JP2003205228A - Turning type fine bubbles production apparatus - Google Patents

Turning type fine bubbles production apparatus

Info

Publication number
JP2003205228A
JP2003205228A JP2002263430A JP2002263430A JP2003205228A JP 2003205228 A JP2003205228 A JP 2003205228A JP 2002263430 A JP2002263430 A JP 2002263430A JP 2002263430 A JP2002263430 A JP 2002263430A JP 2003205228 A JP2003205228 A JP 2003205228A
Authority
JP
Japan
Prior art keywords
gas
space
swirl
swirling
opened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002263430A
Other languages
Japanese (ja)
Other versions
JP4525890B2 (en
Inventor
Hirobumi Onari
博文 大成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR9904494-3A external-priority patent/BR9904494A/en
Priority claimed from AU38010/99A external-priority patent/AU770174B2/en
Application filed by Individual filed Critical Individual
Priority to JP2002263430A priority Critical patent/JP4525890B2/en
Publication of JP2003205228A publication Critical patent/JP2003205228A/en
Application granted granted Critical
Publication of JP4525890B2 publication Critical patent/JP4525890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Accessories For Mixers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine bubble production apparatus with a simple structure, in which fine bubbles are efficiently produced to efficiently dissolve a gas such as air or oxygen in city water, river water or other liquid or to carry out water purification and the revival of water environment. <P>SOLUTION: The turning type fine bubbles production apparatus is constituted of a vessel main body having a conical space 100 or a bowl or wine bottle shaped space, a pressurized liquid introducing port 50 opened in the tangential direction at a part of the inside wall circumferential surface of the space, a gas introducing port 80 opened in the bottom part 300 of the space and a turning gas liquid introducing port 101 opened at the top part of the space. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気、酸素ガス等
の気体を水道水、河川水、その他液体等に効率的に溶解
して、例えば水質を浄化し、水環境を蘇生するための微
細気泡発生装置の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine particle for efficiently dissolving a gas such as air and oxygen gas in tap water, river water, and other liquids to purify the water quality and revive the water environment. It belongs to the technical field of bubble generators.

【0002】[0002]

【従来の技術】従来のエアレーション、例えば水生生物
成育装置に設置された微細気泡発生装置によるエアレー
ションのほとんどは、成育槽内に設置された管状や板状
の微細気泡発生装置細孔から空気を成育用水中に加圧し
て噴き出すことによって気泡を細分化する方式である
か、又は回転羽根や気泡噴流などにより、せん断力が形
成された成育用水流内に空気を入れて、それを細分化す
るかあるいは加圧された水の急減圧によって水中に溶解
していた空気を気化させて気泡を発生させる方式であ
る。そして、それらの機能を有する微細気泡発生装置に
よるエアレーションでは、基本的には空気の送給量やそ
れぞれの微細気泡発生装置の設備個数等によって必要な
調節が行われているが、空気、炭酸ガス等の気体を水中
に高効率で溶解させ、さらには水の循環を促進する必要
がある。
2. Description of the Related Art Most conventional aeration, for example, aeration by a fine bubble generator installed in an aquatic growth apparatus, grows air from the pores of a tubular or plate-like fine bubble generator installed in a growth tank. Is it a method to subdivide air bubbles by pressurizing and jetting into water, or is it to subdivide air by introducing air into the growing water flow in which a shearing force has been formed by a rotating blade or air jet? Alternatively, it is a system in which air dissolved in water is vaporized by rapid depressurization of pressurized water to generate bubbles. Then, in aeration by the fine bubble generator having these functions, basically, necessary adjustments are made depending on the amount of air fed and the number of facilities of each fine bubble generator, etc. It is necessary to dissolve such gas in water with high efficiency and further promote water circulation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
微細気泡発生装置によるエアレーション方式は、例えば
噴き出しによる散気方式では、そこにいかに微細な細孔
を設けても、気泡が細孔から加圧状態で噴出されて体積
膨張し、またその際の気泡の表面張力によって、結果的
に数mm程度の径を有する大きな気泡が発生してしま
い、それよりも小さな気泡を発生させることが困難であ
り、そして、その長時間運転に伴って発生する目詰まり
と動力費の増大の問題が存在した。また、回転羽根や気
泡噴流などにより、せん断力が形成された水流内に、空
気を入れてそれを細分化する方式では、キャビテーショ
ンを発生させるのに高速の回転数が要求され、その動力
費の問題やキャビテーション発生に伴って急激に進行す
る羽根の腐食や振動問題があり、さらに、微細気泡の生
成率が少ないという問題もあった。そしてまた、その他
の回転羽根や突起に気液二相流が衝突する方式において
は、例えば湖沼、魚類水槽内等においては魚類や水生小
生物が破壊されてしまい、水生生物の成育に必要な環境
の形成、維持に支障を来した。さらに、加圧方式では、
装置が大型でかつ高価、さらには運転費も多額を必要と
していた。そして、上記いずれの従来技術によっても、
例えば直径20μm以下といった微細気泡を工業規模で
発生させることは不可能であった。
However, in the conventional aeration system using the fine bubble generator, for example, in the diffuser system by jetting, no matter how fine the fine pores are provided, the bubbles are pressurized from the fine pores. Is expanded and volumetrically expanded, and due to the surface tension of the bubbles at that time, large bubbles having a diameter of about several mm are generated, and it is difficult to generate smaller bubbles. Then, there have been problems of clogging and power cost increase that occur with the operation for a long time. Further, in the method of subdividing air into a water flow in which a shearing force is formed by a rotating blade or a bubble jet, a high rotation speed is required to generate cavitation, and the power cost There are problems such as blade corrosion and vibration that rapidly progress with the occurrence of cavitation, and there is also a problem that the generation rate of fine bubbles is low. In addition, in the method in which the gas-liquid two-phase flow collides with other rotary blades and protrusions, for example, in lakes, fish tanks, etc., fish and aquatic small organisms are destroyed, and the environment necessary for the growth of aquatic organisms is destroyed. Formation and maintenance. Furthermore, in the pressure method,
The device was large and expensive, and required a large operating cost. And, by any of the above conventional techniques,
For example, it was impossible to generate fine bubbles having a diameter of 20 μm or less on an industrial scale.

【0004】[0004]

【課題を解決するための手段】本発明者は鋭意研究の結
果、下記構成の発明によって、直径20μm以下の微細
気泡を工業規模で発生させることを可能とした。本発明
の要点は、図1に本発明装置の原理説明図を示すごと
く、まず装置容器内に円錐形のスペース100を設け、
また同スペースの内壁円周面の一部にその接線方向に加
圧液体導入口500を開設し、また前記円錐形のスペー
ス底部300の中央部に気体導入孔80を開設し、さら
に前記円錐形スペースの頂部付近には旋回気液導出口1
01を設けて微細気泡発生装置を構成する。そこで、前
記装置本体を又は少なくとも旋回気液導出口101を液
体中に埋設させ、前記加圧液体導入口500から円錐形
スペース100内に加圧液体を圧送することにより、そ
の内部に旋回流が生成し、円錐管軸上に負圧部分が形成
される。この負圧によって、前記気体導入孔80から気
体が吸い込まれ、圧力が最も低い管軸上を気体が通過す
ることによって、細い旋回気体空洞部60が形成され
る。この円錐形スペース100では旋回流が入り口(加
圧液体導入口)500から出口(旋回気液導出口)10
1へ向かって形成され、スペース100の断面縮小にし
たがって、旋回気液導出口101に向かうほど、旋回流
速と出口に向かう流速とが同時に増加する。また、この
旋回に伴って、液体と気体の比重差から、液体には遠心
力、気体には向心力が同時に働き、そのために液体部と
気体部の分離が可能となり、気体が糸状で出口101ま
で続き、そこから噴出されるが、その噴出と同時に周囲
の静液(水)によって、その旋回が急激に弱められ、そ
の前後で、急激な旋回速度差が発生する。この旋回速度
差の発生によって、糸状の気体空洞部60が連続的に安
定して切断され、その結果として大量の微細気泡、例え
ば直径10〜20μmの微細気泡が同出口101付近で
発生し、器外の液体中へ放出されるのである。
As a result of earnest research, the present inventor has made it possible to generate fine bubbles having a diameter of 20 μm or less on an industrial scale by the invention having the following constitution. The essential point of the present invention is as shown in FIG. 1 which is an explanatory view of the principle of the device of the present invention. First, a conical space 100 is provided in the device container,
Further, a pressurized liquid introduction port 500 is opened in a tangential direction of a part of the inner wall circumferential surface of the space, and a gas introduction hole 80 is opened in the central portion of the conical space bottom portion 300. Swirling gas / liquid outlet 1 near the top of the space
01 is provided to configure the fine bubble generator. Therefore, by swirling the device body or at least the swirling gas-liquid outlet 101 in the liquid and pumping the pressurized liquid into the conical space 100 from the pressurized liquid inlet 500, a swirling flow is generated inside the device. A negative pressure portion is formed on the conical tube axis. By this negative pressure, the gas is sucked from the gas introduction hole 80, and the gas passes through the pipe axis having the lowest pressure, whereby the thin swirling gas cavity portion 60 is formed. In this conical space 100, a swirl flow is introduced from an inlet (pressurized liquid inlet) 500 to an outlet (swirl gas-liquid outlet) 10
1, the swirl flow velocity and the flow velocity toward the outlet increase at the same time toward the swirl gas / liquid outlet 101 as the cross section of the space 100 shrinks. With this swirl, the centrifugal force acts on the liquid and the centripetal force acts on the gas at the same time due to the difference in specific gravity between the liquid and the gas. Therefore, the liquid part and the gas part can be separated, and the gas is thread-shaped to the outlet 101. Then, it is ejected from there, but at the same time as the ejection, the turning is sharply weakened by the surrounding static liquid (water), and a sharp turning speed difference is generated before and after the turning. Due to the generation of the swirling speed difference, the filamentous gas cavity portion 60 is continuously and stably cut, and as a result, a large amount of fine bubbles, for example, fine bubbles having a diameter of 10 to 20 μm, are generated in the vicinity of the outlet 101. It is released into the outside liquid.

