JP2007313466A - Emulsifying apparatus - Google Patents

Emulsifying apparatus Download PDF

Info

Publication number
JP2007313466A
JP2007313466A JP2006147564A JP2006147564A JP2007313466A JP 2007313466 A JP2007313466 A JP 2007313466A JP 2006147564 A JP2006147564 A JP 2006147564A JP 2006147564 A JP2006147564 A JP 2006147564A JP 2007313466 A JP2007313466 A JP 2007313466A
Authority
JP
Japan
Prior art keywords
emulsion
emulsifier
continuous phase
introduction path
piping system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006147564A
Other languages
Japanese (ja)
Other versions
JP4946180B2 (en
Inventor
Zen Ito
禅 伊東
So Kato
宗 加藤
Kiju Endo
喜重 遠藤
Hidekazu Tsuru
英一 津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006147564A priority Critical patent/JP4946180B2/en
Publication of JP2007313466A publication Critical patent/JP2007313466A/en
Application granted granted Critical
Publication of JP4946180B2 publication Critical patent/JP4946180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emulsifying apparatus having a simple structure and yet capable of preparing an emulsion having a fine and uniform particle size. <P>SOLUTION: An emulsifier 10 comprises a continuous-phase supply piping system, a dispersed-phase supply piping system, and an emulsion discharge piping system each in communication with the emulsifier 10 which is equipped with a continuous-phase introduction path 11 for preparing a primary emulsion by ejection of a dispersed-phase into a continuous-phase flowing in the continuous-phase introduction path 11 in communication with the continuous-phase supply piping system from a nozzle disposed in a dispersed-phase introduction path 12 in communication with the dispersed-phase supply piping system, an agitation chamber 14 for agitating the primary emulsion disposed downstream of and adjacent to the continuous-phase introduction path 11, a flow path 15 for preparing a secondary emulsion by further micronizing the primary emulsion disposed downstream of and adjacent to the agitation chamber 14, and a deceleration chamber 16 disposed downstream of and adjacent to the above flow path 15 for decelerating the secondary emulsion and transferring the same to the emulsion discharge piping system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水あるいは油などの連続相に油あるいは水などの分散相が均一に分散したエマルジョンを生産する乳化装置に関するものである。   The present invention relates to an emulsifying apparatus for producing an emulsion in which a dispersed phase such as oil or water is uniformly dispersed in a continuous phase such as water or oil.

エマルジョンとは、水と油のようにお互いに混じり合わない二つの液体に界面活性剤
(乳化剤)を添加し、攪拌等の操作を加え、油滴を水中(あるいは水滴を油中)に均一に分散した液−液系の乳濁液である。
Emulsion is the addition of a surfactant (emulsifier) to two liquids that do not mix with each other, such as water and oil, and operations such as stirring are performed to make the oil droplets uniform in water (or water droplets in oil). Dispersed liquid-liquid emulsion.

従来の一般的なエマルジョン生産方法としては、バッチ式生産が知られている。これは大型の容器に連続相や分散相の原料と界面活性剤を投入し、回転・攪拌機構を用いて一度に大量のエマルジョンを製造する生産方法である。しかし、この生産方法にはいくつかの問題点が存在する。   As a conventional general emulsion production method, batch production is known. This is a production method in which a raw material for a continuous phase or a dispersed phase and a surfactant are introduced into a large container and a large amount of emulsion is produced at once using a rotating / stirring mechanism. However, there are several problems with this production method.

1つ目は、液滴の粒径が均一でなく分布を持つことである。その理由は、回転・攪拌時に加えられるせん断力が液体全体に均一に加わらないためである。そして、この粒径分布が一定の値に安定化するためには20分以上の回転・攪拌が必要とされ、時間が掛かる。   The first is that the droplet size is not uniform and has a distribution. The reason is that the shearing force applied during rotation and stirring is not uniformly applied to the entire liquid. And in order to stabilize this particle size distribution to a fixed value, rotation and stirring for 20 minutes or more are required, and it takes time.

エマルジョンの粒径が均一で無い状態では、その効果・性能にバラツキが生じ品質低下の原因となる。   In the state where the particle size of the emulsion is not uniform, the effect and performance vary and cause quality degradation.

2つ目の問題は、設備が大型化することである。バッチ式生産では容器に液体を送液する機構,液体を攪拌する機構,容器から液体を取り出す機構など様々な機構が必要で、装置が大掛かりなものになり、装置の調整や洗浄の手間がかかる。   The second problem is that the equipment becomes larger. Batch production requires a variety of mechanisms, such as a mechanism for feeding liquid into a container, a mechanism for stirring liquid, and a mechanism for taking out liquid from the container, which makes the apparatus large and requires time and labor for adjustment and cleaning of the apparatus. .

上記の問題を解決する生産(乳化)装置として、下記特許文献1に開示されているように、複数の孔が設けられた複数の板体を一定の間隔をおいて多段に積層し、分流と合流が繰り返し起こるようにすることで、液衝突などの作用により微細な粒径を持つエマルジョンを得る流通管式乳化装置が知られている。   As a production (emulsification) device that solves the above problem, as disclosed in Patent Document 1 below, a plurality of plate bodies provided with a plurality of holes are stacked in multiple stages at regular intervals, 2. Description of the Related Art A flow pipe type emulsifying device is known in which an emulsion having a fine particle size is obtained by an action such as liquid collision by repeatedly causing merging.

特開2003−260343号公報JP 2003-260343 A

上記従来技術の流通管式乳化装置は、連続相と分散相を管内に送り、分流・合流を繰り返してエマルジョンを連続的に生産するが、二相が不均一に混ざった状態で送液された場合、粒径が数μm程度のエマルジョンを生成するために、分流・合流を数多く繰り返すようにする必要があり、そのため板体を多段に積層しており、装置が複雑で、装置の製造に手間がかかる。   The flow tube type emulsifying device of the above prior art sends the continuous phase and the dispersed phase into the tube and repeats the diversion / merging to continuously produce the emulsion, but the two phases are fed in a non-uniformly mixed state. In this case, in order to produce an emulsion having a particle size of about several μm, it is necessary to repeat the diversion and merging many times. Therefore, the plates are laminated in multiple stages, the equipment is complicated, and it takes time to manufacture the equipment. It takes.

