WO2006035834A1 - Method of treatment with reactional crystallization and apparatus therefor - Google Patents

Method of treatment with reactional crystallization and apparatus therefor Download PDF

Info

Publication number
WO2006035834A1
WO2006035834A1 PCT/JP2005/017881 JP2005017881W WO2006035834A1 WO 2006035834 A1 WO2006035834 A1 WO 2006035834A1 JP 2005017881 W JP2005017881 W JP 2005017881W WO 2006035834 A1 WO2006035834 A1 WO 2006035834A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating water
water supply
treated
vicinity
calcium
Prior art date
Application number
PCT/JP2005/017881
Other languages
French (fr)
Japanese (ja)
Inventor
Katsumi Moriyama
Toshihiro Kojima
Toshihiko Nakamura
Shoroku Kawauchi
Ryuki Watanabe
Original Assignee
Mitsubishi Materials Corporation
Hanshin Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corporation, Hanshin Engineering Co., Ltd. filed Critical Mitsubishi Materials Corporation
Publication of WO2006035834A1 publication Critical patent/WO2006035834A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Definitions

  • the present invention relates to a reactive crystallization treatment method and apparatus, in particular, sewage or industrial wastewater, in which a target component contained in water to be treated is deposited on the surface of a seed crystal by crystallization to be removed and recovered.
  • TECHNICAL FIELD The present invention relates to a reaction crystallization treatment technique for removing and recovering phosphoric phosphorus from a reaction.
  • PO-P phosphate phosphorus
  • Patent Document 1 is known as a crystallization reaction apparatus.
  • Patent Document 1 describes the pressure chamber force distributor provided in the lower part of the reaction tank.
  • the liquid mixture of the water to be treated and the water to be treated after crystallization treatment is ejected as an upward flow to form a fluidized bed in which a plurality of seed crystal grains are suspended above the distributor. It is configured as follows. In addition, by supplying a chemical solution (calcium agent or alkaline agent solution) to the fluidized bed, the components to be excluded contained in the water to be treated are crystallized on the surface of the seed crystal grains.
  • a chemical solution calcium agent or alkaline agent solution
  • the specific control of the crystallization reaction according to Patent Document 1 is performed by adding an alkali agent so as to keep the pH in the reaction tank constant.
  • the target value of pH control at this time is the PO-P concentration of treated water.
  • the force varies depending on 4 degrees, etc. It is approximately pH 9.5 to pH 12.
  • Patent Document 1 JP 2002-301480 A
  • T P total phosphorus
  • Wastewater subject to regulation of TP concentration must satisfy the effluent standard of lmgZL or less in TP, for example.
  • TP effluent standard of lmgZL or less in TP
  • the inventors have found the following fact as a result of earnest research. In other words, if an alkali agent or calcium agent is applied in a fluidized bed of seed crystals, mixing and stirring of the alkali agent or calcium agent is not sufficiently performed, and the alkali (pH) degree or calcium concentration is locally increased. Rise. From this, it was found that there is a limit to the suppression of aggregates. Thereafter, as a result of further intensive studies, the inventors have completed a reaction crystallization treatment method capable of reducing the generation of aggregates to 0.2 mg-PZL or less. As a result, the TP of treated water can be stably kept below lmgZL.
  • the drug is rapidly and uniformly stirred and mixed in the circulating water that is a part of the treated water, thereby achieving uniform drug concentration in the fluidized bed and suppressing the generation of aggregates. It is an object of the present invention to provide a reaction crystallization treatment method and an apparatus therefor.
  • the present invention provides a PO—P concentration in the water to be treated of several tens mgZL to several hundred mgZL.
  • water to be treated is introduced into a fluidized bed in which a seed crystal is present, and the water to be treated and the seed crystal are brought into contact with each other in the fluidized bed, whereby the surface of the seed crystal is obtained.
  • the target component in the water to be treated is crystallized as a compound to obtain treated water, and the fluidized bed contains a part of the treated water as circulating water and a chemical used for the crystallization reaction.
  • the chemical agent is at least one of a region where a turbulent flow is generated in the circulating water and a region where a swirling flow is generated in the circulating water in the circulating water supply channel of the circulating water. It is a reaction crystallization treatment method added to the other.
  • the drug is added to at least one of the region where the turbulent flow is generated in the circulating water and the region where the swirl flow is generated in the circulating water supply channel.
  • a circulating water channel including a circulation pipe (for example, an inner cylinder) disposed inside the fluidized bed can be employed. Further, a circulating water flow path including a circulating pipe (for example, a circulating water supply pipe) arranged outside the fluidized bed may be employed.
  • the region where the turbulent flow is generated in the circulating water may be, for example, a stirring region in which a stirring device is disposed in the middle of the circulating water supply channel.
  • the vicinity of the arrangement part of the stirring blade for circulating the circulating water or the upstream part of the arrangement part of the stirring blade (hereinafter immediately before) or the vicinity of the downstream part of the arrangement part of the stirring blade (hereinafter referred to as the following) Immediately after).
  • a communication region between a pressure chamber in which a distributor is arranged and a fluidized bed may be used.
  • the distributor in the circulating water supply flow path, it is the part where the distributor is arranged, immediately before (pressure chamber), or immediately after (fluidized bed).
  • it may be the portion where the narrow orifice provided in the circulating water supply flow path is formed, or just before or just after that.
  • the circulating water supply channel for example, it may be a portion where the rapid drug mixing tank is disposed (in the rapid drug mixing tank), immediately before, or immediately after. Any one of these may be used, or two or more of these may be used.
  • the region where the swirling flow is generated in the circulating water in the circulating water supply flow path is, for example, an arrangement portion of the line mixer arranged in the middle of the circulating water supply flow path, immediately before or immediately thereafter.
  • the type of the target component is not limited.
  • phosphorus phosphate phosphorus
  • fluorine fluorine
  • boron fluorine
  • ammonia cadmium
  • chromium 111
  • zinc copper
  • other heavy metals can be used.
  • the present invention is effective for removing heavy metal sulfides, carbonates, hydroxides, and the like in addition to removing phosphate phosphorus in waste water.
  • the collected target components for example, phosphorus, boron and ammonia are used for fertilizers.
  • harmful components such as cadmium, chromium (111), and zinc are extracted as high-purity solids and reused as metal resources.
  • the kind of to-be-processed water is not limited.
  • the target component is phosphorus
  • secondary treated water for sewage treatment, return water from the sewage sludge treatment process, and industrial wastewater can be used.
  • the target component is fluorine
  • industrial waste water can be employed.
  • the target component is boron
  • industrial wastewater can be employed.
  • ammonia for example, anaerobic digestion and desorption liquid such as industrial wastewater, sewage sludge and livestock manure can be employed.
  • the seed crystal is not limited.
  • the target component is phosphorus
  • calcium silicate hydrate, calcium phosphate, phosphate ore, silica sand, bone charcoal, calcium sulfate, calcium carbonate, calcium carbonate magnesium and the like can be employed.
  • the target component is fluorine, for example, calcium carbonate, calcium fluoride (fluorite), calcium silicate hydrate, etc. can be employed.
  • the target component is boron, cadmium, chromium (111), zinc and copper, for example, calcium silicate hydrate can be employed.
  • the type of the chemical solution is not limited.
  • chemicals include calcium hydroxide (slaked lime (Ca (OH))), salt calcium, sodium hydroxide sodium (caustic soda).
  • the treated water is obtained, for example, as overflow water from the upper part of the reaction tank, and neutralized by aeration, acid addition or the like as necessary.
  • a second aspect of the present invention is the reaction crystallization treatment method according to the first aspect, wherein the treated water is placed in a fluidized bed in a flow path different from the treated water to which the chemical is added. This is a reactive crystallization treatment method to be introduced.
  • the water to be treated is introduced into the fluidized bed through a flow path different from the treated water to which the chemical has been added, There is no risk of coagulation due to contact with treated water containing chemicals.
  • the water to be treated in the reaction crystallization treatment method of the first or second aspect, is a waste water containing phosphate phosphorus, This is a reaction crystallization treatment method in which a calcium compound is precipitated on the surface of the seed crystal to remove and recover phosphorus in the waste water.
  • the phosphorous phosphorus (PO-P) in the water to be treated is
  • an aqueous solution or suspension of calcium hydroxide or an aqueous solution of sodium hydroxide can be employed.
  • the place to add can be, for example, the internal pressure of the pipe immediately before or after the treated water supply pump, or the storage tank where the treated water can be stored easily! /.
  • the phosphate concentration (PO—P concentration) in the treated water is about lOOmgZL or more,
  • seed crystals use one or more of calcium silicate hydrate, calcium phosphate, calcium carbonate, etc.
  • Preferred seed crystals are those containing calcium silicate hydrate as a main component.
  • the type of water to be treated containing a phosphorus component is not limited. Examples include sewage treated water, return water in the sewage sludge treatment process, and industrial wastewater.
  • the arrangement of both chambers is not limited.
  • both pressure chambers may be arranged vertically (vertical direction), or left and right (horizontal direction).
  • both chambers may be arranged at the central portion and the outer peripheral portion.
  • the number of air outlets may be one, or two or more.
  • the outlet for example, the water to be treated in the pressurized chamber for treated water and the circulating water in the pressurized chamber for circulating water are divided into a plurality of flows.
  • a distributor can be employed.
  • the outlet is preferably formed separately in the pressure chamber for water to be treated and the pressure chamber for circulating water. However, since the time for the treated water and the circulating water to pass through the outlet is short, the same outlet may be used.
  • the agent comprises a calcium compound containing calcium chloride, calcium hydroxide, and calcium hydroxide. 1 or more selected in the group with a hydroxide containing sodium hydroxide and sodium hydroxide, and whether the drug is added to the circulating water as an aqueous solution or suspension
  • the reaction crystallization treatment method is added to the circulating water as a solid.
  • the drug may be a calcium compound! /, Or a hydroxide! /. Also, a combination of two or more of these may be used.
  • Examples of calcium compounds include calcium sulfate, calcium sulfate, calcium hydroxide and the like in addition to calcium chloride.
  • Examples of hydroxides include calcium hydroxide and sodium hydroxide, as well as potassium hydroxide and magnesium hydroxide.
  • the solid drug for example, powder, flakes, and granules can be used. Further, as the drug outside the solid, it is possible to adopt a liquid prepared by adjusting the aqueous solution or suspension.
  • calcium hydroxide has the effects of both an alkali agent and a calcium agent, and is less expensive than sodium hydroxide sodium salt and calcium salt calcium salt.
  • the solubility of calcium hydroxide is as small as about 0.16%.
  • the storage tank for the aqueous solution of calcium hydroxide and calcium carbonate becomes larger and the amount of water used increases.
  • a method of using a suspension containing calcium hydroxide or higher in solubility, for example, about 5% is conceivable.
  • the seventh, eighth, or ninth aspect of the present invention is the reaction crystallization treatment method according to the third, fourth, or fifth aspect, wherein the seed crystal is calcium silicate hydrate, calcium phosphate.
  • This is a reactive crystallization treatment method that is one or more selected from the group of phosphorus ore, quartz sand, bone charcoal, calcium sulfate, calcium carbonate, and calcium magnesium carbonate.
  • the seed crystal may be calcium silicate hydrate, calcium phosphate, or carbonated lucium. Further, it may be phosphate ore, silica sand, bone charcoal, calcium sulfate, calcium carbonate, or calcium magnesium carbonate. Further, a combination of two or more of these may be used.
  • the region where the turbulent flow is generated in the circulating water in the circulating water supply flow path is an arrangement portion of a stirring blade arranged in the middle of the circulating water supply flow path or upstream thereof.
  • the arrangement part of the pumping pump arranged in the middle of the circulating water supply flow path, the vicinity of the upstream or the downstream thereof, or the channel cross-sectional area formed in the middle of the circulating water supply flow path Is disposed in the vicinity of the downstream portion, the upstream portion thereof, or the downstream portion thereof, or in the middle of the circulating water supply flow path, and rapidly mixes the drug and the entire circulating water in the rapid drug mixing tank.
  • the region where the swirling flow is generated in the circulating water of the circulating water supply flow path in the vicinity of the chemical rapid mixing tank or in the vicinity of the upstream or downstream thereof is a line mixer disposed in the middle of the circulating water supply flow path.
  • the arrangement position of the stirring blades and the pressure feed pump in the circulating water supply flow path, the arrangement position of the portion where the cross-sectional area of the flow path is small, the arrangement position of the rapid drug mixing tank, or the arrangement position of the line mixer are respectively Is optional.
  • portions where the cross-sectional area of the flow path is smaller than the other portions include, for example, a pressure chamber formed in the lower part of the reaction tank, a pressure chamber and a fluidized bed disposed immediately above the pressure chamber.
  • Distributors provided on the wall plates (partitions) separating the walls.
  • the orifice part provided in the middle of the circulating water supply flow path.
  • the drug rapid mixing tank rapidly agitates the entire circulating water in the tank and the drug.
  • the thing provided with the stirrer can be employ
  • the rapidly mixed drug may be solid or liquid.
  • a line mixer generates a swirling flow in a liquid in an internal flow path and stirs and mixes the liquid.
  • a specific configuration for example, a structure in which a large number of stirring protrusions are arranged at a predetermined pitch in the channel length direction on the inner wall of the channel can be adopted.
  • the chemical used for the crystallization reaction may be added to a high region of the circulating water turbulence intensity in the circulating water supply channel.
  • An eleventh aspect of the present invention is provided in a reaction tank for reacting a target component in the water to be treated, a partition partitioning the internal space of the reaction tank into an upper part and a lower part, and a lower part of the internal space.
  • An upper part of the fluidized bed by bringing the target component in the treated water supplied to the fluidized bed by the treated water supply means into contact with the seed crystal and causing the target component to crystallize on the surface of the seed crystal.
  • the circulating water supply means for supplying a part of the treated water obtained through the circulating water supply channel to the pressure chamber as circulating water, and the pressure chamber and the fluidized bed are in communication with each other.
  • Circulating water stored in the pressure chamber and provided in the partition A plurality of distributors that distribute at least one of the water to be treated to the fluidized bed and the chemical used in the crystallization reaction in the circulating water supply channel.
  • a reaction crystallization treatment apparatus comprising a chemical supply means for supplying at least one of a region where a flow is generated and a region where a swirling flow is generated in the circulating water.
  • the drug supply means supplies the drug to at least one of the region where the turbulent flow occurs in the circulating water and the region where the swirl flow occurs in the circulating water in the circulating water supply flow path. Therefore, immediately after the addition, the drug is rapidly and uniformly mixed in the circulating water. As a result, compared to the conventional case where the drug is added to the region where the water flow in the fluidized bed is stable, the local concentration of the drug in the fluidized bed is prevented from increasing, and the drug concentration can be made uniform. As a result, the generation of aggregates is suppressed.
  • the reaction tank has corrosion resistance against the water to be treated and the chemicals added thereto. Is preferred.
  • the size of the reaction vessel is not limited. Also, the shape may be a cylindrical shape, or may be a square tube shape that is, for example, a quadrangle or more in plan view!
  • size and shape of a partition are suitably changed according to the magnitude
  • the number of partition walls may be one or more.
  • a through hole is formed in the partition wall, and the upper and lower portions of the reaction tank defined by the partition wall can be communicated with each other.
  • the pressure chamber is a room partitioned in a reaction tank by a partition wall so that treated water or circulating water is uniformly blown out to the fluidized bed through a plurality of distributors (air outlets).
  • the size, shape, formation position, etc. of the pressure chamber formed in the reaction tank are not limited. For example, there may be only one pressure chamber or a plurality of pressure chambers. Among these, when dividing into a plurality, it may be divided in the height direction of the reaction tank, or may be divided in the radial direction (plane direction) of the reaction tank. The number of divisions of the pressure chamber is arbitrary.
  • Circulating water or treated water may be stored (supplied) in the pressure chamber. Further, both circulating water and treated water may be used.
  • the pressure chamber is divided into a plurality of parts as described above, for example, one pressure chamber can be dedicated to circulating water and another pressure chamber can be dedicated to treated water. In that case, since the circulating water is mainly water in the fluidized bed, it is preferable to increase the number of distributors dedicated to circulating water rather than the number of distributors dedicated to treated water.
  • the treated water supply means may supply the treated water directly to the fluidized bed! Or indirectly supply the treated water to the fluidized bed by supplying the treated water to the pressure chamber. May be.
  • the treated water supply means includes, for example, a treated water supply tank, a treated water supply path used when the treated water stored in the treated water supply tank is supplied to the pressure chamber, and the treated water supply path.
  • a water supply path provided with a supply pump for water to be treated can be employed.
  • the circulating water supply means is not limited as long as it has a structure capable of supplying a part of the treated water obtained by the crystallization reaction in the fluidized bed as circulating water to the pressure chamber from the circulating water supply flow path.
  • a supply pump for example, a circulating water pressure pump or a pump device
  • the material of the distributor is preferably one having corrosion resistance against water to be treated, chemicals and the like that come into contact therewith.
  • the structure of the distributor is not limited. For example, a lower nozzle umbrella plate disposed above the attachment hole formed in the partition wall and an upper nozzle umbrella plate standing on the upper surface of each lower nozzle umbrella plate via a plurality of columns. Each of them can be used.
  • This distributor can be used, for example, as a composite supply section having a double pipe structure in which a pipe for supplying treated water to a fluidized bed and a pipe for supplying circulating water to a fluidized bed are arranged on a coaxial line. Monkey.
  • the number of distributors used can be changed as appropriate depending on the floor area of the reaction tank as long as it is two or three or more.
  • the chemical supply means for example, a chemical solution supply tank in which a chemical solution obtained by dissolving a drug in water and a pump in which the chemical solution in the chemical supply tank is pumped through the chemical solution supply path can be adopted.
  • a medicine supply tank that stores a solid (lump, granule, powder) medicine and a pump in which the solid medicine in the medicine supply tank is pumped through the medicine supply path.
  • a twelfth aspect of the present invention includes a reaction vessel having a cylindrical shape or a rectangular tube shape, and at least a lower portion gradually tapering downward, and reacting a target component in water to be treated.
  • a fluidized bed provided in an internal space of the tank, in which seed crystals exist, a treated water supply means for supplying the treated water to a lower portion of the internal space, and the treated water supply in the fluidized bed.
  • the target component in the for-treatment water supplied by the means is brought into contact with the seed crystal, and the target component is crystallized on the surface of the seed crystal, whereby the upper force of the fluidized bed is obtained.
  • the circulating water supply channel is used for the crystallization reaction, and the circulating water jetting means for spraying the circulating water as the circulating water against the bottom wall of the reaction tank through the circulating water supply channel.
  • a reaction crystallization treatment apparatus comprising a chemical supply means for supplying at least one of a region where turbulent flow is generated and a region where swirl flow is generated in the circulating water.
  • the circulating water when circulating water is ejected from the circulating water supply channel toward the bottom wall of the reaction tank using the circulating water ejection means, the circulating water is reflected by the bottom wall. An upward flow is generated inside the reaction tank. At this time, the to-be-treated water supplied into the reaction tank by the to-be-treated water supply means rises on this upward flow, and a fluidized bed having a predetermined height is formed.
  • the medicine is added by the medicine supply means in the circulating water supply flow path in the region where the turbulent flow is generated, the medicine is rapidly and uniformly mixed into the circulating water immediately after the addition. .
  • the reaction layer may have a cylindrical shape or a rectangular tube shape.
  • the tapered portion having the downward conical shape or the pyramid shape of the reaction tank may be, for example, only the lower part of the reaction tank or the entire reaction tank.
  • reaction tank used here internal space is not divided by the partition. Therefore, it is possible to form a fluidized bed over substantially the entire reaction tank.
  • the circulating water jetting means a part of the treated water obtained by the crystallization reaction in the fluidized bed is used as circulating water, and the circulating water supply channel force can be jetted by directing to the bottom wall of the reaction tank. If it is, it will not be limited.
  • a circulating water supply channel may be provided with a pump or the like. The speed of circulating water ejected from the circulating water supply channel is, for example, 0.1 to lmZ seconds.
  • the region where turbulent flow is generated in the circulating water in the circulating water supply flow path is Arrangement part of the stirring blade arranged in the middle of the circulating water supply flow path or the vicinity of the upstream or the vicinity thereof, or the arrangement part of the pressure feed pump arranged in the middle of the circulating water supply flow path or the vicinity of the upstream or Arranged in the vicinity of the downstream water, or in the middle of the circulating water supply flow path, in the middle of the circulating water supply flow path or in the vicinity of the upstream or the downstream thereof
