JP2012250176A - Nozzle for generating micro air bubbles - Google Patents

Nozzle for generating micro air bubbles Download PDF

Info

Publication number
JP2012250176A
JP2012250176A JP2011124703A JP2011124703A JP2012250176A JP 2012250176 A JP2012250176 A JP 2012250176A JP 2011124703 A JP2011124703 A JP 2011124703A JP 2011124703 A JP2011124703 A JP 2011124703A JP 2012250176 A JP2012250176 A JP 2012250176A
Authority
JP
Japan
Prior art keywords
nozzle
liquid flow
flow path
liquid
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011124703A
Other languages
Japanese (ja)
Inventor
Naoya Ichimura
直也 市村
Tatsuro Hirase
辰朗 平瀬
Original Assignee
Kri Inc
株式会社Kri
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kri Inc, 株式会社Kri filed Critical Kri Inc
Priority to JP2011124703A priority Critical patent/JP2012250176A/en
Publication of JP2012250176A publication Critical patent/JP2012250176A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a nozzle for generating micro air bubbles of micro meter size using low pressure water flow with a simple constitution.SOLUTION: The nozzle can generate micro air bubbles of micro meter size by a following structure. In a liquid flow path, a throttle part having a horizontal hole is provided. Venturi effect is used to suck air into the liquid flow and air bubbles are generated in the liquid flow. The liquid flow containing these bubbles is made to pass through a flow path where structures having tangled linear bodies and/or lengthy thin pieces are packed.