また、不均一さが大きい場合は、分流・合流を繰り返してもエマルジョン粒径にバラツキが生じる恐れがある。   In addition, when the non-uniformity is large, the emulsion particle size may vary even if the diversion and merging are repeated.

それゆえ本発明の目的は、簡単な構成であっても、微細で均一な粒径を持つエマルジョンを生産することができる乳化装置を提供することである。   Therefore, an object of the present invention is to provide an emulsifying apparatus capable of producing an emulsion having a fine and uniform particle diameter even with a simple configuration.

上記目的を達成する本発明乳化装置の特徴とするところは、水あるいは油などの連続相に油あるいは水などの分散相が均一に分散したエマルジョンを生産する乳化装置において、エマルジョンを生産する乳化器と、該乳化器に連続相を供給する連続相供給配管系と、該乳化器に分散相を供給する分散相供給配管系と、該乳化器で生産したエマルジョンを該乳化器から排出するエマルジョン排出配管系を有し、該乳化器は、該連続相供給配管系に連通する路内を流れる連続相に該分散相供給配管系に連通した分散相導入路に設けたノズルから分散相が吐出することにより一次エマルジョンを生産する連続相導入路と、該連続相導入路にその下流側で隣接し該一次エマルジョンを攪拌する攪拌室と、該攪拌室にその下流側で隣接し該一次エマルジョンを微細化して二次エマルジョンを生産する流路と、該流路にその下流側で隣接し該二次エマルジョンを減速させ該エマルジョンとして該エマルジョン排出配管系に送出する減速室を備えていることにある。   The emulsifying apparatus of the present invention that achieves the above object is characterized by an emulsifier that produces an emulsion in an emulsifying apparatus that produces an emulsion in which a dispersed phase such as oil or water is uniformly dispersed in a continuous phase such as water or oil. A continuous phase supply piping system for supplying a continuous phase to the emulsifier, a dispersed phase supply piping system for supplying a dispersed phase to the emulsifier, and an emulsion discharge for discharging the emulsion produced by the emulsifier from the emulsifier The emulsifier discharges a dispersed phase from a nozzle provided in a dispersed phase introduction path communicating with the dispersed phase supply piping system into a continuous phase flowing in a path communicating with the continuous phase supply piping system. A continuous phase introduction path for producing a primary emulsion, a stirring chamber adjacent to the continuous phase introduction path downstream thereof and stirring the primary emulsion, and adjacent to the stirring chamber downstream thereof and the primary emulsion A flow path for producing a secondary emulsion by refining the flow path, and a speed reducing chamber that is adjacent to the flow path on the downstream side and decelerates the secondary emulsion and sends it to the emulsion discharge piping system. It is in.

上記本発明装置によれば、連続相導入路において分散相の大きさが揃った一次エマルジョンを生産し、攪拌室における攪拌により分散相が連続相に均等に拡散し、流路において各分散相はせん断されて微細化するので、簡単な構成であっても、微細で均一な粒径を持つエマルジョンを生産することができる。   According to the apparatus of the present invention, a primary emulsion having a uniform dispersed phase size is produced in the continuous phase introduction path, and the dispersed phase is uniformly diffused into the continuous phase by stirring in the stirring chamber. Since it is sheared and refined, an emulsion having a fine and uniform particle size can be produced even with a simple configuration.

以下、図に示す実施形態について説明する。   Hereinafter, embodiments shown in the drawings will be described.

図1に、本発明の一実施形態になる乳化装置1のシステム構成を示す。なお、本実施例では連続相として水と界面活性剤の混合物を使用し、分散相として食用油を用いた水中に油滴が分散したO/W(oil in water)型エマルジョンを生産する例を扱う。   In FIG. 1, the system configuration | structure of the emulsification apparatus 1 which becomes one Embodiment of this invention is shown. In this example, an O / W (oil in water) type emulsion in which oil droplets are dispersed in water using a mixture of water and a surfactant as a continuous phase and edible oil as a dispersed phase is produced. deal with.

図1において、エマルジョンの溶媒となる連続相と、溶質となる分散相は別々の液体タンク91A,91Bに納められる。液体タンク91A,91Bに納められた各液体(連続相,分散相)は、それぞれ送液チューブ92A,92Bとその途中に設置されたポンプ
93A,93Bと逆流防止用の逆止弁94A,94Bと異物除去用のフィルタ95A,
95Bを経て、縦横約10mm四方,長さ約40mmの小さな長方体状の乳化器10へと送液される。送液チューブ92Aに連なる配管系は連続相供給配管系で、送液チューブ92Bに連なる配管系は分散相供給配管系である。
In FIG. 1, the continuous phase that becomes the solvent of the emulsion and the dispersed phase that becomes the solute are stored in separate liquid tanks 91A and 91B. The liquids (continuous phase and dispersed phase) stored in the liquid tanks 91A and 91B are respectively supplied with liquid supply tubes 92A and 92B, pumps 93A and 93B installed in the middle thereof, and check valves 94A and 94B for preventing backflow. Filter 95A for removing foreign matter,
After passing through 95B, the liquid is fed to a small rectangular emulsifier 10 having a length and width of about 10 mm square and a length of about 40 mm. The piping system connected to the liquid feeding tube 92A is a continuous phase supply piping system, and the piping system connected to the liquid feeding tube 92B is a dispersed phase supply piping system.

送液チューブ92A,92Bは、耐蝕性が高く硬質で膨張し難いフッ素樹脂性チューブ等を使用することが好ましい。   As the liquid feeding tubes 92A and 92B, it is preferable to use a fluororesin tube or the like which has high corrosion resistance and is hard and hard to expand.

ポンプ93A,93Bは実験目的など送液条件が頻繁に変更される場合は送液精度に優れるシリンジポンプや間欠送液も可能なダイヤフラムポンプを使用し、製造目的など送液条件が固定され且つ長時間の連続送液が必要とされる場合にはギアポンプやロータリーポンプを使用することが好ましい。   The pumps 93A and 93B use a syringe pump with excellent liquid feeding accuracy or a diaphragm pump capable of intermittent liquid feeding when the liquid feeding conditions are frequently changed, such as for experimental purposes. When continuous liquid feeding is required, it is preferable to use a gear pump or a rotary pump.

これらポンプ93A,93Bは、後述する理由により吐出圧力が数気圧程度の低圧ポンプで事足り、本実施例ではシリンジポンプを使用した。   For these pumps 93A and 93B, a low-pressure pump having a discharge pressure of about several atmospheres is sufficient for the reason described later, and a syringe pump is used in this embodiment.

