JP2014159642A - ニッケルサーメット電極の製造方法 - Google Patents

ニッケルサーメット電極の製造方法 Download PDF

Info

Publication number
JP2014159642A
JP2014159642A JP2014085680A JP2014085680A JP2014159642A JP 2014159642 A JP2014159642 A JP 2014159642A JP 2014085680 A JP2014085680 A JP 2014085680A JP 2014085680 A JP2014085680 A JP 2014085680A JP 2014159642 A JP2014159642 A JP 2014159642A
Authority
JP
Japan
Prior art keywords
nickel
mixture
temperature
heat treatment
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014085680A
Other languages
English (en)
Inventor
Delahaye Thibaud
ティボー、ドラエ
Baclet Philippe
フィリップ、バクレ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of JP2014159642A publication Critical patent/JP2014159642A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Powder Metallurgy (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】安価で粉末形態の酸化ニッケルを使用ことで人体への影響を低減し、開放気孔率を有するニッケルサーメット電極を提供する。
【解決手段】ニッケルサーメット電極の製造方法は、固体状態の有機ニッケル塩および少なくとも1種の固体状態のセラミック材料を含む混合物を大気温度で形成し、続いて混合物を成形し、該形成された混合物を好ましくは還元条件下で熱処理してニッケルサーメット電極を形成する工程を含む。有機ニッケル塩は、酢酸ニッケル、炭酸ニッケルおよび酒石酸ニッケルから選択される。
【選択図】図3

Description

本発明はニッケルサーメット電極の製造方法に関するものである。
サーメットは、セラミックおよび金属材料によって形成される複合材料である。ニッケルサーメットは、固体酸化物型燃料電池(SOFC)、プロトン伝導体燃料電池(PCFC)または固体酸化物電解セル(SOEC)用の電極を形成するのに一般的に用いられる。従来の方法では、ニッケルサーメット電極は、ニッケルおよびセラミック酸化物の粉末から機械的混合および/または粉砕によって得られる。そしてその混合物を成形し、高温でか焼して複合材料を形成し、最後に温度を下げてニッケルサーメット電極を得る。ニッケルサーメット電極の電気的特性は、微細構造、ニッケルおよびセラミック粒子の分布および開放気孔率の分布に顕著に依存する。
例えば、米国特許出願公開第2005/0095479号明細書には、SOFC電極用の多孔質薄層の製造方法が記載されている。Ni−YSZサーメットの形成方法は、YSZ基材上でのニッケルの堆積またはNi−YSZセラミックとの共堆積およびその後のアニーリングまたは焼結を含む。還元または酸化雰囲気中での焼結またはアニーリングが、金属の拡散を引き起こし、かつ、Niサーメット孔の形成に寄与するために用いられる。
最近の研究によって、複合材料を形成する粒子の形状、大きさおよび分布の制御を可能とする、SOFC電極用の複合セラミック/NiO粉末の製造方法が説明された。
