JP2010155243A - Swirling type fine-bubble generating system - Google Patents

Swirling type fine-bubble generating system Download PDF

Info

Publication number
JP2010155243A
JP2010155243A JP2010052354A JP2010052354A JP2010155243A JP 2010155243 A JP2010155243 A JP 2010155243A JP 2010052354 A JP2010052354 A JP 2010052354A JP 2010052354 A JP2010052354 A JP 2010052354A JP 2010155243 A JP2010155243 A JP 2010155243A
Authority
JP
Japan
Prior art keywords
gas
space
swirling
liquid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010052354A
Other languages
Japanese (ja)
Inventor
Hirobumi Onari
博文 大成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010052354A priority Critical patent/JP2010155243A/en
Publication of JP2010155243A publication Critical patent/JP2010155243A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine-bubble generating system in which gas such as air and oxygen gas is dissolved efficiently in a liquid such as city water and river water to clean water or revive water environment and fine bubbles can be produced efficiently by a concise structure. <P>SOLUTION: The swirling type fine-bubble generating system is composed of: a container main unit having a conical space 100 or a sake bottle-like or wine bottle-like space; a pressurized liquid inlet 50 opened in a tangential direction on a part of the circumferential surface of the inner wall of the space; a gas introducing hole 80 opened at the bottom 300 of the space; and a swirling gas-liquid outlet 101 opened at the top of the space. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、空気、酸素ガス等の気体を水道水、河川水、その他液体等に効率的に溶解して、例えば水質を浄化し、水環境を蘇生するための微細気泡発生装置の技術分野に属する。   The present invention relates to a technical field of a fine bubble generator for efficiently dissolving a gas such as air or oxygen gas in tap water, river water, or other liquids, for example, purifying water quality and reviving a water environment. Belongs.

従来のエアレーション、例えば水生生物成育装置に設置された微細気泡発生装置によるエアレーションのほとんどは、成育槽内に設置された管状や板状の微細気泡発生装置細孔から空気を成育用水中に加圧して噴き出すことによって気泡を細分化する方式であるか、又は回転羽根や気泡噴流などにより、せん断力が形成された成育用水流内に空気を入れて、それを細分化するかあるいは加圧された水の急減圧によって水中に溶解していた空気を気化させて気泡を発生させる方式である。そして、それらの機能を有する微細気泡発生装置によるエアレーションでは、基本的には空気の送給量やそれぞれの微細気泡発生装置の設備個数等によって必要な調節が行われているが、空気、炭酸ガス等の気体を水中に高効率で溶解させ、さらには水の循環を促進する必要がある。   Most of the conventional aeration, for example, aeration using a microbubble generator installed in an aquatic organism growth device, pressurizes air into the growth water from the pores of a tubular or plate-like microbubble generator installed in the growth tank. The air bubbles are subdivided by blowing them out, or air is put into the growth water flow in which shearing force is formed by rotating blades or bubble jets, etc., and the air is subdivided or pressurized. This is a method of generating bubbles by evaporating air dissolved in water by rapid decompression of water. In aeration using a fine bubble generator having these functions, basically, necessary adjustments are made according to the amount of air supplied, the number of facilities of each fine bubble generator, etc. It is necessary to dissolve a gas such as water with high efficiency in water and further promote the circulation of water.

しかしながら、従来の微細気泡発生装置によるエアレーション方式は、例えば噴き出しによる散気方式では、そこにいかに微細な細孔を設けても、気泡が細孔から加圧状態で噴出されて体積膨張し、またその際の気泡の表面張力によって、結果的に数mm程度の径を有する大きな気泡が発生してしまい、それよりも小さな気泡を発生させることが困難であり、そして、その長時間運転に伴って発生する目詰まりと動力費の増大の問題が存在した。また、回転羽根や気泡噴流などにより、せん断力が形成された水流内に、空気を入れてそれを細分化する方式では、キャビテーションを発生させるのに高速の回転数が要求され、その動力費の問題やキャビテーション発生に伴って急激に進行する羽根の腐食や振動問題があり、さらに、微細気泡の生成率が少ないという問題もあった。
そしてまた、その他の回転羽根や突起に気液二相流が衝突する方式においては、例えば湖沼、魚類水槽内等においては魚類や水生小生物が破壊されてしまい、水生生物の成育に必要な環境の形成、維持に支障を来した。さらに、加圧方式では、装置が大型でかつ高価、さらには運転費も多額を必要としていた。 そして、上記いずれの従来技術によっても、例えば直径20μm以下といった微細気泡を工業規模で発生させることは不可能であった。
However, the conventional aeration method using a fine bubble generator is, for example, an air diffusion method using a jet, and no matter how fine pores are provided, bubbles are ejected from the pores in a pressurized state and volume-expanded. Due to the surface tension of the bubbles at that time, as a result, large bubbles having a diameter of several millimeters are generated, and it is difficult to generate bubbles smaller than that, and with the operation for a long time. There were problems of clogging occurring and increasing power costs. In addition, in a method in which air is put into a water flow in which shear force is formed by rotating blades or bubble jets, etc., and the air is subdivided, a high rotational speed is required to generate cavitation, and the power cost is reduced. There are problems such as blade corrosion and vibration that rapidly progress with the occurrence of problems and cavitation, and there is also a problem that the generation rate of fine bubbles is small.
In addition, in the method in which the gas-liquid two-phase flow collides with other rotating blades and protrusions, for example, in a lake, a fish tank, etc., fish and aquatic small organisms are destroyed, and the environment necessary for the growth of aquatic organisms. This hindered the formation and maintenance of Further, in the pressurization method, the apparatus is large and expensive, and the operation cost is also large. And by any of the above prior arts, it has been impossible to generate fine bubbles having a diameter of, for example, 20 μm or less on an industrial scale.

本発明者は鋭意研究の結果、下記構成の発明によって、直径20μm以下の微細気泡を工業規模で発生させることを可能とした。本発明の要点は、図1に本発明装置の原理説明図を示すごとく、まず装置容器内に円錐形のスペース100を設け、また同スペースの内壁円周面の一部にその接線方向に加圧液体導入口500を開設し、また前記円錐形のスペース底部300の中央部に気体導入孔80を開設し、さらに前記円錐形スペースの頂部付近には旋回気液導出口101を設けて微細気泡発生装置を構成する。そこで、前記装置本体を又は少なくとも旋回気液導出口101を液体中に埋設させ、前記加圧液体導入口500から円錐形スペース100内に加圧液体を圧送することにより、その内部に旋回流が生成し、円錐管軸上に負圧部分が形成される。この負圧によって、前記気体導入孔80から気体が吸い込まれ、圧力が最も低い管軸上を気体が通過することによって、細い旋回気体空洞部60が形成される。この円錐形スペース100では旋回流が入り口(加圧液体導入口)500から出口(旋回気液導出口)101へ向かって形成され、スペース100の断面縮小にしたがって、旋回気液導出口101に向かうほど、旋回流速と出口に向かう流速とが同時に増加する。また、この旋回に伴って、液体と気体の比重差から、液体には遠心力、気体には向心力が同時に働き、そのために液体部と気体部の分離が可能となり、気体が糸状で出口101まで続き、そこから噴出されるが、その噴出と同時に周囲の静液(水)によって、その旋回が急激に弱められ、その前後で、急激な旋回速度差が発生する。この旋回速度差の発生によって、糸状の気体空洞部60が連続的に安定して切断され、その結果として大量の微細気泡、例えば直径10〜20μmの微細気泡が同出口101付近で発生し、器外の液体中へ放出されるのである。   As a result of earnest research, the present inventor has made it possible to generate fine bubbles having a diameter of 20 μm or less on an industrial scale by the invention having the following constitution. The essential point of the present invention is that, as shown in FIG. 1 showing the principle of the apparatus of the present invention, a conical space 100 is first provided in the apparatus container, and a part of the inner wall circumferential surface of the space is added in the tangential direction. A pressurized liquid inlet 500 is opened, a gas inlet hole 80 is opened at the center of the conical space bottom 300, and a swirling gas-liquid outlet 101 is provided near the top of the conical space to form fine bubbles. Configure the generator. Therefore, the apparatus main body or at least the swirling gas / liquid outlet 101 is embedded in the liquid, and the pressurized liquid is pumped into the conical space 100 from the pressurized liquid introducing port 500, so that a swirling flow is generated therein. And a negative pressure portion is formed on the conical tube axis. Due to this negative pressure, the gas is sucked from the gas introduction hole 80, and the gas passes through the tube axis having the lowest pressure, whereby the narrow swirling gas cavity 60 is formed. In this conical space 100, a swirling flow is formed from the inlet (pressurized liquid inlet) 500 toward the outlet (swirling gas / liquid outlet) 101, and toward the swirling gas / liquid outlet 101 as the cross section of the space 100 is reduced. The turning flow velocity and the flow velocity toward the outlet increase at the same time. In addition, due to this swirling, due to the difference in specific gravity between the liquid and gas, centrifugal force acts on the liquid and centripetal force acts on the gas at the same time. Then, it is ejected from there. At the same time as the ejection, the turning is suddenly weakened by the surrounding still liquid (water), and a sudden turning speed difference occurs before and after that. Due to the generation of the swirling speed difference, the thread-like gas cavity 60 is continuously and stably cut. As a result, a large amount of fine bubbles, for example, fine bubbles having a diameter of 10 to 20 μm are generated near the outlet 101, It is released into the outside liquid.