乳化器10には液体粘度の調整やエマルジョン粒径の安定化を図るために温度調節機構(温調機構)96を設けてあり、任意の乳化温度を制御する温度に調節される。   The emulsifier 10 is provided with a temperature adjusting mechanism (temperature adjusting mechanism) 96 for adjusting the liquid viscosity and stabilizing the emulsion particle diameter, and is adjusted to a temperature for controlling an arbitrary emulsification temperature.

温調機構96は多様な条件に対応するために加熱と冷却の両方の機能を持つことが望ましく、本実施例では電流の向きを制御すれば加熱と冷却が可能となるペルチェ素子をプレートに内装して、そのプレート上に乳化器10を設置した。温度調節の手段は恒温槽使用や湯煎などでも良い。これらの温調機構96は乳化器10が小型であるので、消費エネルギーの少ない小型の物で十分である。   The temperature control mechanism 96 desirably has both heating and cooling functions in order to cope with various conditions. In this embodiment, a Peltier element that can be heated and cooled by controlling the direction of current is provided in the plate. And the emulsifier 10 was installed on the plate. The temperature adjusting means may be a thermostatic bath or a hot water bath. As these temperature control mechanisms 96, since the emulsifier 10 is small, a small thing with low energy consumption is sufficient.

乳化器10で生成されたエマルジョンは、送液チューブ92A,92Bと同様な素材の送液チューブ97を経てエマルジョンタンク98へ納められる。
以下、乳化器10の構成について詳細に説明する。
図2は、乳化器10の斜視断面図である。
The emulsion produced by the emulsifier 10 is stored in an emulsion tank 98 through a liquid feed tube 97 made of the same material as the liquid feed tubes 92A and 92B.
Hereinafter, the configuration of the emulsifier 10 will be described in detail.
FIG. 2 is a perspective sectional view of the emulsifier 10.

本実施例では乳化器10の材質は特に限定されず、送液する液体の種類に応じて金属,ガラス,シリコン,樹脂などの材料を適宜選択する。また、加工方法は、削り出しの一体物で構わないし、液漏れが発生しなければ、分割して加工した部品を接着,溶接,ネジ等による締結で組立てても構わない。   In the present embodiment, the material of the emulsifier 10 is not particularly limited, and materials such as metal, glass, silicon, and resin are appropriately selected according to the type of liquid to be fed. Further, the machining method may be a one-piece machined part, and as long as liquid leakage does not occur, the parts that are divided and processed may be assembled by bonding, welding, fastening with screws, or the like.

乳化器10は、連続相供給配管系の送液チューブ92Aに連通する連続相導入路11と分散相供給配管系の送液チューブ92Bに連通した分散相導入路12を有する。連続相導入路11は乳化器10の長手方向に延び、分散相導入路12は連続相導入路11に直交するように設けられている。   The emulsifier 10 has a continuous phase introduction path 11 that communicates with a liquid feeding tube 92A of a continuous phase supply piping system and a dispersed phase introduction path 12 that communicates with a liquid feeding tube 92B of a dispersed phase supply piping system. The continuous phase introduction path 11 extends in the longitudinal direction of the emulsifier 10, and the dispersed phase introduction path 12 is provided so as to be orthogonal to the continuous phase introduction path 11.

分散相導入路12にノズル13を設けてあり、連続相導入路11の路内を流れる連続相にノズル13から分散相が吐出することにより、連続相導入路11において一次エマルジョンを生産する。   The nozzle 13 is provided in the dispersed phase introduction path 12, and the primary emulsion is produced in the continuous phase introduction path 11 by discharging the dispersed phase from the nozzle 13 to the continuous phase flowing in the continuous phase introduction path 11.

連続相導入路11の下流側に一次エマルジョンを攪拌する攪拌室14が隣接し、攪拌室14の下流側に一次エマルジョンを微細化して二次エマルジョンを生産する流路15が隣接し、流路15の下流側に二次エマルジョンを減速させてエマルジョン排出配管系の送液チューブ97にエマルジョンを送出する減速室16が隣接しており、減速室16と送液チューブ97の間をエマルジョン排出路17で連通させている。   A stirring chamber 14 for stirring the primary emulsion is adjacent to the downstream side of the continuous phase introduction path 11, and a flow path 15 for producing a secondary emulsion by refining the primary emulsion is adjacent to the downstream side of the stirring chamber 14. The speed reducing chamber 16 for decelerating the secondary emulsion and sending the emulsion to the liquid feeding tube 97 of the emulsion discharge piping system is adjacent to the downstream side of the emulsion discharging pipe system. Communicate.

連続相導入路11は直径数mmの円筒形流路で、図示していないネジ部と接続継手により送液チューブ92Aと接続され、図中の矢印イの方向に連続相を流す。分散相導入路12も直径数mmの円筒形流路で、図示していないネジ部と接続継手により送液チューブ92Bと接続され、図中の矢印ロの方向に分散相を流す。   The continuous phase introduction path 11 is a cylindrical flow path having a diameter of several millimeters, and is connected to the liquid feeding tube 92A by a threaded portion and a connection joint (not shown), and the continuous phase flows in the direction of arrow A in the figure. The dispersed phase introduction path 12 is also a cylindrical channel having a diameter of several millimeters, and is connected to the liquid feeding tube 92B by a screw portion and a connection joint (not shown), and the dispersed phase flows in the direction of arrow B in the figure.

ノズル13は、連続相導入路11と分散相導入路12の合流部となる分散相導入路12の端部に設けてあり、ノズル13から分散相を吐出し、粒径が均一な(揃った)微細な一次エマルジョンを得る。   The nozzle 13 is provided at an end portion of the dispersed phase introduction path 12 which is a merging portion of the continuous phase introduction path 11 and the dispersed phase introduction path 12, and the dispersed phase is discharged from the nozzle 13 so that the particle diameter is uniform (equal). ) A fine primary emulsion is obtained.

図3は乳化器10における連続相導入路11の斜視断面図で、ノズル13を拡大して示している。   FIG. 3 is a perspective sectional view of the continuous phase introduction path 11 in the emulsifier 10, and shows the nozzle 13 in an enlarged manner.

