JP2002059186A - Water-jet type fine bubble generator - Google Patents

Water-jet type fine bubble generator

Info

Publication number
JP2002059186A
JP2002059186A JP2000247822A JP2000247822A JP2002059186A JP 2002059186 A JP2002059186 A JP 2002059186A JP 2000247822 A JP2000247822 A JP 2000247822A JP 2000247822 A JP2000247822 A JP 2000247822A JP 2002059186 A JP2002059186 A JP 2002059186A
Authority
JP
Japan
Prior art keywords
gas
water flow
liquid
pipe
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000247822A
Other languages
Japanese (ja)
Inventor
Ryosaku Fujisato
良策 藤里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000247822A priority Critical patent/JP2002059186A/en
Publication of JP2002059186A publication Critical patent/JP2002059186A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-jet type fine bubble generator which generates a large quantity of fine bubbles in a wide range together with a water current in water of a water tank, a pool, an aeration tank, a river, or the like, in water (seawater) of a culture pond, a nursery on the coast, or a fresh fish carrier, or in liquid of a gas-liquid reaction tank in a chemical factory. SOLUTION: This generator is provided with a fine bubble generator, an introducing pipe which has the lower side connected to an introducing hole, and a water current pipe which is connected to a prescribed part of the introducing pipe and has the lower side opened. The fine bubble generator has a generator body having a hollow part converging from the rear side toward the front end part on the inside, the introducing hole which is arranged on the rear side of the generator body in the tangential direction, and a gasliquid spray nozzle arranged in the front end part of the generator body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水槽やプール、曝
気槽、河川等の水中又は養殖池や沿岸の養殖場もしくは
鮮魚運搬車の水(海水)中、又は化学工場における気液
反応槽の液相に微細な気泡を多量に発生させ水流によっ
てその気泡を拡散させる水流式微細気泡発生装置に関す
る。
The present invention relates to a water tank, pool, aeration tank, water (seawater) of aquaculture ponds, coastal aquaculture farms or fresh fish carriers, or a gas-liquid reaction tank in a chemical factory. The present invention relates to a water flow type fine bubble generator which generates a large amount of fine bubbles in a liquid phase and diffuses the bubbles by a water flow.

【0002】[0002]

【従来の技術】近年、微細な気泡を発生することによ
り、水槽やプール、河川等の浄化や溶存酸素の増加、浴
槽における高いマッサージ効果の取得等を図る種々の微
細気泡発生装置が研究・開発されている。従来の微細気
泡発生装置として、例えば、特開2000−447号公
報(以下、イ号公報という)には、「円錐形のスペース
を有する容器本体と、同スペースの内壁円周面の一部に
その接線方向に開設された加圧液体導入口と、前記円錐
形のスペース底部に開設された気体導入孔と、前記円錐
形のスペースの頂部に開設された旋回気液導出口とから
構成されてなる旋回式微細気泡発生装置」が開示されて
いる。また、例えば、実開昭63−74123号公報
(以下、ロ号公報という)には、「液体噴流で気体を送
るゼットポンプの給液孔をノズルの入口の周壁に沿って
接線方向にあけ、ノズルの出口に混合室を連接し、その
出口を噴射口とし、その周辺に複数筒の突起を設けてい
る吸引マッサージ気泡噴流装置」が開示されている。
2. Description of the Related Art In recent years, various micro-bubble generators have been researched and developed to purify water tanks, pools, rivers, etc., increase dissolved oxygen, and obtain a high massage effect in bathtubs by generating micro-bubbles. Have been. As a conventional microbubble generator, for example, JP-A-2000-4747 (hereinafter referred to as “A”) discloses “a container body having a conical space and a part of the inner wall circumferential surface of the space. It is composed of a pressurized liquid inlet port opened in the tangential direction, a gas inlet port opened at the bottom of the conical space, and a swirling gas-liquid outlet port opened at the top of the conical space. A revolving microbubble generator is disclosed. For example, Japanese Utility Model Laid-Open No. 63-74123 (hereinafter referred to as “B”) discloses that “a liquid supply hole of a jet pump for sending gas by a liquid jet is tangentially formed along a peripheral wall of an inlet of a nozzle, A suction massage bubble jet device in which a mixing chamber is connected to an outlet of a nozzle, the outlet is used as an injection port, and a plurality of cylindrical projections are provided around the mixing chamber is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の技術は以下の課題を有していた。 (1)イ号公報及びロ号公報に記載の技術は、水流を発
生するための構成を備えていないので、微細気泡を所望
の方向に広範囲に拡散させることができないという問題
点を有していた。
However, the above-mentioned prior art has the following problems. (1) The techniques described in the publications A and B do not have a configuration for generating a water flow, and thus have a problem that fine bubbles cannot be diffused in a desired direction over a wide range. Was.

【0004】本発明は上記従来の課題を解決するもの
で、水槽やプール、曝気槽、河川等の水中又は養殖池や
沿岸の養殖場もしくは鮮魚運搬車の水(海水)中、又は
化学工場における気液反応槽の液中に微細な気泡を水流
とともに多量かつ広範囲に発生させることができる水流
式微細気泡発生装置を提供することを目的とする。
[0004] The present invention solves the above-mentioned conventional problems, and is used in water (seawater) of water tanks, pools, aeration tanks, rivers and the like, or in aquaculture ponds, coastal farms or fresh fish carriers, or in chemical plants. It is an object of the present invention to provide a water flow type fine bubble generator capable of generating a large amount of fine bubbles in a liquid in a gas-liquid reaction tank together with a water flow in a large amount and in a wide range.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明の水流式微細気泡発生装置は、以下の構成を有
している。
Means for Solving the Problems In order to solve the above problems, a water flow type microbubble generator of the present invention has the following configuration.

【0006】本発明の請求項1に記載の水流式微細気泡
発生装置は、a.後部側から前端部に向かって集束する
形状の中空部を内部に有する器体と、前記器体の後部側
に接線方向に配設された導入孔と、前記器体の前端部に
配設された気液噴出孔と、を有している微細気泡発生器
と、b.下流側が前記導入孔に接続された導入管と、
c.前記導入管の所定部に接続され下流側が開口された
水流管と、を備えている構成を有している。
A water flow type microbubble generator according to claim 1 of the present invention comprises: a. A container having a hollow portion having a shape converging from the rear side toward the front end, an introduction hole disposed tangentially on the rear side of the container, and a front end of the container. A micro-bubble generator having a gas-liquid orifice; b. An introduction pipe whose downstream side is connected to the introduction hole,
c. A water flow pipe connected to a predetermined portion of the introduction pipe and having an open downstream side.

【0007】この構成により、以下のような作用が得ら
れる。 (1)導入管から器体内に高圧の気液混合流体を流入さ
せると、接線方向から器体内に流入した気液混合流体
は、器体の内壁面に沿って旋回し、激しく気液混合され
ながら、気液噴出孔側へ移動していく。この際、液体と
気体との比重の差によって、液体には遠心力が働き、気
体には向心力が働き、気体が中心軸に集束し負圧軸が形
成される。また、負圧軸により、気液噴出孔付近の液相
の液体には、微細気泡発生器内に進入しようとする力が
働く(以下、この力が働く液体を負圧液という)。一
方、微細気泡発生器内の気液混合流体は、旋回しながら
気液噴出孔に近づくにつれて、旋回速度が速くなるとと
もに圧力が高くなり、気液噴出孔付近で旋回速度及び圧
力は最大となり、負圧液と押し合う状態になる。負圧軸
に集まった気体は、負圧液と旋回している気液混合流体
とによって形成された間隙を圧縮気体となって剪断され
ながら通過し、気液混合流体とともに多量の微細気泡と
して気液噴出孔から液相へ噴出される。 (2)旋回しながら噴出される気液混合流体と負圧液と
により、負圧軸に集まった気体は圧縮・剪断され、引き
ちぎられるようにして噴出されるので、多量のナノメー
タ乃至マイクロメータオーダーの微細気泡を発生させる
ことができる。 (3)導入管から水流管へ流入した気液混合流体は液相
へ流れ込み、水流を形成する。この水流にのって、微細
気泡が広範囲に拡散される。 (4)微細気泡発生用のポンプと水流発生用のポンプを
別々に備える必要がなく、1機のポンプで微細気泡及び
水流を発生させることができるので、生産性に優れると
ともにメンテナンス性に優れる。 (5)微細気泡を多量に発生させるので、気体と液体の
接触面積を大きくすることができ、気液反応装置におけ
る反応や、浄化装置における浄化を促進させることがで
きる。また、養殖池や養殖場もしくは活魚運搬車の水
(海水)中の溶存酸素量を増加させることができる。
With this configuration, the following operation is obtained. (1) When a high-pressure gas-liquid mixed fluid flows into the housing from the introduction pipe, the gas-liquid mixed fluid flowing into the housing from the tangential direction turns along the inner wall surface of the housing and is violently mixed. While moving toward the gas-liquid orifice side. At this time, due to the difference in specific gravity between the liquid and the gas, a centrifugal force acts on the liquid, a centripetal force acts on the gas, and the gas is focused on the central axis to form a negative pressure axis. In addition, a force that tries to enter the microbubble generator acts on the liquid-phase liquid near the gas-liquid ejection hole due to the negative pressure axis (hereinafter, the liquid on which this force acts is referred to as a negative pressure liquid). On the other hand, as the gas-liquid mixed fluid in the microbubble generator approaches the gas-liquid orifice while swirling, the swirling speed increases and the pressure increases, and the swirling speed and pressure become maximum near the gas-liquid orifice, It comes into a state of pressing against the negative pressure liquid. The gas collected on the negative pressure axis passes through the gap formed by the negative pressure liquid and the swirling gas-liquid mixed fluid as compressed gas while being sheared, and as a large amount of fine bubbles along with the gas-liquid mixed fluid. It is ejected from the liquid ejection hole into the liquid phase. (2) The gas collected on the negative pressure axis is compressed / sheared by the gas-liquid mixed fluid and the negative pressure liquid ejected while rotating, and is ejected so as to be torn off. Of fine bubbles can be generated. (3) The gas-liquid mixed fluid that has flowed into the water flow pipe from the introduction pipe flows into the liquid phase and forms a water flow. The microbubbles are diffused over a wide area along the water flow. (4) It is not necessary to separately provide a pump for generating microbubbles and a pump for generating water flow, and a single pump can generate microbubbles and a water flow, so that productivity is excellent and maintenance is excellent. (5) Since a large amount of fine bubbles are generated, the contact area between the gas and the liquid can be increased, and the reaction in the gas-liquid reaction device and the purification in the purification device can be promoted. In addition, the amount of dissolved oxygen in the water (seawater) of the culture pond, the farm, or the live fish transport vehicle can be increased.