【0005】すなわち、本発明の構成は以下の通りであ
る。 (1)円錐形のスペースを有する容器本体と、同スペー
スの内壁円周面の一部にその接線方向に開設された加圧
液体導入口と、前記円錐形のスペース底部に開設された
気体導入孔と、前記円錐形スペースの頂部に開設された
旋回気液導出口とから構成されてなることを特徴とする
旋回式微細気泡発生装置。 (2)円錐形のスペースを有する容器本体と、同スペー
スの底部付近の内壁円周面の一部にその接線方向に開設
された加圧液体導入口と、前記円錐形のスペース底部に
開設された気体導入孔と、前記円錐形スペースの頂部に
開設された旋回気液導出口とから構成され、旋回気液導
出口の口径(d1)と円錐形のスペース底部の口径
(d2)と旋回気液導出口から円錐形のスペース底部ま
での距離(L)の相関関係が、d2/d1=10〜15、
でかつL=1.5d2〜2.0d2であることを特徴とす
る旋回式微細気泡発生装置。 (3)円錐台形のスペースを有する容器本体と、同スペ
ースの内壁円周面の一部にその接線方向に開設された加
圧液体導入口と、前記円錐台形のスペース底部に開設さ
れた気体導入孔と、前記円錐台形スペースの上部に開設
された旋回気液導出口とから構成されてなることを特徴
とする旋回式微細気泡発生装置。 (4)徳利形状又はワインボトル形状のスペースを有す
る容器本体と、同スペースの内壁円周面の一部にその接
線方向に開設された加圧液体導入口と、前記徳利形状又
はワインボトル形状のスペース底部に開設された気体導
入孔と、前記徳利形状又はワインボトル形状のスペース
の頂部に開設された旋回気液導出口とから構成されてな
ることを特徴とする旋回式微細気泡発生装置。 (5)スペースの内壁円周面の一部にその接線方向に開
設された加圧液体導入口が、同一曲率の内壁円周上に間
隔を置いて複数個設けられてなることを特徴とする前項
(1)〜(4)のいずれか1項に記載の旋回式微細気泡
発生装置。 (6)スペースの内壁円周面の一部にその接線方向に開
設された加圧液体導入口が、異なる曲率の内壁円周上に
間隔を置いて複数個設けられてなることを特徴とする前
項(1)〜(5)のいずれか1項に記載の旋回式微細気
泡発生装置。 (7)加圧液体導入口が、前記スペースの底部付近の内
壁円周面の一部に開設されてなることを特徴とする前項
(1)〜(6)のいずれか1項に記載の旋回式微細気泡
発生装置。 (8)加圧液体導入口が、前記スペースの中腹部付近の
内壁円周面の一部に開設されてなることを特徴とする前
項(1)〜(7)のいずれか1項に記載の旋回式微細気
泡発生装置。 (9)旋回気液導出口の直前部にバッフルを配設してな
ることを特徴とする前項(1)〜(8)のいずれか1項
に記載の旋回式微細気泡発生装置。 (10)円錐形のスペースを有する容器本体と、同スペ
ースの内壁円周面の一部にその接線方向に開設された加
圧液体導入口と、前記円錐形のスペース底部に開設され
た気体導入孔と、前記円錐形スペースの頂部に開設され
た旋回気液導出口とから微細気泡発生装置を構成し、前
記円錐形スペース内で伸長、先細りさせながら旋回導出
する気体渦管の形成を第1過程とし、その気体渦管の前
後の間で旋回速度差を発生させ、強制的に気体渦管を切
断させることによる微細気泡の発生を第2過程とするこ
とを特徴とする旋回式微細気泡発生方法。 (11)円錐形のスペースを有する容器本体と、同スペ
ースの底部付近の内壁円周面の一部にその接線方向に開
設された加圧液体導入口と、前記円錐形のスペース底部
に開設された気体導入孔と、前記円錐形スペースの頂部
に開設された旋回気液導出口とから微細気泡発生装置を
構成し、前記円錐形スペース内で伸長、先細りさせなが
ら旋回導出する気体渦管の形成を第1過程とし、その気
体渦管の前後の間で旋回速度差を発生させ、強制的に気
体渦管を切断させることによる微細気泡の発生を第2過
程とすることを特徴とする旋回式微細気泡発生方法。
That is, the structure of the present invention is as follows. (1) A container body having a conical space, a pressurized liquid introduction port opened tangentially to a part of a circumferential surface of an inner wall of the space, and a gas introduction provided at the bottom of the conical space. A swirling type fine bubble generating device comprising a hole and a swirling gas / liquid outlet provided at the top of the conical space. (2) A container body having a conical space, a pressurized liquid introduction port opened tangentially to a part of the inner wall circumferential surface near the bottom of the space, and a bottom of the conical space. And a swirl gas / liquid outlet port opened at the top of the conical space. The swirl gas / liquid outlet port diameter (d 1 ) and the conical space bottom portion diameter (d 2 ) The correlation of the distance (L) from the swirling gas / liquid outlet to the bottom of the conical space is d 2 / d 1 = 10 to 15,
And L = 1.5d 2 to 2.0d 2 , a swirl type fine bubble generator. (3) A container main body having a truncated cone-shaped space, a pressurized liquid introduction port opened in a tangential direction on a part of a circumferential surface of an inner wall of the space, and a gas introduction provided in the bottom of the truncated cone-shaped space. A swirling type fine bubble generating device comprising a hole and a swirling gas / liquid outlet provided in an upper portion of the truncated cone space. (4) A container body having a bottle-shaped or wine bottle-shaped space, a pressurized liquid inlet formed in a tangential direction on a part of the inner wall circumferential surface of the space, and a bottle-shaped bottle or a bottle-shaped bottle A swirling type fine bubble generating device comprising a gas introducing hole opened at the bottom of the space and a swirling gas-liquid outlet opening formed at the top of the bottle-shaped or wine bottle-shaped space. (5) A plurality of pressurized liquid inlets opened in the tangential direction on a part of the inner wall circumferential surface of the space are provided at intervals on the inner wall circumference having the same curvature. The swirl type fine bubble generator according to any one of the preceding items (1) to (4). (6) A plurality of pressurized liquid inlets opened in the tangential direction on a part of the inner wall circumferential surface of the space are provided at intervals on the inner wall circumference having different curvatures. The swirl type fine bubble generator according to any one of (1) to (5) above. (7) The swirl according to any one of the above items (1) to (6), wherein the pressurized liquid introduction port is formed in a part of the inner wall circumferential surface near the bottom of the space. Micro bubble generator. (8) The pressurized liquid introduction port is formed in a part of a circumferential surface of an inner wall near the middle abdomen of the space, according to any one of the above items (1) to (7). Swirl type fine bubble generator. (9) The swirl type fine bubble generator according to any one of the above items (1) to (8), wherein a baffle is arranged immediately in front of the swirl gas / liquid outlet. (10) A container body having a conical space, a pressurized liquid introduction port opened tangentially to a part of the inner wall circumferential surface of the space, and a gas introduction provided at the bottom of the conical space. A fine bubble generating device is constituted by a hole and a swirling gas / liquid outlet port formed at the top of the conical space, and the formation of a gas swirl tube that is swirled out while being expanded and tapered in the conical space is first described. Swirl-type micro-bubble generation, characterized in that a swirl velocity difference is generated between the front and rear of the gas swirl tube, and the generation of micro-bubbles by forcibly cutting the gas swirl tube is the second step. Method. (11) A container body having a conical space, a pressurized liquid introduction port opened tangentially to a part of the inner wall circumferential surface near the bottom of the space, and a bottom of the conical space. Forming a fine bubble generating device from a gas introduction hole and a swirling gas / liquid outlet opening formed at the top of the conical space, and forming a gas vortex tube that swirls out while expanding and tapering in the conical space. Is a first process, and a swirling speed difference is generated between the front and rear of the gas vortex tube, and the second step is the generation of fine bubbles by forcibly cutting the gas vortex tube. Method of generating fine bubbles.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態を、以下に図
面に基づいて説明する。本発明では、図1に本発明装置
の原理説明図を示すごとく、まず装置容器内に円錐形の
スペース100を設け、また同スペースの内壁円周面の
一部にその接線方向に加圧液体導入口500を開設し、
また前記円錐形のスペース底部300の中央部に気体導
入孔80を開設し、さらに前記円錐形スペースの頂部付
近には旋回気液導出口101を設けて微細気泡発生装置
を構成する。そこで、前記装置本体を又は少なくとも旋
回気液導出口101を液体中に埋設させ、前記加圧液体
導入口500から円錐形スペース100内に加圧液体を
圧送することにより、その内部に旋回流が生成し、円錐
管軸上に負圧部分が形成される。この負圧によって、前
記気体導入孔80から気体が吸い込まれ、圧力が最も低
い管軸上を気体が通過することによって、細い旋回気体
空洞部60が形成される。この円錐形スペース100で
は旋回流が入り口(加圧液体導入口)500から出口
(旋回気液導出口)101へ向かって形成され、スペー
ス100の断面縮小にしたがって、旋回気液導出口10
1に向かうほど、旋回流速と出口に向かう流速とが同時
に増加する。また、この旋回に伴って、液体と気体の比
重差から、液体には遠心力、気体には向心力が同時に働
き、そのために液体部と気体部の分離が可能となり、気
体が糸状で出口101まで続き、そこから噴出される
が、その噴出と同時に周囲の静液体(例えば水)によっ
て、その旋回が急激に弱められ、その前後で、急激な旋
回速度差が発生する。この旋回速度差の発生によって、
糸状の気体空洞部60が連続的に安定して切断され、そ
の結果として大量の微細気泡、例えば直径10〜20μ
mの微細気泡が同出口101付近で発生し、器外へ液体
中へ放出されるのである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In the present invention, as shown in the principle explanatory view of the device of the present invention in FIG. 1, first, a conical space 100 is provided in the device container, and a liquid pressurized under the tangential direction is formed in a part of the inner peripheral surface of the space. Open the inlet 500,
Further, a gas introduction hole 80 is opened in the center of the conical space bottom 300, and a swirling gas / liquid outlet 101 is provided near the top of the conical space to form a fine bubble generator. Therefore, by swirling the device body or at least the swirling gas-liquid outlet 101 in the liquid and pumping the pressurized liquid into the conical space 100 from the pressurized liquid inlet 500, a swirling flow is generated inside the device. A negative pressure portion is formed on the conical tube axis. By this negative pressure, the gas is sucked from the gas introduction hole 80, and the gas passes through the pipe axis having the lowest pressure, whereby the thin swirling gas cavity portion 60 is formed. In this conical space 100, a swirling flow is formed from an inlet (pressurized liquid inlet) 500 toward an outlet (swirl gas-liquid outlet) 101, and the swirling gas-liquid outlet 10 is reduced as the cross section of the space 100 is reduced.
As it goes to 1, the swirling flow velocity and the flow velocity toward the outlet simultaneously increase. With this swirl, the centrifugal force acts on the liquid and the centripetal force acts on the gas at the same time due to the difference in specific gravity between the liquid and the gas. Therefore, the liquid part and the gas part can be separated, and the gas is thread-shaped to the outlet 101. Subsequently, it is jetted from there, but at the same time as the jet, the turning is sharply weakened by the surrounding static liquid (for example, water), and a sharp turning speed difference is generated before and after the turning. Due to this difference in turning speed,
The filamentous gas cavity portion 60 is continuously and stably cut, and as a result, a large amount of fine bubbles, for example, a diameter of 10 to 20 μm.
Micro bubbles of m are generated in the vicinity of the outlet 101 and are discharged to the outside of the device into the liquid.

