JP2014162969A - 蒸着装置および蒸着方法 - Google Patents

蒸着装置および蒸着方法 Download PDF

Info

Publication number
JP2014162969A
JP2014162969A JP2013036511A JP2013036511A JP2014162969A JP 2014162969 A JP2014162969 A JP 2014162969A JP 2013036511 A JP2013036511 A JP 2013036511A JP 2013036511 A JP2013036511 A JP 2013036511A JP 2014162969 A JP2014162969 A JP 2014162969A
Authority
JP
Japan
Prior art keywords
evaporation
vapor deposition
flow rate
pressure sensor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013036511A
Other languages
English (en)
Other versions
JP6116290B2 (ja
Inventor
Takeshi Noda
武史 野田
Yuji Matsumoto
祐司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2013036511A priority Critical patent/JP6116290B2/ja
Publication of JP2014162969A publication Critical patent/JP2014162969A/ja
Application granted granted Critical
Publication of JP6116290B2 publication Critical patent/JP6116290B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】真空室内を大気圧に戻すことなく蒸着レートを連続的に計測でき、生産性の低下を回避できるとともに、蒸発材料の流量を正確に求めることができ、正確な蒸着レートで蒸着膜を形成できる蒸着装置を提供する。
【解決手段】真空室13内において蒸発材料を被蒸着部材12に付着させる蒸着装置が、蒸発源19から誘導路17へ供給される蒸発材料の流量を調整する流量制御バルブ18と、蒸発源19内の圧力を検出する第1圧力センサ21と、真空室13内の圧力を検出する第2圧力センサ22と、コントローラ24とを備える。コントローラ24は、第1圧力センサ21により測定された値と、第2圧力センサ22により測定された値との差に基づいて蒸発材料の流量を求めることにより、蒸発材料の被蒸着部材12への蒸着レートを計測し、計測された蒸着レートが所定の蒸着レートになるように、流量制御バルブ18の開度を制御する。
【選択図】図1