Description

本発明は、液体中に気体を簡易に混入させ、かつ、液体中に微細気泡を発生させる微細気泡発生ノズルに関する。   The present invention relates to a fine bubble generating nozzle for easily mixing a gas into a liquid and generating fine bubbles in the liquid.
従来より、水流を利用した気泡発生方法として、水流の流路途中を絞った構造としてベンチュリ効果を引き出す構造としたベンチュリ管が利用されている。すなわち、流路の絞り部分に空気供給の管を接続して泡を発生させる。圧力の損失も少なく、水道圧よりも低い圧力でも泡を発生させることができる。
しかし、この方法では、ミリメートルサイズの大きな泡が発生して、数十マイクロメートルの微細な気泡を発生することが難しい。
Conventionally, as a method of generating bubbles using a water flow, a venturi tube having a structure that draws out a venturi effect as a structure that narrows the middle of the flow path of the water flow has been used. That is, bubbles are generated by connecting an air supply pipe to the throttle portion of the flow path. There is little loss of pressure, and bubbles can be generated even at a pressure lower than the water pressure.
However, with this method, it is difficult to generate a large bubble of millimeter size and to generate a fine bubble of several tens of micrometers.
微細な気泡を発生させる方法として、密閉容器内に充填した水に加圧した空気を注入し溶解させたあと、圧力開放して微細気泡を発生させる方法が開示されている。(特許文献1)
上述の方法では、装置構成が複雑であるとともに、圧力開放する出口部分の流路を狭く絞った構造としているため、水流を送る圧力を要し、水道圧程度では作動しないことや、狭く絞った部分に、ごみなどの不溶成分がたまり、閉塞を起こすなどの問題があった。
As a method for generating fine bubbles, a method is disclosed in which pressurized air is injected and dissolved in water filled in a sealed container, and then the pressure is released to generate fine bubbles. (Patent Document 1)
In the above-described method, the structure of the apparatus is complicated, and the flow path of the outlet part to release the pressure is narrowed. Therefore, the pressure to send the water flow is required, and it does not operate at about the water pressure, or narrowed down. There was a problem that insoluble components such as dust accumulated in the part and caused blockage.
また、高圧ポンプや加圧タンクを用いずにエゼクタを用いてマイクロバブル発生方法が開示されている。(特許文献2)
この方法では、循環ポンプを用いて循環させながらエゼクタ部分で液体流と液体と気体の混合流を合流させて、循環ポンプによりマイクロバブル発生ノズルに導く構造として、マイクロバブルの径を小さくして、20マイクロメータから40マイクロメータの微細気泡を発生させている。しかし、エゼクタとマイクロバブル発生ノズルとの組み合わせが必要であり、全体の構成が複雑である。
Further, a microbubble generation method using an ejector without using a high-pressure pump or a pressurized tank is disclosed. (Patent Document 2)
In this method, the diameter of the microbubbles is reduced as a structure in which the liquid flow and the mixed flow of the liquid and gas are merged in the ejector portion while being circulated using a circulation pump, and led to the microbubble generation nozzle by the circulation pump. Fine bubbles of 20 to 40 micrometers are generated. However, a combination of an ejector and a microbubble generating nozzle is required, and the overall configuration is complicated.
また、水流だけで微細気泡を発生させる方法としては、水流をノズル内で旋廻させて、旋廻のせん断効果で気泡を微細化する方法が開示されている。(特許文献3)
旋廻流で微細気泡を発生させるためには、水道圧を超える水圧が必要であることや、水流を旋廻させると、高周波の音が発生し、ノズル全体が振動する問題がある。また、水流を旋廻させるためには、ノズル全体のサイズが、人のこぶし大程度と、大きく、ノズルを小型にすることが難しい。
Further, as a method for generating fine bubbles only by a water flow, a method is disclosed in which a water flow is rotated in a nozzle and the bubbles are refined by a shearing effect of the rotation. (Patent Document 3)
In order to generate fine bubbles in a swirling flow, there is a problem that a water pressure exceeding the water pressure is required, and when the water flow is swirled, a high-frequency sound is generated and the entire nozzle vibrates. Further, in order to rotate the water flow, the size of the entire nozzle is as large as a human fist, and it is difficult to reduce the size of the nozzle.
さらに、他の発生方法として、数十マイクロメートルの気泡を発生する方法として、回転羽根の剪断力を利用する方法が開示されているが、羽の回転動力が必要であり、また、装置構成が複雑で、サイズを小さくすることが難しい。また、泡を羽で裁断するために、羽が泡と接する空間は狭く設定する必要があり、ごみなどによる羽回転空間の閉塞や、ごみによる羽の損傷が問題となる。(特許文献4)   Furthermore, as another generation method, as a method of generating bubbles of several tens of micrometers, a method using the shearing force of a rotating blade is disclosed, but the rotational power of the blade is required, and the device configuration is Complex and difficult to reduce in size. In addition, in order to cut the foam with the wings, it is necessary to set a space where the wings are in contact with the bubbles, and there is a problem that the wing rotation space is blocked by dust or the wings are damaged by the dust. (Patent Document 4)
特開昭63−283772号公報Japanese Unexamined Patent Publication No. 63-283377 特開2006−167613号公報JP 2006-167613 A 特開2003−205228号公報JP 2003-205228 A 特開2008−132437号公報JP 2008-132437 A
上述したように、液体への気体加圧注入と圧力開放を行う方法や回転羽を利用する方法では、装置構成が複雑であり発生機構を小型にすることが難しく、また、ごみのつまりの課題があり、一方、液体流による旋廻流を利用する方法では、同様に小型化が難しく、また、液体の送液圧力が必要である。   As described above, in the method of performing gas pressure injection and pressure release to a liquid and the method of using a rotating blade, the device configuration is complicated, and it is difficult to reduce the size of the generation mechanism. On the other hand, in the method using the swirl flow by the liquid flow, it is similarly difficult to reduce the size and the liquid feeding pressure is required.
本発明は、微細気泡を発生させるためのノズルとして、簡易な構造のノズルにより、ノズルサイズを小型にすること目的としている。
更には、本発明は、微細気泡を発生させるためのノズルとして、液体流の送液に高い圧力を必要とせず、かつ、ノズルサイズを小型にすること、かつ、微細気泡発生部分での、ごみの閉塞の課題を回避することを目的としている。
An object of the present invention is to reduce the nozzle size with a nozzle having a simple structure as a nozzle for generating fine bubbles.
Furthermore, the present invention does not require a high pressure for sending a liquid flow as a nozzle for generating fine bubbles, reduces the nozzle size, and creates dust at the portion where fine bubbles are generated. The aim is to avoid the problem of obstruction.