【0007】図1は、本発明装置の原理的説明図であ
り、(a)図は側面図、(b)図は(a)図のA−A視
断面図である。本発明装置の構成は、装置の本体容器内
に円錐形のスペース100を設け、また同スペースの内
壁円周面の一部にその接線方向に加圧液体導入口500
を開設し、そして前記円錐形のスペース底部300の中
央部に気体導入孔80を開設し、さらに前記円錐形スペ
ースの頂部付近には旋回気液導出口101を設けてあ
る。なお、通常、本発明装置本体又は少なくとも旋回気
液導出口101は液体中に埋没して設置される。本発明
は装置本体は、液体中に埋没して設置される場合と、水
槽に外接して設置される場合がある。本発明において
は、通常、液体としては水が、気体としては空気が採用
されるが、液体としてはその他トルエン、アセトン、ア
ルコール等の溶剤、石油、ガソリン等の燃料、食用油
脂,バター、アイスクリーム、ビール等の食品・飲料、
ドリンク剤等の薬品、浴水等の健康用品、湖沼水、浄化
槽汚染水等の環境水等が採用でき、気体としてはその他
水素、アルゴン、ラドン等の不活性気体、酸素、オゾン
等の酸化剤、炭酸ガス、塩化水素、亜硫酸ガス、酸化窒
素、硫化水素ガス等の酸性ガス、アンモニア等アルカリ
性ガス等が採用できる。また、図において、Paは円錐
スペース内の旋回液体部内の圧力、Pbは旋回気体部内
の圧力,Pcは気体導入部付近の旋回気体部内の圧力,
Pdは出口付近の旋回気体部内の圧力、Peは出口部旋
回液体部内の圧力である。
1A and 1B are explanatory views of the principle of the device of the present invention. FIG. 1A is a side view and FIG. 1B is a sectional view taken along line AA of FIG. The device of the present invention is configured such that a conical space 100 is provided in a main body container of the device, and a pressurized liquid introduction port 500 is tangentially provided on a part of a circumferential surface of an inner wall of the space.
And a gas introduction hole 80 is formed in the center of the conical space bottom 300, and a swirling gas / liquid outlet 101 is provided near the top of the conical space. It should be noted that the apparatus main body of the present invention, or at least the swirl gas / liquid outlet 101 is usually installed by being buried in the liquid. In the present invention, the apparatus main body may be installed by being buried in a liquid, or may be installed by being circumscribed in a water tank. In the present invention, normally, water is used as the liquid and air is used as the gas, but as the liquid, other solvents such as toluene, acetone, alcohol, petroleum, fuels such as gasoline, edible oil and fat, butter, ice cream are used. , Food and beverages such as beer,
Chemicals such as drinks, health products such as bath water, lake water, environmental water such as polluted water in septic tanks, etc. can be adopted, and other gases such as hydrogen, argon, inert gases such as radon, oxidizers such as oxygen and ozone. Acid gases such as carbon dioxide, hydrogen chloride, sulfurous acid gas, nitric oxide and hydrogen sulfide, and alkaline gases such as ammonia can be used. In the figure, Pa is the pressure in the swirling liquid part in the conical space, Pb is the pressure in the swirling gas part, Pc is the pressure in the swirling gas part near the gas introduction part,
Pd is the pressure in the swirling gas portion near the outlet, and Pe is the pressure in the swirling liquid portion at the outlet.

【0008】そこで、前記加圧液体導入口500から円
錐形スペース100内へ、加圧液体を接線方向に圧送す
ることにより、旋回流が入り口500から旋回気液導出
口101に向かって形成され、断面積縮小にしたがっ
て、出口101に向かうほど、旋回流速と出口に向かう
流速とが同時に増加する。また、この旋回に伴って、液
体と気体の比重差から、液体には遠心力が、気体には向
心力が同時に働き、そのために液体部と気体部の分離が
可能となり、負圧気体が糸状で出口101まで連続して
出ることとなる。すると、前記気体導入孔80から気体
が自動的に吸い込まれ(自吸)、気体は旋回気液流中に
細い旋回空洞部60となって取り込まれる。こうして、
中心部の糸状の細い気体旋回空洞部60とその周辺の液
体旋回流体が出口101から噴出されるが、その噴出と
同時に周囲の静液体によって、その旋回が急激に弱めら
れ、その前後で、急激な旋回速度差が発生する。この旋
回速度差の発生によって、旋回流中心部の糸状の気体空
洞部60が連続的に安定して切断され、その結果として
大量の微小気泡、例えば直径10〜20μmの微細気泡
が同出口101付近で発生する。
Therefore, a swirling flow is formed from the inlet 500 toward the swirling gas-liquid outlet 101 by pumping the pressurized liquid tangentially from the pressurized liquid inlet 500 into the conical space 100, As the cross-sectional area decreases, the swirling flow velocity and the flow velocity toward the outlet increase at the same time toward the outlet 101. With this swirl, the centrifugal force acts on the liquid and the centripetal force acts on the gas at the same time due to the difference in specific gravity between the liquid and the gas. Therefore, the liquid portion and the gas portion can be separated, and the negative pressure gas is formed into a filament. It will continue to the exit 101. Then, the gas is automatically sucked from the gas introduction hole 80 (self-priming), and the gas is taken into the swirling gas-liquid flow as a thin swirling cavity 60. Thus
The filamentous thin gas swirling cavity 60 at the center and the liquid swirling fluid around it are jetted from the outlet 101. At the same time as the jetting, the swirling is sharply weakened by the surrounding static liquid, and before and after that, the swirling is suddenly increased. A large turning speed difference occurs. Due to the generation of the swirling velocity difference, the filamentous gas cavity portion 60 at the swirling flow center is continuously and stably cut, and as a result, a large amount of minute bubbles, for example, minute bubbles having a diameter of 10 to 20 μm, are generated near the outlet 101. Occurs in.

【0009】図1において、旋回気液導出口101の口
径d1,円錐形スペース底部300の口径d2、気体導入
孔80の孔径d3,旋回気液導出口101〜円錐形スペ
ース底部300間の距離Lの好ましい相関関係式は、d
2/d1≒10〜15,L≒1.5〜2.0×d2であ
り、機種の違いによる数値範囲は以下の通りである。
In FIG. 1, the swirl gas / liquid outlet 101 has a diameter d 1 , the conical space bottom 300 has a diameter d 2 , the gas inlet 80 has a hole diameter d 3 , and the swirl gas / liquid outlet 101 to the conical space bottom 300 have a diameter d 1 . The preferred correlation equation for the distance L of
2 / d 1 ≈10 to 15, L≈1.5 to 2.0 × d 2 , and the numerical range depending on the model is as follows.

【0010】[0010]

【表1】 [Table 1]

【0011】なお、中型の場合、例えばポンプはモータ
2kw,吐出量200リットル/分,揚程40mのもの
であり、これを使用して、大量に微細気泡を発生させる
ことができ、5m3容積の水槽の水面全体に約1cmの
厚さの微細泡が運転中堆積した。この装置は容積200
0m3以上の池の水質浄化に適用できた。また、小型の
場合、例えばポンプはモータ30w程度,吐出量20リ
ットル/分のものであり、これを使用して容積1〜30
3程度の水槽内で使用できた。なお、海水に適用した
場合は、微細気泡(マイクロバブル)が非常に発生し易
いので更に使用条件を拡大することが可能である。図1
5は、図1の本発明の中型装置を水中に埋没させ、気体
として空気を採用して微細気泡を発生させた結果の、気
泡の直径とそれらの発生頻度分布を示したグラフ図であ
る。なお、気体導入管80からの空気吸込量を調節して
行った場合の結果も示した。図中、空気の吸込量を0c
3/sとした場合でも、直径10〜20μmの気泡が
発生しているのは、水中に溶存していた空気が分離して
発生したものと推測される。よって本発明装置は溶存気
体の脱気装置としても使用できるものである。
In the case of the medium size, for example, the pump has a motor of 2 kw, a discharge rate of 200 liters / minute, and a head of 40 m, and by using this, a large amount of fine bubbles can be generated and a volume of 5 m 3 can be generated. Fine bubbles having a thickness of about 1 cm were accumulated on the entire water surface of the aquarium during operation. This device has a volume of 200
It was applicable to the purification of water in a pond of 0 m 3 or more. In the case of a small size, for example, the pump has a motor of about 30w and a discharge rate of 20 liters / minute.
It could be used in a water tank of about 3 m 3 . In addition, when applied to seawater, since micro bubbles are very likely to be generated, the use conditions can be further expanded. Figure 1
FIG. 5 is a graph showing bubble diameters and their occurrence frequency distributions as a result of immersing the medium-sized device of the present invention in FIG. 1 in water and using air as a gas to generate fine bubbles. The results obtained when the amount of air sucked from the gas introduction pipe 80 is adjusted are also shown. In the figure, the intake amount of air is 0c
Even in the case of m 3 / s, it is presumed that the air bubbles having a diameter of 10 to 20 μm are generated due to separation of air dissolved in water. Therefore, the device of the present invention can also be used as a degasser for dissolved gas.

【0012】こうして、本発明装置を液体中に設置し、
例えば揚水ポンプを介して加圧液体導入管50を経て、
加圧液体導入口500から円錐形スペース100内に加
圧液体(例えば圧力水)を供給し、かつ外部から気体導
入管(例えば空気管)を気体導入口80に接続しておく
だけで、液体(例えば水)中において直径10〜25μ
m程度の微細気泡を容易に発生・供給することができ
る。なお、前記スペースは、必ずしも円錐形状のもので
なくてもよく、直径が徐々に大きくなる(あるいは小さ
くなる)円筒形状のもの、例えば図3に示すごとき徳利
形状又はワインボトル形状のものであってもよい。ま
た、気泡の発生状況は、気体導入管80の先端に接続し
た気体流量調節用の弁(図示せず)の調節で制御でき、
所望する最適の微細気泡の発生を簡単に制御することが
できる。さらに直径10〜20μmより大きい気泡も、
この調節によって簡単に生成させることができる。発生
気泡径の制御は、数百μm程度の大きさの微細気泡を、
10〜20μmのマイクロバブルを極端に減らさない状
態で発生させることが可能である。
Thus, the device of the present invention is installed in a liquid,
For example, via the pressurized liquid introduction pipe 50 via a pumping pump,
By supplying a pressurized liquid (for example, pressure water) from the pressurized liquid introduction port 500 into the conical space 100 and connecting a gas introduction pipe (for example, an air pipe) from the outside to the gas introduction port 80, the liquid 10-25μ diameter in (eg water)
It is possible to easily generate and supply minute bubbles of about m. The space does not necessarily have a conical shape, but has a cylindrical shape whose diameter gradually increases (or decreases), for example, a bottle shape or a wine bottle shape as shown in FIG. Good. In addition, the generation state of bubbles can be controlled by adjusting a gas flow rate adjusting valve (not shown) connected to the tip of the gas introducing pipe 80,
It is possible to easily control the desired generation of the optimum fine bubbles. Furthermore, bubbles with diameters larger than 10 to 20 μm
This adjustment can be easily generated. The diameter of generated bubbles can be controlled by using fine bubbles with a size of several hundred μm.
It is possible to generate microbubbles of 10 to 20 μm without extremely reducing them.

【0013】また、図2は、加圧液体導入管50、5
0’をスペースの底部300側付近と旋回気液導出口1
01の手前に設け(すなわち、内壁円周面の異なる曲率
の内壁円周上に間隔を置いて接線方向に複数個設け)た
もので、左側の加圧液体導入口500’からの液体導入
圧力を右側の加圧液体導入口500からの導入圧力より
も大幅に大きくして液体を供給することにより、左側の
液体の旋回数を大いに高め、その結果より一層微細な気
泡生成を促進しようとするもものである。こうして、両
加圧液体導入口500、500’からの圧力水の圧力を
調整することにより、任意の粒径の気泡を生成すること
ができる。なお、200はバッフル板(邪魔板)であ
り、微細気泡の生成及び拡散を促進するのに役立つ。
Further, FIG. 2 shows the pressurized liquid introducing pipes 50 and 5.
0'is near the bottom 300 side of the space and the swirling gas-liquid outlet 1
01 (that is, a plurality of tangential directions are provided at intervals on the inner wall circumference of the inner wall circumferential surface having different curvatures), and the liquid introduction pressure from the left pressurized liquid introduction port 500 '. To supply the liquid at a pressure significantly higher than the pressure introduced from the pressurized liquid introduction port 500 on the right side, so that the swirl number of the liquid on the left side is greatly increased, and as a result, it is attempted to promote the generation of finer bubbles. It is a peach. In this way, by adjusting the pressure of the pressurized water from both the pressurized liquid introduction ports 500 and 500 ', it is possible to generate bubbles of any particle size. Reference numeral 200 is a baffle plate (baffle plate), which helps promote generation and diffusion of fine bubbles.

