JP2008272723A - Atomized material-containing water production method and device, and method for using produced atomized material-containing water - Google Patents

Atomized material-containing water production method and device, and method for using produced atomized material-containing water Download PDF

Info

Publication number
JP2008272723A
JP2008272723A JP2007141038A JP2007141038A JP2008272723A JP 2008272723 A JP2008272723 A JP 2008272723A JP 2007141038 A JP2007141038 A JP 2007141038A JP 2007141038 A JP2007141038 A JP 2007141038A JP 2008272723 A JP2008272723 A JP 2008272723A
Authority
JP
Japan
Prior art keywords
water
refined
containing water
water flow
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007141038A
Other languages
Japanese (ja)
Other versions
JP5291302B2 (en
Inventor
Yoshikazu Kobayashi
由和 小林
Etsuo Ishii
悦男 石井
Masahide Hayashi
政秀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miike Inc
Original Assignee
Miike Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miike Inc filed Critical Miike Inc
Priority to JP2007141038A priority Critical patent/JP5291302B2/en
Publication of JP2008272723A publication Critical patent/JP2008272723A/en
Application granted granted Critical
Publication of JP5291302B2 publication Critical patent/JP5291302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/33Wastewater or sewage treatment systems using renewable energies using wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Disintegrating Or Milling (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device which solve the problem that the conventional atomization using a mill cannot perform atomization at the micro or nano level to relatively easily enable the atomization at the micro or nano level. <P>SOLUTION: Two or more water flows 34 of which at least one contains particulates collide with each other to atomize the particulates. Both water flows collide with each other at a speed equal to a sum of their flow speeds. Impact by the collision is several to several ten times larger than impact generated when one water flow alone collide with a stationary surface, which provides maximum impact to each water flow to atomize the particulates in the water flow. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微細化物含有水の製造方法及び製造装置に関し、より詳細には水流を衝突させる手法により簡単かつ確実に微細化物含有水を製造する方法及び装置、及び製造した微細化物含有水の使用方法に関する。  The present invention relates to a method and an apparatus for producing refined product-containing water, and more specifically, a method and an apparatus for producing refined product-containing water simply and reliably by a method of colliding water streams, and use of the produced refined product-containing water. Regarding the method.

現在各種工業において粉粒体(塊状体)が使用されている。この粉粒体は粒径が数ミリに達する物から極微レベルで数個の分子が会合しているものまで幅広い粒径で存在している。
これらの粉粒体は、数ミリの場合はミクロンレベルに、ミクロンレベルの場合はナノレベルまで微細化することが望ましい場合が多い。
例えば活性汚泥法による汚水処理の場合、塊状の活性汚泥(微生物)を曝気槽で汚水と接触させて、汚水中の汚濁物質を消化して汚水の浄化が行われる。この場合、前記塊状の活性汚泥(微生物)が会合せずに微細化されその径が小さいほど、微生物と汚濁物質の接触効率が向上して汚水浄化が促進される。
At present, various granular materials (lumps) are used in various industries. These powders exist in a wide range of particle sizes, from those having a particle size of several millimeters to those in which several molecules are associated at a microscopic level.
In many cases, it is desirable to refine these granular materials to the micron level in the case of several millimeters and to the nano level in the case of the micron level.
For example, in the case of sewage treatment by the activated sludge method, a lump of activated sludge (microorganisms) is brought into contact with sewage in an aeration tank, and the pollutant in the sewage is digested to purify the sewage. In this case, as the activated sludge (microorganisms) in the form of a mass is refined without associating and the diameter thereof is smaller, the contact efficiency between the microorganisms and the pollutant is improved and sewage purification is promoted.

従来の活性汚泥法では、曝気槽内を攪拌して微生物と汚濁物質の接触効率を向上させることを意図しているが、攪拌だけでは活性汚泥自体には殆ど変化が生じることがなく、処理効率に僅かな改良が見られるにすぎない。
活性汚泥法以外の各種排水処理方法でも、排水中の汚濁物質は塊状体又は粉粒体として存在していることが多く、この塊状体又は粉粒体をより微細化できれば、排水浄化はより簡便に行うことができる。
The conventional activated sludge method is intended to improve the contact efficiency between microorganisms and pollutants by agitating the inside of the aeration tank. However, the agitation alone hardly changes the activated sludge itself, and the processing efficiency is improved. There is only a slight improvement.
Even in various wastewater treatment methods other than the activated sludge method, the pollutants in the wastewater often exist as lumps or granules, and if the lumps or granules can be further refined, drainage purification is easier. Can be done.

更に塊状の原料物質を使用して各種化学物質を製造するプラントでは、塊状の原料物質を粉粒体まで粉砕し、溶媒に溶解又は懸濁させ、更にこの溶媒に他の反応物質を添加し、攪拌することにより所定の化学反応を進行させるようにしている。
しかし通常の粉砕では微細化に限度があり、前記化学プラントでは長時間加熱攪拌して原料溶解を行いかつ反応を進行させなければならず、時間とコストのロスになっている。前記原料の粉砕を更に微細なレベルまで行えれば、低加熱及び短時間で反応を進行させることができるが、現状では適切な粉砕手段がなく、長時間加熱が必須になっている。
Furthermore, in a plant that uses a bulk material to produce various chemical substances, the bulk material is pulverized into powder, dissolved or suspended in a solvent, and other reactants are added to the solvent. A predetermined chemical reaction is allowed to proceed by stirring.
However, there is a limit to miniaturization in normal pulverization, and in the chemical plant, it is necessary to heat and stir for a long time to dissolve the raw material and advance the reaction, which is a loss of time and cost. If the raw material can be pulverized to a finer level, the reaction can proceed with low heating and in a short time. However, at present, there is no appropriate pulverizing means, and heating for a long time is essential.

又マンションやオフィスビルなどの建物では給水や冷暖気の循環のための配管が内壁、床、天井などに配設されている。これらの配管を長期間使用し続けると、その内面が腐食して配管内の水や気体が汚染されることがある。これらを防止するためには、前記配管内面に防錆用被膜を被覆形成すれば良いが、長い配管内面に被膜形成を行うことは困難であり、被膜形成は実際上、行われていない。
更に石油タンカーの空になった油槽にはバラスト水が満たされてタンカーのバランスを調整して、タンカーの運行の安全が図られている。この油槽の内面は汚濁物質を多く含んだ原油で汚染され易く、又原油と置換されるバラスト水は海水が使用され、塩や藻類による前記油槽内面の腐食や汚染が起こり、それらの対策が要請されている。
In buildings such as condominiums and office buildings, piping for circulating water and cooling / heating air is arranged on the inner wall, floor, ceiling, and the like. If these pipes are used for a long period of time, the inner surface of the pipes may corrode and contaminate water and gas in the pipes. In order to prevent these, a rust-preventing coating may be formed on the inner surface of the pipe, but it is difficult to form a coating on the inner surface of a long pipe, and the coating is not actually formed.
Furthermore, oil tankers that have been emptied are filled with ballast water to adjust the balance of the tankers, thereby ensuring safe operation of the tankers. The inner surface of this oil tank is easily contaminated with crude oil containing a large amount of pollutants, and seawater is used as ballast water to replace crude oil, causing corrosion and contamination of the inner surface of the oil tank due to salt and algae. Has been.

例えば特許文献1には、バラスト水で衝撃を与えて微生物や細菌を微細化することは開示されているが、バラスト水や原油による油槽の汚染あるいは汚染の防止についての開示はない。
更に食用ソースは香辛料等の粉粒体を多く含んでいるが、これらの成分をより微細化できれば成分が分散した嗜好性に優れたソースを提供できる。従来のソースの粉粒体を更に微細化すること自体は比較的容易であるが、ソースは比較的安価な商品であり、微細化のために多くの手間と高コストを掛けることはできない。
特開2005−271648号公報
For example, Patent Document 1 discloses that microbes and bacteria are refined by applying an impact with ballast water, but there is no disclosure about contamination of an oil tank or prevention of contamination by ballast water or crude oil.
Furthermore, the edible sauce contains a large amount of spices and other powders, but if these components can be further refined, a sauce with excellent taste in which the components are dispersed can be provided. Although it is relatively easy to further refine the conventional source powder and granule itself, the sauce is a relatively inexpensive product, and much effort and high cost cannot be taken for the refinement.
JP 2005-271648 A

塊状体や粉粒体の微細化に関しては、各種ミルによる粉砕が殆どであり、ミルにより粉砕では、微細化に限界があり、ある程度以上の微細化は不可能であった。特にミクロンレベルやナノレベルの粉砕を行うことはできない。
このように塊状体や粉粒体の高度の微細化が要請されているにも拘らず、従来の微細化法は当該要請には応えられていない。
従って本発明は、比較的簡単に塊状体や粉粒体を高度に微細化できる方法と装置、及びこれにより得られた微細化物含有水を処理する方法を提供することを目的とする。
As for the refinement of the lump or powder, the pulverization by various mills is almost all, and the pulverization by the mill has a limit in the miniaturization, and the miniaturization beyond a certain level is impossible. In particular, crushing at the micron or nano level cannot be performed.
In spite of the demand for highly miniaturized lump bodies and powder particles, the conventional miniaturization method does not meet the demand.
Accordingly, an object of the present invention is to provide a method and an apparatus capable of highly refining a lump or powder and a method for treating the water containing the refined product obtained thereby.