すなわち、本発明の構成は以下の通りである。
(1)円錐形のスペースを有する容器本体と、同スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから構成されてなることを特徴とする旋回式微細気泡発生装置。
(2)円錐形のスペースを有する容器本体と、同スペースの底部付近の内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから構成され、旋回気液導出口の口径(d)と円錐形のスペース底部の口径(d)と旋回気液導出口から円錐形のスペース底部までの距離(L)の相関関係が、d/d=10〜15、でかつL=1.5d〜2.0dであることを特徴とする旋回式微細気泡発生装置。
(3)円錐台形のスペースを有する容器本体と、同スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記円錐台形のスペース底部に開設された気体導入孔と、前記円錐台形スペースの上部に開設された旋回気液導出口とから構成されてなることを特徴とする旋回式微細気泡発生装置。
(4)徳利形状又はワインボトル形状のスペースを有する容器本体と、同スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記徳利形状又はワインボトル形状のスペース底部に開設された気体導入孔と、前記徳利形状又はワインボトル形状のスペースの頂部に開設された旋回気液導出口とから構成されてなることを特徴とする旋回式微細気泡発生装置。
(5)スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口が、同一曲率の内壁円周上に間隔を置いて複数個設けられてなることを特徴とする前項(1)〜(4)のいずれか1項に記載の旋回式微細気泡発生装置。
(6)スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口が、異なる曲率の内壁円周上に間隔を置いて複数個設けられてなることを特徴とする前項(1)〜(5)のいずれか1項に記載の旋回式微細気泡発生装置。
(7)加圧液体導入口が、前記スペースの底部付近の内壁円周面の一部に開設されてなることを特徴とする前項(1)〜(6)のいずれか1項に記載の旋回式微細気泡発生装置。
(8)加圧液体導入口が、前記スペースの中腹部付近の内壁円周面の一部に開設されてなることを特徴とする前項(1)〜(7)のいずれか1項に記載の旋回式微細気泡発生装置。
(9)旋回気液導出口の直前部にバッフルを配設してなることを特徴とする前項(1)〜(8)のいずれか1項に記載の旋回式微細気泡発生装置。
(10)円錐形のスペースを有する容器本体と、同スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから微細気泡発生装置を構成し、前記円錐形スペース内で伸長、先細りさせながら旋回導出する気体渦管の形成を第1過程とし、その気体渦管の前後の間で旋回速度差を発生させ、強制的に気体渦管を切断させることによる微細気泡の発生を第2過程とすることを特徴とする旋回式微細気泡発生方法。
(11)円錐形のスペースを有する容器本体と、同スペースの底部付近の内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから微細気泡発生装置を構成し、前記円錐形スペース内で伸長、先細りさせながら旋回導出する気体渦管の形成を第1過程とし、その気体渦管の前後の間で旋回速度差を発生させ、強制的に気体渦管を切断させることによる微細気泡の発生を第2過程とすることを特徴とする旋回式微細気泡発生方法。
That is, the configuration of the present invention is as follows.
(1) A container body having a conical space, a pressurized liquid inlet opening in a tangential direction on a part of the circumferential surface of the inner wall of the space, and a gas introduction opening at the bottom of the conical space A swirl type fine bubble generator comprising a hole and a swirl gas-liquid outlet opening formed at the top of the conical space.
(2) A container body having a conical space, a pressurized liquid inlet opening in a tangential direction in a part of the inner wall circumferential surface near the bottom of the space, and a conical space bottom. Gas inlet hole and a swirling gas / liquid outlet opening formed at the top of the conical space, the diameter (d 1 ) of the swirling gas / liquid outlet and the diameter (d 2 ) of the bottom of the conical space, The correlation of the distance (L) from the swirling gas-liquid outlet to the conical space bottom is d 2 / d 1 = 10 to 15 and L = 1.5d 2 to 2.0d 2 A swirling microbubble generator.
(3) A container body having a frustoconical space, a pressurized liquid inlet opening in a tangential direction on a part of the inner wall circumferential surface of the space, and a gas introduction opening at the bottom of the frustoconical space A swirl type fine bubble generating device comprising a hole and a swirl gas-liquid outlet opening formed in an upper part of the frustoconical space.
(4) A container body having a bottle-shaped or wine bottle-shaped space, a pressurized liquid inlet opening in a tangential direction in a part of the inner wall circumferential surface of the space, and the bottle-shaped or wine bottle-shaped A swirl type fine bubble generator comprising a gas introduction hole opened at the bottom of a space and a swirl gas-liquid outlet opened at the top of the bottle-shaped or wine bottle shaped space.
(5) A plurality of pressurized liquid inlets opened in a tangential direction in a part of the inner wall circumferential surface of the space are provided at intervals on the inner wall circumference of the same curvature. The swirling fine bubble generator according to any one of (1) to (4) above.
(6) A plurality of pressurized liquid inlets opened in a tangential direction in a part of the inner wall circumferential surface of the space are provided at intervals on the inner wall circumference of different curvatures. The swirling fine bubble generator according to any one of (1) to (5) above.
(7) The swivel according to any one of (1) to (6) above, wherein the pressurized liquid inlet is formed in a part of the circumferential surface of the inner wall near the bottom of the space. Type microbubble generator.
(8) The pressurized liquid introduction port is formed in a part of the inner wall circumferential surface in the vicinity of the middle part of the space, according to any one of (1) to (7) above, Swivel type micro bubble generator.
(9) The swirling fine bubble generator according to any one of (1) to (8) above, wherein a baffle is disposed immediately before the swirling gas-liquid outlet.
(10) A container body having a conical space, a pressurized liquid inlet opening in a tangential direction on a part of the circumferential surface of the inner wall of the space, and a gas introduction opening in the bottom of the conical space A fine bubble generator is constituted by a hole and a swirling gas-liquid outlet opening formed at the top of the conical space, and a first gas vortex tube is formed to swirl out while extending and tapering in the conical space. A swirl type microbubble generation characterized in that the second process is the generation of microbubbles by generating a swirl speed difference between before and after the gas vortex tube and forcibly cutting the gas vortex tube Method.
(11) A container body having a conical space, a pressurized liquid inlet opening in a tangential direction on a part of the inner wall circumferential surface near the bottom of the space, and a conical space bottom. A gas vortex tube that forms a fine bubble generating device from the gas introduction hole and the swirling gas-liquid outlet opening formed at the top of the conical space, and that swirls out while being elongated and tapered in the conical space. Is a first process, a swirling type is characterized in that a swirl speed difference is generated between before and after the gas vortex tube, and the generation of fine bubbles by forcibly cutting the gas vortex tube is defined as a second process. Microbubble generation method.

本発明の旋回式微細気泡発生装置によれば、微細気泡を工業規模で容易に生成することができ、かつ比較的小型で簡単な装置構造のための製作が容易であり、池、湖沼、ダム、河川等の水質浄化、微生物による汚水処理、魚類、水棲動物等の養殖等に有効に貢献するところ大である。   According to the swirling microbubble generator of the present invention, microbubbles can be easily generated on an industrial scale, and can be manufactured for a relatively small and simple device structure, such as a pond, a lake, a dam, It contributes effectively to water purification of rivers, sewage treatment with microorganisms, fish and aquaculture, etc.

本発明の原理的説明図兼他の実施例装置説明図である。It is a principle explanatory drawing of this invention, and another Example apparatus explanatory drawing. 本発明の他の改善された実施例装置の説明図である。It is explanatory drawing of another improved Example apparatus of this invention. 本発明のさらに他の実施例装置の説明図である。It is explanatory drawing of the further another Example apparatus of this invention. 本発明実施例の旋回式微細気泡発生装置の正面図である。It is a front view of the turning type fine bubble generator of the present invention. 同じく、その平面図である。Similarly, it is the top view. その中央縦断面図(図5のB〜B断面図)である。It is the center longitudinal cross-sectional view (BB sectional drawing of FIG. 5). その下部流通台の横断面図(図4のA〜A断面図)である。It is a cross-sectional view (AA sectional drawing of FIG. 4) of the lower distribution stand. その有蓋円筒体内部のX〜X断面における三重の旋回流の説明図である。It is explanatory drawing of the triple swirl | vortex flow in the XX cross section inside the covered cylinder. 同じくY〜Y断面における旋回昇降流と気体渦管の説明図である。It is explanatory drawing of the swirl | vortex up-down flow and gas vortex tube in a YY cross section similarly. 気体渦管における微細気泡発生の説明図である。It is explanatory drawing of fine bubble generation | occurrence | production in a gas vortex tube. 中央還流口に4箇所の側面放出口を有するときの微細気泡発生構造の説明図である。It is explanatory drawing of a microbubble generation | occurrence | production structure when it has four side surface discharge ports in a center return port. 図11の第1側面放出口における発生構造の説明図である。It is explanatory drawing of the generating structure in the 1st side surface discharge | release port of FIG. 図11の第1側面放出口に隣接する側壁における発生構造の説明図である。It is explanatory drawing of the generation | occurrence | production structure in the side wall adjacent to the 1st side surface discharge | release port of FIG. 図11の第2側面放出口における発生構造の説明図である。It is explanatory drawing of the generating structure in the 2nd side surface discharge port of FIG. 本発明の中型装置を水中に埋没させ、気体として空気を採用して微細気泡を発生させた結果の、気泡の直径とそれらの発生頻度分布を示したグラフ図である。It is the graph which showed the diameter of the bubble, and those generation frequency distribution as a result of having embed | buried the medium sized apparatus of this invention in water, employ | adopted air as gas, and produced | generated the fine bubble. 本発明実施例装置の水槽内の設置状態説明図である。It is installation state explanatory drawing in the water tank of this invention Example apparatus.