【0014】次に本発明の別の態様における微細気泡発
生装置を説明する。別の態様によれば、例えば図9に示
すごとく、漸拡逆円錐体(円錐台)形状の有蓋円筒体4
の内部には、その周辺部分4aの旋回上昇水液流20
と、その内側の部分の旋回下降水液流22と、その中心
部分の負圧の旋回空洞部23、の三重の旋回流を形成
し、その負圧の旋回空洞部23には、自吸気体26と溶
出気体成分27を集積させて、伸長、先細りさせながら
旋回下降する気体渦管24を形成し、下方の中央還流口
6を介して放出するとき、放出通路の抵抗を受け、旋回
速度差を発生して気体渦管自体が強制的に切断され、微
細気泡を発生する。図4はその実施例の旋回式微細気泡
の発生装置の正面図、図5はその平面図、図6はその中
央縦断面図(図5のB〜B断面図)、図7はその下部流
通台の横断面図(図4のA〜A断面図)であり、図8は
円筒体内部のX−X断面における三重の旋回流の説明
図、図9は同じくY−Y断面における旋回昇降流と気体
渦管の説明図、図10は気体渦管における微細気泡発生
の説明図、図11は4箇所の側面放出口を有するときの
微細気泡発生構造の説明図、図12は図11の第1側面
放出口における発生構造の説明図、図13は図11の第
1側面放出口に隣接する側壁における発生構造の説明
図、図14は第2側面放出口における発生構造の説明図
であり、図16は本装置の水槽内の設置状態説明図であ
る。図中、1は旋回式微細気泡発生装置、2は下部流通
台、3は円形収容室、4は有蓋円筒体、5は水液流導入
口、6は中央還流口、7は側面放出口、8は気体自吸
管、20は旋回上昇水液流、22は旋回下降水液流、2
3は負圧の旋回空洞部、24は気体渦管、25は切断部
である。
Next, a fine bubble generator according to another embodiment of the present invention will be described. According to another aspect, for example, as shown in FIG. 9, a covered cylindrical body 4 having a gradually expanding inverted cone shape (conical truncated cone) shape.
Inside the water, the swirl rising water liquid flow 20 of the peripheral portion 4a is
And a swirling descending water liquid flow 22 in the inner part thereof and a negative pressure swirl cavity portion 23 in the central part thereof, and a triple swirl flow is formed. 26 and the elution gas component 27 are integrated to form a gas vortex tube 24 that swirls and descends while extending and tapering, and when discharging the gas through the central reflux port 6 below, the resistance of the discharge passage causes the swirling speed difference. Is generated, the gas vortex tube itself is forcibly cut and fine bubbles are generated. FIG. 4 is a front view of the swirl-type micro-bubble generator of the embodiment, FIG. 5 is a plan view thereof, FIG. 6 is a central longitudinal sectional view thereof (BB sectional view of FIG. 5), and FIG. FIG. 8 is a transverse cross-sectional view (cross-sectional view taken along line AA of FIG. 4) of the table, FIG. 8 is an explanatory diagram of a triple swirling flow in the XX section inside the cylindrical body, and FIG. 9 is a swirling up-and-down flow in the same YY section. And FIG. 10 is an explanatory view of a gas vortex tube, FIG. 10 is an explanatory view of generation of fine bubbles in the gas vortex tube, FIG. 11 is an explanatory view of a fine bubble generation structure having four side emission ports, and FIG. FIG. 13 is an explanatory view of the generation structure at the one side surface discharge port, FIG. 13 is an explanatory view of the generation structure at the side wall adjacent to the first side surface discharge port of FIG. 11, and FIG. 14 is an explanatory view of the generation structure at the second side surface discharge port. FIG. 16 is an explanatory view of the installation state of this device in the water tank. In the figure, 1 is a swirl type fine bubble generator, 2 is a lower flow table, 3 is a circular storage chamber, 4 is a cylindrical body with a lid, 5 is a water liquid flow inlet, 6 is a central reflux port, 7 is a side discharge port, 8 is a gas self-priming pipe, 20 is a swirling rising water liquid flow, 22 is a swirling descending water liquid flow, 2
Reference numeral 3 is a negative pressure swirl cavity, 24 is a gas vortex tube, and 25 is a cutting part.

【0015】この旋回式微細気泡発生装置1の構造は大
別すると、図示のごとく、下部流通台2の円形収容室3
に水液流を付勢旋回導入させる水液流旋回導入構造と、
該円形収容室3の上部に被着した、上方へ漸拡形状(逆
円錐体形状)の有蓋円筒体4の内部の周辺部分4aに形
成される旋回上昇水液流形成構造と、該周辺部分4aの
内側の部分4bに形成される旋回下降水液流形成構造
と、その該旋回上昇水液流20及び旋回下降水液流22
の二重の旋回流の遠向心分離作用により、その中心部分
4cに形成される負圧の旋回空洞部23と、該負圧の旋
回空洞部23に自吸気体26と溶出気体27を集積して
形成され、伸長、先細りさせながら旋回下降する気体渦
管24の形成構造と、その気体渦管24が中央還流口6
に突入するとき抵抗を受け、その渦管の上下24a,b
の間で旋回速度差を発生し、その渦管24が強制的に切
断され、微細気泡を発生するごとくなる微細気泡発生構
造と、その発生した微細気泡を旋回下降水流に含め、旋
回噴流として側面放出口7から器外に放出させるごとく
した旋回噴流放出構造とから構成されている。
The structure of the swirl type fine bubble generating apparatus 1 is roughly classified, as shown in the drawing, the circular storage chamber 3 of the lower distribution table 2.
A water-liquid flow swirl introduction structure that introduces a water-liquid flow into the
A swirling rising water-liquid flow forming structure formed on a peripheral portion 4a inside a covered cylindrical body 4 that is gradually expanded upward (in the shape of an inverted cone) and is attached to the upper portion of the circular storage chamber 3, and the peripheral portion. The swirling descending water liquid flow forming structure formed in the inner portion 4b of the swirling ascending water liquid flow 20 and the swirling descending water liquid flow 22
Due to the distant-centric separation action of the double swirling flow, the negative pressure swirl cavity 23 formed in the central portion 4c thereof, and the self-intake body 26 and the elution gas 27 are accumulated in the negative pressure swirl cavity 23. And the formation structure of the gas vortex tube 24 that swirls and descends while being extended and tapered, and the gas vortex tube 24 is formed in the central reflux port 6
When it rushes into the vortex tube, it receives resistance,
Between the swirl speeds, the vortex tube 24 is forcibly cut, and a fine bubble generation structure is created in which fine bubbles are generated, and the generated fine bubbles are included in the swirling descending water flow to form a swirl jet side surface. It is composed of a swirling jet discharge structure which is designed to be discharged from the discharge port 7 to the outside of the device.

【0016】また立方体状の下部流通台2の上部中央に
は、円形収容室3が凹設され、該円形収容室3の内周面
3aには、側方から水液流導入口5が該内周面3aに対
して接線方向に開口されている。また該導入口5の外側
取入口に突設された導水管接続具5aには、水液供給用
のポンプ11(図16)及び流量調整弁12(水中でな
く器外に配置してもよい)を途中に取付けた導水管10
が接続され、該円形収容室3の内周面3aに反時計方向
の接線方向から水液流が付勢導入され、図示のD方向
(反時計方向)に旋回導入流を形成するごとくなってい
る。
Further, a circular accommodating chamber 3 is recessed in the center of the upper portion of the cubic lower distribution table 2, and an inner peripheral surface 3a of the circular accommodating chamber 3 is provided with a water / liquid flow inlet 5 from the side. It is opened tangentially to the inner peripheral surface 3a. Further, the water conduit connector 5a projecting from the outer inlet of the inlet 5 has a pump 11 for supplying water liquid (FIG. 16) and a flow rate adjusting valve 12 (not in water but outside the device. ) Attached to the conduit 10
Is connected to the inner peripheral surface 3a of the circular storage chamber 3 from the tangential direction in the counterclockwise direction, and the swirl introduction flow is formed in the D direction (counterclockwise direction) shown in the drawing. There is.

【0017】また前記円形収容室3の解放された上方段
部には、その筒体下端部の直筒形状部分42を嵌挿し、
その筒体を上に向かって上方へ漸拡逆円錐体形状に形成
した有蓋円筒体4が直立して被着されている。41はそ
の平坦な上蓋であり、その上蓋41の中心軸(C〜C)
上には下方に向けて気体吸入管8が挿設され、後述する
中心部分4cに形成される負圧の旋回空洞部23に気体
を自吸させている。また上述のごとく、円形収容室3に
D矢示の方向に旋回導入された気液混合流は該有蓋円筒
体4の内部にその旋回付勢力を維持しながら送入され、
内部の周辺部分4bを旋回上昇し、旋回上昇水液流20
を形成する。また該旋回上昇水液流は漸拡形状の筒体の
内周面に沿って、次第に旋回速度を増大しながら円筒体
4の上限に到達し、その周辺部分4aより内側の部分4
bに還流21してから旋回下降を始め、旋回下降水液流
22を形成する。次にその旋回上昇水液流20及び旋回
下降水液流22の二重の旋回流の遠向心分離作用によ
り、円筒体4の中心部分4cに負圧の旋回空洞部23を
形成する。
Further, a straight tubular portion 42 at the lower end of the tubular body is fitted and inserted into the open upper step portion of the circular housing chamber 3,
The cylindrical body 4 with a lid is formed so as to stand upright, and the cylindrical body 4 is formed in the shape of a reverse cone that gradually expands upward. 41 is the flat upper lid, and the central axis (C to C) of the upper lid 41.
A gas suction pipe 8 is inserted downward in the upper part so that the negative pressure swirl cavity 23 formed in a central portion 4c, which will be described later, sucks gas by itself. Further, as described above, the gas-liquid mixed flow swirled and introduced into the circular storage chamber 3 in the direction of the arrow D is sent into the inside of the covered cylindrical body 4 while maintaining its swirling biasing force,
The inner peripheral portion 4b is swirled up, and swirl upward water liquid flow 20
To form. The swirling rising water flow reaches the upper limit of the cylindrical body 4 along the inner peripheral surface of the gradually expanding cylindrical body while gradually increasing the swirling speed, and the portion 4 inside the peripheral portion 4a is
After recirculating 21 to b, swirling descending is started, and swirling descending water liquid flow 22 is formed. Then, a negative pressure swirl cavity portion 23 is formed in the central portion 4c of the cylindrical body 4 by the action of separating the swirl rising water liquid flow 20 and the swirling descending water liquid flow 22 from the dicentric center.

【0018】この旋回下降する負圧の旋回空洞部23と
その周囲を旋回下降する旋回下降水液流22は、中心軸
(C〜C)上の旋回下降領域が円筒体4の逆円錐体形状
のため狭まることによって、それぞれの旋回速度を増速
すると共に、それぞれの内部圧力を逆に低下させるごと
くなる。従って、中心部分4cの旋回空洞部23の形状
は伸長され、先細り化されるが、その伸長と共に内部圧
力はますます低下し、周りを旋回する旋回下降水液流2
2から、その水流中に含有した空気が溶出されてくるよ
うになる。また一方、前記の旋回下降する負圧の旋回空
洞部23には、気体自吸管8を介して空気が自吸され
る。この自吸気体26と前記の旋回流からの溶出気体2
7が負圧の旋回空洞部23に集積して、伸長、先細りさ
せながら旋回下降する気体渦管24が形成される。
The negative pressure swirl cavity 23 that swirls and descends and the swirl descending water liquid flow 22 that swirls and descends around the negative swirl cavity 23 have an inverted conical shape in which the swirl descending region on the central axis (C to C) is the cylindrical body 4. Therefore, the turning speeds are increased, and the internal pressures are decreased. Therefore, the shape of the swirling cavity 23 of the central portion 4c is elongated and tapered, but the internal pressure is further reduced with the expansion, and the swirling descending water liquid flow 2 swirling around
From 2, the air contained in the water flow comes to be eluted. On the other hand, the self-suction of the negative pressure swirling cavity 23 that swirls and descends is performed through the gas self-priming tube 8. Elution gas 2 from the self-intake body 26 and the swirling flow
7 is accumulated in the swirling cavity portion 23 having a negative pressure to form a gas swirl tube 24 that swirls and descends while expanding and tapering.