【0008】ここで、器体としては、円錐形状、円錐台
形状、半球形状、砲弾形状のもの等が用いられる。円錐
形状、円錐台形状の器体を用いた場合、器体が導入孔か
ら気液噴出孔に向かって一気に収束する形状を有してい
るので、器体内を旋回する流体に急激な剪断力が働き、
粘度が高い流体でも充分に攪拌させることができる。ま
た、気液噴出孔の形状は三角や四角等の多角形や円形、
楕円形のものが用いられる。円形にした場合、均質な微
細気泡を得ることができる。気液噴出孔から噴出される
気泡の粒径や水流管から吐出される流体の流速は、導入
管や水流管の管径の比や器体の形状に基づく旋回速度に
より適宜選択される。水流管の形状としては、単なる管
状、内径が下流側に向かって徐々に小さくなる形状等が
用いられる。また、水流管は下流側の端部を微細気泡を
拡散させたい方向に向けて配設される。導入管と水流管
の気液混合流体の分流比は導入管に導入される流体の圧
力や流速によって異なるが、水流管側への分流比は5〜
80%の範囲で分流される。分流比が5%未満になるに
つれ分流管の流速が弱く微細気泡の拡散範囲が狭く、ま
た、80%を越えるにつれ微細気泡の発生量が少なくな
る傾向が認められるので、好ましくない。導入孔と気液
噴出孔の口径比は導入管の導入流体の圧力や流速によっ
て適宜選択されるが、微細気泡の発生量や拡散範囲を大
きくとる場合は、導入孔の口径は気液噴出孔の口径より
大きくされる。
Here, as the body, a conical shape, a truncated conical shape, a hemispherical shape, a shell shape or the like is used. When a conical or frustoconical vessel is used, the vessel has a shape that converges from the introduction hole to the gas-liquid ejection hole at a stretch, so a sharp shearing force is applied to the fluid circling inside the vessel. Working,
Even a fluid having a high viscosity can be sufficiently stirred. In addition, the shape of the gas-liquid vent is polygonal or circular, such as triangle or square,
An oval shape is used. When it is made circular, uniform fine bubbles can be obtained. The particle size of the gas bubbles ejected from the gas-liquid ejection holes and the flow velocity of the fluid ejected from the water flow tube are appropriately selected according to the ratio of the diameters of the introduction tube and the water flow tube and the swirling speed based on the shape of the vessel. As the shape of the water flow pipe, a simple tubular shape, a shape whose inner diameter gradually decreases toward the downstream side, or the like is used. In addition, the water flow pipe is disposed with its downstream end directed in the direction in which the fine bubbles are to be diffused. The split ratio of the gas-liquid mixed fluid between the inlet pipe and the water pipe depends on the pressure and flow rate of the fluid introduced into the inlet pipe, but the split ratio on the water pipe side is 5 to 5.
It is diverted in the range of 80%. When the flow ratio is less than 5%, the flow rate of the flow branch tube is weak, the diffusion range of the fine bubbles is narrow, and when it exceeds 80%, the generation amount of the fine bubbles tends to decrease, which is not preferable. The diameter ratio between the introduction hole and the gas-liquid ejection hole is appropriately selected depending on the pressure and flow velocity of the introduction fluid in the introduction pipe. However, when the generation amount and diffusion range of fine bubbles are large, the diameter of the introduction hole is set to the gas-liquid ejection hole. Larger than the caliber.

【0009】本発明の請求項2に記載の発明は請求項1
に記載の水流式微細気泡発生装置であって、前記微細気
泡発生器が、中間部から両端部に向かって集束する形状
の中空部を内部に有する器体と、前記器体の前記中間部
に接線方向に配設され前記器体内で開口する導入孔を有
する導入管と、前記器体の前記導入管を中心として略対
称位置に穿設された気液噴出孔と、を備えている構成を
有している。
The second aspect of the present invention is the first aspect.
The water flow type microbubble generator according to the above, wherein the microbubble generator has a hollow body having a shape that converges from an intermediate portion toward both ends, and the intermediate portion of the container. A configuration comprising: an introduction pipe which is provided in a tangential direction and has an introduction hole which opens in the container, and a gas-liquid ejection hole which is drilled at a position substantially symmetrical with respect to the introduction pipe of the container. Have.

【0010】この構成により、請求項1の作用に加え、
以下のような作用が得られる。 (1)器体の導入管を中心として略対称の位置に気液噴
出孔が穿設されているので、器体の両側から多量の微細
気泡をより広範囲に拡散させることができる。 (2)気液噴出孔を2個所備えているので、微細気泡の
粒径の調整を容易に行うことができる。 (3)微細気泡の発生率を著しく高めることができる。 ここで、器体としては、円錐又は円錐台の底面どうしを
連通させた形状、球形状、卵形状のもの等が用いられ
る。円錐又は円錐台の底面どうしを連通させた形状の器
体を用いた場合、器体が導入孔から気液噴出孔に向かっ
て一気に収束する形状を有しているので、器体内を旋回
する流体に急激な剪断力が働き、粘度が高い流体でも充
分に攪拌させることができる。また、気液噴出孔から噴
出される気泡の量や水流管から吐出される流体の流速
は、導入管や水流管の管径の比や器体の形状に基づく旋
回速度により適宜選択される。
With this configuration, in addition to the function of claim 1,
The following operation is obtained. (1) Since the gas-liquid ejection holes are formed substantially symmetrically with respect to the introduction pipe of the container, a large amount of fine bubbles can be diffused from both sides of the container over a wider range. (2) Since two gas-liquid ejection holes are provided, it is possible to easily adjust the particle diameter of the fine bubbles. (3) The generation rate of fine bubbles can be significantly increased. Here, as the vessel, a shape in which the bottom surfaces of a cone or a truncated cone communicate with each other, a spherical shape, an egg shape, or the like is used. When a vessel having a shape in which the bottoms of a cone or a truncated cone are connected to each other is used, the fluid that swirls inside the vessel because the vessel has a shape that converges from the introduction hole toward the gas-liquid ejection hole at once. A sharp shearing force acts on the fluid, and even a fluid having a high viscosity can be sufficiently stirred. Further, the amount of air bubbles ejected from the gas-liquid ejection holes and the flow velocity of the fluid ejected from the water flow pipe are appropriately selected according to the ratio of the pipe diameters of the introduction pipe and the water flow pipe and the swirling speed based on the shape of the vessel.

【0011】本発明の請求項3に記載の発明は請求項1
に記載の水流式微細気泡発生装置であって、前記微細気
泡発生器の後端部又は後部壁に穿設された気体自吸孔
と、一端側が前記気体自吸孔に接続され他端側が開口さ
れた気体自吸管と、を備えている構成を有している。
The third aspect of the present invention is the first aspect.
The gas self-priming hole formed in the rear end or rear wall of the micro-bubble generator, one end is connected to the gas self-priming hole and the other end is open. And a self-priming gas tube.

【0012】この構成により、請求項1の作用に加え、
以下のような作用が得られる。 (1)導入管から器体内に気液混合流体でなく液体のみ
を流入させても、接線方向から器体内に流入した液体に
は遠心力が働き、中心部は負圧となりその分中心部には
気体自吸管から気体が流入し負圧軸が形成される。 (2)気体自吸管を大気に開放したり、目的とする吸収
又は反応ガス(例えば、CO2 ,HCl,HCN,SO
2 ,COCl2 ,フッ素化合物ガス等他の反応ガス)に
接続するだけで液体に気体を吸収もしくは反応させるこ
とができる。
With this configuration, in addition to the function of the first aspect,
The following operation is obtained. (1) Even if only a liquid, not a gas-liquid mixed fluid, flows into the container from the inlet pipe, the liquid flowing into the container from the tangential direction acts on the liquid by centrifugal force, so that the central portion becomes negative pressure and the central portion becomes negative pressure. The gas flows from the gas self-priming tube to form a negative pressure axis. (2) The gas self-priming tube is opened to the atmosphere, or a target absorption or reaction gas (for example, CO 2 , HCl, HCN, SO
2 , COCl 2 , fluorine compound gas or other reaction gas), the gas can be absorbed or reacted with the liquid.

【0013】ここで、ポンプへの気体の吸込量は、ポン
プのキャビテーションを起こす範囲外で行われる。更
に、気体の吸込みは液体の粘度の低い方に行う方が気体
の高拡散化が図られるので好ましい。また、水流式微細
気泡発生装置は、浄水場や河川の浄化、畜産排尿の浄
化、活魚の輸送時や養殖時等の酸素供給、水耕栽培時の
溶存酸素量増加、ヘドロ等の浮上による汚濁水処理、貯
水槽のカルキ類の除去、オゾン混合による殺菌,滅菌,
脱臭、入浴時の血行促進、洗濯機、発酵食品類の発酵及
び培養の促進、各種薬品と各種ガスの高密度接触による
溶解及び中和、顔面洗浄器、シャワー、燃料噴射器等に
用いられる。特に活魚輸送用の水槽に水流式微細気泡発
生装置を配設し、水槽内に酸素を供給しながら水流を起
こすことにより、活魚が弱まるのを遅らせることがで
き、長時間の輸送が可能になる。気体自吸孔や気体自吸
管の内径やポンプの吐出圧を適宜選択することにより噴
出される気泡量が決定される。気体自吸管を反応ガス等
の圧力を有する気体槽に接続するときは導入管の流体の
圧力よりも低く設定されるのが好ましい。気体の微細化
が図れ難くなるためである。気体自吸管に流量計や流量
調整器を配設した場合は、微細気泡の噴出量を自在に調
整できるだけでなく、微細気泡の粒径も調整できるの
で、水流式微細気泡発生装置の容量や設置場所によって
は配設されるのが好ましい。
Here, the amount of gas suction into the pump is set outside the range in which cavitation of the pump occurs. Further, it is preferable that the gas is sucked in at a lower viscosity of the liquid because the gas can be more diffused. In addition, the water flow type microbubble generator is used for purification of water purification plants and rivers, purification of livestock urine, supply of oxygen during transportation of live fish and cultivation, increase in dissolved oxygen during hydroponic cultivation, and pollution caused by floating of sludge. Water treatment, removal of decals in water tanks, sterilization by ozone mixing, sterilization,
It is used for deodorization, promotion of blood circulation during bathing, washing machine, promotion of fermentation and culture of fermented foods, dissolution and neutralization by high-density contact of various chemicals and various gases, face washer, shower, fuel injector and the like. In particular, by installing a water flow type microbubble generator in the water tank for transporting live fish and generating water flow while supplying oxygen into the water tank, it is possible to delay the weakening of live fish, making it possible to transport for a long time . By appropriately selecting the inner diameter of the gas self-priming hole, the inner diameter of the gas self-priming tube, and the discharge pressure of the pump, the amount of bubbles to be ejected is determined. When the gas self-priming tube is connected to a gas tank having a pressure of a reaction gas or the like, the pressure is preferably set lower than the pressure of the fluid in the introduction tube. This is because it is difficult to miniaturize the gas. When a flow meter or a flow regulator is installed in the gas self-priming pipe, not only can the amount of ejected fine bubbles be adjusted freely, but also the particle size of the fine bubbles can be adjusted. It is preferable to be provided depending on the location.