  • the region where the circulation occurs This is a reactive crystallization treatment apparatus that is located in the middle of the water supply flow path or in the vicinity of
  • a stirring blade or a pressure pump is provided in the middle of the circulating water supply flow path.
  • the arrangement part of the stirring blade or the pressure feed pump or its part A reaction crystallization treatment apparatus in which at least one of a valve, an orifice, and a line mixer is disposed as a means for generating a turbulent flow or a swirling flow in the circulating water of the circulating water supply flow path in the vicinity of the upstream of or downstream of the It is.
  • the means for generating turbulent or swirling flow in the circulating water in the circulating water supply channel may be a valve, an orifice, or a line mixer. Alternatively, a combination of two or more of these may be used.
  • the chemical supply means supplies the chemical used for the crystallization reaction to a high region of the turbulent strength of the circulating water in the circulating water supply channel. It may be.
  • the region where turbulent flow is generated in the circulating water in the circulating water supply channel is a region where turbulent flow is generated due to a sudden change in flow. Also good.
  • the region where the swirling flow is generated in the circulating water of the circulating water supply channel may be a region where turbulent flow is generated by the swirling flow.
  • the circulating water supply passage is circulated. Since the drug is added to the area where turbulent flow occurs in the water so that the drug is rapidly and uniformly mixed in the circulating water, the local concentration of the drug in the fluidized bed is prevented from increasing. As a result, the drug concentration can be made uniform and the generation of aggregates can be suppressed.
  • the PO-P concentration in the water to be treated containing phosphate phosphorus is number
  • FIG. 1 is a schematic configuration diagram of a reaction crystallization treatment apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram of a reaction crystallization treatment apparatus according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic configuration diagram of another reactive crystallization treatment apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic configuration diagram of still another reactive crystallization treatment apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic configuration diagram of a reactive crystallization treatment apparatus according to Embodiment 3 of the present invention.
  • Fig. 6 is a schematic configuration diagram of a main part of a reaction crystallization treatment apparatus according to another embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram of a main part of a reaction crystallization treatment apparatus according to another embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram of a reaction crystallization treatment apparatus according to Embodiment 4 of the present invention.
  • Fig. 9 is a graph showing the relationship between PO-P concentration and calcium concentration using pH as a parameter.
  • FIG. 10 is a schematic configuration diagram of a reaction crystallization treatment apparatus according to conventional means.
  • reference numeral 10 denotes a crystallization dephosphorization apparatus (reaction crystallization treatment apparatus) according to Example 1 of the present invention.
  • This crystallization dephosphorization apparatus 10 removes phosphorus as a target component in water to be treated.
  • Reaction tank 11 to be reacted partition wall 51 that divides the internal space of the reaction tank 11 into an upper part and a lower part, a pressure chamber 13 provided in the lower part of the internal space, and a seed crystal provided in the upper part of the internal space
  • Fluidized bed 14 treated water supply tank (treated water supply means) 15 for supplying treated water to pressure chamber 13, phosphorus and seed crystals supplied to fluidized bed 14 by treated water supply tank 15
  • a part of the treated water which has also obtained the upper force of the fluidized bed 14 by crystallizing phosphorus on the surface of the seed crystal, is supplied to the pressure chamber 13 through the circulating water supply passage 21 as circulating water.
  • the water supply means 16, the pressure chamber 13 and the fluidized bed 14 are connected to each other in the partition wall 51.
  • a plurality of distributors 12 that distribute at least one of the collected circulating water and treated water to the fluidized bed 14 and slaked lime that stores slaked lime aqueous solution (calcium hydroxide chemical) used for the crystallization reaction
  • An aqueous solution supply tank (medicine supply means) 17 is provided.
  • the reaction tank 11 is a straight cylinder type cylindrical tank (or a square tube type tank) having a uniform cross-sectional area over the entire length in the length direction.
  • the pressure chamber 13 formed in the lower part of the reaction tank 11 is divided into a lower pressure chamber for treated water 19 to which treated water is supplied and an upper pressure chamber for circulating water 20 to which circulating water is supplied. It is partitioned by a partition plate 52.
  • An annular drainage channel (not shown) is formed on the outer periphery of the upper edge of the reaction tank 11 to drain the treated water after dephosphorization. It is configured to discharge to
  • a long inner cylinder (circulating water supply flow path) 21 whose lower end communicates with the central part of the pressure chamber 20 for circulating water has its axis as the axis of the reaction tank 11. It is erected in conformity with The upper end of the inner cylinder 21 is disposed above the fluidized bed 14 of the reaction tank 11 and in a region where treated water is stored. The upper end portion of the inner cylinder 21 is formed with a diameter-enlarged portion 21a that gradually increases in diameter toward the opening at the upper end.
  • a stirring motor 41 for a pump device that draws treated water to the inner cylinder 21 is erected on the central portion of the reaction tank 11.
  • the output shaft 42 of the stirring motor 41 is long, and an impeller (stirring blade) 22 is fixed to the tip (lower end).
  • the impeller 22 is disposed slightly below the enlarged diameter portion 21 a in the inner cylinder 21. Therefore, when the output shaft 42 is rotated by the stirring motor 41, the impeller 22 rotates, and a countercurrent water flow is generated in the inner cylinder 21 downward. As a result, the treated water in the upper part of the reaction tank 11 flows into the circulating water pressure chamber 20 from the enlarged diameter portion 21a through the inside of the inner cylinder 21.
  • a chemical solution supply pipe (chemical solution supply path) in which the slaked lime aqueous solution supply tank 17 and the base portion are communicated with a portion directly above the impeller 22 in the inner cylinder 21 (a region where turbulent flow is generated in the circulating water).
  • the tip of 17a is placed.
  • a solenoid valve and a chemical supply pump (not shown) are disposed in the middle of the chemical supply pipe 17a. Therefore, when the chemical solution supply pump is operated, the slaked lime aqueous solution in the slaked lime aqueous solution supply tank 17 is injected into the portion directly above the impeller 22 through the chemical solution supply pipe 17a. Immediately thereafter, the slaked lime aqueous solution and the circulating water are mixed quickly and uniformly by the rotational force of the impeller 22.
  • the inner cylinder 21 and the pump device constitute the circulating water supply means 16.
  • the treated water supply tank 15 and a part of the peripheral side portion of the treated water pressure chamber 19 are communicated with each other by a treated water supply pipe (treated water supply path) 15a.
  • the treated water supply pipe 15a is provided with a! / ⁇ solenoid valve and a treated water supply pump (not shown). By the operation of the treated water supply pump, the treated water containing phosphorus in the treated water supply tank 15 is supplied to the pressure chamber 19 for treated water.
  • the partition wall 51 has a disk shape, and a fitting hole 51a at the lower end of the inner cylinder 21 is formed at the center. In addition, around the fitting holes 51a, six mounting holes 51b- "force S of 60 degrees are formed at intervals of 60 degrees.
  • Each distributor 12 is connected to a lower nozzle umbrella plate 12a arranged above the corresponding mounting hole 51b and a plurality of support columns (spacers) on each lower nozzle umbrella plate 12a. And has an upper nozzle umbrella plate 12b.
  • each lower nozzle umbrella plate 12a is an attachment hole 51b "in the upper wall (partition plate) 52- Is fixed to the opening on the upper side of the blowing nozzle 55.
  • Each blowing nozzle 55... Has a lower opening communicating with the pressure chamber 19 for water to be treated. Therefore, the treated water supplied from the treated water supply tank 15 to the treated water pressure chamber 19 is supplied from each outlet nozzle 55 to the corresponding lower nozzle umbrella plate 12a and the upper nozzle umbrella plate 12a. Each is ejected to the fluidized bed 14 through a gap with the nozzle umbrella plate 12b.
  • Circulating water that has flowed into the circulating water pressure chamber 20 from the inner cylinder 21 passes through the gaps between the mounting holes 51b and the corresponding blowout nozzles 55, so that the lower part of the lower nozzle umbrella plates 12a. It is ejected from the space to the fluidized bed 14 respectively.
  • a distributor 12A dedicated to the treated water communicated with the pressure chamber 19 for the treated water, and circulating water from the treated water outlet of the distributor 12A to form the fluidized bed 14. It is also possible to adopt a type having a distributor 12B dedicated to circulating water that has a low outlet and is connected to the circulating water pressure chamber 20 (Fig. 3). As a result, the number of distributors 12A can be reduced and the flow rate of circulating water to the fluidized bed 14 can be increased compared to the distributor 12B.
  • the pressure chamber 19 for treated water may be omitted, and the treated water may be directly introduced from the treated water supply tank 15 into the bottom of the fluidized bed 14 through the treated water supply pipe 15a (FIG. 4). .
  • the pressure chamber of the reaction chamber 11 becomes one.
  • the water to be treated may be introduced from the side portion of the fluidized bed 14 through the treated water supply pipe 15 a or from the upper part of the fluidized bed 14.
  • the slaked lime aqueous solution supply tank 17 is installed outside the reaction tank 11. Its internal capacity is, for example, about 0.5 to 5 m 3 . Alternatively, the slaked lime aqueous solution or suspension used for the treatment for 7 days may be stored. In the slaked lime aqueous solution supply tank 17, the slaked lime aqueous solution supply tank 17 is automatically supplied from the slaked lime aqueous solution supply tank using a supply pump (not shown) based on the detection signal of the liquid level sensor provided in the slaked lime aqueous solution supply tank 17. Is called.
  • slaked lime powder is supplied from the slaked lime supply hot bar through the feeder into the slaked lime supply tank 17 and also provided in the slaked lime supply tank 17.
  • Tap water or treated water is introduced based on the detection signal of the liquid level sensor, not shown! ⁇ Where it is stirred and mixed by a stirrer A fixed pH aqueous solution of slaked lime is produced.
  • the reaction tank 11 is provided with a pH sensor 100 that detects the pH of the treated water.
  • the pH sensor 100 is connected to the input side of the pH controller.
  • the pH of the treated water is detected by the pH sensor 100, and based on the obtained detection data, a predetermined amount of slaked lime aqueous solution is supplied from the pH controller to the chemical solution supply pump from the slaked lime aqueous solution supply tank 17 to the inner cylinder 21. A command is issued.
  • the inner cylinder 21 is flowing down by an inverter attached to the chemical supply pump so that the pH of the pH sensor 100 installed in the treated water is received and the treated water reaches a predetermined pH.
  • Control the amount of slaked lime solution added to the circulating water drug addition amount.
  • sewage secondary treated water with a T P (PO-P) concentration of about 1 to 3 mgZL is used as T P ⁇ 1 mgZL
  • control target pH is about 9.8.
  • the circulation amount of the circulating water is adjusted by an inverter attached to the stirring motor 41 so that the expansion height of the fluidized bed 14 becomes a predetermined height. Circulating water is ejected as an upward flow from the inner cylinder 21 to the fluidized bed 14 through the circulating water pressure chamber 20 and the distributors 12.
  • the amount of inflow of treated water is adjusted by a treated water supply pump with an inverter, and is introduced into the treated water pressure chamber 19. Thereafter, the water to be treated is ejected to the fluidized bed 14 as an upward flow through each of the blowout nozzles 55.
  • the upward flow rate in the reaction vessel is appropriately changed depending on the conditions (density, particle size) of the seed crystal used, the viscosity of water, and the like.
  • the seed crystal is calcium silicate hydrate (particle size of 0.5 to 1. Omm or 1.0 to 1.7 mm)
  • the upward flow rate of circulating water is 0.5 to 2 mZ, preferably 0.8 to 1.5mZ min.
  • the expansion rate of the seed crystals in the fluidized bed is about 140 to 200%. When the expansion rate is less than 140%, it is difficult to obtain a stable fluidized bed.
  • the circulating water circulation flow rate is obtained from the floor area X of the reaction tank 11 and the upward flow velocity. It depends on.
  • the circulating water dilutes the water to be treated to prevent PO-P aggregation.
  • reaction tank 11 having a shape in which the ratio of the circulating water Z treated water flow rate is about 10.
  • Equation (1) The equation is shown in equation (1) in the background art column.
  • the injection position of the slaked lime aqueous solution into the treated water flowing in the inner cylinder 21 is a portion directly above the impeller 22. Therefore, immediately after that, the slaked lime aqueous solution is stirred and mixed with the circulating water rapidly and uniformly by the impeller 22.
  • the aqueous slaked lime solution is added to the region where the water flow in the fluidized bed is stable, the increase in local slaked lime concentration in the fluidized bed 14 is suppressed, and the fluidized bed 14
  • the concentration of slaked lime can be made uniform. As a result, the generation of aggregates is suppressed.
  • the circulating water supplied to the circulating water pressure chamber 20 through the inner cylinder 21 passes through the gaps between the mounting holes 51b and the blowing nozzles 55 corresponding to the lower nozzle umbrella plates 12a. It is ejected as an upward flow into the fluidized bed 14 through the lower space.
  • the water to be treated is injected into the fluidized bed 14 through a different route (separate flow path) from the slaked lime aqueous solution and the circulating water.
  • the generation of aggregates can be suppressed. This is to prevent the possibility of PO-P agglomeration at the point of contact between the circulating water and the treated water containing phosphorus.
  • the treated water is discharged to the outside through the drainage channel drainage pipe provided in the upper part of the reaction tank 11.
  • the discharged treated water is neutralized by aeration, acid addition, etc. as necessary.
  • the place may be a storage tank that receives partial internal force treated water immediately before or after the treated water supply pump in the treated water supply pipe 15a.
  • the PO—P concentration in the treated water is about lOOmgZL or less.
  • reaction crystallization treatment apparatus can be made compact.
  • the circulating water supply means 16 of Example 1 is removed.
  • an annular drainage channel 11a is provided in the upper part of the reaction tank 11 along the peripheral wall.
  • the drainage channel 11a and the circulating water pressure chamber 20 are connected to a circulating water supply flow pipe (circulation). (Water supply channel) Communicates with 21A.
  • a circulating water pressure pump 50 is provided downstream of the circulating water supply flow pipe 21A.
  • the tip of the chemical solution supply pipe 17a in which the slaked lime aqueous solution supply tank 17 and the base part are connected, is communicated with the vicinity of the downstream portion of the circulating water supply flow pipe 21A, specifically, immediately before the circulating water pressure feed pump 50. ing.
  • the circulating water pressure feed pump 50 operates to supply the circulating water in the drainage channel 11a to the circulating water pressure chamber 20 through the circulating water supply flow pipe 21A. Is done. At this time, the slaked lime aqueous solution derived from the slaked lime aqueous solution supply tank 17 is supplied to the portion of the circulating water supply flow pipe 21A immediately before the circulating water pressure feed pump 50 through the chemical liquid supply pipe 17a. Therefore, the slaked lime aqueous solution flowing into the circulating water supply flow pipe 21A is immediately and uniformly mixed with the circulating water by the stirring force of the circulating water pump 50.
  • Example 2 As shown in FIG. 5, in the crystallization dephosphorization apparatus 10B to which the reaction crystallization treatment method according to Example 3 of the present invention is applied, instead of the slaked lime aqueous solution supply tank 17 of Example 2, the average particle size is changed.
  • a circulating water pump 50 is installed upstream of the circulating water supply pipe 21A.
  • a branch pipe 21b whose upper end is opened to the atmosphere is vertically communicated with a portion immediately before the circulating water pressure feed pump 50.
  • the branch pipe 21b communicates with the tip of the chemical supply pipe 17b of the slaked lime powder supply tank 17A.
  • a powder pump and a solenoid valve (not shown) for supplying a drug are disposed in the middle of the drug supply pipe 17b.
  • the slaked lime powder charged into the chemical supply pipe 17b from the slaked lime powder supply tank 17A is dissolved in the circulating water in the circulating water supply flow pipe 21A. As a result, it eventually becomes a slaked lime aqueous solution and flows into the pressure chamber 20 for circulating water.
  • the branch pipe 21b is removed in the crystallization dephosphorization apparatus 10B, and a rapid drug mixing tank 50A is provided in a portion where the circulating water supply flow pipe 21A communicates with the branch pipe 21b. It may be configured to rapidly stir and mix the water and circulating water! ⁇ (Fig. 6).
  • the rapid drug mixing tank 5 OA is a small tank that can hold the circulating water for 10 seconds or more, and a large output stirrer 60 is attached to the small tank. The slaked lime powder charged in the tank and all the circulating water liquid in the tank are rapidly stirred and mixed by the stirrer 60.
  • a line mixer 50B is provided in a portion between the circulating water supply flow pipe 21A and the circulating water pumping pump 50 between the communicating section with the branch pipe 21b.
  • the line mixer 50B is a non-powered cylindrical mixer in which a large number of stirring protrusions are arranged on the inner wall of the flow channel at a predetermined pitch in the flow channel length direction.
  • the circulating water to which the slaked lime powder is added passes through the internal channel of the line mixer 50B, so that a swirling flow is generated in the channel, and the circulating water and the slaked lime powder are stirred and mixed.
  • the straight barrel type cylindrical tank or rectangular tube tank of Example 2 is used.
  • a reaction tank 11A in which the pressure chamber 13 is eliminated and the lower part (bottom part) gradually tapers downward is employed.
  • the lower end portion of the circulating water supply flow pipe 21A is arranged at the lower end portion of the reaction tank 11A with the opening direction of the lower end facing downward.
  • the tip of the treated water supply pipe 15a is arranged in the lower part of the reaction tank 11A and slightly above the circulating water supply flow pipe 21A.
  • the reaction crystallization treatment apparatus 10D of Conventional Example 1 is communicated with the slaked ash aqueous solution supply tank 17 via the chemical solution supply pipe 17a on the upper side of the partition wall 51, and the slaked lime aqueous solution is fluidized to the fluidized bed 14
  • a chemical solution supply chamber 56 is provided, and a large number of chemical solution blowing nozzles 57 are vertically arranged on the upper wall 56a of the chemical solution supply chamber 56 at a predetermined pitch.
  • a distributor 12C is provided at the upper end of each chemical solution discharge nozzle 57.
  • the slaked lime aqueous solution in the slaked lime aqueous solution supply tank 17 flows into the chemical solution supply chamber 56 through the chemical solution supply pipe 17a, and is blown out to the fluidized bed 14 through the respective chemical solution discharge nozzles 57. Therefore, in the fluidized bed 14, around each distributor 12C... Is growing.
  • Other configurations, operations, and effects are the same as those in the first embodiment.
  • the seed crystal used is “wrinkle seed” manufactured by Mitsubishi Materials Corporation, particle size: 0.5 to 1. Omm, main component: calcium silicate hydrate.
  • the seed crystal filling volume was set to 130 L (liter), the treated water circulation flow rate was adjusted by an inverter connected to the stirring motor 41, and the seed crystal expansion rate was set to 200%.
  • the treated water flow rate was adjusted using an inverter connected to the treated water supply pump, and confirmed with a flow meter.
  • the chemical injection amount was controlled by an inverter connected to a chemical solution supply pump so that the treated water had a predetermined pH by a pH sensor 100 installed at the upper part of the fluidized bed 14.
  • Biologically treated wastewater is used as the water to be treated, and phosphate ions are added with KH PO aqueous solution.
  • the calcium concentration of treated water is lOmgZL
  • the calcium concentration in the treated water in Table 1 is determined by the CaCl aqueous solution.
  • experiment numbers 1 to 10 indicate Test Examples 1 to 10. Moreover, experiment numbers 11-13 show Comparative Examples 1-3.
  • the space velocity (sv) was determined by dividing the flow rate per hour of water to be treated by the seed crystal filling volume. The larger the value, the faster the treatment speed. If the treated water flow rate is the same, the compaction of the equipment can be achieved.
  • Aggregated phosphorus concentration is ⁇ (treated water T P) (treated water PO— P) ⁇ ⁇ (treated water T P) (treated water
  • the seed crystal filling volume was set to 100 L, and the circulating flow rate of the treated water was adjusted by an inverter connected to the stirring motor 41, and the seed crystal expansion rate was set to 150%.
  • simulated waste water using a sodium fluoride reagent and adjusting the fluorine ion concentration to 20 mgZL was used.
  • the treated water flow rate was adjusted with an inverter connected to the treated water supply pump and confirmed with a flow meter.
  • the drug As the drug, a 20% calcium chloride aqueous solution was employed. The injection volume was controlled by an inverter connected to the drug injection pump. The drug is injected by proportional control according to the flow rate of the water to be treated.
  • Example 1 1 20.B 20 5.2 0.2 5.5 1.0 0.0 Transparent
  • the chemical is added to the circulating water supply channel in the area where turbulent flow occurs in the circulating C water, so that the drug is rapidly and uniformly mixed into the circulating water.
  • the rise of is suppressed.
  • the drug concentration can be made uniform and the generation of aggregates can be suppressed.
  • the concentration of POP in the water to be treated containing phosphate phosphorus can be reduced even for wastewater of several tens mgZL to several hundred mgZL.
  • Treated water can be obtained stably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A method of treatment with reactional crystallization which comprises introducing a water to be treated into a fluidized bed in which seed crystals are present, contacting the raw water with the seed crystals in the fluidized bed to cause the target ingredient contained in the raw water to crystallize out as a compound on the surface of the seed crystals and thereby obtain a treated water, and introducing part of the treated water as circulating water and an agent for the crystallization reaction into the fluidized bed, wherein an aqueous slaked lime solution is added to that region in a circulating-water supply passage in which a turbulent flow occurs in the circulating water or a turning flow occurs in the circulating water.