Description

本発明は、金属薄膜、有機材料薄膜、太陽電池やディスプレィパネルなどの金属電極配線、有機EL発光層などの蒸着に用いる蒸着装置、およびその装置を用いた蒸着方法に関する。
一般に上記薄膜等の形成は、10−4Pa以下の高真空下で行われる。例えば、特許文献1に示すように、真空蒸着装置は、真空チャンバ内に、加熱機構を設けた材料収納容器(坩堝)から蒸発した蒸着材料(蒸発材料)が導かれる分散容器(マニホールド)を設け、蒸発材料をマニホールドの上部に設けた複数のノズルから放出させて基板に蒸着させることにより薄膜を形成する構成とされている。この蒸着装置は、マニホールドのノズル設計(配置、大きさ、角度など)を適正化することにより、基板回転などの可動部分がなくても大面積基板に対して膜厚均一性を得ることができるという利点を有している。
通常、基板に単位時間当たりに蒸着する蒸発材料の量、すなわち蒸着レートは、坩堝の加熱温度で制御するが、坩堝内の蒸着材料へは熱伝導などで温度が徐々に伝達されるため、蒸着レートは安定し難い。そこで、蒸発分子の経路内に流量調整バルブを入れ、膜厚センサからの信号を流量調整バルブにフィードバックすることで蒸着レートを安定させる方法がある(例えば、特許文献2)。
上記蒸着レートの計測や蒸着レート制御のフィードバックのための膜厚センサには、水晶振動子式膜厚センサが広く使用されている。水晶振動子式膜厚センサは、水晶振動子に交流電場を印加し、水晶振動子の固有振動数と交流電場の振動数が等しくなったところで共振する現象を利用したものである。水晶振動子表面に金属等の物質が蒸着されると、水晶振動子の固有振動数は低い振動数の方向に変化する。この変化量は蒸着物質の量nに比例する。つまり、前述の共振現象を用いてこの共振周波数の変化を精度よく検出することにより蒸着物の膜厚を算出している。
しかしながら、水晶振動子の表面上に例えば7000〜8000オングストローム(700〜800nm)もの厚さの蒸着膜が付着すると、共振周波数が低くなり、計測誤差が大きくなるため、もはや水晶振動子として使用することが困難となり、新たな水晶振動子と交換しなければならない。例えば、毎分2オングストローム(0.2nm)の蒸着レートで成膜処理を行うと、60〜70時間程度で水晶振動子の寿命が尽きることとなる。この場合、蒸着源を冷却し、真空チャンバ内を大気圧に戻す必要が生じる。しかし、生産ラインなどでは1週間程度の連続蒸着が求められ、蒸着材料を頻繁に冷却することはできない。例えば、蒸着材料が有機EL用の有機化合物の場合、セラミックスなどの坩堝を用いて300℃程度に加熱することで蒸着を行うが、この坩堝を冷却して再び加熱するには、数時間を要するため、その間の蒸着工程が停止するため、生産性が低下する。
そこで、水晶振動子を用いることなく蒸着レートを制御する蒸着装置が、特許文献3に開示されている。この特許文献3に開示された蒸着装置は、真空容器内に坩堝が配置され、さらにこの坩堝に対向して基板ホルダが配設されている。坩堝の外周部には、坩堝内に収容される蒸着材料を加熱して蒸発させるための加熱手段として電気ヒータが巻装され、また真空容器内には蒸着材料の周辺雰囲気の圧力を測定するために圧力センサが配置されており、この圧力センサにコントローラが接続され、さらにコントローラに電気ヒータが接続されている。
この構成により、コントローラから電気ヒータに電力が供給され、電気ヒータによってるつぼ内の蒸着材料が加熱されると、坩堝から放出された蒸発材料により蒸着材料の周辺雰囲気の圧力が高まり、圧力センサによって測定される。ここで、蒸着材料の周辺雰囲気の圧力と蒸発材料の流量との間には一定の相関関係があり、また蒸発材料の流量と蒸着レートとの間にも一定の相関関係があるため、コントローラは、圧力センサで測定された圧力から蒸着レートを算出することができる。そこで、コントローラは圧力センサにより測定された圧力(測定値)が予め設定されている設定値となるように、電気ヒータに供給する電流値を調整し、これにより、所定の蒸着レートが維持され、基板の表面上に形成される蒸着膜の厚さが制御されている。
特開2005−330537号公報 特開2010−242202号公報 特開2004−91858号公報
しかし、特許文献3では、蒸着材料の周辺雰囲気の圧力を測定する1台の圧力センサを用いて、蒸発材料の流量が求められる。これは、基板の周囲の圧力変動は少ないとして、基板の周囲の圧力を一定値として扱っているためと考えられるが、実際には蒸発材料が真空チャンバに放出されると、真空チャンバ中の蒸発材料量が増大して圧力変動を生じるため、蒸発材料の流量を計測できているとは言うことができず、正確な蒸着レートで蒸着膜を形成することができず、所望の膜厚を得ることができないという問題があった。
また、1台の圧力センサでは、2種類の蒸着材料による共蒸着により蒸着膜を形成するとき、各蒸発材料の蒸着レートを求めることができないという問題があった。
そこで、本発明は、真空チャンバを大気圧に戻すことなく蒸着レートを連続的に計測でき、生産性の低下を回避できるとともに、蒸発材料の流量を正確に求めることができ、正確な蒸着レートで蒸着膜を形成できる蒸着装置および蒸着方法を提供することを目的とする。
また、本発明は、真空チャンバを大気圧に戻すことなく蒸着レートを連続的に計測でき、生産性の低下を回避できるとともに、2種類の蒸着材料により蒸着膜を形成するとき、各蒸発材料の流量を正確に求めることができ、正確な蒸着レートで蒸着膜を形成できる蒸着装置および蒸着方法を提供することを目的とする。
本発明の請求項1記載の発明は、
真空室内において、蒸発材料を被蒸着部材に付着させる蒸着装置であって、
蒸着材料を収納し、蒸着材料を加熱して蒸発材料を得るための蒸発源と、
蒸発源で得られた蒸発材料を移送する誘導路と、
誘導路から流入する蒸発材料を、被蒸着部材へ放出する放出部材と、
蒸発源から誘導路へ供給される蒸発材料の流量を調整する流量制御バルブと、
蒸発源内の圧力を検出する第1圧力センサと、
真空室内の圧力を検出する第2圧力センサと、
第1圧力センサにより測定された値と、第2圧力センサにより測定された値との差に基づいて蒸発材料の流量を求めることにより、蒸発材料の被蒸着部材への蒸着レートを計測し、計測された蒸着レートが所定の蒸着レートになるように、流量制御バルブの開度を制御するコントローラと、
を備えたことを特徴とする。
請求項2記載の発明は、請求項1記載の発明において、
放出部材が、蒸発材料を拡散させるための分散容器と、被蒸着部材に向けて突設され、被蒸着部材へ蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、を有することを特徴とする。
請求項3記載の発明は、
真空室内において、第1蒸発材料および第1蒸発材料よりも蒸着量が小さい第2蒸発材料を混合した第3蒸発材料を被蒸着部材に付着させる蒸着装置であって、
第1蒸着材料を収納し、第1蒸着材料を加熱して第1蒸発材料を得る第1蒸発源と、
第2蒸着材料を収納し、第2蒸着材料を加熱して第2蒸発材料を得る第2蒸発源と、
第1蒸発源内で得られた第1蒸発材料を移送する第1誘導路と、
第2蒸発源内で得られた第2蒸発材料を移送する第2誘導路と、
第1誘導路と第2誘導路とを合流させて、第1蒸発材料と第2蒸発材料とが混ざり合う第3蒸発材料を移送する第3誘導路と、
第3誘導路から流入する第3蒸発材料を、被蒸着部材へ放出する放出部材と、
第1蒸発源から第1誘導路へ供給される第1蒸発材料の流量を調整する第1流量制御バルブと、
第2蒸発源から第2誘導路へ供給される第2蒸発材料の流量を調整する第2流量制御バルブと、
第1蒸発源内の圧力を検出する第1圧力センサと、
真空室内の圧力を検出する第2圧力センサと、
第2蒸発源内の圧力を検出する第3圧力センサと、
第2誘導路内の圧力を検出する第4圧力センサと、
第1圧力センサにより測定された値と、第2圧力センサにより測定された値との差に基づいて第1蒸発材料の流量を求めることにより、第1蒸発材料の被蒸着部材への第1蒸着レートを計測し、計測された第1蒸着レートが所定の第1蒸着レートになるように、第1流量制御バルブの開度を制御し、かつ