特に、米国特許第5993988号明細書には、酢酸ニッケル四水和物Ni(CHCOO)・4HOおよびYSZのゾルから、複合酸化ニッケルNiOおよび酸化イットリウムとの立方晶形態の安定化されたジルコンセラミック粉末(YSZ)を製造する方法が記載されている。初期反応物の形成は、噴霧熱分解によってその後熱的に分解される反応物水溶液をもたらす。この第一の熱処理が、NiOおよびYSZの粒子で構成される中間体粉末をもたらす。噴霧熱分解が行なわれる場合、初期反応物水溶液は噴霧され、乾燥される。この工程の間、酢酸ニッケル粒子またはYSZ粒子は、好ましくは水溶液中でのそれらの溶解性に従って、沈殿して凝集する。この選択的沈殿が、得られるNiOおよびYSZ粒子の制御された粒径分布を可能とする。そして中間体NiO/YSZ粉末は成形され、焼結されて電極を形成する。
さらに、論文「噴霧熱分解による固体酸化物型燃料電池電極用のNiO‐YSZ複合材料の合成(Synthesis of NiO-YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis)」(Powder Technology, vol. 132, 2003, P.52-56)において、福井らは、米国特許第5993988号明細書(要約)の初期Ni/YSZ酢酸塩溶液の分解に係わる機構の分析を行ない、特に、熱分解が行なわれる際にNiおよびYSZ酢酸塩の微粒子によって形成された中間生成物が存在することを強調する。この中間生成物は200℃を超える温度で得られる。
上述の方法には、凝集した形態または凝集していない形態の粉末酸化ニッケルが使用される。しかし、CMRとして分類される、つまり発癌性、変異原性、および生殖に対して毒性のある酸化ニッケルNiOは、粉末形態において高い毒性を示す複合材料である。このような複合材料の初期生成物または中間生成物としての使用は、取り扱い、保管および使用に関する限り、産業的観点から複雑かつ煩わしい予防措置を必要とする。
最近の研究により、酸化ニッケル前駆体からニッケルサーメットを製造する方法がさらに説明された。これらの前駆体は、酸化ニッケルがYSZセラミックによって形成されたマトリックス中に捕捉されたNiO/YSZ複合材料を直接もたらし、その結果として人間に対して無害となる。
とりわけ、米国特許出願公開第2003/0211381号明細書には、酸化イットリウムで安定化されたジルコン繊維およびジルコン粉末(YSZ)の混合物によって構成された多孔質層の形成、および硝酸ニッケル溶液によるこの多孔質層の含浸を含む、SOFC用のニッケルサーメットアノードの製造方法が記載されている。硝酸Niは、次いで焼結によって酸化ニッケルに変換され、NiO/YSZ複合材料を形成する。そしてニッケルサーメットは、酸化ニッケルの金属ニッケルへのその場還元により得られる。
米国特許第5261944号明細書も同様に、YSZ前駆体用のジルコニルおよびイットリウム硝酸塩、ならびにNiO前駆体用の酢酸ニッケルといった、前駆体塩から燃料電池のアノード材形成用のNiO/YSZ複合材料の形成を開示する。ジルコニルおよびイットリウム塩、ならびに酢酸ニッケルNi(CHCOO)が、ヒドロキシ酸、アミノ酸またはポリ(アクリル)酸の水溶液中に溶解される。そして塩のいずれの分解も防ぐ条件下で水が除去され、多孔質の脆い固体をもたらす。そしてその固体を800℃〜1000℃の間に含まれる温度にか焼して、酸化ニッケルおよびYSZセラミックの2つの別個の相の形態でNiO/YSZ複合材料を形成する。NiO/YSZ複合材料は、その後還元雰囲気中で熱処理を受けて、Ni/YSZサーメットを得る。そして、SOFC用のアノードが、前述のか焼工程の後に、NiO/YSZ複合材料の固体YSZ電解質上での堆積およびその後Ni/YSZへのその場還元により得られる。