Description

反応晶析処理方法およびその装置  Reaction crystallization treatment method and apparatus
技術分野  Technical field
[0001] この発明は、被処理水に含まれた目的成分を、晶析法により種結晶の表面に析出 させて除去、回収する反応晶析処理方法およびその装置、特に下水または産業排 水などからりん酸態りんを除去、回収する反応晶析処理技術に関する。  [0001] The present invention relates to a reactive crystallization treatment method and apparatus, in particular, sewage or industrial wastewater, in which a target component contained in water to be treated is deposited on the surface of a seed crystal by crystallization to be removed and recovered. TECHNICAL FIELD The present invention relates to a reaction crystallization treatment technique for removing and recovering phosphoric phosphorus from a reaction.
本願は、 2004年 09月 28曰に日本国特許庁に出願された特願 2004— 282160 号、 2005年 09月 20日に日本国特許庁に出願された特願 2005— 272946号に基 づく優先権を主張し、その内容をここに援用する。  This application is based on Japanese Patent Application No. 2004-282160 filed with the Japan Patent Office on September 28, 2004, and Japanese Patent Application No. 2005-272946 filed with the Japan Patent Office on September 20, 2005. Claim the right and use it here.
背景技術  Background art
[0002] 例えば、下水処理水などのリンを含む被処理水の脱リン方法として、汚泥の生成が 凝集法に比べて少なぐかつ最終的な生成物をリン資源として回収し、再利用するこ とも可能な晶析脱リン方法 (反応晶析処理方法)が、注目されている。晶析反応は、 被処理水中のリンを難溶性のヒドロキシアパタイトとして析出させる。ヒドロキシァパタ イトの溶解度積はきわめて小さく(Ksp = 10_56)、低いリン濃度の処理水を得ることが できる。 [0002] For example, as a dephosphorization method of treated water containing phosphorus such as sewage treated water, sludge is generated less than the coagulation method, and the final product is recovered and reused as phosphorus resources. In addition, a crystallization dephosphorization method (reaction crystallization treatment method) that is possible is attracting attention. In the crystallization reaction, phosphorus in the water to be treated is precipitated as sparingly soluble hydroxyapatite. Solubility product hydroxy § patterns site is very small (Ksp = 10_ 56), it is possible to obtain treated water of low phosphorus concentration.
[0003] この方法による排水中のりん酸態りん(以下、 PO— P)の除去、回収の基本原理は  [0003] The basic principle of removal and recovery of phosphate phosphorus (hereinafter referred to as PO-P) in wastewater by this method is
4  Four
、下式(1)に示す反応により、りん酸カルシウム(ヒドロキシアパタイト; HAp)を、種結 晶の表面に析出させることである。したがって、対象となる排水中の PO—P濃度、力  This is to precipitate calcium phosphate (hydroxyapatite; HAp) on the surface of the seed crystal by the reaction shown in the following formula (1). Therefore, the PO-P concentration and power in the target wastewater
4 ルシゥムイオン (Ca2+)濃度、水酸ィ匕物イオン (OH_)濃度である pH、 目的とする処 理水の PO— P濃度に応じて、必要量のカルシウムイオン (カルシウム剤)、水酸ィ匕物 4 Necessary amount of calcium ion (calcium agent), hydroxide depending on the concentration of ruthenium ion (Ca 2+ ), pH of hydroxide ion (OH_) concentration, PO—P concentration of the target treated water Things
4  Four
イオン (アルカリ剤)を添加する。  Add ions (alkali agent).
10Ca2+ + 2OH" + 6PO 3" → Ca (OH) (PO ) (1) 10Ca 2+ + 2OH "+ 6PO 3 " → Ca (OH) (PO) (1)
4 10 2 4 6  4 10 2 4 6
[0004] 従来、晶析反応装置としては、例えば特許文献 1が知られている。  [0004] Conventionally, for example, Patent Document 1 is known as a crystallization reaction apparatus.
特許文献 1は、反応槽の下部内に設けられた圧力室力 ディストリビュータを通して Patent Document 1 describes the pressure chamber force distributor provided in the lower part of the reaction tank.
、被処理水と、この被処理水を晶析処理した後の処理水との混合液を上向流として 噴出し、ディストリビュータの上方に複数の種結晶粒を浮遊させた流動床を形成する ように構成している。しかも、この流動床には薬液 (カルシウム剤、アルカリ剤の溶液) を供給することで、被処理水に含有される排除対象成分を種結晶粒の表面に晶析さ せるようにしている。 The liquid mixture of the water to be treated and the water to be treated after crystallization treatment is ejected as an upward flow to form a fluidized bed in which a plurality of seed crystal grains are suspended above the distributor. It is configured as follows. In addition, by supplying a chemical solution (calcium agent or alkaline agent solution) to the fluidized bed, the components to be excluded contained in the water to be treated are crystallized on the surface of the seed crystal grains.
特許文献 1による具体的な晶析反応の制御は、反応槽内の pHを一定に保つように アルカリ剤を添加して行われる。このときの pH制御の目標値は、処理水の PO— P濃  The specific control of the crystallization reaction according to Patent Document 1 is performed by adding an alkali agent so as to keep the pH in the reaction tank constant. The target value of pH control at this time is the PO-P concentration of treated water.
4 度などにより異なる力 概ね pH9. 5〜pH12である。  The force varies depending on 4 degrees, etc. It is approximately pH 9.5 to pH 12.
特許文献 1:特開 2002— 301480号公報  Patent Document 1: JP 2002-301480 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、特許文献 1により排水中のりんを除去するとき、すべてのりん酸イオン が種結晶の表面に析出されることはない。すなわち、一部のりん酸イオンは、種結晶 から離れた液中に、微細なりん酸カルシウムの凝集物として析出される。凝集物は、 種結晶の表面に捕捉されることなぐ処理水中を浮遊したまま排出される。このような 凝集物の発生量は、りん酸カルシウム化合物の析出のポテンシャルである被処理水 中の PO— P濃度、カルシウムイオン濃度および PH、さらには水温、種結晶の充填However, when removing phosphorus in waste water according to Patent Document 1, all phosphate ions are not deposited on the surface of the seed crystal. That is, some phosphate ions are precipitated in the liquid away from the seed crystal as aggregates of fine calcium phosphate. Aggregates are discharged while floating in the treated water without being trapped on the surface of the seed crystals. Generation of such agglomerates, PO- P concentration of the treatment in water which is a potential precipitation of calcium phosphate compounds, calcium ion concentration and P H, more water temperature, filling of the seed crystal
4 Four
量、接触時間および反応装置の形式などによっても変化する。  It also varies depending on the amount, contact time and reactor type.
[0006] 従来、提案されている晶析反応処理方法では、低濃度のりん含有排水 (PO— P濃 [0006] Conventionally proposed crystallization reaction treatment methods use low-concentration phosphorus-containing wastewater (PO—P concentration).
4 度が l〜3mgZL (リットル)程度)に対して、仮に運転制御条件を最適化しても、凝集 物の発生量は 0. 3〜0. 5mg— PZL程度まで低減させるのが限界であった。すなわ ち、凝集物中のりんは、晶析処理水の PO— Pに加算されて全りん(以下、 T P)に  4 degrees is about 1 to 3 mgZL (liter)), but even if the operation control conditions are optimized, the amount of agglomerates generated is limited to about 0.3 to 0.5 mg-PZL. . In other words, the phosphorus in the agglomerates is added to the PO-P of the crystallization water to give total phosphorus (hereinafter referred to as T P).
4  Four
含まれる。さらに、被処理水中に、晶析反応では除去、回収されない浮遊物質 (以下 、 SS)および溶解性の有機体りんが存在する場合、これらの SSおよび有機体りんが 上乗せされて、 T—Pに含まれることになる。  included. Furthermore, if suspended water (SS) and soluble organic phosphorus that cannot be removed or recovered by the crystallization reaction are present in the treated water, these SS and organic phosphorus are added to the T-P. Will be included.
T P濃度の規制を受ける排水は、例えば T Pで lmgZL以下という排水基準を 満足させなければならない。しかしながら、従来、処理水中の T—Pを安定して lmg ZL以下まで低減させることは、上述した理由により困難であった。  Wastewater subject to regulation of TP concentration must satisfy the effluent standard of lmgZL or less in TP, for example. However, conventionally, it has been difficult to stably reduce TP in treated water to 1 mg ZL or less for the reasons described above.
本発明は、凝集物の発生を抑制することができる反応晶析処理方法およびその装 置を提供することを課題とする。 課題を解決するための手段 It is an object of the present invention to provide a reaction crystallization treatment method and apparatus capable of suppressing the generation of aggregates. Means for solving the problem
[0007] そこで、発明者らは、鋭意研究の結果、次の事実を突き止めた。すなわち、アルカリ 剤またはカルシウム剤の添力卩を種結晶の流動床内で行うと、アルカリ剤またはカルシ ゥム剤の混合撹拌が十分に行われず、局所的にアルカリ(pH)度またはカルシウム 濃度が高まる。このことから、凝集物の抑制には限界があることを突き止めた。その後 、発明者らは、さらなる鋭意研究の結果、凝集物の発生を 0. 2mg— PZL以下にま で低減可能な反応晶析処理方法を完成するに至った。これにより、処理水の T Pを 安定して lmgZL以下とすることができるようになった。  [0007] Therefore, the inventors have found the following fact as a result of earnest research. In other words, if an alkali agent or calcium agent is applied in a fluidized bed of seed crystals, mixing and stirring of the alkali agent or calcium agent is not sufficiently performed, and the alkali (pH) degree or calcium concentration is locally increased. Rise. From this, it was found that there is a limit to the suppression of aggregates. Thereafter, as a result of further intensive studies, the inventors have completed a reaction crystallization treatment method capable of reducing the generation of aggregates to 0.2 mg-PZL or less. As a result, the TP of treated water can be stably kept below lmgZL.
[0008] この発明は、薬剤を処理水の一部である循環水中に急速かつ均一に撹拌混合す ることで、流動床内での薬剤濃度の均一化を図り、凝集物の発生を抑制することがで きる反応晶析処理方法およびその装置を提供することを目的として 、る。  [0008] In this invention, the drug is rapidly and uniformly stirred and mixed in the circulating water that is a part of the treated water, thereby achieving uniform drug concentration in the fluidized bed and suppressing the generation of aggregates. It is an object of the present invention to provide a reaction crystallization treatment method and an apparatus therefor.
また、この発明は、被処理水中の PO— P濃度が、数十 mgZL〜数百 mgZLの排  In addition, the present invention provides a PO—P concentration in the water to be treated of several tens mgZL to several hundred mgZL.
4  Four
水に対しても凝集濃度の低減に効果を有し、反応晶析法におけるりんの除去、回収 率を高めることができ、これにより装置のコンパクト化も図れる反応晶析処理方法を提 供することを目的としている。  It is effective in reducing the concentration of coagulation in water, and it is possible to provide a reaction crystallization treatment method that can increase the removal and recovery rate of phosphorus in the reaction crystallization method, thereby reducing the size of the apparatus. It is aimed.
[0009] 本発明の第 1の態様は、種結晶が存在する流動床に被処理水を導入し、前記流動 床で被処理水と種結晶とを接触させることにより、前記種結晶の表面に被処理水中 の目的成分をィ匕合物として晶析して処理水を得るとともに、前記流動床には、循環水 としての前記処理水の一部と、晶析反応に使用される薬剤とを導入する反応晶析処 理方法において、前記薬剤は、前記循環水の循環水供給流路のうち、前記循環水 に乱流が発生する領域および該循環水に旋回流が発生する領域の少なくとも 1つに 添加される反応晶析処理方法である。  [0009] In a first aspect of the present invention, water to be treated is introduced into a fluidized bed in which a seed crystal is present, and the water to be treated and the seed crystal are brought into contact with each other in the fluidized bed, whereby the surface of the seed crystal is obtained. The target component in the water to be treated is crystallized as a compound to obtain treated water, and the fluidized bed contains a part of the treated water as circulating water and a chemical used for the crystallization reaction. In the reactive crystallization treatment method to be introduced, the chemical agent is at least one of a region where a turbulent flow is generated in the circulating water and a region where a swirling flow is generated in the circulating water in the circulating water supply channel of the circulating water. It is a reaction crystallization treatment method added to the other.
[0010] 本発明の第 1の態様によれば、循環水供給流路のうち、循環水に乱流が生じる領 域および旋回流が生じる領域の少なくとも 1つに薬剤を添加するので、添加した直後 [0010] According to the first aspect of the present invention, the drug is added to at least one of the region where the turbulent flow is generated in the circulating water and the region where the swirl flow is generated in the circulating water supply channel. Immediately after
、薬剤は急速かつ均一に循環水の中に混入される。これにより、従来のように流動床 内の水流が安定した領域に薬剤を添加する場合に比べて、流動床内の局所的な薬 剤の濃度の高まりが抑えられ、薬剤濃度の均一化が図れる。その結果、凝集物の発 生が抑制される。 [0011] 循環水供給流路としては、流動床の内部に配置された循環管(例えば、内筒など) を含む循環水の流路を採用することができる。また、流動床の外部に配置された循 環管 (例えば、循環水供給流管など)を含む循環水の流路を採用してもよい。 The drug is rapidly and uniformly mixed into the circulating water. As a result, compared to the conventional case where the drug is added to the region where the water flow in the fluidized bed is stable, the increase in the concentration of the local drug in the fluidized bed is suppressed, and the drug concentration can be made uniform. . As a result, the generation of aggregates is suppressed. [0011] As the circulating water supply channel, a circulating water channel including a circulation pipe (for example, an inner cylinder) disposed inside the fluidized bed can be employed. Further, a circulating water flow path including a circulating pipe (for example, a circulating water supply pipe) arranged outside the fluidized bed may be employed.
循環水供給流路のうち、循環水に乱流が発生する領域とは、例えばこの循環水供 給流路の途中に、攪拌装置が配置された攪拌領域でもよい。具体的には、循環水供 給流路のうち、循環水を循環させる攪拌羽根の配置部分または攪拌羽根の配置部 分の上流近傍 (以下、直前)もしくは攪拌羽根の配置部分の下流近傍 (以下、直後) である。その他、循環水を循環させる圧送ポンプの配置部分、またはその直前もしく はその直後である。そして、循環水供給流路のうち、例えばディストリビュータが配置 された圧力室と流動床との連通領域でもよい。具体的には、循環水供給流路のうち、 ディストリビュータの配置部分、またはその直前 (圧力室)、もしくは直後(流動床)であ る。さらには、循環水供給流路に設けられた幅狭なオリフィスの形成部分またはその 直前、もしくはその直後でもよい。それから、循環水供給流路のうち、例えば薬剤急 速混合槽が配置された部分 (薬剤急速混合槽内)またはその直前、もしくはその直後 でもよい。これらのうち、何れ力 1でもよいし、これらの 2つ以上でもよい。  Of the circulating water supply channel, the region where the turbulent flow is generated in the circulating water may be, for example, a stirring region in which a stirring device is disposed in the middle of the circulating water supply channel. Specifically, in the circulating water supply flow path, the vicinity of the arrangement part of the stirring blade for circulating the circulating water or the upstream part of the arrangement part of the stirring blade (hereinafter immediately before) or the vicinity of the downstream part of the arrangement part of the stirring blade (hereinafter referred to as the following) , Immediately after). In addition, it is the location of the pressure pump that circulates the circulating water, or just before or just after that. In the circulating water supply channel, for example, a communication region between a pressure chamber in which a distributor is arranged and a fluidized bed may be used. Specifically, in the circulating water supply flow path, it is the part where the distributor is arranged, immediately before (pressure chamber), or immediately after (fluidized bed). Furthermore, it may be the portion where the narrow orifice provided in the circulating water supply flow path is formed, or just before or just after that. Then, in the circulating water supply channel, for example, it may be a portion where the rapid drug mixing tank is disposed (in the rapid drug mixing tank), immediately before, or immediately after. Any one of these may be used, or two or more of these may be used.
また、循環水供給流路の循環水に旋回流が発生する領域とは、例えば循環水供給 流路の途中に配置されたラインミキサの配置部分またはその直前もしくはその直後で ある。  Further, the region where the swirling flow is generated in the circulating water in the circulating water supply flow path is, for example, an arrangement portion of the line mixer arranged in the middle of the circulating water supply flow path, immediately before or immediately thereafter.
[0012] 目的成分 (排除対象成分)の種類は限定されない。例えばりん(りん酸態りん)、フッ 素、ホウ素、アンモニア、カドミウム、クロム(111)、亜鉛、銅、その他の重金属類などを 採用することができる。すなわち、この発明は排水中のりん酸態りんの除去の他、重 金属類の硫化物、炭酸塩、水酸ィ匕物などの除去に有効である。回収された目的成分 のうち、例えばりん、ホウ素、アンモニアは肥料などに利用される。また、カドミウム、ク ロム (111)、亜鉛などの有害成分は、高純度の固体として取り出し、金属資源として再 利用される。  [0012] The type of the target component (exclusion target component) is not limited. For example, phosphorus (phosphate phosphorus), fluorine, boron, ammonia, cadmium, chromium (111), zinc, copper, and other heavy metals can be used. In other words, the present invention is effective for removing heavy metal sulfides, carbonates, hydroxides, and the like in addition to removing phosphate phosphorus in waste water. Among the collected target components, for example, phosphorus, boron and ammonia are used for fertilizers. In addition, harmful components such as cadmium, chromium (111), and zinc are extracted as high-purity solids and reused as metal resources.
被処理水の種類は限定されない。例えば、目的成分がりんの場合には、下水処理 の二次処理水や下水汚泥処理工程における返流水、産業排水を採用することがで きる。また、目的成分がフッ素の場合には、例えば産業排水を採用することができる。 目的成分がホウ素の場合には、例えば産業排水などを採用することができる。 目的 成分がアンモニアの場合には、例えば産業排水、下水汚泥や家畜糞尿などの嫌気 性消化脱離液などを採用することができる。 The kind of to-be-processed water is not limited. For example, when the target component is phosphorus, secondary treated water for sewage treatment, return water from the sewage sludge treatment process, and industrial wastewater can be used. Further, when the target component is fluorine, for example, industrial waste water can be employed. When the target component is boron, for example, industrial wastewater can be employed. When the target component is ammonia, for example, anaerobic digestion and desorption liquid such as industrial wastewater, sewage sludge and livestock manure can be employed.
[0013] 種結晶は限定されない。 目的成分がりんの場合には、例えば、珪酸カルシウム水和 物、リン酸カルシウム、リン鉱石、珪砂、骨炭、硫酸カルシウム、炭酸カルシウム、炭酸 カルシウムマグネシウムなどを採用することができる。また、 目的成分がフッ素の場合 には、例えば炭酸カルシウム、フッ化カルシウム(蛍石)、珪酸カルシウム水和物など を採用することができる。 目的成分がホウ素、カドミウム、クロム (111)、亜鉛および銅の 場合には、例えば珪酸カルシウム水和物などを採用することができる。  [0013] The seed crystal is not limited. When the target component is phosphorus, for example, calcium silicate hydrate, calcium phosphate, phosphate ore, silica sand, bone charcoal, calcium sulfate, calcium carbonate, calcium carbonate magnesium and the like can be employed. Further, when the target component is fluorine, for example, calcium carbonate, calcium fluoride (fluorite), calcium silicate hydrate, etc. can be employed. When the target component is boron, cadmium, chromium (111), zinc and copper, for example, calcium silicate hydrate can be employed.
[0014] 薬液の種類は限定されない。例えば、 目的成分がりんの場合の薬液としては、水酸 化カルシウム(消石灰 (Ca (OH) ) )、塩ィ匕カルシウム、水酸ィ匕ナトリウム(苛性ソーダ  [0014] The type of the chemical solution is not limited. For example, when the target ingredient is phosphorus, chemicals include calcium hydroxide (slaked lime (Ca (OH))), salt calcium, sodium hydroxide sodium (caustic soda).
2  2
(NaOH) )、水酸ィ匕マグネシウムなどを採用することができる。また、 目的成分がフッ 素の場合の薬液としては、例えば水酸ィ匕カルシウム、塩ィ匕カルシウム、水酸化ナトリウ ムなどを採用することができる。 目的成分がホウ素、カドミウム、クロム (111)、亜鉛およ び銅の場合の薬液としては、例えば水酸ィ匕カルシウム、水酸ィ匕ナトリウムなどを採用 することができる。薬液の添加量は限定されない。  (NaOH)), magnesium hydroxide, etc. can be employed. In addition, as a chemical solution when the target component is fluorine, for example, calcium hydroxide, calcium salt, sodium hydroxide and the like can be employed. As the chemical solution when the target component is boron, cadmium, chromium (111), zinc and copper, for example, calcium hydroxide, sodium hydroxide, etc. can be employed. The amount of the chemical solution added is not limited.
処理水は、例えば反応槽の上部よりオーバーフロー水として得られ、必要に応じて ばつ気、酸添加などによる中和処理を行う。  The treated water is obtained, for example, as overflow water from the upper part of the reaction tank, and neutralized by aeration, acid addition or the like as necessary.
[0015] 本発明の第 2の態様は、上記第 1の態様の反応晶析処理方法において、前記被処 理水は、前記薬剤が添加された処理水とは別の流路で流動床に導入される反応晶 析処理方法である。 [0015] A second aspect of the present invention is the reaction crystallization treatment method according to the first aspect, wherein the treated water is placed in a fluidized bed in a flow path different from the treated water to which the chemical is added. This is a reactive crystallization treatment method to be introduced.
[0016] 本発明の第 2の態様によれば、被処理水を、薬剤が添加された処理水とは別の流 路で流動床に導入するので、流動床に達する前に被処理水と薬剤を含む処理水と が接触し、凝集が発生するおそれがない。  [0016] According to the second aspect of the present invention, since the water to be treated is introduced into the fluidized bed through a flow path different from the treated water to which the chemical has been added, There is no risk of coagulation due to contact with treated water containing chemicals.