本発明の実施の形態を、以下に図面に基づいて説明する。本発明では、図1に本発明装置の原理説明図を示すごとく、まず装置容器内に円錐形のスペース100を設け、また同スペースの内壁円周面の一部にその接線方向に加圧液体導入口500を開設し、また前記円錐形のスペース底部300の中央部に気体導入孔80を開設し、さらに前記円錐形スペースの頂部付近には旋回気液導出口101を設けて微細気泡発生装置を構成する。そこで、前記装置本体を又は少なくとも旋回気液導出口101を液体中に埋設させ、前記加圧液体導入口500から円錐形スペース100内に加圧液体を圧送することにより、その内部に旋回流が生成し、円錐管軸上に負圧部分が形成される。この負圧によって、前記気体導入孔80から気体が吸い込まれ、圧力が最も低い管軸上を気体が通過することによって、細い旋回気体空洞部60が形成される。この円錐形スペース100では旋回流が入り口(加圧液体導入口)500から出口(旋回気液導出口)101へ向かって形成され、スペース100の断面縮小にしたがって、旋回気液導出口101に向かうほど、旋回流速と出口に向かう流速とが同時に増加する。また、この旋回に伴って、液体と気体の比重差から、液体には遠心力、気体には向心力が同時に働き、そのために液体部と気体部の分離が可能となり、気体が糸状で出口101まで続き、そこから噴出されるが、その噴出と同時に周囲の静液体(例えば水)によって、その旋回が急激に弱められ、その前後で、急激な旋回速度差が発生する。この旋回速度差の発生によって、糸状の気体空洞部60が連続的に安定して切断され、その結果として大量の微細気泡、例えば直径10〜20μmの微細気泡が同出口101付近で発生し、器外へ液体中へ放出されるのである。   Embodiments of the present invention will be described below with reference to the drawings. In the present invention, as shown in FIG. 1 illustrating the principle of the apparatus of the present invention, first, a conical space 100 is provided in the apparatus container, and a pressurized liquid is tangentially disposed on a part of the inner wall circumferential surface of the space. An introduction port 500 is opened, a gas introduction hole 80 is opened at the center of the conical space bottom 300, and a swirling gas / liquid outlet 101 is provided near the top of the conical space to provide a fine bubble generator. Configure. Therefore, the apparatus main body or at least the swirling gas / liquid outlet 101 is embedded in the liquid, and the pressurized liquid is pumped into the conical space 100 from the pressurized liquid introducing port 500, so that a swirling flow is generated therein. And a negative pressure portion is formed on the conical tube axis. Due to this negative pressure, the gas is sucked from the gas introduction hole 80, and the gas passes through the tube axis having the lowest pressure, whereby the narrow swirling gas cavity 60 is formed. In this conical space 100, a swirling flow is formed from the inlet (pressurized liquid inlet) 500 toward the outlet (swirling gas / liquid outlet) 101, and toward the swirling gas / liquid outlet 101 as the cross section of the space 100 is reduced. The turning flow velocity and the flow velocity toward the outlet increase at the same time. In addition, due to this swirling, due to the difference in specific gravity between the liquid and gas, centrifugal force acts on the liquid and centripetal force acts on the gas at the same time. Then, it is ejected from there. At the same time as the ejection, the turning is suddenly weakened by the surrounding static liquid (for example, water), and a sudden turning speed difference is generated before and after that. Due to the generation of the swirling speed difference, the thread-like gas cavity 60 is continuously and stably cut. As a result, a large amount of fine bubbles, for example, fine bubbles having a diameter of 10 to 20 μm are generated near the outlet 101, It is released out into the liquid.

図1は、本発明装置の原理的説明図であり、(a)図は側面図、(b)図は(a)図のA−A視断面図である。本発明装置の構成は、装置の本体容器内に円錐形のスペース100を設け、また同スペースの内壁円周面の一部にその接線方向に加圧液体導入口500を開設し、そして前記円錐形のスペース底部300の中央部に気体導入孔80を開設し、さらに前記円錐形スペースの頂部付近には旋回気液導出口101を設けてある。なお、通常、本発明装置本体又は少なくとも旋回気液導出口101は液体中に埋没して設置される。本発明は装置本体は、液体中に埋没して設置される場合と、水槽に外接して設置される場合がある。本発明においては、通常、液体としては水が、気体としては空気が採用されるが、液体としてはその他トルエン、アセトン、アルコール等の溶剤、石油、ガソリン等の燃料、食用油脂、バター、アイスクリーム、ビール等の食品・飲料、ドリンク剤等の薬品、浴水等の健康用品、湖沼水、浄化槽汚染水等の環境水等が採用でき、気体としてはその他水素、アルゴン、ラドン等の不活性気体、酸素、オゾン等の酸化剤、炭酸ガス、塩化水素、亜硫酸ガス、酸化窒素、硫化水素ガス等の酸性ガス、アンモニア等アルカリ性ガス等が採用できる。
また、図において、Paは円錐スペース内の旋回液体部内の圧力、Pbは旋回気体部内の圧力、Pcは気体導入部付近の旋回気体部内の圧力、Pdは出口付近の旋回気体部内の圧力、Peは出口部旋回液体部内の圧力である。
1A and 1B are explanatory views of the principle of the device of the present invention, in which FIG. 1A is a side view and FIG. The apparatus of the present invention has a conical space 100 in the main body container of the apparatus, and a pressurized liquid inlet 500 is opened in a tangential direction on a part of the inner wall circumferential surface of the space. A gas introduction hole 80 is opened at the center of the space bottom 300, and a swirling gas-liquid outlet 101 is provided near the top of the conical space. Normally, the main body of the present invention or at least the swirling gas / liquid outlet 101 is buried in the liquid. In the present invention, the apparatus main body may be installed by being buried in a liquid, or may be installed by circumscribing a water tank. In the present invention, water is usually used as the liquid, and air is used as the gas. However, as the liquid, other solvents such as toluene, acetone and alcohol, fuels such as petroleum and gasoline, edible fats and oils, butter and ice cream , Food and beverages such as beer, chemicals such as drinks, health supplies such as bath water, environmental water such as lake water, septic tank contaminated water, etc., and other inert gases such as hydrogen, argon, radon, etc. Further, oxidizing agents such as oxygen and ozone, carbon dioxide, hydrogen chloride, sulfurous acid, acidic gases such as nitrogen oxide and hydrogen sulfide, alkaline gases such as ammonia, and the like can be employed.
In the figure, Pa is the pressure in the swirling liquid part in the conical space, Pb is the pressure in the swirling gas part, Pc is the pressure in the swirling gas part near the gas introduction part, Pd is the pressure in the swirling gas part near the outlet, Pe Is the pressure in the outlet swirling liquid part.

そこで、前記加圧液体導入口500から円錐形スペース100内へ、加圧液体を接線方向に圧送することにより、旋回流が入り口500から旋回気液導出口101に向かって形成され、断面積縮小にしたがって、出口101に向かうほど、旋回流速と出口に向かう流速とが同時に増加する。また、この旋回に伴って、液体と気体の比重差から、液体には遠心力が、気体には向心力が同時に働き、そのために液体部と気体部の分離が可能となり、負圧気体が糸状で出口101まで連続して出ることとなる。すると、前記気体導入孔80から気体が自動的に吸い込まれ(自吸)、気体は旋回気液流中に細い旋回空洞部60となって取り込まれる。こうして、中心部の糸状の細い気体旋回空洞部60とその周辺の液体旋回流体が出口101から噴出されるが、その噴出と同時に周囲の静液体によって、その旋回が急激に弱められ、その前後で、急激な旋回速度差が発生する。この旋回速度差の発生によって、旋回流中心部の糸状の気体空洞部60が連続的に安定して切断され、その結果として大量の微小気泡、例えば直径10〜20μmの微細気泡が同出口101付近で発生する。   Therefore, by feeding the pressurized liquid tangentially from the pressurized liquid inlet 500 into the conical space 100, a swirling flow is formed from the inlet 500 toward the swirling gas-liquid outlet 101, and the cross-sectional area is reduced. Accordingly, the flow velocity toward the outlet and the flow velocity toward the outlet simultaneously increase toward the outlet 101. In addition, due to this swirling, due to the difference in specific gravity between the liquid and gas, centrifugal force acts on the liquid and centripetal force acts on the gas at the same time. It will come out to the exit 101 continuously. Then, the gas is automatically sucked from the gas introduction hole 80 (self-priming), and the gas is taken into the swirling gas / liquid flow as a thin swirl cavity 60. Thus, the thread-like thin gas swirling cavity 60 at the center and the surrounding liquid swirling fluid are ejected from the outlet 101, but at the same time as the ejection, the swirling is suddenly weakened by the surrounding static liquid, before and after that. A sudden turning speed difference occurs. Due to the occurrence of the difference in swirling speed, the thread-like gas cavity 60 at the center of the swirling flow is continuously and stably cut. As a result, a large amount of microbubbles, for example, microbubbles having a diameter of 10 to 20 μm, are near the outlet 101. Occurs.