ニッケルサーメット電極の性能がその多孔質構造に依存することがさらに知られている。燃料電池用電極の開放気孔率は、気体燃料の反応物の触媒部位への輸送および反応生成物の除去に必須である。ポリメタクリル酸メチル(PMMA)、ポリビニルブチラール(PVB)、ろう状物質またはサッカロースの球のような細孔形成剤が、必要とされる開放気孔率を得るために一般的に加えられ、容積比で30%〜50%の間で通常含まれる。それにもかかわらず、Niサーメット電極の浸透多孔質格子を制御するために、追加の混合および均質化操作がその後必要とされる。
本発明の目的は、実施が容易で、安価な、しかも粉末形態の酸化ニッケルの使用を要しない、特に開放気孔率をもたらすニッケルサーメット電極の製造方法を提案することにある。
本発明によれば、この目的は示された請求項による製造方法によって達成される。
特に、この目的はニッケルサーメット電極を製造する方法であって、
‐ 固体状態の有機ニッケル塩および少なくとも1種の固体状態のセラミック材料を含む混合物を大気温度で形成し、
‐ 前記混合物を成形し、
‐ 前記成形した混合物を熱処理して前記ニッケルサーメット電極を形成する、
連続した工程を含んでなる、製造方法によって達成される。
他の利点および特徴は、非制限的な例の目的としてのみ提供され、添付の図面中に示される、本発明の特定の態様についての以下の記述により明確となるであろう。
温度に対する、酢酸ニッケル四水和物Ni(CHCOO)・4HOの試料の空気中での質量変動を示す図である。 テープ成形によって得られた、酢酸ニッケル四水和物/8モル%のYSZのテープを上から見た写真を示す図である。 図2のテープから得られたサーメットの、6500倍の拡大倍率での、二次電子モードにおける走査電子顕微鏡写真を示す図である。 温度に対する、炭酸ニッケルNiCOの試料の空気中での質量変動を示す図である。 温度に対する、NiCO−8YSZのペレット(50/50%重量)の空気中での膨張率測定のグラフを示す図である。 Ni/8YSZ半電池の破断面の、二次電子モードにおける走査電子顕微鏡写真を示す図である。
特定の態様によれば、ニッケルサーメット電極の製造方法は、固体状態での有機ニッケル塩および少なくとも1種の固体状態のセラミック材料を含む混合物を大気温度で形成する工程と、これに続く混合物の成形工程を含む。この成形工程は、最終的なニッケルサーメット電極の形状に近い形状を混合物に与える予備成形物を得るために有利に設計されている。予備成形物の意味するものは、特定の凝集および輪郭ならびに/または、より一般的には、最終的なニッケルサーメット電極の形状と同一もしくは類似した形状を示すように成形された混合物である。まだ製造方法の最終操作を経ていない場合、製造方法の所与の段階で、この予備成形物は最終的な電極のブランクである。混合物の成形は、好ましくは予備成形物の形状において、いかなる公知の方法、例えば加圧および/または成型および/または堆積および/またはテープ成形とそれに続くテープの切断、によって行なわれてもよい。そして成形した混合物は、予備成形物を作成する場合にはこれを構成するものであり、好ましくは還元条件下で、熱処理されてニッケルサーメット電極を形成する。有機ニッケル塩は、水和物またはそうでない形態の、酢酸ニッケル、炭酸ニッケルおよび酒石酸ニッケルから選択される。有機ニッケル塩は、有利には炭酸ニッケルである。
特定の態様によれば、有機ニッケル塩は酢酸ニッケルである。粉末酢酸ニッケルは、有利には機械混合によって、大気温度で粉末セラミック材料と混合されて、Ni(CHCOO)/セラミックの均質な固体混合物を形成する。例えば、酢酸Ni/セラミックの重量比は、本方法によって得られる最終的なNiサーメットが重量比で20%〜70%の間の金属ニッケルを含有するように選択される。セラミック材料は、酸化イットリウムとの立方晶形態で安定化されたジルコンY−ZrO(YSZ)、部分安定化ジルコン(PSZ)、スカンジウム化および/またはセリウム化ジルコン、ならびに酸化セリウムガドリニウム(CGO)のような置換された酸化セリウムCeOから有利に選択される。数種の粉末セラミック材料の混合物も、電極の性能を向上させるために使用されることができ、例えばYSZおよびCGOの混合物がある。Ni(CHCOO)/セラミック混合物は次いで電極を形成するために、公知の任意の方法によって成形される。例えば、均質な固体混合物は加圧されて、均質な固体混合物の凝集を確保する予備成形物を形成することができる。予備成形物を次いで、有利には還元雰囲気下で、か焼によって熱処理され、ニッケルサーメット電極を形成する。電解質は次いで、このように得られたニッケルサーメット電極の表面上に堆積されることもできる。