【0014】本発明の請求項4に記載の発明は請求項1
乃至3の内何れか一項に記載の水流式微細気泡発生装置
であって、前記水流管の下流側に配設された水流発生ノ
ズルを備えている構成を有している。
The invention described in claim 4 of the present invention is claim 1.
4. The water flow type microbubble generator according to any one of Items 3 to 3, further comprising a water flow generation nozzle disposed downstream of the water flow pipe.

【0015】この構成により、請求項1乃至3の内何れ
か一項の作用に加え、以下のような作用が得られる。 (1)水流発生ノズルが延設されているので、水流管か
ら流出する液体又は気液混合流体の流速に勢いをつける
ことができ、より広範囲に微細気泡を拡散させることが
できる。 (2)液相を混合攪拌することができ、気体の溶解斑を
抑えることができる。
According to this configuration, the following operation can be obtained in addition to the operation of any one of the first to third aspects. (1) Since the water flow generation nozzle is extended, the flow velocity of the liquid or the gas-liquid mixed fluid flowing out of the water flow pipe can be increased, and the fine bubbles can be diffused over a wider range. (2) The liquid phase can be mixed and agitated, and the dissolution spot of gas can be suppressed.

【0016】ここで、水流発生ノズルとしては、先細ノ
ズルや、気体を随伴流として取り込むもの等が用いられ
る。先細ノズルを用いた場合は、微細気泡を遠方まで搬
送できる。また、気体を随伴流としてとり込むものを用
いた場合、液相の混合攪拌効果を得ることができる。
Here, as the water flow generating nozzle, a tapered nozzle or a nozzle which takes in gas as an accompanying flow is used. When a tapered nozzle is used, fine bubbles can be transported to a distant place. In addition, when a gas that takes in a gas as an accompanying flow is used, a mixing and stirring effect of a liquid phase can be obtained.

【0017】本発明の請求項5に記載の発明は請求項
1、2、4の内何れか一項に記載の水流式微細気泡発生
装置であって、吸込口と吐出口とを有し前記吐出口に前
記導入管の上流側が接続されたポンプと、下流側が前記
ポンプの前記吸込口に接続された吸込管と、一端側が前
記吸込管の所定部に接続され他端側が気体中で開口され
た気体自吸管と、を備えている構成を有している。
According to a fifth aspect of the present invention, there is provided a water flow type fine bubble generator according to any one of the first, second and fourth aspects, wherein the apparatus has a suction port and a discharge port. A pump in which the upstream side of the introduction pipe is connected to the discharge port, a suction pipe in which the downstream side is connected to the suction port of the pump, and one end connected to a predetermined portion of the suction pipe and the other end opened in gas. And a gas self-priming tube.

【0018】この構成により、請求項1、2、4の内何
れか一項の作用に加え、以下のような作用が得られる。 (1)ポンプを駆動させると、気体自吸管から気体が吸
込管内を流れる流体の随伴流として吸込管内に吸い込ま
れ、気液混合流体となって器体に流入する。 (2)気体自吸管から吸い込まれた気体は、ポンプ内の
インペラによってある程度拡散されてから器体に流入す
るので、より微細な気泡を発生させることができる。 (3)微細気泡発生用のポンプと水流発生用のポンプを
別々に備える必要がなく、1機のポンプで微細気泡及び
水流を発生させることができるので、生産性に優れると
ともにメンテナンス性に優れる。 (4)微細気泡発生器内だけでなく、水流管内にも気体
が流入するので、微細気泡発生器から噴出される微細気
泡と水流管から噴出される大きな気泡とを噴出させるこ
とができる。大きな気泡は水流管から噴出された後比較
的すぐに浮上し、微細気泡は噴出された後大きな気泡に
比べ長い距離移動した後浮上する。よって、微細気泡発
生装置の近くには大きな気泡を、遠くには微細気泡を拡
散させることができる。
According to this configuration, the following operation is obtained in addition to the operation of any one of the first, second, and fourth aspects. (1) When the pump is driven, gas is sucked from the gas self-priming pipe into the suction pipe as an accompanying flow of the fluid flowing through the suction pipe, and flows into the body as a gas-liquid mixed fluid. (2) Since the gas sucked from the gas self-priming pipe is diffused to some extent by the impeller in the pump and then flows into the container, finer bubbles can be generated. (3) It is not necessary to separately provide a pump for generating microbubbles and a pump for generating water flow, and a single pump can generate microbubbles and a water flow, so that productivity and maintenance are excellent. (4) Since gas flows not only into the fine bubble generator but also into the water flow tube, it is possible to blow out fine bubbles blown out from the fine bubble generator and large bubbles blown out from the water flow tube. The large bubbles float relatively quickly after being ejected from the water flow tube, and the fine bubbles float after traveling a longer distance than the large bubbles after being ejected. Therefore, large bubbles can be diffused near the microbubble generator and fine bubbles can be diffused far away.

【0019】ここで、吸込管の管径やポンプの能力を変
えることにより、吸込管内を流れる液体の流量が変わる
ので、吸込管内に吸い込まれる気体量を変化させること
ができる。また、ポンプへの気体の吸込量は、ポンプの
キャビテーションを起こす範囲外で行われる。気体自吸
管に流量調整器や流量計を配設した場合は前述の効果を
得ることができる。
Here, by changing the diameter of the suction pipe and the capacity of the pump, the flow rate of the liquid flowing in the suction pipe changes, so that the amount of gas sucked into the suction pipe can be changed. Further, the amount of gas suctioned into the pump is set outside the range in which cavitation of the pump occurs. When the flow regulator or the flow meter is provided in the gas self-priming pipe, the above-described effects can be obtained.

【0020】本発明の請求項6に記載の発明は請求項3
又は4に記載の水流式微細気泡発生装置であって、吸込
口と吐出口とを有し前記吐出口に前記導入管の上流側が
接続されたポンプと、下流側が前記ポンプの前記吸込口
に接続された吸込管と、を備えている構成を有してい
る。
The invention described in claim 6 of the present invention is claim 3.
Or the water flow type microbubble generator according to 4, wherein a pump having a suction port and a discharge port, wherein the upstream side of the introduction pipe is connected to the discharge port, and the downstream side is connected to the suction port of the pump. And a suction pipe provided.

【0021】この構成により、請求項3又は4の作用に
加え、以下のような作用が得られる。 (1)ポンプを駆動させると、流体は吸込管から,ポン
プを経て,導入管や水流管に流入する。 (2)微細気泡発生用のポンプと水流発生用のポンプを
別々に備える必要がなく、1機のポンプで微細気泡及び
水流を発生させることができるので、生産性に優れると
ともにメンテナンス性に優れる。 (3)ポンプのインペラやケーシング内に空気や反応ガ
スが吸入されないので、ポンプがキャビテーションを起
こすのを防止できる。 (4)活性の反応ガス(例えば、HClやフッ素化合
物,COCl2 等)がポンプのケーシング内に入らない
ので,ポンプの耐久性を向上させることができる。 (5)ポンプの選択が液体の種別だけで選択でき、汎用
性に優れる。 (6)微細気泡発生器と吸込管を同一液相に投入した場
合は、気体の溶存率を著しく高めるとともに、液相を攪
拌し気体の吸収効率や反応率を著しく高めることができ
る。
According to this configuration, the following operation is obtained in addition to the operation of the third or fourth aspect. (1) When the pump is driven, the fluid flows from the suction pipe through the pump to the introduction pipe or the water flow pipe. (2) It is not necessary to separately provide a pump for generating microbubbles and a pump for generating water flow, and a single pump can generate microbubbles and a water flow, so that productivity is excellent and maintenance is excellent. (3) Since air or reactive gas is not sucked into the impeller or casing of the pump, it is possible to prevent the pump from cavitation. (4) Since active reaction gas (for example, HCl, a fluorine compound, COCl 2, etc.) does not enter the casing of the pump, the durability of the pump can be improved. (5) The selection of the pump can be made only by the type of the liquid, which is excellent in versatility. (6) When the microbubble generator and the suction tube are put in the same liquid phase, the gas dissolution rate can be significantly increased, and the liquid phase can be stirred to significantly increase the gas absorption efficiency and the reaction rate.

【0022】[0022]

【発明の実施の形態】(実施の形態1)本発明の実施の
形態1における水流式微細気泡発生装置について、以下
図面を参照しながら説明する。
(Embodiment 1) A water flow type microbubble generator according to Embodiment 1 of the present invention will be described below with reference to the drawings.

【0023】図1は本発明の実施の形態1における水流
式微細気泡発生装置を生簀に設置した状態を示す状態図
である。図1において、1は本発明の実施の形態1にお
ける水流式微細気泡発生装置、2は吸込口2a及び吐出
口2bを有するポンプ、3は上流側がポンプ2の吐出口
2bに接続された導入管、4は導入管3の下流側に接続
された微細気泡発生器、5は上流側が導入管3の所定部
で分岐して接続された水流管、6は水流用気体自吸孔6
aに水流管5の下流側が接続された水流発生ノズル、7
は一端が水流発生ノズル6の水流用気体自吸孔6bに接
続され他端側が大気中で開口された水流用気体自吸管、
8は下流側がポンプ2の吸込口2aに接続された吸込
管、9は吸込管8の上流側に配設されたストレーナ、1
0は一端側が吸込管8の所定部に分岐して接続され他端
側が大気中で開口された気体自吸管、10aは気体自吸
管10の所定部に配設された気体流量調整器、11は微
細気泡発生装置1が配設された水槽や生簀11a等の液
相である。
FIG. 1 is a state diagram showing a state in which the water-flow type microbubble generator according to Embodiment 1 of the present invention is installed in a fish cage. In FIG. 1, 1 is a water flow type microbubble generator according to Embodiment 1 of the present invention, 2 is a pump having a suction port 2a and a discharge port 2b, and 3 is an inlet pipe whose upstream side is connected to a discharge port 2b of the pump 2. Reference numeral 4 denotes a microbubble generator connected to the downstream side of the introduction pipe 3, 5 denotes a water flow pipe whose upstream side is branched at a predetermined portion of the introduction pipe 3, and 6 denotes a gas self-suction hole 6 for water flow.
a, a water flow generation nozzle connected to the downstream side of the water flow pipe 5;
A water flow gas self-priming pipe having one end connected to the water flow gas self-priming hole 6b of the water flow generation nozzle 6 and the other end opened in the atmosphere;
Reference numeral 8 denotes a suction pipe whose downstream side is connected to the suction port 2 a of the pump 2, 9 denotes a strainer disposed upstream of the suction pipe 8,
Reference numeral 0 denotes a gas self-priming pipe having one end branched and connected to a predetermined portion of the suction pipe 8 and the other end open to the atmosphere, 10a denotes a gas flow regulator disposed at a predetermined portion of the gas self-priming pipe 10, and 11 denotes a gas flow regulator. It is a liquid phase of a water tank in which the microbubble generator 1 is provided, a fish cage 11a, or the like.