第3圧力センサにより測定された値と、第4圧力センサにより測定された値との差に基づいて第2蒸発材料の流量を求めることにより、第2蒸発材料の被蒸着部材への第2蒸着レートを計測し、計測された第2蒸着レートが所定の第2蒸着レートになるように、第2流量制御バルブの開度を制御するコントローラと、
を備えたことを特徴とする。
請求項4記載の発明は、請求項3記載の発明において、
放出部材は、
第3蒸発材料を拡散させるための分散容器と、
被蒸着部材に向けて突設され、被蒸着部材へ第3蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、
を有することを特徴とする。
請求項5記載の発明は、請求項3または4記載の発明において、
第2蒸発源および第2誘導路が複数設けられ、
各第2蒸発源および第2誘導路に対して、それぞれ第2流量制御バルブ、第3圧力センサ、および第4圧力センサが設けられ、
各第2蒸発源に収納される第2蒸着材料は、互いに異なることを特徴とする。
請求項6記載の発明は、請求項1記載の蒸着装置を用いた蒸着方法であって、
蒸発源において蒸着材料を加熱して蒸発材料を得る工程と、
蒸発源で得られた蒸発材料を誘導路中に移送する工程と、
誘導路から放出部材を介して蒸発材料を被蒸着部材へ放出する工程と、
流量制御バルブを用いて蒸発源から誘導路へ供給される蒸発材料の流量を調整する工程と、
第1圧力センサを用いて蒸発源内の圧力を検出する工程と、
第2圧力センサを用いて真空室内の圧力を検出する工程と、
コントローラを用いて、第1圧力センサで測定された値と、第2圧力センサで測定された値との差に基づいて蒸発材料の流量を求め、求められた蒸発材料の流量に基づいて蒸発材料の被蒸着部材への蒸着レートを計測し、計測された蒸着レートが所定の蒸着レートになるように、流量制御バルブの開度を制御する工程と、
を含むことを特徴とする。
請求項7記載の発明は、請求項3記載の蒸着装置を用いた蒸着方法であって、
第1蒸発源において第1蒸着材料を加熱して第1蒸発材料を得る工程と、
第2蒸発源において第2蒸着材料を加熱して第2蒸発材料を得る工程と、
第1蒸発源で得られた第1蒸発材料を第1誘導路中に移送する工程と、
第2蒸発源で得られた第2蒸発材料を第2誘導路中に移送する工程と、
第1誘導路と第2誘導路とを合流させて、第1蒸発材料と第2蒸発材料とが混ざり合う第3蒸発材料を第3誘導路中に移送する工程と、
第3誘導路から放出部材を介して第3蒸発材料を被蒸着部材へ放出する工程と、
第1流量制御バルブを用いて第1蒸発源から第1誘導路へ供給される第1蒸発材料の流量を調整する工程と、
第2流量制御バルブを用いて第2蒸発源から第2誘導路へ供給される第2蒸発材料の流量を調整する工程と、
第1圧力センサを用いて第1蒸発源内の圧力を検出する工程と、
第2圧力センサを用いて真空室内の圧力を検出する工程と、
第3圧力センサを用いて第2蒸発源内の圧力を検出する工程と、
第4圧力センサを用いて第2誘導路内の圧力を検出する工程と、
コントローラを用いて、
第1圧力センサで測定された値と、第2圧力センサで測定された値との差に基づいて第1蒸発材料の流量を求め、求められた第1蒸発材料の流量に基づいて第1蒸発材料の被蒸着部材への第1蒸着レートを計測し、計測された第1蒸着レートが所定の第1蒸着レートになるように、第1流量制御バルブの開度を制御し、かつ
第3圧力センサで測定された値と、第4圧力センサで測定された値との差に基づいて第2蒸発材料の流量を求め、求められた第2蒸発材料の流量に基づいて第2蒸発材料の被蒸着部材への第2蒸着レートを計測し、計測された第2蒸着レートが所定の第2蒸着レートになるように、第2流量制御バルブの開度を制御する工程と、
を含むことを特徴とする。
本発明によれば、2つの圧力センサを用いて蒸着レートを正確に求めることができる。よって蒸着膜を正確な蒸着レートで形成でき、所望の膜厚を得ることができる。水晶振動子式膜厚センサを用いた際に必要であった水晶振動子の交換が不要となり、真空室を大気に戻すことなく長時間連続的に蒸着レートを計測することが可能となる。よって長時間の連続蒸着が可能となり、生産性の低下を回避できる。第1圧力センサで蒸発源内の圧力を測定することができるため、その圧力に基づいて、蒸発源内の加熱温度、およびその加熱温度に基づく蒸着材料の蒸発量を精度よく監視し、調整することができる。
また、本発明によれば、4つの圧力センサを用いて2つの蒸発材料の蒸着レートを個別に正確に計測することができる。よって各蒸着材料による蒸着膜を正確な割合・蒸着レートで形成でき、所望の膜厚を得ることができる。水晶振動子式膜厚センサを用いた際に必要であった水晶振動子の交換が不要となり、真空室を大気に戻すことなく長時間連続的に蒸着レートを計測することが可能となる。よって長時間の連続蒸着が可能となり、生産性の低下を回避できる。
第1圧力センサおよび第3圧力センサで第1蒸発源内および第2蒸発源内の圧力を測定することができるため、その圧力に基づいて、第1蒸発源内および第2蒸発源内の加熱温度、ならびにその加熱温度に基づく第1蒸着材料の蒸発量および第2蒸着材料の蒸発量を精度よく監視し、調整することができる。
第3圧力センサおよび第4圧力センサの圧力調整により、第2蒸発源内への第1蒸発材料の流入および第2蒸発材料の逆流を防ぐことができる。
本発明の実施の形態1に係る蒸着装置の構成図である。 同蒸着装置のコントローラのブロック図である。 同蒸着装置における蒸着レートと2台の圧力センサの圧力差との特性を示す図である。 図1の蒸着装置の変形例を示す構成図である。 図1の蒸着装置のさらに別の変形例を示す構成図である。 本発明の実施の形態2に係る蒸着装置の構成図である。 図6の蒸着装置の変形例を示す構成図である。
以下、本発明の実施の形態を図面に基づいて説明する。
[実施の形態1]
図1は、本発明の実施の形態1に係る蒸着装置の構成図である。
図1に示すように、真空チャンバ11(蒸着用容器)内に、例えば1×10−3Pa以下の真空雰囲気中においてガラス基板12(被蒸着部材)の表面(下面)に蒸発材料(例えば、有機EL材料)を蒸着する蒸着室13(真空室)が設けられている。真空チャンバ11には、真空ユニットにより真空雰囲気にされる真空ポート(図示せず)が形成されている。真空チャンバ11の上部には、ガラス基板12を保持するワーク保持具15が設けられている。本実施形態の蒸着装置は、ワーク保持具15に保持されたガラス基板12の下面(被蒸着面)に下方から蒸発材料を蒸着するアップブロータイプ(アップデポ)の蒸着装置である。
真空チャンバ11外において、蒸着材料16を収納し、ヒータ等の加熱手段により蒸着材料16を加熱して蒸発材料を得るための蒸発源として材料収納容器19(坩堝)が設けられている。材料収納容器19内で得られた蒸発材料は、真空チャンバ11の下部に設けられた材料輸送管17(誘導路)へ供給される。
真空チャンバ11外において、材料収納容器19と材料輸送管17との間に、開度を調節することにより、材料収納容器19から材料輸送管17へ供給される蒸発材料の流量を制御する流量制御バルブ18が設けられている。
材料輸送管17の下流側の端部には、材料輸送管17から流入する蒸発材料を、流路を絞って被蒸着部材へ放出する放出部材14が接続されている。放出部材14は、蒸発材料を拡散させるための分散容器14a(マニホールド)と、基板12に向けて突設され、基板12へ蒸発材料を放出するための絞り開口部(図示しない)を先端に有する複数のノズル部材14bとを備える。
流量制御バルブ18より上流側の材料収納容器19内に、材料収納容器19内の圧力を検出する第1圧力センサ21が設けられている。蒸着室13内に、蒸着室13内の圧力を検出する第2圧力センサ22が設けられている。圧力センサ21,22には、例えば、気体分子による熱伝導を利用する熱伝導式圧力センサが用いられる。
第1圧力センサ21で材料収納容器19内の圧力を測定することができるため、その圧力に基づいて、材料収納容器19内の加熱温度、およびその加熱温度に基づく蒸着材料16の蒸発量を精度よく監視し、調整することができる。
