に微細気泡を安定的に放出することができる。そして、微細気泡が人体に付着することにより、入浴時の熱が体から放散するのを抑制する効果(温浴効果)を得ることができる。また、気泡発生装置70は、実施の形態1乃至4で述べた固定式旋回翼10,20,30,40の何れかを搭載している。このため、少数の旋回流発生翼14により旋回流を十分に発生させることができ、浴槽58内に多量の微細気泡を効率よく放出することができる。また、浴槽水に異物として混入し易い毛髪等が固定式旋回翼に到達した場合でも、前述のように大きな開口面積を有する翼間流路16から毛髪等の異物を円滑に排出することができ、毛髪が固定式旋回翼の内部に詰まるのを抑制することができる。   According to the present embodiment configured as described above, the fine bubble can be stably discharged into the bathtub 58 by the bubble generating device 70. And the effect (warm bath effect) which suppresses that the heat | fever at the time of bathing dissipates from a body can be acquired because a micro bubble adheres to a human body. The bubble generating device 70 is mounted with any of the fixed swirl blades 10, 20, 30, and 40 described in the first to fourth embodiments. For this reason, the swirl flow can be sufficiently generated by the small number of swirl flow generating blades 14, and a large amount of fine bubbles can be efficiently discharged into the bathtub 58. Further, even when hair or the like that is likely to be mixed as foreign matter in the bath water reaches the fixed swirl blade, foreign matter such as hair can be smoothly discharged from the inter-blade channel 16 having a large opening area as described above. The hair can be prevented from clogging inside the fixed swirl wing.

なお、前記実施の形態1乃至4では、乱流発生段部15,21,33を環状に形成するか、または、翼間流路16とほぼ等しい中心角をもって円弧状に形成する場合を例示した。しかし、本発明はこれに限らず、乱流発生段部は、円筒管11の軸方向(上流側)からみて、少なくとも翼間流路16と重なり合う位置に形成すればよく、旋回流発生翼14,14′,32と重なり合う位置における乱流発生段部の有無及び寸法は、自由に設定してよいものである。   In the first to fourth embodiments, the case where the turbulent flow generation step portions 15, 21, 33 are formed in an annular shape, or formed in an arc shape with a central angle substantially equal to the inter-blade channel 16 is illustrated. . However, the present invention is not limited to this, and the turbulent flow generation step portion may be formed at least at a position overlapping the inter-blade channel 16 when viewed from the axial direction (upstream side) of the cylindrical tube 11. , 14 ′, 32, the presence / absence and size of the turbulent flow generation step portion may be freely set.

また、前記実施の形態1乃至5では、固定式旋回翼10,20,30,40を気泡発生装置1,70や貯湯式給湯機50に適用する場合を例示した。しかし、本発明はこれに限らず、例えば気泡の発生機能をもたせなくても、流体に旋回流を発生させる各種の装置に適用することができる。また、前記実施の形態1乃至5では、それぞれの構成を個別に説明した。しかし、本発明は、各実施の形態の構成に限定されるものではなく、実施の形態1乃至5で例示した各構成のうち、組合わせ可能な複数の構成を組合わせて実現されるシステムも含むものである。   Moreover, in the said Embodiment 1 thru | or 5, the case where the fixed swirl | wing blade 10,20,30,40 was applied to the bubble generator 1,70 and the hot water storage type hot water supply machine 50 was illustrated. However, the present invention is not limited to this. For example, the present invention can be applied to various devices that generate a swirling flow in a fluid without providing a bubble generating function. In the first to fifth embodiments, each configuration has been described individually. However, the present invention is not limited to the configuration of each embodiment, and a system realized by combining a plurality of possible configurations among the configurations illustrated in Embodiments 1 to 5 is also possible. Is included.