ノズル13は乳化器10とは別部品で作られた、分散相導入路12より僅かに小さい外径を持つ円柱状の部品であり、長さ方向に多数の微小な貫通した開孔19を備えており、それぞれの開孔19の下流側は(裁頭)円錐状の突出部(突起)20の頭部に開口している。   The nozzle 13 is a cylindrical part made of a separate part from the emulsifier 10 and having a slightly smaller outer diameter than the dispersed phase introduction path 12, and has a number of minute through holes 19 in the length direction. Further, the downstream side of each opening 19 is open to the head of the (cutting) conical protrusion (projection) 20.

突起20は、ノズル13の表面を極細のエンドミルで切削して形成する。突起20の角度はこのエンドミルの刃先先端角に合せてあるため、エンドミルで円を描くように切削するだけで容易にノズル13に突起20を形成でき、生産性に優れる。   The protrusion 20 is formed by cutting the surface of the nozzle 13 with an extremely fine end mill. Since the angle of the protrusion 20 is adjusted to the tip angle of the edge of the end mill, the protrusion 20 can be easily formed on the nozzle 13 simply by cutting the end mill so as to draw a circle, and the productivity is excellent.

ノズル13は分散相導入路12内に挿入し、分散相導入路12の先端で流路径を小さくして設けられたリング状のノズル支持面18に接して固定する。固定方法は接着,圧入,接続継手による押し付けなど、どのように行っても良い。なお、本実施例では加工を容易にするためにノズル13を別部品としたが、乳化器10と一体として加工しても良い。   The nozzle 13 is inserted into the dispersed phase introduction path 12 and fixed in contact with a ring-shaped nozzle support surface 18 provided with a reduced flow path diameter at the tip of the dispersed phase introduction path 12. The fixing method may be any method such as adhesion, press-fitting, or pressing with a connecting joint. In this embodiment, the nozzle 13 is a separate part for easy processing, but it may be processed integrally with the emulsifier 10.

分散相導入路12を矢印ロの方向に流れる分散相は、円形に17個設けられた開孔19に分割され先端の突起20を通って、連続相導入路11の路内を矢印イの方向に直交する形で流れてくる連続相の流れ中に吐出してせん断され、液滴の分散相になる。   The dispersed phase flowing in the direction of arrow b through the dispersed phase introduction path 12 is divided into 17 circular openings 19 formed in a circle, passes through the protrusions 20 at the tip, and passes through the continuous phase introduction path 11 in the direction of arrow a. It is discharged and sheared into the flow of the continuous phase flowing in a form orthogonal to the droplets to form a dispersed phase of droplets.

この液滴の粒径は、連続相と分散相の流速比を変化させることで調整できる。また、突起20を連続相導入路11の路内側に設けたことで、平面上に穴を設けただけの場合に比べて分散相がせん断されやすくなり、粒径の均一性が向上する。   The particle size of the droplets can be adjusted by changing the flow rate ratio between the continuous phase and the dispersed phase. Further, by providing the protrusions 20 on the inner side of the continuous phase introduction path 11, the dispersed phase is more easily sheared than in the case of merely providing holes on the plane, and the uniformity of the particle diameter is improved.

一次エマルジョンは分散相の粒径が揃っていれば大小は問題とならないので、本実施例では圧力損失等を考慮して開孔19の直径は0.2mm とした。これは従来知られているマイクロチップの流路寸法と比べると大きい。このように流路の寸法を大きくすることで圧力損失の増加を抑え、粘性が低い液体の場合数十〜100ml/min 程度の液量を処理しても、圧力損失を数十kPa以下に抑えることが可能となる。   Since the size of the primary emulsion is not a problem as long as the dispersed phase has the same particle size, the diameter of the opening 19 is set to 0.2 mm in consideration of pressure loss and the like in this embodiment. This is larger than the conventionally known microchip channel dimensions. By increasing the size of the flow path in this way, the increase in pressure loss is suppressed, and in the case of a liquid with low viscosity, the pressure loss is suppressed to tens of kPa or less even if the liquid amount is about several tens to 100 ml / min. It becomes possible.

なお、本実施例ではシリンジポンプを用いて分散相を連続的に送液したが、ダイヤフラムポンプなどを用いて間欠的に送液しても良い。間欠送液を行うことで、マイクロノズル部での分散相の液切れ性を向上させ、液滴直径をより均一にでき得る。   In this embodiment, the dispersed phase is continuously fed using a syringe pump, but may be delivered intermittently using a diaphragm pump or the like. By performing intermittent liquid feeding, liquid discontinuity of the dispersed phase at the micro nozzle part can be improved, and the droplet diameter can be made more uniform.

これにより後述する流路15でのエマルジョン微細化が、より効果的に行える。加えて、間欠送液の周期を調整することでエマルジョンの濃度を制御することも可能である。   This makes it possible to more effectively reduce the size of the emulsion in the flow path 15 described later. In addition, the emulsion concentration can be controlled by adjusting the cycle of intermittent liquid feeding.

図4は乳化器10でエマルジョン生産の状況を説明する図で、乳化器10の縦断面を示している。   FIG. 4 is a view for explaining the state of emulsion production in the emulsifier 10, and shows a longitudinal section of the emulsifier 10.

図4に示すように、攪拌室14は連続相導入路11と流路(絞り部)15に比べて直径の大きい円筒形となっている。後述するように、絞り部(流路)15の直径は高流速を実現するために連続相導入路11に比べて極めて小さく、そのため連続相導入路11から送られてきた一次エマルジョンの大部分は直ぐには絞り部15を通過せず、図中に矢印ハで示すように広い空間を持つ攪拌室14内を循環する旋回流れとなり、ここで連続相と分散相は旋回することでより均一になるよう攪拌される。   As shown in FIG. 4, the stirring chamber 14 has a cylindrical shape with a larger diameter than the continuous phase introduction path 11 and the flow path (throttle section) 15. As will be described later, the diameter of the throttle portion (flow path) 15 is extremely smaller than that of the continuous phase introduction path 11 in order to realize a high flow rate, and therefore, most of the primary emulsion sent from the continuous phase introduction path 11 is Immediately, it does not pass through the constricted portion 15 and becomes a swirling flow circulating in the stirring chamber 14 having a large space as indicated by an arrow C in the figure, where the continuous phase and the dispersed phase become more uniform by swirling. Is stirred as such.

