JP2014104373A - Pressure type ozone dissolution treatment apparatus - Google Patents

Pressure type ozone dissolution treatment apparatus Download PDF

Info

Publication number
JP2014104373A
JP2014104373A JP2012256694A JP2012256694A JP2014104373A JP 2014104373 A JP2014104373 A JP 2014104373A JP 2012256694 A JP2012256694 A JP 2012256694A JP 2012256694 A JP2012256694 A JP 2012256694A JP 2014104373 A JP2014104373 A JP 2014104373A
Authority
JP
Japan
Prior art keywords
ozone
chamber
pressure
dissolution treatment
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012256694A
Other languages
Japanese (ja)
Other versions
JP5331238B1 (en
Inventor
Masao Katsube
政男 勝部
Kazuyasu Ayukawa
和泰 鮎川
Shogo Sugahara
庄吾 管原
Yasuhide Mikami
育英 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO SYSTEM KK
Original Assignee
KANKYO SYSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO SYSTEM KK filed Critical KANKYO SYSTEM KK
Priority to JP2012256694A priority Critical patent/JP5331238B1/en
Priority to KR1020130016919A priority patent/KR20140066073A/en
Application granted granted Critical
Publication of JP5331238B1 publication Critical patent/JP5331238B1/en
Publication of JP2014104373A publication Critical patent/JP2014104373A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/25Mixing by jets impinging against collision plates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure type ozone dissolution treatment apparatus which can prepare ozone water of a high dissolved ozone concentration with a simple configuration of the apparatus, produces less waste ozone and achieves a high treatment efficiency by e.g. a water purification treatment.SOLUTION: A pressure type ozone dissolution treatment apparatus comprises a closed type ozone dissolution treatment vessel 1, an ozone generator 2 and a pump 3 pressure-feeding to-be-treated water W. An ozone injection conduit 4 is connected to the suction side of the pump 3; a discharge side conduit 32 of the pump 3 is extended into the ozone dissolution treatment vessel 1; and there is provided a pressure dissolution chamber 11 separated from the surroundings in the ozone dissolution treatment vessel 1 and having a single flow port 12. A spray nozzle 5 at the tip of the discharge side conduit 32 is opened so as to face the central part of the flow port 12, and to-be-treated water W mixed with ozone by the suction force of the pump 3 is sprayed, by the spray nozzle 5, into the pressure dissolution chamber 11 from the ozone injection conduit 4 through the flow port 12. The spraying dissolves ozone in water in the pressurized pressure dissolution chamber 11, and produced ozone dissolved water flows out from the periphery of the flow port 12.

Description

本発明は、高濃度オゾン溶解水の生成ならびにオゾンによる水質浄化に用いる加圧型オゾン溶解処理装置に関する。   The present invention relates to a pressurized ozone dissolution treatment apparatus used for generation of high-concentration ozone-dissolved water and water purification by ozone.

オゾンには強い酸化力に基づく殺菌、脱色、脱臭作用があることが一般的に知られており、既にクリーニングや上下水道の浄化処理、工業廃水処理、湖沼河川の水質浄化等にオゾンが利用されている。また、オゾンをナノバブルやマイクロバブルの如き微細気泡として水中に含有させた洗浄液も様々な分野で使用されている。しかるに、オゾンの上記作用は実際には水中に溶解した状態で発揮され、気泡形態で生じるものではないから、該作用を増大する上でオゾンの溶存濃度を高めることが重要となる。   It is generally known that ozone has sterilization, decolorization and deodorization action based on strong oxidizing power, and ozone has already been used for cleaning, water and sewage purification treatment, industrial wastewater treatment, water purification of lakes and rivers, etc. ing. In addition, a cleaning liquid in which ozone is contained in water as fine bubbles such as nanobubbles and microbubbles is also used in various fields. However, the above action of ozone is actually exhibited in a state dissolved in water and does not occur in the form of bubbles. Therefore, it is important to increase the dissolved concentration of ozone in order to increase the action.

従来、オゾン水の生成には、送水管路の途中又は末端にベンチュリー管を設け、その絞り部分で発生する負圧を利用し、オゾン発生器で発生したオゾン含有ガスを水中に注入して微細気泡を生成させるベンチュリー管方式が多用されている(例えば、特許文献1〜3等)。一方、オゾン等の気体溶解装置として、気体と液体との混合物をポンプによって密閉タンク内へ加圧送給し、該密閉タンク内の加圧下で気体の溶解を促進するようにしたものも提案されている(例えば、特許文献4〜6)。   Conventionally, ozone water is produced by providing a venturi tube in the middle or at the end of the water supply pipe and using the negative pressure generated at the throttle part to inject the ozone-containing gas generated by the ozone generator into water. Venturi tube systems that generate bubbles are frequently used (for example, Patent Documents 1 to 3). On the other hand, as a gas dissolving device such as ozone, a device in which a mixture of a gas and a liquid is pressurized and fed into a sealed tank by a pump to promote gas dissolution under pressure in the sealed tank has been proposed. (For example, Patent Documents 4 to 6).

特開平05−23682号公報JP 05-23682 A 特開平06−285344号公報Japanese Patent Laid-Open No. 06-285344 特開平08−281281号公報Japanese Patent Laid-Open No. 08-281281 特開2005−880号公報JP-A-2005-880 特開2005−270885号公報JP 2005-270885 A 特開2009−160589号公報JP 2009-160589 A

しかるに、前記従来のベンチュリー管方式では、オゾンを微細気泡として水中に多量に保留できても、一次側の注入部に対して二次側を加圧状態にできないため、オゾンの溶解率自体は20%程度と低く、高濃度のオゾン溶解水が得られない上に、未溶解分として多量に生じる廃オゾンの無害化に要する設備及び処理コストが高く付くという問題があった。また、前記従来の気体溶解装置をオゾンの溶解に適用した場合、密閉タンク内の加圧下でオゾンの溶解がある程度は促進されるものの充分とは言えず、水質浄化等の処理効率を高める上で更にオゾン溶存濃度を高くすることが望まれている。   However, in the conventional Venturi tube method, even if ozone can be retained in water in a large amount as fine bubbles, the secondary side cannot be pressurized with respect to the primary injection part, so the ozone dissolution rate itself is 20 In addition to the fact that ozone-dissolved water with a high concentration cannot be obtained, the equipment and treatment costs required for detoxifying waste ozone generated in large amounts as undissolved components are high. In addition, when the conventional gas dissolving apparatus is applied to the dissolution of ozone, it can be said that the dissolution of ozone is promoted to some extent under pressure in the sealed tank, but it is not sufficient, and in order to increase the treatment efficiency such as water purification. Furthermore, it is desired to increase the ozone dissolved concentration.

本発明は、上述の事情に鑑みて、簡素な装置構成により、極めて高い溶存濃度のオゾン水を調製できると共に、廃オゾンの生成が少なく、水質浄化処理や廃水処理等に適用した場合に高い処理効率を達成できる加圧型オゾン溶解処理装置を提供することを目的としている。   In view of the above circumstances, the present invention can prepare ozone water with a very high dissolved concentration with a simple apparatus configuration, generates little waste ozone, and is highly processed when applied to water purification treatment, waste water treatment, and the like. An object of the present invention is to provide a pressurized ozone dissolution treatment apparatus that can achieve efficiency.

上記目的を達成するための手段を図面の参照符号を付して示せば、請求項1の発明に係る加圧型オゾン溶解処理装置は、内部を密閉空間10とするオゾン溶解処理槽1と、オゾン発生源(オゾン発生器2)と、該オゾン溶解処理槽1内へ被処理水Wを加圧送給するポンプ3とを備え、ポンプ3の吸入側にオゾン発生源に繋がるオゾン注入管路4が接続されると共に、該ポンプ3の吐出側管路32がオゾン溶解処理槽1内に延設され、オゾン溶解処理槽1内に周囲が隔絶された圧力溶解室11を備え、該圧力溶解室11の一箇所に流通口12が形成され、この流通口12の中央部に臨んで吐出側管路32の先端の噴射ノズル5が開口し、ポンプ3の吸込み力によってオゾン注入管路4からオゾンが被処理水Wに混入され、このオゾン気泡を含む被処理水Wが噴射ノズル5より流通口12を通して圧力溶解室11内へ噴入され、この噴入によって周囲よりも加圧された該圧力溶解室11内でオゾンが水中に溶解すると共に、該圧力溶解室11内で生成したオゾン溶解水が流通口12の周辺部より流出するように構成されてなる。   If a means for achieving the above object is shown with reference numerals in the drawings, the pressurized ozone dissolution treatment apparatus according to the invention of claim 1 includes an ozone dissolution treatment tank 1 having an enclosed space 10 inside, and ozone. A generation source (ozone generator 2) and a pump 3 for pressure-feeding the treated water W into the ozone dissolution treatment tank 1 are provided, and an ozone injection line 4 connected to the ozone generation source is provided on the suction side of the pump 3 A discharge side pipe 32 of the pump 3 extends in the ozone dissolution treatment tank 1 and is connected to the ozone dissolution treatment tank 1. The pressure dissolution chamber 11 is isolated in the ozone dissolution treatment tank 1. A flow port 12 is formed at one location, the injection nozzle 5 at the tip of the discharge side pipe 32 opens toward the center of the flow port 12, and ozone is drawn from the ozone injection pipe 4 by the suction force of the pump 3. It is mixed in the water to be treated W and contains this ozone bubble The treated water W is injected into the pressure dissolution chamber 11 from the injection nozzle 5 through the flow port 12, and ozone is dissolved in the water in the pressure dissolution chamber 11 pressurized by the injection, and the pressure The ozone-dissolved water generated in the dissolution chamber 11 is configured to flow out from the peripheral portion of the circulation port 12.

請求項2の発明は、上記請求項1の加圧型オゾン溶解処理装置において、圧力溶解室11は、一方の中央に流通口12を有して対向する方形の両端壁(下壁11a,上壁11b)と四周側壁11cとで角箱型をなす構成としている。   According to a second aspect of the present invention, in the pressurized ozone dissolution treatment apparatus according to the first aspect, the pressure dissolution chamber 11 has square end walls (lower wall 11a, upper wall) having a flow port 12 at one center and facing each other. 11b) and the four-side wall 11c form a rectangular box shape.

請求項3の発明は、上記請求項1又は2の加圧型オゾン溶解処理装置において、圧力溶解室11の流通口12は、一端側12aが該圧力溶解室11内へ突出した短筒状をなす構成としている。   According to a third aspect of the present invention, in the pressurized ozone dissolution treatment apparatus according to the first or second aspect, the flow port 12 of the pressure dissolution chamber 11 has a short cylindrical shape with one end side 12a protruding into the pressure dissolution chamber 11. It is configured.