[0017] 本発明の第 3又は第 4の態様は、上記第 1又は第 2の態様の反応晶析処理方法に おいて、前記被処理水はりん酸態りんを含有する排水で、りん酸カルシウム化合物を 前記種結晶の表面に析出させることにより、前記排水中のりん分を除去、回収する反 応晶析処理方法である。 [0018] 本発明の第 3又は第 4の態様によれば、被処理水中のりん酸態りん (PO— P)を、 [0017] In the third or fourth aspect of the present invention, in the reaction crystallization treatment method of the first or second aspect, the water to be treated is a waste water containing phosphate phosphorus, This is a reaction crystallization treatment method in which a calcium compound is precipitated on the surface of the seed crystal to remove and recover phosphorus in the waste water. [0018] According to the third or fourth aspect of the present invention, the phosphorous phosphorus (PO-P) in the water to be treated is
4 種結晶の表面にりん酸カルシウム化合物として析出させる。これにより、被処理水中 の PO— P濃度が、数十 mgZL〜数百 mgZLの排水に対しても凝集濃度の低減に 4 Precipitate as calcium phosphate compound on the seed crystal surface. As a result, the concentration of PO-P in the water to be treated can be reduced even for wastewater of several tens mgZL to several hundred mgZL.
4 Four
効果を有し、りんの除去、回収率を高めることができる。その結果、装置の小型化も図 ることがでさる。  It has an effect, and phosphorus removal and recovery rate can be increased. As a result, the size of the apparatus can be reduced.
[0019] 薬剤としては、例えば水酸ィ匕カルシウムの水溶液または懸濁液、あるいは水酸ィ匕ナ トリウムの水溶液を採用することができる。  [0019] As the chemical, for example, an aqueous solution or suspension of calcium hydroxide or an aqueous solution of sodium hydroxide can be employed.
また、被処理水中のカルシウム濃度が不足する場合には、必要に応じて塩化カル シゥム(CaCl )の水溶液などを被処理水に添加することができる。塩ィ匕カルシウムを  If the calcium concentration in the water to be treated is insufficient, an aqueous solution of calcium chloride (CaCl 3) or the like can be added to the water to be treated as necessary. Salty calcium
2  2
添加する場所は、例えば被処理水供給ポンプの直前または直後の配管内力、被処 理水を 、つたん溜める貯液槽でもよ!/、。  The place to add can be, for example, the internal pressure of the pipe immediately before or after the treated water supply pump, or the storage tank where the treated water can be stored easily! /.
[0020] さらに、被処理水中のりん酸態りん濃度 (PO— P濃度)が lOOmgZL程度以上で [0020] Furthermore, if the phosphate concentration (PO—P concentration) in the treated water is about lOOmgZL or more,
4  Four
、 pHが 7. 0以上の場合には、水酸ィ匕カルシウムまたは水酸ィ匕ナトリウムによる pH制 御を行わず、薬剤として例えば塩ィ匕カルシウム (カルシウム剤)のみを、循環水供給 流路途中に配置したインペラ一(羽根車)の配置部分の直前に添加し、りんの除去、 回収を行うこともできる。 pHをパラメータとした PO 4—P濃度とカルシウム濃度との関 係を図 9のグラフに示す。このグラフから明らかなように、 pHが高いほど少ないカルシ ゥム剤量で、 目標値 (排水基準値)の lmgZLまで達することができる。  When the pH is 7.0 or higher, pH control is not performed with calcium hydroxide or sodium hydroxide, and only the salt calcium (calcium agent), for example, is used as the drug. It is also possible to remove and recover phosphorus by adding it immediately before the part where the impeller (impeller) placed in the middle is placed. The graph in Fig. 9 shows the relationship between PO 4-P concentration and calcium concentration with pH as a parameter. As is clear from this graph, the higher the pH, the lower the amount of calcium solution, and the target value (drainage standard value) of lmgZL can be reached.
種結晶としては、珪酸カルシウム水和物、りん酸カルシウム、炭酸カルシウムなどの うちの 1種または 2種以上を使用する。好ましい種結晶は、珪酸カルシウム水和物を 主成分としたものである。  As seed crystals, use one or more of calcium silicate hydrate, calcium phosphate, calcium carbonate, etc. Preferred seed crystals are those containing calcium silicate hydrate as a main component.
[0021] リン成分を含む被処理水の種類は限定されない。例えば、下水処理水、下水汚泥 処理工程における返流水、産業排水などが挙げられる。反応槽内に、被処理水用圧 力室と循環水用圧力室とを区画した場合、両室の配置は限定されない。例えば両圧 力室を上下 (垂直方向)に配置してもよいし、左右 (水平方向)に配置してもよい。そ の他、両室を中心部と外周部とに配置してもよい。 [0021] The type of water to be treated containing a phosphorus component is not limited. Examples include sewage treated water, return water in the sewage sludge treatment process, and industrial wastewater. When the pressure chamber for water to be treated and the pressure chamber for circulating water are partitioned in the reaction tank, the arrangement of both chambers is not limited. For example, both pressure chambers may be arranged vertically (vertical direction), or left and right (horizontal direction). In addition, both chambers may be arranged at the central portion and the outer peripheral portion.
吹出口の形成数は 1個でもよいし、 2個以上でもよい。吹出口としては、例えば被処 理水用加圧室の被処理水、循環水用加圧室の循環水を複数の流れに分配するディ ストリビュータを採用することができる。 The number of air outlets may be one, or two or more. As the outlet, for example, the water to be treated in the pressurized chamber for treated water and the circulating water in the pressurized chamber for circulating water are divided into a plurality of flows. A distributor can be employed.
吹出口は、被処理水用圧力室と循環水用圧力室とに別々に形成した方が好ましい 。し力しながら、被処理水および循環水が吹出口を通過する時間は短時間であるの で、同じ吹出口を兼用してもよい。  The outlet is preferably formed separately in the pressure chamber for water to be treated and the pressure chamber for circulating water. However, since the time for the treated water and the circulating water to pass through the outlet is short, the same outlet may be used.
[0022] 本発明の第 5又は第 6の態様は、第 3又は第 4の態様の反応晶析処理方法におい て、前記薬剤は、塩ィ匕カルシウムを含むカルシウム化合物と、水酸化カルシウムおよ び水酸ィ匕ナトリウムを含む水酸ィ匕物との群中力も選ばれた 1種または 2種以上で、か つ、前記薬剤は、水溶液または懸濁液として前記循環水に添加されるか、固体として 該循環水に添加される反応晶析処理方法である。  [0022] In the fifth or sixth aspect of the present invention, in the reaction crystallization treatment method of the third or fourth aspect, the agent comprises a calcium compound containing calcium chloride, calcium hydroxide, and calcium hydroxide. 1 or more selected in the group with a hydroxide containing sodium hydroxide and sodium hydroxide, and whether the drug is added to the circulating water as an aqueous solution or suspension The reaction crystallization treatment method is added to the circulating water as a solid.
[0023] 薬剤は、カルシウム化合物でもよ!/、し、水酸化物でもよ!/、。また、これらを 2種以上 組み合わせたものでもよい。カルシウム化合物としては、例えば塩化カルシウムの他 、硫酸カルシウム、水酸ィ匕カルシウムなどが挙げられる。また、水酸化物としては、例 えば水酸化カルシウム、水酸化ナトリウムの他、水酸化カリウム、水酸化マグネシウム などが挙げられる。  [0023] The drug may be a calcium compound! /, Or a hydroxide! /. Also, a combination of two or more of these may be used. Examples of calcium compounds include calcium sulfate, calcium sulfate, calcium hydroxide and the like in addition to calcium chloride. Examples of hydroxides include calcium hydroxide and sodium hydroxide, as well as potassium hydroxide and magnesium hydroxide.
固体の薬剤としては、例えば粉末状、フレーク状、粒状のものなどを採用することが できる。また、固体の外の薬剤としては、あら力じめ水溶液あるいは懸濁液を調整して 液体としたものを採用することができる。  As the solid drug, for example, powder, flakes, and granules can be used. Further, as the drug outside the solid, it is possible to adopt a liquid prepared by adjusting the aqueous solution or suspension.
[0024] 薬剤のうち、水酸化カルシウムは、アルカリ剤およびカルシウム剤の両方の効果を 持ち、水酸ィ匕ナトリウムおよび塩ィ匕カルシウムなどに比べて安価である。しかしながら 、水酸ィ匕カルシウムの溶解度は、 0. 16%程度と小さい。そのため、水酸化カルシゥ ム水溶液を pH調整に使用する際には、水酸ィ匕カルシウム水溶液の貯液槽が大型化 したり、使用水量が増大する。これにより、水酸ィ匕カルシウムを溶解度以上、例えば 5 %程度含む懸濁液として使用する方法が考えられる。ただし、この懸濁液の濃度が 高すぎると、水酸ィ匕カルシウムの一部が未溶解のまま流動床内に到達するため、水 酸ィ匕カルシウムを必要以上に浪費する。し力も、これが凝集物の発生原因となり、さら には処理水の SS濃度の上昇を招くことから好ましくない。また、アルカリ剤水溶液ま たは懸濁液を作製するため、上水が利用できない場合および使用水量を抑制したい 場合には、反応晶析処理水を利用することができる。ただし、これにより凝集物が発 生するので、処理水の利用量は少な!/、方が好まし!/、。 [0024] Among the drugs, calcium hydroxide has the effects of both an alkali agent and a calcium agent, and is less expensive than sodium hydroxide sodium salt and calcium salt calcium salt. However, the solubility of calcium hydroxide is as small as about 0.16%. For this reason, when using a calcium hydroxide aqueous solution for pH adjustment, the storage tank for the aqueous solution of calcium hydroxide and calcium carbonate becomes larger and the amount of water used increases. Thus, a method of using a suspension containing calcium hydroxide or higher in solubility, for example, about 5% is conceivable. However, if the concentration of this suspension is too high, a portion of the calcium hydroxide reaches the fluidized bed in an undissolved state, so that the calcium hydroxide is wasted more than necessary. This is also unfavorable because it causes the generation of aggregates and further increases the SS concentration of the treated water. In addition, since an aqueous alkali solution or suspension is prepared, water for reaction crystallization can be used when clean water is not available or when the amount of water used is to be suppressed. However, this will generate aggregates. Because of this, the amount of treated water used is low! /.
[0025] 本発明の第 7又は第 8又は第 9の態様は、第 3又は第 4又は第 5の態様の反応晶析 処理方法において、前記種結晶は、珪酸カルシウム水和物、りん酸カルシウム、リン 鉱石、珪砂、骨炭、硫酸カルシウム、炭酸カルシウム、炭酸カルシウムマグネシウムの 群中力 選ばれた 1種または 2種以上である反応晶析処理方法である。  [0025] The seventh, eighth, or ninth aspect of the present invention is the reaction crystallization treatment method according to the third, fourth, or fifth aspect, wherein the seed crystal is calcium silicate hydrate, calcium phosphate. This is a reactive crystallization treatment method that is one or more selected from the group of phosphorus ore, quartz sand, bone charcoal, calcium sulfate, calcium carbonate, and calcium magnesium carbonate.
種結晶は、珪酸カルシウム水和物でもよいし、りん酸カルシウムでもよいし、炭酸力 ルシゥムでもよい。また、リン鉱石でもよいし、珪砂でもよいし、骨炭でもよいし、硫酸 カルシウムでもよいし、炭酸カルシウムでもよいし、炭酸カルシウムマグネシウムでもよ い。さらには、これらを 2種以上組み合わせたものでもよい。  The seed crystal may be calcium silicate hydrate, calcium phosphate, or carbonated lucium. Further, it may be phosphate ore, silica sand, bone charcoal, calcium sulfate, calcium carbonate, or calcium magnesium carbonate. Further, a combination of two or more of these may be used.
[0026] 本発明の第 10の態様は、前記循環水供給流路の循環水に乱流が発生する領域 は、前記循環水供給流路の途中に配置された攪拌羽根の配置部分またはその上流 近傍もしくはその下流近傍か、前記循環水供給流路の途中に配置された圧送ポンプ の配置部分またはその上流近傍もしくはその下流近傍か、前記循環水供給流路の 途中に形成された流路断面積が他の部分より小さくなつた部分またはその上流近傍 もしくはその下流近傍か、前記循環水供給流路の途中に配置され、薬剤と薬剤急速 混合槽内の循環水の全体とを急速に混合する前記薬剤急速混合槽の配置部分また はその上流近傍もしくは下流近傍かで、前記循環水供給流路の循環水に旋回流が 発生する領域は、前記循環水供給流路の途中に配置されたラインミキサの配置部分 またはその上流近傍もしくはその下流近傍である第 1〜第 9の態様のうち、何れかに 記載の反応晶析処理方法である。  [0026] In a tenth aspect of the present invention, the region where the turbulent flow is generated in the circulating water in the circulating water supply flow path is an arrangement portion of a stirring blade arranged in the middle of the circulating water supply flow path or upstream thereof. Near or near the downstream, the arrangement part of the pumping pump arranged in the middle of the circulating water supply flow path, the vicinity of the upstream or the downstream thereof, or the channel cross-sectional area formed in the middle of the circulating water supply flow path Is disposed in the vicinity of the downstream portion, the upstream portion thereof, or the downstream portion thereof, or in the middle of the circulating water supply flow path, and rapidly mixes the drug and the entire circulating water in the rapid drug mixing tank. The region where the swirling flow is generated in the circulating water of the circulating water supply flow path in the vicinity of the chemical rapid mixing tank or in the vicinity of the upstream or downstream thereof is a line mixer disposed in the middle of the circulating water supply flow path. Placement part of Is the reactive crystallization treatment method according to any one of the first to ninth embodiments, which are in the vicinity of the upstream or the vicinity of the downstream thereof.
[0027] 循環水供給流路における攪拌羽根や圧送ポンプの配置位置、流路断面積が小さ くなつた部分の配置位置、薬剤急速混合槽の配置位置、または、ラインミキサの配置 位置は、それぞれ任意である。  [0027] The arrangement position of the stirring blades and the pressure feed pump in the circulating water supply flow path, the arrangement position of the portion where the cross-sectional area of the flow path is small, the arrangement position of the rapid drug mixing tank, or the arrangement position of the line mixer are respectively Is optional.
流路断面積が他の部分より小さくなつた部分としては、例えば、反応槽の下部に形 成された圧力室と、反応槽内であって、圧力室とその直上に配置された流動床とを 隔てる壁板 (隔壁)に設けられたディストリビュータなどが挙げられる。その他、循環水 供給流路の途中に設けられたオリフィス部分でもよ 、。  Examples of the portion where the cross-sectional area of the flow path is smaller than the other portions include, for example, a pressure chamber formed in the lower part of the reaction tank, a pressure chamber and a fluidized bed disposed immediately above the pressure chamber. Distributors provided on the wall plates (partitions) separating the walls. In addition, the orifice part provided in the middle of the circulating water supply flow path.
薬剤急速混合槽としては、例えば槽内の循環水の全体と薬剤とを急速に攪拌する 攪拌機が設けられたものを採用することができる。急速混合される薬剤は、固体でも 液体でもよい。 For example, the drug rapid mixing tank rapidly agitates the entire circulating water in the tank and the drug. The thing provided with the stirrer can be employ | adopted. The rapidly mixed drug may be solid or liquid.
また、ラインミキサとは、内部流路で液体に旋回流を発生させ、液体を攪拌混合す るものである。具体的な構成としては、例えば流路内壁に多数の攪拌突起が流路長 さ方向に所定ピッチで配置されたものを採用することができる。  A line mixer generates a swirling flow in a liquid in an internal flow path and stirs and mixes the liquid. As a specific configuration, for example, a structure in which a large number of stirring protrusions are arranged at a predetermined pitch in the channel length direction on the inner wall of the channel can be adopted.
なお、本発明の反応晶析処理方法において、前記晶析反応に使用される薬剤は、 前記循環水供給流路のうち循環水の乱流強度の高領域に添加するようにしてもょ 、  In the reaction crystallization treatment method of the present invention, the chemical used for the crystallization reaction may be added to a high region of the circulating water turbulence intensity in the circulating water supply channel.
[0028] 本発明の第 11の態様は、被処理水中の目的成分を反応させる反応槽と、該反応 槽の内部空間を上部および下部に区画する隔壁と、前記内部空間の下部に設けら れた圧力室と、前記内部空間の上部に設けられ、種結晶が存在する流動床と、前記 被処理水を前記流動床に直接または前記圧力室を通して前記流動床に供給する被 処理水供給手段と、前記被処理水供給手段により前記流動床に供給された被処理 水中の目的成分と前記種結晶とを接触させ、該種結晶の表面に前記目的成分を晶 祈させることで前記流動床の上部力 得られた処理水の一部を、循環水供給流路を 通して、循環水として前記圧力室に供給する循環水供給手段と、前記圧力室と前記 流動床とを連通させた状態で前記隔壁に設けられ、前記圧力室に貯留された循環 水および被処理水のうち、少なくとも 1つを前記流動床に分配する複数のディストリビ ユータと、前記晶析反応に使用される薬剤を、前記循環水供給流路のうち、前記循 環水に乱流が発生する領域および該循環水に旋回流が発生する領域の少なくとも 1 つに供給する薬剤供給手段とを備えた反応晶析処理装置である。 [0028] An eleventh aspect of the present invention is provided in a reaction tank for reacting a target component in the water to be treated, a partition partitioning the internal space of the reaction tank into an upper part and a lower part, and a lower part of the internal space. A pressure chamber, a fluidized bed provided in an upper portion of the internal space, in which seed crystals exist, and a treated water supply means for supplying the treated water to the fluidized bed directly to the fluidized bed or through the pressure chamber. An upper part of the fluidized bed by bringing the target component in the treated water supplied to the fluidized bed by the treated water supply means into contact with the seed crystal and causing the target component to crystallize on the surface of the seed crystal. The circulating water supply means for supplying a part of the treated water obtained through the circulating water supply channel to the pressure chamber as circulating water, and the pressure chamber and the fluidized bed are in communication with each other. Circulating water stored in the pressure chamber and provided in the partition A plurality of distributors that distribute at least one of the water to be treated to the fluidized bed and the chemical used in the crystallization reaction in the circulating water supply channel. A reaction crystallization treatment apparatus comprising a chemical supply means for supplying at least one of a region where a flow is generated and a region where a swirling flow is generated in the circulating water.
[0029] 本発明の第 11の態様によれば、循環水供給流路のうち、循環水に乱流が生じる領 域および循環水に旋回流が生じる領域の少なくとも 1つに薬剤供給手段により薬剤 を添加するので、添加した直後、薬剤は急速かつ均一に循環水の中に混入される。 これにより、従来のように流動床内の水流が安定した領域に薬剤を添加した場合に 比べて、流動床内の局所的な薬剤の濃度の高まりが抑えられ、薬剤濃度の均一化が 図れる。その結果、凝集物の発生が抑制される。  [0029] According to the eleventh aspect of the present invention, the drug supply means supplies the drug to at least one of the region where the turbulent flow occurs in the circulating water and the region where the swirl flow occurs in the circulating water in the circulating water supply flow path. Therefore, immediately after the addition, the drug is rapidly and uniformly mixed in the circulating water. As a result, compared to the conventional case where the drug is added to the region where the water flow in the fluidized bed is stable, the local concentration of the drug in the fluidized bed is prevented from increasing, and the drug concentration can be made uniform. As a result, the generation of aggregates is suppressed.
[0030] 反応槽としては、処理される被処理水、これに添加される薬剤に対して耐食性を有 したものが好ましい。反応槽の大きさは限定されない。またその形状としては円筒形 状でもよ 、し、平面視して例えば四角形以上の角筒形状でもよ!/、。 [0030] The reaction tank has corrosion resistance against the water to be treated and the chemicals added thereto. Is preferred. The size of the reaction vessel is not limited. Also, the shape may be a cylindrical shape, or may be a square tube shape that is, for example, a quadrangle or more in plan view!
隔壁の大きさおよび形状は、反応槽の大きさや形状に応じて適宜変更される。隔壁 の枚数は 1枚でもよいし、複数枚でもよい。隔壁には貫通孔を形成し、隔壁により区 画された反応槽の上部と下部とを連通させることができる。  The magnitude | size and shape of a partition are suitably changed according to the magnitude | size and shape of a reaction tank. The number of partition walls may be one or more. A through hole is formed in the partition wall, and the upper and lower portions of the reaction tank defined by the partition wall can be communicated with each other.
[0031] 圧力室とは、複数のディストリビュータ(吹出口)を通して、流動床に被処理水ゃ循 環水などを均等に吹き出すため、隔壁により反応槽内に区画された部屋である。 反応槽に形成される圧力室の大きさ、形状、形成位置などは限定されない。例えば 、圧力室は 1つだけでもよいし、複数に分割してもよい。このうち、複数に分割する場 合には、反応槽の高さ方向に分割してもよいし、反応槽の半径方向(平面方向)に分 割してもよい。圧力室の分割数は任意である。  [0031] The pressure chamber is a room partitioned in a reaction tank by a partition wall so that treated water or circulating water is uniformly blown out to the fluidized bed through a plurality of distributors (air outlets). The size, shape, formation position, etc. of the pressure chamber formed in the reaction tank are not limited. For example, there may be only one pressure chamber or a plurality of pressure chambers. Among these, when dividing into a plurality, it may be divided in the height direction of the reaction tank, or may be divided in the radial direction (plane direction) of the reaction tank. The number of divisions of the pressure chamber is arbitrary.
圧力室に貯留 (供給)されるのは循環水でもよいし、被処理水でもよい。また、循環 水と被処理水との両方でもよい。また、前述したように圧力室を複数に分割した場合 には、例えば 1つの圧力室を循環水専用とし、別の圧力室を被処理水専用とすること ができる。その際には、循環水が流動床内の水の主体であるので、被処理水専用の ディストリビュータの本数より、循環水専用のディストリビュータの本数を多くした方が 好ましい。  Circulating water or treated water may be stored (supplied) in the pressure chamber. Further, both circulating water and treated water may be used. In addition, when the pressure chamber is divided into a plurality of parts as described above, for example, one pressure chamber can be dedicated to circulating water and another pressure chamber can be dedicated to treated water. In that case, since the circulating water is mainly water in the fluidized bed, it is preferable to increase the number of distributors dedicated to circulating water rather than the number of distributors dedicated to treated water.
[0032] 被処理水供給手段は、被処理水を流動床に直接供給してもよ!、し、被処理水を圧 力室に供給することで間接的に被処理水を流動床に供給してもよい。  [0032] The treated water supply means may supply the treated water directly to the fluidized bed! Or indirectly supply the treated water to the fluidized bed by supplying the treated water to the pressure chamber. May be.