攪拌室14の下流側の先端(攪拌室14の流路(絞り部)15に続く領域)は絞り部
15に向かって狭くなる円錐状(錐状)になっており、一次エマルジョンの旋回をスムーズに行う効果がある。円錐の角度は、加工用ドリルの先端角度に合せてあるため、加工は容易に行える。
The tip on the downstream side of the stirring chamber 14 (the area following the flow path (throttle portion) 15 of the stirring chamber 14) has a conical shape (conical shape) that narrows toward the throttling portion 15 and smoothly rotates the primary emulsion. There is an effect to do. Since the angle of the cone is matched to the tip angle of the machining drill, machining can be performed easily.

上記の過程を経て粒径が揃った分散相が連続相中に均一に分散した一次エマルジョンは絞り部15を通過することで、分散相が微細化され微小な粒径を持つ二次エマルジョンとなる。   The primary emulsion in which the dispersed phase having a uniform particle diameter after the above-described process is uniformly dispersed in the continuous phase passes through the squeezed portion 15, whereby the dispersed phase is refined and becomes a secondary emulsion having a minute particle diameter. .

絞り部(流路)15は微小な直径で長さが短い円筒形をしており、ここを流れる一次エマルジョンは、流路断面積の低下により急激に加速され、それによって生じる壁面からのせん断力により瞬間的に微細化される。   The throttle portion (flow channel) 15 has a cylindrical shape with a small diameter and a short length, and the primary emulsion flowing therethrough is rapidly accelerated by a decrease in the cross-sectional area of the flow channel, resulting in shearing force from the wall surface. Is instantaneously miniaturized.

絞り部15を通過する連続相と分散相にバラツキがあれば、微細化された後の二次エマルジョンの粒径にもバラツキが生じるが、一次エマルジョンは粒径が揃い均一に分散しているので、一度絞り部15を通過させるだけで粒径の揃った微細な二次エマルジョンを得ることができる。   If there is a variation in the continuous phase and the dispersed phase that pass through the squeezed portion 15, the particle size of the secondary emulsion after refinement also varies, but the primary emulsion has a uniform particle size and is uniformly dispersed. A fine secondary emulsion having a uniform particle diameter can be obtained by passing the squeezed portion 15 once.

この絞り部15での微細化は流速が大であるほど顕著であるので、一次エマルジョンの流量を多くするか、絞り部15の直径を小さくすることが微細な二次エマルジョンを生産する場合に望ましい。   Since the refinement at the narrowed portion 15 is more conspicuous as the flow velocity is larger, it is desirable to increase the flow rate of the primary emulsion or to reduce the diameter of the narrowed portion 15 when producing a fine secondary emulsion. .

本実施例では、絞り部15を直径0.3mm,長さ1mmとし、これにより流量50ml/
min 程度で直径数μmの微細な二次エマルジョンを得た。また、長さを1mmにしたことで圧力損失の増加を押さえ、低粘度の油を使用した場合では100ml/min の流量を送液しても、0.5MPa 以下の圧力損失しか発生しなかった。
In this embodiment, the throttle portion 15 has a diameter of 0.3 mm and a length of 1 mm.
A fine secondary emulsion having a diameter of several μm was obtained at about min. Moreover, the increase in pressure loss was suppressed by setting the length to 1 mm, and when a low viscosity oil was used, even when a flow rate of 100 ml / min was fed, only a pressure loss of 0.5 MPa or less occurred. .

直径0.1mm の穴あけ加工は比較的容易に行うことができるので、絞り部15の直径を0.1mm とした場合は、本実施例の結果から10ml/min 程度の小流量であっても一次エマルジョンの微細化を低圧化で行える。   Since drilling with a diameter of 0.1 mm can be performed relatively easily, when the diameter of the throttle portion 15 is 0.1 mm, the primary flow rate is about 10 ml / min from the result of this embodiment. Emulsion can be refined at low pressure.

本実施例では加工の容易さから絞り部15を単純な円筒形としたが、粒径が揃い均一に分散した一次エマルジョンに十分なせん断力を与えられるならば、絞り部15の形状は三角形や四角形や六角形などの多角形でも良い。   In this embodiment, the drawn portion 15 has a simple cylindrical shape for ease of processing. However, the shape of the drawn portion 15 may be triangular, if the particle size is uniform and sufficient shear force can be applied to the uniformly dispersed primary emulsion. It may be a polygon such as a rectangle or a hexagon.

減速室16は絞り部15とエマルジョン排出路17を接続する部分であり、圧力損失を低下させるために絞り部15とエマルジョン排出路17に比べて大きい円筒形状となっている。   The deceleration chamber 16 is a portion connecting the throttle portion 15 and the emulsion discharge passage 17 and has a larger cylindrical shape than the throttle portion 15 and the emulsion discharge passage 17 in order to reduce pressure loss.

エマルジョン排出路17は直径3mmの円筒形流路で、図示していない接続継手により送液チューブ97と接続され、図中の矢印ニの方向に二次エマルジョンを流し、乳化器10外に排出する。   The emulsion discharge path 17 is a cylindrical flow path having a diameter of 3 mm, and is connected to the liquid feeding tube 97 by a connection joint (not shown). The secondary emulsion flows in the direction of the arrow D in the figure and is discharged out of the emulsifier 10. .

以上のように、本発明装置によれば、分散相の粒径が揃い連続相中に均一に分散した一次エマルジョンを生産した後に、微細化することで、粒径が均一且つ微細な二次エマルジョンを得ることができる。そして、分散相は微細化すればするほど分散相間に働く結合化力は弱くなり、時間経過により分散相と連続相が分離しエマルジョンが変質することは低下し、高品質を維持できる。   As described above, according to the apparatus of the present invention, a secondary emulsion having a uniform and fine particle size can be obtained by producing a primary emulsion in which the dispersed phase has a uniform particle size and is uniformly dispersed in a continuous phase. Can be obtained. As the dispersed phase becomes finer, the binding force acting between the dispersed phases becomes weaker, and the separation of the dispersed phase and the continuous phase with the passage of time and deterioration of the emulsion are reduced, and high quality can be maintained.

本乳化装置1の構成は簡単であり、乳化器10は各部の加工が単純で生産が容易であり、また全てを一体化した構造のため各部間は余計な継手や配管が存在せず、移動中にエマルジョンが変化することがなく、よりエマルジョン粒径の均一性を向上させ得る。   The configuration of the emulsifying device 1 is simple, the emulsifier 10 is simple to process each part and easy to produce, and because of the structure in which all parts are integrated, there are no extra joints or pipes between the parts. The emulsion does not change therein, and the uniformity of the emulsion particle size can be further improved.