【0024】図2(a)は本発明の実施の形態1におけ
る微細気泡発生器の要部斜視図であり、図2(b)はそ
の正面図であり、図2(c)はその要部側面図である。
図2において、3は導入管、4は微細気泡発生器、4a
は中間部から両端部に向かって内部が集束する形状(略
中空球状)の中空部を有する器体、4bは器体4aに接
線方向に開口された導入管3の導入孔、4cは器体4a
の導入孔4bから中心部に向けた直線と中心部で直交す
る直径方向の両端部に穿設された気液噴出孔である。
FIG. 2A is a perspective view of a main part of the microbubble generator according to the first embodiment of the present invention, FIG. 2B is a front view thereof, and FIG. 2C is a main part thereof. It is a side view.
In FIG. 2, 3 is an introduction pipe, 4 is a fine bubble generator, 4a
Is a vessel having a hollow portion (in a substantially hollow spherical shape) whose inside converges from an intermediate portion toward both ends, 4b is an introduction hole of the introduction pipe 3 opened tangentially to the vessel 4a, and 4c is a vessel. 4a
Is a gas-liquid ejection hole formed at both ends in a diameter direction orthogonal to a straight line from the introduction hole 4b toward the center and the center.

【0025】図3は本発明の実施の形態1における水流
発生ノズルの一例を示す側面断面図である。図3におい
て、5は水流管、6は水流発生ノズル、7は水流用気体
自吸管であり、これらは図1と同様のものなので同一の
符号を付してその説明を省略する。6aは後部から流入
した流体を加速させ前部側から吐出する水流用器体、6
bは水流用器体6aの後端部に配設固定され前部側に向
かって開口面積が徐々に絞られた形状を有する水流用吸
込管である。水流用吸込管6bには水流管5の下流側端
部が接続されている。6cは水流用器体6aの側壁に穿
設された水流用気体自吸孔、6dは水流用器体6aの前
端部に水流用吸込管6bと略同軸に穿設された水流用噴
出孔である。水流管5から水流発生ノズル6に流入する
流体は、水流用吸込管6bを加速しながら通過し水流用
器体6aに流入し、水流用噴出孔6dから噴出される。
この流体の随伴流として、水流用気体自吸管7から水流
用気体自吸孔6cを経て、水流用器体6aに空気が流入
し、水流用吸込管6bからの流体とともに水流用噴出孔
6dから噴出される。
FIG. 3 is a side sectional view showing an example of the water flow generating nozzle according to the first embodiment of the present invention. In FIG. 3, 5 is a water flow pipe, 6 is a water flow generation nozzle, and 7 is a water flow gas self-priming tube. These are the same as those in FIG. 6a is a water flow body for accelerating the fluid flowing from the rear and discharging from the front,
Reference numeral b denotes a water flow suction pipe which is disposed and fixed to the rear end of the water flow vessel 6a and has a shape whose opening area is gradually narrowed toward the front side. The downstream end of the water flow pipe 5 is connected to the water suction pipe 6b. Reference numeral 6c denotes a water flow gas self-suction hole formed in a side wall of the water flow device 6a, and reference numeral 6d denotes a water flow ejection hole formed substantially coaxially with the water flow suction pipe 6b at the front end of the water flow device 6a. is there. The fluid flowing from the water flow pipe 5 to the water flow generation nozzle 6 passes through the water flow suction pipe 6b while accelerating, flows into the water flow body 6a, and is ejected from the water flow discharge hole 6d.
As an accompanying flow of this fluid, air flows from the water flow gas self-priming pipe 7 through the water flow gas self-priming hole 6c into the water flow body 6a, and flows from the water flow discharge hole 6d together with the fluid from the water flow suction pipe 6b. It is gushing.

【0026】以上のように構成された本発明の実施の形
態1における水流式微細気泡発生装置について、以下図
面を参照しながらその動作を説明する。図4は本発明の
実施の形態1における微細気泡発生器内部の流体の状態
を示す要部正面状態図である。図4において、3は導入
管、4は微細気泡発生器、4aは器体、4bは導入孔、
4cは気液噴出孔であり、これらは図2と同様のもので
あるので同一の符号を付してその説明を省略する。Xは
微細気泡発生器4内を旋回する気液混合流体の気体と液
体との比重差により形成される負圧軸である。図1にお
いて、ポンプ2を駆動させると、液相11の液体は、ス
トレーナ9を経て吸込管8に流入する。吸込管8の気体
自吸管10との接続部において、吸込管8内に気体自吸
管10から空気が液体の随伴流として吸引され、気液混
合流体となり、ポンプ2の吸込口2aからポンプ2内に
吸い込まれる。ポンプ2内に吸い込まれた気液混合流体
は、ポンプ2のインペラ(図示せず)により、気泡が拡
散されながらポンプ2の吐出口2bから導入管3内に吐
き出される。導入管3に流入した気液混合流体は、微細
気泡発生器4と水流管5に分岐して流出する。
The operation of the water flow type microbubble generator according to the first embodiment of the present invention having the above-described configuration will be described below with reference to the drawings. FIG. 4 is a main part front view showing the state of the fluid inside the fine bubble generator according to Embodiment 1 of the present invention. In FIG. 4, 3 is an introduction tube, 4 is a fine bubble generator, 4a is a body, 4b is an introduction hole,
Reference numeral 4c denotes gas-liquid ejection holes, which are the same as those shown in FIG. 2 and are denoted by the same reference numerals and description thereof is omitted. X is a negative pressure axis formed by the specific gravity difference between the gas and the liquid of the gas-liquid mixed fluid circling in the fine bubble generator 4. In FIG. 1, when the pump 2 is driven, the liquid in the liquid phase 11 flows into the suction pipe 8 via the strainer 9. At the connection between the suction pipe 8 and the gas self-priming pipe 10, air is sucked into the suction pipe 8 from the gas self-priming pipe 10 as an accompanying flow of liquid, becomes a gas-liquid mixed fluid, and flows from the suction port 2 a of the pump 2 into the pump 2. Sucked into. The gas-liquid mixed fluid sucked into the pump 2 is discharged from the discharge port 2b of the pump 2 into the introduction pipe 3 by the impeller (not shown) of the pump 2 while bubbles are diffused. The gas-liquid mixed fluid that has flowed into the introduction pipe 3 branches out to the fine bubble generator 4 and the water flow pipe 5 and flows out.

【0027】図4において、導入管3から導入孔4bを
経て接線方向から微細気泡発生器4内に流入した高圧の
気液混合流体は、器体4aの内壁面に沿って旋回するこ
とにより激しく気液混合されながら、気液噴出孔4c側
へ移動していく。この際、液体と気体との比重の差によ
って、液体には遠心力が働き、空気には向心力が働き、
減圧された空気相からなる負圧軸Xが形成される。ま
た、負圧軸Xにより、気液噴出孔4c付近の液相11の
液体には、微細気泡発生器4内に進入しようとする力が
働く(以下、この力が働く液体を負圧液という)。一
方、微細気泡発生器4内の気液混合流体は、旋回しなが
ら気液噴出孔4cに近づくにつれて、旋回速度が速くな
り、気液噴出孔4c付近で旋回速度は最大となり、負圧
液と押し合う状態になる。よって、負圧軸Xに集まった
気体は、負圧液と旋回している気液混合流体との間を圧
縮・剪断されながら通過し、微細気泡発生器4の球面に
沿うようにして多量のナノメータ乃至マイクロメータオ
ーダーの微細気泡として気液噴出孔4cから液相11へ
噴出される。
In FIG. 4, the high-pressure gas-liquid mixed fluid flowing into the fine bubble generator 4 from the introduction pipe 3 through the introduction hole 4b from the tangential direction and vibrates along the inner wall surface of the body 4a. The gas-liquid mixture moves toward the gas-liquid ejection hole 4c while being mixed. At this time, due to the difference in specific gravity between the liquid and the gas, centrifugal force acts on the liquid, centripetal force acts on the air,
A negative pressure axis X composed of the depressurized air phase is formed. Further, due to the negative pressure axis X, the liquid in the liquid phase 11 near the gas-liquid ejection hole 4c has a force acting to enter the fine bubble generator 4 (hereinafter, the liquid on which this force acts is referred to as a negative pressure liquid). ). On the other hand, as the gas-liquid mixed fluid in the fine bubble generator 4 approaches the gas-liquid ejection hole 4c while swirling, the swirling speed increases, the swirling speed becomes maximum near the gas-liquid ejection hole 4c, and the negative pressure liquid and It becomes a state of pushing. Therefore, the gas collected on the negative pressure axis X passes between the negative pressure liquid and the swirling gas-liquid mixed fluid while being compressed and sheared, and a large amount of gas flows along the spherical surface of the fine bubble generator 4. The gas bubbles are ejected from the gas-liquid ejection holes 4c to the liquid phase 11 as fine bubbles of the order of nanometers to micrometers.

【0028】一方、図3において、水流管5に流入した
気液混合流体は、水流発生ノズル6により加速され液相
11内に噴出される。これにより、液相11内に水流が
発生し、微細気泡発生器4の気液噴出孔4cから噴出さ
れた微細気泡がこの水流に遠方まで運ばれ広範囲に拡散
される。
On the other hand, in FIG. 3, the gas-liquid mixed fluid that has flowed into the water flow pipe 5 is accelerated by the water flow generation nozzle 6 and jetted into the liquid phase 11. As a result, a water flow is generated in the liquid phase 11, and the fine bubbles ejected from the gas-liquid ejection holes 4c of the fine bubble generator 4 are carried to the water flow to a far distance and diffused over a wide range.

【0029】尚、本実施の形態1においては、2口の気
液噴出孔4cを有した球形状の微細気泡発生器4を用い
たが、気液噴出孔が1口で半球形状、砲弾形状、円錐台
形状、円錐形状の微細気泡発生器を用いても同様に実施
可能である。また、本実施の形態1においては、水流用
気体自吸孔6cを有する水流発生ノズル6を用い、水流
発生ノズル6内に気体を流入させる構成にしたが、単に
後部側から前部側に向かって徐々に内径が小さくなる形
状の管を接続しても水流管5からの流体を加速させるこ
とができるので同様に実施可能である。また、水流発生
ノズル6を用いず、直接水流管5から液相11内に流体
を流入させる場合もあるが、この場合でも水流管5に下
流側端部の内径を上流側より小さくする等の加工を施す
ことにより流体を加速させ遠方まで広範囲に拡散させる
ことができる。また、本実施の形態1では生簀について
説明したが、浄化槽、沈澱池、化学反応装置、曝気槽等
種々の設備や装置についても同様に実施が可能である。
In the first embodiment, the spherical microbubble generator 4 having two gas-liquid ejection holes 4c is used. However, one gas-liquid ejection hole has a hemispherical shape and a shell-shaped shape. The present invention can be similarly implemented by using a fine bubble generator having a truncated conical shape or a conical shape. In the first embodiment, the gas is introduced into the water flow generation nozzle 6 by using the water flow generation nozzle 6 having the water flow gas self-priming hole 6c. However, the gas is simply directed from the rear side to the front side. Even if a pipe whose inner diameter gradually becomes smaller is connected, the fluid from the water flow pipe 5 can be accelerated, so that the present invention can be similarly implemented. In some cases, the fluid may directly flow into the liquid phase 11 from the water flow pipe 5 without using the water flow generation nozzle 6, but even in this case, the inner diameter of the downstream end of the water flow pipe 5 is made smaller than that of the upstream side. By performing the processing, the fluid can be accelerated and diffused over a wide range to a distant place. In the first embodiment, the fish cage has been described. However, various facilities and apparatuses such as a septic tank, a sedimentation tank, a chemical reaction device, and an aeration tank can be similarly implemented.