図1において、旋回気液導出口101の口径d、円錐形スペース底部300の口径d、気体導入孔80の孔径d、旋回気液導出口101〜円錐形スペース底部300間の距離Lの好ましい相関関係式は、d/d≒10〜15,L≒1.5〜2.0×dであり、機種の違いによる数値範囲は以下の通りである。 In Figure 1, the distance between the pivot diameter d 1 of the gas-liquid outlet 101, the diameter d 2 of the conical space bottom 300, hole diameter d 3 of the gas inlet holes 80, swivel gas-liquid outlet 101 to the conical space bottom 300 L The preferable correlation formula is d 2 / d 1 ≈10 to 15, L≈1.5 to 2.0 × d 2 , and the numerical ranges depending on the model are as follows.

Figure 2010155243
Figure 2010155243

なお、中型の場合、例えばポンプはモータ2kw,吐出量200リットル/分,揚程40mのものであり、これを使用して、大量に微細気泡を発生させることができ、5m容積の水槽の水面全体に約1cmの厚さの微細泡が運転中堆積した。この装置は容積2000m以上の池の水質浄化に適用できた。また、小型の場合、例えばポンプはモータ30w程度,吐出量20リットル/分のものであり、これを使用して容積1〜30m程度の水槽内で使用できた。なお、海水に適用した場合は、微細気泡(マイクロバブル)が非常に発生し易いので更に使用条件を拡大することが可能である。図15は、図1の本発明の中型装置を水中に埋没させ、気体として空気を採用して微細気泡を発生させた結果の、気泡の直径とそれらの発生頻度分布を示したグラフ図である。なお、気体導入管80からの空気吸込量を調節して行った場合の結果も示した。図中、空気の吸込量を0cm/sとした場合でも、直径10〜20μmの気泡が発生しているのは、水中に溶存していた空気が分離して発生したものと推測される。よって本発明装置は溶存気体の脱気装置としても使用できるものである。 In the case of the medium size, for example, the pump has a motor of 2 kW, a discharge rate of 200 liters / minute, and a lifting height of 40 m. By using this, a large amount of fine bubbles can be generated, and the surface of a 5 m 3 volume water tank A total of about 1 cm thick fine bubbles were deposited during operation. This device was applicable to water purification of a pond having a capacity of 2000 m 3 or more. In the case of a small size, for example, the pump has a motor of about 30 w and a discharge amount of 20 liters / minute, and can be used in a water tank having a volume of about 1 to 30 m 3 . When applied to seawater, microbubbles are very likely to be generated, so that the use conditions can be further expanded. FIG. 15 is a graph showing the bubble diameters and the frequency distribution of the bubbles as a result of submerging the medium-sized device of the present invention of FIG. 1 in water and using air as the gas to generate fine bubbles. . In addition, the result at the time of performing by adjusting the air suction amount from the gas introduction pipe | tube 80 was also shown. In the figure, even when the air suction amount is set to 0 cm 3 / s, the generation of bubbles having a diameter of 10 to 20 μm is assumed to be caused by separation of the air dissolved in water. Therefore, this invention apparatus can be used also as a deaeration apparatus of dissolved gas.

こうして、本発明装置を液体中に設置し、例えば揚水ポンプを介して加圧液体導入管50を経て、加圧液体導入口500から円錐形スペース100内に加圧液体(例えば圧力水)を供給し、かつ外部から気体導入管(例えば空気管)を気体導入口80に接続しておくだけで、液体(例えば水)中において直径10〜25μm程度の微細気泡を容易に発生・供給することができる。なお、前記スペースは、必ずしも円錐形状のものでなくてもよく、直径が徐々に大きくなる(あるいは小さくなる)円筒形状のもの、例えば図3に示すごとき徳利形状又はワインボトル形状のものであってもよい。また、気泡の発生状況は、気体導入管80の先端に接続した気体流量調節用の弁(図示せず)の調節で制御でき、所望する最適の微細気泡の発生を簡単に制御することができる。さらに直径10〜20μmより大きい気泡も、この調節によって簡単に生成させることができる。発生気泡径の制御は、数百μm程度の大きさの微細気泡を、10〜20μmのマイクロバブルを極端に減らさない状態で発生させることが可能である。   Thus, the apparatus of the present invention is installed in the liquid, and the pressurized liquid (for example, pressurized water) is supplied into the conical space 100 from the pressurized liquid inlet 500 through the pressurized liquid introduction pipe 50 via, for example, a pump. In addition, by simply connecting a gas introduction pipe (for example, an air pipe) from the outside to the gas introduction port 80, fine bubbles having a diameter of about 10 to 25 μm can be easily generated and supplied in the liquid (for example, water). it can. The space does not necessarily have to be a conical shape, but has a cylindrical shape whose diameter gradually increases (or decreases), such as a bottle shape or a wine bottle shape as shown in FIG. Also good. In addition, the generation state of bubbles can be controlled by adjusting a gas flow rate adjusting valve (not shown) connected to the tip of the gas introduction pipe 80, and the generation of desired optimum fine bubbles can be easily controlled. . Furthermore, bubbles larger than 10 to 20 μm in diameter can be easily generated by this adjustment. Control of the generated bubble diameter can generate fine bubbles having a size of about several hundreds of μm in a state in which 10 to 20 μm microbubbles are not extremely reduced.

また、図2は、加圧液体導入管50、50’をスペースの底部300側付近と旋回気液導出口101の手前に設け(すなわち、内壁円周面の異なる曲率の内壁円周上に間隔を置いて接線方向に複数個設け)たもので、左側の加圧液体導入口500’からの液体導入圧力を右側の加圧液体導入口500からの導入圧力よりも大幅に大きくして液体を供給することにより、左側の液体の旋回数を大いに高め、その結果より一層微細な気泡生成を促進しようとするもものである。こうして、両加圧液体導入口500、500’からの圧力水の圧力を調整することにより、任意の粒径の気泡を生成することができる。なお、200はバッフル板(邪魔板)であり、微細気泡の生成及び拡散を促進するのに役立つ。   FIG. 2 also shows that the pressurized liquid introduction pipes 50 and 50 ′ are provided near the bottom 300 side of the space and in front of the swirling gas-liquid outlet 101 (that is, spaced on the inner wall circumference having different curvatures on the inner wall circumferential surface). The liquid introduction pressure from the left pressurized liquid introduction port 500 ′ is made substantially larger than the introduction pressure from the right pressure liquid introduction port 500 to provide liquid. By supplying, the number of swirling of the liquid on the left side is greatly increased, and as a result, the generation of finer bubbles is promoted. In this way, by adjusting the pressure water pressure from the pressurized liquid inlets 500 and 500 ', bubbles having an arbitrary particle diameter can be generated. Reference numeral 200 denotes a baffle plate (baffle plate), which is useful for promoting the generation and diffusion of fine bubbles.

次に本発明の別の態様における微細気泡発生装置を説明する。別の態様によれば、例えば図9に示すごとく、漸拡逆円錐体(円錐台)形状の有蓋円筒体4の内部には、その周辺部分4aの旋回上昇水液流20と、その内側の部分の旋回下降水液流22と、その中心部分の負圧の旋回空洞部23、の三重の旋回流を形成し、その負圧の旋回空洞部23には、自吸気体26と溶出気体成分27を集積させて、伸長、先細りさせながら旋回下降する気体渦管24を形成し、下方の中央還流口6を介して放出するとき、放出通路の抵抗を受け、旋回速度差を発生して気体渦管自体が強制的に切断され、微細気泡を発生する。図4はその実施例の旋回式微細気泡の発生装置の正面図、図5はその平面図、図6はその中央縦断面図(図5のB〜B断面図)、図7はその下部流通台の横断面図(図4のA〜A断面図)であり、図8は円筒体内部のX−X断面における三重の旋回流の説明図、図9は同じくY−Y断面における旋回昇降流と気体渦管の説明図、図10は気体渦管における微細気泡発生の説明図、図11は4箇所の側面放出口を有するときの微細気泡発生構造の説明図、図12は図11の第1側面放出口における発生構造の説明図、図13は図11の第1側面放出口に隣接する側壁における発生構造の説明図、図14は第2側面放出口における発生構造の説明図であり、図16は本装置の水槽内の設置状態説明図である。図中、1は旋回式微細気泡発生装置、2は下部流通台、3は円形収容室、4は有蓋円筒体、5は水液流導入口、6は中央還流口、7は側面放出口、8は気体自吸管、20は旋回上昇水液流、22は旋回下降水液流、23は負圧の旋回空洞部、24は気体渦管、25は切断部である。   Next, a microbubble generator according to another aspect of the present invention will be described. According to another aspect, for example, as shown in FIG. 9, inside the covered cylindrical body 4 having a gradually expanding inverted conical (conical frustum) shape, there is a swirling ascending water-liquid flow 20 in the peripheral portion 4 a and an inner side thereof. A triple swirling flow of the swirling descending water liquid flow 22 of the portion and the swirling cavity portion 23 of the negative pressure at the central portion is formed, and the self-inhaling body 26 and the eluted gas component are formed in the swirling cavity portion 23 of the negative pressure. 27 is accumulated to form a gas vortex tube 24 that swirls and descends while being elongated and tapered, and when discharged through the lower central reflux port 6, the resistance of the discharge passage is received to generate a swirling speed difference and gas The vortex tube itself is forcibly cut to generate fine bubbles. 4 is a front view of the swirl type fine bubble generator of the embodiment, FIG. 5 is a plan view thereof, FIG. 6 is a central longitudinal sectional view thereof (BB sectional view of FIG. 5), and FIG. FIG. 8 is an explanatory view of a triple swirl flow in the XX cross section inside the cylindrical body, and FIG. 9 is a swirl up-down flow in the YY cross section. 10 is an explanatory view of the generation of fine bubbles in the gas vortex tube, FIG. 11 is an explanatory view of the structure of generating fine bubbles when there are four side discharge ports, and FIG. FIG. 13 is an explanatory diagram of a generation structure in a side surface discharge port, FIG. 13 is an explanatory diagram of a generation structure in a side wall adjacent to the first side surface discharge port of FIG. 11, and FIG. FIG. 16 is an explanatory diagram of an installation state in the water tank of this apparatus. In the figure, 1 is a swirl type fine bubble generator, 2 is a lower flow platform, 3 is a circular storage chamber, 4 is a covered cylinder, 5 is a water / liquid flow inlet, 6 is a central reflux port, 7 is a side outlet, 8 is a gas self-priming tube, 20 is a swirling rising water liquid flow, 22 is a swirling descending water liquid flow, 23 is a swirling cavity portion of negative pressure, 24 is a gas vortex tube, and 25 is a cutting portion.