本発明方法は、少なくとも一本が微細化する粉粒体を有する2以上の水流を衝突させることにより前記粉粒体を微細化することを特徴とする微細化物含有水の製造方法であり、本発明装置は、円筒体の先端側を半球状に成形しその中央に小孔を形成し、前記2個の小孔を対向させて直線状に配置した2本の供給管と、当該前記2本の供給管のそれぞれの基端側に形成された、接線方向から微細化する粉粒体を有する水流を供給する水流供給口、及び水流取出口を含んで成ることを特徴とする微細化物含有水の製造装置である。
このようにして得られる微細化物含有水は、例えば微細化した還元剤を有する還元剤含有水として配管内面やタンカーの油槽内面に還元剤被覆膜を形成するために使用できる。更に本発明装置や方法は、活性汚泥法において活性汚泥や殺菌対象を微細化し、更に排水中の汚濁物質を微細化して、それぞれ処理効率を向上させるために使用できる。又化学プラント等における化学物質の溶解促進にも利用できる。
The method of the present invention is a method for producing refined product-containing water, characterized in that the particulate material is refined by colliding two or more water streams having at least one refined particulate material. The inventing device has two supply pipes which are formed in a hemispherical shape on the tip side of a cylindrical body, a small hole is formed in the center thereof, and the two small holes are opposed to each other and arranged linearly, and the two A water supply port for supplying a water flow having a granular material that refines from the tangential direction, formed on the base end side of each of the supply pipes, and a water containing a refined matter, It is a manufacturing apparatus.
The refined product-containing water thus obtained can be used, for example, as a reducing agent-containing water having a refined reducing agent in order to form a reducing agent coating film on the inner surface of the pipe or the oil tank inner surface of the tanker. Furthermore, the apparatus and method of the present invention can be used to refine the activated sludge and the sterilization target in the activated sludge method, further refine the contaminants in the waste water, and improve the treatment efficiency. It can also be used to promote dissolution of chemical substances in chemical plants.

以下本発明を詳細に説明する。
本発明では、少なくとも一本が微細化する粉粒体を有する2本以上の水流を衝突させる。これにより前記粉粒体同士が互いに衝突し、あるいは前記粉粒体が高速水流と衝突して微細化される。なお本発明では従来の塊状体と粉粒体を合わせて「粉粒体」と称し、この粉粒体の微細化前の粒径は通常数十ナノメートルから数センチである。本発明は、特に既に微細化されている粉粒体を更に微細化することを意図している。
The present invention will be described in detail below.
In the present invention, two or more water streams each having at least one granular material to be refined are collided. Thereby, the said granular material collides with each other, or the said granular material collides with a high-speed water flow, and is refined | miniaturized. In the present invention, the conventional lump and powder are collectively referred to as “powder”, and the particle size of the powder before refining is usually several tens of nanometers to several centimeters . In particular, the present invention intends to further refine a granular material that has already been refined.

本発明では、このように少なくとも1本が粉粒体を有する複数の水流を衝突させる。水流の数は2本として、互いに180°で衝突させること、つまり正面衝突させることが望ましい。これにより両水流が両水流の流速の和に等しい速度で衝突し、その衝撃は単独の水流が静止面に衝突する際の数倍から十数倍に達し、各水流に最大限の衝撃が与えられ、水流中の粉粒体が微細化し、微細化された物質が水溶性である場合には水流中への溶解が促進される。  In the present invention, a plurality of water streams each having at least one granular material are caused to collide with each other. It is desirable that the number of water streams be two and that they collide with each other at 180 °, that is, frontal collision. As a result, both water streams collide at a speed equal to the sum of the flow velocities of both water streams, and the impact reaches several to ten times that when a single water stream collides with a stationary surface, giving each water stream the maximum impact. In the case where the granular material in the water stream is refined and the refined substance is water-soluble, dissolution in the water stream is promoted.

前記水流の本数や衝突角度はこれに限定されず、3本の水流を120°で衝突させたり、4本の水流を90°で衝突させたりすることも可能であり、更に2本の水流を180°以外の角度で衝突させることも可能である。いずれの場合でも、粉粒体を有する水流が静止面に衝突する場合よりかなり大きな衝撃が各水流に与えられ、粉粒体の微細化が促進される。  The number of water streams and the collision angle are not limited to this, and three water streams can collide with each other at 120 °, or four water streams can collide with each other at 90 °. It is also possible to collide at an angle other than 180 °. In any case, a considerably larger impact is given to each water stream than when the water stream having the granular material collides with the stationary surface, and the refinement of the granular material is promoted.

本発明における2本以上の水流は可能な限り速い速度で衝突することが望ましい。そのためには、衝突直前に小径の孔やスリットを通過させることが望ましい。
しかし単に速度を最大限に増加させるのではなく、2本の水流の場合、両水流の性質に僅かに差異を生じさせても良く、例えば一方の流速を他方より遅くしたり、両水流中の粉粒体の粒径を異ならせたりすることができる。大径の粉粒体と小径の粉粒体が衝突すると、両者のバランスが崩れて微細化が進行しやすくなると推測できる。
It is desirable that two or more water streams in the present invention collide at the fastest possible speed. For this purpose, it is desirable to pass a small-diameter hole or slit immediately before the collision.
However, rather than simply increasing the speed to the maximum, in the case of two water streams, the characteristics of both water streams may be slightly different, for example, one flow rate may be slower than the other, The particle size of the powder particles can be varied. When a large-diameter granular material and a small-diameter granular material collide, it can be estimated that the balance between the two is lost and miniaturization easily proceeds.

前記水流は、2本の直線状の円筒体の各一方端を対向させて直線状に配置し、前記2本の管の他端側からポンプで水流を送り込み、前記対向端側で衝突させても良いが、この方法では高速な水流を得にくい。従って本発明の微細化物含有水の製造装置は次の形態を有することが望ましい。
つまり比較的大径の円筒体の先端側を半球状に成形しその中央に小孔を形成した供給管2本を、前記2個の小孔を対向させて直線状に配置し、前記2本の供給管のそれぞれの基端側に接線方向から、粉粒体を有する水流を供給することが望ましい。これらの水流は旋回しながら供給管の内壁に接触し先端側に向けて加速しながら移動して前記小孔から高速で噴出し、対向する小孔から噴出した2本の水流が両小孔間の空間で衝突して、互いに激しい衝撃を与え合う。
The water flow is arranged in a straight line with one end of two linear cylinders facing each other, the water flow is sent from the other end side of the two pipes by a pump, and collided on the opposite end side. However, it is difficult to obtain a high-speed water flow with this method. Accordingly, it is desirable that the refined product-containing water production apparatus of the present invention has the following configuration.
That is, two supply pipes in which the distal end side of a relatively large diameter cylindrical body is formed in a hemispherical shape and a small hole is formed in the center thereof are arranged in a straight line with the two small holes facing each other, and the two It is desirable to supply a water stream having powder particles from the tangential direction to each base end side of the supply pipe. These water flows swirl while contacting the inner wall of the supply pipe, move while accelerating toward the tip side, and are ejected from the small holes at high speed, and the two water streams ejected from the opposing small holes are between the small holes. Colliding in each other's space and giving each other a violent impact.

前記円筒体はその内壁を先端以外が等径になるよう成形しても良いが、基端側から先端側に向けて内向き傾斜させておくと、加速が促進され、より高速で水流同士の衝突が実現する。
この衝撃により前述した通り、水流中の粉粒体が微細化される。
The cylindrical body may be formed so that the inner wall of the cylindrical body has the same diameter except for the tip, but if it is inclined inward from the base end side toward the tip end, acceleration is promoted, and the water flows at a higher speed. A collision is realized.
As described above, this impact refines the granular material in the water flow.

このように得られる微細化物含有水は水流取出口から装置外に取り出されるが、この水流取出口に1又は2以上の通孔を有する邪魔板を設置しても良い。この邪魔板は、水流取出しの抵抗となり、水流を前記小孔間の空間に長時間滞留させることができる。
これとは逆に、邪魔板を設置した前記水流取出口からポンプ等で吸引して微細化物含有水を取出しても良い。
このような構成の装置を使用すると、前述した通り、原料の粉粒体より微細化した粉粒体を有する微細化物含有水が得られる。
The refined product-containing water obtained in this way is taken out of the apparatus from the water outlet, but a baffle plate having one or more through holes may be installed at the water outlet. This baffle plate provides resistance to water flow extraction, and the water flow can be retained in the space between the small holes for a long time.
On the contrary, the water containing fines may be taken out by sucking with a pump or the like from the water flow outlet provided with the baffle plate.
If the apparatus of such a structure is used, as above-mentioned, the refined material containing water which has the granular material refined | miniaturized from the raw material granular material is obtained.

本発明装置の操業に必要なエネルギーは、基本的には水流を生成させて装置本体に供給するエネルギーのみであり、非常に経済的である。
本発明の粉粒体には、(1)排水処理用の活性汚泥又はそれに含まれる汚濁物質、(2)排水に含まれる汚濁物質、(3)下水やし尿に含まれる汚濁物質、(4)化学プラントなどで使用される化学物質、(5)配管内又はタンカーの油槽内に還元被膜を形成するための還元剤、(6)湖沼水、河川水あるいは海水中の汚濁物質、(7)浴場水中の汚濁物質、(8)熱交換器冷却水やボイラー水中の汚濁物質、及び(9)製紙洗浄水中の汚濁物質などがある。但し本発明の粉粒体はこれらに限定されない。
The energy required for the operation of the apparatus of the present invention is basically only energy that generates a water flow and supplies it to the apparatus body, which is very economical.
The granular material of the present invention includes (1) activated sludge for wastewater treatment or pollutants contained therein, (2) pollutants contained in wastewater, (3) pollutants contained in sewage and urine, (4) Chemical substances used in chemical plants, etc. (5) Reducing agents for forming reduced coatings in pipes or tanker oil tanks, (6) Pollutants in lake water, river water or seawater, (7) Bathhouses There are pollutants in water, (8) pollutants in heat exchanger cooling water and boiler water, and (9) pollutants in papermaking washing water. However, the granular material of the present invention is not limited to these.