【0030】以上のように構成された本発明の実施の形
態1の水流式微細気泡発生装置によれば、以下のような
作用が得られる。 (1)微細気泡発生器4の器体4aには、気体導入孔4
bを中心として両側の対称位置の中心線に気液噴出孔4
cが穿設されているので、微細気泡を微細気泡発生器1
の両側から広範囲に噴出させることができる。 (2)負圧軸Xに集まった気体は噴出される際に、負圧
液により圧縮されながら剪断されるので、より微細で多
量の気泡を噴出させることができる。 (3)気体自吸管10から吸い込まれた気体は、ポンプ
2内のインペラによってある程度拡散されてから器体4
aに流入するので、より微細な気泡を発生させることが
できる。 (4)導入管3から水流管5へ流入した気液混合流体は
液相へ噴射され、液相中に、水流を形成する。この水流
にのって、微細気泡発生器4の気液噴出孔4cから噴出
された微細気泡が遠方まで広範囲に拡散される。 (5)水流管5の下流側に水流発生ノズル6が延設され
ているので、水流管5から流出する液体又は気液混合流
体の水流に勢いをつけることができ、より広範囲に微細
気泡を遠方まで拡散させることができる。 (6)微細気泡発生用のポンプと水流発生用のポンプを
別々に備える必要がなく、1機のポンプ2で微細気泡及
び水流を発生させることができるので、生産性に優れる
とともにメンテナンス性に優れる。 (7)水流発生ノズル6から噴出される流体には、微細
気泡発生器4から噴出される微細気泡に比べて大きな気
泡が含まれており、これらは微細気泡に比べて遠方まで
拡散されないので装置の近傍にも気泡を拡散させること
ができる。 (8)微細気泡発生器4を気液反応装置や汚水処理装置
等に用いた場合、ポンプのON/OFF時等に装置内の
残圧(負圧)により流体が逆流しても、微細気泡発生器
4には気体を取り込むための細孔等がないので、反応物
や汚物により目詰まりを起こすことがない。 (9)微細気泡発生器4には、気体を取り込むための細
孔等がないので、器体4a内を高圧にしても停止時に逆
流を起こさず、より微細で多量の気泡を噴出させること
ができる。 (10)微細気泡を多量に発生させるので、気体と液体
の接触面積を大きくすることができ、気液反応装置にお
ける反応や、浄化装置における浄化を促進させることが
できる。また、養殖池や養殖場もしくは鮮魚運搬車の水
(海水)中の溶存酸素量を著しく増加させることができ
る。 (11)液相11が、活魚輸送用の水槽である場合は、
水槽内に空気や酸素を供給しながら水流を起こすことに
より、水槽全体に微細(μmオーダー)の空気や酸素の
気泡を拡散し、液相(水)中の溶存酸素含有量を高める
ことができるので、活魚が弱まるのを遅くすることがで
き、長時間の輸送が可能になる。 (12)微細気泡を遠方まで拡散できるので、池や河川
等の水質浄化を高効率で実施できる。 (13)気体を超微細にして液相中に高分散できるの
で、微細気化学工場等での反応ガスや排ガスの洗浄や吸
収、除去を容易に行うことができる。 (14)気体流量調整器10を備えているので、微細気
泡の噴出量を自在に調整できるだけでなく微細気泡の粒
径も調整できる。
According to the water-flow type microbubble generator of the first embodiment of the present invention configured as described above, the following operations can be obtained. (1) The gas introduction hole 4 is provided in the body 4a of the fine bubble generator 4.
gas-liquid orifice 4 at the center line of the symmetrical position on both sides about b
c, the microbubbles are generated by the microbubble generator 1
Can erupt widely from both sides. (2) When the gas collected on the negative pressure axis X is blown out, it is sheared while being compressed by the negative pressure liquid, so that finer and more bubbles can be blown out. (3) The gas sucked from the gas self-priming pipe 10 is diffused to some extent by the impeller in the pump 2 and then the vessel 4
Since it flows into a, finer bubbles can be generated. (4) The gas-liquid mixed fluid that has flowed into the water flow pipe 5 from the introduction pipe 3 is injected into the liquid phase, and forms a water flow in the liquid phase. With this water flow, the fine bubbles ejected from the gas-liquid ejection holes 4c of the fine bubble generator 4 are diffused over a wide range. (5) Since the water flow generating nozzle 6 extends downstream of the water flow pipe 5, the water flow of the liquid or the gas-liquid mixed fluid flowing out of the water flow pipe 5 can be energized, and fine bubbles can be generated in a wider range. It can be spread far away. (6) It is not necessary to separately provide a pump for generating microbubbles and a pump for generating a water flow, and a single pump 2 can generate microbubbles and a water flow, so that productivity is excellent and maintenance is excellent. . (7) The fluid ejected from the water flow generation nozzle 6 contains bubbles larger than the fine bubbles ejected from the microbubble generator 4, and these bubbles are not diffused farther than the microbubbles. Bubbles can be diffused also in the vicinity of. (8) When the microbubble generator 4 is used in a gas-liquid reaction device or a sewage treatment device, even if the fluid flows backward due to the residual pressure (negative pressure) in the device when the pump is turned on / off, the microbubble is generated. Since the generator 4 does not have pores or the like for taking in gas, clogging due to reactants and dirt does not occur. (9) Since the microbubble generator 4 has no pores or the like for taking in gas, even if the inside of the body 4a is at a high pressure, a backflow does not occur at the time of stoppage, and finer and more bubbles can be ejected. it can. (10) Since a large amount of fine bubbles are generated, the contact area between the gas and the liquid can be increased, and the reaction in the gas-liquid reaction device and the purification in the purification device can be promoted. In addition, the amount of dissolved oxygen in the water (seawater) of a culture pond, a farm, or a fresh fish carrier can be significantly increased. (11) When the liquid phase 11 is an aquarium for transporting live fish,
By causing air flow while supplying air and oxygen into the water tank, fine (μm order) air and oxygen bubbles can be diffused throughout the water tank, and the dissolved oxygen content in the liquid phase (water) can be increased. Therefore, the weakening of the live fish can be slowed down, and long-time transportation is possible. (12) Since fine bubbles can be diffused far away, water purification of ponds and rivers can be performed with high efficiency. (13) Since the gas can be made ultra-fine and highly dispersed in the liquid phase, it is possible to easily clean, absorb, and remove the reaction gas and the exhaust gas in a fine chemical plant. (14) Since the gas flow controller 10 is provided, it is possible to freely adjust the ejection amount of the fine bubbles and also adjust the particle diameter of the fine bubbles.

【0031】(実施の形態2)本発明の実施の形態2に
おける水流式微細気泡発生装置について、以下図面を参
照しながら説明する。
(Embodiment 2) A water flow type microbubble generator according to Embodiment 2 of the present invention will be described below with reference to the drawings.

【0032】図5は本発明の実施の形態2における水流
式微細気泡発生装置の構成図である。図5において、2
はポンプ、2aは吸込口、2bは吐出口、5は水流管、
7は水流用気体自吸管、8は吸込管、9はストレーナ、
11は液相であり、これらは実施の形態1と同様のもの
であるので、同一の符号を付してその説明を省略する。
6’は先細り式水流発生ノズル、20は本発明の実施の
形態2における水流式微細気泡発生装置、21は上流側
がポンプ2の吐出口2bに接続された導入管、22は導
入孔22bが導入管21の下流側に接続された本発明の
実施の形態2における微細気泡発生器、23は一端側が
微細気泡発生器22の気体自吸孔22dに接続され他端
側が大気(気相)中で開口された気体自吸管である。
FIG. 5 is a configuration diagram of a water flow type microbubble generator according to Embodiment 2 of the present invention. In FIG. 5, 2
Is a pump, 2a is a suction port, 2b is a discharge port, 5 is a water flow pipe,
7 is a gas self-priming pipe for water flow, 8 is a suction pipe, 9 is a strainer,
Reference numeral 11 denotes a liquid phase, which is the same as that in the first embodiment.
6 'is a tapered water flow generation nozzle, 20 is a water flow type microbubble generator according to Embodiment 2 of the present invention, 21 is an introduction pipe whose upstream side is connected to the discharge port 2b of the pump 2, and 22 is an introduction hole 22b. The fine bubble generator 23 according to the second embodiment of the present invention connected to the downstream side of the pipe 21 has one end connected to the gas self-priming hole 22d of the fine bubble generator 22 and the other end in the atmosphere (gas phase). This is an open gas self-priming tube.

【0033】図6(a)は本発明の実施の形態2におけ
る微細気泡発生器の要部斜視図であり、図6(b)はそ
の正面図であり、図6(c)はその要部側面図である。
21は導入管、22は水流式微細気泡発生器、22aは
後部側から前端部に向かって集束する形状(略円錐台形
状や略円錐状)の中空部を有する器体、22bは器体2
2aの台形状部に接線方向に内部で開口された導入管2
1の導入孔、22cは器体22aの先端に穿設された気
液噴出孔、22dは器体22aの後部壁に穿設され気体
自吸管23が接続された気体自吸孔である。
FIG. 6 (a) is a perspective view of a main part of a microbubble generator according to Embodiment 2 of the present invention, FIG. 6 (b) is a front view thereof, and FIG. 6 (c) is a main part thereof. It is a side view.
21 is an introduction pipe, 22 is a water flow type microbubble generator, 22a is a vessel having a hollow part (substantially frustoconical or substantially conical) that converges from the rear to the front end, and 22b is vessel 2
Inlet pipe 2 tangentially opened inside trapezoidal portion 2a
Reference numeral 22c denotes a gas-liquid ejection hole formed at the tip of the container 22a, and reference numeral 22d denotes a gas self-priming hole formed at the rear wall of the container 22a and connected to the gas self-priming tube 23.