この旋回式微細気泡発生装置1の構造は大別すると、図示のごとく、下部流通台2の円形収容室3に水液流を付勢旋回導入させる水液流旋回導入構造と、該円形収容室3の上部に被着した、上方へ漸拡形状(逆円錐体形状)の有蓋円筒体4の内部の周辺部分4aに形成される旋回上昇水液流形成構造と、該周辺部分4aの内側の部分4bに形成される旋回下降水液流形成構造と、その該旋回上昇水液流20及び旋回下降水液流22の二重の旋回流の遠向心分離作用により、その中心部分4cに形成される負圧の旋回空洞部23と、該負圧の旋回空洞部23に自吸気体26と溶出気体27を集積して形成され、伸長、先細りさせながら旋回下降する気体渦管24の形成構造と、その気体渦管24が中央還流口6に突入するとき抵抗を受け、その渦管の上下24a,bの間で旋回速度差を発生し、その渦管24が強制的に切断され、微細気泡を発生するごとくなる微細気泡発生構造と、その発生した微細気泡を旋回下降水流に含め、旋回噴流として側面放出口7から器外に放出させるごとくした旋回噴流放出構造とから構成されている。   The structure of the swirling fine bubble generating device 1 is roughly classified as shown in the figure. As shown in the figure, a water / liquid flow swirl introducing structure for energizing and swirling a water / liquid flow into the circular accommodating chamber 3 of the lower flow platform 2 and the circular accommodating chamber. 3 and a swirling ascending water / liquid flow forming structure formed in the peripheral portion 4a inside the covered cylindrical body 4 gradually expanding upward (inverted conical shape) attached to the upper portion of 3 and an inner side of the peripheral portion 4a. Formed in the central portion 4c of the swirling descending water liquid flow forming structure formed in the portion 4b and the centrifugal separation action of the double swirling flow of the swirling rising water liquid flow 20 and the swirling descending water liquid flow 22 Of the negative pressure swirl cavity 23 and the gas vortex tube 24 formed by accumulating the self-intake body 26 and the elution gas 27 in the negative pressure swirl cavity 23 and swirling and descending while extending and tapering. When the gas vortex tube 24 enters the central reflux port 6, it receives resistance, A difference in swirling speed is generated between the upper and lower parts 24a and 24b of the tube, the vortex tube 24 is forcibly cut, and a fine bubble generating structure that is generated as fine bubbles are generated, and the generated fine bubbles are turned into a swirling descending water flow. In addition, it is composed of a swirling jet discharge structure which is discharged as a swirling jet from the side discharge port 7 to the outside of the vessel.

また立方体状の下部流通台2の上部中央には、円形収容室3が凹設され、該円形収容室3の内周面3aには、側方から水液流導入口5が該内周面3aに対して接線方向に開口されている。また該導入口5の外側取入口に突設された導水管接続具5aには、水液供給用のポンプ11(図16)及び流量調整弁12(水中でなく器外に配置してもよい)を途中に取付けた導水管10が接続され、該円形収容室3の内周面3aに反時計方向の接線方向から水液流が付勢導入され、図示のD方向(反時計方向)に旋回導入流を形成するごとくなっている。   In addition, a circular storage chamber 3 is recessed in the center of the upper part of the cubic lower flow platform 2, and a water / liquid flow inlet 5 is provided on the inner peripheral surface 3 a of the circular storage chamber 3 from the side. An opening is made tangential to 3a. In addition, a water supply pump 11 (FIG. 16) and a flow rate adjusting valve 12 (not under water but outside the device) may be disposed on the water conduit connector 5 a protruding from the outside inlet of the inlet 5. ) In the middle of the circular housing chamber 3 is connected to the inner circumferential surface 3a of the circular storage chamber 3 from the counterclockwise tangential direction, and in the illustrated D direction (counterclockwise). It is as if a swirl introduction flow is formed.

また前記円形収容室3の解放された上方段部には、その筒体下端部の直筒形状部分42を嵌挿し、その筒体を上に向かって上方へ漸拡逆円錐体形状に形成した有蓋円筒体4が直立して被着されている。41はその平坦な上蓋であり、その上蓋41の中心軸(C〜C)上には下方に向けて気体吸入管8が挿設され、後述する中心部分4cに形成される負圧の旋回空洞部23に気体を自吸させている。また上述のごとく、円形収容室3にD矢示の方向に旋回導入された気液混合流は該有蓋円筒体4の内部にその旋回付勢力を維持しながら送入され、内部の周辺部分4bを旋回上昇し、旋回上昇水液流20を形成する。また該旋回上昇水液流は漸拡形状の筒体の内周面に沿って、次第に旋回速度を増大しながら円筒体4の上限に到達し、その周辺部分4aより内側の部分4bに還流21してから旋回下降を始め、旋回下降水液流22を形成する。次にその旋回上昇水液流20及び旋回下降水液流22の二重の旋回流の遠向心分離作用により、円筒体4の中心部分4cに負圧の旋回空洞部23を形成する。   Also, the open upper step portion of the circular storage chamber 3 is fitted with a straight cylindrical portion 42 at the lower end of the cylindrical body, and the lid is formed in an inverted conical shape gradually expanding upward toward the upper side. A cylindrical body 4 is applied upright. Reference numeral 41 denotes a flat upper lid. A gas suction pipe 8 is inserted downward on a central axis (C to C) of the upper lid 41, and a negative pressure swirl cavity formed in a central portion 4c described later. The part 23 is making gas self-prime. Further, as described above, the gas-liquid mixed flow swirled and introduced into the circular housing chamber 3 in the direction indicated by the arrow D is fed into the covered cylindrical body 4 while maintaining the swivel biasing force, and the inner peripheral portion 4b. Is swirled up to form a swirling rising water-liquid stream 20. The swirling ascending water / liquid flow reaches the upper limit of the cylindrical body 4 while gradually increasing the swirling speed along the inner peripheral surface of the gradually expanding cylindrical body, and returns to the inner portion 4b of the peripheral portion 4a. Then, the swirl descending is started, and the swirl descending water liquid flow 22 is formed. Next, a negative-pressure swirl cavity 23 is formed in the central portion 4 c of the cylindrical body 4 by the centrifugal separation action of the swirl rising water liquid flow 20 and swirl descending water liquid flow 22.

この旋回下降する負圧の旋回空洞部23とその周囲を旋回下降する旋回下降水液流22は、中心軸(C〜C)上の旋回下降領域が円筒体4の逆円錐体形状のため狭まることによって、それぞれの旋回速度を増速すると共に、それぞれの内部圧力を逆に低下させるごとくなる。従って、中心部分4cの旋回空洞部23の形状は伸長され、先細り化されるが、その伸長と共に内部圧力はますます低下し、周りを旋回する旋回下降水液流22から、その水流中に含有した空気が溶出されてくるようになる。また一方、前記の旋回下降する負圧の旋回空洞部23には、気体自吸管8を介して空気が自吸される。この自吸気体26と前記の旋回流からの溶出気体27が負圧の旋回空洞部23に集積して、伸長、先細りさせながら旋回下降する気体渦管24が形成される。   The swirling descending water liquid flow 22 swirling and descending around the swirling and descending negative pressure swirling cavity 23 is narrowed because the swirling descending region on the central axis (C to C) is the inverse cone shape of the cylindrical body 4. As a result, each turning speed is increased and each internal pressure is decreased. Accordingly, the shape of the swirling cavity 23 of the central portion 4c is elongated and tapered, but the internal pressure further decreases along with the stretching, and the swirling descending water-liquid stream 22 swirling around contains in the water stream. The released air comes to be eluted. On the other hand, air is self-primed through the gas self-priming pipe 8 into the negative pressure swirling cavity 23 that swivels and descends. The self-aspirating body 26 and the eluting gas 27 from the swirling flow are accumulated in the negative pressure swirl cavity 23 to form a gas vortex tube 24 swirling and descending while extending and tapering.