上記課題を解決するための本発明の微細気泡発生ノズルは、以下の技術的手段から構成される。   The fine bubble generating nozzle of the present invention for solving the above-described problems is composed of the following technical means.
〔1〕液体流路中に横穴を有する絞り部を設けてベンチュリ効果を利用して、液体流に気体を吸引させるノズルであって、前記液体流路の絞り部の下流液体流路内に、線状体及び/又は細長い形状の薄片体を絡み合わせた構造体を充填したことを特徴とする微細気泡発生ノズル。
〔2〕前記液体流路の絞り部の下流液体流路内の前記絡み合わせた構造体を充填した部分の断面における液体が通過できる面の面積が、液体流路の絞り部の上流液体流路の断面積よりも大きいことを特徴とする請求項1に記載の微細気泡発生ノズル。
〔3〕前記絡み合わせた構造体が、金属、合成樹脂(プラスチック)又は焼成体であることを特徴とする前記〔1〕又は〔2〕に記載の微細気泡発生ノズル。
[1] A nozzle that provides a constricted portion having a horizontal hole in the liquid flow path and uses the venturi effect to suck a gas into the liquid flow, and in the downstream liquid flow path of the constricted portion of the liquid flow path, A fine bubble generating nozzle, which is filled with a structure in which a linear body and / or an elongated thin body are intertwined.
[2] The area of the surface through which the liquid can pass in the cross-section of the portion filled with the entangled structure in the downstream liquid channel of the throttle part of the liquid channel is the upstream liquid channel of the throttle part of the liquid channel The fine bubble generating nozzle according to claim 1, wherein the nozzle is larger than a cross-sectional area of the nozzle.
[3] The fine bubble generating nozzle according to [1] or [2], wherein the entangled structure is a metal, a synthetic resin (plastic), or a fired body.
本発明によれば、簡易な構造のノズルを用いて、ナノメーター領域に近い一桁のマイクロメーターサイズの微細気泡を発生させることができる。
更に、本発明によれば低圧の水流を用いて、ナノメーター領域に近い一桁のマイクロメーターサイズの微細気泡を発生させることができる。
According to the present invention, it is possible to generate single-digit micrometer-sized fine bubbles close to the nanometer region using a nozzle having a simple structure.
Furthermore, according to the present invention, microbubbles having a single-digit micrometer size close to the nanometer region can be generated using a low-pressure water stream.
本発明の一実施形態に係るノズルの断面構成図The cross-sectional block diagram of the nozzle which concerns on one Embodiment of this invention 本発明のより好ましい実施形態に係るノズルの断面構成図Cross-sectional block diagram of a nozzle according to a more preferred embodiment of the present invention 本発明のノズルを用いたマイクロバブル発生装置の構成図Configuration diagram of a microbubble generator using the nozzle of the present invention 図2の構造を持つ試作ノズルにより水中に発生させた空気の微細気泡の粒度分布Particle size distribution of fine air bubbles generated in water by a prototype nozzle having the structure shown in FIG. 絡み合い構造を除外したノズルで発生させた気泡の粒度分布(比較例)Particle size distribution of bubbles generated by nozzle excluding entangled structure (comparative example)
本発明にかかる微細気泡発生ノズルは、ベンチュリ効果を利用して、低圧の液体流に、気体を引き込み、泡を形成させるとともに、ベンチュリ効果を引き出す部分(絞り部)よりも下流液体流路内に線状体及び/又は細長い形状の薄片体を絡み合わせた構造体を充填することにより、泡を微細化する。   The fine bubble generating nozzle according to the present invention uses the venturi effect to draw a gas into a low-pressure liquid flow to form bubbles, and in the downstream liquid flow path from a portion (throttle portion) that draws out the venturi effect. The foam is refined by filling the structure in which the linear body and / or the elongated thin section are intertwined.
本発明にかかる微細気泡発生ノズルは、液体流路中に横穴を有する絞り部を設けてあり、ベン中リー効果により横穴から気体が供給されるような構造になっており、前記液体流路は、通常、管形状になっており、その前記絡み合わせた構造体を充填する絞り部の下流液体流路の内径は、流路抵抗を大幅に増加させない限りにおいては、絞り部の内径より大きく、絞り部の下流液体流路内の前記絡み合わせた構造体を充填した部分の断面における液体が通過できる面の面積合計が、液体流路の絞り部の断面積よりも大きくなるような内径であればよい。
好ましくは、絞り部の下流液体流路の内径は、絞り部の上流液体流路の内径と一致させてよく、より好ましくは、下流液体流路の内径を絞り部の上流液体流路の内径より大きくして、前記絞り部の下流液体流路内の前記絡み合わせた構造体を充填した部分の断面における液体が通過できる面の面積が、液体流路の絞り部の上流部の断面積よりも大きくするほうが良い。
The fine bubble generating nozzle according to the present invention is provided with a constricted portion having a horizontal hole in the liquid channel, and has a structure in which gas is supplied from the horizontal hole due to the Ben-Lee effect. In general, the inner diameter of the downstream liquid flow path of the throttle portion that fills the entangled structure is larger than the inner diameter of the throttle portion unless the flow resistance is significantly increased. The inner diameter of the cross-section of the portion filled with the entangled structure in the downstream liquid flow path of the throttle section may be larger than the cross-sectional area of the liquid flow path. That's fine.
Preferably, the inner diameter of the downstream liquid channel of the throttle unit may match the inner diameter of the upstream liquid channel of the throttle unit, and more preferably, the inner diameter of the downstream liquid channel is greater than the inner diameter of the upstream liquid channel of the throttle unit. The area of the surface through which the liquid can pass in the cross section of the portion filled with the entangled structure in the downstream liquid flow path of the throttle portion is larger than the cross sectional area of the upstream portion of the throttle portion of the liquid flow path It is better to enlarge it.
本発明のノズルの材質については特に限定されるものでなく、ベンチュリー構造部分や網状物保持空間部分の材質は、塩化ビニルなどの可塑性樹脂や、ステンレス・鋳鉄・アルミニウム・銅・チタンなどの金属や、石英・ガラス・陶器などのセラミックスが例示される。   The material of the nozzle of the present invention is not particularly limited, and the material of the venturi structure portion and the net-like material holding space portion may be a plastic resin such as vinyl chloride, a metal such as stainless steel, cast iron, aluminum, copper, titanium, Examples thereof include ceramics such as quartz, glass and earthenware.