【0034】以上のように構成された本発明の実施の形
態2における水流式微細気泡発生装置について、以下図
面を参照しながらその動作を説明する。図7は本発明の
実施の形態2における微細気泡発生器内部の流体の状態
を示す要部断面状態図である。図7において、21は導
入管、22は微細気泡発生器、22aは器体、22bは
導入孔、22cは気液噴出孔、22dは気体自吸孔、2
3は気体自吸管であり、これらは図6と同様のものであ
るので、同一の符号を付してその説明を省略する。Yは
微細気泡発生器22内を旋回する気液混合流体の気体と
液体との比重差により形成される負圧軸である。図5に
おいて、ポンプ2を駆動させると、液相11の液体は、
ストレーナ9、吸込管8、ポンプ2を経て導入管3に流
入する。導入管3に流入した気液混合流体は、微細気泡
発生器22と水流管5に分岐して流入する。図7におい
て、導入管21から導入孔22bを経て接線方向から微
細気泡発生器22内に流入した高圧の気液混合流体は、
器体22aの内壁面に沿って旋回しながら、気液噴出孔
22c側へ移動していく。この際、液体には遠心力が働
き、器体22の中心部に気体自吸管23から空気が流入
し、負圧軸Yが形成される。また、負圧軸Yにより、気
液噴出孔22c付近の液相11の液体には、気体自吸管
23を絞ることにより微細気泡発生器22内に進入しよ
うとする力が働く(以下、この力が働く液体を負圧液と
いう)。一方、微細気泡発生器22内の気液混合流体
は、旋回しながら気液噴出孔22cに近づくにつれて、
旋回速度が速くなり、気液噴出孔22c付近で旋回速度
は最大となり、負圧液と押し合う状態になる。よって、
負圧軸Yに集まった気体は、負圧液と旋回している気液
混合流体とによって形成された間隙を圧縮気体となって
通過し、多量の微細気泡として気液噴出孔22cから液
相11へ噴出される。
The operation of the water flow type microbubble generator according to the second embodiment of the present invention having the above-described configuration will be described below with reference to the drawings. FIG. 7 is a cross-sectional view of a main part showing a state of a fluid inside a fine bubble generator according to Embodiment 2 of the present invention. In FIG. 7, 21 is an introduction pipe, 22 is a microbubble generator, 22a is a body, 22b is an introduction hole, 22c is a gas-liquid ejection hole, 22d is a gas self-priming hole,
Numeral 3 denotes a gas self-priming tube, which is the same as that shown in FIG. Y is a negative pressure axis formed by a specific gravity difference between the gas and the liquid of the gas-liquid mixed fluid circling in the fine bubble generator 22. In FIG. 5, when the pump 2 is driven, the liquid in the liquid phase 11
It flows into the introduction pipe 3 through the strainer 9, the suction pipe 8, and the pump 2. The gas-liquid mixed fluid that has flowed into the introduction pipe 3 branches into the fine bubble generator 22 and the water flow pipe 5 and flows therein. In FIG. 7, the high-pressure gas-liquid mixed fluid that has flowed into the microbubble generator 22 from the introduction pipe 21 through the introduction hole 22b from the tangential direction,
While moving along the inner wall surface of the container 22a, it moves toward the gas-liquid ejection hole 22c. At this time, centrifugal force acts on the liquid, and air flows into the center of the container 22 from the gas self-priming tube 23 to form a negative pressure axis Y. In addition, the negative pressure axis Y exerts a force on the liquid in the liquid phase 11 near the gas-liquid ejection hole 22c to enter the microbubble generator 22 by squeezing the gas self-priming tube 23 (hereinafter, this force). The liquid that works is called a negative pressure liquid). On the other hand, as the gas-liquid mixed fluid in the fine bubble generator 22 approaches the gas-liquid ejection hole 22c while turning,
The swirling speed increases, and the swirling speed becomes maximum near the gas-liquid ejection hole 22c, so that the swirling speed is pressed against the negative pressure liquid. Therefore,
The gas collected on the negative pressure axis Y passes through the gap formed by the negative pressure liquid and the swirling gas-liquid mixed fluid as compressed gas, and as a large amount of fine bubbles, the liquid phase is discharged from the gas-liquid ejection hole 22c. It is jetted to 11.

【0035】一方、水流管5に流入した気液混合流体
は、実施の形態1と同様に水流ノズル6で水流用気体自
吸管7からの空気と混合されて噴出され、液相11に水
流が発生し、微細気泡発生器22の気液噴出孔22cか
ら噴出された微細気泡が広範囲に拡散される。
On the other hand, the gas-liquid mixed fluid that has flowed into the water flow pipe 5 is mixed with the air from the water flow gas self-priming pipe 7 at the water flow nozzle 6 and jetted out, as in the first embodiment. The fine bubbles generated and ejected from the gas-liquid ejection holes 22c of the fine bubble generator 22 are diffused over a wide range.

【0036】以上のように構成された本発明の実施の形
態2の水流式微細気泡発生装置によれば、以下のような
作用が得られる。 (1)導入管21から器体22a内に気液混合流体でな
く液体のみを流入させても、接線方向から器体22a内
に流入した液体には遠心力が働き、その分中心部が減圧
になり、気体自吸管23から自吸され流入し負圧軸Yが
形成される。 (2)導入管21から水流管5へ流入した気液混合流体
は液相へ流れ込み、水流を形成する。この水流にのっ
て、微細気泡発生器22の気液噴出孔22cから噴出さ
れた微細気泡が広範囲に拡散することができる。 (3)駆動部としては、ポンプ2を1基用いるだけで、
微細気泡と水流を発生させることができる。 (4)ポンプ2のインペラやケーシング内に空気や反応
装置に用いた場合に反応ガスが吸入されないので、ポン
プがキャビテーションを起こすのを防止できる。 (5)気体は気体自吸管23から直接微細気泡発生器2
2内へ吸い込まれるので、反応装置に用いた場合に活性
の反応ガス(例えば、HClやフッ素化合物,COCl
2 等)がポンプ2のケーシング内に入らないので、化学
反応装置に用いてもポンプの耐久性を向上させることが
できる。 (6)ポンプ2の選択が液体の種別だけで選択でき、汎
用性に優れる。 (7)液相11が、活魚輸送用の水槽内である場合は、
水槽内に酸素を供給しながら水流を起こすことにより、
活魚が弱まるのを防止することができ、長時間の輸送が
可能になる。 (8)先細り式水流発生ノズル6’の吸込み側と吐出側
の内径の比や、吸込み側と吐出側の距離を適宜選択する
ことにより所望の吐出量や吐出圧で吐出させることがで
きる。 (9)先細り式水流発生ノズル6’は吐出側に向かって
内径が小さくなるだけの単純な構造なので、メンテナン
ス性に優れるとともに耐久性に優れる。
According to the water flow type microbubble generator of the second embodiment of the present invention configured as described above, the following operation can be obtained. (1) Even if only a liquid, not a gas-liquid mixed fluid, flows into the container 22a from the introduction pipe 21, centrifugal force acts on the liquid flowing into the container 22a from the tangential direction, and the central part is depressurized accordingly. , And self-primed from the gas self-priming tube 23 to flow therethrough to form the negative pressure axis Y. (2) The gas-liquid mixed fluid that has flowed into the water flow pipe 5 from the introduction pipe 21 flows into the liquid phase and forms a water flow. The microbubbles jetted from the gas-liquid jet holes 22c of the microbubble generator 22 can be diffused over a wide range along the water flow. (3) Only one pump 2 is used as the driving unit,
Fine bubbles and water flow can be generated. (4) When air or a reaction gas is used in the impeller or casing of the pump 2, the reaction gas is not sucked, so that cavitation of the pump can be prevented. (5) The gas is directly supplied from the gas self-priming tube 23 to the fine bubble generator 2.
2 so that it is activated when used in a reactor (for example, HCl, fluorine compounds, COCl 2).
2 ) does not enter the casing of the pump 2, so that the durability of the pump can be improved even when used in a chemical reaction device. (6) The selection of the pump 2 can be made only by the type of the liquid, which is excellent in versatility. (7) When the liquid phase 11 is in an aquarium for transporting live fish,
By creating a water flow while supplying oxygen into the aquarium,
The live fish can be prevented from weakening, and long-time transportation is possible. (8) By appropriately selecting the ratio of the inner diameter of the suction side to the discharge side of the tapered water flow generation nozzle 6 'and the distance between the suction side and the discharge side, it is possible to discharge at a desired discharge amount and discharge pressure. (9) The tapered water flow generation nozzle 6 'has a simple structure in which the inner diameter decreases toward the discharge side, so that it is excellent in maintenance and durability.

【0037】[0037]

【発明の効果】以上のように本発明の水流式微細気泡発
生装置によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、以下の効果を有する。 (1)導入管から器体内に高圧の気液混合流体を流入さ
せると、接線方向から器体内に流入した気液混合流体
は、器体の内壁面に沿って旋回し、激しく気液混合され
ながら、気液噴出孔側へ移動していく。この際、液体と
気体との比重の差によって、液体には遠心力が働き、気
体には向心力が働き、気体が中心軸に集束し負圧軸が形
成される。また、負圧軸により、気液噴出孔付近の液相
の液体には、微細気泡発生器内に進入しようとする力が
働く(以下、この力が働く液体を負圧液という)。一
方、微細気泡発生器内の気液混合流体は、旋回しながら
気液噴出孔に近づくにつれて、旋回速度が速くなるとと
もに圧力が高くなり、気液噴出孔付近で旋回速度及び圧
力は最大となり、負圧液と押し合う状態になる。負圧軸
に集まった気体は、負圧液と旋回している気液混合流体
とによって形成された間隙を圧縮気体となって剪断され
ながら通過し、気液混合流体とともに多量の微細気泡と
して気液噴出孔から液相へ噴出される。 (2)旋回しながら噴出される気液混合流体と負圧液と
により、負圧軸に集まった気体は圧縮・剪断され、引き
ちぎられるようにして噴出されるので、多量のナノメー
タ乃至マイクロメータオーダーの微細気泡を発生させる
ことができる。 (3)導入管から水流管へ流入した気液混合流体は液相
へ流れ込み、水流を形成する。この水流にのって、微細
気泡が広範囲に拡散される。 (4)微細気泡発生用のポンプと水流発生用のポンプを
別々に備える必要がなく、1機のポンプで微細気泡及び
水流を発生させることができるので、生産性に優れると
ともにメンテナンス性に優れる。 (5)微細気泡を多量に発生させるので、気体と液体の
接触面積を大きくすることができ、気液反応装置におけ
る反応や、浄化装置における浄化を促進させることがで
きる。また、養殖池や養殖場もしくは活魚運搬車の水
(海水)中の溶存酸素量を増加させることができる。
As described above, according to the water flow type microbubble generator of the present invention, the following advantageous effects can be obtained.
According to the first aspect of the present invention, the following effects are obtained. (1) When a high-pressure gas-liquid mixed fluid flows into the housing from the introduction pipe, the gas-liquid mixed fluid flowing into the housing from the tangential direction turns along the inner wall surface of the housing and is violently mixed. While moving toward the gas-liquid orifice side. At this time, due to the difference in specific gravity between the liquid and the gas, a centrifugal force acts on the liquid, a centripetal force acts on the gas, and the gas is focused on the central axis to form a negative pressure axis. In addition, a force that tries to enter the microbubble generator acts on the liquid-phase liquid near the gas-liquid ejection hole due to the negative pressure axis (hereinafter, the liquid on which this force acts is referred to as a negative pressure liquid). On the other hand, as the gas-liquid mixed fluid in the microbubble generator approaches the gas-liquid orifice while swirling, the swirling speed increases and the pressure increases, and the swirling speed and pressure become maximum near the gas-liquid orifice, It comes into a state of pressing against the negative pressure liquid. The gas collected on the negative pressure axis passes through the gap formed by the negative pressure liquid and the swirling gas-liquid mixed fluid as compressed gas while being sheared, and as a large amount of fine bubbles along with the gas-liquid mixed fluid. It is ejected from the liquid ejection hole into the liquid phase. (2) The gas collected on the negative pressure axis is compressed / sheared by the gas-liquid mixed fluid and the negative pressure liquid ejected while rotating, and is ejected so as to be torn off. Of fine bubbles can be generated. (3) The gas-liquid mixed fluid that has flowed into the water flow pipe from the introduction pipe flows into the liquid phase and forms a water flow. The microbubbles are diffused over a wide area along the water flow. (4) It is not necessary to separately provide a pump for generating microbubbles and a pump for generating water flow, and a single pump can generate microbubbles and a water flow, so that productivity is excellent and maintenance is excellent. (5) Since a large amount of fine bubbles are generated, the contact area between the gas and the liquid can be increased, and the reaction in the gas-liquid reaction device and the purification in the purification device can be promoted. In addition, the amount of dissolved oxygen in the water (seawater) of the culture pond, the farm, or the live fish transport vehicle can be increased.