(1)の活性汚泥又はそれに含まれる汚濁物質が粉粒体である場合には、例えば処理ライン中の曝気槽に前記微細化物含有水製造装置本体を沈めておく。前記曝気槽に供給される排水(廃水)には、雑菌、カビ、廃薬品などの汚濁物質が含まれているが、装置本体では前記活性汚泥や前記汚濁物質が微細化された微細化物含有水が、前記装置の水流取出口から曝気槽内に供給される。活性汚泥と汚濁物質は互いに大きい表面積を有することが接触面積を増加させて処理効率向上に繋がるが、本態様では、両者とも微細化されているため、活性汚泥が十分に汚濁物質に接触してその分解を促進する。更に前記装置内で汚濁物質を含む水流が大きな衝撃の下で衝突するため、前記雑菌等が衝撃により死滅して処理効率が上昇することもある。なお雑菌以外に活性汚泥の微生物も死滅するほど衝撃が強い場合には、供給する水流の速度を下げるような調節が必要になる。なお活性汚泥法では、前記装置は曝気槽に沈めずに曝気槽前の配管に接続しても良い。
この水流の速度調節は、粉粒体が、前述の(2)〜(9)の場合には不要である。
When the activated sludge of (1) or the pollutant contained therein is a powder, for example, the refined product-containing water production apparatus main body is submerged in an aeration tank in a treatment line. The waste water (waste water) supplied to the aeration tank contains pollutants such as bacteria, molds, and waste chemicals, but in the apparatus main body, the activated sludge and the water containing the refined matter in which the pollutants are refined are contained. Is supplied into the aeration tank from the water outlet of the apparatus. The activated sludge and the pollutant have a large surface area to each other, which increases the contact area and leads to an improvement in processing efficiency.However, in this aspect, since both are refined, the activated sludge is sufficiently in contact with the pollutant. Promotes its decomposition. Further, since the water flow containing the pollutant in the apparatus collides with a large impact, the germs and the like may be killed by the impact and the processing efficiency may be increased. In addition, when the impact is strong enough to kill microorganisms of activated sludge in addition to various germs, it is necessary to adjust so as to reduce the speed of the supplied water flow. In the activated sludge method, the apparatus may be connected to the piping before the aeration tank without being submerged in the aeration tank.
The adjustment of the speed of the water flow is unnecessary when the granular material is the above-mentioned (2) to (9).

前述の(4)や(5)の化学物質(還元剤)の微細化により、十分に溶解又は懸濁した溶液又は懸濁液が得られる。前記化学物質が難溶性の場合には、水流衝突により化学物質が微細化して従来より遥かに短時間及び低コストで所望の液が得られる。
難溶性の還元剤を溶解又は懸濁した液は、マンションやオフィスビルなどの建物の給水や冷暖気の循環のための配管内を流し、あるいは原油を抜き取ったタンカーの油槽にバラスト水として供給すことに使用でき、これにより配管や油槽の内面に還元被膜を形成して配管や油槽を保護するために使用できる。
汚濁物質に分類される粉粒体は、微細化された汚濁物質の分離や分解が容易になり、水の浄化を円滑に行うことができる。
A sufficiently dissolved or suspended solution or suspension can be obtained by refining the chemical substances (reducing agents) described in (4) and (5) above. In the case where the chemical substance is hardly soluble, the chemical substance is refined by collision with water flow, and a desired liquid can be obtained in a much shorter time and at a lower cost than before.
Dissolved or suspended liquids with poorly soluble reducing agents flow through pipes for water supply and cooling / heating circulation in buildings such as condominiums and office buildings, or supply them as ballast water to tanker oil tanks from which crude oil has been extracted. In particular, it can be used to protect the piping and the oil tank by forming a reduction film on the inner surface of the piping and the oil tank.
A granular material classified as a pollutant can easily separate and decompose a fine pollutant, and can smoothly purify water.

本発明では、粉粒体の微細化に加えて、前記微細化装置の前後いずれかに、タンクレスラインを設置して微細化した粉粒体の処理や反応などを促進しても良く、前記タンクレスライン内は高温高圧に維持することが望ましい。本発明における高温とは、一般に50℃以上、高圧とは、1MPa以上を意味する。
特に臨界状態(水の場合、375℃以上、22MPa以上)では、液体でも気体でもない超臨界流体となり、その優れた特性を利用して抽出、精製、洗浄、調製、加工、機能化、反応の促進などを実行できる。例えば排水の場合、対象とする排水を第1発明装置を通してナノバブルと接触させるだけでも、ナノバブルの有する殺菌力で排水の清浄化は進行するが、ナノバブルと接触している排水をそのまま高温高圧のタンクレスラインに導入すると、排水とナノバブルの接触が更に十分に進行して処理効率が上昇する。
前記タンクレスラインの長さは、1mから300mの範囲とし、内径は5mmから100mmとすることが好ましいが、これらに限定されない。長さが例えば10mを超える場合は、タンクレスラインを折り返して設置スペースの減少を図ることが望ましい。
In the present invention, in addition to the refinement of the granular material, a tankless line may be installed either before or after the refinement device to promote treatment or reaction of the refined granular material, It is desirable to maintain high temperature and high pressure in the tankless line. In the present invention, high temperature generally means 50 ° C. or higher, and high pressure means 1 MPa or higher.
Especially in the critical state (in the case of water, 375 ° C. or higher, 22 MPa or higher), it becomes a supercritical fluid that is neither a liquid nor a gas, and its superior properties are used for extraction, purification, washing, preparation, processing, functionalization, and reaction. Promotion etc. can be executed. For example, in the case of wastewater, even if the target wastewater is simply brought into contact with the nanobubbles through the first invention device, the wastewater is purified by the sterilizing power of the nanobubbles. When it is introduced into the wrestline, the contact between the waste water and the nanobubbles further proceeds and the treatment efficiency increases.
The length of the tankless line is preferably in the range of 1 m to 300 m, and the inner diameter is preferably 5 mm to 100 mm, but is not limited thereto. If the length exceeds, for example, 10 m, it is desirable to reduce the installation space by folding the tankless line.

本発明は、少なくとも1本が粉粒体を有する2以上の水流を衝突させることにより前記粉粒体を微細化するという簡単な操作により、微細化物含有水の製造を可能にしている。
このような粉粒体を有する複数の水流を衝突させると、衝突角度にもよるが、各水流が最大で各水流の流速の和に等しい速度で衝突する。その際の衝撃は、単に1本の水流が衝撃面に衝突する際の2倍になるのではなく、衝突速度の増加に応じて指数級数的に増大して各水流に最大限の衝撃が与えられる。これにより粉粒体の微細化が促進される。
The present invention makes it possible to produce refined material-containing water by a simple operation of refining the granular material by colliding two or more water streams each having at least one granular material.
When a plurality of water streams having such granular materials collide, depending on the collision angle, each water stream collides at a maximum speed equal to the sum of the flow speeds of each water stream. The impact at that time is not simply twice that of a single water stream colliding with the impact surface, but increases exponentially as the impact speed increases, giving each water stream the maximum impact. It is done. Thereby, refinement | miniaturization of a granular material is accelerated | stimulated.

次に本発明に係る微細化物含有水製造装置の一例を添付図面に基づいて説明するが、これは本発明を限定するものではない。
図1は、本発明に係る微細化物含有水製造装置の一例を示す部分縦断面図、図2は、図1の装置の部分分解斜視図、図3は図1の装置の3枚の案内板と3枚のスペーサーの側面図(ボルト孔は省略)である。
Next, although an example of the refined material containing water manufacturing apparatus based on this invention is demonstrated based on an accompanying drawing, this does not limit this invention.
1 is a partial longitudinal sectional view showing an example of a refined product-containing water production apparatus according to the present invention, FIG. 2 is a partially exploded perspective view of the apparatus of FIG. 1, and FIG. 3 is three guide plates of the apparatus of FIG. And a side view of the three spacers (bolt holes are omitted).

横向き円筒形の外筒1はその上面中央に上向きに折曲げられた微細化物含有水の案内管2を有し、その案内管2の上端縁には外向きに水平フランジ3が接合されている。
この水平フランジ3の上面にはやや小径で4個(1個のみを図示)の通孔4を有する邪魔板5が位置し、この邪魔板5上には水平フランジ6付きの微細化物含有水水取出(噴出)口7が設置され、前記両水平フランジ3、6をボルト8で締め付けることにより、前記微細化物含有水取出口7を前記外筒1に固定している。
A laterally cylindrical outer cylinder 1 has a refined-containing water guide tube 2 bent upward at the center of the upper surface, and a horizontal flange 3 is joined outwardly to the upper end edge of the guide tube 2. .
On the upper surface of the horizontal flange 3, a baffle plate 5 having a slightly small diameter and having four through holes 4 (only one is shown) is located. A take-out (spout) port 7 is installed, and the refined product-containing water take-out port 7 is fixed to the outer cylinder 1 by tightening the horizontal flanges 3 and 6 with bolts 8.

前記外筒1の両端の外周側には、上部が半円状に湾曲する支持板9が接合され、この支持板9と前記外筒1との接合部の円孔10には内筒取付板(フランジ)11が嵌め込まれている。この内筒取付板11の中央の円孔12には、先端側が半球状の噴出部13として成形された円筒状の旋回内筒14の基端部外縁が接合され、更に前記噴出部13先端中央には小径の噴出孔15が形成されている。なお両噴出部13の両噴出孔15、15′のうち、図1の左方の噴出孔15の径は右方の噴出孔15′の径より小さくなるように成形されている。両噴出孔の孔径は同一でも構わない。  A support plate 9 whose upper part is curved in a semicircular shape is joined to the outer peripheral sides of both ends of the outer cylinder 1, and an inner cylinder mounting plate is inserted into the circular hole 10 at the joint between the support plate 9 and the outer cylinder 1. (Flange) 11 is fitted. The outer edge of the base end portion of the cylindrical turning inner cylinder 14 whose tip side is formed as a hemispherical ejection portion 13 is joined to the circular hole 12 at the center of the inner cylinder mounting plate 11. Is formed with a small-diameter ejection hole 15. 1 is formed such that the diameter of the left-hand ejection hole 15 in FIG. 1 is smaller than the diameter of the right-hand ejection hole 15 '. The hole diameters of both the ejection holes may be the same.