【0019】中心軸(C〜C)上を旋回下降する気体渦
管24の形成のみでは微細気泡は発生しない。この発明
の微細気泡発生装置1は、図10に示すごとく、その気
体渦管24に対して、中央還流口6を通り器外に放出さ
れる過程で、その放出通路の抵抗を利用し、その気体渦
管24の上下24a、24bの間で旋回速度差を発生さ
せ、その気体渦管24を強制的に捩り切断させ、微細気
泡を発生させるように構成している。また気体渦管24
は、その断面の直径が細いほど、微細気泡の形成にとっ
て好条件となり得る。またこの断面直径の制御は、気体
自吸管8からの空気の自吸量を流量調整弁12で操作す
ることによって(図16)、簡単に制御できる。空気の
自吸量の多いほど、気体渦管の断面直径は大きくなり、
自吸量がゼロのときに最小となる。なお自吸気体ゼロの
ときは、気体渦管24は前記の旋回下降水液流22から
の溶出気体27だけで形成されるが、溶存酸素の少ない
汚水の水質浄化の場合は浄化能力についての注意が必要
である。以上により、本発明装置1における微細気泡の
発生構造は、有蓋円筒体4内で、旋回下降する気体渦管
24の形成をその第1過程とし、その伸長、先細りさせ
ながら旋回下降する気体渦管24を、その放出通路の抵
抗により渦管の上下24a、24bの間で旋回速度差を
発生させ、強制的に捩り切断させることによる微細気泡
の発生をその第2過程として構成されることを特徴とす
るものである。
Fine bubbles are not generated only by forming the gas vortex tube 24 that swirls and descends on the central axis (C to C). As shown in FIG. 10, the fine bubble generator 1 of the present invention utilizes the resistance of the discharge passage to the gas vortex tube 24 in the process of being discharged to the outside of the device through the central reflux port 6, and A difference in swirling speed is generated between the upper and lower portions 24a and 24b of the gas vortex tube 24, and the gas vortex tube 24 is forcibly twisted and cut to generate fine bubbles. In addition, the gas vortex tube 24
The smaller the diameter of the cross section, the better the condition for the formation of fine bubbles. Further, the control of the cross-sectional diameter can be easily controlled by operating the self-priming amount of air from the gas self-priming pipe 8 with the flow rate adjusting valve 12 (FIG. 16). The larger the self-priming amount of air, the larger the cross-sectional diameter of the gas vortex tube,
It becomes the minimum when the self-priming amount is zero. Note that when the self-intake body is zero, the gas vortex tube 24 is formed only by the elution gas 27 from the swirling descending water liquid flow 22, but in the case of purifying the quality of sewage with little dissolved oxygen, caution is required regarding the purification capacity. is necessary. As described above, in the structure for generating fine bubbles in the device 1 of the present invention, the formation of the gas vortex tube 24 that swirls and descends in the covered cylindrical body 4 is the first step, and the gas swirl tube that swirls and descends while expanding and tapering it. The second step is to generate fine bubbles by forcibly twisting and disconnecting 24 of the vortex tube by causing a swirling speed difference between the upper and lower sides 24a and 24b of the vortex tube due to the resistance of the discharge passage. It is what

【0020】また本装置1では、円筒体4内を旋回下降
する旋回下降水液流22を器外に放出するための放出通
路として、下方の円形収容室3の底部3bの中心軸(c
−c)上に、中央還流口6が鉛直に掘孔され、さらに該
中央還流口6から下部流通台2の4側面に向けて、放射
状に4箇所の側面放出口7が貫孔されている。前記の旋
回下降する気体渦管24の切断により生成される微細気
泡は、旋回下降水液流22と共に中央還流口6から4箇
所の側面放出口7を介して、器外に放出されるようにな
っている。また、そのとき放出される水流は、旋回力を
付勢されたまま旋回する放出噴流28となって放出され
る。これら側面放出口7は、複数個でなく1個であって
も良く、また側面放出口7を設けずに、中央還流口6を
先細りにしてそこから真直下方へ、旋回下降する気体渦
管24の切断により生成される微細気泡と旋回下降水液
流22を放出する方式としても、微細気泡は生成され
る。
Further, in the present apparatus 1, the central axis (c) of the bottom portion 3b of the lower circular accommodating chamber 3 serves as a discharge passage for discharging the swirling descending water-liquid flow 22 swirling and descending inside the cylindrical body 4 to the outside of the device.
-The central return port 6 is vertically drilled on the upper side of -c), and further four side face discharge ports 7 are radially formed from the central return port 6 toward the four side faces of the lower distribution table 2. . The fine bubbles generated by cutting the swirling gas vortex tube 24 are discharged from the central reflux port 6 through the four side surface discharge ports 7 together with the swirling descending water flow 22 to the outside of the device. Has become. Further, the water flow discharged at that time is discharged as a discharging jet flow 28 that swirls while being swirled. The number of these side discharge ports 7 may be one instead of a plurality, and without providing the side discharge ports 7, the central recirculation port 6 is tapered and the gas vortex tube is swung down straight downward from there. The fine bubbles are also generated by the method in which the fine bubbles generated by the cutting of 24 and the swirling descending liquid stream 22 are discharged.

【0021】図11〜図14に示す説明図に基づき、中
央還流口6に4箇所の側面放出口71、72、73、7
4を有するときの微細気泡の発生構造を以下に説明す
る。前記の有蓋円筒体4の中心部分4cを旋回下降する
気体渦管24は、旋回下降水液流22と共に、その旋回
方向(D矢視)の順序で、中央還流口6から4箇所の側
面放出口71、72、73、74に向けて送り込まれ
る。図12はその第1側面放出口71に放出されている
状態を示す。気体渦管の下部24bはその送り込みによ
る通路抵抗を受けてその旋回速度を低下させ、気体渦管
の上部24aとの間で旋回速度差を発生し、渦管は捩り
切断され、微細気泡を発生する。25は切断部を示す。
図13は、気体渦管24が次の第2側面放出口72に向
う途中で、隣接する還流口側壁6aに衝突する通路抵抗
を受けた状態を示す。気体渦管の下部24bは側壁6a
に衝突することによって旋回速度を変化させ、切断部2
5において同様に微細気泡を発生させる。図14は、気
体渦管24が第2放出口72に放出されている状態を示
し、図13のときとは異なる旋回速度となり切断部25
を発生し、微細気泡を発生する。以上のごとく1旋回の
間に4箇所の側面放出口71、72、73、74への放
出と、それぞれの隣接する側壁6aへの衝突を4回交互
に繰り返し、その都度、渦管の上下24a、24bの間
に旋回速度差を発生し、渦管を切断して大量の微細気泡
を発生する。
Based on the explanatory views shown in FIGS. 11 to 14, four side discharge ports 71, 72, 73, 7 are provided at the central reflux port 6.
The generation structure of the fine bubbles when having No. 4 will be described below. The gas vortex tube 24 which swirls and descends the central portion 4c of the above-mentioned covered cylindrical body 4 and the swirling descending water-liquid flow 22 in the order of the swirling direction (viewed by arrow D) of the central reflux port 6 has four side surface discharges. It is sent toward the outlets 71, 72, 73, 74. FIG. 12 shows the state of being discharged to the first side surface discharge port 71. The lower portion 24b of the gas vortex tube receives the passage resistance due to the feeding and reduces the swirling speed, and a swirling speed difference is generated between the lower portion 24b and the upper portion 24a of the gas vortex tube, and the vortex tube is twisted and cut to generate fine bubbles. To do. Reference numeral 25 indicates a cutting portion.
FIG. 13 shows a state in which the gas vortex tube 24 receives a passage resistance that collides with the adjacent side wall 6a of the return port while the gas vortex tube 24 is being directed to the next second side surface discharge port 72. The lower part 24b of the gas vortex tube is the side wall 6a.
The turning speed is changed by colliding with the cutting part 2 and
Similarly, in step 5, fine bubbles are generated. FIG. 14 shows a state in which the gas vortex tube 24 is discharged to the second discharge port 72, and the swirling speed is different from that in FIG.
To generate fine bubbles. As described above, the discharge to the four side surface discharge ports 71, 72, 73, and 74 and the collision with the adjacent side wall 6a are alternately repeated four times during one turn, and the vortex tube upper and lower portions 24a and 24a are repeated each time. , 24b, a swirling speed difference is generated, and the vortex tube is cut to generate a large amount of fine bubbles.

【0022】また、側面放出口7の個数は、旋回流22
と気体渦管24の旋回数と切断部25の数に関係する。
高い旋回数を可能とするためには、高圧力のポンプで、
初期に水液を旋回導入させる必要がある。旋回数を増せ
ば増すほど、切断部(面)25は小さくなり、負圧によ
る気体の溶出が顕著となり、より小さくより大量の微細
気泡を発生させることが可能となる。また側面放出口7
の個数を増やすことによっても微細気泡の数は増加す
る。実験結果からは、一定の回転数のもとでは、最適な
放出口数が水液導入量とも関係していることが判った
が、40リットル/分、揚程15m程度では放出口数は
4個が最適である。
The number of side discharge ports 7 is the same as the swirling flow 22.
And the number of turns of the gas vortex tube 24 and the number of cutting parts 25.
In order to enable a high number of turns, a high pressure pump
It is necessary to swirl the water liquid in the initial stage. As the number of turns increases, the cutting portion (face) 25 becomes smaller, the gas elution due to the negative pressure becomes remarkable, and it becomes possible to generate smaller and larger amount of fine bubbles. In addition, the side discharge port 7
The number of fine bubbles also increases by increasing the number of cells. From the experimental results, it was found that the optimum number of outlets was related to the amount of water introduced at a constant rotation speed, but at 40 liters / minute and a lift of about 15 m, the optimal number of outlets was four. Is.

【0023】また前記下部流通台2の側面放出口7の出
口7aには、放出用接続管9が連接されているが、前記
有蓋円筒体4内の旋回流形成方形(D矢視方向)に倣っ
て、その放出方向をD矢示方向に45゜曲折して突設し
ているから、この旋回式微細気泡発生装置1を水槽13
内に設置した場合(図16)、放出用接続管9から水槽
13中に旋回噴流として放出される、該旋回式発生装置
1の周りにD矢示方向の循環流が生成されて、酸素を含
んだ微細気泡が水槽13内に均等に配分されるごとくな
る。上記本発明構成例装置1では、放出口から気泡径1
0〜20μmが90%以上を占める微細気泡を含む水流
が放出された。なお、水槽13内に設置する場合、下部
流通台2は重量のある材料が望ましいが、プラスチック
製の場合には、さらにその底部に重量のあるステンレス
鋼板を張り付けてもよい。また有蓋円筒体4を透明材料
で構成すると、内部の旋回上昇水液流等の形成、及びそ
れらの下降還流の形成が観察される利点を有する。
Further, a discharge connecting pipe 9 is connected to the outlet 7a of the side discharge port 7 of the lower flow table 2, and the discharge flow connecting square 9 is formed in the covered cylindrical body 4 (in the direction of arrow D). Following this, since the discharge direction is bent by 45 ° in the direction of the arrow D to project, the swirl type fine bubble generator 1 is installed in the water tank 13.
When installed inside (FIG. 16), a circulating flow in the direction of the arrow D is generated around the swirl-type generator 1, which is discharged from the discharge connecting pipe 9 into the water tank 13 as a swirl jet, and oxygen is generated. The contained fine bubbles are evenly distributed in the water tank 13. In the above configuration example device 1 of the present invention, the bubble diameter 1
A water stream containing fine bubbles, of which 0 to 20 μm accounted for 90% or more, was discharged. When installed in the water tank 13, the lower flow table 2 is preferably made of a heavy material, but when made of plastic, a heavy stainless steel plate may be further attached to the bottom thereof. Further, if the covered cylindrical body 4 is made of a transparent material, there is an advantage that the formation of the swirling rising water liquid flow and the like and the formation of the descending reflux of them are observed.