別の態様によれば、Ni(CHCOO)/セラミック混合物は、成型とこれに続く加圧によってNi(CHCOO)/セラミック予備成形物を形成することで成形されることもできる。
第二の態様によれば、Ni(CHCOO)/セラミック混合物は、例えばグリセロールのようなアルコールで、粘性液体混合物の形態に調合されてインキまたはペーストを形成する。そして酢酸ニッケルおよびセラミック材料は、Ni(CHCOO)/セラミック混合物中で固体状態にある。セラミック材料は、酢酸ニッケル粒子が懸濁されたゾルを有利に形成する。そしてインキまたはペーストは予備成形物を有利に形成するために、特に基材上での堆積によって成形される。従来の堆積技術、例えばスクリーン印刷、スプレー塗装、テープ成形、ディップコーティングまたはスピンコーティング、が用いられることができる。
酸化ニッケルNiOの前駆体を構成する酢酸ニッケルは、好ましくは四水和物の結晶状態にある酢酸ニッケルNi(CHCOO)・4HOである。
基材は、有利には燃料電池用の固体電解質であってもよく、好ましくは8モル%の高密度Y−ZrO支持体(8YSZ)である。
混合物が形成された後、好ましくは還元雰囲気下、例えば水素(H)中で、Niサーメット電極を形成するために成形した混合物の熱処理が達成される。この熱処理はNiサーメットの凝集を確保し、気体状態の酸素原子の離脱に関連する開放気孔率を解放する。この熱処理は、有利には1150℃〜1450℃の間、より特別には1200℃〜1300℃の間、に含まれる温度で行なわれる。
他の態様によれば、成形された混合物を構成する予備成形物の熱処理が行なわれる場合、酢酸ニッケルは酸化条件下で熱的に分解される。この分解により、酸化ニッケル及びセラミック材料を含むNiO/セラミックの固体セラミック複合材料が形成される。NiO/セラミック複合材料中の酸化ニッケルは、セラミックマトリックス中に捕らえられており、したがって無害である。酸化ニッケルNiOは、NiO/セラミック固体セラミック複合材料中で次いで金属ニッケルNiにその場還元され、Niサーメット電極をもたらす。この変化の間に、酸化熱処理は1100℃〜1300℃の温度に達してもよいが、NiOをNiに還元する工程はこれより低い高温で行うことができる。したがって500℃〜1000℃の間に含まれる還元熱処理、例えば700℃での還元熱処理が十分でありえる。
酢酸Niの熱分解は、こうして得られたNiサーメット電極中でニッケル触媒部位の近くでの開放気孔の生成を可能とする。反応物のために、気孔がニッケル触媒部位への接近経路を構成する。Niサーメット電極の電気化学的及び電気触媒的活性は、気孔がニッケル粒子のより近くに接合されることで、いずれもより高くなる。そして触媒部位への反応物の接近は促進され、電極の性能が向上される。細孔形成剤を使用することで課される追加の均質化および混合工程は、さらに回避される。
例えば、Ni(CHCOO)・4HO/YSZの均質な固体混合物は、酢酸ニッケル四水和物Ni(CHCOO)・4HOの粉末、および3モル%のY−ZrO(3YSZ)または8モル%のY−ZrO(8YSZ)のセラミック粉末から、大気温度で得られる。混合物は、予備成形物を構成するペレットの形状に加圧することで成形される。そして酢酸ニッケル四水和物Ni(CHCOO)・4HOは、酸化条件下での予備成形物の熱処理によって分解される。分解は3つの連続する工程で行われることができ、