絞り部の上流液体流路と下流液体流路の内径が同一で、絞り部の下流液体流路に線状体及び/又は細長い形状の薄片体を絡み合わせた構造体を充填した絞り部の下流液体流路から構成される微細気泡発生ノズルの例を断面構造で図1に示す。図1において、ベンチュリ効果を引き出すための流路形状部分1(絞り部)において、液体流4により、ベンチュリ効果が発揮され、気体を供給する管2から、気体5が供給され、泡を液体中に発生させ、泡を含んだ液体流が、前記絡み合い構造体3の中を通過することにより、微細気泡を発生させる。   Downstream of the throttle section where the upstream liquid flow path and the downstream liquid flow path of the throttle section have the same inner diameter, and the downstream liquid flow path of the throttle section is filled with a structure in which a linear body and / or an elongated thin section is entangled An example of a fine bubble generating nozzle constituted by a liquid flow path is shown in FIG. In FIG. 1, the venturi effect is exerted by the liquid flow 4 in the flow channel shape portion 1 (throttle portion) for drawing out the venturi effect, and the gas 5 is supplied from the gas supply pipe 2 so that the bubbles are in the liquid. When the liquid flow containing bubbles passes through the entangled structure 3, fine bubbles are generated.
絞り部の上流液体流路よりも下流液体流路の内径を大きくし、絞り部の下流流路に線状体及び/又は細長い形状の薄片体を絡み合わせた構造体を充填した絞り部の下流液体流路から構成される微細気泡発生ノズルの例を断面構造で図2に示す。本構成の微細気泡発生ノズルは、前記絞り部の下流液体流路内の前記絡み合わせた構造体を充填した部分の断面における液体が通過できる面の面積が、液体流路の絞り部の上流部の断面積よりも大きくなっている。図2においても、ベンチュリ効果を引き出すための流路形状部分1(絞り部)において、液体流4により、ベンチュリ効果が発揮され、気体を供給する管2から、気体5が供給され、泡を液体中に発生させ、泡を含んだ液体流が、絡み合い構造体3の中を通過することにより、微細気泡を発生させる。   Downstream of the throttle section where the downstream liquid flow path has a larger inside diameter than the upstream liquid flow path of the throttle section and the downstream flow path of the throttle section is filled with a structure in which a linear body and / or an elongated thin piece body is entangled. An example of a fine bubble generating nozzle constituted by a liquid flow path is shown in FIG. In the fine bubble generating nozzle of this configuration, the area of the surface through which the liquid can pass in the cross section of the portion filled with the entangled structure in the downstream liquid flow channel of the throttle portion is the upstream portion of the throttle portion of the liquid flow channel The cross-sectional area is larger. Also in FIG. 2, the venturi effect is exhibited by the liquid flow 4 in the flow channel shape portion 1 (throttle portion) for drawing out the venturi effect, and the gas 5 is supplied from the gas supply pipe 2 and the bubbles are liquidated. When the liquid flow containing bubbles and containing bubbles passes through the entangled structure 3, fine bubbles are generated.
図1及び図2では、絞り部前後の形状が、ほぼ直角である形状のものが示してあるが、絞り部前後をテーパー状にして水流を導いても良い。   In FIGS. 1 and 2, the shape before and after the throttle portion is shown to be substantially perpendicular, but the front and rear of the throttle portion may be tapered to guide the water flow.
絞り部の下流液体流路内の絡み合い構造体が充填される部分は、下流液体流路の直管の部分であっても良いし、下流液体流路をテーパー状に広げたテーパー状部分であっても良いし、下流液体流路の直管部分を更に拡管した部分であっても良い。   The portion filled with the entangled structure in the downstream liquid flow path of the throttle portion may be a straight pipe portion of the downstream liquid flow path, or a tapered portion in which the downstream liquid flow path is expanded in a tapered shape. Alternatively, the straight pipe portion of the downstream liquid channel may be further expanded.
前記絡み合い構造体3は、線状体及び/又は細長い形状の薄片体を不規則に、空間部を有するように絡み合わせて充填したもの、あるいは、規則的に線状体及び/又は細長い形状の薄片体を配置するように充填したものであって、液体流の流路抵抗を大きく生じさせないものであればよい。
前記絡み合い構造体3の絡み合いの隙間間隔スケールは、ミリスケールでよく、液体流の流路抵抗が大きくならない程度として、マイクロスケールの間隔でもよい。
The entangled structure 3 is a structure in which a linear body and / or an elongated thin piece body is irregularly entangled and filled so as to have a space portion, or a regular linear body and / or an elongated shape. What is necessary is just to be filled so that a thin piece body may be arrange | positioned, Comprising: The flow path resistance of a liquid flow is not produced largely.
The entangled gap interval scale of the entangled structure 3 may be a millimeter scale, and may be a microscale interval so that the flow resistance of the liquid flow does not increase.
そして、絡み合い構造体3の充填量や充填密度は、流路抵抗を大幅に増加させない限りにおいては、制限されることはなく、液体流路の絞り部の下流液体流路内の前記絡み合わせた構造体を充填した部分の断面における液体が通過できる面の面積合計が、液体流路の絞り部の断面積よりも大きければよい。
好ましくは、絞り部の下流液体流路の管内径を大きくして、絞り部の下流液体流路内の前記絡み合わせた構造体を充填した部分の断面における液体が通過できる面の面積が、絞り部の上流液体流路の断面積よりも大きくするほうが良い。
The filling amount and packing density of the entangled structure 3 are not limited as long as the flow resistance is not significantly increased, and the entangled structures 3 are entangled in the downstream liquid flow path of the constricted portion of the liquid flow path. It is only necessary that the total area of the surface through which the liquid can pass in the cross section of the portion filled with the structure is larger than the cross sectional area of the throttle portion of the liquid channel.
Preferably, the area of the surface through which the liquid can pass in the cross section of the portion filled with the entangled structure in the downstream liquid flow path of the restriction portion is increased by increasing the pipe inner diameter of the downstream liquid flow path of the restriction portion. It is better to make it larger than the cross-sectional area of the upstream liquid flow path of the part.
絡み合い構造体3の材質は、特に限定されるものではないが、金属、合成樹脂(プラスチック)又は焼成体であることが好ましい。
前記材質は、ステンレス・銅・アルミニウム・鉄などの金属や、合成樹脂(プラスチック)として塩化ビニル、ナイロン、アクリルなどの各種有機ポリマーや、焼成体としてガラス、炭素材料、セラミックスまたは石英などを用いることができる。
The material of the entangled structure 3 is not particularly limited, but is preferably a metal, a synthetic resin (plastic) or a fired body.
The materials used are metals such as stainless steel, copper, aluminum, and iron, various organic polymers such as vinyl chloride, nylon, and acrylic as synthetic resins (plastics), and glass, carbon materials, ceramics, or quartz as fired bodies. Can do.
絡み合い構造体3の線状体及び/又は細長い形状の薄片体を空間部を有するように不規則に充填するものとして、例えば、金属たわしの様な形状の充填物や、毛玉状の充填物や、金属や木材の切削くずなどの形状のものなどが挙げられる。