【0038】請求項2に記載の発明によれば、請求項1
の効果に加え、以下の効果を有する。 (1)器体の導入管を中心として略対称の位置に気液噴
出孔が穿設されているので、器体の両側から多量の微細
気泡をより広範囲に拡散させることができる。 (2)気液噴出孔を2個所備えているので、微細気泡の
粒径の調整を容易に行うことができる。 (3)微細気泡の発生率を著しく高めることができる。
According to the invention described in claim 2, according to claim 1
In addition to the effects described above, the following effects are provided. (1) Since the gas-liquid ejection holes are formed substantially symmetrically with respect to the introduction pipe of the container, a large amount of fine bubbles can be diffused from both sides of the container over a wider range. (2) Since two gas-liquid ejection holes are provided, it is possible to easily adjust the particle diameter of the fine bubbles. (3) The generation rate of fine bubbles can be significantly increased.

【0039】請求項3に記載の発明によれば、請求項1
の効果に加え、以下の効果を有する。 (1)導入管から器体内に気液混合流体でなく液体のみ
を流入させても、接線方向から器体内に流入した液体に
は遠心力が働き、中心部は負圧となりその分中心部には
気体自吸管から気体が流入し負圧軸が形成される。 (2)気体自吸管を大気に開放したり、目的とする吸収
又は反応ガス(例えば、CO2 ,HCl,HCN,SO
2 ,COCl2 ,フッ素化合物ガス等他の反応ガス)に
接続するだけで液体に気体を吸収もしくは反応させるこ
とができる。
According to the invention described in claim 3, according to claim 1
In addition to the effects described above, the following effects are provided. (1) Even if only a liquid, not a gas-liquid mixed fluid, flows into the container from the inlet pipe, the liquid flowing into the container from the tangential direction acts on the liquid by centrifugal force, so that the central portion becomes negative pressure and the central portion becomes negative pressure. The gas flows from the gas self-priming tube to form a negative pressure axis. (2) The gas self-priming tube is opened to the atmosphere, or a target absorption or reaction gas (for example, CO 2 , HCl, HCN, SO
2 , COCl 2 , fluorine compound gas or other reaction gas), the gas can be absorbed or reacted with the liquid.

【0040】請求項4に記載の発明によれば、請求項1
乃至3の内何れか一項の効果に加え、以下の効果を有す
る。 (1)水流発生ノズルが延設されているので、水流管か
ら流出する液体又は気液混合流体の流速に勢いをつける
ことができ、より広範囲に微細気泡を拡散させることが
できる。 (2)液相を混合攪拌することができ、気体の溶解斑を
抑えることができる。
According to the invention described in claim 4, according to claim 1 of the present invention,
The following effects are obtained in addition to the effects described in any one of (3) to (3). (1) Since the water flow generation nozzle is extended, the flow velocity of the liquid or the gas-liquid mixed fluid flowing out of the water flow pipe can be increased, and the fine bubbles can be diffused over a wider range. (2) The liquid phase can be mixed and agitated, and the dissolution spot of gas can be suppressed.

【0041】請求項5に記載の発明によれば、請求項
1、2、4の内何れか一項の効果に加え、以下の効果を
有する。 (1)ポンプを駆動させると、気体自吸管から気体が吸
込管内を流れる流体の随伴流として吸込管内に吸い込ま
れ、気液混合流体となって器体に流入する。 (2)気体自吸管から吸い込まれた気体は、ポンプ内の
インペラによってある程度拡散されてから器体に流入す
るので、より微細な気泡を発生させることができる。 (3)微細気泡発生用のポンプと水流発生用のポンプを
別々に備える必要がなく、1機のポンプで微細気泡及び
水流を発生させることができるので、生産性に優れると
ともにメンテナンス性に優れる。 (4)微細気泡発生器内だけでなく、水流管内にも気体
が流入するので、微細気泡発生器から噴出される微細気
泡と水流管から噴出される大きな気泡とを噴出させるこ
とができる。大きな気泡は水流管から噴出された後比較
的すぐに浮上し、微細気泡は噴出された後大きな気泡に
比べ長い距離移動した後浮上する。よって、微細気泡発
生装置の近くには大きな気泡を、遠くには微細気泡を拡
散させることができる。
According to the fifth aspect of the present invention, the following effects are obtained in addition to the effects of any one of the first, second, and fourth aspects. (1) When the pump is driven, gas is sucked from the gas self-priming pipe into the suction pipe as an accompanying flow of the fluid flowing through the suction pipe, and flows into the body as a gas-liquid mixed fluid. (2) Since the gas sucked from the gas self-priming pipe is diffused to some extent by the impeller in the pump and then flows into the container, finer bubbles can be generated. (3) It is not necessary to separately provide a pump for generating microbubbles and a pump for generating water flow, and a single pump can generate microbubbles and a water flow, so that productivity and maintenance are excellent. (4) Since gas flows not only into the fine bubble generator but also into the water flow tube, it is possible to blow out fine bubbles blown out from the fine bubble generator and large bubbles blown out from the water flow tube. The large bubbles float relatively quickly after being ejected from the water flow tube, and the fine bubbles float after traveling a longer distance than the large bubbles after being ejected. Therefore, large bubbles can be diffused near the microbubble generator and fine bubbles can be diffused far away.

【0042】請求項6に記載の発明によれば、請求項3
又は4の効果に加え、以下の効果を有する。 (1)ポンプを駆動させると、流体は吸込管から,ポン
プを経て,導入管や水流管に流入する。 (2)微細気泡発生用のポンプと水流発生用のポンプを
別々に備える必要がなく、1機のポンプで微細気泡及び
水流を発生させることができるので、生産性に優れると
ともにメンテナンス性に優れる。 (3)ポンプのインペラやケーシング内に空気や反応ガ
スが吸入されないので、ポンプがキャビテーションを起
こすのを防止できる。 (4)活性の反応ガス(例えば、HClやフッ素化合
物,COCl2 等)がポンプのケーシング内に入らない
ので,ポンプの耐久性を向上させることができる。 (5)ポンプの選択が液体の種別だけで選択でき、汎用
性に優れる。 (6)微細気泡発生器と吸込管を同一液相に投入した場
合は、気体の溶存率を著しく高めるとともに、液相を攪
拌し気体の吸収効率や反応率を著しく高めることができ
る。
According to the invention of claim 6, according to claim 3,
Or, in addition to the effects of 4, the following effects are obtained. (1) When the pump is driven, the fluid flows from the suction pipe through the pump to the introduction pipe or the water flow pipe. (2) It is not necessary to separately provide a pump for generating microbubbles and a pump for generating water flow, and a single pump can generate microbubbles and a water flow, so that productivity is excellent and maintenance is excellent. (3) Since air or reactive gas is not sucked into the impeller or casing of the pump, it is possible to prevent the pump from cavitation. (4) Since active reaction gas (for example, HCl, a fluorine compound, COCl 2, etc.) does not enter the casing of the pump, the durability of the pump can be improved. (5) The selection of the pump can be made only by the type of the liquid, which is excellent in versatility. (6) When the microbubble generator and the suction tube are put in the same liquid phase, the gas dissolution rate can be significantly increased, and the liquid phase can be stirred to significantly increase the gas absorption efficiency and the reaction rate.

【0043】[0043]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における水流式微細気泡
発生装置を生簀に設置した状態を示す状態図
FIG. 1 is a state diagram showing a state in which a water flow type microbubble generator according to Embodiment 1 of the present invention is installed in a fish cage.

【図2】(a)本発明の実施の形態1における微細気泡
発生器の要部斜視図 (b)本発明の実施の形態1における微細気泡発生器の
要部正面図 (c)本発明の実施の形態1における微細気泡発生器の
要部側面図
FIG. 2A is a perspective view of a main part of the fine bubble generator according to the first embodiment of the present invention. FIG. 2B is a front view of a main part of the fine bubble generator according to the first embodiment of the present invention. Side view of main part of microbubble generator in embodiment 1

【図3】本発明の実施の形態1における水流発生ノズル
の一例を示す側面断面図
FIG. 3 is a side sectional view showing an example of a water flow generation nozzle according to the first embodiment of the present invention.

【図4】本発明の実施の形態1における微細気泡発生器
内部の流体の状態を示す要部正面状態図
FIG. 4 is an essential part front view showing the state of the fluid inside the fine bubble generator according to Embodiment 1 of the present invention.

【図5】本発明の実施の形態2における水流式微細気泡
発生装置の構成図
FIG. 5 is a configuration diagram of a water flow type microbubble generator according to Embodiment 2 of the present invention.