【0024】また本発明装置の構成材料は、プラスチッ
ク、金属、ガラス等であってよく、各構成部品を接着や
螺着等により一体化することが好ましい。本発明装置に
より発生される微細気泡の用途分野としては、以下のよ
うなものが挙げられる。 .ダム湖、湖沼、池、河川、海等の水域の水質浄化と
生息生物育成による自然環境浄化維持。 .ビオトープ等の人工自然水域における浄化と蛍や水
草等の生物育成。 .工業的用途 製鉄の製鋼における高温拡散化、ステンレス板及びステ
ンレス線の酸洗浄の促進超純水製造工場における有機物
除去、オゾンの微細気泡化による汚染水中の有機物除
去、溶存酸素量増加、殺菌,合成樹脂発泡体、例えばウ
レタン発泡体製造、各種廃液処理、エチレンオキサイド
による殺菌・滅菌装置におけるエチレンオキサイドの水
への混合促進、消泡剤のエマルジョン化、活性汚泥処理
法における汚染水へのエアレーション。 .農業分野 水耕栽培に使用する酸素及び溶存酸素量の向上・収穫率
向上。 .漁業分野 鰻の養殖、イカ水槽生命維持、ブリの養殖、藻場の人工
生成、魚介類の育成、赤潮発生防止。 .医療分野 浴槽水に適用して微細泡風呂を構成、血流促進、浴槽水
の保温。
The constituent material of the device of the present invention may be plastic, metal, glass or the like, and it is preferable to integrate the constituent parts by adhesion or screwing. The fields of application of the fine bubbles generated by the device of the present invention include the following. . Purification and maintenance of natural environment by purification of water quality and cultivation of habitats in water areas such as dam lakes, lakes, ponds, rivers and seas. . Purification of artificial natural waters such as biotopes and cultivation of living things such as fireflies and aquatic plants. . Industrial applications High temperature diffusion in steel making of steel, promotion of acid cleaning of stainless steel plate and stainless wire Removal of organic substances in ultrapure water production plant, removal of organic substances in contaminated water by fine bubble formation of ozone, increase in dissolved oxygen amount, sterilization, synthesis Production of resin foams such as urethane foams, treatment of various waste liquids, promotion of mixing of ethylene oxide with water in ethylene oxide sterilization / sterilization equipment, emulsification of defoamer, and aeration of contaminated water in the activated sludge treatment method. . Agricultural field Improve the amount of oxygen and dissolved oxygen used for hydroponics and improve the harvest rate. . Fisheries sector Eel cultivation, squid tank life maintenance, yellowtail cultivation, seaweed artificial generation, seafood breeding, red tide prevention. . Medical field Apply to bath water to form a fine bubble bath, promote blood flow, and keep bath water warm.

【0025】[0025]

【発明の効果】本発明の旋回式微細気泡発生装置によれ
ば、微細気泡を工業規模で容易に生成することができ、
かつ比較的小型で簡単な装置構造のための製作が容易で
あり、池、湖沼、ダム、河川等の水質浄化、微生物によ
る汚水処理、魚類、水棲動物等の養殖等に有効に貢献す
るところ大である。
According to the swirl type fine bubble generator of the present invention, fine bubbles can be easily produced on an industrial scale.
It is relatively small and easy to manufacture due to its simple device structure, and it effectively contributes to water purification of ponds, lakes, dams, rivers, etc., sewage treatment by microorganisms, aquaculture of fish, aquatic animals, etc. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理的説明図兼他の実施例装置説明図
である。
FIG. 1 is a principle explanatory view of the present invention and an explanatory view of another embodiment of the apparatus.

【図2】本発明の他の改善された実施例装置の説明図で
ある。
FIG. 2 is an explanatory view of another improved embodiment device of the present invention.

【図3】本発明のさらに他の実施例装置の説明図であ
る。
FIG. 3 is an explanatory view of an apparatus according to still another embodiment of the present invention.

【図4】本発明実施例の旋回式微細気泡発生装置の正面
図である。
FIG. 4 is a front view of a swirl type fine bubble generator according to an embodiment of the present invention.

【図5】同じく、その平面図である。FIG. 5 is a plan view of the same.

【図6】その中央縦断面図(図5のB〜B断面図)であ
る。
FIG. 6 is a central vertical cross-sectional view (cross-sectional view taken along line BB of FIG. 5).

【図7】その下部流通台の横断面図(図4のA〜A断面
図)である。
FIG. 7 is a horizontal cross-sectional view (cross-sectional view taken along line AA of FIG. 4) of the lower distribution table.

【図8】その有蓋円筒体内部のX〜X断面における三重
の旋回流の説明図である。
FIG. 8 is an explanatory diagram of a triple swirling flow in the X-X cross section inside the covered cylindrical body.

【図9】同じくY〜Y断面における旋回昇降流と気体渦
管の説明図である。
FIG. 9 is an explanatory view of a swirling up-and-down flow and a gas vortex tube in the Y-Y section similarly.

【図10】気体渦管における微細気泡発生の説明図であ
る。
FIG. 10 is an explanatory diagram of generation of fine bubbles in a gas vortex tube.

【図11】中央還流口に4箇所の側面放出口を有すると
きの微細気泡発生構造の説明図である。
FIG. 11 is an explanatory diagram of a fine bubble generation structure in which the central return port has four side surface discharge ports.

【図12】図11の第1側面放出口における発生構造の
説明図である。
FIG. 12 is an explanatory diagram of a generation structure in the first side surface emission port of FIG. 11.

【図13】図11の第1側面放出口に隣接する側壁にお
ける発生構造の説明図である。
FIG. 13 is an explanatory diagram of a generation structure on a side wall adjacent to the first side surface emission port of FIG. 11.

【図14】図11の第2側面放出口における発生構造の
説明図である。
FIG. 14 is an explanatory diagram of a generation structure in the second side surface emission port of FIG. 11.

【図15】本発明の中型装置を水中に埋没させ、気体と
して空気を採用して微細気泡を発生させた結果の、気泡
の直径とそれらの発生頻度分布を示したグラフ図であ
る。
FIG. 15 is a graph showing the diameters of bubbles and the distribution frequency of those bubbles as a result of immersing the medium-sized device of the present invention in water and using air as a gas to generate fine bubbles.

【図16】本発明実施例装置の水槽内の設置状態説明図
である。
FIG. 16 is an explanatory view of an installation state in the water tank of the device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 旋回式微細気泡発生装置 、 2 下部流通台、3
円形収容室、 3a 内周面、3b 底
部、 4 有蓋円筒体、4a 周辺
部分、 4b 周辺部分の内側の部分、
4c 中心部分、 5 水液流導入口、
5a 導水管接続具、 6 中央還流口、6
a 側壁、 7 側面放出口、7a
放出口出口、 8 気体自吸管、9 放出
用接続管、 10 導水管、11 ポンプ、
12 流量調整弁、13 水槽、
14 ストレーナ、15 水液、
16 ブローワ、17 給気管、
19 砂利、20 旋回上昇水液流、 21
内側への還流、22 旋回下降水液流、 23
負圧の旋回空洞部、24 気体渦管、 2
4a 気体渦管の上部、24b 気体渦管の下部、
25 切断部、26 自吸気体、 27
溶出気体、28 放出噴流、41 上蓋、
42 直筒形状部分、50,50’ 加圧液体導入
管、 60 旋回気体空洞部、71 第1側面放出口、
72 第2側面放出口、73 第3側面放出口、
74 第4側面放出口、80 気体導入孔、10
0 円錐形のスペース、 101 旋回気液導出口,2
00 バッフル、 300 円錐形スペース底
部、500,500’ 加圧液体導入口、C〜C 中心
軸、 D 旋回流形成方向、Pa 円錐ス
ペース内の旋回液体部内の圧力、Pb 旋回気体部内の
圧力,Pc 気体導入部付近の旋回気体部内の圧力,P
d 出口付近の旋回気体部内の圧力、 Pe 出口部旋回
液体部内の圧力,d1 旋回気液導出口101の口径,d
2 円錐形スペース底部300の口径、d3 気体導入孔8
0の孔径,L 旋回気液導出口101〜円錐形スペース
底部300間の距離,
1 swirl type micro bubble generator, 2 lower distribution stand, 3
Circular accommodating chamber, 3a inner peripheral surface, 3b bottom portion, 4 cylindrical body with lid, 4a peripheral portion, 4b peripheral portion inner portion,
4c central part, 5 water liquid flow inlet,
5a water conduit connection tool, 6 central reflux port, 6
a Side wall, 7 Side discharge port, 7a
Discharge port outlet, 8 gas self-priming pipe, 9 discharge connecting pipe, 10 water pipe, 11 pump,
12 flow control valve, 13 water tank,
14 strainers, 15 water solution,
16 blower, 17 air supply pipe,
19 gravel, 20 swirl rising water flow, 21
Inward reflux, 22 Swirling descent water flow, 23
Negative pressure swirl cavity, 24 Gas vortex tube, 2
4a upper part of gas vortex tube, 24b lower part of gas vortex tube,
25 cutting part, 26 self-air intake body, 27
Elution gas, 28 discharge jet, 41 top lid,
42 straight tubular portion, 50, 50 'pressurized liquid introduction pipe, 60 swirl gas cavity, 71 first side discharge port,
72 second side outlet, 73 third side outlet,
74 fourth side discharge port, 80 gas introduction hole, 10
0 conical space, 101 swirl gas / liquid outlet, 2
00 baffle, 300 conical space bottom, 500,500 'pressurized liquid inlet, C to C central axis, D swirl flow forming direction, Pa pressure in swirling liquid part in conical space, Pb pressure in swirling gas part, Pc Pressure in the swirling gas section near the gas introduction section, P
d Pressure in swirling gas section near outlet, Pe Pressure in swirling liquid section at outlet, d 1 Diameter of swirling gas / liquid outlet 101, d
2 Conical space bottom 300 caliber, d 3 gas introduction hole 8
0 hole diameter, L distance between swirling gas-liquid outlet 101 to conical space bottom 300,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) A61H 23/00 527 A61H 23/00 527 4G037 33/02 33/02 D B01F 3/04 B01F 3/04 C 15/02 15/02 A C02F 3/20 C02F 3/20 Z Fターム(参考) 2B104 CA01 CA03 EB01 EB04 EB20 EF09 4C074 LL01 QQ21 QQ23 4C094 AA01 BB16 BC12 DD14 EE22 GG02 GG03 GG04 4D029 AA01 AB01 BB13 4G035 AB16 AC44 AE13 4G037 AA01 EA01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) A61H 23/00 527 A61H 23/00 527 4G037 33/02 33/02 D B01F 3/04 B01F 3/04 C 15/02 15/02 A C02F 3/20 C02F 3/20 Z F term (reference) 2B104 CA01 CA03 EB01 EB04 EB20 EF09 4C074 LL01 QQ21 QQ23 4C094 AA01 BB16 BC12 DD14 EE22 GG02 GG03 GG04 4D029 AA01 AB35 AB16G16BB0 AA01 EA01