また、ポンプ93A,93Bで液体を送液するだけで連続してエマルジョンを生成することが可能であり、バッチ式生産のような液体の分注機構,攪拌機構を別個に設ける必要は無く、装置の小型化・単純化が可能となる。   In addition, it is possible to continuously produce an emulsion simply by feeding a liquid with the pumps 93A and 93B, and it is not necessary to separately provide a liquid dispensing mechanism and a stirring mechanism as in batch production. Can be miniaturized and simplified.

なお、図1乃至図4に示した実施例では、分散相導入路12を横断面が四角な乳化器
10の一面側にのみ設けているが、対抗する反対側の面や両面に直交する他の対向した2面側にも設けることにより、複数の開孔を有するノズルを介して連続相導入路11を流れる連続相の周囲から一層均等に分散相を供給(吐出)するようにすることもできる。また、乳化器10の横断面を略三角形や六角形のものとすれば、複数の開孔を有するノズルを介して連続相導入路11の連続相に三方や六方から一層均等に分散相を供給(吐出)するようにすることもできる。
In the embodiment shown in FIGS. 1 to 4, the dispersed phase introduction path 12 is provided only on one surface side of the emulsifier 10 having a square cross section, but the other side is orthogonal to the opposing surface or both surfaces. In addition, the disperse phase can be supplied (discharged) more evenly from the periphery of the continuous phase flowing through the continuous phase introduction path 11 via the nozzles having a plurality of holes. it can. If the cross section of the emulsifier 10 is substantially triangular or hexagonal, the dispersed phase is supplied more evenly from three or six directions to the continuous phase of the continuous phase introduction path 11 through a nozzle having a plurality of holes. (Discharge) can also be performed.

そして、図2では分散相導入路12を連続相導入路11に対し直交するように設置しているが、ノズル13から吐出される分散相が連続相導入路11における図中の矢印イの方向となっている連続相の流れに対し遡行するように連続相導入路11に対し傾斜角を持つ分散相導入路12を設置するか、矢印イの方向となっている連続相の流れに沿うように連続相導入路11に対し傾斜角を持つ分散相導入路12を設置するようにしても良い。   In FIG. 2, the dispersed phase introduction path 12 is installed so as to be orthogonal to the continuous phase introduction path 11, but the dispersed phase discharged from the nozzle 13 is in the direction of the arrow a in the figure in the continuous phase introduction path 11. A disperse phase introduction path 12 having an inclination angle with respect to the continuous phase introduction path 11 is installed so as to go backward with respect to the continuous phase flow, or along the continuous phase flow in the direction of the arrow a. Alternatively, a disperse phase introduction path 12 having an inclination angle with respect to the continuous phase introduction path 11 may be installed.

連続相の流れに遡行するような傾斜角をもって分散相導入路12を設置すると、ノズル13から吐出される分散相は連続相の流れで、切断され易く、一次エマルジョンにおける分散相の粒径が均一になるだけでなく、混合効果も高い。また連続相の流れに沿うように傾斜角を持つ分散相導入路12を設置した場合は、分散相を連続相の流れに円滑に合流させることができるので、圧力損失は高くならず、ポンプ93Bでの省エネルギー化を図ることができる。   When the dispersed phase introduction path 12 is installed with an inclination angle that goes back to the flow of the continuous phase, the dispersed phase discharged from the nozzle 13 is a continuous phase flow that is easily cut off, and the particle size of the dispersed phase in the primary emulsion is uniform. In addition to becoming, the mixing effect is also high. Further, when the dispersed phase introduction path 12 having an inclination angle is installed so as to follow the flow of the continuous phase, the dispersed phase can be smoothly joined to the flow of the continuous phase, so the pressure loss does not increase, and the pump 93B Can save energy.

さらには、ノズル13を円環状のものとし、その全周に開孔19を半径方向に設けて、より一層均等に分散相を供給(吐出)するようにすることもできる。   Further, the nozzle 13 may be annular, and the openings 19 may be provided in the radial direction on the entire circumference so as to supply (discharge) the dispersed phase more evenly.

そして、これらの場合は分散相の供給(吐出)量が多いので、ポンプ93Bの送液圧を下げたり、連続相導入路11を流れる連続相の流速で分散相を吸引するようにして、流量は分散相供給配管系に流量調整弁を設け、その弁の開度で調整するようにして、ポンプ
93Bを省略することもできる。
In these cases, since the amount of supply (discharge) of the dispersed phase is large, the flow rate of the pump 93B is lowered or the dispersed phase is sucked at the flow rate of the continuous phase flowing through the continuous phase introduction path 11 to Can be omitted by providing a flow rate adjusting valve in the dispersed phase supply piping system and adjusting the opening of the valve.

図5は、本発明の異なる実施形態を示すシステム構成図である。   FIG. 5 is a system configuration diagram showing a different embodiment of the present invention.

多品種少量生産を行う場合、同一の装置で複数の製品を生産でき得ることが好ましく、また容易に生産量を増減できることが望ましい。   When performing multi-product small-quantity production, it is preferable that a plurality of products can be produced with the same apparatus, and it is desirable that the production amount can be easily increased or decreased.

そこで、図5に示す実施例では、複数の乳化器10a〜10cを並列に設置し、原料を納める液体タンクも91a〜91nと複数を設置し、それぞれ異なる原料を納める。これら乳化器10a〜10cと液体タンク91a〜91nを切替式のバルブ(原料側バルブ
81a〜81c,82a〜82c、乳化器側バルブ85a〜85c,86a〜86c)を介して図に示すように接続する。
Therefore, in the embodiment shown in FIG. 5, a plurality of emulsifiers 10a to 10c are installed in parallel, and a plurality of liquid tanks 91a to 91n are installed to store the raw materials, and different raw materials are stored. These emulsifiers 10a to 10c and liquid tanks 91a to 91n are connected as shown in the figure via switching valves (raw material side valves 81a to 81c, 82a to 82c, emulsifier side valves 85a to 85c, 86a to 86c). To do.

原料側バルブ81a〜81c,82a〜82cを切り替えることで、ポンプ93A,
93Bから送液される液体の種類を変更でき、複数の製品生産を行うことができる。
By switching the raw material side valves 81a to 81c and 82a to 82c, the pump 93A,
The type of liquid fed from 93B can be changed, and a plurality of products can be produced.