1,70 気泡発生装置,2 縮径部,3 空気導入部,4 気泡発生部,10,20,30,40 固定式旋回翼,11 円筒管,11A,13A 内壁面,12 旋回翼構造体,13,31 内側筒体,14,14′,32 旋回流発生翼,14A,14A′,32A 傾斜面,14B,14B′,32B 最上流端部,15,21,33 乱流発生段部,16 翼間流路,41 窪み部,50 貯湯式給湯機(風呂給湯装置),51 ヒートポンプユニット,52 貯湯タンク,56 追焚き回路,58 浴槽,59 風呂側循環回路,60 行き管,61 戻り管,62 風呂側循環ポンプ,80 浴槽アダプタ,
P 配管通路
DESCRIPTION OF SYMBOLS 1,70 Bubble generator, 2 Reduced diameter part, 3 Air introduction part, 4 Bubble generation part, 10, 20, 30, 40 Fixed swirl blade, 11 Cylindrical tube, 11A, 13A Inner wall surface, 12 Swirler structure 13, 31 Inner cylinder, 14, 14 ', 32 Swirl flow generating blade, 14A, 14A', 32A Inclined surface, 14B, 14B ', 32B Most upstream end, 15, 21, 33 Turbulent flow generation step, 16 Flow path between blades, 41 recess, 50 hot water storage type water heater (bath hot water supply device), 51 heat pump unit, 52 hot water storage tank, 56 additional circuit, 58 bathtub, 59 bath side circulation circuit, 60 outgoing pipe, 61 return pipe, 62 Bath-side circulation pump, 80 Bathtub adapter,
P Piping passage

Claims (8)