測定される蒸着レートの精度の観点から、第1圧力センサは、材料収納容器19内において蒸着材料16に近い箇所に設置するのが好ましい。
なお、図示していないが、材料収納容器19(坩堝)の他、材料輸送管17、放出部材14、流量制御バルブ18、および圧力センサ21,22の各構成部材は、ヒータ等の加熱手段により各構成部材に蒸発材料が付着しない程度の温度に加熱されている。圧力センサ21,22の加熱により圧力センサ21,22の温度を周囲温度よりも高温にすることによりセンサ部に蒸発材料が付着することを回避しており、連続計測を可能としている。
第1圧力センサ21で測定された圧力P1と,第2圧力センサ22により測定された圧力P2の差(P1−P2)に基づいて蒸発材料の流量Qを求めることにより、蒸発材料のガラス基板12への蒸着レートRを計測し、計測された蒸着レートRが所定の蒸着レートReとなるように、流量制御バルブ18の開度を制御するコントローラ24が設けられている。
具体的には、第1圧力センサ21により測定された圧力P1と第2圧力センサ22により測定された圧力P2がコントローラ24に入力され、コントローラ24より流量制御バルブ18へバルブ開度指令L(バルブ開度0〜100%に相当する電気信号)が出力される。
コントローラ24は、図2に示すように、入力された圧力P1と圧力P2の圧力差を演算する第1減算器31と、第1減算器31により演算された圧力差(P1−P2)により材料輸送管17を流れる蒸発材料の流量Qを求め、求めた蒸発材料の流量Qによりガラス基板12への蒸発材料の蒸着レートRを求める蒸着レート演算部32と、予め設定された所定の蒸着レートReとこの蒸着レート演算部32により求められた蒸着レートRとの偏差を求める第2減算器33と、第2減算器33により求められた偏差を無くすようにバルブ開度指令Lを出力するPI制御部34から構成されている。
蒸着レート演算部32では、第1圧力センサ21で測定された圧力P1(Pa)と第2圧力センサ22で測定された圧力P2(Pa)との差(P1−P2)に基づき、材料輸送管17等の各構成部材の合成コンダクタンスC(m/sec)を用いて、蒸発材料の流量Q(Pa・m/sec)が下記の式(1)により求められる。ついで、蒸着レートRが蒸発材料の流量Qに比例することに基づき、比例乗数Fを用いて、蒸着レートR(Å/s)が下記の式(2)により求められる。
Q=C×(P1−P2) …(1)
R=F×Q=G×(P1−P2) …(2)
なお、G=F×C
図3に、蒸着レートRと圧力差(P1−P2)の関係の一例を示す。
なお、各構成部材の合成コンダクタンスCは、流量制御バルブ18、材料輸送管17、分散容器14a、ノズル部材14bのコンダクタンスを、それぞれC、C、C、およびCとして、下記の式(3)により求められる。
1/C=1/C+1/C+1/C+1/C …(3)
上記の乗数Gは、蒸発材料の種類、材料収納容器19(坩堝)中の蒸着材料16の加熱温度、材料輸送管17および放出部材14の形状、寸法、および材質、ならびにノズル部材14bとガラス基板12との距離等により異なり、予め実験で求めることができる。実際に圧力センサ21,22を用いて蒸着レートRを計測する具体的方法の一例を以下に示す。
a.ガラス基板12横に水晶振動式膜厚センサを設け、この膜厚センサの指示値Xがほほ一定値となるように蒸着する。
このときの蒸着レートRは、水晶振動式膜厚センサにより測定される蒸着膜厚をDv、蒸着時間をTとすると、下記の式(4)で求められる。
R=Dv/T …(4)
b.膜厚センサの指示値Xを上記式で求めた蒸着レートRと同じようになるように膜厚センサのゲインを調整し、膜厚センサ値の校正を行う。
c.蒸着レートRを変化させ、圧力センサ21,22により圧力P1,P2を測定し、膜厚センサ指示値Xとこれら圧力センサ21,22の圧力差(P1−P2)の関係、すなわち上記乗数Gを求める。
d.上記の関係から、圧力差(P1−P2)に基づき蒸着レートRを計測する。
上記構成により、第1圧力センサ21と第2圧力センサ22により測定された圧力値の差(P1−P2)を求めることにより、放出部材14より放出される蒸発材料の流量Qが求められる。蒸発材料の流量Qが、ガラス基板12への蒸着レートに比例することに基づき、連続的に蒸着レートRが計測される。計測された蒸着レートRが所定の蒸着レートReとなるように、流量制御バルブ18へバルブ開度指令Lが出力され、その出力信号に応じて流量制御バルブ18の開度が制御される。すなわち、材料収納容器19から材料輸送管17へ供給される蒸発材料の流量が制御される。これにより、蒸発材料の流量Qが、所定の蒸着レートReに相当する所定の流量に制御され、所定の蒸着レートReでガラス基板12に蒸発材料が蒸着される。
実施の形態1の蒸着装置を用いた蒸着方法は、
材料収納容器19において蒸着材料16を加熱して蒸発材料を得る工程と、
材料収納容器19で得られた蒸発材料を材料輸送管17に移送する工程と、
材料輸送管17から放出部材14を介して蒸発材料をガラス基板2へ放出する工程と、
流量制御バルブ18を用いて蒸発源から材料輸送管17へ供給される蒸発材料の流量を調整する工程と、
第1圧力センサ21を用いて、材料収納容器19内の圧力を検出する工程と、
第2圧力センサ22を用いて、蒸発室13内の圧力を検出する工程と、
コントローラ24を用いて、第1圧力センサ21で測定された圧力P1と、第2圧力センサ22で測定された圧力P2との差(P1−P2)に基づいて蒸発材料の流量Qを求め、求められた蒸発材料の流量Qに基づいて蒸発材料のガラス基板12への蒸着レートRを計測し、計測された蒸着レートRが所定の蒸着レートReになるように、流量制御バルブ18の開度を制御する工程と、
を含む。
以上のように、実施の形態1によれば、予め2台の圧力センサ21,22により測定された圧力値の差(P1−P2)と蒸着レートRの関係を、水晶振動子式センサを使用して予め把握しておくことにより、それ以降、水晶振動子式膜厚センサを用いずに圧力センサ21,22のみで蒸着レートRの計測を行うことができる。1台の圧力センサを設けた従来の装置と比較して、蒸着レートRを正確に求めることができ、その結果、正確な所定の蒸着レートReでガラス基板12に蒸発材料を蒸着することができる。すなわち蒸着膜を正確な蒸着レートで形成でき、所望の膜厚を得ることができる。
また、水晶振動子式膜厚センサを用いた際に必要であった水晶振動子の交換が不要となり、真空チャンバ11を大気に戻すことなく連続的に蒸着レートRを計測することができる。よって、長時間の連続蒸着が可能となり、生産性の低下を回避できる。
本実施の形態では、材料収納容器19に第1圧力センサを設置したが、図4に示すように、材料収納容器19と流量制御バルブ18との間に接続フランジ20のような接続部材を設ける場合、接続フランジ20に第1圧力センサ21を設置してもよい。蒸着材料16の材料収納容器19への投入時に接続フランジ20から材料収納容器19を取り外すことで、蒸着材料16の投入時に蒸着材料16が圧力センサ21に触れることがなく、良好な計測精度を維持することができる。第1圧力センサ21は、材料収納容器19内の圧力を検出可能な位置に設置すればよい。
本実施の形態では、図1に示すように圧力センサ21を設けたが、図5に示すように、蒸着材料16を投入する領域以外の空間25を設けて、その空間25に圧力センサ21を設けてもよい。蒸着材料16の投入時に蒸着材料16が圧力センサ21に触れることがなく、良好な計測精度を維持することができる。
[実施の形態2]
図6は、本発明の実施の形態2に係る蒸着装置の構成図である。図1と同じ符号の構成部材については、説明を省略する。
本実施の形態2の蒸着装置は、第1蒸発材料(ホスト材料)と、第1蒸発材料よりも蒸発量が小さい、すなわち蒸発時の濃度が低い第2蒸発材料(ドーパント材料)とを同時に被蒸着部材に付着させる共蒸着を実施可能な構成を有する。第1蒸発材料と第2蒸発材料との濃度比は、例えば、10〜100:1である。このような蒸着装置は、例えば、有機ELのデバイスを作製する際に、発光効率の向上のために、2種類の有機材料を同時に成膜する場合に用いられる。