また、乳化器側バルブ85a〜85c,86a〜86cを切り替えることで、処理に使用する乳化器10の個数を調節できる。ポンプ93A,93Bからの吐出量を増加させ、使用する乳化器の数を増やせば、乳化器が一つの時と同様のエマルジョンを個数に比例して大量に生成することができる。   Moreover, the number of the emulsifiers 10 used for a process can be adjusted by switching the emulsifier side valve | bulb 85a-85c, 86a-86c. If the discharge amount from the pumps 93A and 93B is increased and the number of emulsifiers to be used is increased, the same emulsion as when one emulsifier is used can be produced in large quantities in proportion to the number.

定量吐出ポンプを使用している場合は、乳化器の数を増減することで、一つあたりへの供給流量が調節でき、ポンプ93A,93Bの動作を変更することなくエマルジョンの粒径などを調節することが可能となる。   When using a metering pump, the flow rate per unit can be adjusted by increasing or decreasing the number of emulsifiers, and the particle size of the emulsion can be adjusted without changing the operation of the pumps 93A and 93B. It becomes possible to do.

図5では、図1に示した逆止弁とフィルターを省略しているが設置しても良く、温調機構96は乳化器10a〜10c毎に個別に設置しても良い。   In FIG. 5, the check valve and the filter shown in FIG. 1 are omitted, but they may be installed, and the temperature control mechanism 96 may be installed individually for each of the emulsifiers 10a to 10c.

本発明の一実施形態を示すシステム構成図である。It is a system configuration figure showing one embodiment of the present invention. 図1における乳化器の斜視断面図である。It is a perspective sectional view of the emulsifier in FIG. 図2における乳化器の該連続相導入路の斜視断面図である。FIG. 3 is a perspective sectional view of the continuous phase introduction path of the emulsifier in FIG. 2. 図2における乳化器でエマルジョン生産の状況を説明する図である。It is a figure explaining the condition of emulsion production with the emulsifier in FIG. 本発明の異なる実施形態を示すシステム構成図である。It is a system configuration figure showing a different embodiment of the present invention.

符号の説明Explanation of symbols

1…乳化装置、10…乳化器、11…連続相導入路、12…分散相導入路、13…ノズル、14…攪拌室、15…流路(絞り部)、16…減速室。
DESCRIPTION OF SYMBOLS 1 ... Emulsification apparatus, 10 ... Emulsifier, 11 ... Continuous phase introduction path, 12 ... Dispersed phase introduction path, 13 ... Nozzle, 14 ... Stirring chamber, 15 ... Flow path (throttle part), 16 ... Deceleration chamber.

Claims (8)

水あるいは油などの連続相に油あるいは水などの分散相が均一に分散したエマルジョンを生産する乳化装置において、
エマルジョンを生産する乳化器と、該乳化器に連続相を供給する連続相供給配管系と、該乳化器に分散相を供給する分散相供給配管系と、該乳化器で生産したエマルジョンを該乳化器から排出するエマルジョン排出配管系を有し、
該乳化器は、該連続相供給配管系に連通する路内を流れる連続相に該分散相供給配管系に連通した分散相導入路に設けたノズルから分散相が吐出することにより一次エマルジョンを生産する該連続相導入路と、該連続相導入路にその下流側で隣接し該一次エマルジョンを攪拌する攪拌室と、該攪拌室にその下流側で隣接し該一次エマルジョンを微細化して二次エマルジョンを生産する流路と、該流路にその下流側で隣接し該二次エマルジョンを減速させて該エマルジョン排出配管系に送出する減速室を備えていることを特徴とする乳化装置。
In an emulsifying apparatus for producing an emulsion in which a dispersed phase such as oil or water is uniformly dispersed in a continuous phase such as water or oil,
An emulsifier for producing an emulsion, a continuous phase supply piping system for supplying a continuous phase to the emulsifier, a dispersed phase supply piping system for supplying a dispersed phase to the emulsifier, and an emulsion produced by the emulsifier Has an emulsion discharge piping system that discharges from the vessel,
The emulsifier produces a primary emulsion by discharging a dispersed phase from a nozzle provided in a dispersed phase introduction path communicating with the dispersed phase supply piping system to a continuous phase flowing in a path communicating with the continuous phase supply piping system. The continuous phase introduction path, the stirring chamber adjoining the continuous phase introduction path downstream thereof and stirring the primary emulsion, and the secondary emulsion adjoining the stirring chamber adjacent downstream thereof and refining the primary emulsion And a decelerating chamber that is adjacent to the flow channel on the downstream side thereof, decelerates the secondary emulsion, and sends it to the emulsion discharge piping system.
上記請求項1の乳化装置において、該乳化器における該攪拌室は該連続相導入路より大径で、該流路は該連続相導入路より小径で、該減速室は該流路より大径であることを特徴とする乳化装置。   The emulsifying apparatus according to claim 1, wherein the stirring chamber in the emulsifier has a larger diameter than the continuous phase introduction path, the flow path has a smaller diameter than the continuous phase introduction path, and the deceleration chamber has a larger diameter than the flow path. An emulsification apparatus characterized by the above. 上記請求項1の乳化装置において、該乳化器における該ノズルは分散相が吐出する複数の開孔を備えていることを特徴とする乳化装置。   2. The emulsifying apparatus according to claim 1, wherein the nozzle of the emulsifier includes a plurality of apertures through which a dispersed phase is discharged. 上記請求項3の乳化装置において、該ノズルにおける該各開孔は該連続相導入路の路内側に円錐状に突出した突出部の頂部に開口していることを特徴とする乳化装置。   4. The emulsifying apparatus according to claim 3, wherein each of the openings in the nozzle opens at the top of a projecting portion that projects in a conical shape inside the continuous phase introduction path. 上記請求項1の乳化装置において、該乳化器における該攪拌室の該流路に続く領域は錐状であることを特徴とする乳化装置。   2. The emulsifying apparatus according to claim 1, wherein a region of the emulsifier following the flow path of the stirring chamber is conical. 上記請求項1の乳化装置において、該乳化器は乳化温度を制御する温度調節機構を備えていることを特徴とする乳化装置。   2. The emulsifier according to claim 1, wherein the emulsifier includes a temperature adjusting mechanism for controlling an emulsification temperature. 上記請求項1の乳化装置において、該連続相供給配管系と該分散相供給配管系はそれぞれ該乳化器に所望量の連続相と分散相を供給する送液手段を備えていることを特徴とする乳化装置。   The emulsifying apparatus according to claim 1, wherein the continuous phase supply piping system and the dispersed phase supply piping system each include liquid feeding means for supplying a desired amount of the continuous phase and the dispersed phase to the emulsifier. Emulsifying device. 上記請求項1の乳化装置において、該分散相導入路は該連続相導入路に対し直交するか傾斜角を持って設置してあることを特徴とする乳化装置。

2. The emulsifying apparatus according to claim 1, wherein the dispersed phase introduction path is installed perpendicularly to the continuous phase introduction path or with an inclination angle.