前記支持板9及び内筒取付板11の外側面には、図3に示す3枚の案内板と3枚のスペーサーが積層されている。前記支持板9及び内筒取付板11に接触する第1スペーサー16は、前記内筒14に対応する円孔17が形成され、この第1スペーサー16に接触する第1案内板18には、前記第1スペーサー16の円孔17に対応しかつ上下の接線方向に切り込み19が形成された旋回流形成孔20が穿設されている。  Three guide plates and three spacers shown in FIG. 3 are laminated on the outer surfaces of the support plate 9 and the inner cylinder mounting plate 11. The first spacer 16 in contact with the support plate 9 and the inner cylinder mounting plate 11 is formed with a circular hole 17 corresponding to the inner cylinder 14, and the first guide plate 18 in contact with the first spacer 16 has the above-mentioned A swirl flow forming hole 20 corresponding to the circular hole 17 of the first spacer 16 and having a notch 19 formed in the vertical tangential direction is formed.

この第1案内板18の外側には、前記切り込み19の先端部に対応する個所に左右1対の縦方向の切り欠き21を有する第2スペーサー22が接している。この第2スペーサー22の外側には、両上端部が前記1対の切り欠き21と整合し、全体的に上向き「コ」字状に成形された通孔23が形成された第2案内板24が接触している。
この第2案内板24の外側には、前記通孔23の下部の水平孔の一部と重なるように円孔25が形成された第3スペーサー26が接触している。この第3スペーサー26の外側には、前記円孔25に対応する個所に、粉粒体含有水の水流の供給口27を有する第3案内板28が接触している。
A second spacer 22 having a pair of left and right longitudinal notches 21 is in contact with the outside of the first guide plate 18 at a location corresponding to the tip of the notch 19. On the outside of the second spacer 22, a second guide plate 24 having upper end portions aligned with the pair of cutouts 21 and formed with a through hole 23 that is formed in a generally upward “U” shape. Are in contact.
A third spacer 26 formed with a circular hole 25 is in contact with the outside of the second guide plate 24 so as to overlap a part of the horizontal hole below the through hole 23. On the outside of the third spacer 26, a third guide plate 28 having a water flow supply port 27 for the powder-containing water is in contact with a portion corresponding to the circular hole 25.

これらの3枚の案内板18、24、28と3枚のスペーサー16、22、26はそれぞれに穿設されたボルト孔29にボルト30を締着することにより互いに一体化され、かつ前記支持板9に固定されている。
なお31は旋回内筒14の周囲に接合され、かつその外縁が前記外筒1内壁に密着するよう構成した遮蔽板である。
The three guide plates 18, 24, and 28 and the three spacers 16, 22, and 26 are integrated with each other by fastening bolts 30 to bolt holes 29 that are respectively drilled. 9 is fixed.
Reference numeral 31 denotes a shielding plate that is joined to the periphery of the turning inner cylinder 14 and whose outer edge is in close contact with the inner wall of the outer cylinder 1.

このような構成を有する微細化物含有水製造装置による微細化物含有水製造の要領を説明する。
微細化すべき物質、例えば活性汚泥を含む2本の水流32、32′を図1の左右の第3案内板28のそれぞれの供給口27から供給する。これらの水流のうち左方の水流32は、第3スペーサー26の円孔25を通って第2案内板24の通孔23に達し、ここで図3に示したように左右に分かれてこの通孔23の両側の縦方向の溝に供給される。これらの水流は第2スペーサー22の切り欠き21を通って第1案内板18の両切り込み19の先端部に供給される。両水流はこの切り込み19の先端部から旋回流形成孔20にその接線方向から高速供給され、第1スペーサー16の円孔17から旋回内筒14内に達し、旋回内筒14の内壁に沿って気泡33を有する旋回流34を形成する。
The point of the refined product-containing water production by the refined product-containing water production apparatus having such a configuration will be described.
Two water streams 32 and 32 'containing a material to be refined, for example, activated sludge, are supplied from the respective supply ports 27 of the left and right third guide plates 28 in FIG. Of these water flows, the left water flow 32 passes through the circular hole 25 of the third spacer 26 and reaches the through hole 23 of the second guide plate 24, where it is divided into left and right as shown in FIG. It is supplied to the longitudinal grooves on both sides of the hole 23. These water flows pass through the notches 21 of the second spacer 22 and are supplied to the leading ends of both notches 19 of the first guide plate 18. Both water flows are supplied at high speed from the tip of the notch 19 to the swirl flow forming hole 20 from the tangential direction, reach the swirl inner cylinder 14 from the circular hole 17 of the first spacer 16, and follow the inner wall of the swirl inner cylinder 14. A swirling flow 34 having bubbles 33 is formed.

この旋回流34は前記内筒14先端の噴出部13に達し、半球状内壁に接触しながら速度を速めながら、前記噴出孔15から他方の噴出孔15′に向けて噴出する。
右方の供給口27から供給された水流も同様にして旋回流として噴出孔15′に達し、噴出孔15′から他方の噴出孔15に向けて噴出する。
左右の旋回流34は直線状の水流として、内筒14内の両噴出孔15、15′の中間で衝突する。この衝突の衝撃は2本の旋回流34の速度の倍になるのではなく、指数級数的に増大する。従って両水流中に含まれる気泡33は水流衝突による衝撃で微細化し、同時に前記粉粒体も微細化する。
The swirling flow 34 reaches the ejection portion 13 at the tip of the inner cylinder 14, and is ejected from the ejection hole 15 toward the other ejection hole 15 'while increasing the speed while contacting the hemispherical inner wall.
Similarly, the water flow supplied from the right supply port 27 reaches the ejection hole 15 ′ as a swirling flow, and is ejected from the ejection hole 15 ′ toward the other ejection hole 15.
The left and right swirling flows 34 collide in the middle of the two ejection holes 15 and 15 ′ in the inner cylinder 14 as a linear water flow. The impact of this collision does not double the speed of the two swirling flows 34, but increases exponentially. Therefore, the bubbles 33 contained in both water streams are refined by impact caused by the stream collision, and at the same time, the powder particles are refined.

更に図示の例とは異なり、半球状の噴出部13以外の内筒14の内壁を噴出部13方向に向けて内向き傾斜させて噴出孔15、15′から噴出する水流の速度を増大させても良い。
なお前述の邪魔板5は使用しなくても良く、邪魔板により生成する微細化物含有水の装置内での滞留を促進するのとは逆に、微細化物含有水取出口7からポンプ等で吸引して微細化物含有水の取出しを促進しても良い。
Further, unlike the illustrated example, the inner wall of the inner cylinder 14 other than the hemispherical jet portion 13 is inclined inward toward the jet portion 13 to increase the speed of the water flow jetted from the jet holes 15 and 15 '. Also good.
The above-described baffle plate 5 may not be used, and in contrast to promoting the retention of the refined product-containing water generated by the baffle plate, suction from the refined product-containing water outlet 7 with a pump or the like. Then, the removal of the water containing the refined product may be promoted.

図4は、図1〜3に例示した微細化物含有水製造装置を湖沼に設置した例を示す概略図である。
図示の例では、図1に示した微細化物含有水製造装置41を湖沼42の底面43に設置してある。湖沼水には、藻や河川から流れ込んだ汚濁物質が含まれている。
湖沼の水面44には筏45を浮かべてあり、この筏45には水流生成ポンプ46が搭載されている。このポンプ46には湖沼水汲上げ管47と水流供給管48が接続され、当該水流供給管48の先端は分岐されて、前記装置41の左右1対の気泡水流の供給口27に接続されている。
FIG. 4 is a schematic diagram illustrating an example in which the refined product-containing water production apparatus illustrated in FIGS. 1 to 3 is installed in a lake.
In the illustrated example, the refined product-containing water production apparatus 41 shown in FIG. 1 is installed on the bottom surface 43 of a lake 42. Lake water contains pollutants flowing from algae and rivers.
A waterfall 45 is floated on the water surface 44 of the lake, and a water flow generation pump 46 is mounted on this waterhole 45. The pump 46 is connected to a lake water pumping pipe 47 and a water flow supply pipe 48, and the tip of the water flow supply pipe 48 is branched and connected to a pair of bubbly water flow supply ports 27 of the device 41. .

前記ポンプ46を作動させると、湖沼水汲上げ管47から湖沼水を汲み上げて空気の気泡を含有する気液混合水とし、前記水流供給管48を通して前記装置41の供給口27に供給する。当該両供給口27に供給された2本の水流は、図1と同様にして互いに衝突して多数の微細気泡35を形成するとともに、前記汚濁物質を微細化した微細化物含有水を生成し、これを微細化物含有水循環口49から湖沼42中に循環させる。この微細化物含有水は湖沼水中の汚濁物質を微細化して分解を促進するとともに富化酸素を供給して湖沼水の酸化殺菌を行い、更に湖沼水全体を攪拌する。  When the pump 46 is operated, the lake water is pumped up from the lake water pumping pipe 47 to form gas-liquid mixed water containing air bubbles and supplied to the supply port 27 of the apparatus 41 through the water flow supply pipe 48. The two water streams supplied to the two supply ports 27 collide with each other in the same manner as in FIG. 1 to form a large number of microbubbles 35 and generate refined product-containing water in which the pollutant is refined, This is circulated into the lake 42 from the refined-containing water circulation port 49. This refined product-containing water refines the pollutants in the lake water and promotes decomposition, supplies enriched oxygen to oxidize and sterilize the lake water, and stirs the entire lake water.