流体が軸方向に流通する配管通路の少なくとも一部を構成する円筒管と、
前記円筒管の内周側で径方向内向きに突出する部材であって、前記円筒管の上流側から下流側に向けて軸方向に延在しつつ周方向に沿って略螺旋状に傾斜する傾斜面と、前記傾斜面のうち最も上流側に位置する最上流端部とを有し、前記円筒管の周方向に間隔をもって配置された複数の旋回流発生翼と、
前記旋回流発生翼の最上流端部に対応する軸方向位置で前記円筒管の内壁面から径方向内向きに突出した乱流発生段部と、を備え、
前記乱流発生段部は、前記円筒管の内壁面に全周にわたって設けられた環状の段部により構成し、かつ、前記乱流発生段部は、前記円筒管の軸方向において前記旋回流発生翼の最上流端部と等しい位置か、または前記最上流端部よりも上流側であって前記乱流発生段部と前記最上流端部との軸方向距離が前記旋回流発生翼の軸方向の寸法よりも小さくなる位置に配置し、
前記円筒管の軸方向からみて、前記旋回流発生翼の投影面積は、前記円筒管の内周側で前記旋回流発生翼の間に形成された隙間の投影面積以下に形成する構成とした固定式旋回翼。
A cylindrical pipe constituting at least a part of a pipe passage through which the fluid flows in the axial direction;
A member that protrudes radially inward on the inner peripheral side of the cylindrical tube, and extends in the axial direction from the upstream side to the downstream side of the cylindrical tube, and is inclined in a substantially spiral shape along the circumferential direction. A plurality of swirl flow generating blades having an inclined surface and a most upstream end located on the most upstream side of the inclined surface, and arranged at intervals in the circumferential direction of the cylindrical tube;
A turbulent flow generation step projecting radially inward from the inner wall surface of the cylindrical tube at an axial position corresponding to the most upstream end of the swirl flow generating blade,
The turbulent flow generation step portion is constituted by an annular step portion provided on the inner wall surface of the cylindrical tube over the entire circumference, and the turbulent flow generation step portion generates the swirl flow in the axial direction of the cylindrical tube. An axial distance between the turbulent flow generation step portion and the most upstream end that is equal to the most upstream end of the blade or upstream of the most upstream end is the axial direction of the swirl flow generating blade Placed at a position smaller than the dimensions of
The fixed area is configured such that the projected area of the swirl flow generating blades is smaller than the projected area of the gap formed between the swirl flow generating blades on the inner peripheral side of the cylindrical tube when viewed from the axial direction of the cylindrical tube. Type swirl.
流体が軸方向に流通する配管通路の少なくとも一部を構成する円筒管と、A cylindrical pipe constituting at least a part of a pipe passage through which the fluid flows in the axial direction;
前記円筒管の内周側で径方向内向きに突出する部材であって、前記円筒管の上流側から下流側に向けて軸方向に延在しつつ周方向に沿って略螺旋状に傾斜する傾斜面と、前記傾斜面のうち最も上流側に位置する最上流端部とを有し、前記円筒管の周方向に間隔をもって配置された複数の旋回流発生翼と、A member that protrudes radially inward on the inner peripheral side of the cylindrical tube, and extends in the axial direction from the upstream side to the downstream side of the cylindrical tube, and is inclined in a substantially spiral shape along the circumferential direction. A plurality of swirl flow generating blades having an inclined surface and a most upstream end located on the most upstream side of the inclined surface, and arranged at intervals in the circumferential direction of the cylindrical tube;
前記旋回流発生翼の最上流端部に対応する軸方向位置で前記円筒管の内壁面から径方向内向きに突出した乱流発生段部と、を備え、A turbulent flow generation step projecting radially inward from the inner wall surface of the cylindrical tube at an axial position corresponding to the most upstream end of the swirl flow generating blade,
前記乱流発生段部は、前記各旋回流発生翼の間に形成された複数の隙間に対応する位置にそれぞれ配置されて周方向に延在しつつ互いに周方向の間隔を有し、前記円筒管の内壁面から径方向内向きに突出した複数の円弧状段部により構成し、かつ、前記乱流発生段部は、前記円筒管の軸方向において前記旋回流発生翼の最上流端部と等しい位置か、または前記最上流端部よりも上流側であって前記乱流発生段部と前記最上流端部との軸方向距離が前記旋回流発生翼の軸方向の寸法よりも小さくなる位置に配置し、The turbulent flow generation step portions are arranged at positions corresponding to a plurality of gaps formed between the swirl flow generation blades and extend in the circumferential direction while having a circumferential interval therebetween, and the cylinder A plurality of arc-shaped stepped portions projecting radially inward from the inner wall surface of the tube, and the turbulent flow generating stepped portion is connected to the most upstream end of the swirl flow generating blade in the axial direction of the cylindrical tube. The same position or a position upstream of the most upstream end and the axial distance between the turbulent flow generation stage and the most upstream end is smaller than the axial dimension of the swirl flow generating blade Placed in
前記円筒管の軸方向からみて、前記旋回流発生翼の投影面積は、前記円筒管の内周側で前記旋回流発生翼の間に形成された隙間の投影面積以下に形成する構成とした固定式旋回翼。The fixed area is configured such that the projected area of the swirl flow generating blades is smaller than the projected area of the gap formed between the swirl flow generating blades on the inner peripheral side of the cylindrical tube when viewed from the axial direction of the cylindrical tube. Type swirl.
前記乱流発生段部には、前記旋回流発生翼の傾斜面の上流側に配置され、上流側から下流側に向けて軸方向に窪んだ窪み部を設けてなる請求項1または2に記載の固定式旋回翼。   The turbulent flow generation step portion is provided on the upstream side of the inclined surface of the swirl flow generation blade, and is provided with a hollow portion that is recessed in the axial direction from the upstream side to the downstream side. Fixed swirl wing. 前記円筒管の内周側には、軸方向の端面が前記乱流発生段部を構成すると共に内周側に前記旋回流発生翼が突設された内側筒体を設けてなる請求項1乃至のうち何れか1項に記載の固定式旋回翼。 2. An inner cylindrical body in which an axial end surface constitutes the turbulent flow generation step portion and an inner cylindrical body in which the swirl flow generating blades protrude from the inner peripheral side is provided on the inner peripheral side of the cylindrical tube. The fixed swirl blade according to any one of 3 . 前記旋回流発生翼は、前記円筒管の周方向に90°の間隔をもって2枚配置し、当該2枚の旋回流発生翼は、それぞれ前記円筒管の軸方向からみて90°の中心角を有する構成としてなる請求項1乃至のうち何れか1項に記載の固定式旋回翼。 Two swirl flow generating blades are arranged at intervals of 90 ° in the circumferential direction of the cylindrical tube, and each of the two swirl flow generating blades has a central angle of 90 ° when viewed from the axial direction of the cylindrical tube. The fixed swirl blade according to any one of claims 1 to 4 , wherein the fixed swirl blade is configured. 前記窪み部は、前記円筒管の軸方向からみて、前記旋回流発生翼の最上流端部と前記窪み部とが形成する中心角が45°以内となるように配置してなる請求項に記載の固定式旋回翼。 The recess portion, as viewed in the axial direction of the cylindrical tube, in claim 3 in which the center angle of said recess and the uppermost upstream end portion is formed is arranged so as to be within 45 ° of the swirling flow generating vanes The fixed swirl described. 請求項1乃至の何れか1項に記載の固定式旋回翼を備え、
前記固定式旋回翼により発生した旋回流に空気を導入して気泡を発生する構成とした気泡発生装置。
The fixed swirl blade according to any one of claims 1 to 6 ,
A bubble generator configured to generate air bubbles by introducing air into a swirl flow generated by the fixed swirl vane.
請求項1乃至の何れか1項に記載の固定式旋回翼と、
前記固定式旋回翼により発生した旋回流に空気を導入して気泡を発生する気泡発生装置と、を備え、
前記気泡発生装置により浴槽内に気泡を供給する構成とした風呂給湯装置。
The fixed swirl blade according to any one of claims 1 to 6 ,
A bubble generating device that introduces air into the swirling flow generated by the fixed swirl blade to generate bubbles, and
A bath hot water supply device configured to supply air bubbles into a bathtub by the air bubble generating device.
JP2014024958A 2014-02-13 2014-02-13 Fixed swirler, bubble generating device and bath water heater using the fixed swirler Active JP5776801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024958A JP5776801B2 (en) 2014-02-13 2014-02-13 Fixed swirler, bubble generating device and bath water heater using the fixed swirler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014024958A JP5776801B2 (en) 2014-02-13 2014-02-13 Fixed swirler, bubble generating device and bath water heater using the fixed swirler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012168109A Division JP5477430B2 (en) 2012-07-30 2012-07-30 Fixed swirler, bubble generating device and bath water heater using the fixed swirler