‐ 第一の熱処理が、大気温度から120℃まで温度を約0.4℃/分で連続的かつ漸進的に上昇させることよって行なわれる。温度は次いで120℃で1時間保持される。この第一の熱処理によって、酢酸ニッケル四水和物Ni(CHCOO)・4HOの脱水が起き、
‐ 第二の熱処理が、120℃から340℃まで温度を約0.6℃/分で連続的かつ漸進的に上昇させて、1時間温度保持することによって行なわれる。酢酸ニッケル型の塩基性中間混合物である0.86Ni(CHCOO)・0.14Ni(OH)が次いで形成され、開放気孔率を形成しながら酸化ニッケルNiOへ分解され、
‐ か焼が、340℃から1200℃まで温度を約4.8℃/分で連続的かつ漸進的に上昇させて、3時間温度保持することによって行なわれる。このか焼は、こうして得られたNiO/YSZ複合材料の良好な機械的強度を確保する。
塩基性中間混合物である0.86Ni(CHCOO)・0.14Ni(OH)の形成は、酢酸ニッケル四水和物Ni(CHCOO)・4HOの168.55mgの試料の空気中での熱重量分析(図1)によって強調された。最初の重量損失が実際に水分子の放出に対応し、第二の重量損失が塩基性中間混合物である0.86Ni(CHCOO)・0.14Ni(OH)のNiOへの分解に対応する。還元雰囲気下での最終的な熱処理は、NiO/セラミック複合材料のNi/セラミックサーメットへの還元を可能とし、酸素原子の気体状態での放出に関連する追加の開放気孔率をもたらす。
第二の例によれば、8YSZおよび酢酸ニッケル四水和物Ni(CHCOO)・4HOをベースとして用いたテープ成形による調製は、40gの粉末状の8YSZ、134gの粉末状の酢酸ニッケル四水和物および4gの分散剤として作用するオレイン酸から調製された。これらの反応物は、50gの無水エタノールおよび50gのブタノンで構成された溶媒の共沸溶液中で、大気温度で十分に混合される。この混合物は1時間機械的に攪拌される。そして2種類の可塑剤、つまり6mlのフタル酸ベンジルブチルおよび6.8mlのポリエチレングリコールが、8gのバインダーであるポリビニルブチラールと共に、混合物に添加される。そしてこの新しい混合物は、24時間機械的に均質化され、脱気される。このすぐに使用できる調製品から、数百ミクロンの厚さのテープが、テープ成形法を用いて成形され、その後乾燥される(図2)。
これらのNi(CHCOO)・4HO/8YSZテープは、次いで予備成形品を形成するのに求められる形状に切断される。このように混合物を成形することで得られた予備成形品は、次いで、
‐ 第一の熱処理が、大気温度から120℃まで温度を約0.4℃/分で連続的かつ漸進的に上昇させて、1時間温度保持することによって行なわれ、
‐ 第二の熱処理が、120℃から340℃まで温度を約0.6℃/分で連続的かつ漸進的に上昇させて、1時間温度保持することによって行なわれ、
‐ か焼が、600℃で1時間の第一の温度保持に至るまで温度を約0.4℃/分で連続的かつ漸進的に上昇させ、続いて1200℃で3時間の第二の温度保持に至るまで温度を約1.7℃/分で連続的かつ漸進的に上昇させることによって行なわれ、さらに
‐ 冷却が、25℃まで温度を約5℃/分で連続的かつ漸進的に降下させることで行なわれる、
熱処理を行なわれることで、空気中で焼結される。
そして還元雰囲気中での温度降下の後にNiO/8YSZの複合材料基材が得られ、MEB XL30顕微鏡(フィリップス)で作成した図3の電子顕微鏡写真に示されるように、凝集性および開放気孔率を有する多孔質構造をもたらすNi/8YSZサーメットをもたらす。
第三の特別な態様によれば、固体状態の有機ニッケル塩は炭酸ニッケルNiCOである。
89.9mgの炭酸ニッケルの試料の熱重量分析が空気中で行われた(図4)。図4に示されるように、曲線が得られ、約100℃と約300℃での2つの連続する変曲点がもたらされる。