これにより湖沼水の浄化を実施できる。この浄化作業で必要中エネルギーはポンプ駆動のためのエネルギーのみであり、前記筏45にソーラーパネルや風力発電機を積んでおき、これらで発生するエネルギーをポンプ駆動エネルギーとして使用すると、人為的なエネルギーなしに湖沼水の浄化を達成できる。
本装置は常時作動させる必要はなく、間欠的に運転させても良い。特に得られる水力及び風力エネルギーが常時作動に不足する場合は、間欠運転とすることが好ましい。
又図示の例と異なり、ポンプを湖底に沈めずに筏45の上に設置し、このポンプに湖沼水を供給して微細化物含有水を生成し、この溶解水を筏の板の間から湖沼に噴出させても良い。
Thereby, purification of lake water can be carried out. The energy required for this purification work is only the energy for driving the pump. If the solar panel or wind power generator is loaded on the pit 45 and the energy generated by these is used as the pump driving energy, it is an artificial energy. Without the purification of lake water.
This apparatus does not need to be operated constantly, and may be operated intermittently. In particular, when the obtained hydropower and wind energy are insufficient for regular operation, intermittent operation is preferable.
Also, unlike the example shown in the figure, a pump is installed on the reed 45 without sinking it to the bottom of the lake, and lake water is supplied to this pump to produce water containing fines, and this dissolved water is ejected from between the reed boards into the lake. You may let them.

図5は、本発明に係る微細化物含有水製造装置の他の例を示す部分縦断面図、図6は、図5の平面図、図7は図5のA−A線縦断側面図である。
外形が直方体状の微細化物含有水製造装置51は、中央部の装置本体52とその両側面に固定された1対の端面部材53から成っている。装置本体52の高さ方向の中央やや上部には当該装置本体52を横方向に貫通する旋回内筒取付孔54が、又前記装置本体52の下部近傍には当該装置本体52を横方向に貫通する水流供給用通孔55がそれぞれ形成されている。
前記旋回内筒取付孔54の中央上面には、微細化物含有水取出口56が穿孔されている。前記水流供給孔55の中央には外側(図5の前後)に向けて1対の水流供給口57が穿孔されている。
FIG. 5 is a partial longitudinal sectional view showing another example of the refined product-containing water production apparatus according to the present invention, FIG. 6 is a plan view of FIG. 5, and FIG. 7 is a longitudinal sectional side view taken along line AA of FIG. .
A refined product-containing water production apparatus 51 having a rectangular parallelepiped shape is composed of a central apparatus body 52 and a pair of end surface members 53 fixed to both side surfaces thereof. A turning inner cylinder mounting hole 54 penetrating the apparatus main body 52 in the lateral direction is formed in the middle and upper part of the apparatus main body 52 in the height direction, and penetrating through the apparatus main body 52 in the lateral direction in the vicinity of the lower portion of the apparatus main body 52. Water flow supply through holes 55 are formed.
A refined product-containing water outlet 56 is perforated at the center upper surface of the turning inner cylinder mounting hole 54. A pair of water flow supply ports 57 are formed in the center of the water flow supply hole 55 toward the outside (front and rear in FIG. 5).

前記装置本体52の左右両端の外周近傍には長円形の段部58が形成されている。
先端側が半球状の噴出部59として成形された円筒状の旋回内筒60基端部外縁に溶接されかつ前記段部58の内方形状と同じ外形を有するよう成形された内筒取付板(フランジ)61が接合され、更に前記噴出部59先端中央には小径の噴出孔62が形成されている。
前記内筒取付板61には、旋回内筒60の基端の開口と同じ径の円孔63を有するパッキン64が密着している。このパッキン64の外面には、前記旋回内筒取付孔54の空間と前記水流供給孔55の空間を連結する凹部65が内面に形成された前記端面部材53が密着し、前記装置本体52、前記内筒取付板61、前記パッキン63及び前記端面部材53が複数のボルト66で締着され一体化している。
In the vicinity of the outer periphery of the left and right ends of the apparatus main body 52, oval step portions 58 are formed.
An inner cylinder mounting plate (flange) which is welded to the outer edge of the base end portion of the cylindrical turning inner cylinder 60 formed as a hemispherical ejection portion 59 on the front end side and has the same outer shape as the inner shape of the stepped portion 58 61) is joined, and a small-diameter ejection hole 62 is formed at the center of the distal end of the ejection part 59.
A packing 64 having a circular hole 63 having the same diameter as the opening at the base end of the turning inner cylinder 60 is in close contact with the inner cylinder mounting plate 61. The outer surface of the packing 64 is in close contact with the end face member 53 having a concave portion 65 formed on the inner surface for connecting the space of the swivel inner cylinder mounting hole 54 and the space of the water flow supply hole 55. The inner cylinder mounting plate 61, the packing 63, and the end face member 53 are fastened and integrated with a plurality of bolts 66.

前記凹部65内の空間は、図7に示すように、前記水流供給孔55から前記水流供給孔55を経て供給される水流を、図7の左右に分流するように構成され、更に分流された水流を上方向に導く第1導管67を第2導管68を有している。第1導管67はその中の水流を前記旋回内筒60の上縁部に接線方向から供給できるよう成形され、第2導管68はその中の水流を前記旋回内筒60の下縁部に接線方向から供給できるよう成形されている。なお両導管67、68の前記旋回内筒60との接続部は先細状として旋回内筒60へ供給される水流が加速されるようにしている。  As shown in FIG. 7, the space in the recess 65 is configured such that the water flow supplied from the water flow supply hole 55 via the water flow supply hole 55 is divided into right and left in FIG. 7 and further divided. A first conduit 67 for guiding the water flow upward has a second conduit 68. The first conduit 67 is shaped so that the water flow therein can be supplied tangentially to the upper edge of the swivel inner cylinder 60, and the second conduit 68 is tangent to the lower edge of the swirl inner cylinder 60. It is shaped so that it can be fed from the direction. In addition, the connection part with the said turning inner cylinder 60 of both the conduits 67 and 68 is made into a taper shape, and the water flow supplied to the turning inner cylinder 60 is accelerated.

旋回内筒60に供給された粉粒体を有する水流は図1〜3の装置の場合と同様にして旋回内筒60の内壁に沿って気泡33と粉粒体を有する旋回流34を形成し、更に前記噴出孔62から他方の噴出孔に向けて噴出し、他方の水流と衝突し、水流衝突による衝撃で水流中の気泡は更に微細化し、粉粒体は微細化する。
図8は、本発明に係る微細化物含有水製造装置の更に他の例を示す分解斜視図である。
外形が直方体状の微細化物含有水製造装置71は、中央部の装置本体72とその両側面に固定された左右各3対の第1案内板73、第2案内板74及び第3案内板75、及び第3案内板75に接触する左右1対の端面部材76から成っている。
The water flow having the granular material supplied to the swirling inner cylinder 60 forms a swirling flow 34 having bubbles 33 and particles along the inner wall of the swirling inner cylinder 60 in the same manner as in the case of the apparatus of FIGS. Further, the liquid is ejected from the ejection hole 62 toward the other ejection hole, collides with the other water stream, the bubbles in the water stream are further refined by the impact caused by the water stream collision, and the granular material is refined.
FIG. 8 is an exploded perspective view showing still another example of the refined product-containing water production apparatus according to the present invention.
A refined product-containing water production apparatus 71 having a rectangular parallelepiped shape has a central apparatus body 72 and three pairs of a first guide plate 73, a second guide plate 74, and a third guide plate 75 fixed to the left and right sides. , And a pair of left and right end face members 76 that contact the third guide plate 75.

前記第1案内板73には、上部の第1補助孔77と下部の第1微細化物含有流供給孔78が形成されている。前記第2案内板74には、第2補助孔79と下部の第2微細化物含有流供給孔80が形成されている。前記第3案内板75には、第3補助孔81と下部の第3微細化物含有流供給孔82が形成されている。前記第2案内板74の第2補助孔78には、図5及び6と同じ構成の旋回内筒83の基端部が嵌合されている。左右両端の端面部材76には内側に面した微細化物含有流供給溝84が形成され、この溝84は、下端中央が前記第3微細化物含有流供給孔82に連結され、前後方向に延びた後、上向きに折り曲げられ、再度内向きに折り曲げられて、前記第3補助孔81に接線方向から連結されている。  The first guide plate 73 is formed with an upper first auxiliary hole 77 and a lower first refined product-containing flow supply hole 78. The second guide plate 74 is formed with a second auxiliary hole 79 and a lower second refined material containing flow supply hole 80. The third guide plate 75 is formed with a third auxiliary hole 81 and a lower third refined product-containing flow supply hole 82. The second auxiliary hole 78 of the second guide plate 74 is fitted with the base end portion of the turning inner cylinder 83 having the same configuration as that shown in FIGS. The end face members 76 at both left and right ends are formed with a refined product-containing flow supply groove 84 facing inward, and the center of the lower end of the groove 84 is connected to the third refined product-containing flow supply hole 82 and extends in the front-rear direction. Then, it is bent upward and bent inward again to be connected to the third auxiliary hole 81 from the tangential direction.