中心軸(C〜C)上を旋回下降する気体渦管24の形成のみでは微細気泡は発生しない。この発明の微細気泡発生装置1は、図10に示すごとく、その気体渦管24に対して、中央還流口6を通り器外に放出される過程で、その放出通路の抵抗を利用し、その気体渦管24の上下24a、24bの間で旋回速度差を発生させ、その気体渦管24を強制的に捩り切断させ、微細気泡を発生させるように構成している。また気体渦管24は、その断面の直径が細いほど、微細気泡の形成にとって好条件となり得る。またこの断面直径の制御は、気体自吸管8からの空気の自吸量を流量調整弁12で操作することによって(図16)、簡単に制御できる。空気の自吸量の多いほど、気体渦管の断面直径は大きくなり、自吸量がゼロのときに最小となる。なお自吸気体ゼロのときは、気体渦管24は前記の旋回下降水液流22からの溶出気体27だけで形成されるが、溶存酸素の少ない汚水の水質浄化の場合は浄化能力についての注意が必要である。以上により、本発明装置1における微細気泡の発生構造は、有蓋円筒体4内で、旋回下降する気体渦管24の形成をその第1過程とし、その伸長、先細りさせながら旋回下降する気体渦管24を、その放出通路の抵抗により渦管の上下24a、24bの間で旋回速度差を発生させ、強制的に捩り切断させることによる微細気泡の発生をその第2過程として構成されることを特徴とするものである。   Microbubbles are not generated only by forming the gas vortex tube 24 swirling and descending on the central axis (C to C). As shown in FIG. 10, the microbubble generator 1 of the present invention uses the resistance of the discharge passage in the process of being discharged to the gas vortex tube 24 through the central reflux port 6 and A difference in swirling speed is generated between the upper and lower portions 24a and 24b of the gas vortex tube 24, and the gas vortex tube 24 is forcibly twisted to generate fine bubbles. Further, the gas vortex tube 24 can be more favorable for forming fine bubbles as its cross-sectional diameter is smaller. The control of the cross-sectional diameter can be easily controlled by operating the self-priming amount of air from the gas self-priming tube 8 with the flow rate adjusting valve 12 (FIG. 16). The greater the amount of air self-priming, the larger the cross-sectional diameter of the gas vortex tube, and the smallest when the self-priming amount is zero. When the self-aspirating body is zero, the gas vortex tube 24 is formed only by the elution gas 27 from the swirling descending water liquid stream 22, but in the case of water purification of sewage with little dissolved oxygen, attention is paid to the purification capacity. is required. As described above, the generation structure of the fine bubbles in the device 1 of the present invention uses the gas vortex tube 24 that swirls and descends in the covered cylindrical body 4 as the first process, and the gas vortex tube that swirls and descends while extending and tapering. The second process is configured to generate fine bubbles by forcing a torsional cutting by generating a difference in swirling speed between the upper and lower parts 24a and 24b of the vortex tube by the resistance of the discharge passage 24. It is what.

また本装置1では、円筒体4内を旋回下降する旋回下降水液流22を器外に放出するための放出通路として、下方の円形収容室3の底部3bの中心軸(c−c)上に、中央還流口6が鉛直に掘孔され、さらに該中央還流口6から下部流通台2の4側面に向けて、放射状に4箇所の側面放出口7が貫孔されている。前記の旋回下降する気体渦管24の切断により生成される微細気泡は、旋回下降水液流22と共に中央還流口6から4箇所の側面放出口7を介して、器外に放出されるようになっている。また、そのとき放出される水流は、旋回力を付勢されたまま旋回する放出噴流28となって放出される。これら側面放出口7は、複数個でなく1個であっても良く、また側面放出口7を設けずに、中央還流口6を先細りにしてそこから真直下方へ、旋回下降する気体渦管24の切断により生成される微細気泡と旋回下降水液流22を放出する方式としても、微細気泡は生成される。   Further, in the present apparatus 1, as a discharge passage for discharging the swirling descending water / liquid flow 22 swirling and descending inside the cylindrical body 4 to the outside of the device, the center axis (cc) on the bottom 3 b of the lower circular storage chamber 3 is used. Further, a central reflux port 6 is dug vertically, and four side surface discharge ports 7 are radially penetrated from the central reflux port 6 toward the four side surfaces of the lower flow platform 2. The fine bubbles generated by the cutting of the swirling and descending gas vortex tube 24 are discharged together with the swirling and descending water liquid flow 22 from the central reflux port 6 through the four side surface discharge ports 7 to the outside. It has become. Moreover, the water flow discharged at that time is discharged as a discharge jet 28 that swirls while the swirl force is applied. The side discharge ports 7 may be one instead of a plurality, and without providing the side discharge ports 7, the central reflux port 6 is tapered and the gas vortex tube is swung downward from there. Even when the fine bubbles generated by cutting 24 and the swirling descending water flow 22 are discharged, the fine bubbles are generated.

図11〜図14に示す説明図に基づき、中央還流口6に4箇所の側面放出口71、72、73、74を有するときの微細気泡の発生構造を以下に説明する。前記の有蓋円筒体4の中心部分4cを旋回下降する気体渦管24は、旋回下降水液流22と共に、その旋回方向(D矢視)の順序で、中央還流口6から4箇所の側面放出口71、72、73、74に向けて送り込まれる。図12はその第1側面放出口71に放出されている状態を示す。気体渦管の下部24bはその送り込みによる通路抵抗を受けてその旋回速度を低下させ、気体渦管の上部24aとの間で旋回速度差を発生し、渦管は捩り切断され、微細気泡を発生する。25は切断部を示す。図13は、気体渦管24が次の第2側面放出口72に向う途中で、隣接する還流口側壁6aに衝突する通路抵抗を受けた状態を示す。気体渦管の下部24bは側壁6aに衝突することによって旋回速度を変化させ、切断部25において同様に微細気泡を発生させる。図14は、気体渦管24が第2放出口72に放出されている状態を示し、図13のときとは異なる旋回速度となり切断部25を発生し、微細気泡を発生する。以上のごとく1旋回の間に4箇所の側面放出口71、72、73、74への放出と、それぞれの隣接する側壁6aへの衝突を4回交互に繰り返し、その都度、渦管の上下24a、24bの間に旋回速度差を発生し、渦管を切断して大量の微細気泡を発生する。   Based on the explanatory views shown in FIG. 11 to FIG. 14, the generation structure of fine bubbles when the central reflux port 6 has four side surface discharge ports 71, 72, 73, 74 will be described below. The gas vortex tube 24 swirling and descending the central portion 4c of the covered cylindrical body 4 together with the swirling descending water-liquid flow 22 in the order of the swirling direction (indicated by the arrow D) has four side discharges from the central reflux port 6. It is sent toward the outlets 71, 72, 73, 74. FIG. 12 shows a state in which it is discharged to the first side surface discharge port 71. The lower part 24b of the gas vortex tube receives passage resistance due to the feeding, and lowers the swirling speed, generates a swirling speed difference with the upper part 24a of the gas vortex pipe, and the vortex pipe is torsionally cut to generate fine bubbles. To do. Reference numeral 25 denotes a cutting portion. FIG. 13 shows a state in which the gas vortex tube 24 is subjected to passage resistance that collides with the adjacent reflux port side wall 6a on the way to the next second side surface discharge port 72. The lower part 24 b of the gas vortex tube changes the turning speed by colliding with the side wall 6 a, and similarly generates fine bubbles in the cutting part 25. FIG. 14 shows a state in which the gas vortex tube 24 is discharged to the second discharge port 72. The turning speed is different from that in FIG. 13, and the cutting part 25 is generated to generate fine bubbles. As described above, the discharge to the four side discharge ports 71, 72, 73, 74 and the collision with the adjacent side walls 6a are alternately repeated four times during one turn, and each time the upper and lower 24a of the vortex tube are , 24b, a swirl speed difference is generated, and the vortex tube is cut to generate a large amount of fine bubbles.

また、側面放出口7の個数は、旋回流22と気体渦管24の旋回数と切断部25の数に関係する。高い旋回数を可能とするためには、高圧力のポンプで、初期に水液を旋回導入させる必要がある。旋回数を増せば増すほど、切断部(面)25は小さくなり、負圧による気体の溶出が顕著となり、より小さくより大量の微細気泡を発生させることが可能となる。また側面放出口7の個数を増やすことによっても微細気泡の数は増加する。実験結果からは、一定の回転数のもとでは、最適な放出口数が水液導入量とも関係していることが判ったが、40リットル/分、揚程15m程度では放出口数は4個が最適である。   Further, the number of side discharge ports 7 is related to the number of swirling flows 22, the number of swirling gas vortex tubes 24, and the number of cutting portions 25. In order to enable a high number of revolutions, it is necessary to swirl and introduce an aqueous solution with a high pressure pump. As the number of turns increases, the cut portion (surface) 25 becomes smaller, and the elution of gas due to negative pressure becomes more significant, and it becomes possible to generate smaller and larger amounts of fine bubbles. Also, the number of fine bubbles increases by increasing the number of side discharge ports 7. From the experimental results, it was found that the optimum number of outlets was related to the amount of water introduced at a fixed number of revolutions, but at 40 liters / minute and a head of about 15 m, four outlets were optimal. It is.