また、例えば、金属の網を、不規則に折りたたんで充填してもよく、あるいは、金属の網を巻き重ねて円筒状にし、巻いた状態から長軸に沿って、ねじって不規則な状態として充填してもよい。
あるいは、金網のメッシュのピッチを崩さないように重ねて巻き上げ、円筒状にした金網の巻きあげの中心線を、液体流の流れ方向線に一致させて充填して、下流部の流路内に規則的に、空間配置してもよい。
また、線状体及び/又は細長い形状の薄片体からなる網状体を不規則に変形して、微細気泡発生ノズルの絞り部の下流部の流路部分に充填できるようなものであっても良い。
具体的には、線状体として各種金属性針金及び/又は繊維状、細い紐状若しくは針金状の炭素材料又は合成樹脂(プラスチック)を空間部を有するように不規則に絡み合わせて円筒形状に成型したもの、金属たわしに用いられている材料を円筒形状に成型したもの並びに線状体により作られている網を巻いて又は折り畳んで円筒形状に成型したものなどを挙げることができる。
As a material that irregularly fills the linear body and / or the elongated thin-walled body of the entangled structure 3 so as to have a space portion, for example, a filler such as a metal scourer, a pill-like filler, Examples include metal and wood cutting scraps.
Also, for example, the metal net may be folded and filled irregularly, or the metal net is rolled up into a cylindrical shape and twisted from the wound state along the major axis to form an irregular state. It may be filled.
Alternatively, it is rolled up so as not to break the pitch of the mesh of the wire mesh, and the center line of the cylindrical wire mesh is filled so as to coincide with the flow direction line of the liquid flow, and into the downstream channel. The space may be regularly arranged.
Further, a net-like body composed of a linear body and / or an elongated thin piece body may be irregularly deformed to fill a flow path portion downstream of the throttle portion of the fine bubble generating nozzle. .
Specifically, various metallic wires and / or fibrous, thin string-like or wire-like carbon materials or synthetic resins (plastics) are intertwined irregularly as a linear body so as to have a space, and formed into a cylindrical shape. Examples thereof include a molded product, a material used for metal scrubbers molded into a cylindrical shape, and a mesh formed by winding or folding a net made of a linear body.
流路内の絡み合い構造体を充填する絞り部の下流液体流路の長さは、目的とする微細気泡の発生状態を導くことができる長さでよく、特に、限定されることはない。   The length of the downstream liquid flow path of the throttle portion that fills the entangled structure in the flow path may be a length that can guide the target state of generation of fine bubbles, and is not particularly limited.
気泡の微細化は、泡を含んだ液体流が、流路内の絡み合い構造体を通過する途中で引き起こされる。液体流の中の液体中の泡の一部が、流路内の絡み合い構造体の固体表面に接触し、気体・液体の界面部分と固体・気体の界面部分が、ひとつの泡の局所部分として発生し、液体の流れの中で気泡として流れる部分と、絡み合い構造体に引き付けられる気泡部分が生じ、絡み合い構造体に引き付けされた気泡部分も、液体流によりノズル出口方向に流されることにより、結果として、泡の微細化が進行する。   Bubble miniaturization is caused while the liquid flow containing bubbles passes through the entangled structure in the flow path. Some of the bubbles in the liquid in the liquid flow come into contact with the solid surface of the entangled structure in the flow path, and the interface between the gas and liquid and the interface between the solid and gas are the local parts of one bubble. As a result, a part that flows as bubbles in the liquid flow and a bubble part that is attracted to the entangled structure are generated, and the bubble part that is attracted to the entangled structure is also caused to flow toward the nozzle outlet by the liquid flow. As shown in FIG.
本発明による微細気泡を発生させるための液体流の流量と、微細気泡の気体体積の関係は、液体の体積中の気体体積の比率である、ボイド率として、0.01%〜30%であることが好ましく、0.1%〜10%であることが更に好ましい。   The relationship between the flow rate of the liquid flow for generating microbubbles according to the present invention and the gas volume of the microbubbles is 0.01% to 30% as a void ratio, which is the ratio of the gas volume to the liquid volume. It is preferably 0.1% to 10%.
本発明による微細気泡発生のためのノズルを用いてマイクロバブルを発生させるための装置構成の一例を図3を用いて説明する。
本発明による微細気泡発生のためのノズル6には、気体を供給する配管7から気体が供給され、気体流量は、絞り8により調製される。本発明による微細気泡発生のためのノズル6は、液体を満たした槽9に浸漬されており、液体を満たした槽9から液体流通の配管10を経由して、液体ポンプ11により引き出され、液体流として、配管12を通過して、本発明による微細気泡発生のためのノズル6に液体流が供給される。そして、ノズル6を通過した液体流は、微細気泡を含んだ液体流となって、槽9に充填されている液体中に流れ出る。
An example of a device configuration for generating microbubbles using a nozzle for generating fine bubbles according to the present invention will be described with reference to FIG.
The nozzle 6 for generating fine bubbles according to the present invention is supplied with gas from a pipe 7 for supplying gas, and the gas flow rate is adjusted by the throttle 8. The nozzle 6 for generating fine bubbles according to the present invention is immersed in a tank 9 filled with liquid, and is drawn out from the tank 9 filled with liquid by a liquid pump 11 via a liquid circulation pipe 10. As a flow, the liquid flow is supplied to the nozzle 6 for generating fine bubbles according to the present invention through the pipe 12. And the liquid flow which passed the nozzle 6 turns into the liquid flow containing the fine bubble, and flows out in the liquid with which the tank 9 was filled.
液体は水であってもよく、有機溶媒であってもよい。   The liquid may be water or an organic solvent.
液体中に微細気泡を発生させる気体は、気体状のものであって、空気、酸素、窒素、二酸化炭素、水蒸気、アルゴン、ヘリウム、硫化水素、気体状のアンモニアが例示され、あるいは、それら気体にオゾンや塩素系成分などの気体成分を含有させた気体が例示される。
これらの液体と気体の組み合わせは、液体中に微細気泡を発生させる目的、すなわち溶解、反応等の目的によって適宜選択される。
The gas that generates fine bubbles in the liquid is in the form of a gas, and examples thereof include air, oxygen, nitrogen, carbon dioxide, water vapor, argon, helium, hydrogen sulfide, and gaseous ammonia. Examples include gases containing gas components such as ozone and chlorine-based components.
The combination of these liquid and gas is appropriately selected depending on the purpose of generating fine bubbles in the liquid, that is, the purpose of dissolution, reaction, and the like.
(実施例1)
図3に示す装置を用いて、図2に示す形状のノズルを用いて微細気泡を発生させた例を実施例1として示す。
実施例1に用いるために試作したノズルのサイズを以下に示す。ノズルの液体流4が流れ込む管(絞り部の上流液体流路)は、長さ30mm、内径4mmで、ベンチュリ効果を生じさせる部分(絞り部)の内径が1.5mm、長さ5mm、絞り部の中心部の横穴の内径は、0.5mmで、絞り部の下流液体流路は、内径14mm、長さを42mmとしてノズルを試作した。
Example 1