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】円錐形のスペースを有する容器本体と、同
スペースの内壁円周面の一部にその接線方向に開設され
た加圧液体導入口と、前記円錐形のスペース底部に開設
された気体導入孔と、前記円錐形スペースの頂部に開設
された旋回気液導出口とから構成されてなることを特徴
とする旋回式微細気泡発生装置。
1. A container body having a conical space, a pressurized liquid introduction port opened in a tangential direction to a part of a circumferential surface of an inner wall of the space, and a bottom of the conical space. A swirling type fine bubble generating device comprising a gas introducing hole and a swirling gas / liquid outlet opening formed at the top of the conical space.
【請求項2】円錐形のスペースを有する容器本体と、同
スペースの底部付近の内壁円周面の一部にその接線方向
に開設された加圧液体導入口と、前記円錐形のスペース
底部に開設された気体導入孔と、前記円錐形スペースの
頂部に開設された旋回気液導出口とから構成され、旋回
気液導出口の口径(d1)と円錐形のスペース底部の口
径(d2)と旋回気液導出口から円錐形のスペース底部
までの距離(L)の相関関係が、d2/d1=10〜1
5、でかつL=1.5d2〜2.0d2であることを特徴
とする旋回式微細気泡発生装置。
2. A container body having a conical space, a pressurized liquid introduction port opened tangentially to a part of a circumferential surface of an inner wall near the bottom of the space, and a bottom of the conical space. It is composed of an opened gas introduction hole and a swirl gas / liquid outlet port formed at the top of the conical space. The swirl gas / liquid outlet port diameter (d 1 ) and the conical space bottom portion diameter (d 2). ) And the distance (L) from the swirling gas / liquid outlet to the bottom of the conical space is d 2 / d 1 = 10 to 1
5, and L = 1.5d 2 to 2.0d 2 .
【請求項3】円錐台形のスペースを有する容器本体と、
同スペースの内壁円周面の一部にその接線方向に開設さ
れた加圧液体導入口と、前記円錐台形のスペース底部に
開設された気体導入孔と、前記円錐台形スペースの上部
に開設された旋回気液導出口とから構成されてなること
を特徴とする旋回式微細気泡発生装置。
3. A container body having a frustoconical space,
A pressurized liquid introduction port opened in a tangential direction to a part of the inner wall circumferential surface of the same space, a gas introduction hole opened at the bottom of the truncated cone-shaped space, and an upper part of the truncated cone shaped space. A swirl type fine bubble generator, comprising a swirl gas / liquid outlet.
【請求項4】徳利形状又はワインボトル形状のスペース
を有する容器本体と、同スペースの内壁円周面の一部に
その接線方向に開設された加圧液体導入口と、前記徳利
形状又はワインボトル形状のスペース底部に開設された
気体導入孔と、前記徳利形状又はワインボトル形状のス
ペースの頂部に開設された旋回気液導出口とから構成さ
れてなることを特徴とする旋回式微細気泡発生装置。
4. A container body having a space in the shape of a bottle or a bottle of wine, a pressurized liquid inlet opened in a tangential direction on a part of a circumferential surface of an inner wall of the space, and the bottle of bottle or the bottle of wine. A swirl-type micro-bubble generator characterized by comprising a gas introduction hole opened at the bottom of the shaped space and a swirl gas-liquid outlet opened at the top of the bottle-shaped or wine bottle-shaped space. .
【請求項5】スペースの内壁円周面の一部にその接線方
向に開設された加圧液体導入口が、同一曲率の内壁円周
上に間隔を置いて複数個設けられてなることを特徴とす
る請求項1〜4のいずれか1項に記載の旋回式微細気泡
発生装置。
5. A plurality of pressurized liquid inlets opened in a tangential direction on a part of a circumferential surface of the inner wall of the space are provided at intervals on the circumference of the inner wall having the same curvature. The swirl type fine bubble generator according to any one of claims 1 to 4.
【請求項6】スペースの内壁円周面の一部にその接線方
向に開設された加圧液体導入口が、異なる曲率の内壁円
周上に間隔を置いて複数個設けられてなることを特徴と
する請求項1〜5のいずれか1項に記載の旋回式微細気
泡発生装置。
6. A plurality of pressurized liquid inlets, which are opened in a tangential direction on a part of the inner circumferential surface of the space, are provided at intervals on the inner circumferential surface having different curvatures. The swirl type fine bubble generator according to any one of claims 1 to 5.
【請求項7】加圧液体導入口が、前記スペースの底部付
近の内壁円周面の一部に開設されてなることを特徴とす
る請求項1〜6のいずれか1項に記載の旋回式微細気泡
発生装置。
7. The swirl type according to claim 1, wherein the pressurized liquid introduction port is formed in a part of the inner wall circumferential surface near the bottom of the space. Micro bubble generator.
【請求項8】加圧液体導入口が、前記スペースの中腹部
付近の内壁円周面の一部に開設されてなることを特徴と
する請求項1〜7のいずれか1項に記載の旋回式微細気
泡発生装置。
8. The swirl according to claim 1, wherein the pressurized liquid introduction port is formed in a part of a circumferential surface of the inner wall near the middle abdomen of the space. Micro bubble generator.
【請求項9】旋回気液導出口の直前部にバッフルを配設
してなることを特徴とする請求項1〜8のいずれか1項
に記載の旋回式微細気泡発生装置。
9. The swirl type fine bubble generating apparatus according to claim 1, wherein a baffle is arranged immediately in front of the swirl gas / liquid outlet.
【請求項10】円錐形のスペースを有する容器本体と、
同スペースの内壁円周面の一部にその接線方向に開設さ
れた加圧液体導入口と、前記円錐形のスペース底部に開
設された気体導入孔と、前記円錐形スペースの頂部に開
設された旋回気液導出口とから微細気泡発生装置を構成
し、前記円錐形スペース内で伸長、先細りさせながら旋
回導出する気体渦管の形成を第1過程とし、その気体渦
管の前後の間で旋回速度差を発生させ、強制的に気体渦
管を切断させることによる微細気泡の発生を第2過程と
することを特徴とする旋回式微細気泡発生方法。
10. A container body having a conical space,
A pressurized liquid introduction port opened in a tangential direction on a part of the inner circumferential surface of the space, a gas introduction hole opened at the bottom of the conical space, and a top of the conical space. A fine bubble generator is composed of a swirling gas / liquid outlet, and the first step is the formation of a gas vortex tube that is swirled out while expanding and tapering in the conical space, and swirling between the front and rear of the gas vortex tube. A swirl type fine bubble generating method, characterized in that a second step is generation of fine bubbles by forcibly cutting the gas vortex tube by generating a speed difference.
【請求項11】円錐形のスペースを有する容器本体と、
同スペースの底部付近の内壁円周面の一部にその接線方
向に開設された加圧液体導入口と、前記円錐形のスペー
ス底部に開設された気体導入孔と、前記円錐形スペース
の頂部に開設された旋回気液導出口とから微細気泡発生
装置を構成し、前記円錐形スペース内で伸長、先細りさ
せながら旋回導出する気体渦管の形成を第1過程とし、
その気体渦管の前後の間で旋回速度差を発生させ、強制
的に気体渦管を切断させることによる微細気泡の発生を
第2過程とすることを特徴とする旋回式微細気泡発生方
法。
11. A container body having a conical space,
At the part of the inner wall circumferential surface near the bottom of the space, a pressurized liquid introduction port opened in the tangential direction thereof, a gas introduction hole opened at the bottom of the conical space, and at the top of the conical space. A fine bubble generating device is constituted from the opened swirling gas / liquid outlet, and the first step is the formation of a gas vortex tube which is swirled out while being expanded and tapered in the conical space,
A swirl type fine bubble generating method, characterized in that a swirl type fine bubble generating method is characterized in that a second step is generation of fine bubbles by forcibly cutting the gas swirl tube by generating a swirl velocity difference between the front and rear of the gas swirl tube.
JP2002263430A 1997-12-30 2002-09-09 Swivel type micro bubble generator Expired - Lifetime JP4525890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263430A JP4525890B2 (en) 1997-12-30 2002-09-09 Swivel type micro bubble generator

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP37046597 1997-12-30
JP9-370465 1997-12-30
BR9904494-3A BR9904494A (en) 1997-12-30 1999-07-07 Vortex-type micro-bubble generation system
AU38010/99A AU770174B2 (en) 1999-07-07 1999-07-07 Swirling type micro-bubble generating system
SG9903311A SG93836A1 (en) 1997-12-30 1999-07-07 Swirling type micro-bubble generating system
NZ336632A NZ336632A (en) 1997-12-30 1999-07-07 micro-bubble generating apparatus with a conical shaped vessel
JP2002263430A JP4525890B2 (en) 1997-12-30 2002-09-09 Swivel type micro bubble generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP37849698A Division JP3397154B2 (en) 1997-12-30 1998-12-30 Revolving microbubble generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010052354A Division JP2010155243A (en) 1997-12-30 2010-03-09 Swirling type fine-bubble generating system

Publications (2)

Publication Number Publication Date
JP2003205228A true JP2003205228A (en) 2003-07-22
JP4525890B2 JP4525890B2 (en) 2010-08-18

Family

ID=28458029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263430A Expired - Lifetime JP4525890B2 (en) 1997-12-30 2002-09-09 Swivel type micro bubble generator

Country Status (1)