請求項4の発明は、上記請求項1〜3の何れかの加圧型オゾン溶解処理装置において、オゾン溶解処理槽1内に、一端側を流通口12を通して圧力溶解室11に連通して、他端側に流出口13aを有する筒状の撹拌室13が周囲を隔絶して配置すると共に、該撹拌室13内に噴射ノズル5の基部寄り位置で吐出側管路32の周囲に固着された邪魔板14を有し、圧力溶解室11から流出するオゾン溶解水が該邪魔板14の周縁部と撹拌室14の内周面との間を通過して流出口13aより当該撹拌室13の外側(泡分離室15)へ流出するように構成されてなる。   The invention of claim 4 is the pressurized ozone dissolution treatment apparatus according to any one of claims 1 to 3, wherein one end side is communicated with the pressure dissolution chamber 11 through the flow port 12 in the ozone dissolution treatment tank 1, A cylindrical stirring chamber 13 having an outlet 13a on the end side is disposed so as to be isolated from the surroundings, and the obstacle is fixed in the stirring chamber 13 around the discharge side pipe line 32 at a position near the base of the injection nozzle 5. The ozone-dissolved water that has a plate 14 and flows out from the pressure-dissolving chamber 11 passes between the peripheral edge of the baffle plate 14 and the inner peripheral surface of the stirring chamber 14, and is outside the stirring chamber 13 from the outlet 13 a ( It is configured to flow out into the bubble separation chamber 15).

請求項5の発明は、上記請求項4の加圧型オゾン溶解処理装置において、圧力溶解室11が流通口12を下向きにしてオゾン溶解処理槽1内の上部に配置し、この圧力溶解室11の下に縦円筒状の撹拌室13が連設され、該撹拌室13の周囲に上方に開放した環状の泡分離室15が形成されると共に、該泡分離室15の外周とオゾン溶解処理槽1の内周との間に、オゾン溶解処理槽1内の頂部側空間10aと底部側空間10bとを連通する環状下降流路16が形成され、オゾン溶解処理槽1の頂部に脱気口17を備え、該オゾン溶解処理槽1の底部側に絞り弁V1付きの導出口18を有してなる構成としている。   According to a fifth aspect of the present invention, in the pressurized ozone dissolution treatment apparatus according to the fourth aspect, the pressure dissolution chamber 11 is disposed in the upper portion of the ozone dissolution treatment tank 1 with the flow port 12 facing downward. A vertical cylindrical stirring chamber 13 is continuously provided below, and an annular bubble separation chamber 15 opened upward is formed around the stirring chamber 13, and the outer periphery of the bubble separation chamber 15 and the ozone dissolution treatment tank 1 are formed. Between the inner periphery of the ozone dissolution treatment tank 1, an annular descending flow path 16 that connects the top side space 10 a and the bottom side space 10 b in the ozone dissolution treatment tank 1 is formed, and a deaeration port 17 is provided at the top of the ozone dissolution treatment tank 1. The ozone dissolution treatment tank 1 has a outlet 18 with a throttle valve V1 on the bottom side.

請求項6の発明は、上記請求項5の加圧型オゾン溶解処理装置において、撹拌室13の下部周面に複数の流出口13aを備え、これら流出口13aの流出方向が半径方向に対して斜めになることで、流出液が泡分離室15内で旋回上昇流を生成するように構成されてなる。   According to a sixth aspect of the present invention, in the pressurized ozone dissolution treatment apparatus according to the fifth aspect, a plurality of outlets 13a are provided on the lower peripheral surface of the stirring chamber 13, and the outlet directions of these outlets 13a are oblique with respect to the radial direction. As a result, the effluent is configured to generate a swirling upward flow in the bubble separation chamber 15.

請求項7の発明は、上記請求項6の加圧型オゾン溶解処理装置において、環状下降流路16内の複数箇所に、上下方向に沿う邪魔板19が設けられてなる構成としている。   According to a seventh aspect of the present invention, in the pressurized ozone dissolution treatment apparatus according to the sixth aspect, baffle plates 19 are provided along a vertical direction at a plurality of locations in the annular descending flow path 16.

請求項8の発明は、上記請求項5〜7の何れかの加圧型オゾン溶解処理装置において、ポンプ3の供給管路(吐出側管路32)内と泡分離室15内の一方又は両方に薬液Mを注入する薬液注入管路60を備えてなる構成としている。   The invention according to claim 8 is the pressurized ozone dissolution treatment apparatus according to any one of claims 5 to 7, wherein one or both of the inside of the supply line (discharge side line 32) of the pump 3 and the bubble separation chamber 15 are provided. The chemical solution injection line 60 for injecting the chemical solution M is provided.

次に、本発明の効果について、図面の参照符号を付して説明する。まず、請求項1の発明に係る加圧型オゾン溶解処理装置によれば、ポンプ3の吸込み力によってオゾン注入管路4からオゾンが被処理水Wに混入され、このオゾン気泡を含む被処理水Wが該ポンプ3によってオゾン溶解処理槽1内へ加圧送給されるため、該オゾン溶解処理槽1内は加圧状態になる。しかして、オゾン気泡を含む被処理水Wはポンプ3の吐出側管路32の先端の噴射ノズル5よりオゾン溶解処理槽1内の圧力溶解室11内へ噴入されるが、該圧力溶解室11の流通口12が一箇所であり、その中央部より噴入した被処理水Wの高速流が圧力溶解室11内の対向壁面(上壁11b)に当たって周辺側へ放射状に拡散し、更に該流通口12側へ収束して合流し、該流通口12の周辺部より流出することになる。従って、圧力溶解室11内では、噴射ノズル5から噴入する高速流の圧力と、流出側が該高速流の流入する同じ流通口12になって絞られることとで周囲よりも格段に高い加圧状態になり、この高い加圧状態下で上記の拡散から収束に至る激しい流れによって強い擾乱作用を受けるため、水中に微細気泡として存在していたオゾンの水中への溶解が著しく促進され、高濃度のオゾン溶解水が生成する。   Next, effects of the present invention will be described with reference numerals in the drawings. First, according to the pressurized ozone dissolution treatment apparatus according to the first aspect of the present invention, ozone is mixed into the water to be treated W from the ozone injection line 4 by the suction force of the pump 3, and the water to be treated W containing the ozone bubbles. Is pressurized and fed into the ozone dissolution treatment tank 1 by the pump 3, so that the ozone dissolution treatment tank 1 is in a pressurized state. Thus, the water to be treated W containing ozone bubbles is injected into the pressure dissolution chamber 11 in the ozone dissolution treatment tank 1 from the injection nozzle 5 at the tip of the discharge side pipe 32 of the pump 3. 11 is one location, and the high-speed flow of the water to be treated W injected from the central portion hits the opposing wall surface (upper wall 11b) in the pressure dissolving chamber 11 and diffuses radially to the peripheral side, It converges to the flow port 12 side, merges, and flows out from the periphery of the flow port 12. Therefore, in the pressure melting chamber 11, the pressure of the high-speed flow injected from the injection nozzle 5 and the pressure on the outflow side become the same flow port 12 into which the high-speed flow flows, and the pressure is much higher than the surroundings. In this high pressure state, it is subjected to a strong turbulence action due to the intense flow from diffusion to convergence, so that the dissolution of ozone, which was present as fine bubbles in the water, was significantly promoted and a high concentration Ozone-dissolved water is produced.

そして、ポンプ3より送給する被処理水Wが浄化対象とする有機物や重金属成分等を含む水である場合、圧力溶解室11を出てオゾン溶解処理槽1の導出口18へ至る過程で、高濃度に溶解しているオゾンによる強い酸化力が働くことから、有機物が効率よく分解され、確実な殺菌効果が得られ、更にオゾン溶解処理槽1内が加圧状態であることで有機物の凝集も促進されると共に、その凝集沈殿物に重金属成分が取り込まれるため、高能率で高度の浄化処理を行える。特に、有機物が動植物プランクトンである場合、圧力溶解室11の流通口12から流出した瞬間に、減圧作用で細胞が内部から破壊される。また、被処理水Wが水道水や精製水である場合、圧力溶解室11で生成した高濃度のオゾン溶解水をオゾン溶解処理槽1の導出口から取り出し、殺菌、脱色、脱臭等を必要とする様々な用途に好適に使用できる。   And when the to-be-processed water W supplied from the pump 3 is water containing organic matter or heavy metal components to be purified, in the process of leaving the pressure dissolution chamber 11 and leading to the outlet 18 of the ozone dissolution treatment tank 1, Since the strong oxidizing power of ozone dissolved in a high concentration works, the organic matter is efficiently decomposed, a reliable sterilization effect is obtained, and further, the organic matter agglomerates because the inside of the ozone dissolution treatment tank 1 is in a pressurized state. In addition, the heavy metal component is taken into the agglomerated precipitate, so that high-efficiency and high-purity treatment can be performed. In particular, when the organic matter is animal or phytoplankton, the cells are destroyed from the inside by the decompression action at the moment of flowing out from the circulation port 12 of the pressure dissolution chamber 11. Moreover, when the to-be-processed water W is a tap water or purified water, the high concentration ozone melt | dissolution water produced | generated in the pressure melt | dissolution chamber 11 is taken out from the outlet of the ozone melt treatment tank 1, and sterilization, decoloring, deodorization, etc. are required. It can be suitably used for various applications.

請求項2の発明によれば、圧力溶解室11が一方の端壁(下壁11a)の中央に流通口12を有する角箱型をなすから、流通口12の中央部から噴入して他方の端壁(上壁11b)に当たって周辺側へ放射状に拡散する被処理水Wの流れが角箱として空間的に拡がった各隅部に向かって分流し、その各隅部で両側からの分流が衝突することで更に強い擾乱作用を受け、もってオゾンの水中への溶解がより促進される。   According to the second aspect of the present invention, the pressure melting chamber 11 has a rectangular box shape having the flow port 12 at the center of one end wall (lower wall 11a). The flow of the water to be treated W that hits the end wall (upper wall 11b) and diffuses radially toward the peripheral side is diverted toward each corner spread spatially as a square box, and the diverted flow from both sides is produced at each corner. Due to the collision, the turbulent action is further increased, and the dissolution of ozone into water is further promoted.

請求項3の発明によれば、圧力溶解室11の流通口12が一端側12aを当該圧力溶解室11内へ突出した短筒状をなすから、該圧力溶解室11内から外部への流出抵抗が増大し、もって該圧力溶解室11内がより高い加圧状態になる。   According to the invention of claim 3, since the flow port 12 of the pressure melting chamber 11 has a short cylindrical shape in which the one end side 12a projects into the pressure melting chamber 11, the outflow resistance from the pressure melting chamber 11 to the outside. As a result, the pressure dissolution chamber 11 is in a higher pressure state.

請求項4の発明によれば、圧力溶解室11の流通口12から撹拌室13内に入ったオゾン溶解水は、邪魔板14に当たって周辺側へ放射状に拡散し、該邪魔板14の周縁部と撹拌室13の内周面との間の狭まった環状流通部を通過して流出口13aへ向かうから、該撹拌室13内で強い撹拌作用を受ける。従って、被処理水Wが有機物を含む水である場合、撹拌室13において有機物や重金属成分等とオゾンとの接触による反応が促進され、有機物の分解とそれに伴う殺菌作用が効率よく進行し、高い浄化能率が得られる。また、被処理水Wが水道水や精製水である場合、撹拌室13において更にオゾンの溶解が継続し、より高濃度のオゾン溶解水が生成する。   According to the invention of claim 4, the ozone-dissolved water that has entered the stirring chamber 13 from the flow port 12 of the pressure dissolving chamber 11 strikes the baffle plate 14 and diffuses radially to the peripheral side. Since it passes through the narrow annular circulation part between the inner peripheral surface of the stirring chamber 13 and goes to the outlet 13 a, it receives a strong stirring action in the stirring chamber 13. Therefore, when the to-be-processed water W is water containing an organic substance, the reaction by contact with organic substance, a heavy metal component, etc., and ozone in a stirring chamber 13 is accelerated, decomposition | disassembly of an organic substance and the accompanying bactericidal action advance efficiently, and are high. Purification efficiency is obtained. Moreover, when the to-be-processed water W is a tap water or a purified water, melt | dissolution of ozone continues further in the stirring chamber 13, and a higher concentration ozone melt | dissolution water produces | generates.

請求項5の発明によれば、圧力溶解室11の流通口12から下向きに放出されたオゾン溶解水が撹拌室13内を下降して下端側の流出口13aから泡分離室15へ入り、この泡分離室15内を上昇する過程で、溶け残った微細気泡が合体して大きな泡となって浮上分離し、溶解処理槽1内の頂部側空間10aの最上部に集積するが、その集積したガス成分を脱気口17から排出することより、溶解処理槽1内を水で満たすことができる。一方、ガス成分を離脱した処理水は、頂部側空間10aから環状下降流路16を下降して底部側空間10bへ入り、導出口18より外部へ導出される。しかして、導出口18には絞り弁V1が介在しているから、その絞り度合によって溶解処理槽1内の圧力を任意に設定することができる。   According to the invention of claim 5, the ozone-dissolved water released downward from the flow port 12 of the pressure dissolution chamber 11 descends in the stirring chamber 13 and enters the bubble separation chamber 15 from the outlet 13a on the lower end side. In the process of ascending in the bubble separation chamber 15, the undissolved fine bubbles are combined to form a large bubble that floats and separates and accumulates at the top of the top space 10 a in the dissolution treatment tank 1. By discharging the gas component from the deaeration port 17, the inside of the dissolution treatment tank 1 can be filled with water. On the other hand, the treated water from which the gas component has been separated descends from the top side space 10 a through the annular descending flow path 16 and enters the bottom side space 10 b, and is led out through the outlet 18. Therefore, since the throttle valve V1 is interposed in the outlet 18, the pressure in the dissolution treatment tank 1 can be arbitrarily set depending on the degree of throttling.

請求項6の発明によれば、撹拌室13の下部周面に設けた複数の流出口13aの流出方向が半径方向に対して斜めになり、その流出液が泡分離室15内で旋回上昇流を生成するから、泡分離室15内の上部で分離した泡が中央に集まり、もって脱気口17からのガス成分の排出が容易になる。   According to the invention of claim 6, the outflow direction of the plurality of outflow ports 13 a provided on the lower peripheral surface of the stirring chamber 13 is inclined with respect to the radial direction, and the effluent is swirling upwardly flowing in the bubble separation chamber 15. Therefore, the bubbles separated at the upper part in the bubble separation chamber 15 gather in the center, so that the gas component can be easily discharged from the deaeration port 17.

請求項7の発明によれば、泡分離室15より旋回上昇流として頂部側空間10aに至った処理水が旋回しつつ環状下降流路16を下降する過程で、上下方向に沿う邪魔板19によって流れを乱されるから、この環状下降流路16内で更に残存する気泡の分離が進み、導出口18から殆ど微細気泡を含まない処理水を導出できる。   According to the invention of claim 7, the baffle plate 19 along the vertical direction in the process of descending the annular descending flow path 16 while the treated water reaching the top space 10 a as a swirling upward flow from the bubble separation chamber 15 swirls. Since the flow is disturbed, the remaining bubbles in the annular descending flow path 16 are further separated, and the treated water containing almost no fine bubbles can be led out from the outlet 18.

請求項8の発明によれば、加圧型オゾン溶解処理装置を有機物や重金属成分等を含む水の浄化処理に適用する際、その被処理水Wの含有成分に対応して浄化を促進させる薬液Mを薬液注入管路60から注入することにより、浄化効率を高めることができる。   According to the invention of claim 8, when the pressurized ozone dissolution treatment apparatus is applied to the purification treatment of water containing organic matter, heavy metal components, etc., the chemical solution M that promotes purification corresponding to the components contained in the water to be treated W. By injecting from the chemical injection line 60, the purification efficiency can be increased.

本発明の一実施形態に係る加圧型オゾン溶解処理装置の流路構成図である。It is a flow-path block diagram of the pressurization type ozone melt | dissolution processing apparatus which concerns on one Embodiment of this invention. 同加圧型オゾン溶解処理装置の要部の横断平面図である。It is a cross-sectional top view of the principal part of the pressurization type ozone dissolution treatment apparatus. 同加圧型オゾン溶解処理装置の要部の縦断側面図である。It is a vertical side view of the principal part of the pressurization type ozone dissolution treatment apparatus.

以下に、本発明に係る加圧型オゾン溶解処理装置について、図面を参照して具体的に説明する。図1で示す一実施形態の加圧型オゾン溶解処理装置において、1は頂部が凸曲面をなす縦円筒形で内部を密閉空間10とするオゾン溶解処理槽、2はオゾン発生器、3は貯留槽7内の被処理水Wを吸入側管路31を介して吸入して吐出側管路32よりオゾン溶解処理槽1内へ加圧送給するポンプ、3aは該ポンプ3の駆動モーター、4は該ポンプ3の吸入側に接続されたオゾン注入管路、6は薬液タンク、60は該薬液タンク6に繋がる薬液注入管路、11はオゾン溶解処理槽に設けられた圧力溶解室、13は該圧力溶解室11の下方に連設された縦円筒状の撹拌室、15は該撹拌室13の外側に設けられた環状の泡分離室、16は泡分離室15の外周面とオゾン溶解処理槽1の内周面との間に構成される環状下降流路、17はオゾン溶解処理槽1の頂部中央に設けた脱気口、18はオゾン溶解処理槽1の底部側方に設けた導出口である。   Hereinafter, a pressurized ozone dissolution treatment apparatus according to the present invention will be specifically described with reference to the drawings. In the pressurized ozone dissolution treatment apparatus of one embodiment shown in FIG. 1, an ozone dissolution treatment tank 1 is a vertical cylinder having a convex curved surface at the top and a sealed space 10 inside, 2 is an ozone generator, and 3 is a storage tank. 7 is a pump that sucks the treated water W through the suction side pipe 31 and pressurizes and feeds it to the ozone dissolution treatment tank 1 from the discharge side pipe 32. An ozone injection line connected to the suction side of the pump 3, 6 is a chemical liquid tank, 60 is a chemical liquid injection line connected to the chemical liquid tank 6, 11 is a pressure dissolution chamber provided in an ozone dissolution treatment tank, and 13 is the pressure A vertical cylindrical stirring chamber provided below the dissolution chamber 11, 15 is an annular bubble separation chamber provided outside the stirring chamber 13, and 16 is an outer peripheral surface of the bubble separation chamber 15 and the ozone dissolution treatment tank 1. An annular descending flow path 17 formed between the inner peripheral surface of the ozone dissolution treatment Degassing port provided at the top center of the tank 1, 18 is a lead-out port provided on the bottom side of the ozone dissolution treatment vessel 1.

図2及び図3に示すように、オゾン溶解処理槽1は、その内部の頂部側空間10aと底部側空間10bとの間が、内外の円筒状隔壁1a,1bで隔絶されて、中央の撹拌室13と中間の泡分離室15と外側の環状下降流路16とからなる同心の三重筒構造をなすと共に、撹拌室13及び泡分離室15の底部が水平隔壁1cによって底部側空間10bから隔絶されている。また、圧力溶解室11は、中央に流通口12を設けた正方形の下壁11aと、これに対向する正方形の上壁11bと、四周の周壁11cとで角箱型になっている。そして、流通口12は短円筒状をなし、その一端側12aが圧力溶解室11内へ突出している。   As shown in FIGS. 2 and 3, the ozone dissolution treatment tank 1 is separated from the top side space 10a and the bottom side space 10b by the inner and outer cylindrical partition walls 1a and 1b, and is stirred at the center. A concentric triple cylinder structure comprising a chamber 13, an intermediate bubble separation chamber 15 and an outer annular descending flow path 16 is formed, and the bottoms of the stirring chamber 13 and the bubble separation chamber 15 are isolated from the bottom side space 10b by the horizontal partition 1c. Has been. The pressure melting chamber 11 has a square box shape with a square lower wall 11a provided with a circulation port 12 in the center, a square upper wall 11b opposed to the square lower wall 11a, and a four-round peripheral wall 11c. The circulation port 12 has a short cylindrical shape, and one end side 12 a protrudes into the pressure melting chamber 11.

撹拌室13は、上端側で流通口12を介して圧力溶解室11に連通すると共に、下端側で複数(図では2つ)の流出口13aを介して泡分離室15の下部に連通している。なお、各流出口13aは、該撹拌室13の下部周面から外側へ半径方向に対して角度をもって突出した筒部より構成され、これによって流出方向が半径方向に対して斜めになるように設定されている。また、泡分離室15は、上方に開放してオゾン溶解処理槽1内の頂部側空間10aに連通している。   The stirring chamber 13 communicates with the pressure dissolution chamber 11 via the circulation port 12 on the upper end side, and communicates with the lower part of the bubble separation chamber 15 via a plurality of (two in the drawing) outlets 13a on the lower end side. Yes. In addition, each outflow port 13a is comprised from the cylindrical part which protruded with the angle with respect to the radial direction from the lower peripheral surface of this stirring chamber 13, and is set so that an outflow direction may become diagonal with respect to a radial direction by this. Has been. The bubble separation chamber 15 is open upward and communicates with the top space 10 a in the ozone dissolution treatment tank 1.

ポンプ3の吐出側管路32は、オゾン溶解処理槽1内の底部側空間10bに水平に突入し、該底部側空間10bの中心位置で上方へ曲折して水平隔壁1cを貫通し、撹拌室13内で軸線方向に沿って立ち上がると共に、その上端の縮径した噴射ノズル5が流通口12の下方で該流通口12の中心に臨んで開放している。そして、この噴射ノズル5の基部側の周囲には円板状の邪魔板14が固着されており、該邪魔板14の周縁と撹拌室13の内周面との間が狭まった環状流通部を形成している。   The discharge side pipe 32 of the pump 3 enters the bottom side space 10b in the ozone dissolution treatment tank 1 horizontally, bends upward at the center position of the bottom side space 10b, passes through the horizontal partition 1c, and the stirring chamber. 13 and rises along the axial direction, and the spray nozzle 5 having a reduced diameter at the upper end thereof opens below the flow port 12 and faces the center of the flow port 12. A disc-shaped baffle plate 14 is fixed around the base side of the injection nozzle 5, and an annular circulation portion in which a gap between the peripheral edge of the baffle plate 14 and the inner peripheral surface of the stirring chamber 13 is narrowed. Forming.

一方、オゾン溶解処理槽1の底部側の導出口18には絞り弁V1が介装されており、該絞り弁V1の絞り度合によって内圧を任意に設定できるようになっている。なお、該オゾン溶解処理槽1の頂部には内圧を表示する圧力計8が付設され、また脱気口17には開閉弁V2が介装されている。更に、オゾン溶解処理槽1の内周面の径方向両側には、上下方向に沿う帯板状の邪魔板19が固着され、各邪魔板19の位置で環状下降流路16の幅が略1/2に狭められている。   On the other hand, a throttle valve V1 is interposed in the outlet 18 on the bottom side of the ozone dissolution treatment tank 1, and the internal pressure can be arbitrarily set according to the throttle degree of the throttle valve V1. A pressure gauge 8 that displays the internal pressure is attached to the top of the ozone dissolution treatment tank 1, and an open / close valve V <b> 2 is interposed in the deaeration port 17. Furthermore, a strip-like baffle plate 19 extending in the vertical direction is fixed to both radial sides of the inner peripheral surface of the ozone dissolution treatment tank 1, and the width of the annular descending flow path 16 is approximately 1 at the position of each baffle plate 19. It is narrowed to / 2.

薬液注入管路60は下流側が各々開閉弁V3,V4を介在した2流路61,62に分岐しており、流路61がポンプ3の吐出側管路32に接続されると共に、流路62がオゾン溶解処理槽1内に突入して泡分離室15に接続されている。また、オゾン注入管路4にはオゾン注入方向を吐出側管路32側へ規制する逆止弁CVが介装されている。   The downstream side of the chemical liquid injection line 60 is branched into two flow paths 61 and 62 with the on-off valves V3 and V4 interposed therebetween, and the flow path 61 is connected to the discharge side pipe 32 of the pump 3 and the flow path 62. Enters the ozone dissolution treatment tank 1 and is connected to the foam separation chamber 15. The ozone injection line 4 is provided with a check valve CV that regulates the ozone injection direction toward the discharge side line 32.

上記構成の加圧型オゾン溶解処理装置では、ポンプ3の吸込み力によってオゾン注入管路4からオゾンガスが被処理水Wに混入され、このオゾン気泡を含む被処理水Wが該ポンプ3によってオゾン溶解処理槽1内へ連続的に加圧送給されるため、該オゾン溶解処理槽1内は加圧状態になる。なお、この加圧状態は、例えば、ポンプ3の揚力を0.5MPa程度として、導出口18の絞り弁V1の開度調節により、圧力計8で計測される内圧が0.1〜0.4MPaとなるように調整される。   In the pressurized ozone dissolution treatment apparatus having the above-described configuration, ozone gas is mixed into the water to be treated W from the ozone injection line 4 by the suction force of the pump 3, and the water to be treated W containing the ozone bubbles is dissolved into the ozone water by the pump 3. Since the pressure is continuously fed into the tank 1, the inside of the ozone dissolution treatment tank 1 is in a pressurized state. In this pressurized state, for example, the lift of the pump 3 is about 0.5 MPa, and the internal pressure measured by the pressure gauge 8 is 0.1 to 0.4 MPa by adjusting the opening of the throttle valve V1 of the outlet 18. It is adjusted to become.

そして、加圧供給されるオゾン気泡を含む被処理水Wは、吐出側管路32の先端の噴射ノズル5から流通口12の中心に向けて噴射され、高速流として圧力溶解室11内に噴入する。しかるに、該流通口12が一箇所で圧力溶解室11の入口と出口を兼用しているため、図3の矢印で示すように、その中央部より噴入した高速流は圧力溶解室11内の上壁11bに当たって周辺側へ放射状に拡散し、更に該流通口12側へ収束して合流し、該流通口12の周辺部より流出することになる。加えて、圧力溶解室11が下壁11aの中央に流通口12を有する角箱型をなすから、該流通口12から噴入して上壁11bに当たって周辺側へ拡散する被処理水Wの流れは、図2の矢印で示すように、空間的に拡がった各隅部に向かって分流し、その各隅部で両側からの分流が衝突し、次いで対角線方向に沿って流通口12へ向かう形になる。   And the to-be-processed water W containing the ozone bubble supplied under pressure is injected toward the center of the circulation port 12 from the injection nozzle 5 at the tip of the discharge side pipe 32, and is injected into the pressure dissolution chamber 11 as a high-speed flow. Enter. However, since the flow port 12 serves as both the inlet and the outlet of the pressure melting chamber 11 at one place, as shown by the arrow in FIG. It hits the upper wall 11b and diffuses radially to the peripheral side, further converges to the flow port 12 side, merges, and flows out from the peripheral part of the flow port 12. In addition, since the pressure dissolution chamber 11 has a rectangular box shape having a circulation port 12 in the center of the lower wall 11a, the flow of the water W to be treated which is injected from the circulation port 12 and hits the upper wall 11b and diffuses to the peripheral side. As shown by the arrows in FIG. 2, the flow is diverted toward each spatially widened corner, and the diverted flow from both sides collides at each corner, and then the diagonal direction is directed toward the circulation port 12. become.

従って、圧力溶解室11内では、噴入する高速流の圧力に加え、流出側が同じ流通口12で絞られ、且つ該流通口12が短円筒状で一端側12aを当該圧力溶解室11内へ突出しているために大きな流出抵抗を生じるから、周囲よりも格段に高い加圧状態になる上、噴入した被処理水Wが高い加圧状態下で上記の拡散から流通口12への収束に至る激しい流れによって強い擾乱作用を受けることになり、もって水中に微細気泡として存在していたオゾンの水中への溶解が著しく促進され、高濃度のオゾン溶解水が生成する。なお、噴射ノズル5から噴射する被処理水Wの流速は、通常8〜15m/秒程度に設定される。   Accordingly, in the pressure melting chamber 11, in addition to the pressure of the high-speed flow to be injected, the outflow side is throttled by the same flow port 12, the flow port 12 is short cylindrical, and the one end side 12 a into the pressure melting chamber 11. Since it has a large outflow resistance because it protrudes, it becomes a pressurized state much higher than the surroundings, and the sprayed water W is converged from the diffusion to the circulation port 12 under a high pressurized state. A strong turbulent action is caused by the violent flow, so that the dissolution of ozone, which was present as fine bubbles in water, is remarkably promoted, and high-concentration ozone-dissolved water is generated. In addition, the flow velocity of the to-be-processed water W injected from the injection nozzle 5 is normally set to about 8-15 m / sec.

かくして圧力溶解室11内で生成した高濃度のオゾン溶解水は、流通口12より撹拌室13へ流入し、該撹拌室13内を下降して流出口13aより泡分離室15へ流入し、該泡分離室15内を上昇して頂部側空間10aへ至り、更に頂部側空間10aから環状下降流路16を通って底部側空間10bへ流入し、導出口18より外部へ導出される。   Thus, the high-concentration ozone-dissolved water generated in the pressure dissolution chamber 11 flows into the stirring chamber 13 from the circulation port 12, descends in the stirring chamber 13 and flows into the bubble separation chamber 15 from the outlet 13a. It rises in the bubble separation chamber 15 to reach the top side space 10a, further flows from the top side space 10a through the annular descending flow path 16 to the bottom side space 10b, and is led out through the outlet 18 to the outside.

ここで、被処理水Wが浄化対象とする有機物や重金属成分等を含む水である場合、圧力溶解室11から撹拌室13内に流入した際に、邪魔板14に当たって周辺側へ放射状に拡散し、該邪魔板14の周縁部と撹拌室13の内周面との間の狭まった環状流通部を通過するから、該撹拌室13内で強い撹拌作用を受ける。従って、該撹拌室13を通過する過程で、高濃度に溶解しているオゾンと有機物との接触による反応が急速に進行し、オゾンの強い酸化力によって有機物が能率よく分解される。そして、分解された有機物は、フロック状に凝集、沈殿する。   Here, when the water W to be treated is water containing organic substances or heavy metal components to be purified, when it flows into the stirring chamber 13 from the pressure dissolution chamber 11, it strikes the baffle plate 14 and diffuses radially to the peripheral side. Since it passes through the narrow annular circulation portion between the peripheral edge of the baffle plate 14 and the inner peripheral surface of the stirring chamber 13, it receives a strong stirring action in the stirring chamber 13. Therefore, in the process of passing through the agitation chamber 13, the reaction due to the contact between ozone dissolved in a high concentration and the organic matter proceeds rapidly, and the organic matter is efficiently decomposed by the strong oxidizing power of ozone. The decomposed organic matter aggregates and precipitates in a floc form.

なお、有機物が動植物プランクトンである場合、圧力溶解室11の流通口12から撹拌室13へ流出した瞬間に、減圧作用で細胞が内部から破壊される。例えば、被処理水Wが池や湖沼等のアオコで汚濁した水であるとき、まず圧力溶解室11内で強い擾乱作用を受けてアオコを形成していた群体が個々の植物プランクトン(シアノバクテリア)に分離し、次いで流通口12から撹拌室13へ流出した際、該植物プランクトンの細胞が圧力溶解室11内での加圧後の急な減圧によって破裂する形で死滅することになる。   In addition, when organic substance is animal and phytoplankton, the cell is destroyed from the inside by the pressure reduction action at the moment when it flows out from the circulation port 12 of the pressure dissolution chamber 11 to the stirring chamber 13. For example, when the water W to be treated is water polluted by watermelons such as ponds and lakes, first, the phytoplankton (Cyanobacteria) is formed by the group that has been subjected to strong turbulence in the pressure dissolution chamber 11 to form the watermelon. Then, when the phytoplankton cells flow out from the flow port 12 to the stirring chamber 13, the cells of the phytoplankton are killed in such a manner that they are ruptured by a sudden pressure reduction after pressurization in the pressure lysis chamber 11.

次に、該撹拌室13の流出口13aから泡分離室15内へ流出する際、流出方向が半径方向に対して斜めになっているために旋回流となる。そして、該泡分離室15内を旋回しつつ上昇する過程で、溶け残った微細気泡が合体して大きな泡となって浮上分離し、その気泡が溶解処理槽1内の頂部側空間10aの中央の最上部に集積し、また有機物が残存する場合にはその分解反応も進行する。頂部側空間10aの最上部に集積するガス成分は脱気口17から排出でき、もって溶解処理槽1内を水で満たすことができる。   Next, when the gas flows out from the outlet 13a of the stirring chamber 13 into the bubble separation chamber 15, the outflow direction is inclined with respect to the radial direction, so that a swirling flow is generated. Then, in the process of rising while swirling in the bubble separation chamber 15, the undissolved fine bubbles are united and floated and separated into large bubbles, and the bubbles are separated from the center of the top side space 10 a in the dissolution treatment tank 1. When organic matter remains, the decomposition reaction proceeds. The gas component accumulated at the top of the top space 10a can be discharged from the deaeration port 17, so that the dissolution treatment tank 1 can be filled with water.

更に頂部側空間10aから環状下降流路16を下降する過程では、泡分離室15より継続する旋回流が上下方向に沿う邪魔板19によって乱されるから、更に残存する気泡の分離と残存有機物の分解が進む。また、オゾン溶解処理槽1内が全体的に加圧状態であることで有機物の凝集も促進されると共に、その凝集沈殿物に重金属成分が取り込まれる。従って、環状下降流路16を通って底部側空間10bに至った処理水は、殆ど微細気泡を含まず、且つ有機物の分解に伴う殺菌、消臭、脱色作用を受けた状態で導出口18より導出される。この処理水のオゾン溶存濃度は、オゾンが有機物の分解で消費されるので、ゼロあるいは僅少になっている。なお、被処理水Wの有機物濃度が高い場合は、導出口18から貯留槽7へ至る還流管路を設け、該導出口18を出た処理水を貯留槽7へ戻す循環方式で連続的にオゾン溶解処理槽1を通過させることで、高度の浄化処理を行える。   Further, in the process of descending the annular descending flow path 16 from the top side space 10a, the swirl flow continuing from the bubble separation chamber 15 is disturbed by the baffle plate 19 along the vertical direction. Decomposition proceeds. In addition, since the inside of the ozone dissolution treatment tank 1 is entirely in a pressurized state, aggregation of organic substances is promoted and a heavy metal component is taken into the aggregated precipitate. Therefore, the treated water that has reached the bottom side space 10b through the annular descending flow path 16 contains almost no fine bubbles, and is subjected to sterilization, deodorization, and decoloring action associated with decomposition of organic matter from the outlet 18. Derived. The ozone dissolved concentration of this treated water is zero or very low because ozone is consumed by decomposition of organic matter. In addition, when the organic matter density | concentration of the to-be-processed water W is high, the recirculation | reflux pipe line from the outlet 18 to the storage tank 7 is provided, and it is continuously by the circulation system which returns the treated water which exited this outlet 18 to the storage tank 7. By allowing the ozone dissolution treatment tank 1 to pass, a high-level purification treatment can be performed.

しかして、この加圧型オゾン溶解処理装置では、上述のように水の浄化処理に適用する場合に、その被処理水Wの含有成分に対応して浄化を促進させる薬液Mを、ダイヤフラム式等の送液ポンプPにより、薬液タンク6から薬液注入管路60及び分岐流路61,62の一方又は両方を通して、ポンプ3の吐出側管路32内と泡分離室15内の一方又は両方に注入することができる。このような薬液としては、特に限定されないが、過酸化水素水、塩化第一鉄の如き2価鉄塩の水溶液、ポリ塩化アルミニウム水溶液等が挙げられる。すなわち、該過酸化水素は溶存オゾンと協働して酸化力を高めるため、被処理水Wに過酸化水素を注入することにより、有機物の分解能率が更に向上することになる。また、被処理水Wに2価の鉄(II)が含まれる場合、溶存オゾンによって鉄(III)酸化物の沈殿が生成するが、ヒ素等の重金属が鉄の一部と置換する形で酸化物沈殿に取り込まれ、もって処理水W中の重金属が除去される。更に、ポリ塩化アルミニウムは凝集剤として作用する。   Therefore, in this pressurized ozone dissolution treatment apparatus, when applied to the water purification treatment as described above, the chemical solution M that promotes purification corresponding to the components contained in the water to be treated W is applied to a diaphragm type or the like. The liquid feed pump P injects from the chemical liquid tank 6 into one or both of the discharge side pipe 32 and the bubble separation chamber 15 of the pump 3 through one or both of the chemical liquid injection line 60 and the branch flow paths 61 and 62. be able to. Such a chemical solution is not particularly limited, and examples thereof include a hydrogen peroxide solution, an aqueous solution of a divalent iron salt such as ferrous chloride, and a polyaluminum chloride aqueous solution. That is, since the hydrogen peroxide increases the oxidizing power in cooperation with dissolved ozone, the resolution rate of the organic matter is further improved by injecting the hydrogen peroxide into the water to be treated W. In addition, when divalent iron (II) is contained in the water to be treated W, precipitation of iron (III) oxide is generated by dissolved ozone, but it is oxidized by replacing heavy metals such as arsenic with a part of iron. The heavy metal in the treated water W is removed by being taken into the sediment. Furthermore, polyaluminum chloride acts as a flocculant.

一方、被処理水Wが水道水や精製水である場合、圧力溶解室11で生成した高濃度のオゾン溶解水が撹拌室13を通過する過程で、更にオゾンの溶解が継続し、より高濃度のオゾン溶解水が生成する。そして、該撹拌室13から泡分離室15へ流入すれば、前記同様に旋回上昇流として頂部側空間10aへ移動する過程で、溶け残った微細気泡が合体して浮上分離し、更に環状下降流路16を下降する際にも残存する気泡の分離が進行する。従って、最終的に底部側空間10bに至った処理水は、殆ど微細気泡を含まない非常に高濃度のオゾン溶解水となるから、導出口18から導出して殺菌、脱色、脱臭等を必要とする様々な用途に好適に使用できる。   On the other hand, when the water to be treated W is tap water or purified water, the ozone dissolution continues further in the process in which the high-concentration ozone-dissolved water generated in the pressure dissolution chamber 11 passes through the stirring chamber 13, and the higher concentration Ozone-dissolved water is produced. And if it flows in from the stirring chamber 13 to the bubble separation chamber 15, in the process of moving to the top side space 10a as a swirling upward flow as described above, the undissolved fine bubbles are united and floated and separated, and further the annular downward flow Separation of the remaining bubbles also proceeds when descending the path 16. Accordingly, the treated water that finally reaches the bottom side space 10b becomes a very high-concentration ozone-dissolved water that contains almost no fine bubbles, so that it needs to be sterilized, decolored, deodorized, etc. through the outlet 18. It can be suitably used for various applications.

上記の被処理水Wが水道水や精製水である場合の最終的に得られるオゾン溶解水は、オゾン濃度を平均的に3mg/L以上、最高5mg/L程度という高濃度とすることが可能である。また、この加圧型オゾン溶解処理装置によれば、環境水中生態系に影響のない自然界放出時3%までのオゾン投入量という前提で、オゾン注入管路4からの供給オゾン量に対して85%以上、最高90%のオゾンを処理水W中に溶解でき、もって廃オゾンの生成が非常に少なくなり、その分解処理に要する設備及び費用が低減されるという利点がある。   The ozone-dissolved water finally obtained when the water to be treated W is tap water or purified water can have an average ozone concentration of 3 mg / L or higher and a maximum concentration of about 5 mg / L. It is. Moreover, according to this pressurized ozone dissolution treatment apparatus, 85% of the amount of ozone supplied from the ozone injection line 4 is assumed on the premise that the amount of ozone input is 3% at the time of natural release without affecting the environmental aquatic ecosystem. As described above, there is an advantage that up to 90% of ozone can be dissolved in the treated water W, generation of waste ozone is extremely reduced, and equipment and cost required for the decomposition treatment are reduced.

なお、本発明の加圧型オゾン溶解処理装置は、基本的には、密閉型のオゾン溶解処理槽1と、オゾン発生器2と、被処理水Wを加圧送給するポンプ3とを備え、ポンプ3の吸入側にオゾン注入管路4が接続され、オゾン溶解処理槽1内に周囲が隔絶された圧力溶解室11を備え、該ポンプ3の吐出側管路32の先端の噴射ノズル5が圧力溶解室11の一箇所に設けた流通口12の中央部に臨んで開口した構造を備えるものであればよい。特に当該処理装置を高濃度オゾン溶解水の生成のみに利用する場合、実施形態におけるオゾン溶解処理槽1内の撹拌室13及び泡分離室15を省略した構成や、泡分離室15のみを省略した構成でも差し支えなく、これら省略構成ではオゾン溶解処理槽1を横型にすることも可能である。また、撹拌室13内には、例示した上部の邪魔板14と共に、中央部や下部にも邪魔板を設けてもよい。更に、環状下降流路16内の邪魔板19は、その設置数を種々変更できると共に、内周側に固着してもよく、また当該処理装置を高濃度オゾン溶解水の生成のみ用いる場合には省略できる。その他、細部構成については実施形態以外に種々設計変更可能である。   The pressurized ozone dissolution treatment apparatus of the present invention basically includes a sealed ozone dissolution treatment tank 1, an ozone generator 2, and a pump 3 that supplies and feeds water to be treated W under pressure. The ozone injection line 4 is connected to the suction side of 3, the pressure dissolution chamber 11 is isolated in the ozone dissolution treatment tank 1, and the injection nozzle 5 at the tip of the discharge side line 32 of the pump 3 is pressurized. What is necessary is just to provide the structure opened facing the center part of the circulation port 12 provided in one place of the dissolution chamber 11. FIG. In particular, when the treatment apparatus is used only for generating high-concentration ozone-dissolved water, the configuration in which the stirring chamber 13 and the foam separation chamber 15 in the ozone dissolution treatment tank 1 in the embodiment are omitted, or only the foam separation chamber 15 is omitted. There is no problem with the configuration, and in these omitted configurations, it is possible to make the ozone dissolution treatment tank 1 horizontal. Further, in the stirring chamber 13, a baffle plate may be provided in the central portion and the lower portion together with the illustrated upper baffle plate 14. Further, the number of the baffle plates 19 in the annular descending flow path 16 can be variously changed, and the baffle plates 19 may be fixed to the inner peripheral side. When the processing apparatus is used only for generating high-concentration ozone-dissolved water, Can be omitted. In addition, various design changes can be made to the detailed configuration in addition to the embodiment.

〔水質浄化試験〕
アオコが繁殖した湖水を被処理水Wとして採取し、その160L(水温24.77℃)を貯留槽に収容し、既述実施形態の加圧型オゾン溶解処理装置を用い、オゾン溶解処理槽の導出口を出た処理水を貯留槽へ戻すサイクルの連続循環方式で水質浄化処理を行った。なお、装置構成と処理条件は次のとおりである。
[Water purification test]
The lake water in which the sea bream has propagated is collected as the water to be treated W, and 160 L (water temperature 24.77 ° C.) is stored in the storage tank. Water purification was performed by a continuous circulation system in which the treated water exiting the outlet was returned to the storage tank. The apparatus configuration and processing conditions are as follows.

<装置構成>
貯留槽 : 容量24L
オゾン溶解処理槽: 高さ60cm、径20cm、槽容量18.8L
圧力溶解室 : 縦横12cm、高さ5cmの角箱型、流通口径30mm
撹拌室 : 上下長さ45cm、内径10cm、流出口(2本)の径16 mm、邪魔板の径8cm
泡分離室 : 上下長さ50cm、内径15cm
環状下降流路 : 環状流路幅5cm、邪魔板の幅2.5cm
オゾン発生器 : 石森製作所社製プラズマ放電管式オゾン発生器CO−101
ポンプ : ニクニ社製渦流型ポンプ20NPD−04(揚程0.35MPa)
噴射ノズル : 口径8mm
<Device configuration>
Reservoir: Capacity 24L
Ozone dissolution treatment tank: height 60cm, diameter 20cm, tank capacity 18.8L
Pressure melting chamber: vertical and horizontal 12cm, height 5cm square box, flow diameter 30mm
Stirring chamber: Up and down length 45 cm, inner diameter 10 cm, outlet (two) diameter 16 mm, baffle plate diameter 8 cm
Bubble separation chamber: top and bottom length 50cm, inner diameter 15cm
Annular descending channel: Annular channel width 5cm, baffle plate width 2.5cm
Ozone generator: Plasma discharge tube type ozone generator CO-101 manufactured by Ishimori Seisakusho Co., Ltd.
Pump: Nikuni vortex pump 20NPD-04 (lift head 0.35MPa)
Injection nozzle: 8mm diameter

<処理条件>
オゾン溶解処理槽の内圧 : 0.3MPa
ポンプの送液速度 : 27L/分
被処理水の水温 : 24.77℃
被処理水へのオゾン注入量: O3 として5g/時
噴射ノズルの吐出流速 : 10m/秒
<Processing conditions>
Internal pressure of ozone dissolution treatment tank: 0.3 MPa
Pump feeding speed: 27 L / min Water temperature of treated water: 24.77 ° C
Amount of ozone injected into water to be treated: 5 g / hour as O 3 Discharge flow rate of injection nozzle: 10 m / second

上記連続循環方式の水質浄化処理における処理前と所定の処理経過時間毎に、貯留槽内の被処理液を採取し、シアノバクテリア(藍藻の藍色細菌)数、クロロフィルα(葉緑素の一種)濃度、pH、溶存酸素を測定した。その結果を次の表1に示す。なお、シアノバクテリア及びクロロフィルαの計測には、米国Hach社製の水質計(商品名HYDR−OLAB Datasonde5X)を使用した。なお、処理槽通過回数は、オゾン溶解処理槽の通過水量が処理水160L分に達した段階で1回としている。   Collect the liquid to be treated in the storage tank before the treatment in the continuous water purification system and at a predetermined elapsed time. The number of cyanobacteria (Cyanobacteria) and the concentration of chlorophyll α (a type of chlorophyll) , PH and dissolved oxygen were measured. The results are shown in Table 1 below. For measurement of cyanobacteria and chlorophyll α, a water quality meter (trade name HYDR-OLAB Datasonde 5X) manufactured by Hach, USA was used. The number of times the treatment tank passes is set to once when the amount of water passing through the ozone dissolution treatment tank reaches 160 L of treated water.

Figure 2014104373
Figure 2014104373

上表の結果から、本発明の加圧型オゾン溶解処理装置によれば、アオコが繁殖した湖水を処理対象として、オゾン溶解処理槽を1回通過させただけでシアノバクテリアの約70%及びクロロフィルαの約75%が除去され、更に通過を続行することで除去が進行すると共に溶存酸素が増加し、8.4回通過でアノバクテリアの約94%及びクロロフィルαの約93%が除去されており、高能率で高度の浄化処理を行えることが判る。なお、処理前の被処理水は濁った濃い緑色を呈していたが、8.4回通過時点では無色透明になっていた。また、処理水のpHは微アルカリ域でほぼ安定している。   From the results of the above table, according to the pressurized ozone dissolution treatment apparatus of the present invention, about 70% of cyanobacteria and chlorophyll α can be obtained by passing through the ozone dissolution treatment tank once for the lake water in which the blue sea bream has propagated. About 75% of the sucrose is removed, and the removal continues and the dissolved oxygen increases as the passage continues. About 94% of the anobacteria and about 93% of the chlorophyll α are removed after 8.4 passes. It can be seen that high-efficiency and high-purity treatment can be performed. In addition, although the to-be-processed water before a process had shown the cloudy dark green, it became colorless and transparent at the time of 8.4 times passage. Further, the pH of the treated water is almost stable in the slightly alkaline region.

1 オゾン溶解処理槽
10 密閉空間
10a 頂部側空間
10b 底部側空間
11 圧力溶解室
11a 下壁(端壁)
11b 上壁(端壁)
11c 四周側壁
12 流通口
12a 一端側
13 撹拌室
13a 流出口
14 邪魔板
15 泡分離室
16 環状下降流路
17 脱気口
18 導出口
19 邪魔板
2 オゾン発生器(オゾン発生源)
3 ポンプ
31 吸入側管路
32 吐出側管路
4 オゾン注入管路
5 噴射ノズル
M 薬液
V1 絞り弁
W 被処理水
DESCRIPTION OF SYMBOLS 1 Ozone dissolution processing tank 10 Sealed space 10a Top side space 10b Bottom side space 11 Pressure dissolution chamber 11a Lower wall (end wall)
11b Upper wall (end wall)
11c Four-sided side wall 12 Flow port 12a One end side 13 Stirring chamber 13a Outlet 14 Baffle plate 15 Foam separation chamber 16 Annular downflow passage 17 Deaeration port 18 Outlet port 19 Baffle plate 2 Ozone generator (ozone generation source)
3 Pump 31 Suction side line 32 Discharge side line 4 Ozone injection line 5 Injection nozzle M Chemical liquid V1 Throttle valve W Water to be treated

上記目的を達成するための手段を図面の参照符号を付して示せば、請求項1の発明に係る加圧型オゾン溶解処理装置は、内部を密閉空間10とするオゾン溶解処理槽1と、オゾン発生源(オゾン発生器2)と、該オゾン溶解処理槽1内へ被処理水Wを加圧送給するポンプ3とを備え、ポンプ3の吸入側にオゾン発生源に繋がるオゾン注入管路4が接続されると共に、該ポンプ3の吐出側管路32がオゾン溶解処理槽1内に延設され、オゾン溶解処理槽1内に周囲が隔絶された圧力溶解室11を備え、該圧力溶解室11の一箇所に流通口12が形成され、この流通口12の中央部に臨んで吐出側管路32の先端の噴射ノズル5が開口し、ポンプ3の吸込み力によってオゾン注入管路4からオゾンが被処理水Wに混入され、このオゾン気泡を含む被処理水Wが噴射ノズル5より流通口12を通して圧力溶解室11内へ噴入され、この噴入によって周囲よりも加圧された該圧力溶解室11内でオゾンが水中に溶解すると共に、該圧力溶解室11内で生成したオゾン溶解水が流通口12の周辺部より流出するように構成され、圧力溶解室11は、一方の中央に流通口12を有して対向する方形の両端壁(下壁11a,上壁11b)と四周側壁11cとで角箱型をなす構成としている。 If a means for achieving the above object is shown with reference numerals in the drawings, the pressurized ozone dissolution treatment apparatus according to the invention of claim 1 includes an ozone dissolution treatment tank 1 having an enclosed space 10 inside, and ozone. A generation source (ozone generator 2) and a pump 3 for pressure-feeding the treated water W into the ozone dissolution treatment tank 1 are provided, and an ozone injection line 4 connected to the ozone generation source is provided on the suction side of the pump 3 A discharge side pipe 32 of the pump 3 extends in the ozone dissolution treatment tank 1 and is connected to the ozone dissolution treatment tank 1. The pressure dissolution chamber 11 is isolated in the ozone dissolution treatment tank 1. A flow port 12 is formed at one location, the injection nozzle 5 at the tip of the discharge side pipe 32 opens toward the center of the flow port 12, and ozone is drawn from the ozone injection pipe 4 by the suction force of the pump 3. It is mixed in the water to be treated W and contains this ozone bubble The treated water W is injected into the pressure dissolution chamber 11 from the injection nozzle 5 through the flow port 12, and ozone is dissolved in the water in the pressure dissolution chamber 11 pressurized by the injection, and the pressure The ozone-dissolved water generated in the dissolution chamber 11 is configured to flow out from the peripheral portion of the circulation port 12, and the pressure dissolution chamber 11 has a circulation port 12 at one center and has opposite rectangular end walls ( The lower wall 11a, the upper wall 11b) and the four-side wall 11c form a square box shape.

請求項の発明は、上記請求項1の加圧型オゾン溶解処理装置において、圧力溶解室11の流通口12は、一端側12aが該圧力溶解室11内へ突出した短筒状をなす構成としている。 According to a second aspect of the present invention, in the pressurized ozone dissolution treatment apparatus according to the first aspect, the flow port 12 of the pressure dissolution chamber 11 has a short cylindrical shape with one end side 12a protruding into the pressure dissolution chamber 11. Yes.

請求項の発明は、上記請求項1又は2の加圧型オゾン溶解処理装置において、オゾン溶解処理槽1内に、一端側を流通口12を通して圧力溶解室11に連通して、他端側に流出口13aを有する筒状の撹拌室13が周囲を隔絶して配置すると共に、該撹拌室13内に噴射ノズル5の基部寄り位置で吐出側管路32の周囲に固着された邪魔板14を有し、圧力溶解室11から流出するオゾン溶解水が該邪魔板14の周縁部と撹拌室14の内周面との間を通過して流出口13aより当該撹拌室13の外側(泡分離室15)へ流出するように構成されてなる。 The invention according to claim 3 is the pressurized ozone dissolution treatment apparatus according to claim 1 or 2 , wherein one end side is communicated with the pressure dissolution chamber 11 through the flow port 12 in the ozone dissolution treatment tank 1, and the other end side is provided. A cylindrical stirring chamber 13 having an outlet 13a is disposed so as to be isolated from the periphery, and a baffle plate 14 fixed around the discharge side pipe line 32 at a position near the base of the injection nozzle 5 in the stirring chamber 13 is provided. The ozone-dissolved water that flows out from the pressure dissolution chamber 11 passes between the peripheral edge of the baffle plate 14 and the inner peripheral surface of the stirring chamber 14, and is outside of the stirring chamber 13 (bubble separation chamber) from the outlet 13 a. 15) is configured to flow out.

請求項の発明は、上記請求項の加圧型オゾン溶解処理装置において、圧力溶解室11が流通口12を下向きにしてオゾン溶解処理槽1内の上部に配置し、この圧力溶解室11の下に縦円筒状の撹拌室13が連設され、該撹拌室13の周囲に上方に開放した環状の泡分離室15が形成されると共に、該泡分離室15の外周とオゾン溶解処理槽1の内周との間に、オゾン溶解処理槽1内の頂部側空間10aと底部側空間10bとを連通する環状下降流路16が形成され、オゾン溶解処理槽1の頂部に脱気口17を備え、該オゾン溶解処理槽1の底部側に絞り弁V1付きの導出口18を有してなる構成としている。 According to a fourth aspect of the present invention, in the pressurized ozone dissolution treatment apparatus according to the third aspect , the pressure dissolution chamber 11 is disposed in the upper portion of the ozone dissolution treatment tank 1 with the flow port 12 facing downward. A vertical cylindrical stirring chamber 13 is continuously provided below, and an annular bubble separation chamber 15 opened upward is formed around the stirring chamber 13, and the outer periphery of the bubble separation chamber 15 and the ozone dissolution treatment tank 1 are formed. Between the inner periphery of the ozone dissolution treatment tank 1, an annular descending flow path 16 that connects the top side space 10 a and the bottom side space 10 b in the ozone dissolution treatment tank 1 is formed, and a deaeration port 17 is provided at the top of the ozone dissolution treatment tank 1. The ozone dissolution treatment tank 1 has a outlet 18 with a throttle valve V1 on the bottom side.

請求項の発明は、上記請求項の加圧型オゾン溶解処理装置において、撹拌室13の下部周面に複数の流出口13aを備え、これら流出口13aの流出方向が半径方向に対して斜めになることで、流出液が泡分離室15内で旋回上昇流を生成するように構成されてなる。 According to a fifth aspect of the present invention, in the pressurized ozone dissolution treatment apparatus of the fourth aspect, the lower peripheral surface of the stirring chamber 13 is provided with a plurality of outflow ports 13a, and the outflow directions of these outflow ports 13a are oblique to the radial direction. As a result, the effluent is configured to generate a swirling upward flow in the bubble separation chamber 15.

請求項の発明は、上記請求項の加圧型オゾン溶解処理装置において、環状下降流路16内の複数箇所に、上下方向に沿う邪魔板19が設けられてなる構成としている。 According to a sixth aspect of the present invention, in the pressurized ozone dissolution treatment apparatus according to the fifth aspect of the present invention, baffle plates 19 are provided along a vertical direction at a plurality of locations in the annular descending flow path 16.

請求項の発明は、上記請求項4〜6の何れかの加圧型オゾン溶解処理装置において、ポンプ3の供給管路(吐出側管路32)内と泡分離室15内の一方又は両方に薬液Mを注入する薬液注入管路60を備えてなる構成としている。 The invention according to claim 7 is the pressurized ozone dissolution treatment apparatus according to any one of claims 4 to 6 , wherein one or both of the inside of the supply line (discharge side line 32) of the pump 3 and the bubble separation chamber 15 are provided. The chemical solution injection line 60 for injecting the chemical solution M is provided.

また本発明によれば、圧力溶解室11が一方の端壁(下壁11a)の中央に流通口12を有する角箱型をなすから、流通口12の中央部から噴入して他方の端壁(上壁11b)に当たって周辺側へ放射状に拡散する被処理水Wの流れが角箱として空間的に拡がった各隅部に向かって分流し、その各隅部で両側からの分流が衝突することで更に強い擾乱作用を受け、もってオゾンの水中への溶解がより促進される。 Further, according to the present invention, the pressure melting chamber 11 has a rectangular box shape having the circulation port 12 in the center of one end wall (lower wall 11a), and therefore, the pressure melting chamber 11 is injected from the central portion of the circulation port 12 to the other end. The flow of the water to be treated W that hits the wall (upper wall 11b) and diffuses radially toward the peripheral side is diverted toward each corner that is spatially expanded as a square box, and the diversions from both sides collide with each corner. As a result, the turbulent action is further increased, and the dissolution of ozone in water is further promoted.

請求項の発明によれば、圧力溶解室11の流通口12が一端側12aを当該圧力溶解室11内へ突出した短筒状をなすから、該圧力溶解室11内から外部への流出抵抗が増大し、もって該圧力溶解室11内がより高い加圧状態になる。 According to the second aspect of the present invention, since the flow port 12 of the pressure melting chamber 11 has a short cylindrical shape with one end 12a protruding into the pressure melting chamber 11, the outflow resistance from the pressure melting chamber 11 to the outside. As a result, the pressure dissolution chamber 11 is in a higher pressure state.

請求項の発明によれば、圧力溶解室11の流通口12から撹拌室13内に入ったオゾン溶解水は、邪魔板14に当たって周辺側へ放射状に拡散し、該邪魔板14の周縁部と撹拌室13の内周面との間の狭まった環状流通部を通過して流出口13aへ向かうから、該撹拌室13内で強い撹拌作用を受ける。従って、被処理水Wが有機物を含む水である場合、撹拌室13において有機物や重金属成分等とオゾンとの接触による反応が促進され、有機物の分解とそれに伴う殺菌作用が効率よく進行し、高い浄化能率が得られる。また、被処理水Wが水道水や精製水である場合、撹拌室13において更にオゾンの溶解が継続し、より高濃度のオゾン溶解水が生成する。 According to the invention of claim 3 , the ozone-dissolved water that has entered the stirring chamber 13 from the circulation port 12 of the pressure dissolving chamber 11 hits the baffle plate 14 and diffuses radially to the peripheral side, and the peripheral portion of the baffle plate 14 Since it passes through the narrow annular circulation part between the inner peripheral surface of the stirring chamber 13 and goes to the outlet 13 a, it receives a strong stirring action in the stirring chamber 13. Therefore, when the to-be-processed water W is water containing an organic substance, the reaction by contact with organic substance, a heavy metal component, etc., and ozone in a stirring chamber 13 is accelerated, decomposition | disassembly of an organic substance and the accompanying bactericidal action advance efficiently, and are high. Purification efficiency is obtained. Moreover, when the to-be-processed water W is a tap water or a purified water, melt | dissolution of ozone continues further in the stirring chamber 13, and a higher concentration ozone melt | dissolution water produces | generates.

請求項の発明によれば、圧力溶解室11の流通口12から下向きに放出されたオゾン溶解水が撹拌室13内を下降して下端側の流出口13aから泡分離室15へ入り、この泡分離室15内を上昇する過程で、溶け残った微細気泡が合体して大きな泡となって浮上分離し、溶解処理槽1内の頂部側空間10aの最上部に集積するが、その集積したガス成分を脱気口17から排出することより、溶解処理槽1内を水で満たすことができる。一方、ガス成分を離脱した処理水は、頂部側空間10aから環状下降流路16を下降して底部側空間10bへ入り、導出口18より外部へ導出される。しかして、導出口18には絞り弁V1が介在しているから、その絞り度合によって溶解処理槽1内の圧力を任意に設定することができる。 According to the invention of claim 4 , the ozone-dissolved water released downward from the circulation port 12 of the pressure dissolution chamber 11 descends in the stirring chamber 13 and enters the bubble separation chamber 15 from the outlet 13a on the lower end side. In the process of ascending in the bubble separation chamber 15, the undissolved fine bubbles are combined to form a large bubble that floats and separates and accumulates at the top of the top space 10 a in the dissolution treatment tank 1. By discharging the gas component from the deaeration port 17, the inside of the dissolution treatment tank 1 can be filled with water. On the other hand, the treated water from which the gas component has been separated descends from the top side space 10 a through the annular descending flow path 16 and enters the bottom side space 10 b, and is led out through the outlet 18. Therefore, since the throttle valve V1 is interposed in the outlet 18, the pressure in the dissolution treatment tank 1 can be arbitrarily set depending on the degree of throttling.

請求項の発明によれば、撹拌室13の下部周面に設けた複数の流出口13aの流出方向が半径方向に対して斜めになり、その流出液が泡分離室15内で旋回上昇流を生成するから、泡分離室15内の上部で分離した泡が中央に集まり、もって脱気口17からのガス成分の排出が容易になる。 According to the invention of claim 5 , the outflow direction of the plurality of outlets 13 a provided on the lower peripheral surface of the stirring chamber 13 is oblique to the radial direction, and the effluent is swirling upflow in the bubble separation chamber 15. Therefore, the bubbles separated at the upper part in the bubble separation chamber 15 gather in the center, so that the gas component can be easily discharged from the deaeration port 17.

請求項の発明によれば、泡分離室15より旋回上昇流として頂部側空間10aに至った処理水が旋回しつつ環状下降流路16を下降する過程で、上下方向に沿う邪魔板19によって流れを乱されるから、この環状下降流路16内で更に残存する気泡の分離が進み、導出口18から殆ど微細気泡を含まない処理水を導出できる。 According to the invention of claim 6, the baffle plate 19 along the vertical direction in the process of descending the annular descending flow path 16 while the treated water reaching the top space 10 a as a swirling upward flow from the bubble separation chamber 15 swirls. Since the flow is disturbed, the remaining bubbles in the annular descending flow path 16 are further separated, and the treated water containing almost no fine bubbles can be led out from the outlet 18.

請求項の発明によれば、加圧型オゾン溶解処理装置を有機物や重金属成分等を含む水の浄化処理に適用する際、その被処理水Wの含有成分に対応して浄化を促進させる薬液Mを薬液注入管路60から注入することにより、浄化効率を高めることができる。
According to the invention of claim 7 , when the pressurized ozone dissolution treatment apparatus is applied to the purification treatment of water containing organic matter, heavy metal components, etc., the chemical solution M that promotes purification corresponding to the components contained in the treated water W By injecting from the chemical injection line 60, the purification efficiency can be increased.

Claims (8)

内部を密閉空間とするオゾン溶解処理槽と、オゾン発生源と、該オゾン溶解処理槽内へ被処理水を加圧送給するポンプとを備え、
前記ポンプの吸入側にオゾン発生源に繋がるオゾン注入管路が接続されると共に、該ポンプの吐出側管路が前記オゾン溶解処理槽内に延設され、
前記オゾン溶解処理槽内に周囲が隔絶された圧力溶解室を備え、該圧力溶解室の一箇所に流通口が形成され、この流通口の中央部に臨んで前記吐出側管路の先端の噴射ノズルが開口し、
前記ポンプの吸込み力によって前記オゾン注入管路からオゾンが被処理水に混入され、このオゾン気泡を含む被処理水が前記噴射ノズルより前記流通口を通して圧力溶解室内へ噴入され、この噴入によって周囲よりも加圧された該圧力溶解室内でオゾンが水中に溶解すると共に、該圧力溶解室内で生成したオゾン溶解水が前記流通口の周辺部より流出するように構成されてなる加圧型オゾン溶解処理装置。
An ozone dissolution treatment tank having a sealed space inside, an ozone generation source, and a pump for pressure-feeding water to be treated into the ozone dissolution treatment tank;
An ozone injection line connected to an ozone generation source is connected to the suction side of the pump, and a discharge side pipe of the pump extends into the ozone dissolution treatment tank.
The ozone dissolution treatment tank is provided with a pressure dissolution chamber that is isolated from the periphery, and a flow port is formed at one location of the pressure dissolution chamber, and a jet at the tip of the discharge side pipe line faces the central portion of the flow port. The nozzle opens,
Ozone is mixed into the water to be treated from the ozone injection line by the suction force of the pump, and the water to be treated containing the ozone bubbles is injected from the injection nozzle into the pressure dissolution chamber through the flow port. Pressurized ozone dissolution in which ozone is dissolved in water in the pressure melting chamber pressurized from the surroundings, and ozone dissolved water generated in the pressure melting chamber flows out from the periphery of the circulation port. Processing equipment.
前記圧力溶解室は、一方の中央に前記流通口を有して対向する方形の両端壁と四周側壁とで角箱型をなす請求項1に記載の加圧型オゾン溶解処理装置。   2. The pressurized ozone dissolution treatment apparatus according to claim 1, wherein the pressure dissolution chamber has a rectangular box shape with square end walls and four side walls facing each other with the flow port at one center. 前記圧力溶解室の流通口は、一端側が該圧力溶解室内へ突出した短筒状をなす請求項1又は2に記載の加圧型オゾン溶解処理装置。   3. The pressurized ozone dissolution treatment apparatus according to claim 1, wherein the circulation port of the pressure dissolution chamber has a short cylindrical shape with one end projecting into the pressure dissolution chamber. 前記オゾン溶解処理槽内に、一端側を前記流通口を通して前記圧力溶解室に連通して、他端側に流出口を有する筒状の撹拌室が周囲を隔絶して配置すると共に、該撹拌室内に前記噴射ノズルの基部寄り位置で前記吐出側管路の周囲に設けられた邪魔板を有し、
圧力溶解室から流出するオゾン溶解水が該邪魔板の周縁部と撹拌室の内周面との間を通過して前記流出口より当該撹拌室の外側へ流出するように構成されてなる請求項1〜3の何れかに記載の加圧型オゾン溶解処理装置。
In the ozone dissolution treatment tank, a cylindrical stirring chamber having one end side communicating with the pressure dissolving chamber through the flow port and having an outlet on the other end side is disposed to be separated from the surroundings, and the stirring chamber A baffle plate provided around the discharge side pipe line at a position near the base of the injection nozzle,
The ozone-dissolved water flowing out from the pressure dissolving chamber passes between the peripheral edge of the baffle plate and the inner peripheral surface of the stirring chamber, and flows out of the stirring chamber from the outlet. The pressurized ozone dissolution treatment apparatus according to any one of 1 to 3.
前記圧力溶解室が前記流通口を下向きにしてオゾン溶解処理槽内の上部に配置し、この圧力溶解室の下に縦円筒状の前記撹拌室が連設され、該撹拌室の周囲に上方に開放した環状の泡分離室が形成されると共に、該泡分離室の外周とオゾン溶解処理槽の内周との間に、オゾン溶解処理槽内の頂部側空間と底部側空間とを連通する環状下降流路が形成され、オゾン溶解処理槽の頂部に脱気口を備え、該オゾン溶解処理槽の底部側に絞り弁付きの導出口を有してなる請求項4に記載の加圧型オゾン溶解処理装置。   The pressure dissolution chamber is disposed in the upper part of the ozone dissolution treatment tank with the flow port facing downward, and the vertical cylindrical stirring chamber is continuously provided under the pressure dissolution chamber, and is disposed above the stirring chamber. An annular bubble separation chamber that is open is formed, and an annular communication between the top side space and the bottom side space in the ozone dissolution treatment tank is provided between the outer periphery of the bubble separation chamber and the inner periphery of the ozone dissolution treatment tank. The pressurized ozone lysis according to claim 4, wherein a downward flow path is formed, a degassing port is provided at the top of the ozone dissolution treatment tank, and a lead-out port with a throttle valve is provided on the bottom side of the ozone dissolution treatment tank. Processing equipment. 前記撹拌室の下部周面に複数の前記流出口を備え、これら流出口の流出方向が半径方向に対して斜めになることで、流出液が前記泡分離室内で旋回上昇流を生成するように構成されてなる請求項5に記載の加圧型オゾン溶解処理装置。   A plurality of the outlets are provided on the lower peripheral surface of the stirring chamber, and the outflow direction of these outlets is inclined with respect to the radial direction so that the outflow liquid generates a swirling upward flow in the bubble separation chamber. The pressurized ozone dissolution treatment apparatus according to claim 5, which is configured. 前記環状下降流路内の複数箇所に、上下方向に沿う邪魔板が設けられてなる請求項6に記載の加圧型オゾン溶解処理装置。   The pressurized ozone dissolution treatment apparatus according to claim 6, wherein baffle plates along the vertical direction are provided at a plurality of locations in the annular descending flow path. 前記ポンプの供給管路内と前記泡分離室内の一方又は両方に薬液を注入する薬液注入管路を備えてなる請求項5〜7の何れかに記載の加圧型オゾン溶解処理装置。   The pressurized ozone dissolution treatment apparatus according to any one of claims 5 to 7, further comprising a chemical solution injection conduit for injecting a chemical solution into one or both of the supply conduit of the pump and the bubble separation chamber.
JP2012256694A 2012-11-22 2012-11-22 Pressurized ozone dissolution treatment equipment Active JP5331238B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012256694A JP5331238B1 (en) 2012-11-22 2012-11-22 Pressurized ozone dissolution treatment equipment
KR1020130016919A KR20140066073A (en) 2012-11-22 2013-02-18 An efficient, high pressure chamber dissolved ozone device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012256694A JP5331238B1 (en) 2012-11-22 2012-11-22 Pressurized ozone dissolution treatment equipment

Publications (2)

Publication Number Publication Date
JP5331238B1 JP5331238B1 (en) 2013-10-30
JP2014104373A true JP2014104373A (en) 2014-06-09

Family

ID=49595992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012256694A Active JP5331238B1 (en) 2012-11-22 2012-11-22 Pressurized ozone dissolution treatment equipment

Country Status (2)

Country Link
JP (1) JP5331238B1 (en)
KR (1) KR20140066073A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903369B1 (en) * 2017-02-17 2018-10-02 김상수 oxygen dissolving apparatus
WO2020105274A1 (en) * 2018-11-21 2020-05-28 シンユー技研株式会社 Static mixer
JP2021084073A (en) * 2019-11-28 2021-06-03 株式会社サイエンス Gas dissolving device
WO2021225009A1 (en) * 2020-05-08 2021-11-11 三相電機株式会社 Gas dissolution device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102259593B1 (en) * 2019-09-03 2021-06-01 한국산업기술시험원 Exhaust gas treatment apparatus using ozone bubble
KR102302018B1 (en) * 2021-04-01 2021-09-15 해성엔지니어링 주식회사 Contact oxidation apparatus and sewage treatment system comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180829A (en) * 2004-12-28 2006-07-13 Seiwa Pro:Kk Apparatus for receiving fish or shellfish
JP4378337B2 (en) * 2005-09-15 2009-12-02 松江土建株式会社 Gas-liquid dissolving device
JP2010155192A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Gas-liquid separator and gas dissolving vessel equipped therewith

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903369B1 (en) * 2017-02-17 2018-10-02 김상수 oxygen dissolving apparatus
WO2020105274A1 (en) * 2018-11-21 2020-05-28 シンユー技研株式会社 Static mixer
JP2020081940A (en) * 2018-11-21 2020-06-04 シンユー技研株式会社 Static mixer
JP2021084073A (en) * 2019-11-28 2021-06-03 株式会社サイエンス Gas dissolving device
JP7260169B2 (en) 2019-11-28 2023-04-18 株式会社サイエンス gas dissolver
WO2021225009A1 (en) * 2020-05-08 2021-11-11 三相電機株式会社 Gas dissolution device

Also Published As

Publication number Publication date
JP5331238B1 (en) 2013-10-30
KR20140066073A (en) 2014-05-30

Similar Documents

Publication Publication Date Title
JP5331238B1 (en) Pressurized ozone dissolution treatment equipment
EP2573053B1 (en) Gas dispersion apparatus for improved gas-liquid mass transfer
WO2009116711A2 (en) Apparatus of generating microbubbles
KR20160062674A (en) Hydrogen water purifier having hydrogen water creating module
JPWO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilization system
CN104876375A (en) Deep oxidization water treatment method and deep oxidization water treatment device
KR101757766B1 (en) High efficiency ballast water treatment system using co2 and ozone micro-bubbles and treatment method thereof
JP2007160178A (en) Water area purifying apparatus, aquatic-contamination living organism recovery ship and method for treating aquatic-contamination living organism
KR101564244B1 (en) Hybrid ballast water treatment system having pipe type water treatment unit and ozone micro-bubbles unit
JP5182837B2 (en) Method and apparatus for producing high-concentration oxygen-dissolved water, method for using produced high-concentration oxygen-dissolved water
JP2011056498A (en) Apparatus and system for generating high-concentration dissolved water
JP2007185594A (en) Waste liquid treatment apparatus and method
CN214399924U (en) Flocculation treatment equipment based on electric field
CN104045146B (en) The ozone contact reaction pond that a kind of air water quickly mixes
CN203187451U (en) Quick ozone-water mixing ozone contact reaction tank
JP5840277B2 (en) Activated sludge treatment method and wastewater treatment method
KR100444886B1 (en) A Micro-Bubble Generator And Liquid Treatments Using The Micro-Bubble Generator
JP5058383B2 (en) Liquid processing apparatus and liquid processing method
JP4573141B1 (en) Gas dissolving device
JP4364876B2 (en) Gas dissolving device
KR101109052B1 (en) A vapor generating apparatus in the water
JP5578688B2 (en) Production equipment for water containing fines
KR102664947B1 (en) Micro-nano bubble generating device with pressure turning method applied
JP2017192914A (en) Raw water treatment device
Alemayehu Dissolved air flotation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5331238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250