An example in which fine bubbles are generated by using the nozzle shown in FIG. 2 using the apparatus shown in FIG.
The sizes of the nozzles that were prototyped for use in Example 1 are shown below. The pipe into which the liquid flow 4 of the nozzle flows (upstream liquid flow path of the throttle portion) is 30 mm in length and 4 mm in inner diameter, and the inner diameter of the portion (throttle portion) causing the venturi effect is 1.5 mm, the length is 5 mm, the throttle portion The inner diameter of the horizontal hole in the center of the nozzle was 0.5 mm, and the downstream liquid flow path of the throttle portion was 14 mm in inner diameter and 42 mm in length.
絞り部の下流液体流路に充填した絡み合い構造体は、18メッシュ、線径0.37mmのステンレス製の網を重ねて巻きつけて、ねじりをいれて、メッシュ状態を不規則にしたものを試作して用いた。この場合の、絞り部の下流液体流路内に充填した絡み合わせた構造体の充填部の体積充填率は、5%であった。   The entangled structure filled in the liquid flow path downstream of the constricted part is a prototype of an irregular mesh with a mesh of 18 mesh and a stainless steel mesh with a wire diameter of 0.37 mm. Used. In this case, the volume filling rate of the filling portion of the entangled structure filled in the downstream liquid flow path of the throttle portion was 5%.
空気のラインは、外径4mmのナイロン製空圧チューブを用いて接続して、ノズル接続部分と反対のチューブ端に、ねじ式の空気調整弁を接続した。
ねじ式の空気調整弁を絞った状態で、幅20cm、奥行き20cm、水深20cmの水槽に貯留した4.5リットルの水道水を、ホースを介して、マグネットポンプ(イワキのマグネットポンプMD−30RZM(100V))に吸引し、水道圧以下でマグネットポンプ吐出側にホースを介して接続した本発明のノズルに通水して、ノズル全体は水道水貯留の水槽内の水面下に設置して、水槽内で、微細気泡を発生させた。
水流速度は毎分1.4リットルとし、ポンプ吐出側圧力0.1メガパスカルの条件で、水流ポンプから水を、本発明のマイクロバブル発生ノズルに通水し、空気の吸引速度は、毎分5ミリリットルになるように、絞りを調製し、水槽の水中に、目視で細かなマイクロバブルを発生させた。
The air line was connected using a nylon pneumatic tube having an outer diameter of 4 mm, and a screw-type air regulating valve was connected to the tube end opposite to the nozzle connection portion.
With the screw-type air regulating valve squeezed, 4.5 liters of tap water stored in a 20 cm wide, 20 cm deep, 20 cm deep water tank is passed through a hose through a magnet pump (Iwaki magnet pump MD-30RZM ( 100V)), and the water is passed through the nozzle of the present invention connected to the discharge side of the magnet pump through a hose at a pressure equal to or lower than the water pressure, and the whole nozzle is installed under the water surface in the water tank for storing the tap water. Inside, fine bubbles were generated.
The water flow rate is 1.4 liters per minute, and water is passed from the water flow pump to the microbubble generating nozzle of the present invention under the condition of a pump discharge side pressure of 0.1 megapascal. A diaphragm was prepared so as to be 5 ml, and fine microbubbles were visually generated in the water of the water tank.
マイクロバブルを発生させた水槽内から水を採取して、堀場製作所のレーザ回折・散乱式粒度分布測定装置LA910を用いて、採取した水に分散しているマイクロバブルの気泡粒径を測定した。
水槽中の試料水をピペットにより、10ミリリットル採取して、レーザ回折・散乱式粒度分布測定装置用のバッチ式セル(屈折率:0.76−000i)に添加して、粒度分布を測定した。
Water was collected from the water tank in which the microbubbles were generated, and the bubble particle size of the microbubbles dispersed in the collected water was measured using a laser diffraction / scattering type particle size distribution measuring apparatus LA910 manufactured by Horiba.
Ten milliliters of the sample water in the water tank was collected with a pipette and added to a batch cell (refractive index: 0.76-000i) for a laser diffraction / scattering particle size distribution measuring apparatus to measure the particle size distribution.
図4は、本発明のノズルを用いて発生させたマイクロバブルの粒度を測定した結果である。
本発明のノズルにより発生したマイクロバブルの泡径は約2マイクロメーターであることが確認され、先行例の泡径20から40マイクロメーターの10分の1程度の細かな泡径を生成できた。
FIG. 4 shows the results of measuring the particle size of the microbubbles generated using the nozzle of the present invention.
The bubble diameter of the microbubbles generated by the nozzle of the present invention was confirmed to be about 2 micrometers, and a fine bubble diameter of about one-tenth of the bubble diameter of 20 to 40 micrometers of the previous example could be generated.
(比較例)
比較例として、実施例1で使用したノズルの絞り部の下流液体流路内から絡み合わせた構造体を除去したノズルを用いた以外は、実施例1と同じ条件でテストを行い、発生させた気泡の粒度分布を計測した。その結果を図5に示した。
絡み合い構造がないノズルでは、発生する泡の大きさが不均一であり、40マイクロメーター、200マイクロメーター、および、400マイクロメーターの大きさであり、微細な泡はほとんど発生しなかった。
(Comparative example)
As a comparative example, a test was performed under the same conditions as in Example 1 except that a nozzle from which the entangled structure was removed from the downstream liquid flow path of the throttle part of the nozzle used in Example 1 was generated. The bubble size distribution was measured. The results are shown in FIG.
In the nozzle without the entangled structure, the size of the generated foam was non-uniform, and the sizes were 40 micrometers, 200 micrometers, and 400 micrometers, and almost no fine foam was generated.
本技術を適用すれば、簡易なノズル構造で、水流を利用して、水道圧以下の低圧で、微細気泡を発生させることができ、水中に空気を効率よく溶解させる必要がある排水処理や、泡の効果で汚れを除去するための洗浄操作などの微細気泡を発生させて水中に利用する場面に適用することができる。   If this technology is applied, it is possible to generate fine bubbles at a low pressure below the tap water pressure with a simple nozzle structure, using water flow, and wastewater treatment that needs to efficiently dissolve air in water, It can be applied to a scene where fine bubbles are generated and used in water such as a cleaning operation for removing dirt due to the effect of bubbles.
1 ベンチュリ効果を引き出すための流路形状部分
2 気体を供給する管
3 絡み合い構造体
4 液体流
5 気体
6 微細気泡発生のためのノズル
7 気体を供給する配管
8 絞り
9 液体を満たした槽
10 液体流通の配管
11 液体ポンプ
12 配管
DESCRIPTION OF SYMBOLS 1 Flow path shape part for drawing out a venturi effect 2 Gas supply pipe 3 Entanglement structure 4 Liquid flow 5 Gas 6 Nozzle for generating fine bubbles 7 Gas supply pipe 8 Restriction 9 Liquid filled tank 10 Liquid Distribution piping 11 Liquid pump 12 Piping