【図6】(a)本発明の実施の形態2における微細気泡
発生器の要部斜視図 (b)本発明の実施の形態2における微細気泡発生器の
要部正面図 (c)本発明の実施の形態2における微細気泡発生器の
要部側面図
FIG. 6A is a perspective view of a main part of a microbubble generator according to a second embodiment of the present invention. FIG. 6B is a front view of a main part of the microbubble generator according to the second embodiment of the present invention. Side view of main part of microbubble generator in embodiment 2

【図7】本発明の実施の形態2における微細気泡発生器
内部の流体の状態を示す要部断面状態図
FIG. 7 is a sectional view of a main part showing a state of a fluid inside a microbubble generator according to Embodiment 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 水流式微細気泡発生装置 2 ポンプ 2a 吸込口 2b 吐出口 3 導入管 4 微細気泡発生器 4a 器体 4b 導入孔 4c 気液噴出孔 5 水流管 6 水流発生ノズル 6’ 先細り式水流発生ノズル 6a 水流用器体 6b 水流用吸込管 6c 水流用気体自吸孔 6d 水流用噴出孔 7 水流用気体自吸管 8 吸込管 9 ストレーナ 10 気体自吸管 10a 気体流量調整器 11 液相 11a 生簀 20 水流式微細気泡発生装置 21 導入管 22 水流式微細気泡発生器 22a 器体 22b 導入孔 22c 気液噴出孔 22d 気体自吸孔 23 気体自吸管 Reference Signs List 1 water flow type fine bubble generator 2 pump 2a suction port 2b discharge port 3 introduction pipe 4 fine bubble generator 4a body 4b introduction hole 4c gas-liquid ejection hole 5 water flow pipe 6 water flow generation nozzle 6 'tapered water flow generation nozzle 6a water flow Apparatus 6b Water flow suction pipe 6c Water flow gas self-priming hole 6d Water flow gas ejection hole 7 Water flow gas self-priming pipe 8 Suction pipe 9 Strainer 10 Gas self-priming pipe 10a Gas flow regulator 11 Liquid phase 11a Water-flow type 20 Fine water bubbles Generator 21 Inlet tube 22 Water flow type fine bubble generator 22a Body 22b Inlet hole 22c Gas-liquid ejection hole 22d Gas self-priming hole 23 Gas self-priming tube

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 a.後部側から前端部に向かって集束す
る形状の中空部を内部に有する器体と、前記器体の後部
側に接線方向に配設された導入孔と、前記器体の前端部
に配設された気液噴出孔と、を有している微細気泡発生
器と、 b.下流側が前記導入孔に接続された導入管と、 c.前記導入管の所定部に接続され下流側が開口された
水流管と、 を備えていることを特徴とする水流式微細気泡発生装
置。
1. A method comprising: a. A container having a hollow portion having a shape converging from the rear side toward the front end, an introduction hole disposed tangentially on the rear side of the container, and a front end of the container. A micro-bubble generator having a gas-liquid orifice; b. An inlet pipe having a downstream side connected to the inlet hole; c. A water flow pipe connected to a predetermined portion of the introduction pipe and having an open downstream side.
【請求項2】 前記微細気泡発生器が、 中間部から両端部に向かって集束する形状の中空部を内
部に有する器体と、前記器体の前記中間部に接線方向に
配設され前記器体内で開口する導入孔を有する導入管
と、前記器体の前記導入管を中心として略対称位置に穿
設された気液噴出孔と、を備えていることを特徴とする
請求項1に記載の水流式微細気泡発生装置。
2. A container having therein a hollow portion having a shape converging from an intermediate portion toward both ends, and a container tangentially disposed in the intermediate portion of the container. 2. An introduction tube having an introduction hole opened in a body, and a gas-liquid ejection hole drilled at a position substantially symmetric about the introduction tube of the vessel. Water flow type fine bubble generator.
【請求項3】 前記微細気泡発生器の後端部又は後部壁
に穿設された気体自吸孔と、一端側が前記気体自吸孔に
接続され他端側が開口された気体自吸管と、を備えてい
ることを特徴とする請求項1に記載の水流式微細気泡発
生装置。
3. A gas self-priming hole formed in a rear end portion or a rear wall of the microbubble generator, and a gas self-priming tube having one end connected to the gas self-priming hole and the other end opened. The water flow type fine bubble generator according to claim 1, further comprising:
【請求項4】 前記水流管の下流側に配設された水流発
生ノズルを備えていることを特徴とする請求項1乃至3
の内何れか一項に記載の水流式微細気泡発生装置。
4. The apparatus according to claim 1, further comprising a water flow generation nozzle disposed downstream of said water flow pipe.
The water flow type fine bubble generator according to any one of the above.
【請求項5】 吸込口と吐出口とを有し前記吐出口に前
記導入管の上流側が接続されたポンプと、下流側が前記
ポンプの前記吸込口に接続された吸込管と、一端側が前
記吸込管の所定部に接続され他端側が気体中で開口され
た気体自吸管と、を備えていることを特徴とする請求項
1、2、4の内何れか一項に記載の水流式微細気泡発生
装置。
5. A pump having a suction port and a discharge port, wherein the upstream of the introduction pipe is connected to the discharge port, a suction pipe downstream of which is connected to the suction port of the pump, and one end of the suction pipe is connected to the suction port. A water flow type microbubble according to any one of claims 1, 2, and 4, further comprising: a gas self-priming tube connected to a predetermined portion of the tube and having the other end opened in gas. Generator.
【請求項6】 吸込口と吐出口とを有し前記吐出口に前
記導入管の上流側が接続されたポンプと、下流側が前記
ポンプの前記吸込口に接続された吸込管と、を備えてい
ることを特徴とする請求項3又は4に記載の水流式微細
気泡発生装置。
6. A pump having a suction port and a discharge port, wherein the discharge port has an upstream side of the introduction pipe connected to the discharge port, and a downstream side has a suction pipe connected to the suction port of the pump. The water flow type fine bubble generator according to claim 3 or 4, wherein:
JP2000247822A 2000-08-17 2000-08-17 Water-jet type fine bubble generator Withdrawn JP2002059186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247822A JP2002059186A (en) 2000-08-17 2000-08-17 Water-jet type fine bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000247822A JP2002059186A (en) 2000-08-17 2000-08-17 Water-jet type fine bubble generator

Publications (1)

Publication Number Publication Date
JP2002059186A true JP2002059186A (en) 2002-02-26

Family

ID=18737836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247822A Withdrawn JP2002059186A (en) 2000-08-17 2000-08-17 Water-jet type fine bubble generator

Country Status (1)

Country Link
JP (1) JP2002059186A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111616A (en) * 2005-10-19 2007-05-10 Sharp Corp Fine air-bubble generating device
JP2007118006A (en) * 2006-11-24 2007-05-17 National Institute Of Advanced Industrial & Technology Method and device for utilizing nanobubble
JP2008237996A (en) * 2007-03-26 2008-10-09 Nakata Coating Co Ltd Fine air bubble producer, and washing device, showering device, and fish preserve using the same
JP2008237995A (en) * 2007-03-26 2008-10-09 Nakata Coating Co Ltd Fine air bubble producer, and washing device, showering device, and fish preserve using the same
JP2008246268A (en) * 2006-02-03 2008-10-16 Osamu Matsumoto Bubble generator
US7703752B2 (en) 2003-07-25 2010-04-27 Yara International Asa Method and equipment for mixing fluids
JP4903292B1 (en) * 2011-05-17 2012-03-28 修一 石川 Swivel type micro bubble generator
JP2013081944A (en) * 2013-02-08 2013-05-09 Miike Iron Works Co Ltd Fining mixer
JP2014083502A (en) * 2012-10-24 2014-05-12 Shinko Sangyo Kk Neutralization apparatus of alkali water
JP2014090673A (en) * 2012-10-31 2014-05-19 Aqua Design Amano:Kk Water introduction pipe
JP2014231046A (en) * 2013-05-29 2014-12-11 株式会社アースリンク Generation method of micro-nanobubble, generator of micro-nanobubble and generation device of micro-nanobubble
NO339678B1 (en) * 2003-07-25 2017-01-23 Yara Int Asa Methods and Equipment for Mixing Fluids
CN109589070A (en) * 2017-09-30 2019-04-09 宁波方太厨具有限公司 A kind of spray arm and application have the cleaning machine of the spray arm
CN111081609A (en) * 2019-12-26 2020-04-28 西安奕斯伟硅片技术有限公司 Cleaning and etching system
CN115475545A (en) * 2021-06-16 2022-12-16 苏玟足 Bubble generating device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO339678B1 (en) * 2003-07-25 2017-01-23 Yara Int Asa Methods and Equipment for Mixing Fluids
US7703752B2 (en) 2003-07-25 2010-04-27 Yara International Asa Method and equipment for mixing fluids
JP2007111616A (en) * 2005-10-19 2007-05-10 Sharp Corp Fine air-bubble generating device
JP2008246268A (en) * 2006-02-03 2008-10-16 Osamu Matsumoto Bubble generator
JP2007118006A (en) * 2006-11-24 2007-05-17 National Institute Of Advanced Industrial & Technology Method and device for utilizing nanobubble
JP2008237995A (en) * 2007-03-26 2008-10-09 Nakata Coating Co Ltd Fine air bubble producer, and washing device, showering device, and fish preserve using the same
JP2008237996A (en) * 2007-03-26 2008-10-09 Nakata Coating Co Ltd Fine air bubble producer, and washing device, showering device, and fish preserve using the same
JP4903292B1 (en) * 2011-05-17 2012-03-28 修一 石川 Swivel type micro bubble generator
JP2012239953A (en) * 2011-05-17 2012-12-10 Shuichi Ishikawa Revolving type fine air bubble generator
JP2014083502A (en) * 2012-10-24 2014-05-12 Shinko Sangyo Kk Neutralization apparatus of alkali water
JP2014090673A (en) * 2012-10-31 2014-05-19 Aqua Design Amano:Kk Water introduction pipe
JP2013081944A (en) * 2013-02-08 2013-05-09 Miike Iron Works Co Ltd Fining mixer
JP2014231046A (en) * 2013-05-29 2014-12-11 株式会社アースリンク Generation method of micro-nanobubble, generator of micro-nanobubble and generation device of micro-nanobubble
CN109589070A (en) * 2017-09-30 2019-04-09 宁波方太厨具有限公司 A kind of spray arm and application have the cleaning machine of the spray arm
CN109589070B (en) * 2017-09-30 2024-01-16 宁波方太厨具有限公司 Spray arm and cleaning machine applying same
CN111081609A (en) * 2019-12-26 2020-04-28 西安奕斯伟硅片技术有限公司 Cleaning and etching system
CN115475545A (en) * 2021-06-16 2022-12-16 苏玟足 Bubble generating device

Similar Documents

Publication Publication Date Title
JP3682286B2 (en) Fine bubble generator and fine bubble generator provided with the same
JP4525890B2 (en) Swivel type micro bubble generator
KR100843970B1 (en) Apparatus of generating microbubble
JP4420161B2 (en) Method and apparatus for generating swirling fine bubbles
US6382601B1 (en) Swirling fine-bubble generator
JP2000000447A (en) Swirling type fine bubble generator
JP2009082903A (en) Microbubble generator
JP2002059186A (en) Water-jet type fine bubble generator
JP3765759B2 (en) Microbubble generator
JP2003145190A (en) Aerator
JPWO2005115596A1 (en) Fine bubble-containing liquid production method and apparatus, and fine bubble generator incorporated therein
JP2010155243A (en) Swirling type fine-bubble generating system
JP2008126226A (en) Agitation aerator
JP2006116365A (en) Revolving type fine air bubble generator and fine air bubble generating method
CN201981065U (en) Micro-nano jet aerator
US7802775B2 (en) Method and apparatus for mixing of two fluids
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JPH11333491A (en) Microbubble jet water purifying apparatus
WO2017056323A1 (en) Device for dissolving oxygen in water and method for dissolving oxygen in water using same
CN213294876U (en) Balanced jet aerator
JP2001205278A (en) Sewage cleaning treatment apparatus
US20050056951A1 (en) Mixing apparatus
JPH10230150A (en) Aerator
KR100968752B1 (en) Multi aeration-mixing machine
JP2009178702A (en) Gas-liquid mixing equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106