被処理水供給手段としては、例えば被処理水供給槽と、被処理水供給槽に貯留さ れた被処理水を圧力室に供給するときに利用される被処理水供給路と、この被処理 水供給路に被処理水の供給ポンプが設けられたものなどを採用することができる。 循環水供給手段としては、流動床での晶析反応により得られた処理水の一部を循 環水として、循環水供給流路から圧力室に供給可能な構造のものであれば限定され ない。例えば、循環水供給流路に供給ポンプ (例えば、循環水圧送ポンプ、ポンプ装 置)などが設けられたものでもよい。  The treated water supply means includes, for example, a treated water supply tank, a treated water supply path used when the treated water stored in the treated water supply tank is supplied to the pressure chamber, and the treated water supply path. A water supply path provided with a supply pump for water to be treated can be employed. The circulating water supply means is not limited as long as it has a structure capable of supplying a part of the treated water obtained by the crystallization reaction in the fluidized bed as circulating water to the pressure chamber from the circulating water supply flow path. . For example, a supply pump (for example, a circulating water pressure pump or a pump device) may be provided in the circulating water supply channel.
[0033] ディストリビュータの素材は、これに接触する被処理水、薬剤などに対して耐食性を 有したものが好ましい。 ディストリビュータの構造は限定されない。例えば、隔壁に形成された揷着孔の上 方に配置される下側ノズル傘板と、複数の支柱を介して、各下側ノズル傘板の上面 に立設された上側ノズル傘板とをそれぞれ有したものなどを採用することができる。こ のディストリビュータは、例えば、被処理水を流動床に供給する管と、循環水を流動 床に供給する管とを同軸線上に配置した二重管構造の複合供給部として利用するこ とがでさる。 [0033] The material of the distributor is preferably one having corrosion resistance against water to be treated, chemicals and the like that come into contact therewith. The structure of the distributor is not limited. For example, a lower nozzle umbrella plate disposed above the attachment hole formed in the partition wall and an upper nozzle umbrella plate standing on the upper surface of each lower nozzle umbrella plate via a plurality of columns. Each of them can be used. This distributor can be used, for example, as a composite supply section having a double pipe structure in which a pipe for supplying treated water to a fluidized bed and a pipe for supplying circulating water to a fluidized bed are arranged on a coaxial line. Monkey.
ディストリビュータの使用本数は、 2つまたは 3つ以上であればよぐ反応槽の床面 積に応じて適宜変更可能である。  The number of distributors used can be changed as appropriate depending on the floor area of the reaction tank as long as it is two or three or more.
薬剤供給手段としては、例えば薬剤を水に溶カゝした薬液が貯液された薬液供給槽 と、薬液供給槽内の薬液が薬液供給路を通してポンプ圧送されるものなどを採用す ることができる。その他、固体 (塊、粒体、粉体)の薬剤を貯留した薬剤供給槽と、薬 剤供給槽内の固体の薬剤が薬剤供給路を通してポンプ圧送されるものなどを採用す ることがでさる。  As the chemical supply means, for example, a chemical solution supply tank in which a chemical solution obtained by dissolving a drug in water and a pump in which the chemical solution in the chemical supply tank is pumped through the chemical solution supply path can be adopted. . In addition, it is possible to adopt a medicine supply tank that stores a solid (lump, granule, powder) medicine and a pump in which the solid medicine in the medicine supply tank is pumped through the medicine supply path. .
[0034] 本発明の第 12の態様は、円筒形状または角筒形状を有し、かつ少なくとも下部が 下方に向かって徐々に先細り化し、被処理水中の目的成分を反応させる反応槽と、 該反応槽の内部空間に設けられ、種結晶が存在する流動床と、前記被処理水を、前 記内部空間の下部に供給する被処理水供給手段と、前記流動床内で、前記被処理 水供給手段により供給された被処理水中の目的成分と前記種結晶とを接触させ、該 種結晶の表面に前記目的成分を晶析させることで前記流動床の上部力 得られた 処理水の一部を、循環水供給流路を通して、前記内部空間の被処理水の供給位置 より下方位置力も前記反応槽の底壁に向力つて循環水として噴出する循環水噴出手 段と、前記晶析反応に使用される薬剤を、前記循環水供給流路のうち、該循環水に 乱流が発生する領域および該循環水に旋回流が発生する領域の少なくとも 1つに供 給する薬剤供給手段とを備えた反応晶析処理装置である。  [0034] A twelfth aspect of the present invention includes a reaction vessel having a cylindrical shape or a rectangular tube shape, and at least a lower portion gradually tapering downward, and reacting a target component in water to be treated. A fluidized bed provided in an internal space of the tank, in which seed crystals exist, a treated water supply means for supplying the treated water to a lower portion of the internal space, and the treated water supply in the fluidized bed. The target component in the for-treatment water supplied by the means is brought into contact with the seed crystal, and the target component is crystallized on the surface of the seed crystal, whereby the upper force of the fluidized bed is obtained. The circulating water supply channel is used for the crystallization reaction, and the circulating water jetting means for spraying the circulating water as the circulating water against the bottom wall of the reaction tank through the circulating water supply channel. To the circulating water in the circulating water supply channel. A reaction crystallization treatment apparatus comprising a chemical supply means for supplying at least one of a region where turbulent flow is generated and a region where swirl flow is generated in the circulating water.
[0035] 本発明の第 12の態様によれば、循環水噴出手段を用いて循環水供給流路から反 応槽の底壁に向かって循環水を噴出すると、循環水は底壁で反射し、反応槽の内部 に上向流が発生する。このとき、被処理水供給手段により反応槽内に供給された被 処理水は、この上向流に乗って上昇し、所定の高さの流動床が形成される。 一方、薬剤は、循環水供給流路のうち、循環水に乱流が生じる領域に薬剤供給手 段により添加されるので、添加した直後、薬剤は急速かつ均一に循環水の中に混入 される。これにより、従来のように流動床内の水流が安定した領域に薬剤を添加した 場合に比べて、流動床内の局所的な薬剤の濃度の高まりが抑えられ、薬剤濃度の均 一化が図れる。その結果、凝集物の発生が抑制される。 [0035] According to the twelfth aspect of the present invention, when circulating water is ejected from the circulating water supply channel toward the bottom wall of the reaction tank using the circulating water ejection means, the circulating water is reflected by the bottom wall. An upward flow is generated inside the reaction tank. At this time, the to-be-treated water supplied into the reaction tank by the to-be-treated water supply means rises on this upward flow, and a fluidized bed having a predetermined height is formed. On the other hand, since the medicine is added by the medicine supply means in the circulating water supply flow path in the region where the turbulent flow is generated, the medicine is rapidly and uniformly mixed into the circulating water immediately after the addition. . As a result, compared to the conventional case where the drug is added to a region where the water flow in the fluidized bed is stable, the increase in the concentration of the local drug in the fluidized bed is suppressed, and the drug concentration can be made uniform. . As a result, the generation of aggregates is suppressed.
[0036] 反応層は円筒形状でもよいし、角筒形状でもよい。  [0036] The reaction layer may have a cylindrical shape or a rectangular tube shape.
反応槽の下向き円錐形状または角錐形状を有した先細り部分は、例えば反応槽の 下部だけでもよいし、反応槽の全体でもよい。  The tapered portion having the downward conical shape or the pyramid shape of the reaction tank may be, for example, only the lower part of the reaction tank or the entire reaction tank.
ここで使用される反応槽は、隔壁により内部空間が区画されていない。そのため、 反応槽内の略全体に流動床を形成させることが可能となる。  As for the reaction tank used here, internal space is not divided by the partition. Therefore, it is possible to form a fluidized bed over substantially the entire reaction tank.
循環水噴出手段としては、流動床での晶析反応により得られた処理水の一部を循 環水とし、循環水供給流路力 反応槽の底壁に向力つて噴出可能な構造のものであ れば限定されない。例えば、循環水供給流路にポンプなどを設けたものでもよい。循 環水供給流路からの噴出される循環水の速度は、例えば 0. l〜lmZ秒である。  As the circulating water jetting means, a part of the treated water obtained by the crystallization reaction in the fluidized bed is used as circulating water, and the circulating water supply channel force can be jetted by directing to the bottom wall of the reaction tank. If it is, it will not be limited. For example, a circulating water supply channel may be provided with a pump or the like. The speed of circulating water ejected from the circulating water supply channel is, for example, 0.1 to lmZ seconds.
[0037] 本発明の第 13又は第 14の態様は、第 11又は第 12の態様の反応晶析処理装置に おいて、前記循環水供給流路の循環水に乱流が発生する領域は、前記循環水供給 流路の途中に配置された攪拌羽根の配置部分またはその上流近傍もしくはその下 流近傍か、前記循環水供給流路の途中に配置された圧送ポンプの配置部分または その上流近傍もしくはその下流近傍か、前記循環水供給流路の途中に形成された 流路断面積が他の部分より小さくなつた部分またはその上流近傍もしくはその下流 近傍か、前記循環水供給流路の途中に配置され、薬剤と薬剤急速混合槽内の循環 水の全体とを急速に混合する前記薬剤急速混合槽の配置部分またはその上流近傍 もしくは下流近傍かで、前記循環水供給流路の循環水に旋回流が発生する領域は 、前記循環水供給流路の途中に配置されたラインミキサの配置部分またはその上流 近傍もしくはその下流近傍である反応晶析処理装置である。  [0037] In the thirteenth or fourteenth aspect of the present invention, in the reaction crystallization treatment apparatus of the eleventh or twelfth aspect, the region where turbulent flow is generated in the circulating water in the circulating water supply flow path is Arrangement part of the stirring blade arranged in the middle of the circulating water supply flow path or the vicinity of the upstream or the vicinity thereof, or the arrangement part of the pressure feed pump arranged in the middle of the circulating water supply flow path or the vicinity of the upstream or Arranged in the vicinity of the downstream water, or in the middle of the circulating water supply flow path, in the middle of the circulating water supply flow path or in the vicinity of the upstream or the downstream thereof And the swirl flow into the circulating water in the circulating water supply flow path at the portion where the drug rapid mixing tank rapidly mixes the drug and the entire circulating water in the drug rapid mixing tank, or in the vicinity of the upstream or downstream thereof. The region where the circulation occurs This is a reactive crystallization treatment apparatus that is located in the middle of the water supply flow path or in the vicinity of the upstream or the downstream thereof.
[0038] 本発明の第 15又は第 16の態様は、第 13又は第 14の態様の反応晶析処理装置に おいて、前記循環水供給流路の途中には攪拌羽根または圧送ポンプが設けられ、 前記循環水供給流路のうち、前記攪拌羽根または圧送ポンプの配置部分またはそ の上流近傍もしくはその下流近傍に、前記循環水供給流路の循環水に乱流または 旋回流を発生させる手段として、バルブ、オリフィス、ラインミキサのうち、少なくとも 1 つを配置した反応晶析処理装置である。 [0038] According to the fifteenth or sixteenth aspect of the present invention, in the reaction crystallization treatment apparatus of the thirteenth or fourteenth aspect, a stirring blade or a pressure pump is provided in the middle of the circulating water supply flow path. Among the circulating water supply flow path, the arrangement part of the stirring blade or the pressure feed pump or its part A reaction crystallization treatment apparatus in which at least one of a valve, an orifice, and a line mixer is disposed as a means for generating a turbulent flow or a swirling flow in the circulating water of the circulating water supply flow path in the vicinity of the upstream of or downstream of the It is.
循環水供給流路の循環水に乱流または旋回流を発生させる手段は、バルブでもよ いし、オリフィスでもよいし、ラインミキサでもよい。または、これらの 2つ以上を組み合 わせたものでもよい。  The means for generating turbulent or swirling flow in the circulating water in the circulating water supply channel may be a valve, an orifice, or a line mixer. Alternatively, a combination of two or more of these may be used.
なお、本発明の反応晶析処理装置において、前記薬剤供給手段は、前前記循環 水供給流路のうち循環水の乱流強度の高領域に前記晶析反応に使用される薬剤を 供給するものであってもよい。また、本発明の反応晶析処理方法及び反応晶析処理 装置において、前記循環水供給流路の循環水に乱流が発生する領域は、流れの急 変により乱流が発生する領域であってもよい。また、前記循環水供給流路の循環水 に旋回流が発生する領域は、旋回流により乱流の発生する領域であってもよ 、。 発明の効果  In the reaction crystallization treatment apparatus of the present invention, the chemical supply means supplies the chemical used for the crystallization reaction to a high region of the turbulent strength of the circulating water in the circulating water supply channel. It may be. In the reaction crystallization treatment method and the reaction crystallization treatment apparatus of the present invention, the region where turbulent flow is generated in the circulating water in the circulating water supply channel is a region where turbulent flow is generated due to a sudden change in flow. Also good. The region where the swirling flow is generated in the circulating water of the circulating water supply channel may be a region where turbulent flow is generated by the swirling flow. The invention's effect
[0039] 本発明の第 1及び第 2の態様の反応晶析処理方法および本発明の第 11及び第 1 2の態様の反応晶析処理装置によれば、循環水供給流路のうち、循環水に乱流が生 じる領域に薬剤を添加し、薬剤が急速かつ均一に循環水中に混入されるようにした ので、流動床内の局所的な薬剤の濃度の高まりが抑えられる。その結果、薬剤濃度 の均一化が図れ、凝集物の発生を抑制することができる。  [0039] According to the reaction crystallization treatment method of the first and second aspects of the present invention and the reaction crystallization treatment apparatus of the eleventh and first two aspects of the present invention, the circulating water supply passage is circulated. Since the drug is added to the area where turbulent flow occurs in the water so that the drug is rapidly and uniformly mixed in the circulating water, the local concentration of the drug in the fluidized bed is prevented from increasing. As a result, the drug concentration can be made uniform and the generation of aggregates can be suppressed.
[0040] 特に、本発明の第 3又は第 4の態様によれば、りん酸カルシウム化合物を種結晶の 表面に析出させることにより、りん酸態りんを含む被処理水中の PO— P濃度が、数  [0040] In particular, according to the third or fourth aspect of the present invention, by precipitating the calcium phosphate compound on the surface of the seed crystal, the PO-P concentration in the water to be treated containing phosphate phosphorus is number
4  Four
十 mgZL〜数百 mgZLの排水に対しても、凝集濃度の低減に効果を有し、反応晶 析法におけるりんの除去、回収率を高めることができる。これにより、反応晶析処理装 置のコンパクト化も図ることができる。また、 PO— P濃度が、 l〜5mgZLの比較的低  Even for wastewater of 10 mgZL to several hundred mgZL, it has the effect of reducing the concentration of coagulation and can improve the removal and recovery rate of phosphorus in the reaction crystallization method. As a result, the reaction crystallization treatment apparatus can be made compact. Also, the PO-P concentration is relatively low, l-5mgZL.
4  Four
濃度の排水に対しては、 T P< lmgZLの処理水を安定して得ることができる。 図面の簡単な説明  For concentration wastewater, treated water with T P <lmgZL can be obtained stably. Brief Description of Drawings
[0041] [図 1]図 1は、この発明の実施例 1に係る反応晶析処理装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of a reaction crystallization treatment apparatus according to Embodiment 1 of the present invention.
[図 2]図 2は、この発明の実施例 2に係る反応晶析処理装置の概略構成図である。  FIG. 2 is a schematic configuration diagram of a reaction crystallization treatment apparatus according to Embodiment 2 of the present invention.
[図 3]図 3は、この発明の実施例 2に係る別の反応晶析処理装置の概略構成図である [図 4]図 4は、この発明の実施例 2に係るまた別の反応晶析処理装置の概略構成図 である。 FIG. 3 is a schematic configuration diagram of another reactive crystallization treatment apparatus according to Embodiment 2 of the present invention. FIG. 4 is a schematic configuration diagram of still another reactive crystallization treatment apparatus according to Embodiment 2 of the present invention.
[図 5]図 5は、この発明の実施例 3に係る反応晶析処理装置の概略構成図である。  FIG. 5 is a schematic configuration diagram of a reactive crystallization treatment apparatus according to Embodiment 3 of the present invention.
[図 6]図 6は、この発明の他の形態に係る反応晶析処理装置の要部概略構成図であ る。 [Fig. 6] Fig. 6 is a schematic configuration diagram of a main part of a reaction crystallization treatment apparatus according to another embodiment of the present invention.
[図 7]図 7は、この発明の別の形態に係る反応晶析処理装置の要部概略構成図であ る。  FIG. 7 is a schematic configuration diagram of a main part of a reaction crystallization treatment apparatus according to another embodiment of the present invention.
[図 8]図 8は、この発明の実施例 4に係る反応晶析処理装置の概略構成図である。  FIG. 8 is a schematic configuration diagram of a reaction crystallization treatment apparatus according to Embodiment 4 of the present invention.
[図 9]図 9は、 pHをパラメータとした PO— P濃度とカルシウム濃度との関係を示すグ [Fig. 9] Fig. 9 is a graph showing the relationship between PO-P concentration and calcium concentration using pH as a parameter.
4  Four
ラフである。 It's rough.
[図 10]図 10は、従来手段に係る反応晶析処理装置の概略構成図である。  FIG. 10 is a schematic configuration diagram of a reaction crystallization treatment apparatus according to conventional means.
符号の説明 Explanation of symbols
10, 10A〜: LOD 晶析脱リン装置 (反応晶析処理装置)、  10, 10A ~: LOD crystallization dephosphorization equipment (reaction crystallization treatment equipment),
11 反応槽、  11 reaction tank,
12 ディストリビュータ、  12 Distributor,
13 圧力室、  13 pressure chamber,
14 流動床、  14 fluidized bed,
15 被処理水供給槽 (被処理水供給手段)、  15 Untreated water supply tank (untreated water supply means),
16 循環水供給手段、  16 Circulating water supply means,
17 消石灰水溶液供給槽 (薬剤供給手段)、  17 Slaked lime aqueous solution supply tank (chemical supply means),
21 内筒 (循環水供給流路)、  21 Inner cylinder (circulation water supply flow path),
21A 循環水供給流管 (循環水供給流路)、  21A Circulating water supply flow pipe (circulating water supply flow path),
22 インペラ一 (攪拌羽根)、  22 Impeller (stirring blade),
50 圧送ポンプ、  50 pumping pump,
50A 薬剤急速混合槽、  50A drug rapid mixing tank,
50B ラインミキサ、  50B line mixer,
51 隔壁、 61 攪拌羽根 51 bulkhead, 61 Stir blade
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 以下、図面を参照して、この発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0044] 図 1において、 10はこの発明の実施例 1に係る晶析脱リン装置 (反応晶析処理装置 )で、この晶析脱リン装置 10は、被処理水中の目的成分であるリンを反応させる反応 槽 11と、反応槽 11の内部空間を上部および下部に区画する隔壁 51と、内部空間の 下部に設けられた圧力室 13と、内部空間の上部に設けられ、種結晶が存在する流 動床 14と、被処理水を圧力室 13に供給する被処理水供給槽 (被処理水供給手段) 15と、被処理水供給槽 15により流動床 14に供給されたリンと種結晶とを接触させ、 種結晶の表面にリンを晶析させることで流動床 14の上部力も得られた処理水の一部 を、循環水供給流路 21を通して、循環水として圧力室 13に供給する循環水供給手 段 16と、圧力室 13と流動床 14とを連通させた状態で隔壁 51に設けられ、圧力室 13 に貯留された循環水および被処理水のうち、少なくとも 1つを流動床 14に分配する 複数のディストリビュータ 12…と、晶析反応に使用される消石灰水溶液 (水酸化カル シゥム薬剤)を貯液する消石灰水溶液供給槽 (薬剤供給手段) 17とを備えている。  In FIG. 1, reference numeral 10 denotes a crystallization dephosphorization apparatus (reaction crystallization treatment apparatus) according to Example 1 of the present invention. This crystallization dephosphorization apparatus 10 removes phosphorus as a target component in water to be treated. Reaction tank 11 to be reacted, partition wall 51 that divides the internal space of the reaction tank 11 into an upper part and a lower part, a pressure chamber 13 provided in the lower part of the internal space, and a seed crystal provided in the upper part of the internal space Fluidized bed 14, treated water supply tank (treated water supply means) 15 for supplying treated water to pressure chamber 13, phosphorus and seed crystals supplied to fluidized bed 14 by treated water supply tank 15 A part of the treated water, which has also obtained the upper force of the fluidized bed 14 by crystallizing phosphorus on the surface of the seed crystal, is supplied to the pressure chamber 13 through the circulating water supply passage 21 as circulating water. The water supply means 16, the pressure chamber 13 and the fluidized bed 14 are connected to each other in the partition wall 51. A plurality of distributors 12 that distribute at least one of the collected circulating water and treated water to the fluidized bed 14 and slaked lime that stores slaked lime aqueous solution (calcium hydroxide chemical) used for the crystallization reaction An aqueous solution supply tank (medicine supply means) 17 is provided.
[0045] 反応槽 11は、その長さ方向の全長にわたって断面積が均一な直胴タイプの円筒 槽 (角筒型の槽でもよい)である。反応槽 11の下部に形成された圧力室 13は、被処 理水が供給される下側の被処理水用圧力室 19と、循環水が供給される上側の循環 水用圧力室 20とに、仕切り板 52により区画されている。  [0045] The reaction tank 11 is a straight cylinder type cylindrical tank (or a square tube type tank) having a uniform cross-sectional area over the entire length in the length direction. The pressure chamber 13 formed in the lower part of the reaction tank 11 is divided into a lower pressure chamber for treated water 19 to which treated water is supplied and an upper pressure chamber for circulating water 20 to which circulating water is supplied. It is partitioned by a partition plate 52.
反応槽 11の上縁の外周部には、脱リン処理後の処理水が排出される図示しない環 状の排水路を形成し、排水路の一部に排水管を連通して処理水を外部に排出する ように構成されている。  An annular drainage channel (not shown) is formed on the outer periphery of the upper edge of the reaction tank 11 to drain the treated water after dephosphorization. It is configured to discharge to