真空チャンバ11外において、第1蒸着材料16Aを収納し、ヒータ等の加熱手段により第1蒸着材料16Aを加熱して第1蒸発材料を得るための第1蒸発源として第1材料収納容器19A(坩堝)が設けられている。第1材料収納容器19A内で得られた第1蒸発材料は、真空チャンバ11の下部に設けられた第1材料輸送管45A(第1誘導路)へ供給される。
真空チャンバ11外において、第2蒸着材料16Bを収納し、ヒータ等の加熱手段により第2蒸着材料16Bを加熱して第2蒸発材料を得るための第2蒸発源として第2材料収納容器19B(坩堝)が設けられている。第2材料収納容器19B内で得られた第2蒸発材料は、真空チャンバ11の下部に設けられた第2材料輸送管45B(第2誘導路)へ供給される。
第1材料輸送管45Aおよび第2材料輸送管45Bを有する材料輸送管45は、さらに、第1材料輸送管45Aと第2材料輸送管45Aとを合流させて、第1蒸発材料と第2蒸発材料とが混ざり合う第3蒸発材料を移送する第3材料輸送管45C(第3誘導路)を備える。
第3材料輸送管45Cの下流側の端部には、第3材料輸送管45Cから流入する第3蒸発材料を、流路を絞ってガラス基板12へ放出する放出部材44が接続されている。放出部材44は、第3蒸発材料を拡散させるための分散容器44aと、ガラス基板12に向けて突設され、ガラス基板12へ第3蒸発材料を放出するための絞り開口部(図示しない)を先端に有する複数のノズル部材44bとを備える。
真空チャンバ11外において、第1材料収納容器19Aと第1材料輸送管45Aとの間に、開度を調節することにより、第1材料収納容器19Aから第1材料輸送管45Aへ供給される第1蒸発材料の流量を制御する第1流量制御バルブ18Aが設けられている。
真空チャンバ11外において、第2材料収納容器19Bと第2材料輸送管45Bとの間に、開度を調節することにより、第2材料収納容器19Bから第2材料輸送管45Bへ供給される第2蒸発材料の流量を制御する第2流量制御バルブ18Bが設けられている。
第1流量制御バルブ18Aより上流側の第1材料収納容器19A内に、第1材料収納容器19A内の圧力を検出する第1圧力センサ41が設けられている。蒸着室13内に、蒸着室13内の圧力を検出する第2圧力センサ42が設けられている。第2流量制御バルブ18Bより上流側の第2材料収納容器19B内に、第2材料収納容器19B内の圧力を検出する第3圧力センサ47が設けられている。第2流量制御バルブ18Bより下流側の第2材料輸送管45Bに、第2材料輸送管45B内の圧力を検出する第4圧力センサ46が設けられている。
第1圧力センサ41、第2圧力センサ42、第3圧力センサ47、第4圧力センサ46には、例えば、気体分子による熱伝導を利用する熱伝導式圧力センサが用いられる。
第1圧力センサ41で第1材料収納容器19A内の圧力を測定することができるため、その圧力に基づいて、第1材料収納容器19A内の加熱温度、およびその加熱温度に基づく第1蒸着材料16Aの蒸発量を、精度良く監視し、調整することができる。第3圧力センサ47で第2材料収納容器19B内の圧力を測定することができるため、その圧力に基づいて、第2材料収納容器19B内の加熱温度、およびその加熱温度に基づく第2蒸着材料16Bの蒸発量を、精度良く監視し、調整することができる。
測定される蒸着レートの精度の観点から、第1圧力センサは、第1材料収納容器19A内において第1蒸着材料16Aに近い箇所に設置するのが好ましい。第2圧力センサは、第2材料収納容器19B内において第2蒸着材料16Bに近い箇所に設置するのが好ましい。
なお、図示していないが、第1材料収納容器19Aおよび第2材料収納容器19Bの他、材料輸送管45、放出部材44、第1流量制御バルブ18A、第2流量制御バルブ18B、第1圧力センサ41、第2圧力センサ42、第3圧力センサ47、および第4圧力センサ46の各構成部材は、ヒータ等の加熱手段により各構成部材に各蒸発材料が付着しない程度の温度に加熱されている。第1圧力センサ41、第2圧力センサ42、第3圧力センサ47、および第4圧力センサ46の加熱により、第1圧力センサ41、第2圧力センサ42、第3圧力センサ47、および第4圧力センサ46の温度を周囲温度よりも高温にすることにより各センサ部に各蒸発材料が付着することを回避しており、連続計測を可能としている。
コントローラ24’は、第1圧力センサ41により測定された圧力P1と、第2圧力センサ42により測定された圧力P2の差(P1−P2)に基づいて、放出部材44より放出される第1蒸発材料の流量Q1を求める。求められた第1蒸発材料の流量Q1に基づいて、第1蒸発材料のガラス基板12への第1蒸着レートR1を計測する。計測された第1蒸着レートR1が所定の蒸着レートRe1となるように、第1流量制御バルブ18Aへバルブ開度指令L1(バルブ開度0〜100%に相当する電気信号)を出力し、その出力信号に応じて第1流量制御バルブ18Aの開度を制御する。
且つ、コントローラ24’は、第3圧力センサ46により測定された圧力P3と、第4圧力センサ47により測定された圧力P4との差(P3−P4)に基づいて、放出部材44より放出される第2蒸発材料の流量Q2を求める。求められた第2蒸発材料の流量Q2に基づいて、第2蒸発材料のガラス基板12への第2蒸着レートR2を計測する。計測された第2蒸着レートR2が所定の蒸着レートRe2となるように、第2流量制御バルブ18Bへバルブ開度指令L2(バルブ開度0〜100%に相当する電気信号)を出力し、その出力信号に応じて第2流量制御バルブ18Bの開度を制御する。
第1蒸着レートR1は、実施の形態1の蒸着レートRの場合と同様の方法により求められる。
第2蒸着レートR2は、以下の方法により求められる。
第3圧力センサ47で測定された圧力P3(Pa)と第4圧力センサ46で測定された圧力P4(Pa)との差(P3−P4)に基づき、第2流量制御バルブ18BのコンダクタンスCv(m/sec)を用いて、第2蒸発材料の流量Q2(Pa・m/sec)が下記の式(1a)により求められる。ついで、第2蒸着レートR2が第2蒸発材料の流量Q2に比例することに基づき、比例乗数Fを用いて、第2蒸着レートR2(Å/s)が下記の式(2a)により求められる。
Q2=Cv×(P3−P4) …(1a)
R=F×Q=G×(P3−P4) …(2a)
なお、G=F×Cv
なお、上記の乗数Gについては、実施の形態1に記載の手法を用いて、予め求めておく。
第3圧力センサ47および第4圧力センサ46により圧力P3および圧力P4を測定し、第2流量制御バルブ18Bよりも上流側の圧力P3を第2流量制御バルブ18Bよりも下流側の圧力P4よりも大きくすることで、第2材料収納容器19B内への第1蒸発材料の流入および第2蒸発材料の逆流を防ぐことができる。
実施の形態2の蒸着装置を用いた蒸着方法は、
第1材料収納容器19Aにおいて第1蒸着材料16Aを加熱して第1蒸発材料を得る工程と、
第2材料収納容器19Bにおいて第2蒸着材料16Bを加熱して第2蒸発材料を得る工程と、
第1材料収納容器19Aで得られた第1蒸発材料を第1材料輸送管45A中に移送する工程と、
第2材料収納容器19Bで得られた第2蒸発材料を第2材料輸送管45B中に移送する工程と、
第1材料輸送管45Aと第2材料輸送管45Bとを合流させて、第1蒸発材料と第2蒸発材料とが混ざり合う第3蒸発材料を第3材料輸送管45C中に移送する工程と、
第3誘導路から放出部材を介して第3蒸発材料を被蒸着部材へ放出する工程と、
第1流量制御バルブ18Aを用いて第1材料収納容器19Aから第1材料輸送管45Aへ供給される第1蒸発材料の流量を調整する工程と、
第2流量制御バルブ18Bを用いて第2材料収納容器19Bから第2材料輸送管45Bへ供給される第2蒸発材料の流量を調整する工程と、
第1圧力センサ41を用いて第1材料収納容器19A内の圧力を検出する工程と、
第2圧力センサ42を用いて蒸発室13内の圧力を検出する工程と、
第3圧力センサ47を用いて第2材料収納容器19B内の圧力を検出する工程と、
第4圧力センサ46を用いて第2材料輸送管45B内の圧力を検出する工程と、
コントローラ24’を用いて、
第1圧力センサ41で測定された圧力P1と、第2圧力センサで測定された圧力P2との差(P1−P2)に基づいて第1蒸発材料の流量Q1を求め、求められた第1蒸発材料の流量Q1に基づいて第1蒸発材料のガラス基板12への第1蒸着レートR1を計測し、計測された第1蒸着レートR1が所定の第1蒸着レートRe1になるように、第1流量制御バルブ18Aの開度を制御し、かつ
第3圧力センサ47で測定された圧力P3と、第4圧力センサ46で測定された圧力P4との差(P3−P4)に基づいて第2蒸発材料の流量Q2を求め、求められた第2蒸発材料の流量Q2に基づいて第2蒸発材料のガラス基板12への第2蒸着レートR2を計測し、計測された第2蒸着レートR2が所定の第2蒸着レートRe2になるように、第2流量制御バルブ18Bの開度を制御する工程と、
を含む。
以上のように、4つの圧力センサ41,42,46,47を用いることにより、2つの蒸発材料の蒸着レートR1,R2を個別に正確に計測することができる。よって、正確な所定の蒸着レートRe1,Re2でガラス基板12に各蒸発材料を蒸着することができる。すなわち、各蒸発材料による蒸着膜をそれぞれ正確な割合・蒸着レートで形成でき、所望の膜厚を得ることができる。
従来のように蒸着膜が厚くなると水晶振動子式膜厚センサの水晶振動子を交換する必要がない。よって、2種類の有機材料を同時に成膜する連続共蒸着を長時間実施することが可能となり、生産性の低下を回避できる。
共蒸着に対して水晶振動子式センサを用いる場合、蒸着レートR1,R2を個別に計測することはできないが、4つの圧力センサ41,42,46,47を用いることで蒸着レートR1,R2を個別に計測することができる。
実施の形態2において、実施の形態1と同様に、材料収納容器19A、19Bと流量制御バルブ18A、18Bとの間に、図4に示す接続フランジ20のような接続部材を設ける場合、接続部材に圧力センサ41、42を設置してもよい。
実施の形態2において、実施の形態1と同様に、材料収納容器19A、19Bに図5に示す空間25のような空間を設けて、その空間25に圧力センサ41、42を設けてもよい。蒸着材料16の投入時に蒸着材料16が圧力センサ21に触れることがなく、良好な計測精度を維持することができる。
また、実施の形態2では、1種の第2蒸着材料を用いたが、互いに異なる複数種の第2蒸着材料を用いてもよい。この場合、複数の第2料収納容器19Bおよび第2材料輸送管45Bを設け、各第2材料収納容器19Bおよび第2材料輸送管45Bに対して、それぞれ第2流量制御バルブ18B、第3圧力センサ47、および第4圧力センサ46を設け、各第2料収納容器19Bにそれぞれ第2蒸着材料を収納すればよい。
実施の形態2の変形例として、2種の第2蒸着材料(蒸着材料16B−1および蒸着材料16B−2)を用いる場合を、図7を参照しながら説明する。図6と重複する部分については説明を省略する。
真空チャンバ11外において、蒸着材料16B−1を収納し、ヒータ等の加熱手段により蒸着材料16B−1を加熱して第2−1蒸発材料を得るための材料収納容器19B−1が設けられている。材料収納容器19B−1内で得られた第2−1蒸発材料は、真空チャンバ11の下部に設けられた材料輸送管45B−1へ供給される。
真空チャンバ11外において、蒸着材料16B−2を収納し、ヒータ等の加熱手段により蒸着材料16B−2を加熱して第2−2蒸発材料を得るための第2−2材料収納容器19B−2が設けられている。材料収納容器19B−2内で得られた第2−2蒸発材料は、真空チャンバ11の下部に設けられた材料輸送管45B−2へ供給される。
第3材料輸送管45Cは、第1材料輸送管45Aと、材料輸送管45B−1と、材料輸送管45B−2とを合流させる。
真空チャンバ11外において、材料収納容器19B−1と材料輸送管45B−1との間に、開度を調節することにより、材料収納容器19B−1から材料輸送管45B−1へ供給される第2−1蒸発材料の流量を制御する流量制御バルブ18B−1が設けられている。
真空チャンバ11外において、材料収納容器19B−2と材料輸送管45B−2との間に、開度を調節することにより、材料収納容器19B−2から材料輸送管45B−2へ供給される第2−2蒸発材料の流量を制御する流量制御バルブ18B−2が設けられている。
材料収納容器19B−1内に、材料収納容器19B−1内の圧力を検出する第3圧力センサ47−1が設けられている。材料輸送管45B−1に、材料輸送管45B−1内の圧力を検出する第4圧力センサ46−1が設けられている。
材料収納容器19B−2内に、材料収納容器19B−2内の圧力を検出する第5圧力センサ47−2が設けられている。材料輸送管45B−2に、材料輸送管45B−2内の圧力を検出する第6圧力センサ46−2が設けられている。
第3−1圧力センサ47−1により測定された圧力P3−1と、第4−1圧力センサ46−1により測定された圧力P4−1との差に基づいて第2−1蒸発材料の流量を求めることにより、第2−1蒸発材料のガラス基板12への蒸着レートR2−1を計測し、計測された蒸着レートR2−1が所定の蒸着レートRe2−1になるように、流量制御バルブ18B−1へバルブ開度指令L2−1を出力し、その出力信号に応じて流量制御バルブ18B−1の開度を制御し、かつ、
第3−2圧力センサ47−2により測定された圧力P3−2と、第4−2圧力センサ46−2により測定された圧力P4−2との差に基づいて第2−2蒸発材料の流量を求めることにより、第2−2蒸発材料のガラス基板12への蒸着レートR2−2を計測し、計測された蒸着レートR2−2が所定の蒸着レートRe2−2になるように、流量制御バルブ18B−2へバルブ開度指令L2−2を出力し、その出力信号に応じて流量制御バルブ18B−2の開度を制御するコントローラ54が設けられている。
以上のように、6つの圧力センサ41,42,46−1,46−2,47−1,47−2を用いることにより、3つの蒸発材料の蒸着レートR1,R2−1,R2−2を個別に正確に計測することができる。よって、正確な所定の蒸着レートRe1,Re2−1,Re2−2でガラス基板12に各蒸発材料を蒸着することができる。すなわち、各蒸発材料による蒸着膜をそれぞれ正確な割合・蒸着レートで形成でき、所望の膜厚を得ることができる。
従来のように蒸着膜が厚くなると水晶振動子式膜厚センサの水晶振動子を交換する必要がない。よって、2種類の有機材料を同時に成膜する連続共蒸着を長時間実施することが可能となり、生産性の低下を回避できる。
共蒸着に対して水晶振動子式センサを用いる場合、蒸着レートR1,R2−1,R2−2を個別に計測することはできないが、6つの圧力センサ41,42,46−1,46−2,47−1,47−2を用いることで蒸着レートR1,R2−1,R2−2を個別に計測することができる。
実施の形態1〜2では、ワーク保持具15に保持されたガラス基板12の下面(被蒸着面)に下方から蒸発材料を蒸着するアップブロータイプ(アップデポ)の構成としているが、蒸着方向の向きを選ばない構成、すなわちサイドデポ、あるいはダウンデポの構成とすることもできる。
11 真空チャンバ
12 ガラス基板
13 蒸着室
14 放出部材
15 ワーク保持具
16 蒸着材料
16A 第1蒸着材料
16B 第2蒸着材料
17,45 材料輸送管
18 流量制御バルブ
18A 第1流量制御バルブ
18B 第2流量制御バルブ
19 材料収納容器
19A 第1材料収納容器
19B 第2材料収納容器
21 第1圧力センサ
22 第2圧力センサ
24,24’,54 コントローラ
45A 第1材料輸送管
45B 第2材料輸送管
45C 第3材料輸送管
46 第4圧力センサ
47 第3圧力センサ
18B−1,18B−2 流量制御バルブ
19B−1,19B−2 材料収納容器
45B−1,45B−2 材料輸送管
46−1 第4−1圧力センサ
46−2 第4−2圧力センサ
47−1 第3−1圧力センサ
47−2 第3−2圧力センサ

Claims (7)

  1. 真空室内において蒸発材料を被蒸着部材に付着させる蒸着装置であって、
    蒸着材料を収納し、蒸着材料を加熱して蒸発材料を得るための蒸発源と、
    蒸発源で得られた蒸発材料を移送する誘導路と、
    誘導路から流入する蒸発材料を、被蒸着部材へ放出する放出部材と、
    蒸発源から誘導路へ供給される蒸発材料の流量を調整する流量制御バルブと、
    蒸発源内の圧力を検出する第1圧力センサと、
    真空室内の圧力を検出する第2圧力センサと、
    第1圧力センサにより測定された値と、第2圧力センサにより測定された値との差に基づいて蒸発材料の流量を求めることにより、蒸発材料の被蒸着部材への蒸着レートを計測し、計測された蒸着レートが所定の蒸着レートになるように、流量制御バルブの開度を制御するコントローラと、
    を備えたことを特徴とする蒸着装置。
  2. 放出部材は、
    蒸発材料を拡散させるための分散容器と、
    被蒸着部材に向けて突設され、被蒸着部材へ蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、
    を有することを特徴とする請求項1記載の蒸着装置。
  3. 真空室内において、第1蒸発材料および第1蒸発材料よりも蒸着量が小さい第2蒸発材料を混合した第3蒸発材料を被蒸着部材に付着させる蒸着装置であって、
    第1蒸着材料を収納し、第1蒸着材料を加熱して第1蒸発材料を得る第1蒸発源と、
    第2蒸着材料を収納し、第2蒸着材料を加熱して第2蒸発材料を得る第2蒸発源と、
    第1蒸発源内で得られた第1蒸発材料を移送する第1誘導路と、
    第2蒸発源内で得られた第2蒸発材料を移送する第2誘導路と、
    第1誘導路と第2誘導路とを合流させて、第1蒸発材料と第2蒸発材料とが混ざり合う第3蒸発材料を移送する第3誘導路と、
    第3誘導路から流入する第3蒸発材料を、被蒸着部材へ放出する放出部材と、
    第1蒸発源から第1誘導路へ供給される第1蒸発材料の流量を調整する第1流量制御バルブと、
    第2蒸発源から第2誘導路へ供給される第2蒸発材料の流量を調整する第2流量制御バルブと、
    第1蒸発源内の圧力を検出する第1圧力センサと、
    真空室内の圧力を検出する第2圧力センサと、
    第2蒸発源内の圧力を検出する第3圧力センサと、
    第2誘導路内の圧力を検出する第4圧力センサと、
    第1圧力センサにより測定された値と、第2圧力センサにより測定された値との差に基づいて第1蒸発材料の流量を求めることにより、第1蒸発材料の被蒸着部材への第1蒸着レートを計測し、計測された第1蒸着レートが所定の第1蒸着レートになるように、第1流量制御バルブの開度を制御し、かつ
    第3圧力センサにより測定された値と、第4圧力センサにより測定された値との差に基づいて第2蒸発材料の流量を求めることにより、第2蒸発材料の被蒸着部材への第2蒸着レートを計測し、計測された第2蒸着レートが所定の第2蒸着レートになるように、第2流量制御バルブの開度を制御するコントローラと、
    を備えたことを特徴とする蒸着装置。
  4. 放出部材は、
    第3蒸発材料を拡散させるための分散容器と、
    被蒸着部材に向けて突設され、被蒸着部材へ第3蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、
    を有することを特徴とする請求項3記載の蒸着装置。
  5. 第2蒸発源および第2誘導路が複数設けられ、
    各第2蒸発源および第2誘導路に対して、それぞれ第2流量制御バルブ、第3圧力センサ、および第4圧力センサが設けられ、
    各第2蒸発源に収納される第2蒸着材料は、互いに異なることを特徴とする請求項3または4記載の蒸着装置。
  6. 請求項1記載の蒸着装置を用いた蒸着方法であって、
    蒸発源において蒸着材料を加熱して蒸発材料を得る工程と、
    蒸発源で得られた蒸発材料を誘導路中に移送する工程と、
    誘導路から放出部材を介して蒸発材料を被蒸着部材へ放出する工程と、
    流量制御バルブを用いて蒸発源から誘導路へ供給される蒸発材料の流量を調整する工程と、
    第1圧力センサを用いて蒸発源内の圧力を検出する工程と、
    第2圧力センサを用いて真空室内の圧力を検出する工程と、
    コントローラを用いて、第1圧力センサで測定された値と、第2圧力センサで測定された値との差に基づいて蒸発材料の流量を求め、求められた蒸発材料の流量に基づいて蒸発材料の被蒸着部材への蒸着レートを計測し、計測された蒸着レートが所定の蒸着レートになるように、流量制御バルブの開度を制御する工程と、
    を含むことを特徴とする蒸着方法。
  7. 請求項3記載の蒸着装置を用いた蒸着方法であって、
    第1蒸発源において第1蒸着材料を加熱して第1蒸発材料を得る工程と、
    第2蒸発源において第2蒸着材料を加熱して第2蒸発材料を得る工程と、
    第1蒸発源で得られた第1蒸発材料を第1誘導路中に移送する工程と、
    第2蒸発源で得られた第2蒸発材料を第2誘導路中に移送する工程と、
    第1誘導路と第2誘導路とを合流させて、第1蒸発材料と第2蒸発材料とが混ざり合う第3蒸発材料を第3誘導路中に移送する工程と、
    第3誘導路から放出部材を介して第3蒸発材料を被蒸着部材へ放出する工程と、
    第1流量制御バルブを用いて第1蒸発源から第1誘導路へ供給される第1蒸発材料の流量を調整する工程と、
    第2流量制御バルブを用いて第2蒸発源から第2誘導路へ供給される第2蒸発材料の流量を調整する工程と、
    第1圧力センサを用いて第1蒸発源内の圧力を検出する工程と、
    第2圧力センサを用いて真空室内の圧力を検出する工程と、
    第3圧力センサを用いて第2蒸発源内の圧力を検出する工程と、
    第4圧力センサを用いて第2誘導路内の圧力を検出する工程と、
    コントローラを用いて、
    第1圧力センサで測定された値と、第2圧力センサで測定された値との差に基づいて第1蒸発材料の流量を求め、求められた第1蒸発材料の流量に基づいて第1蒸発材料の被蒸着部材への第1蒸着レートを計測し、計測された第1蒸着レートが所定の第1蒸着レートになるように、第1流量制御バルブの開度を制御し、かつ
    第3圧力センサで測定された値と、第4圧力センサで測定された値との差に基づいて第2蒸発材料の流量を求め、求められた第2蒸発材料の流量に基づいて第2蒸発材料の被蒸着部材への第2蒸着レートを計測し、計測された第2蒸着レートが所定の第2蒸着レートになるように、第2流量制御バルブの開度を制御する工程と、
    を含むことを特徴とする蒸着方法。
JP2013036511A 2013-02-27 2013-02-27 蒸着装置および蒸着方法 Active JP6116290B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036511A JP6116290B2 (ja) 2013-02-27 2013-02-27 蒸着装置および蒸着方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013036511A JP6116290B2 (ja) 2013-02-27 2013-02-27 蒸着装置および蒸着方法