装置本体72の前面及び後面のそれぞれ中央下部には微細化物含有流供給口85が、それぞれ本体72の上面には、微細化物含有水取出(噴出)口86が設置されている。
前記第1〜第3微細化物含有流供給孔は、微細化物含有流供給路を形成し、前記微細化物含有流供給孔85から供給される微細化物含有流を、前記微細化物含有流供給路から端面部材76へ供給する。ここで微細化物含有流は、前記溝84に沿って第3補助孔81に接線方向から供給されて、第3案内板81の第3補助孔81から前記旋回内筒83内壁に向けて旋回流を形成する。
この旋回流は前記旋回内筒83の先端の半球部の噴出孔から噴出し、両噴出孔から噴出する微細化物含有流が衝突して衝撃を生じさせ、前述した通り、微細化物含有水が得れ、この微細化物含有水が取出(噴出)口86から取り出される。
A refined product-containing flow supply port 85 is installed at the lower center of each of the front and rear surfaces of the apparatus main body 72, and a refined product-containing water outlet (spout) port 86 is installed at the upper surface of the main body 72.
The first to third micronized product-containing flow supply holes form a micronized product-containing flow supply channel, and the micronized product-containing flow supplied from the micronized product-containing flow supply port 85 is transferred from the micronized product-containing flow supply channel. Supply to the end face member 76. Here, the refined product-containing flow is supplied from the tangential direction to the third auxiliary hole 81 along the groove 84, and the swirl flow from the third auxiliary hole 81 of the third guide plate 81 toward the inner wall of the swirling inner cylinder 83. Form.
This swirling flow is ejected from the hemispherical ejection hole at the tip of the swirling inner cylinder 83, and the refined product-containing flow ejected from both ejecting holes collides to generate an impact, and as described above, refined product-containing water is obtained. The refined product-containing water is taken out from the take-out (spout) port 86.

図9は、本発明に係る微細化物含有水製造装置の更に他の例を示す縦断面図、図10は、図9の装置の分解斜視図である。  FIG. 9 is a longitudinal sectional view showing still another example of the refined product-containing water production apparatus according to the present invention, and FIG. 10 is an exploded perspective view of the apparatus of FIG.

横向き円筒形の筒形本体91はその上面中央に円孔が形成され、微細化物含有水取出口92を構成している。この取出口92には図示を省略したが、例えば通孔を有する邪魔板を位置させても良い。  The cylindrical body 91 having a horizontally oriented cylindrical shape has a circular hole formed at the center of the upper surface thereof, and constitutes a refined product-containing water outlet 92. Although not shown in the drawing, the baffle plate having a through hole may be positioned, for example.

前記筒形本体91の両端縁部には、中央の円孔93と周縁部の複数のボルト孔94と下部の水流供給孔95を有する2枚の第1円形パッキン96がそれぞれ当接している。この2枚の第1円形パッキン96のそれぞれには同じ位置に円孔93とボルト孔94と水流供給孔95を有する供給管設置用円盤97が当接し、各円盤97の円孔93には、先端側が半球状の噴出部98として成形された円筒状の供給管(旋回内筒)99のそれぞれの基端部外縁が接合され、更に前記噴出部8先端中央には小径の噴出孔100が形成されている。なお両噴出部98の両噴出孔100の孔径を同一にしたが、孔径を異ならせても良い。
この供給管設置用円盤97が前記第1円形パッキン96と当接することにより、前記供給管99が前記筒形本体91内の円筒形の空間101に位置するよう構成されている。
Two first circular packings 96 each having a circular hole 93 at the center, a plurality of bolt holes 94 at the peripheral part, and a water flow supply hole 95 at the lower part are in contact with both end edges of the cylindrical main body 91. Each of the two first circular packings 96 abuts a supply pipe installation disk 97 having a circular hole 93, a bolt hole 94, and a water flow supply hole 95 at the same position. The outer edges of the respective base end portions of a cylindrical supply pipe (turning inner cylinder) 99 formed as a hemispherical ejection portion 98 at the distal end side are joined, and a small-diameter ejection hole 100 is formed at the center of the distal end of the ejection portion 8. Has been. In addition, although the hole diameter of both the ejection holes 100 of both the ejection parts 98 was made the same, you may make a hole diameter different.
The supply pipe installation disk 97 is in contact with the first circular packing 96 so that the supply pipe 99 is positioned in the cylindrical space 101 in the cylindrical main body 91.

前記供給管設置用円盤97の外面側には、前記第1円形パッキン96と同一構成の第2円形パッキン102が当接している。
この第2円形パッキン102には、円盤状の蓋体103が当接し、前記ボルト孔94にボルト104を貫通させ締着することにより、前記筒形本体91と、両側の蓋体103を一体化している。当該蓋体103の内面側には、図10の例では3個の先端が細く成形された円弧状の案内片105が突出形成されている。
A second circular packing 102 having the same configuration as the first circular packing 96 is in contact with the outer surface side of the supply pipe installation disk 97.
A disc-shaped lid 103 abuts against the second circular packing 102, and the bolts 104 are passed through the bolt holes 94 and fastened, whereby the cylindrical main body 91 and the lids 103 on both sides are integrated. ing. On the inner surface side of the lid 103, in the example of FIG. 10, arcuate guide pieces 105 having three thin tips formed in a protruding manner are formed.

前記筒形本体91の中央下面には、上向きに水流供給口106が穿孔され、この水流供給口106は筒形本体91の内壁内で左右に分岐し、前記蓋体103に向かう水流供給路107を形成している。
前記蓋体103内の空間は前記供給管99内と連通している。
A water flow supply port 106 is perforated upward in the center lower surface of the cylindrical main body 91, and the water flow supply port 106 branches right and left within the inner wall of the cylindrical main body 91, and flows into the water flow supply path 107 toward the lid 103. Is forming.
The space in the lid 103 communicates with the supply pipe 99.

このような構成を有する微細化物含有水製造装置による微細化物含有水製造の要領を説明する。
粉粒体を含む水流108を水流供給口106から筒形本体91の内壁内に供給する。この水流108は水流供給路107に達して左右に分岐し、この分岐流109はそれぞれ水流供給路107内を左右の蓋体103に向かって流れ、蓋体103内で前記案内片105の外形表面に案内されて螺旋状に流れながら、前記供給管99内に進入する。この水流は気泡110と前記粉粒体を含み、供給管99内面に沿って高速の旋回流111として進行する。
The point of the refined product-containing water production by the refined product-containing water production apparatus having such a configuration will be described.
A water flow 108 containing powder particles is supplied from the water flow supply port 106 into the inner wall of the cylindrical main body 91. The water flow 108 reaches the water flow supply path 107 and branches right and left. The branch flows 109 flow in the water flow supply path 107 toward the left and right lids 103, respectively, and the outer surface of the guide piece 105 in the lid 103. And enters the supply pipe 99 while flowing spirally. This water flow includes bubbles 110 and the above-described powder particles, and proceeds as a high-speed swirl flow 111 along the inner surface of the supply pipe 99.

この旋回流111は前記供給管99先端の噴出部98に達し、半球状内壁に接触し速度を速めながら、前記噴出孔100から筒形本体91の空間101に向けて噴出する。噴出時の旋回流111には外向きの力が加わっており、噴出孔100もある程度の大きさを有するため、旋回流111は他方の噴出孔100に向かうだけでなく、外側にも向かって放射状に噴出する。
左右の旋回流111は直線状や放射状の水流として、筒形本体91の空間101内の両噴出孔100の中間で衝突する。この衝突の衝撃は2本の旋回流111の速度の倍になるのではなく、指数級数的に増大する。従って両水流中に含まれる気泡110は水流衝突による衝撃で更に微細化し、かつ粉粒体も微細化する。
更に図示の例とは異なり、半球状の噴出部98以外の供給管99の内壁を噴出部98方向に向けて内向き傾斜させて噴出孔100から噴出する水流の速度を増大させても良い。
The swirl flow 111 reaches the ejection part 98 at the tip of the supply pipe 99 and is ejected from the ejection hole 100 toward the space 101 of the cylindrical main body 91 while contacting the hemispherical inner wall and increasing the speed. Since an outward force is applied to the swirling flow 111 at the time of ejection, and the ejection hole 100 has a certain size, the swirling flow 111 is not only directed toward the other ejection hole 100 but also radially outward. To erupt.
The left and right swirl flows 111 collide in the middle of both ejection holes 100 in the space 101 of the cylindrical main body 91 as a linear or radial water flow. The impact of this collision does not double the speed of the two swirling flows 111 but increases exponentially. Accordingly, the bubbles 110 contained in both water streams are further refined by impact caused by the water stream collision, and the powder particles are also refined.
Further, unlike the illustrated example, the inner wall of the supply pipe 99 other than the hemispherical jet part 98 may be inclined inward toward the jet part 98 to increase the speed of the water flow jetted from the jet hole 100.

図11a〜cは、図9及び10に例示した微細化物含有水製造装置の蓋体の他の例を示す概略図である。
図11aは蓋体103aの案内片105aの数を2とした例、図11bは蓋体103bの案内片105bの数を4とした例、図11cは蓋体103cの案内片105cの数を5として例である。
いずれの蓋体103a〜cを使用しても当該蓋体に供給された水流が案内片の外形表面に沿って螺旋状に進行して旋回流を生成させるが、案内片の数の多い図11cの蓋体103cで最も効率良く旋回流が生成する。
11a to 11c are schematic views illustrating other examples of the lid body of the refined product-containing water production apparatus illustrated in FIGS.
11a shows an example in which the number of guide pieces 105a of the lid 103a is two, FIG. 11b shows an example in which the number of guide pieces 105b of the lid 103b is four, and FIG. 11c shows that the number of guide pieces 105c of the lid 103c is five. As an example.
Regardless of which lid 103a-c is used, the water flow supplied to the lid progresses spirally along the outer surface of the guide piece to generate a swirl flow. The swirl flow is most efficiently generated by the lid 103c.