[0046] 反応槽 11の中央部には、下端部が循環水用圧力室 20の中央部に連通する長尺 な内筒 (循環水供給流路) 21が、その軸線を反応槽 11の軸線に合致させて立設さ れている。内筒 21の上端は、反応槽 11の流動床 14より上方であって、処理水が貯 留される領域に配置されている。内筒 21の上端部には、上端の開口部に向力つて徐 々に拡径した拡径部 21aがー体形成されている。 [0047] 反応槽 11の中央部上には、処理水を内筒 21に誘引するポンプ装置用の攪拌モー タ 41が立設されている。攪拌モータ 41の出力軸 42は長尺で先端部(下端部)に、ィ ンぺラー (攪拌羽根) 22が固着されている。インペラ一 22は、内筒 21内の拡径部 21 aより若干下方に配置されている。従って、攪拌モータ 41により出力軸 42を回転させ ると、インペラ一 22が回転し、内筒 21内で下方に向力 水流が発生する。これにより 、反応槽 11の上部の処理水が、拡径部 21aから内筒 21の本体内を通り、循環水用 圧力室 20に流れ込む。 [0046] In the central part of the reaction tank 11, a long inner cylinder (circulating water supply flow path) 21 whose lower end communicates with the central part of the pressure chamber 20 for circulating water has its axis as the axis of the reaction tank 11. It is erected in conformity with The upper end of the inner cylinder 21 is disposed above the fluidized bed 14 of the reaction tank 11 and in a region where treated water is stored. The upper end portion of the inner cylinder 21 is formed with a diameter-enlarged portion 21a that gradually increases in diameter toward the opening at the upper end. A stirring motor 41 for a pump device that draws treated water to the inner cylinder 21 is erected on the central portion of the reaction tank 11. The output shaft 42 of the stirring motor 41 is long, and an impeller (stirring blade) 22 is fixed to the tip (lower end). The impeller 22 is disposed slightly below the enlarged diameter portion 21 a in the inner cylinder 21. Therefore, when the output shaft 42 is rotated by the stirring motor 41, the impeller 22 rotates, and a countercurrent water flow is generated in the inner cylinder 21 downward. As a result, the treated water in the upper part of the reaction tank 11 flows into the circulating water pressure chamber 20 from the enlarged diameter portion 21a through the inside of the inner cylinder 21.
[0048] また、内筒 21内のインペラ一 22の直上部分 (循環水に乱流が発生する領域)には 、消石灰水溶液供給槽 17と元部が連通された薬液供給管 (薬液供給路) 17aの先端 が配置されている。薬液供給管 17aの途中部分には、図示しない電磁弁と薬液供給 ポンプとが配設されている。そのため、薬液供給ポンプを作動させると、消石灰水溶 液供給槽 17の消石灰水溶液が薬液供給管 17aを経てインペラ一 22の直上部分に 注入される。その直後、インペラ一 22の回転力により、迅速かつ均一に消石灰水溶 液と循環水とが混合される。これらの内筒 21とポンプ装置とにより、循環水供給手段 16が構成される。  [0048] In addition, a chemical solution supply pipe (chemical solution supply path) in which the slaked lime aqueous solution supply tank 17 and the base portion are communicated with a portion directly above the impeller 22 in the inner cylinder 21 (a region where turbulent flow is generated in the circulating water). The tip of 17a is placed. A solenoid valve and a chemical supply pump (not shown) are disposed in the middle of the chemical supply pipe 17a. Therefore, when the chemical solution supply pump is operated, the slaked lime aqueous solution in the slaked lime aqueous solution supply tank 17 is injected into the portion directly above the impeller 22 through the chemical solution supply pipe 17a. Immediately thereafter, the slaked lime aqueous solution and the circulating water are mixed quickly and uniformly by the rotational force of the impeller 22. The inner cylinder 21 and the pump device constitute the circulating water supply means 16.
前記被処理水供給槽 15と、被処理水用圧力室 19の周側部の一部とは、被処理水 供給管 (被処理水供給路) 15aにより連通されている。被処理水供給管 15aには、図 示しな!/ヽ電磁弁と被処理水供給ポンプとが配設されて!/、る。被処理水供給ポンプの 作動により、被処理水供給槽 15中のリンを含有する被処理水が、被処理水用圧力 室 19に供給される。  The treated water supply tank 15 and a part of the peripheral side portion of the treated water pressure chamber 19 are communicated with each other by a treated water supply pipe (treated water supply path) 15a. The treated water supply pipe 15a is provided with a! / ヽ solenoid valve and a treated water supply pump (not shown). By the operation of the treated water supply pump, the treated water containing phosphorus in the treated water supply tank 15 is supplied to the pressure chamber 19 for treated water.
[0049] 次に、圧力室 13の隔壁 51と、ディストリビュータ 12· · ·とを詳細に説明する。  Next, the partition wall 51 of the pressure chamber 13 and the distributors 12 will be described in detail.
隔壁 51は円板形状を有し、中心部に前記内筒 21の下端部の嵌入孔 51aが形成さ れている。また、この嵌入孔 51aの周囲には、ディストリビュータ 12· · ·の装着孔 51b- " 力 S60度間隔で 6つ形成されている。  The partition wall 51 has a disk shape, and a fitting hole 51a at the lower end of the inner cylinder 21 is formed at the center. In addition, around the fitting holes 51a, six mounting holes 51b- "force S of 60 degrees are formed at intervals of 60 degrees.
各ディストリビュータ 12…は、対応する揷着孔 51b…の上方に配置される下側ノズ ル傘板 12a…と、各下側ノズル傘板 12a…上に、複数の支柱 (スぺーサ)を介して載 置される上側ノズル傘板 12b · · .とを有して ヽる。  Each distributor 12 is connected to a lower nozzle umbrella plate 12a arranged above the corresponding mounting hole 51b and a plurality of support columns (spacers) on each lower nozzle umbrella plate 12a. And has an upper nozzle umbrella plate 12b.
[0050] このうち、各下側ノズル傘板 12a…は、上壁 (仕切り板) 52のうち、各装着孔 51b" - との対向部分に立設された吹出ノズル 55…の上側の開口部に固定されている。各 吹出ノズル 55· ··は、それぞれの下側の開口部が被処理水用圧力室 19に連通され ている。したがって、前記被処理水供給槽 15から被処理水用圧力室 19に供給され た被処理水は、各吹出ノズル 55…から、対応するディストリビュータ 12· ··の下側ノズ ル傘板 12aと上側ノズル傘板 12bとの隙間を経て、流動床 14にそれぞれ噴出される 。また、内筒 21から循環水用圧力室 20に流入された循環水は、各装着孔 51b…と、 対応する吹出ノズル 55· ··との隙間を通して、各下側ノズル傘板 12a…の下部空間か ら流動床 14にそれぞれ噴出される。 [0050] Of these, each lower nozzle umbrella plate 12a ... is an attachment hole 51b "in the upper wall (partition plate) 52- Is fixed to the opening on the upper side of the blowing nozzle 55. Each blowing nozzle 55... Has a lower opening communicating with the pressure chamber 19 for water to be treated. Therefore, the treated water supplied from the treated water supply tank 15 to the treated water pressure chamber 19 is supplied from each outlet nozzle 55 to the corresponding lower nozzle umbrella plate 12a and the upper nozzle umbrella plate 12a. Each is ejected to the fluidized bed 14 through a gap with the nozzle umbrella plate 12b. Circulating water that has flowed into the circulating water pressure chamber 20 from the inner cylinder 21 passes through the gaps between the mounting holes 51b and the corresponding blowout nozzles 55, so that the lower part of the lower nozzle umbrella plates 12a. It is ejected from the space to the fluidized bed 14 respectively.
[0051] なお、ディストリビュータ 12として、被処理水用圧力室 19に連通された被処理水専 用のディストリビュータ 12Aと、流動床 14を形成するためにディストリビュータ 12Aの 被処理水の吹き出し口より循環水の吹き出し口が低く配置され、かつ循環水用圧力 室 20に連通された循環水専用のディストリビュータ 12Bとを有したものを採用してもよ い(図 3)。これにより、ディストリビュータ 12Bに比べてディストリビュータ 12Aの本数を 減らし、循環水の流動床 14への流量を増カロさせることができる。 [0051] As the distributor 12, a distributor 12A dedicated to the treated water communicated with the pressure chamber 19 for the treated water, and circulating water from the treated water outlet of the distributor 12A to form the fluidized bed 14. It is also possible to adopt a type having a distributor 12B dedicated to circulating water that has a low outlet and is connected to the circulating water pressure chamber 20 (Fig. 3). As a result, the number of distributors 12A can be reduced and the flow rate of circulating water to the fluidized bed 14 can be increased compared to the distributor 12B.
また、被処理水用圧力室 19を省略し、被処理水供給槽 15から被処理水供給管 15 aを通して、直接、被処理水を流動床 14の底部に導入してもよい(図 4)。これにより、 反応室 11の圧力室は 1つとなる。この場合、被処理水は、被処理水供給管 15aをそ れぞれ通して、流動床 14の側部カゝら導入してもよいし、流動床 14の上部から導入し てもよい。  Further, the pressure chamber 19 for treated water may be omitted, and the treated water may be directly introduced from the treated water supply tank 15 into the bottom of the fluidized bed 14 through the treated water supply pipe 15a (FIG. 4). . As a result, the pressure chamber of the reaction chamber 11 becomes one. In this case, the water to be treated may be introduced from the side portion of the fluidized bed 14 through the treated water supply pipe 15 a or from the upper part of the fluidized bed 14.
[0052] 前記消石灰水溶液供給槽 17は、反応槽 11の外に設置されている。その内容量は 、例えば 0. 5〜5m3程度である。または、 7日分の処理に使用される消石灰水溶液も しくは懸濁液を貯留可能な程度としてもよい。消石灰水溶液供給槽 17において、消 石灰水溶液の補給は、消石灰水溶液供給槽 17に設けられた液面センサの検出信 号に基づき、図示しない補給ポンプを使用して、消石灰水溶液補給タンクから自動 で行われる。または、消石灰水溶液供給槽 17に設けられた pHセンサの検出信号に 基づき、図示しな!、消石灰供給ホツバからフィーダを通して消石灰粉が消石灰供給 槽内に供給されるとともに、消石灰供給槽 17に設けられた液面センサの検出信号に 基づき水道水または処理水が導入され、図示しな!ヽ攪拌機により攪拌混合されて所 定の pHの消石灰水溶液が作製される。 The slaked lime aqueous solution supply tank 17 is installed outside the reaction tank 11. Its internal capacity is, for example, about 0.5 to 5 m 3 . Alternatively, the slaked lime aqueous solution or suspension used for the treatment for 7 days may be stored. In the slaked lime aqueous solution supply tank 17, the slaked lime aqueous solution supply tank 17 is automatically supplied from the slaked lime aqueous solution supply tank using a supply pump (not shown) based on the detection signal of the liquid level sensor provided in the slaked lime aqueous solution supply tank 17. Is called. Alternatively, based on the detection signal of the pH sensor provided in the slaked lime aqueous solution supply tank 17, not shown in the figure, slaked lime powder is supplied from the slaked lime supply hot bar through the feeder into the slaked lime supply tank 17 and also provided in the slaked lime supply tank 17. Tap water or treated water is introduced based on the detection signal of the liquid level sensor, not shown!所 Where it is stirred and mixed by a stirrer A fixed pH aqueous solution of slaked lime is produced.
反応槽 11には、処理水の pHを検出する pHセンサ 100が設けられている。 pHセン サ 100は、 pH制御装置の入力側に接続されている。処理水の pHは、 pHセンサ 100 により検出され、得られた検出データに基づき、 pH制御装置から上記薬液供給ボン プに、所定量の消石灰水溶液を消石灰水溶液供給槽 17から内筒 21に供給する指 令が出される。  The reaction tank 11 is provided with a pH sensor 100 that detects the pH of the treated water. The pH sensor 100 is connected to the input side of the pH controller. The pH of the treated water is detected by the pH sensor 100, and based on the obtained detection data, a predetermined amount of slaked lime aqueous solution is supplied from the pH controller to the chemical solution supply pump from the slaked lime aqueous solution supply tank 17 to the inner cylinder 21. A command is issued.
[0053] 次に、実施例 1に係る晶析脱リン装置 10による排水中のりん成分の反応晶析処理 方法を説明する。  [0053] Next, a reaction crystallization treatment method of phosphorus components in waste water by the crystallization dephosphorization apparatus 10 according to Example 1 will be described.
図 1に示すように、処理水内に設置された pHセンサ 100の信号を受け、処理水が 所定の pHとなるように、薬液供給ポンプに付設されたインバータにより、内筒 21を流 下中の循環水に対する消石灰水溶液の添加量 (薬剤添加量)を制御する。例えば、 T P ( PO— P)濃度が 1〜 3mgZL程度の下水二次処理水を T P < 1 mgZL  As shown in Fig. 1, the inner cylinder 21 is flowing down by an inverter attached to the chemical supply pump so that the pH of the pH sensor 100 installed in the treated water is received and the treated water reaches a predetermined pH. Control the amount of slaked lime solution added to the circulating water (drug addition amount). For example, sewage secondary treated water with a T P (PO-P) concentration of about 1 to 3 mgZL is used as T P <1 mgZL
4  Four
以下にするとき、制御目標の pHは 9. 8程度である。  In the following cases, the control target pH is about 9.8.
循環水の循環量は、撹拌モータ 41に付設されたインバータにより、流動床 14の膨 張高さが所定の高さとなるように調整される。循環水は、内筒 21から循環水用圧力室 20および各ディストリビュータ 12· ··を通して、流動床 14に上向流として噴出される。 また、被処理水は、インバータ付きの被処理水供給ポンプによりその流入量が調節さ れ、被処理水用圧力室 19に導入される。その後、被処理水は各吹出ノズル 55…を 通して、上向流として流動床 14に噴出される。  The circulation amount of the circulating water is adjusted by an inverter attached to the stirring motor 41 so that the expansion height of the fluidized bed 14 becomes a predetermined height. Circulating water is ejected as an upward flow from the inner cylinder 21 to the fluidized bed 14 through the circulating water pressure chamber 20 and the distributors 12. In addition, the amount of inflow of treated water is adjusted by a treated water supply pump with an inverter, and is introduced into the treated water pressure chamber 19. Thereafter, the water to be treated is ejected to the fluidized bed 14 as an upward flow through each of the blowout nozzles 55.
[0054] なお、反応槽内の上向流速は、使用される種結晶の条件 (密度、粒径)、水の粘度 などにより適宜変更される。例えば、種結晶が珪酸カルシウム水和物 (粒径 0. 5〜1. Ommまたは 1. 0〜1. 7mm程度)であれば、循環水の上向流速は 0. 5〜2mZ分、 好ましくは 0. 8〜1. 5mZ分である。これにより、流動床中での種結晶の膨張率は好 適な 140〜200%程度となる。膨張率が 140%未満では安定した流動床を得難ぐ 2 00%を超えると循環水の循環流量が大きくなり、循環水圧送ポンプ (モータ 41、シャ フト 42、プロペラ 22からなる)の電力消費が嵩張るともに、流動床中の種結晶の存在 密度が減少するため、晶析反応に不利となる。 [0054] The upward flow rate in the reaction vessel is appropriately changed depending on the conditions (density, particle size) of the seed crystal used, the viscosity of water, and the like. For example, if the seed crystal is calcium silicate hydrate (particle size of 0.5 to 1. Omm or 1.0 to 1.7 mm), the upward flow rate of circulating water is 0.5 to 2 mZ, preferably 0.8 to 1.5mZ min. As a result, the expansion rate of the seed crystals in the fluidized bed is about 140 to 200%. When the expansion rate is less than 140%, it is difficult to obtain a stable fluidized bed. When the expansion rate exceeds 200%, the circulating water circulation flow rate increases, and the power consumption of the circulating water pump (comprising motor 41, shaft 42, and propeller 22). While this is bulky, the density of seed crystals in the fluidized bed decreases, which is disadvantageous for the crystallization reaction.
循環水の循環流量は、反応槽 11の床面積 X上向流速で求められ、反応槽の形状 により変化する。また、循環水が被処理水を希釈することで PO—Pの凝集の発生を The circulating water circulation flow rate is obtained from the floor area X of the reaction tank 11 and the upward flow velocity. It depends on. In addition, the circulating water dilutes the water to be treated to prevent PO-P aggregation.
4  Four
抑制し、処理速度が高まる。これにより、循環水 Z被処理水流量比が 10程度となるよ うな形状の反応槽 11とした方が好ま 、。  Suppresses and processing speed increases. Thus, it is preferable to use the reaction tank 11 having a shape in which the ratio of the circulating water Z treated water flow rate is about 10.
[0055] 流動床 14では、主体となる循環水中に、所定量の消石灰が水溶液として添加され たものと、被処理水とが導入される。そのため、流動床 14内では、被処理水に含有さ れる PO—Pをヒドロキシアパタイトとして析出させる晶析反応が行われる。その反応[0055] In the fluidized bed 14, a water to which a predetermined amount of slaked lime is added as an aqueous solution and water to be treated are introduced into the circulating water as a main component. Therefore, in the fluidized bed 14, a crystallization reaction is performed in which PO—P contained in the water to be treated is precipitated as hydroxyapatite. The reaction
4 Four
式を、背景技術の欄の(1)式に示す。ところで、内筒 21内を流れる処理水に対して の消石灰水溶液の注入位置は、インペラ一 22の直上部分である。そのため、消石灰 水溶液は、その直後、インペラ一 22により急速かつ均一に循環水と攪拌混合される 。その結果、従来のように流動床内の水流が安定した領域に消石灰水溶液を添加す る場合に比べて、流動床 14内の局所的な消石灰の濃度の高まりが抑えられ、流動 床 14内での消石灰濃度の均一化が図れる。その結果、凝集物の発生が抑制される  The equation is shown in equation (1) in the background art column. By the way, the injection position of the slaked lime aqueous solution into the treated water flowing in the inner cylinder 21 is a portion directly above the impeller 22. Therefore, immediately after that, the slaked lime aqueous solution is stirred and mixed with the circulating water rapidly and uniformly by the impeller 22. As a result, compared to the conventional case where the aqueous slaked lime solution is added to the region where the water flow in the fluidized bed is stable, the increase in local slaked lime concentration in the fluidized bed 14 is suppressed, and the fluidized bed 14 The concentration of slaked lime can be made uniform. As a result, the generation of aggregates is suppressed.
[0056] 内筒 21を通して循環水用圧力室 20に供給された循環水は、各装着孔 51b…と対 応する吹出ノズル 55· ··との隙間から、各下側ノズル傘板 12a…の下部空間を通って 流動床 14に上向流として噴出される。このとき、被処理水は、消石灰水溶液および 循環水とは別ルート (別流路)で流動床 14に注入される。これにより、従来のように被 処理水と循環水とをあらかじめ混合し、この混合液を流動床 14に供給する場合に比 ベて、凝集物の発生を抑制することができる。これは、循環水とリン含有の被処理水と が接触した時点で PO— Pの凝集が発生する可能性が高ぐこれを防げるためである [0056] The circulating water supplied to the circulating water pressure chamber 20 through the inner cylinder 21 passes through the gaps between the mounting holes 51b and the blowing nozzles 55 corresponding to the lower nozzle umbrella plates 12a. It is ejected as an upward flow into the fluidized bed 14 through the lower space. At this time, the water to be treated is injected into the fluidized bed 14 through a different route (separate flow path) from the slaked lime aqueous solution and the circulating water. Thereby, compared with the case where treated water and circulating water are mixed in advance as in the prior art and this mixed liquid is supplied to the fluidized bed 14, the generation of aggregates can be suppressed. This is to prevent the possibility of PO-P agglomeration at the point of contact between the circulating water and the treated water containing phosphorus.
4  Four
。処理水は、反応槽 11の上部に設けられた排水路力 排水管を通して外部に排出さ れる。排出された処理水には、必要に応じてばつ気、酸添加などによる中和処理が 施される。  . The treated water is discharged to the outside through the drainage channel drainage pipe provided in the upper part of the reaction tank 11. The discharged treated water is neutralized by aeration, acid addition, etc. as necessary.
[0057] なお、被処理水中のカルシウム濃度が不足している場合には、必要に応じて塩ィ匕 カルシウム(CaCl )の水溶液などを添加すればよい。塩ィ匕カルシウムを添加する場  [0057] When the calcium concentration in the water to be treated is insufficient, an aqueous solution of calcium chloride (CaCl) or the like may be added as necessary. Where to add salty calcium
2  2
所は、被処理水供給管 15aのうち、被処理水供給ポンプの直前または直後の部分内 力 被処理水を受ける貯槽でよい。被処理水中の PO— P濃度が lOOmgZL程度以  The place may be a storage tank that receives partial internal force treated water immediately before or after the treated water supply pump in the treated water supply pipe 15a. The PO—P concentration in the treated water is about lOOmgZL or less.
4  Four
上で、かつ pHが 7. 0以上のときには、消石灰による pH制御を行わず、塩ィ匕カルシゥ ムのみをインペラ一 22の直上部分に添加し、りんを除去して回収を行うこともできる。 また、本方法によれば PO— P濃度が数十 mgZL〜数百 mgZLの排水に対しても When the pH is 7.0 or higher, the pH is not controlled by slaked lime, It is also possible to add only to the portion directly above the impeller 22 to remove phosphorus and to recover. In addition, according to this method, even for wastewater with a PO-P concentration of several tens of mgZL to several hundred mgZL.
4  Four
、凝集濃度の低減に効果を有し、反応晶析法におけるりんの除去、回収率を高める ことができる。これにより、反応晶析処理装置のコンパクト化も図ることができる。  It is effective in reducing the aggregation concentration and can increase the removal and recovery rate of phosphorus in the reaction crystallization method. Thereby, the reaction crystallization treatment apparatus can be made compact.
[0058] 次に、図 2を参照して、この発明の実施例 2に係る反応晶析処理方法およびその装 置を説明する。 Next, with reference to FIG. 2, a reaction crystallization treatment method and apparatus according to Example 2 of the present invention will be described.
図 2に示すように、この発明の実施例 2に係る晶析脱リン装置 10Aにあっては、実 施例 1の循環水供給手段 16を除去している。また、反応槽 11の上部内に周壁に沿 つて環状の排水路 11aを設け、排水路 11aと循環水用圧力室 20とを、反応槽 11の 外部に配管された循環水供給流管 (循環水供給流路) 21Aにより連通している。循 環水供給流管 21Aの下流部には、循環水圧送ポンプ 50を設けている。また、循環 水供給流管 21Aの下流部付近、具体的には循環水圧送ポンプ 50の直前の部分に 、消石灰水溶液供給槽 17と元部が連通された薬液供給管 17aの先端部を連通させ ている。  As shown in FIG. 2, in the crystallization dephosphorization apparatus 10A according to Example 2 of the present invention, the circulating water supply means 16 of Example 1 is removed. In addition, an annular drainage channel 11a is provided in the upper part of the reaction tank 11 along the peripheral wall. The drainage channel 11a and the circulating water pressure chamber 20 are connected to a circulating water supply flow pipe (circulation). (Water supply channel) Communicates with 21A. A circulating water pressure pump 50 is provided downstream of the circulating water supply flow pipe 21A. In addition, the tip of the chemical solution supply pipe 17a, in which the slaked lime aqueous solution supply tank 17 and the base part are connected, is communicated with the vicinity of the downstream portion of the circulating water supply flow pipe 21A, specifically, immediately before the circulating water pressure feed pump 50. ing.