Country Link
JP (1) JP4525890B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035782A1 (en) * 2004-09-28 2006-04-06 Tashizen Techno Works Co., Ltd. Fine-bubble generator, and foot-bathing apparatus and bathing device with the same
JP2006116365A (en) * 2004-09-27 2006-05-11 Nanoplanet Kenkyusho:Kk Revolving type fine air bubble generator and fine air bubble generating method
JP2006150049A (en) * 2004-10-26 2006-06-15 Tashizen Techno Works:Kk Bathing appliance
WO2006075452A1 (en) * 2005-01-13 2006-07-20 National University Corporation University Of Tsukuba Microbubble producing device, vortex breaking nozzle for microbubble producing device, spiral flow producing blade body for microbubble producing device, microbubble producing method, and microbubble applied device
JP2006320509A (en) * 2004-09-28 2006-11-30 Tashizen Techno Works:Kk Foot-bathing apparatus
JP2007111616A (en) * 2005-10-19 2007-05-10 Sharp Corp Fine air-bubble generating device
JP2007136409A (en) * 2005-11-22 2007-06-07 Sharp Corp Water treatment method and water treatment apparatus
JP2007301281A (en) * 2006-05-15 2007-11-22 Toho Gas Co Ltd Fine bubble generator and hot-water supply apparatus for bath
JP2008022740A (en) * 2006-07-19 2008-02-07 Graduate School For The Creation Of New Photonics Industries Seaweed cultivation device and seaweed cultivation method
JP2008079895A (en) * 2006-09-28 2008-04-10 Sharp Corp Micro-nanobubble bathtub water production method and micro-nanobubble bathtub
JP2008119600A (en) * 2006-11-13 2008-05-29 Suido Kiko Kaisha Ltd Method for mixing powder and powder mixer
JP2008142592A (en) * 2006-12-07 2008-06-26 Yokota Seisakusho:Kk Micro bubble generator
JP2008272723A (en) * 2007-04-26 2008-11-13 Miike Iron Works Co Ltd Atomized material-containing water production method and device, and method for using produced atomized material-containing water
JP2009247950A (en) * 2008-04-03 2009-10-29 Univ Of Tsukuba Vortical current-type microbubble generator and pressure shut-off nozzle
WO2010095427A1 (en) 2009-02-17 2010-08-26 株式会社日本触媒 Polyacrylic acid-based water-absorbing resin powder and method for producing the same
WO2011025069A1 (en) * 2009-08-28 2011-03-03 株式会社ナノプラネット研究所 Method for manufacturing ammonia and an ammonium compound
JP2011115674A (en) * 2009-11-30 2011-06-16 Miike Iron Works Co Ltd Micronization mixer
WO2011078298A1 (en) 2009-12-24 2011-06-30 株式会社日本触媒 Water-absorbable polyacrylic acid resin powder, and process for production thereof
WO2011136295A1 (en) * 2010-04-28 2011-11-03 株式会社多自然テクノワークス Micro-bubble generator and micro-bubble generation device using same
KR101168330B1 (en) 2010-06-17 2012-07-24 강정우 Device for making ozonic nano buble with applying pressure
JP2012213775A (en) * 2012-07-17 2012-11-08 Miike Iron Works Co Ltd Apparatus for manufacturing miniaturized object-containing water and method for use of manufactured miniaturized object-containing water
JP2012250176A (en) * 2011-06-03 2012-12-20 Kri Inc Nozzle for generating micro air bubbles
JP2013081944A (en) * 2013-02-08 2013-05-09 Miike Iron Works Co Ltd Fining mixer
JP2013113453A (en) * 2011-11-25 2013-06-10 Mitsubishi Electric Corp Bath water heater
US8678356B2 (en) 2007-05-22 2014-03-25 Kabushiki Kaisha Toshiba Microbubble generating apparatus and method
JP2014168761A (en) * 2013-03-05 2014-09-18 Mitsubishi Electric Corp Gas and liquid mixing device and bath hot water supply device
JP2014223627A (en) * 2014-07-30 2014-12-04 三菱電機株式会社 Fine bubble generation device
JP2014231046A (en) * 2013-05-29 2014-12-11 株式会社アースリンク Generation method of micro-nanobubble, generator of micro-nanobubble and generation device of micro-nanobubble
US8939436B2 (en) 2010-07-07 2015-01-27 Taikohgiken Yuugen Kaisha Microbubble-generating apparatus
JP2015188751A (en) * 2014-03-27 2015-11-02 株式会社ハナダ Carbonated spring water production device
CN110563131A (en) * 2019-08-29 2019-12-13 浙江聚源环保科技有限公司 MBR membrane aerator, MBR membrane aeration device and MBR membrane sewage treatment equipment
CN114467833A (en) * 2021-12-24 2022-05-13 何雷 Thing flow box is used in aquatic products transportation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2484229A1 (en) 2011-02-07 2012-08-08 Project Japan Inc. Liquid seasoning, beverages, method of seasoning food, and seasoned food
JP5749194B2 (en) 2012-02-21 2015-07-15 三菱電機株式会社 Bath water heater
CN110479127B (en) * 2019-07-18 2020-09-29 中国矿业大学 Micro-nano bubble generating device and method for generating micro-nano bubbles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486211B1 (en) * 1969-07-12 1973-02-23
JPS5128865U (en) * 1974-08-27 1976-03-02
JPS5182451A (en) * 1974-12-27 1976-07-20 Mitsubishi Precision Co Ltd Ryutaibunsanhoho
JPS5924199U (en) * 1982-08-01 1984-02-15 株式会社富士電機総合研究所 air diffuser
JPH04126542A (en) * 1990-09-17 1992-04-27 Nomura Denshi Kogyo Kk Bubbler
JP2003181259A (en) * 1997-12-30 2003-07-02 Hirobumi Onari Swirling type fine bubble formation method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486211B1 (en) * 1969-07-12 1973-02-23
JPS5128865U (en) * 1974-08-27 1976-03-02
JPS5182451A (en) * 1974-12-27 1976-07-20 Mitsubishi Precision Co Ltd Ryutaibunsanhoho
JPS5924199U (en) * 1982-08-01 1984-02-15 株式会社富士電機総合研究所 air diffuser
JPH04126542A (en) * 1990-09-17 1992-04-27 Nomura Denshi Kogyo Kk Bubbler
JP2003181259A (en) * 1997-12-30 2003-07-02 Hirobumi Onari Swirling type fine bubble formation method and apparatus

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116365A (en) * 2004-09-27 2006-05-11 Nanoplanet Kenkyusho:Kk Revolving type fine air bubble generator and fine air bubble generating method
JPWO2006035782A1 (en) * 2004-09-28 2008-05-15 株式会社 多自然テクノワークス Fine bubble generator, foot bath device using the same, bath equipment
JP2006320509A (en) * 2004-09-28 2006-11-30 Tashizen Techno Works:Kk Foot-bathing apparatus
WO2006035782A1 (en) * 2004-09-28 2006-04-06 Tashizen Techno Works Co., Ltd. Fine-bubble generator, and foot-bathing apparatus and bathing device with the same
US7832028B2 (en) 2004-09-28 2010-11-16 Tashizen Techno Works Co., Ltd. Fine-bubble generator, and foot-bathing apparatus and bathing device with the same
JP2006150049A (en) * 2004-10-26 2006-06-15 Tashizen Techno Works:Kk Bathing appliance
WO2006075452A1 (en) * 2005-01-13 2006-07-20 National University Corporation University Of Tsukuba Microbubble producing device, vortex breaking nozzle for microbubble producing device, spiral flow producing blade body for microbubble producing device, microbubble producing method, and microbubble applied device
US7997563B2 (en) 2005-01-13 2011-08-16 National University Corporation University Of Tsukuba Micro-bubble generator, vortex breakdown nozzle for micro-bubble generator, vane swirler for micro-bubble generator, micro-bubble generating method, and micro-bubble applying device
JPWO2006075452A1 (en) * 2005-01-13 2008-06-12 国立大学法人 筑波大学 Microbubble generator, vortex breaking nozzle for microbubble generator, wing body for swirl flow generation for microbubble generator, microbubble generating method and microbubble application apparatus
JP2007111616A (en) * 2005-10-19 2007-05-10 Sharp Corp Fine air-bubble generating device
JP4490904B2 (en) * 2005-11-22 2010-06-30 シャープ株式会社 Water treatment equipment
JP2007136409A (en) * 2005-11-22 2007-06-07 Sharp Corp Water treatment method and water treatment apparatus
JP2007301281A (en) * 2006-05-15 2007-11-22 Toho Gas Co Ltd Fine bubble generator and hot-water supply apparatus for bath
JP2008022740A (en) * 2006-07-19 2008-02-07 Graduate School For The Creation Of New Photonics Industries Seaweed cultivation device and seaweed cultivation method
JP2008079895A (en) * 2006-09-28 2008-04-10 Sharp Corp Micro-nanobubble bathtub water production method and micro-nanobubble bathtub
US8205277B2 (en) 2006-09-28 2012-06-26 Sharp Kabushiki Kaisha Manufacturing method for micro-nano bubble bathtub water and micro-nano bubble bathtub
JP2008119600A (en) * 2006-11-13 2008-05-29 Suido Kiko Kaisha Ltd Method for mixing powder and powder mixer
JP2008142592A (en) * 2006-12-07 2008-06-26 Yokota Seisakusho:Kk Micro bubble generator
JP2008272723A (en) * 2007-04-26 2008-11-13 Miike Iron Works Co Ltd Atomized material-containing water production method and device, and method for using produced atomized material-containing water
US8678356B2 (en) 2007-05-22 2014-03-25 Kabushiki Kaisha Toshiba Microbubble generating apparatus and method
JP2009247950A (en) * 2008-04-03 2009-10-29 Univ Of Tsukuba Vortical current-type microbubble generator and pressure shut-off nozzle
WO2010095427A1 (en) 2009-02-17 2010-08-26 株式会社日本触媒 Polyacrylic acid-based water-absorbing resin powder and method for producing the same
JP2011068555A (en) * 2009-08-28 2011-04-07 Nanoplanet Kenkyusho:Kk Process for producing ammonia and ammonium compound
WO2011025069A1 (en) * 2009-08-28 2011-03-03 株式会社ナノプラネット研究所 Method for manufacturing ammonia and an ammonium compound
JP2011115674A (en) * 2009-11-30 2011-06-16 Miike Iron Works Co Ltd Micronization mixer
WO2011078298A1 (en) 2009-12-24 2011-06-30 株式会社日本触媒 Water-absorbable polyacrylic acid resin powder, and process for production thereof
WO2011136295A1 (en) * 2010-04-28 2011-11-03 株式会社多自然テクノワークス Micro-bubble generator and micro-bubble generation device using same
JP5785158B2 (en) * 2010-04-28 2015-09-24 株式会社 多自然テクノワークス Microbubble generator
KR101168330B1 (en) 2010-06-17 2012-07-24 강정우 Device for making ozonic nano buble with applying pressure
US8939436B2 (en) 2010-07-07 2015-01-27 Taikohgiken Yuugen Kaisha Microbubble-generating apparatus
JP2012250176A (en) * 2011-06-03 2012-12-20 Kri Inc Nozzle for generating micro air bubbles
JP2013113453A (en) * 2011-11-25 2013-06-10 Mitsubishi Electric Corp Bath water heater
JP2012213775A (en) * 2012-07-17 2012-11-08 Miike Iron Works Co Ltd Apparatus for manufacturing miniaturized object-containing water and method for use of manufactured miniaturized object-containing water
JP2013081944A (en) * 2013-02-08 2013-05-09 Miike Iron Works Co Ltd Fining mixer
JP2014168761A (en) * 2013-03-05 2014-09-18 Mitsubishi Electric Corp Gas and liquid mixing device and bath hot water supply device
JP2014231046A (en) * 2013-05-29 2014-12-11 株式会社アースリンク Generation method of micro-nanobubble, generator of micro-nanobubble and generation device of micro-nanobubble
JP2015188751A (en) * 2014-03-27 2015-11-02 株式会社ハナダ Carbonated spring water production device
JP2014223627A (en) * 2014-07-30 2014-12-04 三菱電機株式会社 Fine bubble generation device
CN110563131A (en) * 2019-08-29 2019-12-13 浙江聚源环保科技有限公司 MBR membrane aerator, MBR membrane aeration device and MBR membrane sewage treatment equipment
CN114467833A (en) * 2021-12-24 2022-05-13 何雷 Thing flow box is used in aquatic products transportation

Also Published As

Publication number Publication date
JP4525890B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
JP3397154B2 (en) Revolving microbubble generator
JP2003205228A (en) Turning type fine bubbles production apparatus
JP4420161B2 (en) Method and apparatus for generating swirling fine bubbles
US6382601B1 (en) Swirling fine-bubble generator
JP2010155243A (en) Swirling type fine-bubble generating system
JP4725707B2 (en) Swivel type fine bubble generator and bubble generation method
JP4869922B2 (en) Fine bubble generator
KR100843970B1 (en) Apparatus of generating microbubble
US5770062A (en) Device for aiding the solubilization of gases in liquids
WO2001097958A1 (en) Fine air bubble generator and fine air bubble generating device with the generator
JP2003145190A (en) Aerator
JPWO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilization system
EP1670574B1 (en) Method and apparatus for mixing of two fluids
JPH11333491A (en) Microbubble jet water purifying apparatus
JP2003117368A (en) Gas-liquid or liquid-liquid mixer, mixing apparatus, method of manufacturing mixed liquid and method of manufacturing fine bubble-containing liquid
JP2002059186A (en) Water-jet type fine bubble generator
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JP2003181259A (en) Swirling type fine bubble formation method and apparatus
AU770174B2 (en) Swirling type micro-bubble generating system
JPH05146796A (en) Device for purifying closed natural water area
WO2002002216A1 (en) Method and device for feeding fine bubbles
JPH09314190A (en) Closed water area sewage cleaning device and process therefor
JPH05146792A (en) Waste water treating device
JP2002263459A (en) Gas suction amount confirmation device and fine bubble generator equipped with the same device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term