また前記下部流通台2の側面放出口7の出口7aには、放出用接続管9が連接されているが、前記有蓋円筒体4内の旋回流形成方形(D矢視方向)に倣って、その放出方向をD矢示方向に45゜曲折して突設しているから、この旋回式微細気泡発生装置1を水槽13内に設置した場合(図16)、放出用接続管9から水槽13中に旋回噴流として放出される、該旋回式発生装置1の周りにD矢示方向の循環流が生成されて、酸素を含んだ微細気泡が水槽13内に均等に配分されるごとくなる。上記本発明構成例装置1では、放出口から気泡径10〜20μmが90%以上を占める微細気泡を含む水流が放出された。なお、水槽13内に設置する場合、下部流通台2は重量のある材料が望ましいが、プラスチック製の場合には、さらにその底部に重量のあるステンレス鋼板を張り付けてもよい。また有蓋円筒体4を透明材料で構成すると、内部の旋回上昇水液流等の形成、及びそれらの下降還流の形成が観察される利点を有する。   Further, a discharge connecting pipe 9 is connected to the outlet 7a of the side surface discharge port 7 of the lower circulation base 2, but following the swirl flow forming square (in the direction of arrow D) in the covered cylindrical body 4, Since the discharge direction is bent by 45 ° in the direction indicated by the arrow D, when the swirl type fine bubble generating device 1 is installed in the water tank 13 (FIG. 16), the discharge tank 9 is connected to the water tank 13. A circulation flow in the direction indicated by the arrow D is generated around the swirling generator 1, which is discharged as a swirling jet, and fine bubbles containing oxygen are evenly distributed in the water tank 13. In the above-described configuration example apparatus 1 of the present invention, a water flow containing fine bubbles having a bubble diameter of 10 to 20 μm occupying 90% or more was discharged from the discharge port. In addition, when installing in the water tank 13, the heavy material for the lower distribution stand 2 is desirable, but in the case of being made of plastic, a heavy stainless steel plate may be attached to the bottom thereof. Further, when the covered cylindrical body 4 is made of a transparent material, it has an advantage that the formation of the swirl rising water liquid flow and the like and the formation of the descending reflux are observed.

また本発明装置の構成材料は、プラスチック、金属、ガラス等であってよく、各構成部品を接着や螺着等により一体化することが好ましい。本発明装置により発生される微細気泡の用途分野としては、以下のようなものが挙げられる。
[1].ダム湖、湖沼、池、河川、海等の水域の水質浄化と生息生物育成による自然環境浄化維持。
[2].ビオトープ等の人工自然水域における浄化と蛍や水草等の生物育成。
[3].工業的用途
製鉄の製鋼における高温拡散化、ステンレス板及びステンレス線の酸洗浄の促進超純水製造工場における有機物除去、オゾンの微細気泡化による汚染水中の有機物除去、溶存酸素量増加、殺菌,合成樹脂発泡体、例えばウレタン発泡体製造、各種廃液処理、エチレンオキサイドによる殺菌・滅菌装置におけるエチレンオキサイドの水への混合促進、消泡剤のエマルジョン化、活性汚泥処理法における汚染水へのエアレーション。
[4].農業分野
水耕栽培に使用する酸素及び溶存酸素量の向上・収穫率向上。
[5].漁業分野
鰻の養殖、イカ水槽生命維持、ブリの養殖、藻場の人工生成、魚介類の育成、赤潮発生防止。
[6].医療分野
浴槽水に適用して微細泡風呂を構成、血流促進、浴槽水の保温。
The constituent material of the device of the present invention may be plastic, metal, glass or the like, and it is preferable to integrate the constituent parts by bonding or screwing. Examples of the application fields of the fine bubbles generated by the apparatus of the present invention include the following.
[1]. Purify the natural environment by purifying the water quality of dam lakes, lakes, ponds, rivers, seas, etc.
[2]. Purification of artificial natural waters such as biotopes and breeding of organisms such as fireflies and aquatic plants.
[3]. Industrial use High-temperature diffusion in steelmaking, promotion of acid cleaning of stainless steel plates and wires Removal of organic substances in ultrapure water production plant, removal of organic substances in contaminated water by microbubbles of ozone, increase of dissolved oxygen, sterilization, synthesis Production of resin foam such as urethane foam, various waste liquid treatment, promotion of mixing ethylene oxide into water in sterilization / sterilization equipment using ethylene oxide, emulsification of antifoaming agent, aeration of contaminated water in activated sludge treatment method.
[4]. Agricultural field Increase the amount of oxygen and dissolved oxygen used for hydroponics and increase the harvest rate.
[5]. Fishery Field Carp culture, squid aquarium life maintenance, yellowtail culture, artificial generation of seaweed beds, seafood cultivation, prevention of red tide.
[6]. Medical field Applies to bath water to form a fine bubble bath, promote blood flow, and keep bath water warm.

1 旋回式微細気泡発生装置
2 下部流通台
3 円形収容室
3a 内周面
3b 底部
4 有蓋円筒体
4a 周辺部分
4b 周辺部分の内側の部分
4c 中心部分
5 水液流導入口
5a 導水管接続具
6 中央還流口
6a 側壁
7 側面放出口
7a 放出口出口
8 気体自吸管
9 放出用接続管
10 導水管
11 ポンプ
12 流量調整弁
13 水槽
14 ストレーナ
15 水液
16 ブローワ
17 給気管
19 砂利
20 旋回上昇水液流
21 内側への還流
22 旋回下降水液流
23 負圧の旋回空洞部
24 気体渦管
24a 気体渦管の上部
24b 気体渦管の下部
25 切断部
26 自吸気体
27 溶出気体
28 放出噴流
41 上蓋
42 直筒形状部分
50,50’ 加圧液体導入管
60 旋回気体空洞部
71 第1側面放出口
72 第2側面放出口
73 第3側面放出口
74 第4側面放出口
80 気体導入孔
100 円錐形のスペース
101 旋回気液導出口
200 バッフル
300 円錐形スペース底部
500,500’ 加圧液体導入口
C〜C 中心軸
D 旋回流形成方向
Pa 円錐スペース内の旋回液体部内の圧力
Pb 旋回気体部内の圧力
Pc 気体導入部付近の旋回気体部内の圧力
Pd 出口付近の旋回気体部内の圧力
Pe 出口部旋回液体部内の圧力
旋回気液導出口101の口径
円錐形スペース底部300の口径
気体導入孔80の孔径
L 旋回気液導出口101〜円錐形スペース底部300間の距離
DESCRIPTION OF SYMBOLS 1 Swirling type fine bubble generator 2 Lower distribution stand 3 Circular storage chamber 3a Inner peripheral surface 3b Bottom 4 Covered cylindrical body 4a Peripheral part 4b Inner part of peripheral part 4c Central part 5 Water-liquid flow inlet 5a Water conduit connector 6 Central reflux port 6a Side wall 7 Side outlet 7a Outlet outlet
8 Gas self-priming tube 9 Discharge connection tube
DESCRIPTION OF SYMBOLS 10 Water guide pipe 11 Pump 12 Flow control valve 13 Water tank 14 Strainer 15 Water liquid 16 Blower 17 Air supply pipe
DESCRIPTION OF SYMBOLS 19 Gravel 20 Swirling rising water liquid flow 21 Reflux to the inside 22 Swirling falling water liquid flow 23 Negative pressure swirl cavity part 24 Gas vortex tube 24a Upper part of gas vortex pipe 24b Lower part of gas vortex pipe 25 Cutting part 26 Self-intake body 27 Elution gas 28 Discharge jet 41 Upper lid 42 Straight cylindrical portion 50, 50 'Pressurized liquid introduction pipe 60 Swivel gas cavity 71 First side discharge port 72 Second side discharge port 73 Third side discharge port 74 Fourth side discharge port 80 Gas introduction hole 100 Conical space 101 Swirl gas / liquid outlet 200 Baffle 300 Conical space bottom 500,500 'Pressurized liquid inlet C to C Central axis D Swirl flow forming direction Pa Pressure in swirl liquid in conical space Pb Pressure in the swirl gas part Pc Pressure in the swirl gas part near the gas introduction part Pd Pressure in the swirl gas part near the outlet Pe Pressure in the swirl liquid part Force d 1 Diameter of the swirling gas-liquid outlet 101 d 2 Diameter of the conical space bottom 300 d 3 Hole diameter of the gas introduction hole 80 L Distance between the swirling gas-liquid outlet 101 to the conical space bottom 300

Claims (8)