図12は、本発明に係る微細化物含有水製造装置にタンクレスラインを接続した例を示す部分縦断面図である。
微細化物含有水製造装置121の微細化物含有水取出口122に接続された補助管123の他端側に、タンクレスライン124が接続されている。このタンクレスライン124は、オイルバス125内に収容され、図示の例では3回折り返されている。このオイルバス125内には、電熱線126が収容され、オイルバス125内のオイルを加熱している。
この微細化物含有水製造装置121に、例えば比較的径の大きい粉粒状の汚染物質を含む排水を供給し、前述の通りノズルから噴出させ衝突させると、汚染物質が微細化して表面積が増大するとともに、空気がナノバブルとして排水中に溶解する。このナノバブルが排水に接触して汚染物質を分解する。又微細化した汚染物質にナノバブルが付着して浮上するため、汚染物質の浮上分離が可能になる。
次いでこの排水は微細化物含有水取出口122からタンクレスライン124に導かれる。
タンクレスライン124内は高温高圧に維持されているため、排水中のナノバブルが汚染物質と更に効率良く反応して汚染物質がほぼ完全に除去され、より以上の処理を行うことなく放流できる。
前記タンクレスライン124は折り返されているため、コンパクト化されていて、僅かな設置面積で排水処理を実施できる。
FIG. 12 is a partial longitudinal sectional view showing an example in which a tankless line is connected to the refined product-containing water production apparatus according to the present invention.
A tankless line 124 is connected to the other end of the auxiliary pipe 123 connected to the refined product-containing water outlet 122 of the refined product-containing water production apparatus 121. The tankless line 124 is accommodated in the oil bath 125 and is folded three times in the illustrated example. A heating wire 126 is accommodated in the oil bath 125 to heat the oil in the oil bath 125.
When the wastewater containing, for example, a relatively large-diameter powdery pollutant is supplied to the refined product-containing water production apparatus 121 and ejected from the nozzle and collided as described above, the pollutant is refined and the surface area is increased. , Air dissolves in the waste water as nanobubbles. These nanobubbles come into contact with wastewater and decompose pollutants. In addition, since the nanobubbles are attached to the refined contaminants and float, the contaminants can be floated and separated.
Next, the waste water is led to the tankless line 124 from the refined-containing water outlet 122.
Since the tankless line 124 is maintained at a high temperature and high pressure, the nanobubbles in the wastewater react with the pollutants more efficiently to remove the pollutants almost completely, and can be discharged without further processing.
Since the tankless line 124 is folded back, the tankless line 124 is compact and can perform wastewater treatment with a small installation area.

本発明に係る微細化物含有水製造装置の一例を示す部分縦断面図。  The fragmentary longitudinal cross-section which shows an example of the refined material containing water manufacturing apparatus which concerns on this invention. 図1の装置の部分分解斜視図。  FIG. 2 is a partially exploded perspective view of the apparatus of FIG. 1. 図1の装置の3枚の案内板と3枚のスペーサーの側面図。  FIG. 2 is a side view of three guide plates and three spacers of the apparatus of FIG. 1. 図1〜3に例示した微細化物含有水製造装置を湖沼に設置した例を示す概略図。  Schematic which shows the example which installed the refined substance containing water manufacturing apparatus illustrated in FIGS. 1-3 in the lake. 本発明に係る微細化物含有水製造装置の他の例を示す部分縦断面図。  The fragmentary longitudinal cross-section which shows the other example of the refined material containing water manufacturing apparatus which concerns on this invention. 図5の平面図。  FIG. 6 is a plan view of FIG. 5. 図5のA−A線縦断側面図。  FIG. 6 is a vertical side view taken along line AA in FIG. 本発明に係る微細化物含有水製造装置の更に他の例を示す分解斜視図。  The disassembled perspective view which shows the further another example of the refined material containing water manufacturing apparatus which concerns on this invention. 本発明に係る微細化物含有水製造装置の更に他の例を示す縦断面図。  The longitudinal cross-sectional view which shows the further another example of the refined material containing water manufacturing apparatus which concerns on this invention. 図9の装置の分解斜視図。  FIG. 10 is an exploded perspective view of the apparatus of FIG. 9. 図11a〜cは蓋体の他の例を示す概略図。  11a to 11c are schematic views illustrating other examples of the lid. 本発明に係る微細化物含有水製造装置にタンクレスラインを接続した例を示す部分縦断面図。  The fragmentary longitudinal cross-section which shows the example which connected the tankless line to the refined material containing water manufacturing apparatus which concerns on this invention.

符号の説明Explanation of symbols

1……外筒 5……邪魔板 7……微細化物含有水取出口 9……支持板 11… 内筒取付板 13……噴出部 14……旋回内筒 15、15′……噴出孔 16、22、26……スペーサー 18、24、28……案内板 20……旋回流形成孔 27……粉粒体含有水流供給口 32、32′……水流 33……気泡 34……旋回流 35……微細気泡 41……微細化物含有水製造装置 42……湖沼 45……筏 46……水流生成ポンプ 51……微細化物含有水製造装置 52……装置本体 53……端面部材 54……旋回内筒取付孔 56……微細化物含有水取出口 57……水流供給口 59……噴出部 60……旋回内筒 61……内筒取付板 62……噴出孔 71……微細化物含有水製造装置 72……装置本体 76……端面部材 83……旋回内筒 86……微細化物含有水取出口 91……筒形本体 92……微細化物含有水取出口 96……第1円形パッキン 97……供給管設置用円盤 98……噴出部 99……供給管(旋回内筒) 100……噴出孔 102……第2円形パッキン 103……蓋体 105……案内片 106……水流供給口 107……水流供給路 108……水流 109……分岐流 110……気泡 111……旋回流 121……微細化物含有水製造装置 124……タンクレスライン 125……オイルバス  DESCRIPTION OF SYMBOLS 1 ... Outer cylinder 5 ... Baffle plate 7 ... Water removal outlet containing refined material 9 ... Support plate 11 ... Inner cylinder mounting plate 13 ... Ejection part 14 ... Swirling inner cylinder 15, 15 '... Ejection hole 16 , 22, 26... Spacer 18, 24, 28... Guide plate 20... Swirl flow forming hole 27... Powder-containing water flow supply port 32, 32 ′. …… Microbubbles 41 …… Micronized water production device 42 …… Lake 45 …… 筏 46 …… Water flow generation pump 51 …… Micronized water production device 52 …… System unit 53 …… End face member 54 …… Swivel Inner cylinder mounting hole 56 …… Fine product containing water outlet 57 …… Water flow supply port 59 …… Squirting part 60 …… Swivel inner cylinder 61 …… Inner cylinder mounting plate 62 …… Ejecting hole 71 …… Production of refined product containing water Device 72 …… Device body 76 …… End face member 83 …… Swivel inner cylinder 86 …… Fine product containing water outlet 91 …… Cylinder main body 92 …… Fine product containing water outlet 96 …… First circular packing 97 …… Supply pipe disk 98 …… Jump 99 …… Supply pipe (swivel inner cylinder) 100 …… Blowout hole 102 …… Second circular packing 103 …… Cover body 105 …… Guide piece 106 …… Water flow supply port 107 …… Water flow supply path 108 …… Water flow 109… … Branch flow 110 …… Bubble 111 …… Swirl flow 121 …… Fine refined water production device 124 …… Tankless line 125 …… Oil bath

Claims (15)