Claims (3)

  1. 液体流路中に横穴を有する絞り部を設けてベンチュリ効果を利用して、液体流に気体を吸引させるノズルであって、前記液体流路の絞り部の下流液体流路内に、線状体及び/又は細長い形状の薄片体を絡み合わせた構造体を充填したことを特徴とする微細気泡発生ノズル。
    A nozzle for providing a constricted portion having a horizontal hole in a liquid flow path to draw a gas into a liquid flow using the venturi effect, and a linear body in the downstream liquid flow path of the constricted portion of the liquid flow path And / or a fine bubble generating nozzle, which is filled with a structure in which thin strips having an elongated shape are intertwined.
  2. 前記液体流路の絞り部の下流液体流路内の前記絡み合わせた構造体を充填した部分の断面における液体が通過できる面の面積が、液体流路の絞り部の上流液体流路の断面積よりも大きいことを特徴とする請求項1に記載の微細気泡発生ノズル。
    The area of the surface through which the liquid can pass in the cross-section of the portion filled with the entangled structure in the downstream liquid flow path of the throttle section of the liquid flow path is the cross-sectional area of the upstream liquid flow path of the throttle section of the liquid flow path The fine bubble generating nozzle according to claim 1, wherein the nozzle is larger.
  3. 前記絡み合わせた構造体が、金属、合成樹脂(プラスチック)又は焼成体であることを特徴とする請求項1又は請求項2に記載の微細気泡発生ノズル。