Publications (2)

Publication Number Publication Date
JP2014121707A JP2014121707A (en) 2014-07-03
JP5776801B2 true JP5776801B2 (en) 2015-09-09

Family

ID=51402674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014024958A Active JP5776801B2 (en) 2014-02-13 2014-02-13 Fixed swirler, bubble generating device and bath water heater using the fixed swirler

Country Status (1)

Country Link
JP (1) JP5776801B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9916909B2 (en) 2014-12-31 2018-03-13 GE-Bitachi Nuclear Energy Americas LLC Swirler, steam separator including the swirler, and nuclear boiling water reactor including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515249B2 (en) * 1971-10-12 1980-04-22
JPH05168882A (en) * 1991-12-17 1993-07-02 Hisao Kojima Mass transfer device and its manufacture
JPH07284642A (en) * 1994-04-19 1995-10-31 Hisao Kojima Mixing element and production therefor
JP2003080279A (en) * 2001-09-12 2003-03-18 Noboru Sakano Ground water cleaning method and equipment
JP5289811B2 (en) * 2008-03-31 2013-09-11 株式会社クボタ Reaction tube
US8322381B1 (en) * 2009-10-09 2012-12-04 Robert W Glanville Static fluid flow conditioner

Also Published As

Publication number Publication date
JP2014121707A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6673591B2 (en) Internal structure
JP2004069061A (en) Vortex generator for controlling back wash
JP3688806B2 (en) Static mixer
JP5692259B2 (en) Gas-liquid mixing device and bath water heater
JP2010234242A (en) Fine bubble generator
JP6887757B2 (en) Nozzle and fine bubble generator
JP5776801B2 (en) Fixed swirler, bubble generating device and bath water heater using the fixed swirler
JP5737363B2 (en) Gas-liquid mixing device and bath water heater
JP5477430B2 (en) Fixed swirler, bubble generating device and bath water heater using the fixed swirler
JP2012135737A (en) Static mixing mechanism
KR20170096674A (en) micro-bubble generator
JP2014155924A (en) Fixed swirler, air bubble generation device using the same and bath hot water supply apparatus
JP5718863B2 (en) Bubble generator and bath water heater
JP6308472B2 (en) Exhaust gas duct, ship
JP2021084068A (en) Fluid supply device
JP5685419B2 (en) Static distributed system
JP2009275677A (en) Pump and its stationary blade
JP2022108258A (en) fluid activation device
WO2017109950A1 (en) Bend pipe and fluid machine comprising same
JP5870302B2 (en) shower head
JP5794245B2 (en) Fine bubble generator and bath water heater
JP2017029930A (en) Fine air-bubble generating device
JP6827290B2 (en) Gas warmer
JP2021099087A (en) Draft tube of water turbine
JP5439445B2 (en) Jet pump and reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250