少なくとも一本が微細化する粉粒体を有する2以上の水流を衝突させることにより前記粉粒体を微細化することを特徴とする微細化物含有水の製造方法。  A method for producing refined material-containing water, wherein at least one of the fine particles is refined by colliding with two or more water streams having fine particles to be refined. 少なくとも一本が微細化する粉粒体を有する2以上の水流を、円筒状の旋回内筒の内面を螺旋状に旋回させ、前記旋回内筒の先端に形成した小孔から噴出衝突させて前記粉粒体を微細化することを特徴とする微細化物含有水の製造方法。  Two or more water streams having at least one finely divided granular material are spirally swirled on the inner surface of a cylindrical swirling inner cylinder, and ejected from a small hole formed at the tip of the swirling inner cylinder. A method for producing refined material-containing water, characterized in that a powdered material is refined. 2つの水流を180°の角度で衝突させる請求項1又は2記載の微細化物含有水の製造方法。  The method for producing refined product-containing water according to claim 1 or 2, wherein two water streams collide at an angle of 180 °. 太陽エネルギー及び/又は風力エネルギーを利用して生成させた水流を使用する請求項1から3までのいずれか1項に記載の微細化物含有水の製造方法。  The manufacturing method of the refined material containing water of any one of Claim 1 to 3 using the water flow produced | generated using solar energy and / or wind energy. 微細化した粉粒体を含む水流を、高温高圧のタンクレスラインを通過させるようにした請求項1から4までのいずれか1項に記載の方法。  The method according to any one of claims 1 to 4, wherein the water stream containing the fine particles is allowed to pass through a high-temperature and high-pressure tankless line. 円筒体の先端側を半球状に成形しその中央に小孔を形成し、前記2個の小孔を対向させて直線状に配置した2本の供給管と、当該前記2本の供給管のそれぞれの基端側に形成された、接線方向から微細化する粉粒体を有する水流を供給する水流供給口、及び水流取出口を含んで成ることを特徴とする微細化物含有水の製造装置。  The cylindrical body has a hemispherical shape, a small hole is formed in the center thereof, two supply pipes arranged in a straight line with the two small holes facing each other, and the two supply pipes An apparatus for producing micronized product-containing water, comprising: a water flow supply port for supplying a water flow having powder particles refined from a tangential direction, and a water flow outlet, formed on each base end side. 水流供給口及び微細化物含有水の取出口を有する筒形本体内に、先端側を半球状に成形しその中央に小孔を形成した円筒形の2本の供給管を、前記2個の小孔を対向させて配置し、当該2本の供給管のそれぞれの基端側の筒形本体縁部に、2個の蓋体を設置し、前記水流供給口からの粉粒体を含有する水流を前記2個の蓋体を介して前記2本の供給管内に供給し旋回流を形成させた後、前記2個の小孔から噴出させ相互に衝突させて前記粉粒体を微細化させ、生成した微細化物含有水を前記取出口から取り出すことを特徴とする微細化物含有水の製造装置。  In the cylindrical main body having the water flow supply port and the water containing the refined product-containing water, two cylindrical supply pipes having a semispherical shape at the tip side and a small hole formed in the center thereof are connected to the two small pipes. The water flow which arrange | positions a hole so that it may oppose, installs two lid bodies in the cylindrical main body edge part of each base end side of the said 2 supply pipe | tube, and contains the granular material from the said water flow supply port To the two supply pipes through the two lids to form a swirling flow, and then ejected from the two small holes and collided with each other to refine the granular material, The refined product-containing water producing apparatus, wherein the produced refined product-containing water is taken out from the outlet. 微細化物含有水の取出口を有する筒形本体内に、先端側を半球状に成形しその中央に小孔を形成した円筒形の2本の供給管を、前記2個の小孔を対向させて配置し、当該2本の供給管のそれぞれの基端側の筒形本体縁部に、水流供給口を有する2個の蓋体を設置し、前記水流供給口からの粉粒体を含有する水流を前記2個の蓋体を介して前記2本の供給管内に供給し旋回流を形成させた後、前記2個の小孔から噴出させて相互に衝突させて前記粉粒体を微細化させ、生成した微細化物含有水を前記取出口から取り出すことを特徴とする微細化物含有水の製造装置。  Two cylindrical supply pipes having a semispherical front end and a small hole formed in the center thereof in a cylindrical main body having a water outlet for containing finely divided product are opposed to the two small holes. Two lids having a water flow supply port are installed on the base body edge on the base end side of each of the two supply pipes, and contain powder particles from the water flow supply port A water flow is supplied into the two supply pipes through the two lids to form a swirl flow, and then the fine particles are made fine by ejecting from the two small holes and colliding with each other. And producing the refined product-containing water, wherein the produced refined product-containing water is taken out from the outlet. 円筒体の内壁が基端側から先端側に向けて内向き傾斜した請求項6から8までのいずれか1項に記載の微細化物含有水の製造装置。  The apparatus for producing refined product-containing water according to any one of claims 6 to 8, wherein an inner wall of the cylindrical body is inclined inward from a base end side toward a tip end side. 水流取出口に通孔を有する邪魔板を設置した請求項6から8までのいずれか1項に記載の微細化物含有水の製造装置。  The apparatus for producing refined product-containing water according to any one of claims 6 to 8, wherein a baffle plate having a through hole is installed at a water outlet. 少なくとも一本が粉粒体状の還元剤を含有する2以上の水流を衝突させることにより前記還元剤を微細化して製造した還元剤含有水を、配管内を流通させることにより、前記配管内面に還元剤被膜を形成することを特徴とする被膜形成方法。  By reducing the reducing agent-containing water produced by refining the reducing agent by colliding two or more water streams containing at least one granular reducing agent, the inside of the pipe is circulated. A method of forming a film, comprising forming a reducing agent film. 少なくとも一本が粉粒体状の還元剤を含有する2以上の水流を衝突させることにより前記還元剤を微細化して製造した還元剤含有水を、原油を抜き取ったタンカーの油槽にバラスト水として供給し、前記油槽内面に還元剤被膜を形成することを特徴とする被膜形成方法。  Supplying as a ballast water the reducing agent-containing water produced by refining the reducing agent by colliding two or more water streams containing at least one granular reducing agent into the tank of the tanker from which the crude oil has been extracted. And forming a reducing agent film on the inner surface of the oil tank. 少なくとも一本が活性汚泥法で使用する活性汚泥と殺菌対象を有する汚泥を含有する2以上の水流を衝突させることにより前記活性汚泥を活性化するとともに、前記殺菌対象を微細化することを特徴とする活性汚泥の処理方法。  The activated sludge is activated by causing at least one of the activated sludge used in the activated sludge method to collide with two or more water streams containing sludge having a sterilization target, and the sterilization target is refined. To treat activated sludge. 少なくとも一本が粉粒体状の汚染物質を含む排水である2以上の水流を衝突させることにより前記汚染物質を微細化することを特徴とする排水の処理方法。  A wastewater treatment method characterized in that at least one of the pollutants is refined by colliding with two or more water streams that are wastewater containing particulate pollutants. 少なくとも一本が粉粒体状の化学物質を含有する2以上の水流を衝突させることにより前記化学物質を微細化することを特徴とする化学物質の処理方法。  A method for treating a chemical substance, characterized in that at least one chemical substance is refined by colliding with two or more water streams containing powdery chemical substances.
JP2007141038A 2007-04-26 2007-04-26 Method for producing water containing fine product Active JP5291302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141038A JP5291302B2 (en) 2007-04-26 2007-04-26 Method for producing water containing fine product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141038A JP5291302B2 (en) 2007-04-26 2007-04-26 Method for producing water containing fine product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012158763A Division JP5578688B2 (en) 2012-07-17 2012-07-17 Production equipment for water containing fines

Publications (2)

Publication Number Publication Date
JP2008272723A true JP2008272723A (en) 2008-11-13
JP5291302B2 JP5291302B2 (en) 2013-09-18

Family

ID=40051379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141038A Active JP5291302B2 (en) 2007-04-26 2007-04-26 Method for producing water containing fine product

Country Status (1)

Country Link
JP (1) JP5291302B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300183A (en) * 1998-04-16 1999-11-02 Mayekawa Mfg Co Ltd Gas-liquid dispersing gas absorber
JP2002096328A (en) * 2000-09-22 2002-04-02 Asaoka Kk Ultrafine frp powder with hydrophilic property and manufacturing method therefor
JP2002256447A (en) * 2001-02-08 2002-09-11 Hyundai Motor Co Ltd Film forming composition
JP2003205228A (en) * 1997-12-30 2003-07-22 Hirobumi Onari Turning type fine bubbles production apparatus
JP2003275625A (en) * 2002-03-15 2003-09-30 J Eberspaesher Gmbh & Co Kg Spray nozzle
JP2005230641A (en) * 2004-02-18 2005-09-02 Honda Motor Co Ltd Coating nozzle for protective film material
JP2005294488A (en) * 2004-03-31 2005-10-20 Sumitomo Precision Prod Co Ltd Nozzle device
JP2006299514A (en) * 2005-04-15 2006-11-02 Furukawa Engineering & Construction Inc Irrigation equipment of water-retentive pavement body
JP2006299541A (en) * 2005-04-18 2006-11-02 Cosmo Tec:Kk Base isolation device using rubber-made water storage tank and power generation system
JP2006320775A (en) * 2005-05-17 2006-11-30 Maruichi Valve Co Ltd Spray nozzle
JP2007069123A (en) * 2005-09-07 2007-03-22 Shinano Kenshi Co Ltd Method for pulverizing fine powder or microfiber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205228A (en) * 1997-12-30 2003-07-22 Hirobumi Onari Turning type fine bubbles production apparatus
JPH11300183A (en) * 1998-04-16 1999-11-02 Mayekawa Mfg Co Ltd Gas-liquid dispersing gas absorber
JP2002096328A (en) * 2000-09-22 2002-04-02 Asaoka Kk Ultrafine frp powder with hydrophilic property and manufacturing method therefor
JP2002256447A (en) * 2001-02-08 2002-09-11 Hyundai Motor Co Ltd Film forming composition
JP2003275625A (en) * 2002-03-15 2003-09-30 J Eberspaesher Gmbh & Co Kg Spray nozzle
JP2005230641A (en) * 2004-02-18 2005-09-02 Honda Motor Co Ltd Coating nozzle for protective film material
JP2005294488A (en) * 2004-03-31 2005-10-20 Sumitomo Precision Prod Co Ltd Nozzle device
JP2006299514A (en) * 2005-04-15 2006-11-02 Furukawa Engineering & Construction Inc Irrigation equipment of water-retentive pavement body
JP2006299541A (en) * 2005-04-18 2006-11-02 Cosmo Tec:Kk Base isolation device using rubber-made water storage tank and power generation system
JP2006320775A (en) * 2005-05-17 2006-11-30 Maruichi Valve Co Ltd Spray nozzle
JP2007069123A (en) * 2005-09-07 2007-03-22 Shinano Kenshi Co Ltd Method for pulverizing fine powder or microfiber

Also Published As

Publication number Publication date
JP5291302B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
US8366938B2 (en) Method and device for purifying liquid effluents
Agarkoti et al. Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents
EP3281919A1 (en) Nanobubble-and-hydroxyl-radical generator and system for processing polluted water without chemicals using same
RU2585635C1 (en) Method for disinfection and cleaning of fluids and process line therefor
WO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilizing system
CN104150707B (en) The apparatus and method that a kind of blodisc is disposed of sewage
WO2006035834A1 (en) Method of treatment with reactional crystallization and apparatus therefor
JP2016534874A (en) Fluid processing apparatus and process
JP5840277B2 (en) Activated sludge treatment method and wastewater treatment method
JP2006272147A (en) Ballast water treatment apparatus
CN102863058A (en) Air-floatation water treatment system
KR100925531B1 (en) Micro Bubble Reactor for Treatment of Wastewater
KR100915987B1 (en) Micro bubble diffuser for treatment of wastewater
JP4947741B2 (en) CO2 reduction wastewater treatment apparatus and CO2 reduction wastewater treatment method
JP2014104373A (en) Pressure type ozone dissolution treatment apparatus
JP5578688B2 (en) Production equipment for water containing fines
JP5291302B2 (en) Method for producing water containing fine product
JP5715220B2 (en) How to use refined water
CN108059256A (en) A kind of hardness removing device and technique of powder coal gasification furnace buck
JP2008509803A (en) Mixing equipment
JP5334141B2 (en) Method and apparatus for producing high-concentration gas-dissolved water, method for using produced high-concentration gas-dissolved water
KR200171311Y1 (en) A water-treating device having a system of rotating vortex using a form-generator
JP2007330894A (en) Activated sludge treatment apparatus
JP2007185594A (en) Waste liquid treatment apparatus and method
RU2296007C1 (en) Apparatus for realization of the chemical reactions and the mass-exchange processes in the heterogeneous systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250