円錐形のスペースを有する容器本体と、同スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから構成されてなることを特徴とする旋回式微細気泡発生装置。   A container body having a conical space, a pressurized liquid inlet opening in a tangential direction in a part of the circumferential surface of the inner wall of the space, and a gas inlet hole opened in the bottom of the conical space; A swirl type microbubble generator characterized by comprising a swirl gas-liquid outlet opening at the top of the conical space. 円錐形のスペースを有する容器本体と、同スペースの底部付近の内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記円錐形のスペース底部に開設された気体導入孔と、前記円錐形スペースの頂部に開設された旋回気液導出口とから構成され、旋回気液導出口の口径(d)と円錐形のスペース底部の口径(d)と旋回気液導出口から円錐形のスペース底部までの距離(L)の相関関係が、d/d=10〜15、でかつL=1.5d〜2.0dであることを特徴とする旋回式微細気泡発生装置。 A container body having a conical space, a pressurized liquid inlet opening in a tangential direction on a part of an inner wall circumferential surface near the bottom of the space, and a gas introduction opening in the bottom of the conical space And a swirling gas / liquid outlet opening formed at the top of the conical space, the diameter (d 1 ) of the swirling gas / liquid outlet, the diameter (d 2 ) of the bottom of the conical space, and the swirling gas / liquid The correlation between the distance (L) from the outlet to the bottom of the conical space is d 2 / d 1 = 10 to 15 and L = 1.5d 2 to 2.0d 2 Type microbubble generator. 円錐台形のスペースを有する容器本体と、同スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記円錐台形のスペース底部に開設された気体導入孔と、前記円錐台形スペースの上部に開設された旋回気液導出口とから構成されてなることを特徴とする旋回式微細気泡発生装置。   A container body having a frustoconical space, a pressurized liquid introduction port established in a tangential direction on a part of the circumferential surface of the inner wall of the space, and a gas introduction hole established at the bottom of the frustoconical space; A swirl type microbubble generator characterized by comprising a swirl gas-liquid outlet opening at the top of the frustoconical space. 徳利形状又はワインボトル形状のスペースを有する容器本体と、同スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口と、前記徳利形状又はワインボトル形状のスペース底部に開設された気体導入孔と、前記徳利形状又はワインボトル形状のスペースの頂部に開設された旋回気液導出口とから構成されてなることを特徴とする旋回式微細気泡発生装置。   A container body having a bottle-shaped or wine bottle-shaped space, a pressurized liquid inlet opening in a tangential direction on a part of the inner wall circumferential surface of the space, and a bottom of the bottle-shaped or wine bottle-shaped space A swirling fine bubble generating apparatus comprising a gas introducing hole opened and a swirling gas-liquid outlet opening opened at the top of the bottle-shaped or wine bottle-shaped space. スペースの内壁円周面の一部にその接線方向に開設された加圧液体導入口が、同一曲率の内壁円周上に間隔を置いて複数個設けられてなることを特徴とする請求項1〜4のいずれか1項に記載の旋回式微細気泡発生装置。   2. A plurality of pressurized liquid inlets opened in a tangential direction in a part of the inner wall circumferential surface of the space are provided at intervals on the inner wall circumference of the same curvature. The swirl type fine bubble generator according to any one of -4. 加圧液体導入口が、前記スペースの底部付近の内壁円周面の一部に開設されてなることを特徴とする請求項1〜5のいずれか1項に記載の旋回式微細気泡発生装置。 The swirling fine bubble generating device according to any one of claims 1 to 5, wherein the pressurized liquid inlet is formed in a part of the inner wall circumferential surface near the bottom of the space. 加圧液体導入口が、前記スペースの中腹部付近の内壁円周面の一部に開設されてなることを特徴とする請求項1〜6のいずれか1項に記載の旋回式微細気泡発生装置。 The swirling fine bubble generator according to any one of claims 1 to 6, wherein the pressurized liquid inlet is formed in a part of an inner wall circumferential surface in the vicinity of the middle part of the space. . 旋回気液導出口の直前部にバッフルを配設してなることを特徴とする請求項1〜7のいずれか1項に記載の旋回式微細気泡発生装置。 The swirl type fine bubble generator according to any one of claims 1 to 7, wherein a baffle is disposed immediately before the swirl gas-liquid outlet.
JP2010052354A 1997-12-30 2010-03-09 Swirling type fine-bubble generating system Pending JP2010155243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010052354A JP2010155243A (en) 1997-12-30 2010-03-09 Swirling type fine-bubble generating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37046597 1997-12-30
JP2010052354A JP2010155243A (en) 1997-12-30 2010-03-09 Swirling type fine-bubble generating system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002263430A Division JP4525890B2 (en) 1997-12-30 2002-09-09 Swivel type micro bubble generator

Publications (1)

Publication Number Publication Date
JP2010155243A true JP2010155243A (en) 2010-07-15

Family

ID=31699934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010052354A Pending JP2010155243A (en) 1997-12-30 2010-03-09 Swirling type fine-bubble generating system

Country Status (4)

Country Link
JP (1) JP2010155243A (en)
KR (1) KR100577830B1 (en)
CA (1) CA2282326C (en)
DE (1) DE69933508T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609772B1 (en) * 2015-04-30 2016-04-06 (주)고성에코비젼 Multiple function water of Micro Bubble Type Manufacturing Equipment and Multiple function water of Micro Bubble Type Manufacturing method
KR101814630B1 (en) 2016-11-21 2018-01-04 조기원 The device for gas dissolution
KR101847924B1 (en) * 2015-11-30 2018-04-11 대구대학교 산학협력단 Apparatus for manufacturing sterilized water
CN114602106A (en) * 2020-12-09 2022-06-10 福建省御祥德消防设备有限公司 Fluid conveying pressurization impact catalytic device for foam type fire extinguishing system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10711807B2 (en) * 2010-06-29 2020-07-14 Coldharbour Marine Limited Gas lift pump apparatus with ultrasonic energy generator and method
KR102009641B1 (en) * 2017-11-28 2019-08-12 (주)보성 Scrubber For Producing Ultrafine Bubble
KR102069437B1 (en) * 2018-06-18 2020-01-22 황창배 Nano-micro bubble generator and gas mixed nano-micro bubble generating system using the same
KR102130543B1 (en) * 2018-05-24 2020-07-06 씨와이에이지 주식회사 Apparatus for generating nano bubble
KR101947084B1 (en) * 2017-12-22 2019-02-12 황창배 Nano-micro bubble generator and gas mixed nano-micro bubble generating system using the same
CN114870768B (en) * 2022-04-01 2023-06-27 北京化工大学 Molecular sieve synthesis system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486211B1 (en) * 1969-07-12 1973-02-23
JPS5128865U (en) * 1974-08-27 1976-03-02
JPS5182451A (en) * 1974-12-27 1976-07-20 Mitsubishi Precision Co Ltd Ryutaibunsanhoho
JPS5924199U (en) * 1982-08-01 1984-02-15 株式会社富士電機総合研究所 air diffuser
JPH04126542A (en) * 1990-09-17 1992-04-27 Nomura Denshi Kogyo Kk Bubbler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486211B1 (en) * 1969-07-12 1973-02-23
JPS5128865U (en) * 1974-08-27 1976-03-02
JPS5182451A (en) * 1974-12-27 1976-07-20 Mitsubishi Precision Co Ltd Ryutaibunsanhoho
JPS5924199U (en) * 1982-08-01 1984-02-15 株式会社富士電機総合研究所 air diffuser
JPH04126542A (en) * 1990-09-17 1992-04-27 Nomura Denshi Kogyo Kk Bubbler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609772B1 (en) * 2015-04-30 2016-04-06 (주)고성에코비젼 Multiple function water of Micro Bubble Type Manufacturing Equipment and Multiple function water of Micro Bubble Type Manufacturing method
KR101847924B1 (en) * 2015-11-30 2018-04-11 대구대학교 산학협력단 Apparatus for manufacturing sterilized water
KR101814630B1 (en) 2016-11-21 2018-01-04 조기원 The device for gas dissolution
WO2018093067A1 (en) * 2016-11-21 2018-05-24 조기원 Gas dissolving apparatus
CN114602106A (en) * 2020-12-09 2022-06-10 福建省御祥德消防设备有限公司 Fluid conveying pressurization impact catalytic device for foam type fire extinguishing system
CN114602106B (en) * 2020-12-09 2022-11-22 福建省御祥德消防设备有限公司 Fluid conveying pressurization impact catalytic device for foam type fire extinguishing system

Also Published As

Publication number Publication date
KR20000075836A (en) 2000-12-26
DE69933508T2 (en) 2007-02-08
KR100577830B1 (en) 2006-05-12
CA2282326A1 (en) 1999-07-08
DE69933508D1 (en) 2006-11-23
CA2282326C (en) 2008-09-30

Similar Documents

Publication Publication Date Title
JP4525890B2 (en) Swivel type micro bubble generator
JP4420161B2 (en) Method and apparatus for generating swirling fine bubbles
JP3397154B2 (en) Revolving microbubble generator
US6382601B1 (en) Swirling fine-bubble generator
JP2010155243A (en) Swirling type fine-bubble generating system
JP4725707B2 (en) Swivel type fine bubble generator and bubble generation method
KR100843970B1 (en) Apparatus of generating microbubble
US5770062A (en) Device for aiding the solubilization of gases in liquids
WO2001097958A9 (en) Fine air bubble generator and fine air bubble generating device with the generator
WO2005115596A1 (en) Method and device for producing fine air bubble-containing liquid, and fine air bubble producer assembled in the device
JP2003145190A (en) Aerator
WO2010107077A1 (en) Microbubble generator, activated sludge aeration system, and ballast water sterilizing system
JP2002059186A (en) Water-jet type fine bubble generator
EP1670574B1 (en) Method and apparatus for mixing of two fluids
JPH11333491A (en) Microbubble jet water purifying apparatus
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JP2003181259A (en) Swirling type fine bubble formation method and apparatus
AU770174B2 (en) Swirling type micro-bubble generating system
WO2002002216A1 (en) Method and device for feeding fine bubbles
JP3232400B2 (en) Aeration device
JPH05146792A (en) Waste water treating device
JP2002263459A (en) Gas suction amount confirmation device and fine bubble generator equipped with the same device
JPH09314190A (en) Closed water area sewage cleaning device and process therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121108