[0059] 晶析脱リン装置 10Aによる反応晶析処理方法では、循環水圧送ポンプ 50の作動 により、排水路 11aの循環水が循環水供給流管 21Aを通って循環水用圧力室 20に 供給される。このとき、消石灰水溶液供給槽 17から導出された消石灰水溶液が、薬 液供給管 17aを経て、循環水供給流管 21Aのうち、循環水圧送ポンプ 50の直前の 部分に供給される。そのため、循環水供給流管 21Aに流入された消石灰水溶液は、 その直後、循環水圧送ポンプ 50の攪拌力によって循環水と急速かつ均一に攪拌混 合される。  [0059] In the reaction crystallization treatment method using the crystallization dephosphorization apparatus 10A, the circulating water pressure feed pump 50 operates to supply the circulating water in the drainage channel 11a to the circulating water pressure chamber 20 through the circulating water supply flow pipe 21A. Is done. At this time, the slaked lime aqueous solution derived from the slaked lime aqueous solution supply tank 17 is supplied to the portion of the circulating water supply flow pipe 21A immediately before the circulating water pressure feed pump 50 through the chemical liquid supply pipe 17a. Therefore, the slaked lime aqueous solution flowing into the circulating water supply flow pipe 21A is immediately and uniformly mixed with the circulating water by the stirring force of the circulating water pump 50.
その他の構成、作用および効果は、実施例 1から推測可能な範囲であるので、説 明を省略する。  Since other configurations, operations, and effects are in a range that can be inferred from the first embodiment, description thereof is omitted.
[0060] 次に、図 5を参照して、この発明の実施例 3に係る反応晶析処理方法およびその装 置を説明する。  Next, with reference to FIG. 5, a reaction crystallization treatment method and apparatus according to Embodiment 3 of the present invention will be described.
図 5に示すように、この発明の実施例 3に係る反応晶析処理方法が適用された晶析 脱リン装置 10Bにあっては、実施例 2の消石灰水溶液供給槽 17の代わりに、平均粒 径 程度の粉末の消石灰が投入される消石灰粉供給槽 (薬剤供給槽) 17Aを 採用し、循環水供給流管 21Aの上流部に循環水圧送ポンプ 50を設けている。そし て、循環水供給流管 21Aのうち、循環水圧送ポンプ 50の直前の部分に、上端が大 気開放された分岐管 21bを垂直に連通している。また、分岐管 21bには、消石灰粉 供給槽 17Aの薬剤供給管 17bの先端部が連通されている。薬剤供給管 17bの途中 部分には、薬剤供給用の図示しない粉体ポンプおよび電磁弁が配設されている。消 石灰粉供給槽 17Aから薬剤供給管 17bに投入された消石灰粉は、循環水供給流管 21 Aの循環水に溶け込む。その結果、最終的には消石灰水溶液となって、循環水 用圧力室 20に流入される。 As shown in FIG. 5, in the crystallization dephosphorization apparatus 10B to which the reaction crystallization treatment method according to Example 3 of the present invention is applied, instead of the slaked lime aqueous solution supply tank 17 of Example 2, the average particle size is changed. A slaked lime powder supply tank (chemical supply tank) 17A into which powdered slaked lime is charged A circulating water pump 50 is installed upstream of the circulating water supply pipe 21A. And, in the circulating water supply flow pipe 21A, a branch pipe 21b whose upper end is opened to the atmosphere is vertically communicated with a portion immediately before the circulating water pressure feed pump 50. The branch pipe 21b communicates with the tip of the chemical supply pipe 17b of the slaked lime powder supply tank 17A. A powder pump and a solenoid valve (not shown) for supplying a drug are disposed in the middle of the drug supply pipe 17b. The slaked lime powder charged into the chemical supply pipe 17b from the slaked lime powder supply tank 17A is dissolved in the circulating water in the circulating water supply flow pipe 21A. As a result, it eventually becomes a slaked lime aqueous solution and flows into the pressure chamber 20 for circulating water.
[0061] 実施例 3の晶析脱リン装置 10Bによる反応晶析処理方法では、循環水圧送ポンプ 50を作動させると、排水路 11a内の循環水が循環水供給流管 21Aを通って、循環 水用圧力室 20に供給される。このとき、消石灰粉供給槽 17Aから導出された消石灰 粉が、薬剤供給管 17bおよび分岐管 21bを介して、循環水供給流管 21Aのうち、循 環水圧送ポンプ 50の直前の部分に投入される。よって、消石灰粉は、この投入され た直後、循環水圧送ポンプ 50の攪拌力により急速にかつ均一に循環水と攪拌混合 される。 [0061] In the reaction crystallization treatment method by the crystallization dephosphorization apparatus 10B of Example 3, when the circulating water pressure pump 50 is operated, the circulating water in the drainage channel 11a is circulated through the circulating water supply flow pipe 21A. Supplied to the water pressure chamber 20. At this time, the slaked lime powder derived from the slaked lime powder supply tank 17A is supplied to the portion of the circulating water supply flow pipe 21A immediately before the circulating water pumping pump 50 through the chemical supply pipe 17b and the branch pipe 21b. The Therefore, immediately after the slaked lime powder is added, it is rapidly and uniformly stirred and mixed with the circulating water by the stirring force of the circulating water pressure pump 50.
[0062] また、晶析脱リン装置 10Bにおいて分岐管 21bを除去し、循環水供給流管 21Aの 分岐管 21bとの連通部分に薬剤急速混合槽 50Aを設けることで、この槽内で消石灰 粉と循環水とを急速に攪拌混合するように構成してもよ!ヽ(図 6)。薬剤急速混合槽 5 OAは、循環水が 10秒以上滞留することができる容積の小槽で、小槽の割りには大 出力の攪拌機 60が取り付けられている。攪拌機 60により、槽内に投入された消石灰 粉と、槽内の全ての循環水液体とが急速に攪拌混合される。  [0062] In addition, the branch pipe 21b is removed in the crystallization dephosphorization apparatus 10B, and a rapid drug mixing tank 50A is provided in a portion where the circulating water supply flow pipe 21A communicates with the branch pipe 21b. It may be configured to rapidly stir and mix the water and circulating water! ヽ (Fig. 6). The rapid drug mixing tank 5 OA is a small tank that can hold the circulating water for 10 seconds or more, and a large output stirrer 60 is attached to the small tank. The slaked lime powder charged in the tank and all the circulating water liquid in the tank are rapidly stirred and mixed by the stirrer 60.
さらに、図 5に示す晶析脱リン装置 10Bにおいて、循環水供給流管 21Aのうち、分 岐管 21bとの連通部分と循環水圧送ポンプ 50との間の部分に、ラインミキサ 50Bを 設けてもよい(図 7)。ラインミキサ 50Bは、流路内壁に多数の攪拌突起が、流路長さ 方向に所定ピッチで配置された無動力の円筒ミキサである。消石灰粉を添加した循 環水が、ラインミキサ 50Bの内部流路を通過することにより、流路内で旋回流が発生 し、循環水と消石灰粉とが攪拌混合される。  Further, in the crystallization dephosphorization apparatus 10B shown in FIG. 5, a line mixer 50B is provided in a portion between the circulating water supply flow pipe 21A and the circulating water pumping pump 50 between the communicating section with the branch pipe 21b. Yes (Figure 7). The line mixer 50B is a non-powered cylindrical mixer in which a large number of stirring protrusions are arranged on the inner wall of the flow channel at a predetermined pitch in the flow channel length direction. The circulating water to which the slaked lime powder is added passes through the internal channel of the line mixer 50B, so that a swirling flow is generated in the channel, and the circulating water and the slaked lime powder are stirred and mixed.
その他の構成、作用および効果は、実施例 2から推測可能な範囲であるので、説 明を省略する。 Other configurations, operations, and effects are in a range that can be inferred from the second embodiment. I will omit the description.
[0063] 次に、図 8を参照して、この発明の実施例 4に係る反応晶析処理方法およびその装 置を説明する。  Next, with reference to FIG. 8, a reaction crystallization treatment method and apparatus according to Embodiment 4 of the present invention will be described.
図 8に示すように、この発明の実施例 4に係る反応晶析処理方法が適用された晶析 脱リン装置 10Cにあっては、実施例 2の直胴タイプの円筒槽または角筒槽である反 応槽 11に代えて、圧力室 13が排除され、かつ下部 (底部)が下方に向力つて徐々に 先細り化した反応槽 11 Aを採用している。また、循環水供給流管 21Aの下端部は、 その下端の開口方向を下向きとし、反応槽 11Aの下端部に配置されている。そして、 前記被処理水供給管 15aの先端部は、反応槽 11Aの下部内であって、循環水供給 流管 21 Aより若干上方に配置されて 、る。  As shown in FIG. 8, in the crystallization dephosphorization apparatus 10C to which the reaction crystallization treatment method according to Example 4 of the present invention is applied, the straight barrel type cylindrical tank or rectangular tube tank of Example 2 is used. Instead of a certain reaction tank 11, a reaction tank 11A in which the pressure chamber 13 is eliminated and the lower part (bottom part) gradually tapers downward is employed. In addition, the lower end portion of the circulating water supply flow pipe 21A is arranged at the lower end portion of the reaction tank 11A with the opening direction of the lower end facing downward. The tip of the treated water supply pipe 15a is arranged in the lower part of the reaction tank 11A and slightly above the circulating water supply flow pipe 21A.
[0064] したがって、循環水圧送ポンプ 50により、循環水供給流管 21Aから反応槽 11の底 壁に向力つて lmZ秒以下 (ここでは lmZ秒程度)で循環水を噴出すると、反応槽 1 1の内部に上向流が発生する。この上向流に乗って、被処理水供給管 15aから反応 槽 11に供給された被処理水は上昇し、所定の高さの流動床 14が形成される。 [0064] Therefore, when the circulating water is pumped out from the circulating water supply flow pipe 21A to the bottom wall of the reaction tank 11 by the circulating water pump 50 for less than lmZ seconds (here, about lmZ seconds), the reaction tank 1 1 An upward flow is generated inside. The treated water supplied to the reaction tank 11 from the treated water supply pipe 15a rides on this upward flow, and the fluidized bed 14 having a predetermined height is formed.
その他の構成、作用および効果は、実施例 2と略同じであるので、説明を省略する  Other configurations, operations, and effects are substantially the same as those of the second embodiment, and thus description thereof is omitted.
[0065] 次に、実施例 1の反応晶析処理装置 10を用いた反応晶析処理方法、および、図 1 0に示す反応晶析処理装置 10Dを使った従来例 1の反応晶析処理方法により各晶 析実験を実際に行い、これらにより得られた処理水についての水質分析の結果を、 それぞれ報告する。まず、従来例 1の反応晶析処理装置 10Dを説明する。 Next, a reaction crystallization treatment method using the reaction crystallization treatment apparatus 10 of Example 1, and a reaction crystallization treatment method of Conventional Example 1 using the reaction crystallization treatment apparatus 10D shown in FIG. Each crystallization experiment is actually carried out by, and the results of water quality analysis of the treated water obtained by these are reported. First, the reaction crystallization treatment apparatus 10D of Conventional Example 1 will be described.
図 10に示すように、従来例 1の反応晶析処理装置 10Dは、隔壁 51の上側に、消石 灰水溶液供給槽 17に薬液供給管 17aを介して連通され、かつ消石灰水溶液を流動 床 14に供給する薬液供給室 56を設け、薬液供給室 56の上壁 56aに、多数の薬液 吹出ノズル 57…を所定ピッチで立設させた構成を特徴としている。また、各薬液吹出 ノズル 57· ··の上端には、ディストリビュータ 12C…が、それぞれ設けられている。 したがって、消石灰水溶液供給槽 17の消石灰水溶液は、薬液供給管 17aを経て 薬液供給室 56に流入し、各薬液吹出ノズル 57…を通して流動床 14に吹き出される 。そのため、流動床 14のうち、各ディストリビュータ 12C…の周辺では、消石灰濃度 が高まっている。その他の構成、作用および効果は、実施例 1と同様である。 As shown in FIG. 10, the reaction crystallization treatment apparatus 10D of Conventional Example 1 is communicated with the slaked ash aqueous solution supply tank 17 via the chemical solution supply pipe 17a on the upper side of the partition wall 51, and the slaked lime aqueous solution is fluidized to the fluidized bed 14 A chemical solution supply chamber 56 is provided, and a large number of chemical solution blowing nozzles 57 are vertically arranged on the upper wall 56a of the chemical solution supply chamber 56 at a predetermined pitch. Also, a distributor 12C is provided at the upper end of each chemical solution discharge nozzle 57. Therefore, the slaked lime aqueous solution in the slaked lime aqueous solution supply tank 17 flows into the chemical solution supply chamber 56 through the chemical solution supply pipe 17a, and is blown out to the fluidized bed 14 through the respective chemical solution discharge nozzles 57. Therefore, in the fluidized bed 14, around each distributor 12C… Is growing. Other configurations, operations, and effects are the same as those in the first embodiment.
[0066] 次に、実施例 1の反応晶析処理方法と、従来例 1の反応晶析処理方法とによる各 晶析実験を説明する。 Next, each crystallization experiment using the reaction crystallization treatment method of Example 1 and the reaction crystallization treatment method of Conventional Example 1 will be described.
使用した種結晶は、三菱マテリアル (株)製「リンクルシード」、粒径; 0. 5〜1. Omm 、主成分;珪酸カルシウム水和物である。  The seed crystal used is “wrinkle seed” manufactured by Mitsubishi Materials Corporation, particle size: 0.5 to 1. Omm, main component: calcium silicate hydrate.
種結晶充填容積を 130L (リットル)とし、撹拌モータ 41に接続したインバータにより 処理水循環流量を調節し、種結晶膨張率を 200%とした。被処理水流量は、被処理 水供給ポンプに接続したインバータを用いて調節し、流量計で確認した。流動床 14 の上部に設置した pHセンサ 100により処理水が所定の pHとなるように、薬剤注入量 を薬液供給ポンプに接続したインバータを用いて制御した。  The seed crystal filling volume was set to 130 L (liter), the treated water circulation flow rate was adjusted by an inverter connected to the stirring motor 41, and the seed crystal expansion rate was set to 200%. The treated water flow rate was adjusted using an inverter connected to the treated water supply pump, and confirmed with a flow meter. The chemical injection amount was controlled by an inverter connected to a chemical solution supply pump so that the treated water had a predetermined pH by a pH sensor 100 installed at the upper part of the fluidized bed 14.
被処理水には生物処理排水を使用し、 KH PO水溶液により、りん酸イオンを添カロ  Biologically treated wastewater is used as the water to be treated, and phosphate ions are added with KH PO aqueous solution.
2 4  twenty four
して所定の PO—P濃度に調整した。また、被処理水のカルシウム濃度は lOmgZL  And adjusted to a predetermined PO-P concentration. The calcium concentration of treated water is lOmgZL
4  Four
程度であったため、 CaCl水溶液を用いカルシウムを被処理水に添カ卩し、反応槽 11  Therefore, calcium was added to the treated water using an aqueous CaCl solution,
2  2
に供給した。表 1中の被処理水のカルシウム濃度は、 CaCl水溶液によりカルシウム  Supplied to. The calcium concentration in the treated water in Table 1 is determined by the CaCl aqueous solution.
2  2
濃度を調整した後の分析値である。その結果を表 1に示す。  The analysis value after adjusting the concentration. The results are shown in Table 1.
表 1中、実験番号 1〜10は試験例 1〜10を示す。また、実験番号 11〜13は比較 例 1〜3を示す。  In Table 1, experiment numbers 1 to 10 indicate Test Examples 1 to 10. Moreover, experiment numbers 11-13 show Comparative Examples 1-3.
[0067] [表 1] [0067] [Table 1]
Figure imgf000026_0001
Figure imgf000026_0001
空間速度(sv)は、被処理水時間当たり流量を種結晶充填容積で除して求めた。 この値が大きいほど処理速度が速ぐ被処理水流量が同じ場合には装置のコンパク トイ匕が図れる。  The space velocity (sv) was determined by dividing the flow rate per hour of water to be treated by the seed crystal filling volume. The larger the value, the faster the treatment speed. If the treated water flow rate is the same, the compaction of the equipment can be achieved.
凝集りん濃度は { (処理水 T P) (処理水 PO— P) } { (被処理水 T P) (被  Aggregated phosphorus concentration is {(treated water T P) (treated water PO— P)} {(treated water T P) (treated water
4  Four
処理水 PO—P) }により求めた。 実験番号 2において、循環水の薬剤混合後の液を圧力室内より採水したところ、 p H = 9. 9、T— P = 0. 73mgZL、 PO— P = 0. 34mgZLで、ほぼ処理水の水質に Treated water PO—P)}. In Experiment No. 2, when the solution after circulating chemical mixing was collected from the pressure chamber, pH = 9.9, T—P = 0.73 mgZL, PO—P = 0.34 mgZL, and almost treated water. Water quality
4  Four
近かった。また、他の実験番号 1, 3〜10においても、処理水の T—P値は全て lmg ZL以下であった。すなわち、薬剤の混合攪拌を速やかに行うことにより、 pHの高い 状態が発生せず、凝集の抑制効果が生じることが明らかとなった。  It was close. In other experiment numbers 1, 3 to 10, the TP values of the treated water were all lmg ZL or less. In other words, it has been clarified that rapid mixing and stirring of the drug does not cause a high pH state and suppresses aggregation.
[0069] 次に、実施例 1の各反応晶析処理方法と従来例 1の各反応晶析処理方法とにより、 フッ素を含む排水に対して、実際に行った晶析実験と水質分析とについて報告する 種結晶としては、純度 97%の蛍石(フッ化カルシウム)を粒径 0. 3〜0. 5mmに粒 度調整したものを使用した。 [0069] Next, with respect to the crystallization experiment and water quality analysis actually performed on the wastewater containing fluorine by each reaction crystallization treatment method of Example 1 and each reaction crystallization treatment method of Conventional Example 1. The seed crystal to be reported was 97% pure fluorite (calcium fluoride) with a particle size adjusted to 0.3 to 0.5 mm.
種結晶の充填容積を 100Lとし、攪拌モータ 41に接続したインバータにより処理水 循環流量を調節し、種結晶膨張率を 150%とした。  The seed crystal filling volume was set to 100 L, and the circulating flow rate of the treated water was adjusted by an inverter connected to the stirring motor 41, and the seed crystal expansion rate was set to 150%.
被処理水としては、フッ化ナトリウム試薬を用い、フッ素イオン濃度を 20mgZLに調 整した模擬排水を使用した。被処理水流量は、被処理水供給ポンプに接続したイン バータにより調節し、流量計で確認した。  As the water to be treated, simulated waste water using a sodium fluoride reagent and adjusting the fluorine ion concentration to 20 mgZL was used. The treated water flow rate was adjusted with an inverter connected to the treated water supply pump and confirmed with a flow meter.
[0070] 薬剤としては、塩化カルシウム 20%水溶液を採用した。その注入量は、薬剤注入 ポンプに接続したインバータにより制御した。薬剤は、被処理水流量に応じた比例制 御により注入される。 [0070] As the drug, a 20% calcium chloride aqueous solution was employed. The injection volume was controlled by an inverter connected to the drug injection pump. The drug is injected by proportional control according to the flow rate of the water to be treated.
フッ素イオン濃度の分析には、 JIS K 0102ランタン—ァリザリンコンプレキソン吸 光光度法を採用した。その試験結果を表 2に示す。表 2中、実験番号 14は試験例 11 を示す。また、実験番号 15は比較例 4を示す。  JIS K 0102 lanthanum-alizarin complexone absorption photometric method was used for the analysis of fluorine ion concentration. The test results are shown in Table 2. In Table 2, Experiment No. 14 shows Test Example 11. Experiment No. 15 represents Comparative Example 4.
表 2から明らかなように、実験番号 14では処理水の白濁もなぐ SS (スラッジ)濃度 も低力つた。これに対して、実験番号 15では処理水が白濁し、 SSも増加し、フッ素ィ オン濃度も高力つた。これは、種結晶の表面に晶析しな力つた微細なフッ化カルシゥ ム粒子が、処理水中に多量に残ったためと考えられる。  As is clear from Table 2, in Experiment No. 14, the concentration of SS (sludge), which causes the cloudiness of the treated water, was also low. On the other hand, in Experiment No. 15, the treated water became cloudy, SS increased, and the fluorine ion concentration increased. This is thought to be because a large amount of fine calcium fluoride particles that did not crystallize on the surface of the seed crystal remained in the treated water.
[0071] [表 2] 実 被処理水 処理水 [0071] [Table 2] Actual treated water Treated water
験 空間速度 水/皿 処理水  Experiment Space velocity Water / dish Treated water
実験装雷 Ca SS F Ca SS  Experimental lightning Ca SS F Ca SS
番 SV (/時) ( ) の状態  SV (/ hour) () status
(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)  (mg / L) (mg / L) (mg / L) (mg / L) (mg / L)
 Issue
14 実施例 1 1 20. B 20 5.2 0.2 5.5 1 .0 1.2 透明  14 Example 1 1 20.B 20 5.2 0.2 5.5 1.0 0.0 Transparent
15 従来例 1 1 20.0 21 4.9 0.1 9.6 12.0 15.4 白濩 産業上の利用可能性  15 Conventional example 1 1 20.0 21 4.9 0.1 9.6 12.0 15.4 Birch Industrial applicability
循環水供給流路のうち、循環 C水に乱流が生じる領域に薬剤を添加し、薬剤が急速 かつ均一に循環水中に混入されるようにしたので、流動床内の局所的な薬剤の濃度 の高まりが抑えられる。その結果、薬剤濃度の均一化が図れ、凝集物の発生を抑制 することができる。  The chemical is added to the circulating water supply channel in the area where turbulent flow occurs in the circulating C water, so that the drug is rapidly and uniformly mixed into the circulating water. The rise of is suppressed. As a result, the drug concentration can be made uniform and the generation of aggregates can be suppressed.
りん酸カルシウム化合物を種結晶の表面に析出させることにより、りん酸態りんを含 む被処理水中の PO P濃度が、数十 mgZL〜数百 mgZLの排水に対しても、凝  By precipitating the calcium phosphate compound on the surface of the seed crystal, the concentration of POP in the water to be treated containing phosphate phosphorus can be reduced even for wastewater of several tens mgZL to several hundred mgZL.
4  Four
集濃度の低減に効果を有し、反応晶析法におけるりんの除去、回収率を高めること ができる。これにより、反応晶析処理装置のコンパクト化も図ることができる。また、 PO P濃度が、 l〜5mgZLの比較的低濃度の排水に対しては、 T P< lmgZLのThis is effective in reducing the concentration of phosphorus and can increase the removal and recovery rate of phosphorus in the reaction crystallization method. Thereby, the reaction crystallization treatment apparatus can be made compact. Also, for wastewater with a relatively low POP concentration of 1 to 5 mgZL, T P <lmgZL
4 Four
処理水を安定して得ることができる。 Treated water can be obtained stably.