JP2006147564A 2006-05-29 2006-05-29 Emulsifying device Expired - Fee Related JP4946180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147564A JP4946180B2 (en) 2006-05-29 2006-05-29 Emulsifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147564A JP4946180B2 (en) 2006-05-29 2006-05-29 Emulsifying device

Publications (2)

Publication Number Publication Date
JP2007313466A true JP2007313466A (en) 2007-12-06
JP4946180B2 JP4946180B2 (en) 2012-06-06

Family

ID=38847810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147564A Expired - Fee Related JP4946180B2 (en) 2006-05-29 2006-05-29 Emulsifying device

Country Status (1)

Country Link
JP (1) JP4946180B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273978A (en) * 2008-05-13 2009-11-26 Tokyo Institute Of Technology Method and system for forming ultrafine particle of liquid carbon dioxide
JP2010284605A (en) * 2009-06-12 2010-12-24 Central Res Inst Of Electric Power Ind Apparatus and method for preparing and injecting emulsion and method of mining methane hydrate
JP2014168761A (en) * 2013-03-05 2014-09-18 Mitsubishi Electric Corp Gas and liquid mixing device and bath hot water supply device
JP2014198333A (en) * 2013-03-12 2014-10-23 哲雄 野村 Liquid atomization method and atomization and mixing device
KR20170026134A (en) * 2015-08-31 2017-03-08 팔로 알토 리서치 센터 인코포레이티드 Low dispersion, fast response mixing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031269A (en) * 1973-07-20 1975-03-27
JPS63278534A (en) * 1987-05-11 1988-11-16 Nordson Kk Method and device for complex collision type mixing, discharge of injection of liquid
JPH01258734A (en) * 1987-05-08 1989-10-16 Nordson Kk Method and device for discharging or injecting in collision-type multistage mixing of liquid
JP2000033249A (en) * 1994-10-28 2000-02-02 Tal Shechter Production of emulsified substance
JP2005279458A (en) * 2004-03-30 2005-10-13 National Food Research Institute Apparatus of producing emulsion, reaction apparatus, method of producing microcapsule by using the reaction apparatus, method of producing microtube, and microtube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031269A (en) * 1973-07-20 1975-03-27
JPH01258734A (en) * 1987-05-08 1989-10-16 Nordson Kk Method and device for discharging or injecting in collision-type multistage mixing of liquid
JPS63278534A (en) * 1987-05-11 1988-11-16 Nordson Kk Method and device for complex collision type mixing, discharge of injection of liquid
JP2000033249A (en) * 1994-10-28 2000-02-02 Tal Shechter Production of emulsified substance
JP2005279458A (en) * 2004-03-30 2005-10-13 National Food Research Institute Apparatus of producing emulsion, reaction apparatus, method of producing microcapsule by using the reaction apparatus, method of producing microtube, and microtube

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273978A (en) * 2008-05-13 2009-11-26 Tokyo Institute Of Technology Method and system for forming ultrafine particle of liquid carbon dioxide
JP2010284605A (en) * 2009-06-12 2010-12-24 Central Res Inst Of Electric Power Ind Apparatus and method for preparing and injecting emulsion and method of mining methane hydrate
JP2014168761A (en) * 2013-03-05 2014-09-18 Mitsubishi Electric Corp Gas and liquid mixing device and bath hot water supply device
JP2014198333A (en) * 2013-03-12 2014-10-23 哲雄 野村 Liquid atomization method and atomization and mixing device
KR20170026134A (en) * 2015-08-31 2017-03-08 팔로 알토 리서치 센터 인코포레이티드 Low dispersion, fast response mixing device
JP2017047414A (en) * 2015-08-31 2017-03-09 パロ・アルト・リサーチ・センター・インコーポレーテッドPalo Alto Research Center Incorporated Low dispersion and high speed responsive blending device
KR102399637B1 (en) 2015-08-31 2022-05-19 팔로 알토 리서치 센터 인코포레이티드 Low dispersion, fast response mixing device
JP7125247B2 (en) 2015-08-31 2022-08-24 パロ アルト リサーチ センター インコーポレイテッド Low dispersion fast response mixed device

Also Published As

Publication number Publication date
JP4946180B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US6443610B1 (en) Processing product components
US7314306B2 (en) Homogenization device and method of using same
KR100389658B1 (en) Forming Emulsion
JP2009279507A (en) Emulsification device
US6935770B2 (en) Cavitation mixer
JP5032703B2 (en) Apparatus for mixing liquids by generating shear forces and / or cavitation
JP5212313B2 (en) Emulsifying device
JP4946180B2 (en) Emulsifying device
MXPA97003100A (en) Emulsion formation
EP3710146B1 (en) Cross-flow assembly and method for membrane emulsification controlled droplet production
US8047702B1 (en) Continuous high shear mixing process
EP2571611A1 (en) Method and apparatus for creating cavitation for blending and emulsifying
JP2011025148A (en) Chemical production apparatus
JPH1142428A (en) Atomization
JP4640017B2 (en) Emulsifying device
JP2002248328A (en) Emulsifying/dispersing device
JP4852968B2 (en) Emulsification method and apparatus
WO2007075322A1 (en) Multiple-stream annular fluid processor
WO2014134115A1 (en) Variable velocity apparatus and method for blending and emulsifying
US20080144430A1 (en) Annular fluid processor with different annular path areas
JP7166119B2 (en) Disperser
KR20180130070A (en) Nano-Bubble Generator
JP5285231B2 (en) Mixing equipment
KR20230028314A (en) Membrane Emulsification Apparatus with Purifier and Method for Producing Refined Emulsion
JP2012030213A (en) Fluid mixing device and method for producing mixture of two or more kinds of fluids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees