WO2023170812A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2023170812A1
WO2023170812A1 PCT/JP2022/010245 JP2022010245W WO2023170812A1 WO 2023170812 A1 WO2023170812 A1 WO 2023170812A1 JP 2022010245 W JP2022010245 W JP 2022010245W WO 2023170812 A1 WO2023170812 A1 WO 2023170812A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample stage
processing apparatus
plasma processing
pressure sensor
opening
Prior art date
Application number
PCT/JP2022/010245
Other languages
English (en)
French (fr)
Inventor
盛楠 于
崇 植村
浩平 佐藤
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to KR1020237001171A priority Critical patent/KR20230133264A/ko
Priority to PCT/JP2022/010245 priority patent/WO2023170812A1/ja
Priority to JP2023516559A priority patent/JP7326646B1/ja
Priority to CN202280005668.8A priority patent/CN117043915A/zh
Priority to TW112108505A priority patent/TW202336812A/zh
Publication of WO2023170812A1 publication Critical patent/WO2023170812A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a plasma processing apparatus that processes a substrate-shaped sample such as a semiconductor wafer supported on a sample stage placed in a processing chamber inside a vacuum container using plasma formed in the processing chamber, and particularly relates to The present invention relates to a plasma apparatus that processes the sample while adjusting the pressure inside the processing chamber using the output of a pressure gauge that detects the pressure inside the processing chamber.
  • a plasma processing apparatus is required to maintain the pressure inside the processing chamber to a desired value within a range suitable for plasma processing over a long period of time and with high accuracy during processing of a semiconductor wafer (sample).
  • the pressure inside the processing chamber is detected using a pressure gauge attached to the vacuum container in communication with the inside of the processing chamber, and the pressure value detected from the output value of the pressure gauge is used to control the processing.
  • the pressure value inside the chamber is regulated.
  • such pressure gauges have so-called temperature dependence, in which the output value differs even for the same pressure value depending on the detected temperature (the output value of the pressure gauge has temperature dependence). )It is known.
  • the output value of the pressure gauge has a tendency to change over time (pressure It is known that the output value of the meter changes over time. Therefore, when the operating time of the plasma processing equipment reaches a predetermined period or when the cumulative number of processed semiconductor wafers (sample) reaches the predetermined processing amount, the output value of the pressure gauge and the Calibration work was being carried out to correct the accuracy.
  • the sample stage that supports the wafer is placed in the vertical center of the processing chamber, so that the processing chamber is located above the top surface of the sample stage.
  • the discharge area which is a space in which plasma is formed inside
  • the exhaust area which is a space below the bottom of the sample stage and faces the exhaust port located directly below the bottom, and these are connected.
  • a system has been developed that consists of a space on the outer peripheral side of the outer wall of the sample stage that communicates with the outside wall. This technology improves processing accuracy by reducing circumferential variations in the flow of gas and particles inside the processing chamber from the space above the top of the sample stage where plasma is formed (discharge region) to the exhaust region. be done.
  • Patent Document 1 describes that a vacuum container surrounding a processing chamber is composed of an upper container, a lower container, and a ring-shaped member sandwiched between these and including a sample stage, and a discharge that forms plasma above the upper surface of the sample stage.
  • a plasma processing apparatus is disclosed in which the sample stage is supported between these spaces in the vertical direction, and further includes a space facing an exhaust port below the bottom surface of the sample stage.
  • a calibration pressure gauge connected to the space connected to the processing chamber measures the atmospheric pressure.
  • a technique is disclosed that eliminates the need for calibration of a control pressure gauge that is performed below.
  • Patent Document 1 the pressure gauge is placed at a location separated from the space above the upper surface of the sample stage where plasma is formed. For this reason, the area surrounding the space is heated due to plasma formation, but if there is a large difference in temperature between the area where the pressure gauge is located away from the plasma and the temperature in the area where plasma is formed, Due to this, the difference in temperature detected by the pressure gauge becomes large, and wafer processing performed by adjusting the pressure in the processing chamber using the output of the pressure gauge causes variations from the intended one. The discrepancy will become larger.
  • a configuration may be applied in which the pressure gauge is heated to adjust the temperature.
  • a pressure gauge is generally placed at an end of the plasma processing apparatus. At this time, if the pressure gauge does not sufficiently exhaust heat from its surroundings, the pressure sensor provided within the pressure gauge will be excessively heated, which will actually impair the accuracy of pressure detection. This kind of point was also not taken into account.
  • Patent Document 1 does not sufficiently consider reducing the error in the detected temperature due to the distance between the location where the pressure is detected and the detection target. For this reason, no consideration was given to the fact that the reproducibility of wafer processing and the accuracy of the processed shape as a result of the processing would be impaired, and that the processing yield would be impaired.
  • An object of the present invention is to provide a plasma processing apparatus with improved yield.
  • the plasma processing apparatus includes a sample stage base disposed around the outer periphery of the sample stage, a pressure sensor connected to the sample stage base via a connecting pipe and a buffer part, and a temperature sensor that detects the temperature of the connecting pipe and the buffer part.
  • a heater that creates a temperature gradient that increases as the temperature increases toward the sample stage, and adjusts the heating so that the pressure sensor is brought to a temperature close to that of the plasma generation space above the sample stage; and a rectangular base plate disposed in the base plate.
  • the pressure sensor is stored in a location separated by a heat shield at the corner of the base plate on the outside of the sample table base on the rectangular base plate, and the inside and outside of the corner are communicated through an opening. Ru.
  • the pressure sensor which is structurally located at the end, maintains a large temperature difference with the high-temperature buffer section to improve exhaust heat, suppress overheating, and reduce detection errors of the pressure sensor. . This reduces variations in wafer processing conditions and improves processing yield.
  • FIG. 1 is a perspective view schematically showing the configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a sectional view schematically showing the configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a top view schematically showing the configuration around the sample stage base of the plasma processing apparatus according to the embodiment shown in FIG.
  • FIG. 4 is a sectional view schematically showing the configuration of a vacuum gauge unit of the plasma processing apparatus according to the embodiment shown in FIG.
  • FIG. 5 is a perspective view schematically showing the configuration of a vacuum gauge unit of the plasma processing apparatus according to the embodiment shown in FIG.
  • FIG. 6 is an enlarged perspective view showing the structure of the cover of the plasma processing apparatus according to the embodiment shown in FIG.
  • FIG. 7 is a diagram illustrating the heater of the vacuum gauge unit shown in FIG. 4.
  • FIG. 1 is a perspective view schematically showing the configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • the plasma processing apparatus 100 shown in this figure constitutes a part of a vacuum processing apparatus including at least one vacuum transfer container (not shown), and the side wall of the plasma processing apparatus 100 is such that a substrate-like sample to be processed, such as a semiconductor wafer, is placed inside.
  • This is a processing unit that is connected to one vacuum transport container that is transported by a vacuum transport container.
  • the plasma processing apparatus 100 is a processing unit having a vacuum container inside, and is mounted on the tip of an arm of a transfer robot disposed in a transfer chamber inside the vacuum transfer container to collect unprocessed materials.
  • the wafers are carried into a processing chamber inside the vacuum container, and the processed wafers are carried out from the processing chamber into a transfer chamber.
  • the plasma processing apparatus 100 has a roughly rectangular shape when viewed from above, and has a power supply and power relay equipment for processing wafers inside the vacuum container at the bottom thereof. It includes a rectangular parallelepiped-shaped pedestal section 14 in which an interface for exchanging signals and gas with the vacuum processing apparatus main body and the building in which the vacuum processing apparatus is installed is built-in.
  • a vacuum chamber 13 placed above the pedestal section 14 includes a vacuum pump such as a turbo-molecular pump, an exhaust section 13 including the vacuum pump, a vacuum chamber containing a processing chamber in which processing gas is supplied, and wafers are processed, and the interior thereof.
  • a vacuum container section 12 is provided with a valve box that has a gate valve on the top and functions as an interface to connect the vacuum container and the vacuum transfer container, and a processing gas is used in the processing chamber inside the vacuum container to process wafers.
  • a plasma forming section 11 including a power source, coils, and members for forming and supplying an electric field or magnetic field for forming plasma used in the plasma forming section 11 is arranged in this order from the bottom to the top.
  • the vertical regions of the plasma forming section 11 and the vacuum container section 12 partially overlap because the plasma processing apparatus 100 of this embodiment is configured to handle the electric field and magnetic field of the ⁇ -wave, as will be described later.
  • plasma is formed using ECR (Electron Cyclotron Resonance) generated by a solenoid coil, and a solenoid coil covers the outer periphery of a part of the upper part of the vacuum vessel.
  • ECR Electro Cyclotron Resonance
  • the peripheries of the plasma forming section 11 and the vacuum container section 12 are covered with a cover (side wall cover) 15, each including a plate member having a combination of rectangular surfaces.
  • the cover 15 is detachably attached to an outer frame (not shown) provided in each of the plasma forming part 11 and the vacuum container part 12, and covers the four directions around these parts with a plate member.
  • the outer wall surfaces of each of the plasma forming part 11 and the vacuum container part 12 covered with the cover 15 are shaped into a rectangular parallelepiped or a shape that approximates it to the extent that it can be regarded as a rectangular parallelepiped.
  • FIG. 2 is a sectional view schematically showing the configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • the plasma processing apparatus 100 shown in FIG. 2 can be roughly divided into a base plate 109 having a circular exhaust port 124 in the center, an upper container 101 arranged above the base plate 101 and having a cylindrical inner side wall surface, and an upper container 101 arranged below the base plate 109. It has a vacuum container including a lower container 102 and a sample stage base 107 sandwiched therebetween. Further, below the vacuum container, an exhaust section including an exhaust pump 103 such as a turbo-molecular pump connected thereto is provided. Further, above the vacuum vessel, a plasma forming section is arranged which includes a waveguide 122 and a solenoid coil 105 through which an electric field of a predetermined frequency propagates inside to form plasma in the space inside the vacuum vessel. .
  • the inner wall surfaces of these members have a cylindrical shape with a circular cross section in the horizontal direction, and the centers of the cylindrical shape of the processing chamber 104 surrounded by each member are aligned in the vertical direction, or are located at positions close enough to be considered as such. They are positioned and connected to each other by being pressed vertically with a sealing member such as an O-ring interposed therebetween so that the level difference at the seam of the inner wall surface is made as small as possible. In this connected state, these members constitute a vacuum partition, and the inside of the processing chamber 104 is airtightly partitioned from the outside atmosphere.
  • the space above the processing chamber 104 is a space in which plasma is formed as a discharge section, and a sample stage 106 on which a wafer 108 to be processed is placed is arranged below it.
  • the processing chamber 104 of this embodiment has a space below the bottom surface of the sample stage 106 and between the bottom surface of the processing chamber 104 and the bottom surface of the processing chamber 104 below the bottom surface of the sample stage 106.
  • a circular opening of an exhaust port 124 is arranged through which particles such as gas and plasma are discharged.
  • a ring-shaped earth ring 116 made of a conductive material, a ring-shaped discharge block base 119 placed on the upper surface of the earth ring 116, and a ring-shaped discharge block base 119 placed on the upper surface of the earth ring 116.
  • a discharge part container 117 having a cylindrical shape is disposed so as to surround the outer periphery of the discharge part.
  • the cylindrical inner side wall portion of the discharge container 117 is arranged to cover the inner peripheral side wall of the discharge block base 119, and the discharge portion is a space inside the discharge container 117 where plasma is formed.
  • An inner cylinder made of quartz is disposed between the inner wall of the discharge container 117 and suppresses interaction between the plasma and the inner wall of the discharge container 117 to reduce damage and wear. ing.
  • a heater 118 is wound around the outer circumferential side of the wall surface and placed in contact with the wall surface.
  • the heater 118 is electrically connected to a DC power source (not shown), generates heat when current is supplied from the DC power source, and adjusts the temperature of the inner wall surface of the discharge container 117 to a value within a desired range. Ru.
  • An earth ring 116 which is a ring-shaped member made of a conductive material, is arranged between the lower end surfaces of the discharge unit container 117 and the discharge block base 119 and the upper end surface of the upper container 101 arranged below them. has been done.
  • the upper surface of the earth ring 116 is connected to the lower surface of the lower end of the cylindrical portion of the discharge container 117, and the lower surface of the earth ring 116 is connected to the upper surface of the upper end of the upper member 101 via an O-ring, and presses them in the vertical direction.
  • the earth ring 116 is electrically connected to a ground electrode, and its inner end protrudes from the periphery to the center of the discharge section inside the processing chamber 104 and comes into contact with the plasma, thereby increasing the potential of the plasma. is adjusted to be within the range desired by the owner. Further, an inner cylinder 114 is placed above the upper surface of the inner peripheral end of the earth ring 116 with a gap between it and the inner wall surface of the discharge container 117 .
  • a gas ring 115 which is a ring-shaped member in which a passage for processing gas supplied to form plasma in the processing chamber 104 is arranged, is arranged with an O-ring in between. It is posted.
  • a disc-shaped window member 112 which constitutes a vacuum container and is made of a dielectric material such as quartz through which the electric field supplied to the discharge section passes, sandwiches the O-ring.
  • the lower surface of the outer peripheral edge of the window member 112 and the upper surface of the gas ring 115 are connected to each other.
  • a shower plate 113 which is a disc-shaped member made of a dielectric material such as quartz, is arranged with a gap below the lower surface of the window member 112, and covers the upper part of the discharge section of the processing chamber 104 to form its top surface. .
  • a plurality of through holes are arranged in a circular area at the center of the shower plate 113.
  • Inside the gas ring 115 there is a gas source configured with a plurality of tanks (not shown), a processing gas supply path and a window connected via piping with a flow rate regulator (mass flow controller, MFC) in between.
  • MFC mass flow controller
  • Gas from each type of gas source whose flow rate or speed is adjusted by a flow rate regulator is supplied along the piping and joins as one gas supply path, and then flows through the gas flow path 115' in the gas ring 115. After passing through and flowing into the gap between the window member 112 and the shower plate 113 and being diffused within the gap, it is introduced into the processing chamber 104 from above through a plurality of through holes in the center of the shower plate 113.
  • the window member 112, the shower plate 113, the gas ring 115, the discharge container 117, and the discharge block base 119 are connected with an O-ring in between to form a vacuum container, and together with the inner cylinder 114, form a discharge block.
  • the discharge block is configured to be able to move vertically along the vertical axis of a lifter (not shown) to disassemble or assemble the vacuum container.
  • the discharge block may be configured to include the ground ring 116, or may be configured to be able to be disassembled by dividing the vacuum container into upper and lower parts between the upper container 101 and the earth ring 116.
  • a waveguide 122 is arranged above the window member 112 to propagate the electric field of microwaves supplied to the discharge section of the processing chamber 104 to form plasma.
  • the waveguide 122 includes a cylindrical circular waveguide portion that extends along the vertical axis and has a circular cross section in the horizontal direction perpendicular to the vertical axis;
  • a magnetron 123 that oscillates to form an electric field is arranged at the other end of the section.
  • the generated microwave electric field propagates horizontally through the rectangular waveguide section, changes direction at the upper end of the circular waveguide section, and propagates toward the processing chamber 104 below the window member 112 below.
  • the lower end of the circular waveguide section is located below the lower end and above the window member 112, and has a cylindrical cavity 121 having an inner diameter that is the same as or approximates the size of the window member 112. It is connected to the center of the circular ceiling.
  • the inside of the circular waveguide section and the cavity inside the cavity section 121 are communicated through a circular opening having the same inner diameter as the circular waveguide at the center of the circular ceiling section, and the cavity section 121 communicates with the cavity inside the cavity section 121. constitutes part of. There is.
  • a desired electric field mode is formed inside the cavity 121, and is transmitted through the window member 112 and the shower plate 113 below. It propagates into the processing chamber 104.
  • the outer peripheral side of the circular waveguide part of the waveguide 122 above the cavity part 121 and the outer peripheral side of the cylindrical outer side wall of the cavity part 121 and the discharge part container 117 are surrounded, and A ring-shaped solenoid coil 105 in multiple stages is arranged together with the yoke.
  • These solenoid coils 105 are electrically connected to a DC power source (not shown) and supplied with DC current to generate a magnetic field.
  • the electric field of the microwave supplied from the waveguide 122 and the magnetic field generated and supplied from the solenoid coil 105 interact with each other inside the processing chamber 104 to generate electron cyclotron resonance (ECR). , excites the atoms or molecules of the processing gas supplied into the processing chamber 104, ionizes or dissociates them, and forms plasma in the discharge section during processing of the wafer 108.
  • ECR electron cyclotron resonance
  • the sample stage 106 is arranged at the center inside the ring-shaped sample stage base 107, and is connected to the sample stage base 107 by a plurality of support beams connecting them.
  • the support beams of this embodiment are arranged at angles that are the same or approximate enough to be regarded as the same in the circumferential direction when viewed from above with respect to the vertical central axis of the sample stage 106 having a cylindrical shape, which is shown by a dashed line in the figure. They are arranged radially, so-called axially symmetrically. With this configuration, particles such as plasma formed in the discharge section inside the upper container 101, supplied gas, and reaction products generated during processing of the wafer 108 are removed from the sample stage by the operation of the exhaust pump 103.
  • the flow of particles inside the processing chamber 104 above the upper surface of the wafer 108 is reduced in variation in the circumferential direction of the wafer 108, and the uniformity of processing of the wafer 108 is improved.
  • the sample stand 106 has a space inside, and the space is sealed by attaching a sample stand bottom cover 120 to the bottom surface of the sample stand to airtightly seal the inside and outside. Furthermore, a passage communicating with the atmospheric pressure atmosphere outside the sample stage base 107 is arranged inside the plurality of support beams, so that the space inside the sample stage 106 and the location outside the sample stage 106 are communicated with each other. These spaces and passages are areas for arranging supply paths such as cables and piping that are arranged outside the sample stage base 107 and supply fluids such as electric power, refrigerant, and gas to the sample stage. The passage and the space inside the sample stage 106 are set at the same atmospheric pressure as the atmosphere, or at a pressure close to the atmospheric pressure.
  • the upper container 101 and the lower container 102 each have a flange portion (not shown) on the outer wall thereof.
  • the lower container 102 and the upper container 101 above the lower container 102 are positioned by fastening their respective flanges to the base plate 109 using screws or bolts. That is, the lower container 102 is provided above the base plate 109, the sample stage base 107 is provided above the lower container 102, and the upper container 101 is provided above the sample stage base 107.
  • the outer peripheral side walls of the upper container 101, the lower container 102, and the sample stage base 107 in this embodiment have a cylindrical shape, the horizontal cross-sectional shape of these may be rectangular instead of circular, or may have another shape. .
  • the base plate 109 is connected to the upper ends of a plurality of columns 125 on the floor of a building such as a clean room in which the plasma processing apparatus 100 is installed, and is supported by being placed on these columns 125. That is, the vacuum container including the base plate 109 is positioned on the floor of the building via the plurality of supports 125.
  • an exhaust pump 103 is arranged in a space between the pillars 125 below the base plate 109 and communicates with the processing chamber 104 via an exhaust port 124.
  • the exhaust port 124 is located directly below the sample stage 106 and the vertical axis passing through the center of the circular opening coincides with the above-mentioned central axis, or is located at a position so close that it can be considered as such, and the exhaust port 124 is located in the processing chamber above the exhaust port 124.
  • an exhaust port cover 110 having a substantially disk shape that closes or moves vertically with respect to the exhaust port 124 is arranged.
  • the exhaust port cover 110 is disposed below the base plate 109 and moves up and down in accordance with the operation of an exhaust regulator 111 having driving equipment such as an actuator, thereby removing particles in the processing chamber 104 that are discharged from the exhaust port 124. It functions as a flow rate adjustment valve that increases or decreases the conductance of exhausting particles in the processing chamber 104 from the exhaust port 124 by increasing or decreasing the area of the flow path. By driving the exhaust port cover 110, the amount and speed of internal particles discharged by the exhaust pump 103 are adjusted.
  • the vacuum container of the plasma processing apparatus 100 is another vacuum container placed horizontally adjacent to the vacuum container, and holds the wafer 108 on the upper surface of the tip of the arm in a transfer chamber, which is a reduced pressure space inside.
  • the vacuum transport container 126 is connected to a vacuum transport container 126 in which a transport robot is arranged to transport the inside of the transport chamber.
  • the plasma processing apparatus 100 and the vacuum transfer chamber 126 communicate with each other through a gate, which is a passage through which the wafer 108 passes between the internal processing chamber 104 and the vacuum transfer chamber.
  • a gate is moved vertically and horizontally with respect to the inner wall surface of the vacuum transfer container 126 to open an opening of a gate disposed on the inner wall surface, and a gate is placed between the inner wall surface and the O-ring.
  • a gate valve 128 is provided which abuts and hermetically closes the opening.
  • a valve box 127 having another gate valve 129 in its internal space is arranged between the upper container 101 and the vacuum transfer container 126.
  • the two ends of the valve box 127 are each connected to the outer side wall surface of the upper container 101 and the side wall surface of the vacuum transfer container 126 with sealing members such as O-rings in between, and the inside is connected to external atmospheric pressure. It has a space that is airtightly separated from the atmosphere.
  • the side wall surface of one end of the valve box 127 is connected to the periphery of the gate opening on the side wall of the vacuum transfer container 126, and the side wall surface of the other end is connected to the periphery of the gate opening arranged on the side wall of the upper container 101.
  • the space within the valve box 127 constitutes a passageway through which the wafer 108 is placed on the arm of the transport robot and transported.
  • the gate valve 129 disposed inside the valve box 127 moves vertically and horizontally with respect to the outer wall of the upper container 101 to open the gate opening of the upper container 101 or open the O-ring. Pinch and abut to seal airtightly.
  • a driving machine 130 such as an actuator is arranged below each of the vacuum transfer container 126 and the valve box 127 to be connected to the gate valves 128 and 129 disposed inside each of them and to move them.
  • valve box 127 of this embodiment is connected to and supported by the upper end of another column 125 whose lower end is connected to the floor of the building and positioned using screws, bolts, etc.
  • the side wall surface of one end is connected to the outer wall surface of the upper container 101 on the outer periphery side of the gate with an O-ring interposed therebetween, and is positioned and arranged so that an airtight seal can be achieved.
  • the valve box 127 of the embodiment shown in FIG. 1 is supported by a column 125 on the floor of the building, or by another column 125 connected to the column 125 below the base plate 109, or by a column 125 below the base plate 109. It may also be positioned by being fastened to the upper surface of the end on the vacuum transfer container 126 side with screws, bolts, or the like.
  • the unprocessed wafer 108 Prior to processing the wafer 108, the unprocessed wafer 108 is placed and held on the upper end of the arm of the transfer robot inside the processing chamber 104, which has been depressurized in advance, and is carried from the vacuum transfer chamber through the space inside the valve box 127. be done.
  • the arm of the transfer robot removes the vacuum from the processing chamber 104. Exit into the transport room.
  • the wafer 108 is placed on the upper surface of the sample stage 106, and the gate valve 129 is driven to airtightly close the gate of the upper container 101.
  • a processing gas composed of a plurality of gases whose flow rates or speeds are adjusted by a flow rate regulator is supplied from the gas supply path and the gas flow path 115' to the gap between the window member 112 and the shower plate 113 and to the shower plate.
  • the gas particles introduced into the processing chamber 104 through the through hole 113 are exhausted from the processing chamber 104 by the operation of the exhaust pump 103 that communicates with the exhaust port 124, and due to the balance between these, the pressure inside the processing chamber 104 is increased. Adjusted to a value within a range suitable for processing.
  • the microwave electric field formed using the magnetron 123 propagates within the waveguide 122 and the cavity 121, passes through the window member 112 and the shower plate 113, and is supplied into the processing chamber 104.
  • a magnetic field formed by the coil 105 is supplied into the processing chamber 104, and plasma is formed within the discharge section using a processing gas.
  • high-frequency power of a predetermined frequency is supplied to electrodes (not shown) placed inside the sample stage 106, creating a difference between the upper surface of the wafer 108 and the plasma.
  • a bias potential with a bias potential of The etching process progresses by colliding with the target film layer of the film structure having a mask layer made of materials such as the above.
  • a detector (not shown) detects that the etching process of the film layer to be processed has reached a predetermined remaining film thickness or depth
  • high-frequency power is supplied to the electrodes inside the sample stage 106 and plasma is formed.
  • the etching process is then stopped.
  • the gate valve 129 is driven to open the gate of the upper container 101, and the arm of the transfer robot enters the processing chamber 104 through the gate, and the wafer is transferred.
  • the wafer 108 is transferred onto the arm from the sample stage 106, and the arm exits from the processing chamber 104, whereby the processed wafer 108 is transferred to the vacuum transfer chamber.
  • the controller determines whether or not there is an unprocessed wafer 108 to be processed next, and if there is a next wafer 108, the wafer 108 is carried into the processing chamber 104 through the gate again and placed on the sample stage. After being delivered to the wafer 106, the etching process is performed on the wafer 108 in the same manner as described above. If it is determined that there is no wafer 108 to be processed next, operation of the plasma processing apparatus 100 that processes the wafer 108 to manufacture semiconductor devices is stopped or suspended.
  • a cylindrical or ring-shaped sample stand ring base 107' located on the outer peripheral side of the sample stand 106 of the sample stand base 107 of the plasma processing apparatus 100 of this embodiment has a ring base 107' that communicates with the inside of the processing chamber 104 and is connected to the inside of the process chamber 104.
  • a vacuum gauge unit 130 including a pressure sensor 134 for detecting pressure is connected.
  • the vacuum gauge unit 130 includes a pressure sensor 134, a buffer chamber (buffer section) 133 connected to the pressure sensor 134, and a conduit connecting the buffer chamber 133 and the sample stage ring base 107'. .
  • the end of the conduit of the vacuum gauge unit 130 is connected to the sample stage ring base 107', and is communicated with a through hole passing through the sample stage ring base 107' in the horizontal direction in the figure, so that the pressure sensor 134 and the inside of the processing chamber 104 are communicated with each other, so that the pressure sensor 134 is configured to be able to detect the pressure inside the processing chamber 104.
  • FIG. 3 is a top view schematically showing the configuration around the sample stage base of the plasma processing apparatus according to the embodiment shown in FIG.
  • This figure shows a portion of the plasma processing apparatus 100 shown in FIG. 2, including the sample stage base 107, viewed from above.
  • the valve box 127 connected to the upper surface of the end of the base plate 109 on the side of the vacuum transfer container 126 (upper side in the figure) to which the plasma processing apparatus 100 is connected is shown as viewed from the top. has been done.
  • this figure shows a cross section of a part of the vacuum gauge unit 130 connected to the sample stage ring base 107', taken along a horizontal plane at the height at which it is arranged.
  • a pressure sensor 134 disposed at one end is connected to a sample stage ring base 107' by a buffer chamber 133 and a conduit connected to the pressure sensor 134.
  • a path is formed between the pressure sensor 134 and the inside of the processing chamber 104, through which gas and particles inside the processing chamber 104 can flow.
  • the end of the conduit that connects the buffer chamber 133 and the sample stage ring base 107' and corresponds to the other end of the vacuum gauge unit 130 is the outer peripheral side wall of the sample stage ring base 107'.
  • the inside and outside are connected to the side wall around the through hole extending in the left-right direction in the figure in an airtight manner.
  • the through hole is formed between the end (first end) A of the sample stage ring base 107' on the side (upper side in FIG. 3) connected to the vacuum transfer container 126 in which the valve box 127 is installed and the center of the sample stage 106.
  • the through hole is installed between a plurality of support beams 137 that support the sample stage 106 at the center of the sample stage ring base 107'.
  • the support beams 137 extend radially at equal angles around the central axis of the sample stage 106 between the outer peripheral side wall of the cylindrical sample stage 106 and the cylindrical inner peripheral side wall of the sample stage ring base 107'. and connect them.
  • the pressure sensor 134 is communicated with the inside of the processing chamber 104 via the buffer chamber 133, the pipeline, and the through hole.
  • the pressure sensor 134 detects the pressure inside the processing chamber 104, particularly in the region of the processing chamber 104 above the mounting surface on the sample stage 106 on which the wafer 108 is mounted, where plasma is formed. , it becomes possible to detect the pressure in the so-called discharge area.
  • the sample stage ring base 107' is held between the upper container 101 and the lower container 102 at a height position sandwiched between them. Therefore, the pressure sensor 134 is placed at a distance from the discharge region, which is the detection target, by at least the height of the sample stage 106 and the length of the conduit and buffer chamber 133. Further, a plasma confinement ring 131 is arranged on the outer circumferential side of the sample stage 106, and the plasma formed in the discharge area during processing causes the plasma confinement ring 131 and the portion of the wafer 108 facing the discharge area to It receives heat from the plasma and is brought to a relatively high temperature. On the other hand, the pressure sensor 134 is required to be installed away from the detection target (discharge area) and to detect the pressure and temperature of the detection target at a location where the temperature is different from that of the detection target (discharge area).
  • the vacuum gauge unit 130 of this example is equipped with a heater 405 around the area including the buffer chamber 133 and the pipe line between the pressure sensor 134 and the sample stage ring base 107', as described later in FIG. It is equipped with a configuration for heating these.
  • the heater 405 brings the buffer chamber 133 and at least a portion of the conduit to the temperature of the member facing the plasma while plasma is being formed in the discharge region. This makes it possible to reduce the difference between the pressure detected by the pressure sensor 134 and the pressure within the discharge area. Accordingly, the accuracy of the pressure detected by the pressure sensor 134 can be improved.
  • the temperature of each member such as the pipe line and buffer chamber 133 configuring the path between the end of the vacuum gauge unit 130 connected to the sample stage ring base 107' and the pressure sensor 134 is The heating is adjusted according to the output from the heater 405 so that it becomes higher as it goes toward the sensor 134.
  • the heater 405 forms a temperature gradient such that "temperature of the pressure sensor 134 ⁇ temperature of the buffer chamber 133", and adjusts the temperature of the sensor section of the pressure sensor 134 to an atmosphere similar to that of the plasma generation space (discharge region). It is configured so that it can be done.
  • the pressure sensor 134 is further provided with a buffer chamber 133 and the like between it and the sample stage ring base 107' that constitutes the vacuum container, and is spaced apart from the vacuum container. It is arranged above the vicinity of the corner (corner) at the lower left end in the figure with a gap from the upper surface of the base plate 109 . Furthermore, the pressure sensor 134 is provided with a heat shield plate 136 between the sample table ring base 107' and the lower container 102 that constitute the vacuum container, and is arranged in a cooling chamber 135 separated from the vacuum container and the buffer chamber 133. ing.
  • the cooling chamber 135 communicates with the space around the plasma processing apparatus 100 through openings 602 and 603 arranged at at least two locations.
  • the gas (atmosphere) 300 as the atmosphere outside the plasma processing apparatus 100 flowing into the cooling chamber 135 from one opening (first opening) 602 is transmitted to the inside pressure sensor 134 or the member on the inner wall surface of the cooling chamber 135. and flows out into the space outside the plasma processing apparatus 100 through an opening (second opening) 603 at another location.
  • the temperature of the pressure sensor 134 located at the end (corner) of the plasma processing apparatus 100 is prevented from becoming excessively high, and the accuracy of pressure detection is prevented from being impaired.
  • the openings 602 and 603 will be explained in more detail with reference to FIG.
  • FIG. 4 is a sectional view schematically showing the configuration of the vacuum gauge unit of the plasma processing apparatus according to the embodiment shown in FIG. 2.
  • This figure schematically shows the configuration of the vacuum gauge unit 130 between the vacuum container of this example, the processing chamber 104 inside, the sample stage ring base 107' that constitutes the vacuum container, and the pressure sensor 134 inside the cooling chamber 135. It is shown in
  • FIG. 5 is a perspective view schematically showing the configuration of the vacuum gauge unit of the plasma processing apparatus according to the embodiment shown in FIG. 2. Similar to FIG. 3, FIG. 5 schematically shows the arrangement of the sample stage ring base 107' below the upper container 101, the lower container 102, the base plate 109, the valve box 127, and the vacuum gauge unit 130.
  • the pressure sensor 134 and the sample stage ring base 107' are connected by the buffer chamber 133 and the connecting pipe (connecting pipe) 402 that connects the buffer chamber and the sample stage ring base 107'.
  • the end of the connecting tube 402 is connected to a location around the opening 401 of the through hole on the outer peripheral side wall of the sample stage ring base 107'.
  • its axial direction extends in the horizontal direction (in the horizontal direction in FIG. 3) perpendicular to the outer circumferential side wall toward the buffer chamber 133. However, in the axial direction, it extends downward at a location between it and the buffer chamber 133 .
  • the connecting pipe 402 is bent multiple times at a point where the connecting pipe 402 is connected to the buffer chamber 133 at an angle such that its axial direction is 90 degrees or an angle close to this.
  • the buffer chamber 133 and the pressure sensor 134 connected thereto are located at the end of the base plate 109 on the side where the valve box 127 is installed (the side connected to the vacuum transfer container of the plasma processing apparatus 100). They are arranged at locations spaced apart in the horizontal direction (downward in FIG. 3) toward the opposite side of the center of the sample stage 106 (of the processing chamber 104).
  • the pressure sensor 134 is located at the corner of the base plate 109, which has a rectangular planar shape, on the opposite side of the center of the sample stage 106 (of the processing chamber 104).
  • Such a location can be separated from the lower container 102 and the sample stage ring base 107' by a relatively large distance, and is relatively close to the outside of the plasma processing apparatus 100 so as to maintain the external atmosphere. This is the location where the gas 300 can be effectively passed through.
  • the pressure sensor 134 is disposed above the base plate 109 at a height facing the outer circumferential side wall of the lower container 102, with a gap between the pressure sensor 134 and the side wall.
  • FIG. 4 (omitted in FIG. 5)
  • a heat shield plate 136 is placed between them.
  • a cooling chamber 135 is separated from other spaces around the outer periphery of the lower container 102 and the sample stage ring base 107'.
  • the outer peripheral side wall surface of the lower container 102 in this example is provided with an outer peripheral heater 404 for heating the lower container 102 and suppressing particles inside the processing chamber 104 from adhering and depositing on the inner wall surface.
  • an outer peripheral heater 404 for heating the lower container 102 and suppressing particles inside the processing chamber 104 from adhering and depositing on the inner wall surface.
  • FIG. 4 (omitted in FIG. 5)
  • the outer wall around the buffer chamber 133 and the outer wall around the connecting pipe 402 are heated by a heater 405 indicated by a thick dotted line.
  • the heat shield plate 136 protects the outer wall of the pressure sensor 134 by the heat of the outer circumferential heater 404, the lower container 102 or the sample stage ring base 107' heated by the outer circumferential heater 404, and the buffer chamber 133 and the connecting pipe 402 heated by the heater 405.
  • the heat shield plate 136 is made of a material with high heat shielding performance. That is, the pressure sensor 134 is stored in a location defined by a heat shield plate at a corner of the base plate 109 on the outside of the sample stage base 107 (sample stage ring base 107') on the rectangular base plate 109.
  • 403 is a schematically illustrated plasma or plasma generation region (discharge region).
  • FIG. 7 is a diagram illustrating the heater of the vacuum gauge unit shown in FIG. 4.
  • the heater 405 provided in the vacuum gauge unit 130 is composed of a plurality of heater parts HT1 to HT13.
  • the heater parts HT1 to HT13 are attached so as to be able to heat the outer periphery of each member of the pipe line 402 and the buffer chamber 133 that constitute the path between the opening part 401 and the pressure sensor 134.
  • the heater sections HT1-HT13 are connected to control lines C1-C13, respectively, and the control lines C1-C13 are connected to the heater control section 900.
  • the heater parts HT1-HT13 are configured so that their temperatures can be individually adjusted and controlled by the voltage values or current values of the control lines C1-C13.
  • the heater control section 900 can adjust and control the heating temperature of the control heater sections HT1-HT13 by controlling the output of the voltage value or current value of the control lines C1-C13.
  • the heater control section 900 controls the output of the voltage value or current value of the control lines C1 to C13 so that the voltage value increases as it goes toward the pressure sensor 134, thereby adjusting the heating of the heater sections HT1 to HT13.
  • the rest of the configuration in FIG. 9 is the same as that in FIG. 4, so a description thereof will be omitted.
  • the cooling chamber 135, which is a space having a shape that is a rectangular parallelepiped or an approximate shape that can be considered as a rectangular parallelepiped, has openings 602 and 603 at locations corresponding to two adjacent surfaces of the rectangular parallelepiped. There is.
  • the cooling chamber 135 communicates with the space outside the plasma processing apparatus 100 through these openings 602 and 603.
  • the atmosphere (atmosphere) of the external space flowing into the cooling chamber 135 from one of the openings 602 and 603 suppresses the rise in temperature of the outer wall of the pressure sensor 134 and the cooling chamber 135 .
  • the pressure detection section inside the pressure sensor 134 is communicated with the inside of the processing chamber 104 through the buffer chamber 133 heated to a temperature close to the temperature of the member facing the discharge region, and the pressure detection section inside the pressure sensor 134 is communicated with the inside of the processing chamber 104 through the buffer chamber 133 heated to a temperature close to the temperature of the member facing the discharge region. It can be detected with high accuracy.
  • the O-ring 501 is arranged at the upper end of the sample stage ring base 107', deforms when it comes into contact with the lower end of the upper container 101 placed thereon, and airtightly seals the inside and outside of the processing chamber 104.
  • the O-ring 502 is partially curved into a cylindrical shape of the valve box 127 and deforms in contact with the cylindrical outer peripheral side wall of the upper container 101 placed on the sample stage ring base 107'.
  • the inside and outside of the chamber 104 are hermetically sealed.
  • FIG. 6 is an enlarged perspective view showing the structure of the cover of the plasma processing apparatus according to the embodiment shown in FIG. This figure particularly shows the cover (side wall cover) 15 of the vacuum container section 12.
  • the cover 15 is provided with two openings 602 and 603 at locations that cover locations corresponding to two adjacent surfaces of the cooling chamber 135, which has a rectangular parallelepiped shape or a shape similar to the rectangular parallelepiped.
  • the cover 15 is detachably attached to a location on the outer periphery of the vacuum container section 12 above the base plate 109, and in particular, in this example, the lower end of the cover 15 is connected to the base plate 109 and attached.
  • the cover 15, which is removably attached, has handles 601 arranged at each of two locations on the external wall surface in order to increase safety during transportation or attachment.
  • the cover 15 of this example has a configuration in which two plate members 151 and 152 are connected to cover surfaces corresponding to adjacent sides of the rectangular base plate 109 among the outer periphery of the vacuum container on the rectangular base plate 109. have.
  • a portion 153 where the two plate members 151 and 152 face each other at a short distance or are adjacent to each other corresponds to a rectangular corner 604 (see FIG. 5) of the base plate 109, and a cooling chamber of the vacuum gauge unit 130 is located at the corner 604. 135 are arranged. For this reason, openings 602 and 603 are arranged at the adjacent locations on the two plate members 151 and 152, respectively.
  • each of the openings 602 and 603 is located on the two plate members 151 and 152 of the cover 15 that covers two adjacent sides of the rectangular cooling chamber 135 located above the corner of the base plate 109. It is located in The openings 602 and 603 in this example have a configuration in which a plate-like member 606 having a mesh or porous shape is disposed inside a rectangular through-hole penetrating the plate members 151 and 152.
  • the axis of the shaft is connected to the connecting pipe 402 extending toward the opposite side of the sample stage 106 from the valve box 127 or the pressure sensor 134 attached to the end of the buffer chamber 133.
  • the opening area S1 of the opening 602 of the plate member 152 arranged along the extending direction is larger than the opening area S2 of the other opening 603 (S1>S2).
  • the opening 602 is arranged at a position facing the space between another adjacent plasma processing apparatus or an atmospheric transport container when the plasma processing apparatus 100 is attached to the vacuum transport container to constitute a vacuum processing apparatus.
  • the opening 603 is disposed at a position facing a space between another adjacent vacuum processing apparatus and a space in which the user of the apparatus can move.
  • the present invention is applicable to a plasma processing apparatus that processes a substrate-shaped sample such as a semiconductor wafer using plasma formed within a processing chamber.
  • Plasma processing apparatus 101 Upper container 102: Lower container 103: Vacuum pump (exhaust pump) 104: Processing chamber 105: Solenoid coil 106: Sample stage 107: Sample stage base 108: Wafer 109: Base plate 110: Exhaust port cover 111: Exhaust regulator 112: Window member 113: shower plate 114: Inner cylinder 115: Gas ring 115' : Gas flow path 116: Earth ring 117: Discharge container 118: Heater 119: Discharge block base 120: Sample stage bottom cover 121: Cavity 122: Waveguide 123: Magnetron 124: Exhaust port 125: Support column 126: Vacuum transport Container 127: Valve box 128, 129: Gate valve 130: Vacuum gauge unit 133: Buffer chamber 134: Pressure sensor 135: Cooling chamber 136: Heat shield plate 405: Heater 602, 603: Opening 604: Corner C1-C13: Control line HT1-HT13: Heater section 900: Heater control section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

本発明の目的は、歩留まりを向上させたプラズマ処理装置を提供することに有る。プラズマ処理装置は、試料台の外周に配置された試料台ベースと、試料台ベースに連結管とバッファ部とを介して接続された圧力センサと、連結管や前記バッファ部の温度が前記圧力センサに向かうに伴って高くなる様に温度勾配を形成し、かつ、圧力センサが試料台の上のプラズマ生成空間に近似した温度にされる様に加熱を調整するヒータと、試料台ベースの下側に配置された矩形状のベースプレートと、を備える。圧力センサは、矩形状のベースプレートの上の試料台ベースの外側のベースプレートの角部の防熱板で区画された箇所に格納され、当該角部の箇所の内外が開口を通し連通された構成とされる。

Description

プラズマ処理装置
 本発明は、真空容器内部の処理室内に配置された試料台上に支持された半導体ウエハ等の基板状の試料を当該処理室内に形成されたプラズマを用いて処理するプラズマ処理装置に係り、特に、処理室内部の圧力を検知する圧力計の出力を用いて処理室内の圧力を調節しつつ前記試料を処理するプラズマ装置に関する。
 プラズマ処理装置は、半導体ウエハ(試料)の処理中において、処理室内部の圧力を、長期間また高い精度で、プラズマ処理に適した範囲内の所望の値にすることが求められる。このような処理室内部の圧力は、処理室内部と連通させて真空容器に取り付けられた圧力計を用いて検出され、当該圧力計の出力の値から検出される圧力の値を用いて、処理室内部の圧力の値が調節されている。
 一方、このような圧力計は、検知する温度によって同じ圧力の値であっても出力の値が異なる、所謂温度への依存性を有している(圧力計の出力値が温度依存性を有する)ことが知られている。また、圧力計の出力値は、プラズマ処理装置の運転時間の経過あるいは希少の処理の枚数の累計が大きくなるに伴って、初期の状態から変動するという、経時変化性を有している(圧力計の出力値が経時変化性を有する)ことが知られている。そのため、プラズマ処理装置の運転時間が所定の期間に到達した場合や半導体ウエハ(試料)の処理の枚数の累計が所定の処理の量に到達した場合において、到達後に、圧力計の出力値とその精度とを補正する校正の作業が行われていた。
 一方、近年のプラズマ処理装置に対しては、ウエハの処理の精度を向上するため、ウエハを支持する試料台を処理室の上下方向の中央部に配置して、処理室が試料台上面の上方の空間であってプラズマが内部で形成される放電領域と、試料台底面の下方の空間であって当該底面の直下方に位置する排気口に面した排気領域と、これらの間を連結して連通する試料台外側壁の外周側の空間とで構成されるものが開発されてきた。このような技術では、プラズマが形成される試料台上面の上方の空間(放電領域)から排気領域までの処理室内部のガスや粒子の流れの周方向のバラつきが低減され、処理の精度が向上される。
 このようなプラズマ処理装置の例としては、国際公開第2021/149212号(特許文献1)に記載のものが知られていた。特許文献1には、処理室を囲む真空容器は、上部容器と下部容器とこれらの間に挟持されて試料台を含むリング状の部材とで構成され、試料台上面上方にプラズマを形成する放電用の空間と、さらに試料台底面下方に排気口に面する空間とを備えて、試料台が上下方向についてこれらの空間の間に支持されたプラズマ処理装置が開示されている。さらに、上下の容器の間で保持されるリング状の部材に接続されて処理室内部と連通された制御用圧力計に加え、処理室と繋がる空間に接続された校正用圧力計により、大気圧下で行われる制御用の圧力計の校正作業を不要とする技術が開示されている。
国際公開第2021/149212号
 しかしながら、特許文献1では、次のような点について考慮が不十分であったため、問題が生じていた。
 すなわち、特許文献1では、圧力計がプラズマが形成される試料台上面上方の空間から離間した箇所に配置されている。このため、プラズマが形成されていることで当該空間を囲む箇所は加熱されるが、圧力計が配置されたプラズマから離間した箇所の温度と、プラズマが形成される領域の温度の差が大きいと、これに起因して圧力計により検出される温度も差が大きくなってしまい、当該圧力計の出力を用いて処理室内の圧力を調節して行うウエハの処理は、所期のものからのバラつきやズレが大きくなってしまう。
 さらに、このような課題を解決するために、圧力計を加熱して温度を調節する構成を適用する場合が考えられる。この場合には、複数の部材から構成される圧力を検出するユニットでは、圧力計が一般にプラズマ処理装置の端部に配置される。この時、圧力計は、その周囲を十分に排熱しなければ、圧力計内に設けられた圧力センサが過度に加熱され、却って圧力の検知の精度が損なわれてしまう。この様な点についても、考慮されていなかった。
 このように、特許文献1では、圧力を検知する箇所と検知対象との間の距離により、検知する温度の誤差の低減について、十分に考慮されていなかった。このため、ウエハの処理の再現性や処理の結果としての加工後の形状の精度が損なわれ、処理の歩留まりが損なわれてしまうことについて、考慮されていなかった。
 本発明の目的は、歩留まりを向上させたプラズマ処理装置を提供することに有る。
 プラズマ処理装置は、試料台の外周に配置された試料台ベースと、試料台ベースに連結管とバッファ部とを介して接続された圧力センサと、連結管や前記バッファ部の温度が前記圧力センサに向かうに伴って高くなる様に温度勾配を形成し、かつ、圧力センサが試料台の上のプラズマ生成空間に近似した温度にされる様に加熱を調整するヒータと、試料台ベースの下側に配置された矩形状のベースプレートと、を備える。圧力センサは、矩形状のベースプレートの上の試料台ベースの外側のベースプレートの角部の防熱板で区画された箇所に格納され、当該角部の箇所の内外が開口を通し連通された構成とされる。
 構造的に端部に在る圧力センサを、高温のバッファ部との温度差を大きく維持しで排熱を向上し、過加熱されてしまうことを抑制して、圧力センサの検出誤差を低減する。このことにより、ウエハ処理条件のばらつきを低減して、処理の歩留まりを向上させる。
図1は、本発明の実施例に係るプラズマ処理装置の構成の概略を示す斜視図である。 図2は、本発明の実施例に係るプラズマ処理装置の構成の概略を示す断面図である。 図3は、図2に示す実施例に係るプラズマ処理装置の試料台ベース周りの構成の概略を模式的に示す上面図である。 図4は、図2に示す実施例に係るプラズマ処理装置の真空計ユニットの構成の概略を模式的に示す断面図である。 図5は、図2に示す実施例に係るプラズマ処理装置の真空計ユニットの構成の概略を模式的に示す斜視図である。 図6は、図1に示す実施例に係るプラズマ処理装置のカバーの構成を拡大して示す斜視図である。 図7は、図4に示す真空計ユニットのヒータについて説明する図である。
 以下、図面を用いて本発明の実施の形態を説明する。
 本発明の実施例を、図1乃至7を用いて説明する。
 図1は、本発明の実施例に係るプラズマ処理装置の構成の概略を示す斜視図である。本図に示すプラズマ処理装置100は、図示しない少なくとも1つの真空搬送容器を含む真空処理装置の一部を構成するものであって、その側壁が半導体ウエハ等の処理対象の基板状の試料が内部で搬送される1つの真空搬送容器に連結される処理ユニットである。プラズマ処理装置100は、後述のように、内部に真空容器を有した処理ユニットであって、真空搬送容器の内部の搬送室に配置された搬送用のロボットのアーム先端部に載せられて未処理のウエハが真空容器内部の処理室に搬入され、処理後のウエハが処理室から搬送室に搬出される。
 プラズマ処理装置100は、上方から見た場合におおよそ矩形状の形状を有して、その最下部には、真空容器内部でウエハを処理する動作を行うための電源や電力の中継用の機器、真空処理装置本体や真空処理装置が設置される建屋との間の信号やガスのやり取りするインターフェースが内蔵された、直方体形状を有した架台部14を備えている。架台部14の上方に載せられて、ターボ分子ポンプ等の真空ポンプとこの真空ポンプを含む排気部13、内部で処理用ガスが供給されてウエハが処理される処理室を内蔵する真空容器および内部にゲートバルブを有して真空容器と真空搬送容器との間を連結するインターフェース機能を奏するバルブボックスを備えた真空容器部12と、真空容器内部の処理室内に処理用ガスを用いてウエハの処理に用いられるプラズマを形成するための電界または磁界を形成して供給する電源あるいはコイルや部材を含むプラズマ形成部11とが、この順で下方から上方に配置されている。
 図1において、プラズマ形成部11と真空容器部12との上下方向の領域が一部重なっているのは、本実施例のプラズマ処理装置100が、後述するように、μ波の電界と磁界とにより生起させたECR(Electron Cyclotron Resonance)を用いてプラズマを形成するものであって、ソレノイドコイルが真空容器の上部の一部の外周囲を覆っているからである。
 さらに、本実施例のプラズマ処理装置100は、プラズマ形成部11と真空容器部12との周囲は、各々が矩形状の面が組み合わされた板部材を含むカバー(側壁カバー)15により覆われている。カバー15は、プラズマ形成部11と真空容器部12との各々が備える図示しない外枠に着脱自在に取り付けられ、これらの周囲の前後左右の4つの方向を板部材で覆う。このことで、カバー15で覆われたプラズマ形成部11と真空容器部12との各々の外側壁面は、直方体またはこれと見なせる程度に近似した形状にされる。
 図2は、本発明の実施例に係るプラズマ処理装置の構成の概略を示す断面図である。図2に示すプラズマ処理装置100は、大きく分けて、中央部に円形の排気口124を有するベースプレート109とその上方に配置され内側の側壁面が円筒形を有した上部容器101およびその下方に配置された下部容器102並びにこれらの間に挟まれた試料台ベース107とを含む真空容器を有している。さらに、真空容器の下方には、これに連結されて配置されたターボ分子ポンプ等の排気ポンプ103を含む排気部が備えられている。さらに、真空容器の上方には、真空容器内部の空間にプラズマを形成するための所定の周波数の電界が内側を伝播する導波管122およびソレノイドコイル105を有したプラズマ形成部が配置されている。
 上部容器101、下部容器102、試料台ベース107は、これらの外側の壁面がプラズマ処理装置100の周囲の雰囲気に面しており、内側の壁面が排気ポンプ103により減圧されプラズマが形成される空間である処理室104の周囲を囲んでいる。これらの部材の内壁面は、水平方向の断面が円形を有した円筒形状を備え、各々の部材の囲む処理室104の円筒形の中心が上下方向に合致またはこれとみなせる程度に近似した位置で内側壁面の継ぎ目での段差ができるだけ小さくなるように、Oリング等のシール部材を間に挟んで上下方向に押し付けられて、位置決めされて相互に接続されている。このように接続された状態でこれらの部材は真空隔壁を構成して、処理室104の内部と外部の雰囲気との間が気密に区画される。
 処理室104の上部の空間は、放電部としてプラズマが形成される空間であって、その下方に処理対象のウエハ108が上面に載せられる試料台106が配置されている。本実施例の処理室104は、試料台106底面の下方であって処理室104底面との間に空間を有すると共に、試料台106底面の下方の処理室104の底面には処理室104内のガスやプラズマ等の粒子が排出される排気口124の円形状の開口が配置されている。
 上部容器101の上方には、リング形状を有して導電性を有する部材製のアースリング116,アースリング116上面上方に載せられてリング形状を有した放電ブロックベース119及び放電ブロックベース119上に載せられて放電部の外周を囲んで円筒形状を有した放電部容器117が配置されている。放電部容器117の円筒形の内側の側壁部分は放電ブロックベース119の内周側の側壁を覆って配置されると共に、放電部容器117の内側であってプラズマが形成される空間である放電部との間には、放電部容器117の内側壁面を覆って配置された石英製の内筒が配置され、プラズマと放電部容器117の内側壁との相互作用を抑制し損傷や消耗を低減している。
 放電部容器117の外側の壁面上には、ヒータ118が当該壁面の外周側で巻かれて、当該壁面に接して配置されている。ヒータ118は、図示していない直流電源と電気的に接続され直流電源から電流が供給されて発熱して、放電部容器117の内側壁面の温度が所望の範囲内の値となるように調節される。
 放電部容器117及び放電ブロックベース119の下端面とその下方に配置された上部容器101上端面との間には、導電性を有した材料から構成されたリング状部材であるアースリング116が配置されている。アースリング116は、その上面が放電部容器117の円筒形状部の下端下面との間で、さらにアースリング116下面が上部部材101上端上面とOリングを挟んで接続され、上下方向にこれらを押し付ける力が供給されることで、処理室104の内外が気密に封止される。アースリング116は、図示していないが接地電極と電気的に接続され、内周側の端部が処理室104内部の放電部に周囲から中央側に突出してプラズマと接することで、プラズマの電位が所有者の所望の範囲内のものに調節される。さらにアースリング116の内周側端部の上面上方には、内筒114が放電部容器117の内側壁面との間に隙間を開けて載せられて配置される。
 さらに、放電部117の上端上方には、処理室104内にプラズマを形成するために供給される処理用のガスの通路が配置されたリング状の部材であるガスリング115がOリングを挟んで載せられている。ガスリング115の上面の上方には、真空容器を構成して放電部に供給される電界が透過する石英等の誘電体製の部材である円板形状を有した窓部材112がOリングを挟んで載せられて、窓部材112外周縁部下面とガスリング115の上面とが相互に接続されている。
 窓部材112の下面下方には隙間を開けて石英等の誘電体製の円板状部材であるシャワープレート113が配置され、処理室104の放電部上方を覆ってその天面を構成している。シャワープレート113の中央部の円形の領域には複数の貫通孔が配置されている。ガスリング115の内部には、図示しない複数のタンクを有して構成されたガス源と流量調節器(マスフローコントローラ、MFC)を挟んで配管を介して接続された処理用ガスの供給路と窓部材112及びシャワープレート113との間の隙間に連通されたガス流路115’が備えられている。流量調節器によりその流量または速度が調節された各種類のガス源からのガスは、配管に沿って供給されて1つのガス供給路として合流した後、ガスリング115内のガス流路115’を通って窓部材112及びシャワープレート113の間の隙間内に流入して当該隙間内で拡散した後、シャワープレート113の中央部の複数の貫通孔から処理室104に上方から導入される。
 窓部材112、シャワープレート113、ガスリング115、放電部容器117、放電ブロックベース119は、Oリングを挟んで連結され真空容器を構成するとともに、内筒114と共に放電ブロックを構成する。放電ブロックは後述の通り図示しないリフターの上下方向の軸に沿って上下方向に移動して、真空容器を分解または組み立てすることが可能に構成されている。放電ブロックはアースリング116を含んで構成されていても良く、上部容器101とアースリング116との間で真空容器を上下に分割して分解可能に構成されていても良い。
 窓部材112の上方には、処理室104の放電部にプラズマを形成するために供給されるマイクロ波の電界を伝播するための導波管122が配置されている。導波管122は、上下方向の軸に沿って延在してその上下方向の軸に垂直な水平方向の断面が円形を有する円筒形の円形導波管部と、水平方向の軸に沿って延在し水平方向の軸に垂直な上下方向の断面が矩形または方形を有すると共にその一端部が円形導波管部の上端部と接続された方形導波管部とを備え、方形導波管部の他端側の部分には発振して電界を形成するマグネトロン123が配置されている。形成されたマイクロ波の電界は方形導波管部を水平方向に伝播して円形導波管部の上端で向きを変えて下方の窓部材112下方の処理室104に向けて伝播する。
 円形導波管部の下端部は、この下端部下方であって窓部材112の上方で当該窓部材112と同じかこれとみなせる程度に近似した大きさの内径を有する円筒形の空洞部121の円形の天井部の中央部と接続されている。円形導波管部の内部と空洞部121の内部の空洞とは円形の天井部中央の円形導波管の内径と同じ円形の開口を介して連通されており、空洞部121は導波管122の一部を構成する。いる。円形導波管内を伝播したマイクロ波の電界は、空洞部121内に導入された後、空洞部121内部で所望の電界のモードが形成され、窓部材112及び下方のシャワープレート113を透過して処理室104内に伝播する。
 さらに、本実施例では、空洞部121上方の導波管122の円形導波管部の外周側、及び空洞部121並びに放電部容器117の円筒形の外側側壁の外周側を囲んで、上下方向に複数段のリング状のソレノイドコイル105がヨークと共に配置されている。これらソレノイドコイル105は図示しない直流電源と電気的に接続されて直流電流が供給されて磁界を生成する。導波管122から供給されたマイクロ波の電界とソレノイドコイル105から生起されて供給された磁界とが処理室104内部で相互に作用を及ぼし電子サイクロトロン共鳴(Eletron Cyclotron Resonance、ECR)を生起して、処理室104内に供給された処理用ガスの原子又は分子を励起し、これらを電離または解離させて、ウエハ108の処理中の放電部内にプラズマを形成する。
 試料台106はリング状の試料台ベース107の内側の中央部に配置され、これらの間を接続する複数本の支持梁により試料台ベース107で接続されている。本実施例の支持梁は、図上一点鎖線で示される、円筒形を有した試料台106の上下方向の中心軸について上方から見てその周方向に同じかこれとみなせる程度に近似した角度毎に放射状に、所謂軸対象に配置されている。このような構成により、上部容器101の内側の放電部内で形成されたプラズマや供給されたガス、ウエハ108の処理中に生じた反応生成物等の粒子が、排気ポンプ103の動作により、試料台106と上部容器101との間および、試料台106と試料台ベース107の間の空間であって支持梁同士の間の空間を通り下部容器102内側の空間を通って、試料台106の直下方の排気口124を通って排出され、ウエハ108上面上方の処理室104内部での粒子の流れがウエハ108の周方向についてバラツキが低減されウエハ108の処理の均一性が向上する。
 試料台106は内部に空間を有し底面を試料台底蓋120が内外を気密に封止して取り付けられることで当該空間が密封されている。さらに複数本の支持梁の内部には試料台ベース107の外側の大気圧の雰囲気と連通した通路が配置されて試料台106内部の空間と当該外側の箇所とが連通される。これらの空間と通路とは、試料台ベース107の外側に配置され試料台に電力や冷媒、ガス等の流体を供給するケーブルや配管等の供給路の配置用の領域になっている。当該通路と試料台106内の空間とは雰囲気と同じ大気圧かこれとみなせる程度に近似した圧力にされている。
 また、上部容器101および下部容器102は、各々の外側壁に図示していないフランジ部を有している。下部容器102およびその上方の上部容器101はベースプレート109に対して各々のフランジ部がネジやボルトを用いて締結され位置決めされている。つまり、下部容器102がベースプレート109の上方に設けられ、試料台ベース107が下部容器102の上方に設けられ、上部容器101が試料台ベース107の上方に設けられている。なお、本実施例の上部容器101、下部容器102、試料台ベース107の外周側壁は円筒形状を有するが、これらは水平断面形状が円形ではなく矩形であっても他の形状であってもよい。
 ベースプレート109は、プラズマ処理装置100が設置されるクリーンルーム等の建屋の床の上に複数本の支柱125の上端部と接続され、これら支柱125の上に載せられて支持されている。つまり、ベースプレート109を含む真空容器は複数本の支柱125を介して建屋の床面上に位置決めされている。
 さらに、ベースプレート109の下方の支柱125同士の間の空間には排気ポンプ103が配置され排気口124を介して処理室104と連通されている。排気口124は、試料台106の直下方でその円形の開口の中心を通る上下方向の軸は上記中心軸と合致またはこれとみなせる程度に近似した位置に配置され、排気口124上方の処理室104の内部には当該排気口124に対して閉塞または上下方向に移動する略円板形状を有する排気口蓋110が配置されている。排気口蓋110は、ベースプレート109の下方に配置されアクチュエータ等の駆動用の機器を有する排気調節機111の動作に伴って上下に移動することにより、排気口124から排出される処理室104内の粒子の流路の面積を増減することで排気口124からの処理室104内の粒子の排気のコンダクタンスを増減する流量調節バルブの機能を奏するものであり、図示しない制御部からの指令信号に基づいて排気口蓋110が駆動されることで排気ポンプ103により排出される内部の粒子の量や速度が調節される。
 プラズマ処理装置100の真空容器は、これに水平方向について隣接して配置された別の真空容器であって、内部の減圧された空間である搬送室にウエハ108をアームの先端部の上面に保持して当該搬送室内を搬送する搬送ロボットが配置された真空搬送容器126と連結されている。プラズマ処理装置100と真空搬送容器126との間は、内部の処理室104と真空搬送室とがウエハ108が内側を通る通路であるゲートを介して連通される。さらに、真空搬送室内には、上下方向に移動すると共に真空搬送容器126内側壁面に対して水平方向に移動して当該内側壁面に配置されたゲートの開口を開放および内側壁面とOリングを挟んで当接して開口を気密に閉塞するゲートバルブ128が備えられている。
 さらに、本実施例では、上部容器101と真空搬送容器126との間に、別のゲートバルブ129を内部の空間内に備えたバルブボックス127が配置されている。バルブボックス127はその2つ端部の各々が上部容器101の外側側壁面および真空搬送容器126の側壁面の各々にOリング等のシール部材を間に挟んで接続され、内部に外部の大気圧の雰囲気から気密に区画される空間を有している。バルブボックス127の一方の端部の側壁面は真空搬送容器126側壁のゲートの開口の周囲と接続され、他方の端部の側壁面は上部容器101の側壁に配置されたゲートの開口の周囲と接続されることで、バルブボックス127の内の空間は、ウエハ108が搬送ロボットのアームに載せられて搬送される通路を構成する。
 なお、バルブボックス127内部に配置されたゲートバルブ129は、上下方向に移動するとともに上部容器101の外側壁に対して水平方向に移動して、上部容器101のゲートの開口を開放またはOリングを挟んで当接して気密に封止する。真空搬送容器126、バルブボックス127の各々の下方には、各々の内部に配置されたゲートバルブ128,129と接続されてこれら移動させるためのアクチュエータ等の駆動機130が配置されている。
 また、本実施例のバルブボックス127は、ネジやボルト等で、建屋の床面に下端が接続されて位置決めされた別の支柱125の上端部と接続されてこれに支持されて、バルブボックス127の一端部の側壁面がゲート外周側の上部容器101の外側壁面とOリングを挟んで接続して気密な封止が実現できるように位置決めされて配置されている。図1の実施例のバルブボックス127は、建屋の床面上に支柱125により支持される態様の他に、ベースプレート109下方の支柱125に接続された別の支柱125により支持される、或いはベースプレート109の真空搬送容器126側の端部の上面にネジやボルト等で締結されて位置決めされる態様であっても良い。
 ウエハ108の処理に先立って、予め減圧された処理室104の内部に処理前のウエハ108が搬送ロボットのアームの先端部上面に載せられ保持されて真空搬送室内からバルブボックス127内部の空間を通して搬入される。ウエハ108は、処理室104内部の試料台106上面上方でアーム上に保持された状態から試料台106上面から突き出した複数のピン上に受け渡されると、搬送ロボットのアームが処理室104から真空搬送室内に退出する。ウエハ108が試料台106上面に載せられると共に、ゲートバルブ129が駆動されて上部容器101のゲートが気密に閉塞される。
 この状態で、流量調節器により流量または速度が調節された複数のガスから構成された処理用のガスがガス供給路及びガス流路115’から窓部材112とシャワープレート113との隙間とシャワープレート113の貫通孔を通して処理室104内に導入されると共に、排気口124と連通した排気ポンプ103の動作による処理室104内のガスの粒子が排気され、これらのバランスにより処理室104内の圧力が処理に適した範囲内の値に調節される。さらに、マグネトロン123を用いて形成されたマイクロ波の電界が導波管122及び空洞部121内を伝播して窓部材112,シャワープレート113を透過して処理室104内に供給されると共に、ソレノイドコイル105により形成された磁界が処理室104内に供給され、処理用のガスを用いて放電部内にプラズマが形成される。
 ウエハ108が上面に載せられて保持された状態で、試料台106の内部に配置された図示されない電極に所定の周波数の高周波電力が供給されて、ウエハ108の上面上方にプラズマとの間に差を有したバイアス電位が形成され、当該電位差によってプラズマ中のイオン等の荷電粒子がウエハ108上面に誘引されて、ウエハ108上面に予め配置された処理対象の膜層とその上方に積層されたレジスト等の材料から構成されたマスク層とを有する膜構造の当該処理対象の膜層に衝突してエッチング処理が進行する。
 処理対象の膜層のエッチング処理が所定の残り膜厚さ或いは深さまで到達したことが、図示しない検出器により検出されると、試料台106内部の電極への高周波電力の供給ならびにプラズマの形成が停止されてエッチング処理が終了する。次に、処理室104内部の粒子を十分に排気した後に、ゲートバルブ129が駆動されて上部容器101のゲートが開放されて当該ゲートを通して搬送用ロボットのアームが処理室104内に進入し、ウエハ108がアーム上に試料台106から受け渡され、アームが処理室104外に退出することで、処理後のウエハ108が真空搬送室に搬出される。
 次に処理されるべき未処理のウエハ108が在るか否かが制御部により判定され、次のウエハ108が在る場合には再度ゲートを通してウエハ108が処理室104内に搬入されて試料台106に受け渡された後、上記と同様にウエハ108へのエッチング処理が行われる。次に処理されるべきウエハ108が無いと判定された場合には、半導体デバイスを製造するためにウエハ108を処理するプラズマ処理装置100の運転が停止または休止される。
 本実施例のプラズマ処理装置100の試料台ベース107が有する試料台106の外周側に位置する円筒形またはリング状形の試料台リングベース107’には、処理室104内部と連通され当該内部の圧力を検知する圧力センサ134を備えた真空計ユニット130が連結されている。真空計ユニット130は、圧力センサ134と、圧力センサ134に接続されたバッファ室(バッファ部)133と、バッファ室133と試料台リングベース107’との間を連結する管路とを備えている。さらに、真空計ユニット130の管路の端部は、試料台リングベース107’に接続された状態で、試料台リングベース107’を図上左右方向に貫通する貫通孔と連通されて、圧力センサ134と処理室104内部とが連通されることで、圧力センサ134が処理室104内部の圧力を検知可能に構成されている。
 図3は、図2に示す実施例に係るプラズマ処理装置の試料台ベース周りの構成の概略を模式的に示す上面図である。本図では、図2に示すプラズマ処理装置100の試料台ベース107を含めてこれより下方の部分を上方から見た場合の図を示している。また本図では、プラズマ処理装置100が接続された真空搬送容器126側(図上上方側)のベースプレート109の端部の上面に接続されたバルブボックス127は、これを上面から見た図として示されている。
 さらに、本図では、試料台リングベース107’に接続された真空計ユニット130の一部をこれが配置された高さの水平面で切った場合の横断面が示されている。本図に示されているように、真空計ユニット130は、その一端部に配置された圧力センサ134が、圧力センサ134に接続されたバッファ室133と管路とによって試料台リングベース107’と連結され、圧力センサ134と処理室104内部との間で、これらを連通して処理室104内部のガスや粒子が通流する経路が構成されている。
 すなわち、バッファ室133と試料台リングベース107’との間を接続し、真空計ユニット130の他方の端部に相当する管路の端部は、試料台リングベース107’の外周側壁であって図上左右方向に延在する貫通孔の周囲の側壁と内外を気密に封止して接続されている。貫通孔は、バルブボックス127が設置される真空搬送容器126と接続される側(図3では、上側)の試料台リングベース107’の端部(第1端部)Aと試料台106の中心を挟んだ反対側(図3では、下側)の料台リングベース107’の端部(第2端部)Bとの間の中間の位置(C)に外周側壁面の箇所と内側との間を連通するように配置される。貫通孔の設置箇所は、試料台106を試料台リングベース107’の中央部で支持する複数本の支持梁137同士の間に位置している。支持梁137は、円筒形の試料台106の外周側壁と試料台リングベース107’の円筒形の内周側壁との間で試料台106の中心の軸の周囲に等角度で放射状に延在してこれらを接続する。この構成により、圧力センサ134は、バッファ室133および管路、貫通孔を介して、処理室104内部と連通される。これにより、圧力センサ134は、処理室104内部の圧力、特には、ウエハ108がその上に載置される試料台106上の載置面の上方の、プラズマが形成される処理室104の領域、所謂放電領域の圧力を検知することが可能となる。
 一方、試料台リングベース107’は、図2に示すとおり、上部容器101および下部容器102によりこれらの間に挟まれた高さ位置で挟持されている。このため、圧力センサ134は、検知目標である放電領域とは、少なくとも試料台106の高さ及び管路、バッファ室133の長さの分だけ、距離を開けた位置に配置されている。さらに、試料台106の外周側には、プラズマ閉込めリング131が配置されると共に、処理中の放電領域で形成されるプラズマにより、プラズマ閉込めリング131やウエハ108の放電領域に面する箇所はプラズマからの熱を受けて相対的に高い温度にされる。一方、圧力センサ134は、検知対象(放電領域)から離れて設置され、かつ、温度が検知対象(放電領域)と異なる箇所において、当該検知対象の圧力温度を検知することが求められる。
 このため、本例の真空計ユニット130は、図4に後述するように、圧力センサ134と試料台リングベース107’との間の、バッファ室133および管路を含む箇所の周囲にヒータ405を配置して、これらを加熱する構成を備えている。当該ヒータ405により、バッファ室133および管路の少なくとも一部は、放電領域においてプラズマが形成されている状態でプラズマに面する部材の温度にされる。このことにより、圧力センサ134が検知する圧力と放電領域内の圧力とのズレを低減することができる。そして、これにより、圧力センサ134により検知する圧力の精度を向上することができる。特に、本例では、真空計ユニット130の試料台リングベース107’に接続された端部と圧力センサ134との間の経路を構成する管路やバッファ室133等の各部材の温度が、圧力センサ134に向かうに伴って高くなるように、ヒータ405からの出力によるに加熱が調節される。つまり、ヒータ405は、「圧力センサ134の温度≧バッファ室133の温度」の様に温度勾配を形成し、圧力センサ134のセンサ部がプラズマ生成空間(放電領域)に近似した雰囲気へ温度調節することができるように構成されている。
 図3に示すように、さらに、本例では、圧力センサ134は、真空容器を構成する試料台リングベース107’との間にバッファ室133等を備えて、真空容器から離間され、ベースプレート109の図上左下端の角部(隅部)近傍の上方で、ベースプレート109上面から隙間を開けて配置される。さらに、圧力センサ134は、真空容器を構成する試料台リングベース107’、下部容器102との間に防熱板136を備えて、真空容器およびバッファ室133から区画された冷却室135内に配置されている。
 冷却室135は、少なくとも2箇所に配置された開口602,603によりプラズマ処理装置100の周囲の空間と連通される。一箇所の開口(第1開口部)602から冷却室135内部に流入するプラズマ処理装置100外部の雰囲気としての気体(大気)300が、当該内部の圧力センサ134あるいは冷却室135の内側壁面の部材と熱交換し、他の箇所の開口(第2開口部)603からプラズマ処理装置100外部の空間に流出する。このことにより、圧力センサ134の外周壁面の温度の増大が抑制される。また、上面から見た場合において、プラズマ処理装置100の端部(角部)に位置する圧力センサ134の温度が過度に高くなり、圧力の検知の精度が損なわれることが抑制される。開口602,603については、図6でさらに詳細に説明する。
 図4は、図2に示す実施例に係るプラズマ処理装置の真空計ユニットの構成の概略を模式的に示す断面図である。本図では、本例の真空容器および内部の処理室104と、真空容器を構成する試料台リングベース107’と冷却室135内部の圧力センサ134との間の真空計ユニット130の構成を模式的に示している。
 さらに、図5は、図2に示す実施例に係るプラズマ処理装置の真空計ユニットの構成の概略を模式的に示す斜視図である。この図5では、図3と同様に、上部容器101より下方の試料台リングベース107’と下部容器102,ベースプレート109、バルブボックス127および真空計ユニット130の配置が模式的に示されている。
 上述の通り、圧力センサ134と試料台リングベース107’との間は、バッファ室133および当該バッファ室と試料台リングベース107’との間を接続する接続管(連結管)402により接続されている。さらに、接続管402の端部は、試料台リングベース107’の外周側壁の当該貫通孔の開口部401の周囲の箇所に接続される。接続管402は、試料台リングベース107’の外周側壁に接続された箇所では、その軸方向はバッファ室133に向かって当該外周側壁に垂直な水平方向(図3では、左右方向)に延在し、さらに軸方向はバッファ室133との間の箇所で下方に曲がって延在する。
 本例では、接続管402はバッファ室133に接続されるまでの箇所で複数回、その軸方向が90度またはこれと見なせる程度に近似した角度で曲げられる。この結果、バッファ室133およびこれに接続された圧力センサ134は、ベースプレート109のバルブボックス127が設置される側(プラズマ処理装置100の真空搬送容器に接続される側)の端部に対して、試料台106の(処理室104の)中心部を挟んだ反対の側に向けて水平方向(図3では、下方向)に離間した箇所に配置される。結果として、圧力センサ134は、矩形状の平面形を有するベースプレート109の当該試料台106の(処理室104の)中心部を挟んだ反対の側の角部に位置する。このような箇所は、下部容器102や試料台リングベース107’から離間する距離を相対的に大きく取ることができると共に、プラズマ処理装置100の外部に対して相対的に近い箇所で外部の雰囲気としての気体300を効果的に通流させることのできる箇所である。
 この状態で、圧力センサ134は、ベースプレート109の上方で、下部容器102の外周側壁に面する高さで、当該側壁と隙間を開けて配置されている。図4に示す様に(図5には省略されている)、圧力センサ134およびこれが内部収納された冷却室135と、バッファ室133および下部容器102、試料台リングベース107’の外周側壁面との間に、防熱板136が配置される。冷却室135が下部容器102および試料台リングベース107’の外周の他の空間から区画されている。特に、本例の下部容器102の外周側壁面には、下部容器102を加熱して内側壁面に処理室104内部の粒子が付着して堆積することを抑制するための外周ヒータ404が備えられる。図4に示すように(図5では省略されている)、太い点線で示すヒータ405によりバッファ室133の周囲の外壁と接続管402の周囲の外壁とが加熱される。防熱板136は外周ヒータ404とこれにより加熱される下部容器102あるいは試料台リングベース107’、さらには、ヒータ405により加熱されるバッファ室133と接続管402の熱により、圧力センサ134の外側壁が及ぼされる影響を低減する。このため、防熱板136は遮熱性能の高い材料で構成された部材が用いられる。つまり、圧力センサ134は、矩形状のベースプレート109の上の試料台ベース107(試料台リングベース107’)の外側のベースプレート109の角部の防熱板で区画された箇所に格納されている。403は、模式的に示されたプラズマまたはプラズマの発生領域(放電領域)である。
 図7は、図4に示す真空計ユニットのヒータについて説明する図である。図7に示すように、真空計ユニット130に設けられたヒータ405は、複数のヒータ部HT1-HT13から構成されている。ヒータ部HT1-HT13は、開口部401と圧力センサ134との間の経路を構成する管路402やバッファ室133の各部材の外周部を加熱可能に取り付けられている。そして、ヒータ部HT1-HT13は制御線C1-C13にそれぞれ接続され、制御線C1-C13はヒータ制御部900に接続されている。ヒータ部HT1-HT13はそれぞれ個別にその温度が制御線C1-C13の電圧値または電流値により調整および制御可能に構成されている。ヒータ制御部900は、制御線C1-C13の電圧値または電流値の出力を制御することで、制御ヒータ部HT1-HT13の加熱温度を調整および制御することができる。この例では、真空計ユニット130の試料台リングベース107’の外周側壁の貫通孔の開口部401と圧力センサ134との間の経路を構成する管路402やバッファ室133の各部材の温度が、圧力センサ134に向かうに伴って高くなるように、ヒータ制御部900が制御線C1~C13の電圧値または電流値の出力を制御して、ヒータ部HT1-HT13の加熱を調節している。図9のその他の構成は図4と同じであるので説明は省略する。
 図4に示すように、直方体またはこれと見なせる程度に近似した形状を有する空間である冷却室135は、当該直方体の隣接する2つの面に対応する箇所の各々に開口602,603を有している。冷却室135は、これらの開口602,603を介してプラズマ処理装置100の外部の空間と連通されている。これらの開口602,603の一方602から冷却室135内部に流入した外部の空間の雰囲気(大気)により、圧力センサ134の外壁や冷却室135の温度の上昇が抑制される。このことにより、圧力センサ134の内部の圧力検知部は、放電領域に面する部材の温度に近似した温度に加熱されたバッファ室133を通って処理室104内部に連通され、放電領域の圧力を高い精度で検知することができる。
 なお、図5においてOリング501は、試料台リングベース107’上端部に配置され、この上に載せられる上部容器101の下端部と接して変形し処理室104内外を気密に封止する。同様に、Oリング502は、バルブボックス127の部分的に円筒形に湾曲して試料台リングベース107’上に載せられる上部容器101の円筒形の外周側壁と接して変形しバルブボックス127および処理室104内外を気密に封止する。
 図6は、図1に示す実施例に係るプラズマ処理装置のカバーの構成を拡大して示す斜視図である。本図では、特に、真空容器部12のカバー(側壁カバー)15を示している。カバー15は、直方体またはこれに近似した形状を有した冷却室135の2つの隣接する面に対応する箇所を覆う箇所に2つの開口602,603を備えている。
 カバー15は、ベースプレート109上方の真空容器部12の外周の箇所に着脱自在に取り付けられ、特に本例では、カバー15の下端部がベースプレート109と接続されて、取り付けられる。着脱が可能に取り付けられるカバー15は、運搬あるいは取り付けの作業の安全性を高めるため、外部の壁面上の2つの箇所の各々に取手601が配置されている。
 本例のカバー15は、矩形状のベースプレート109上の真空容器の外周囲のうち、ベースプレート109の矩形状の隣接する各辺に対応する面を覆う2つの板部材151,152が接続された構成を有している。2つの板部材151,152同士が短い距離で対向する、あるいは隣接する箇所153は、ベースプレート109の矩形の角部604(図5参照)に対応し、角部604に真空計ユニット130の冷却室135が配置されている。このことから、2つの板部材151,152上の上記隣接する箇所には、各々開口602,603が配置されている。
 各開口602,603を通して、カバー15の外部と内部の冷却室135とは連通されている。すなわち、開口602,603のおのおのは、ベースプレート109の角部の上方に配置された矩形状を有した冷却室135の隣接する2つの側面を覆うカバー15の2つの板部材151,152上の箇所に配置されている。本例の開口602,603は板部材151,152を矩形状に貫通する貫通孔の内部に、網目あるいは多孔形状を有した板状の部材606が配置された構成を備えている。
 また、その軸がバルブボックス127に対して試料台106を挟んだ反対の側に向けて延在する接続管402またはバッファ室133の端部に取り付けられた圧力センサ134に対して、当該軸の延在する方向に沿って配置された板部材152の開口602の開口面積S1は、他方の開口603の開口面積S2より大きくされている(S1>S2)。開口602は、プラズマ処理装置100が真空搬送容器に取り付けられ真空処理装置を構成した状態で、隣接する別のプラズマ処理装置または大気搬送容器との間の空間に面した位置に配置される。一方、開口603は、隣接する別の真空処理装置との間の空間であって装置の使用者が移動可能な空間に面した位置に配置されている。隣接する別のプラズマ処理装置または大気搬送容器との間の空間から流入したプラズマ処理装置100の周囲の雰囲気は、冷却室135内部で圧力センサ134の外壁と熱交換して、開口603からプラズマ処理装置100の外部に流出する。
 本発明は、半導体ウエハ等の基板状の試料を処理室内に形成されたプラズマを用いて処理するプラズマ処理装置に適用可能である。
100:プラズマ処理装置
101:上部容器
102:下部容器
103:真空ポンプ(排気ポンプ)
104:処理室
105:ソレノイドコイル
106:試料台
107:試料台ベース
108:ウエハ
109:ベースプレート
110:排気口蓋
111:排気調節機
112:窓部材
113:シャワープレート
114:内筒
115:ガスリング
115’:ガス流路
116:アースリング
117:放電部容器
118:ヒータ
119:放電ブロックベース
120:試料台底蓋
121:空洞部
122:導波管
123:マグネトロン
124:排気口
125:支柱
126:真空搬送容器
127:バルブボックス
128,129:ゲートバルブ
130:真空計ユニット
133:バッファ室
134:圧力センサ
135:冷却室
136:防熱版
405:ヒータ
602,603:開口
604:角部
C1-C13:制御線
HT1-HT13:ヒータ部
900:ヒータ制御部

Claims (7)

  1.  試料台の外周に配置された試料台ベースと、
     前記試料台ベースに連結管とバッファ部とを介して接続された圧力センサと、
     前記連結管や前記バッファ部の温度が前記圧力センサに向かうに伴って高くなる様に温度勾配を形成し、かつ、前記圧力センサが前記試料台の上のプラズマ生成空間に近似した温度にされる様に加熱を調整するヒータと、
     前記試料台ベースの下側に配置された矩形状のベースプレートと、を備え、
     前記圧力センサは、矩形状の前記ベースプレートの上の前記試料台ベースの外側の前記ベースプレートの角部の防熱板で区画された箇所に格納され、
     当該角部の箇所の内外が開口を通し連通された構成とされる、プラズマ処理装置。
  2.  請求項1に記載のプラズマ処理装置であって、
     前記試料台ベースは、リング状とされ、かつ、前記連結管が接続される開口部を有する貫通孔を備え、
     前記連結管および前記バッファ部は、前記開口部と前記圧力センサとの間に接続され、
     前記圧力センサが格納される前記箇所は、前記矩形状の前記ベースプレートの上の前記リング状の前記試料台ベースの外側である、プラズマ処理装置。
  3.  請求項1に記載のプラズマ処理装置であって、
     前記箇所の内外を通し連通する前記開口は、前記ベースプレートの角部を挟んで隣接する2つの側壁カバーのおのおのに設けられた第1開口部と第2開口部とにより構成され、
     前記第1開口部と前記第2開口部の一方から前記第1開口部と前記第2開口部の他方へ前記プラズマ処理装置の外部の雰囲気が通流する、プラズマ処理装置。
  4.  請求項3に記載のプラズマ処理装置であって、
     前記外部の雰囲気が前記第1開口部から前記第2開口部へ通流するようにされ、
     前記第1開口部の開口面積は、前記第2開口部のそれより大きい、プラズマ処理装置。
  5.  請求項1に記載のプラズマ処理装置であって、
     前記プラズマ生成空間にプラズマを生成するプラズマ形成部と、
     前記試料台を含む真空容器部と、を有し、
     前記真空容器部は、上部容器と、前記上部容器の下方に配置された下部容器と、前記上部容器と前記下部容器との間に挟まれた前記試料台ベースとから構成される、プラズマ処理装置。
  6.  請求項2に記載のプラズマ処理装置であって、
     前記貫通孔は、真空搬送容器に接続される側の前記試料台ベースの第1端部と前記試料台の中心を挟んだ反対側の前記試料台ベースの第2端部との間の中間の位置に配置される、プラズマ処理装置。
  7.  請求項6に記載のプラズマ処理装置であって、
     前記連結管は前記バッファ部に接続されるまでの箇所で複数回、その軸方向が90度またはこれと見なせる程度に近似した角度で曲げられ、
     前記バッファ部および前記圧力センサは、前記ベースプレートの前記真空搬送容器に接続される側の端部に対して、前記試料台の中心部を挟んだ反対の側に向けて水平方向に離間した箇所に配置され、
     前記圧力センサは、矩形状の平面形を有する前記ベースプレートの前記試料台の中心部を挟んだ反対の側の角部に位置する、プラズマ処理装置。
PCT/JP2022/010245 2022-03-09 2022-03-09 プラズマ処理装置 WO2023170812A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237001171A KR20230133264A (ko) 2022-03-09 2022-03-09 플라스마 처리 장치
PCT/JP2022/010245 WO2023170812A1 (ja) 2022-03-09 2022-03-09 プラズマ処理装置
JP2023516559A JP7326646B1 (ja) 2022-03-09 2022-03-09 プラズマ処理装置
CN202280005668.8A CN117043915A (zh) 2022-03-09 2022-03-09 等离子体处理装置
TW112108505A TW202336812A (zh) 2022-03-09 2023-03-08 電漿處理裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010245 WO2023170812A1 (ja) 2022-03-09 2022-03-09 プラズマ処理装置

Publications (1)

Publication Number Publication Date
WO2023170812A1 true WO2023170812A1 (ja) 2023-09-14

Family

ID=87563270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010245 WO2023170812A1 (ja) 2022-03-09 2022-03-09 プラズマ処理装置

Country Status (5)

Country Link
JP (1) JP7326646B1 (ja)
KR (1) KR20230133264A (ja)
CN (1) CN117043915A (ja)
TW (1) TW202336812A (ja)
WO (1) WO2023170812A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060118890A (ko) * 2005-05-17 2006-11-24 삼성전자주식회사 가열 시스템을 갖는 압력감지장치
US20110265824A1 (en) * 2010-04-30 2011-11-03 Applied Materials, Inc. Methods for extending the lifetime of pressure gauges coupled to substrate process chambers
JP2014162969A (ja) * 2013-02-27 2014-09-08 Hitachi Zosen Corp 蒸着装置および蒸着方法
WO2021149212A1 (ja) * 2020-01-23 2021-07-29 株式会社日立ハイテク プラズマ処理装置およびプラズマ処理装置の運転方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060118890A (ko) * 2005-05-17 2006-11-24 삼성전자주식회사 가열 시스템을 갖는 압력감지장치
US20110265824A1 (en) * 2010-04-30 2011-11-03 Applied Materials, Inc. Methods for extending the lifetime of pressure gauges coupled to substrate process chambers
JP2014162969A (ja) * 2013-02-27 2014-09-08 Hitachi Zosen Corp 蒸着装置および蒸着方法
WO2021149212A1 (ja) * 2020-01-23 2021-07-29 株式会社日立ハイテク プラズマ処理装置およびプラズマ処理装置の運転方法

Also Published As

Publication number Publication date
JP7326646B1 (ja) 2023-08-15
JPWO2023170812A1 (ja) 2023-09-14
KR20230133264A (ko) 2023-09-19
TW202336812A (zh) 2023-09-16
CN117043915A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
JP6910560B1 (ja) プラズマ処理装置およびプラズマ処理装置の運転方法
US10692784B2 (en) Vacuum processing apparatus
JP5074741B2 (ja) 真空処理装置
KR100812829B1 (ko) 플라즈마 성막 장치 및 플라즈마 성막 방법
US10665436B2 (en) Plasma processing apparatus
JP7083463B2 (ja) 真空処理装置
TWI718674B (zh) 電漿處理裝置
JP5004614B2 (ja) 真空処理装置
JP5596265B2 (ja) 真空処理装置
WO2023170812A1 (ja) プラズマ処理装置
JP6567886B2 (ja) プラズマ処理装置
JP6557523B2 (ja) プラズマ処理装置
JP6666630B2 (ja) 真空処理装置
JP6750928B2 (ja) 真空処理装置
JP2012156275A (ja) プラズマ処理装置
JP6647905B2 (ja) 真空処理装置
JPWO2023170812A5 (ja)
TWI827101B (zh) 電漿處理裝置
US20220115216A1 (en) Plasma processing apparatus and plasma processing method
JP2010278207A (ja) プラズマ処理装置
JP2009212286A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280005668.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18025766

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023516559

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930795

Country of ref document: EP

Kind code of ref document: A1