    The fine bubble generating nozzle according to claim 1, wherein the entangled structure is a metal, a synthetic resin (plastic), or a fired body.

JP2011124703A 2011-06-03 2011-06-03 Nozzle for generating micro air bubbles Pending JP2012250176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124703A JP2012250176A (en) 2011-06-03 2011-06-03 Nozzle for generating micro air bubbles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011124703A JP2012250176A (en) 2011-06-03 2011-06-03 Nozzle for generating micro air bubbles

Publications (1)

Publication Number Publication Date
JP2012250176A true JP2012250176A (en) 2012-12-20

Family

ID=47523512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124703A Pending JP2012250176A (en) 2011-06-03 2011-06-03 Nozzle for generating micro air bubbles

Country Status (1)

Country Link
JP (1) JP2012250176A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015112581A (en) * 2013-12-13 2015-06-22 株式会社ウェルシィ Air diffusion device and air diffusion method
JP2016522701A (en) * 2013-04-22 2016-08-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Switchable gas and liquid release and delivery devices, systems and methods
JP2016190230A (en) * 2015-03-31 2016-11-10 シャープ株式会社 Gas solution liquid manufacturing equipment, gas solution liquid supplying equipment and gas solution liquid manufacturing method
JP2017113676A (en) * 2015-12-22 2017-06-29 株式会社東芝 Waste water treatment apparatus, and waste water treatment method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213478A (en) * 1975-07-24 1977-02-01 San Eng Kk Process for dissolving of hard-soluble gas and a gas dissolving appara tus used in said process
JPH0451228B2 (en) * 1987-05-15 1992-08-18 Matsushita Electric Works Ltd
JP2003205228A (en) * 1997-12-30 2003-07-22 Hirobumi Onari Turning type fine bubbles production apparatus
US20050077636A1 (en) * 2003-10-10 2005-04-14 Bortkevitch Sergey V. Method and apparatus for enhanced oil recovery by injection of a micro-dispersed gas-liquid mixture into the oil-bearing formation
JP2006167613A (en) * 2004-12-16 2006-06-29 Sanyo Electric Co Ltd Gas absorption apparatus
JP2008086868A (en) * 2006-09-29 2008-04-17 Kawamoto Pump Mfg Co Ltd Microbubble generator
JP2008132437A (en) * 2006-11-29 2008-06-12 Kubota Corp Microbubble generation apparatus
JP2008307511A (en) * 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd Apparatus for generating microbubble
JP2010029841A (en) * 2008-07-03 2010-02-12 Hiroshima Kasei Ltd Method for producing hydrogenated water
JP2012120997A (en) * 2010-12-09 2012-06-28 Hideyuki Nishizawa Method for producing microbubble and device therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213478A (en) * 1975-07-24 1977-02-01 San Eng Kk Process for dissolving of hard-soluble gas and a gas dissolving appara tus used in said process
JPH0451228B2 (en) * 1987-05-15 1992-08-18 Matsushita Electric Works Ltd
JP2003205228A (en) * 1997-12-30 2003-07-22 Hirobumi Onari Turning type fine bubbles production apparatus
US20050077636A1 (en) * 2003-10-10 2005-04-14 Bortkevitch Sergey V. Method and apparatus for enhanced oil recovery by injection of a micro-dispersed gas-liquid mixture into the oil-bearing formation
JP2006167613A (en) * 2004-12-16 2006-06-29 Sanyo Electric Co Ltd Gas absorption apparatus
JP2008086868A (en) * 2006-09-29 2008-04-17 Kawamoto Pump Mfg Co Ltd Microbubble generator
JP2008132437A (en) * 2006-11-29 2008-06-12 Kubota Corp Microbubble generation apparatus
JP2008307511A (en) * 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd Apparatus for generating microbubble
JP2010029841A (en) * 2008-07-03 2010-02-12 Hiroshima Kasei Ltd Method for producing hydrogenated water
JP2012120997A (en) * 2010-12-09 2012-06-28 Hideyuki Nishizawa Method for producing microbubble and device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522701A (en) * 2013-04-22 2016-08-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Switchable gas and liquid release and delivery devices, systems and methods
JP2015112581A (en) * 2013-12-13 2015-06-22 株式会社ウェルシィ Air diffusion device and air diffusion method
JP2016190230A (en) * 2015-03-31 2016-11-10 シャープ株式会社 Gas solution liquid manufacturing equipment, gas solution liquid supplying equipment and gas solution liquid manufacturing method
JP2017113676A (en) * 2015-12-22 2017-06-29 株式会社東芝 Waste water treatment apparatus, and waste water treatment method

Similar Documents

Publication Publication Date Title
JP4222572B2 (en) Nanofluid generator and cleaning apparatus
US7278630B2 (en) Apparatus and method for producing small gas bubbles in liquids
CA2529020C (en) Device and method for generating microbubbles in a liquid using hydrodynamic cavitation
EP1035912B1 (en) Mixer-injectors
US8991796B2 (en) Micro-bubble generator and micro-bubble generation device
KR100942589B1 (en) Micro bubble shower device
JP4194522B2 (en) Gas-liquid mixed bubble generator
US7997563B2 (en) Micro-bubble generator, vortex breakdown nozzle for micro-bubble generator, vane swirler for micro-bubble generator, micro-bubble generating method, and micro-bubble applying device
JP5390285B2 (en) Nano bubble generator
US3801015A (en) Foam generator
EP1844690B1 (en) Foam soap generator
JP2009136864A (en) Microbubble generator
US20130105601A1 (en) Fire Suppression Apparatus And Method For Generating Foam
JP2006136777A (en) Mixing apparatus for fine bubble
JP5932775B2 (en) Method of solubilizing carbon dioxide in water using high energy collisions
US7624969B2 (en) Two-stage injector-mixer
JP4206676B2 (en) Ozone mixing apparatus and ozone mixing method
JPS62168526A (en) Gas-liquid mixer
DK2950935T3 (en) foam dispenser
JP6129390B1 (en) Nanobubble generating nozzle and nanobubble generating apparatus
US20130288195A1 (en) Nozzle for Blasting Liquid Detergents with Dispersed Abrasive Particles
JP2008229516A (en) Microbubble shower
JP2005262200A (en) Water cleaning apparatus
US20190015604A1 (en) Method and Apparatus for the Production of Microscale Bubbles by Depressurization Cavitation
JP3890076B1 (en) Bubble generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150818