Publications (2)

Publication Number Publication Date
JP2014162969A true JP2014162969A (ja) 2014-09-08
JP6116290B2 JP6116290B2 (ja) 2017-04-19

Family

ID=51613874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036511A Active JP6116290B2 (ja) 2013-02-27 2013-02-27 蒸着装置および蒸着方法

Country Status (1)

Country Link
JP (1) JP6116290B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170084418A (ko) * 2016-01-11 2017-07-20 삼성디스플레이 주식회사 증착원 노즐 어셈블리 및 이를 포함하는 증착 장치
CN107250423A (zh) * 2015-02-25 2017-10-13 夏普株式会社 蒸镀单元、蒸镀装置及蒸镀方法
WO2019201434A1 (en) * 2018-04-18 2019-10-24 Applied Materials, Inc. Evaporation source for deposition of evaporated material on a substrate, deposition apparatus, method for measuring a vapor pressure of evaporated material, and method for determining an evaporation rate of an evaporated material
US20200024724A1 (en) * 2018-07-20 2020-01-23 Samsung Display Co., Ltd. Apparatus and method for manufacturing display apparatus
JP2020132897A (ja) * 2019-02-13 2020-08-31 株式会社アルバック 蒸着装置及び蒸着方法
JP7326646B1 (ja) 2022-03-09 2023-08-15 株式会社日立ハイテク プラズマ処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059507A (ja) * 2008-09-04 2010-03-18 Ulvac Japan Ltd 成膜装置及び成膜方法
WO2012046672A1 (ja) * 2010-10-04 2012-04-12 東京エレクトロン株式会社 成膜装置及び成膜材料供給方法
WO2013022669A2 (en) * 2011-08-05 2013-02-14 3M Innovative Properties Company Systems and methods for processing vapor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059507A (ja) * 2008-09-04 2010-03-18 Ulvac Japan Ltd 成膜装置及び成膜方法
WO2012046672A1 (ja) * 2010-10-04 2012-04-12 東京エレクトロン株式会社 成膜装置及び成膜材料供給方法
WO2013022669A2 (en) * 2011-08-05 2013-02-14 3M Innovative Properties Company Systems and methods for processing vapor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250423A (zh) * 2015-02-25 2017-10-13 夏普株式会社 蒸镀单元、蒸镀装置及蒸镀方法
US10100397B2 (en) 2015-02-25 2018-10-16 Sharp Kabushiki Kaisha Vapor deposition unit, vapor deposition device, and vapor deposition method
KR20170084418A (ko) * 2016-01-11 2017-07-20 삼성디스플레이 주식회사 증착원 노즐 어셈블리 및 이를 포함하는 증착 장치
KR102490888B1 (ko) * 2016-01-11 2023-01-25 삼성디스플레이 주식회사 증착원 노즐 어셈블리 및 이를 포함하는 증착 장치
CN110621803B (zh) * 2018-04-18 2022-07-12 应用材料公司 用于沉积已蒸发材料于基板上的蒸发源、沉积设备、用于测量已蒸发材料的蒸汽压力的方法、及用于确定已蒸发材料的蒸发率的方法
CN110621803A (zh) * 2018-04-18 2019-12-27 应用材料公司 用于沉积已蒸发材料于基板上的蒸发源、沉积设备、用于测量已蒸发材料的蒸汽压力的方法、及用于确定已蒸发材料的蒸发率的方法
KR102337249B1 (ko) * 2018-04-18 2021-12-07 어플라이드 머티어리얼스, 인코포레이티드 증발된 재료를 기판 상에 증착하기 위한 증발 소스, 증착 장치, 증발된 재료의 증기압을 측정하기 위한 방법, 및 증발된 재료의 증발 레이트를 결정하기 위한 방법
KR20190122204A (ko) * 2018-04-18 2019-10-29 어플라이드 머티어리얼스, 인코포레이티드 증발된 재료를 기판 상에 증착하기 위한 증발 소스, 증착 장치, 증발된 재료의 증기압을 측정하기 위한 방법, 및 증발된 재료의 증발 레이트를 결정하기 위한 방법
WO2019201434A1 (en) * 2018-04-18 2019-10-24 Applied Materials, Inc. Evaporation source for deposition of evaporated material on a substrate, deposition apparatus, method for measuring a vapor pressure of evaporated material, and method for determining an evaporation rate of an evaporated material
US20200024724A1 (en) * 2018-07-20 2020-01-23 Samsung Display Co., Ltd. Apparatus and method for manufacturing display apparatus
JP2020132897A (ja) * 2019-02-13 2020-08-31 株式会社アルバック 蒸着装置及び蒸着方法
JP7333697B2 (ja) 2019-02-13 2023-08-25 株式会社アルバック 蒸着装置及び蒸着方法
JP7326646B1 (ja) 2022-03-09 2023-08-15 株式会社日立ハイテク プラズマ処理装置
WO2023170812A1 (ja) * 2022-03-09 2023-09-14 株式会社日立ハイテク プラズマ処理装置

Also Published As

Publication number Publication date
JP6116290B2 (ja) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6116290B2 (ja) 蒸着装置および蒸着方法
KR102062224B1 (ko) 증착장치
TWI458843B (zh) 蒸鍍裝置與有機薄膜的形成方法
JP6639580B2 (ja) 蒸発器、堆積アレンジメント、堆積装置及びこれらを操作する方法
US10267768B2 (en) Device and method for determining the concentration of a vapor by means of an oscillating body sensor
US20100092665A1 (en) Evaporating apparatus, apparatus for controlling evaporating apparatus, method for controlling evaporating apparatus and method for using evaporating apparatus
CN102560364A (zh) 真空气相沉积系统以及制造有机电致发光元件的方法
JP2010196082A (ja) 真空蒸着装置
JPWO2008111398A1 (ja) 蒸着装置の制御装置および蒸着装置の制御方法
CN203768445U (zh) 真空蒸镀装置
WO2010038631A1 (ja) 蒸着装置、蒸着方法およびプログラムを記憶した記憶媒体
US8899174B2 (en) Device and method for fabricating display device
KR20230045590A (ko) 버블러 (bubbler) 를 사용한 농도 제어
JP5024075B2 (ja) 真空蒸着装置
JP6207319B2 (ja) 真空蒸着装置
CN103518001A (zh) 真空沉积装置
JPWO2013111599A1 (ja) 真空蒸着装置
JP6502528B2 (ja) 発振水晶のための拡散バリア、堆積速度を測定するための測定アセンブリ及びその方法
JP2011122187A (ja) 材料蒸発システム及びその成膜装置
JP2005029885A (ja) 薄膜形成方法および薄膜形成装置並びに半導体デバイス
JP2012251178A (ja) 成膜装置、成膜速度算出方法、成膜方法、及び有機発光素子の製造方法
JP2003257871A (ja) 化学気相成長装置および化学気相成長法
JP2009138269A (ja) 化学気相蒸着工程におけるソース物質の量の測定方法
EP4347918A1 (en) A system and method for mass flow measurement and control of process gases in a carrier stream using one or more quartz crystal microbalance sensors
JP2015209559A (ja) 蒸着装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6116290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250