Claims

請求の範囲 The scope of the claims
[1] 種結晶が存在する流動床に被処理水を導入し、前記流動床で被処理水と種結晶 とを接触させることにより、前記種結晶の表面に被処理水中の目的成分をィ匕合物とし て晶析して処理水を得るとともに、前記流動床には、循環水としての前記処理水の一 部と、晶析反応に使用される薬剤とを導入する反応晶析処理方法であって、 前記薬剤は、前記循環水の循環水供給流路のうち、前記循環水に乱流が発生す る領域および該循環水に旋回流が発生する領域の少なくとも 1つに添加される反応 晶析処理方法。  [1] By introducing the water to be treated into the fluidized bed in which the seed crystals exist and bringing the water to be treated and the seed crystals into contact with each other in the fluidized bed, the target component in the water to be treated is added to the surface of the seed crystals. Crystallized as a compound to obtain treated water, and a reaction crystallization treatment method in which a part of the treated water as circulating water and a chemical used for the crystallization reaction are introduced into the fluidized bed. The chemical agent is added to at least one of a region where turbulent flow is generated in the circulating water and a region where swirl is generated in the circulating water in the circulating water supply channel of the circulating water. Crystallization method.
[2] 前記被処理水は、前記薬剤が添加された処理水とは別の流路で流動床に導入さ れる請求項 1に記載の反応晶析処理方法。  [2] The reaction crystallization treatment method according to [1], wherein the water to be treated is introduced into the fluidized bed through a flow path different from the treated water to which the chemical is added.
[3] 前記被処理水はりん酸態りんを含有する排水で、該りん酸カルシウム化合物を前記 種結晶の表面に析出させることにより、前記排水中のりん分を除去、回収する請求項[3] The treated water is a waste water containing phosphate phosphorus, and the phosphorus content in the waste water is removed and recovered by precipitating the calcium phosphate compound on the surface of the seed crystal.
1に記載の反応晶析処理方法。 2. The reaction crystallization treatment method according to 1.
[4] 前記被処理水はりん酸態りんを含有する排水で、該りん酸カルシウム化合物を前記 種結晶の表面に析出させることにより、前記排水中のりん分を除去、回収する請求項[4] The treated water is wastewater containing phosphate phosphorus, and the phosphorus content in the wastewater is removed and recovered by precipitating the calcium phosphate compound on the surface of the seed crystal.
2に記載の反応晶析処理方法。 2. The reaction crystallization treatment method according to 2.
[5] 前記薬剤は、塩ィ匕カルシウムを含むカルシウム化合物と、水酸化カルシウムおよび 水酸ィ匕ナトリウムを含む水酸ィ匕物との群中力も選ばれた 1種または 2種以上で、かつ[5] The drug is one or more selected from the group consisting of a calcium compound containing calcium salt and calcium hydroxide containing calcium hydroxide and sodium hydroxide, and
、前記薬剤は、水溶液または懸濁液として前記循環水に添加されるか、固体として該 循環水に添加される請求項 3に記載の反応晶析処理方法。 4. The reaction crystallization treatment method according to claim 3, wherein the chemical is added to the circulating water as an aqueous solution or a suspension, or added to the circulating water as a solid.
[6] 前記薬剤は、塩ィ匕カルシウムを含むカルシウム化合物と、水酸化カルシウムおよび 水酸ィ匕ナトリウムを含む水酸ィ匕物との群中力も選ばれた 1種または 2種以上で、かつ[6] The drug is one or more selected from the group consisting of calcium compounds including calcium salt and calcium hydroxide including calcium hydroxide and sodium hydroxide, and
、前記薬剤は、水溶液または懸濁液として前記循環水に添加されるか、固体として該 循環水に添加される請求項 4に記載の反応晶析処理方法。 5. The reaction crystallization treatment method according to claim 4, wherein the chemical is added to the circulating water as an aqueous solution or a suspension, or is added to the circulating water as a solid.
[7] 前記種結晶は、珪酸カルシウム水和物、りん酸カルシウム、リン鉱石、珪砂、骨炭、 硫酸カルシウム、炭酸カルシウム、炭酸カルシウムマグネシウムの群中力 選ばれた[7] The seed crystal was selected from the group consisting of calcium silicate hydrate, calcium phosphate, phosphate ore, silica sand, bone charcoal, calcium sulfate, calcium carbonate, and calcium magnesium carbonate.
1種または 2種以上である請求項 3に記載の反応晶析処理方法。 4. The reaction crystallization treatment method according to claim 3, wherein the reaction crystallization treatment method is one kind or two or more kinds.
[8] 前記種結晶は、珪酸カルシウム水和物、りん酸カルシウム、リン鉱石、珪砂、骨炭、 硫酸カルシウム、炭酸カルシウム、炭酸カルシウムマグネシウムの群中力 選ばれた 1種または 2種以上である請求項 4に記載の反応晶析処理方法。 [8] The seed crystal includes calcium silicate hydrate, calcium phosphate, phosphate ore, silica sand, bone charcoal, 5. The reactive crystallization treatment method according to claim 4, wherein one or more selected from the group strength of calcium sulfate, calcium carbonate, and calcium magnesium carbonate are selected.
[9] 前記種結晶は、珪酸カルシウム水和物、りん酸カルシウム、リン鉱石、珪砂、骨炭、 硫酸カルシウム、炭酸カルシウム、炭酸カルシウムマグネシウムの群中力 選ばれた 1種または 2種以上である請求項 5に記載の反応晶析処理方法。  [9] The seed crystals are one or more selected from the group consisting of calcium silicate hydrate, calcium phosphate, phosphate ore, silica sand, bone charcoal, calcium sulfate, calcium carbonate, and calcium carbonate magnesium. Item 6. The reaction crystallization treatment method according to Item 5.
[10] 前記循環水供給流路の循環水に乱流が発生する領域は、前記循環水供給流路の 途中に配置された攪拌羽根の配置部分またはその上流近傍もしくはその下流近傍 力 前記循環水供給流路の途中に配置された圧送ポンプの配置部分またはその上 流近傍もしくはその下流近傍か、前記循環水供給流路の途中に形成された流路断 面積が他の部分より小さくなつた部分またはその上流近傍もしくはその下流近傍力 前記循環水供給流路の途中に配置され、薬剤と薬剤急速混合槽内の循環水の全体 とを急速に混合する前記薬剤急速混合槽の配置部分またはその上流近傍もしくは 下流近傍かで、  [10] The region where the turbulent flow is generated in the circulating water in the circulating water supply flow path is a portion where the stirring blades are disposed in the middle of the circulating water supply flow path or in the vicinity of the upstream or the downstream thereof. The part of the pressure pump arranged in the middle of the supply flow path, the vicinity of the upstream or the vicinity thereof, or the part of the flow passage cut-off area formed in the middle of the circulating water supply flow path smaller than the other parts Or the upstream vicinity or the downstream vicinity force It is arrange | positioned in the middle of the said circulating water supply flow path, and the arrangement | positioning part of the said chemical | medical agent rapid mixing tank which rapidly mixes the chemical | medical agent and the whole circulating water in a chemical | medical agent rapid mixing tank, or its upstream. Near or downstream
前記循環水供給流路の循環水に旋回流が発生する領域は、前記循環水供給流路 の途中に配置されたラインミキサの配置部分またはその上流近傍もしくはその下流近 傍である請求項 1〜請求項 9のうち、何れか 1項に記載の反応晶析処理方法。  The region where the swirling flow is generated in the circulating water of the circulating water supply flow path is an arrangement portion of the line mixer arranged in the middle of the circulating water supply flow path, the upstream vicinity thereof, or the downstream vicinity thereof. The reaction crystallization treatment method according to any one of claims 9 to 10.
[11] 被処理水中の目的成分を反応させる反応槽と、 [11] a reaction tank for reacting the target components in the water to be treated;
該反応槽の内部空間を上部および下部に区画する隔壁と、  A partition partitioning the internal space of the reaction vessel into an upper part and a lower part;
前記内部空間の下部に設けられた圧力室と、  A pressure chamber provided in a lower portion of the internal space;
前記内部空間の上部に設けられ、種結晶が存在する流動床と、  A fluidized bed provided in an upper portion of the internal space and containing seed crystals;
前記被処理水を前記流動床に直接または前記圧力室を通して前記流動床に供給 する被処理水供給手段と、  To-be-treated water supply means for supplying the to-be-treated water to the fluidized bed directly or through the pressure chamber;
前記被処理水供給手段により前記流動床に供給された被処理水中の目的成分と 前記種結晶とを接触させ、該種結晶の表面に前記目的成分を晶析させることで前記 流動床の上部から得られた処理水の一部を、循環水供給流路を通して、循環水とし て前記圧力室に供給する循環水供給手段と、  From the upper part of the fluidized bed, the target component in the treated water supplied to the fluidized bed by the treated water supply means is brought into contact with the seed crystal, and the target component is crystallized on the surface of the seed crystal. A circulating water supply means for supplying a part of the treated water to the pressure chamber as circulating water through a circulating water supply channel;
前記圧力室と前記流動床とを連通させた状態で前記隔壁に設けられ、前記圧力室 に貯留された循環水および被処理水のうち、少なくとも 1つを前記流動床に分配する 複数のディストリビュータと、 Distributing at least one of circulating water and treated water stored in the pressure chamber to the fluidized bed, provided in the partition with the pressure chamber and the fluidized bed communicating with each other. With multiple distributors,
前記晶析反応に使用される薬剤を、前記循環水供給流路のうち、前記循環水に乱 流が発生する領域および該循環水に旋回流が発生する領域の少なくとも 1つに供給 する薬剤供給手段とを備えた反応晶析処理装置。  A chemical supply for supplying the chemical used in the crystallization reaction to at least one of a region where turbulent flow is generated in the circulating water and a region where swirl is generated in the circulating water in the circulating water supply channel. And a reaction crystallization treatment apparatus.
[12] 円筒形状または角筒形状を有し、かつ少なくとも下部が下方に向かって徐々に先 細り化し、被処理水中の目的成分を反応させる反応槽と、 [12] A reaction tank having a cylindrical shape or a rectangular tube shape, and at least a lower portion gradually tapering downward, and reacting a target component in water to be treated;
該反応槽の内部空間に設けられ、種結晶が存在する流動床と、  A fluidized bed provided in the internal space of the reaction vessel and containing seed crystals;
前記被処理水を、前記内部空間の下部に供給する被処理水供給手段と、 前記流動床内で、前記被処理水供給手段により供給された被処理水中の目的成 分と前記種結晶とを接触させ、該種結晶の表面に前記目的成分を晶析させることで 前記流動床の上部から得られた処理水の一部を、循環水供給流路を通して、前記 内部空間の被処理水の供給位置より下方位置力も前記反応槽の底壁に向力つて循 環水として噴出する循環水噴出手段と、  A treated water supply means for supplying the treated water to a lower portion of the internal space; a target component in the treated water supplied by the treated water supply means and the seed crystal in the fluidized bed; A portion of the treated water obtained from the upper part of the fluidized bed by contacting and crystallizing the target component on the surface of the seed crystal, through the circulating water supply channel, A circulating water jetting means for jetting as circulating water with a positional force below the position directed toward the bottom wall of the reaction tank;
前記晶析反応に使用される薬剤を、前記循環水供給流路のうち、該循環水に乱流 が発生する領域および該循環水に旋回流が発生する領域の少なくとも 1つに供給す る薬剤供給手段とを備えた反応晶析処理装置。  Agent for supplying the chemical used in the crystallization reaction to at least one of the circulating water supply flow path, the region where turbulent flow is generated in the circulating water and the region where swirl is generated in the circulating water And a reaction crystallization treatment apparatus.
[13] 前記循環水供給流路の循環水に乱流が発生する領域は、前記循環水供給流路の 途中に配置された攪拌羽根の配置部分またはその上流近傍もしくはその下流近傍 力 前記循環水供給流路の途中に配置された圧送ポンプの配置部分またはその上 流近傍もしくはその下流近傍か、前記循環水供給流路の途中に形成された流路断 面積が他の部分より小さくなつた部分またはその上流近傍もしくはその下流近傍力 前記循環水供給流路の途中に配置され、薬剤と薬剤急速混合槽内の循環水の全体 とを急速に混合する前記薬剤急速混合槽の配置部分またはその上流近傍もしくは 下流近傍かで、 [13] The region where the turbulent flow is generated in the circulating water in the circulating water supply channel is the portion where the stirring blades are arranged in the middle of the circulating water supply channel, or the vicinity of the upstream or the downstream thereof. The part of the pressure pump arranged in the middle of the supply flow path, the vicinity of the upstream or the vicinity thereof, or the part of the flow passage cut-off area formed in the middle of the circulating water supply flow path smaller than the other parts Or the upstream vicinity or the downstream vicinity force It is arrange | positioned in the middle of the said circulating water supply flow path, and the arrangement | positioning part of the said chemical | medical agent rapid mixing tank which rapidly mixes the chemical | medical agent and the whole circulating water in a chemical | medical agent rapid mixing tank, or its upstream. Near or downstream
前記循環水供給流路の循環水に旋回流が発生する領域は、前記循環水供給流路 の途中に配置されたラインミキサの配置部分またはその上流近傍もしくはその下流近 傍である請求項 11に記載の反応晶析処理装置。  12. The region where the swirling flow is generated in the circulating water in the circulating water supply channel is an arrangement portion of a line mixer arranged in the middle of the circulating water supply channel, or the vicinity thereof or the vicinity thereof. The reaction crystallization treatment apparatus described.
[14] 前記循環水供給流路の循環水に乱流が発生する領域は、前記循環水供給流路の 途中に配置された攪拌羽根の配置部分またはその上流近傍もしくはその下流近傍 力 前記循環水供給流路の途中に配置された圧送ポンプの配置部分またはその上 流近傍もしくはその下流近傍か、前記循環水供給流路の途中に形成された流路断 面積が他の部分より小さくなつた部分またはその上流近傍もしくはその下流近傍力 前記循環水供給流路の途中に配置され、薬剤と薬剤急速混合槽内の循環水の全体 とを急速に混合する前記薬剤急速混合槽の配置部分またはその上流近傍もしくは 下流近傍かで、 [14] The region where the turbulent flow is generated in the circulating water in the circulating water supply channel is the region of the circulating water supply channel. The part of the stirring blade arranged in the middle or the vicinity of the upstream or the vicinity of the downstream force The part of the pressure feed pump arranged in the middle of the circulating water supply flow path, the vicinity of the upstream or the vicinity thereof, or the circulating water The portion where the channel cut-off area formed in the middle of the supply channel is smaller than the other portion or the force in the vicinity of the upstream or the downstream thereof is arranged in the middle of the circulating water supply channel, and in the drug and drug rapid mixing tank In the arrangement part of the chemical rapid mixing tank that rapidly mixes the whole of the circulating water or in the vicinity of the upstream or the downstream thereof,
前記循環水供給流路の循環水に旋回流が発生する領域は、前記循環水供給流路 の途中に配置されたラインミキサの配置部分またはその上流近傍もしくはその下流近 傍である請求項 12に記載の反応晶析処理装置。  13. The region where the swirling flow is generated in the circulating water in the circulating water supply channel is the arrangement portion of the line mixer arranged in the middle of the circulating water supply channel, or the vicinity thereof or the vicinity thereof. The reaction crystallization treatment apparatus described.
[15] 前記循環水供給流路の途中には攪拌羽根または圧送ポンプが設けられ、 [15] A stirring blade or a pressure feed pump is provided in the middle of the circulating water supply flow path,
前記循環水供給流路のうち、前記攪拌羽根または圧送ポンプの配置部分またはそ の上流近傍もしくはその下流近傍に、前記循環水供給流路の循環水に乱流または 旋回流を発生させる手段として、バルブ、オリフィス、ラインミキサのうち、少なくとも 1 つを配置した請求項 13に記載の反応晶析処理装置。  As means for generating a turbulent flow or a swirling flow in the circulating water of the circulating water supply flow path in the circulating water supply flow path, in the vicinity of the arrangement of the stirring blade or the pressure feed pump or in the vicinity of the upstream or the downstream thereof, The reaction crystallization treatment apparatus according to claim 13, wherein at least one of a valve, an orifice, and a line mixer is disposed.
[16] 前記循環水供給流路の途中には攪拌羽根または圧送ポンプが設けられ、 [16] A stirring blade or a pressure pump is provided in the middle of the circulating water supply flow path,
前記循環水供給流路のうち、前記攪拌羽根または圧送ポンプの配置部分またはそ の上流近傍もしくはその下流近傍に、前記循環水供給流路の循環水に乱流または 旋回流を発生させる手段として、バルブ、オリフィス、ラインミキサのうち、少なくとも 1 つを配置した請求項 14に記載の反応晶析処理装置。  As means for generating a turbulent flow or a swirling flow in the circulating water of the circulating water supply flow path in the circulating water supply flow path, in the vicinity of the arrangement of the stirring blade or the pressure feed pump or in the vicinity of the upstream or the downstream thereof, 15. The reaction crystallization treatment apparatus according to claim 14, wherein at least one of a valve, an orifice, and a line mixer is disposed.
PCT/JP2005/017881 2004-09-28 2005-09-28 Method of treatment with reactional crystallization and apparatus therefor WO2006035834A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004282160 2004-09-28
JP2004-282160 2004-09-28
JP2005272946A JP4892212B2 (en) 2004-09-28 2005-09-20 Reaction crystallizer
JP2005-272946 2005-09-20

Publications (1)

Publication Number Publication Date
WO2006035834A1 true WO2006035834A1 (en) 2006-04-06

Family

ID=36118980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017881 WO2006035834A1 (en) 2004-09-28 2005-09-28 Method of treatment with reactional crystallization and apparatus therefor

Country Status (2)

Country Link
JP (1) JP4892212B2 (en)
WO (1) WO2006035834A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119380A (en) * 2007-11-15 2009-06-04 Japan Organo Co Ltd Crystallization reactor and crystallization reaction method
CN107915351A (en) * 2017-12-25 2018-04-17 中冶京诚工程技术有限公司 System for modular fluidized bed self crystallization handles high rigidity waste water
CN113967420A (en) * 2021-06-25 2022-01-25 北京绿恒科技有限公司 Multistage hydraulic circulating mixer
CN115304140A (en) * 2022-04-11 2022-11-08 河北莎诺环保科技有限公司 Softening water treatment device of induced crystallization granulation fluidized bed

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565575B2 (en) * 2006-09-20 2010-10-20 オルガノ株式会社 Fluorine crystallization technology
JP4599335B2 (en) * 2006-11-14 2010-12-15 メタウォーター株式会社 Upflow type manganese contact tower
JP4753182B2 (en) * 2007-01-31 2011-08-24 小野田化学工業株式会社 Treatment method for fluorine-containing wastewater
JP5374497B2 (en) * 2008-03-24 2013-12-25 メタウォーター株式会社 Pretreatment device and pretreatment method for high hardness raw water membrane filtration
JP5164101B2 (en) * 2008-03-31 2013-03-13 広島県 Method for removing and collecting phosphorus in wastewater to be treated
DE102011016826A1 (en) * 2011-04-12 2012-10-18 Karlsruher Institut für Technologie Plant and process for the recovery of phosphorus from wastewater
JP5773892B2 (en) * 2012-01-10 2015-09-02 三菱電機株式会社 Water treatment method and water treatment apparatus
JP5540034B2 (en) * 2012-03-07 2014-07-02 三井造船環境エンジニアリング株式会社 Phosphorus recovery equipment for phosphorus-containing water
JP5927216B2 (en) * 2014-03-03 2016-06-01 三井造船環境エンジニアリング株式会社 Phosphorus recovery equipment for phosphorus-containing water
JP2016047534A (en) * 2015-11-12 2016-04-07 三井造船環境エンジニアリング株式会社 Apparatus for recovering phosphorus from phosphorus-containing water
JP6442014B1 (en) * 2017-09-13 2018-12-19 株式会社流機エンジニアリング Processing apparatus and processing method for liquid to be processed
JP7301105B2 (en) * 2018-05-24 2023-06-30 水ing株式会社 Method for treating liquid to be treated and apparatus for treating liquid to be treated
CN109095660B (en) * 2018-10-18 2021-02-26 重庆大学 Phosphorus removal and phosphorus recovery device for urban landscape water body
CN110204028A (en) * 2019-07-10 2019-09-06 孙宝成 Handle gypsum rotating crystal device, processing method and the dihydrate gypsum of dilute sulfuric acid waste water
CN111498967B (en) * 2020-04-30 2021-05-07 河南力诚环保科技有限公司 Crystallization fluidized bed
CN111498966B (en) * 2020-04-30 2021-06-08 工大环境股份有限公司 Differential water distributor and application thereof in crystallization fluidized bed
CN114515442B (en) * 2021-11-05 2023-06-20 广州市鸿浩光电半导体有限公司 Crystallization system and crystallization method for generating sodium fluoroaluminate crystals from fluorine-containing wastewater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524570A (en) * 1978-08-11 1980-02-21 Ebara Infilco Co Ltd Removing method for phosphates in solution
JPS60168587A (en) * 1984-02-14 1985-09-02 Ebara Infilco Co Ltd Fluidized bed type catalytic dephosphorization
JPS6193893A (en) * 1984-10-15 1986-05-12 Ebara Infilco Co Ltd Removal of phosphorus in liquid
JPS61204087A (en) * 1985-03-08 1986-09-10 Ataka Kogyo Kk Crystallizing agent for phosphate ion in waste water and its preparation
JPH11309464A (en) * 1998-04-28 1999-11-09 Mitsubishi Heavy Ind Ltd Crystallization dephosphorization method and its device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024692A (en) * 1998-07-08 2000-01-25 Nishihara Environ Sanit Res Corp Device for treating sulfate ion-containing waste water
JP2000334474A (en) * 1999-05-26 2000-12-05 Kurita Water Ind Ltd Method for removing phosphorus from waste water
JP4774619B2 (en) * 2001-04-12 2011-09-14 栗田工業株式会社 Crystallization dephosphorization equipment
JP4374825B2 (en) * 2002-04-17 2009-12-02 栗田工業株式会社 Crystalline dephosphorization method
JP4562366B2 (en) * 2003-09-22 2010-10-13 三菱マテリアル株式会社 Reaction crystallization treatment method and apparatus
JP4696473B2 (en) * 2004-05-25 2011-06-08 三菱マテリアル株式会社 Reaction crystallizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524570A (en) * 1978-08-11 1980-02-21 Ebara Infilco Co Ltd Removing method for phosphates in solution
JPS60168587A (en) * 1984-02-14 1985-09-02 Ebara Infilco Co Ltd Fluidized bed type catalytic dephosphorization
JPS6193893A (en) * 1984-10-15 1986-05-12 Ebara Infilco Co Ltd Removal of phosphorus in liquid
JPS61204087A (en) * 1985-03-08 1986-09-10 Ataka Kogyo Kk Crystallizing agent for phosphate ion in waste water and its preparation
JPH11309464A (en) * 1998-04-28 1999-11-09 Mitsubishi Heavy Ind Ltd Crystallization dephosphorization method and its device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119380A (en) * 2007-11-15 2009-06-04 Japan Organo Co Ltd Crystallization reactor and crystallization reaction method
CN107915351A (en) * 2017-12-25 2018-04-17 中冶京诚工程技术有限公司 System for modular fluidized bed self crystallization handles high rigidity waste water
CN113967420A (en) * 2021-06-25 2022-01-25 北京绿恒科技有限公司 Multistage hydraulic circulating mixer
CN113967420B (en) * 2021-06-25 2023-11-28 北京绿恒科技有限公司 Multistage hydraulic circulation mixer
CN115304140A (en) * 2022-04-11 2022-11-08 河北莎诺环保科技有限公司 Softening water treatment device of induced crystallization granulation fluidized bed

Also Published As

Publication number Publication date
JP2006122896A (en) 2006-05-18
JP4892212B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4892212B2 (en) Reaction crystallizer
JP4748584B2 (en) Method and apparatus for removing ions in liquid by crystallization method
CA2829113C (en) Reactor for precipitating solutes from wastewater and associated methods
JP4519485B2 (en) Phosphorus recovery method and apparatus
JPH10113673A (en) Waste water treating device and method therefor
JPH10249359A (en) Phosphorus removing and recovering device utilizing seawater
JPH11309464A (en) Crystallization dephosphorization method and its device
JP3362276B2 (en) Wastewater treatment equipment
JP7206061B2 (en) Method for treating liquid to be treated
JP5414169B2 (en) Crystallization reactor and crystallization reaction method
JP2007244995A (en) Treatment equipment of digestion sludge
JPS60179190A (en) Dephosphorizing apparatus
JP3681073B2 (en) Granulation dephosphorization equipment
JP4374825B2 (en) Crystalline dephosphorization method
JPH10323677A (en) Waste water treatment device
JP4774619B2 (en) Crystallization dephosphorization equipment
JP5222596B2 (en) Crystallization reactor
JP2000301166A (en) Waste water treatment apparatus
KR100881141B1 (en) High rate fluorine and calcium removal equipment in water using activated neuclei
JP2007038165A (en) Crystallizer and cristallizing method
CN215559234U (en) Device for recovering nitrogen and phosphorus in waste liquid by using magnesium-alkali release functional mineral material
JP5162210B2 (en) Crystallization reactor and crystallization reaction method
JP7301105B2 (en) Method for treating liquid to be treated and apparatus for treating liquid to be treated
JP2018161641A (en) Crystallization method and crystallizer
JP3344132B2 (en) Dephosphorization device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05787913

Country of ref document: EP

Kind code of ref document: A1