第一の重量損失(〜100℃)は、水分子の放出に伴う炭酸ニッケルの脱水に対応し、600℃まで継続する第二の重量損失(〜300℃)は炭酸ニッケルの酸化ニッケルへの全酸化に対応する。酸化反応は以下の式(1)で表わされる。
したがって、ニッケルサーメット電極の製造方法の間、NiCOのNiOへの変換は、混合物が成形された後に熱処理中に行われることができ、追加の熱処理を必要としない。
例えば、NiCO/8YSZのペレットは、NiCOの粉末および8YSZセラミックの粉末を大気温度で50/50の重量比率で混合し、続いてNiCO/8YSZ混合物を加圧によってペレットの形状に成形することで作成される。空気中での膨張率測定曲線グラフが、大気温度から1400℃の範囲の温度にわたって、このペレットについて作成された。
図5に示されるように、膨張率測定曲線が得られ、前述の熱重量分析(図4)で説明されたように、NiCO/8YSZ混合物の脱水とそれに続く炭酸ニッケルNiCOの酸化ニッケルNiOへの変換にそれぞれ対応する、約100℃と約300℃との間の2つの変曲点を示す。これらの変曲点は、炭酸ニッケルがより嵩の小さい酸化ニッケルへと分解されることに関連する大きな重量損失に起因する、試料の最初の大きな圧縮を反映する。Pで示された第三の変曲点も、1100℃〜1200℃の間で観測される。この第三の変曲点は、試料の緻密化の始まりに関連した試料の収縮に対応する。この変曲点を正確に決定するために2つの接線が描かれ(図5)、この変曲点は約1160℃に定められた。そこから我々は、1200℃で仮定をすることで、ニッケルサーメット電極が開放気孔率を維持すると同時に十分な凝集を有するだろうことを推定することができる。1200℃を超えると、ニッケルサーメット電極はその開放気孔率を維持せず、効率が低下するであろう。
例えば、電極/電解質半電池が2種類のスクリーン印刷インキから作成される。第一のスクリーン印刷インキは、8gの粉末状NiCOおよび5gの粉末状8YSZ混合物、ならびに1gの分散剤として作用するオレイン酸で形成された混合物から作成された。これらの反応物は、50gのテルピネオールおよび50gのグリセロールで構成された溶媒の共沸溶液中で、大気温度で十分に混合される。この混合物は、大気温度で6時間機械的に攪拌される。そして可塑剤、つまり5重量%のエチルセルロースが、混合物に添加される。この新しい混合物は次いで、外気温度で6時間機械的に均質化され、24時間脱気される。
第二のスクリーン印刷インキは、純粋なNiCOで作成された。それぞれのインキが、8YSZおよび/またはNiCO粒子が固体状態である粘性液体混合物を形成する。このように形成されたインキは、次いでスクリーン印刷および熱処理によって成形される。
成形は、8YSZ電解質の表面上へのスクリーン印刷による3回の連続する第一のインキの堆積と、これに続く第二のインキの2回の堆積を含む。それぞれの堆積の間に、使用された溶媒の一部を除去するために、44℃での熱処理が行われた。このように形成された半電池は、1200℃で3時間空気中でか焼されることによって熱処理されてNiO/8YSZバルク複合材料を形成し、その後Ni/8YSZ多孔質バルクサーメットを形成するために、アルゴン/H(2%)混合物が流れている中で、800℃で3時間還元される。第一のインキ(初期のNiCO/8YSZ混合物)の3回のスクリーン印刷堆積は、電極/電解質半電池のNi/8YSZ機能層を構成し、第二のインキ(NiCO)の2回のスクリーン印刷堆積はNi集電体層を構成する。このように調製された電極/電解質半電池の破断面が、走査電子顕微鏡(SEM)の二次電子モードで観察される(図6)。
図6に示されるこの電子顕微鏡写真において、機能層1および集電体層2は明確に視認でき、それぞれ約20μmと約6μmである。電子顕微鏡写真は、サーメット電極と電解質との間の非常に良好な密着、および電極/電解質界面での特徴的な開放気孔率を示す。
本発明による製造方法は、良好な気孔率を必要とするSOFC燃料電池用のニッケルサーメット電極の製造に特に有利である。この製造方法は、粉末形態の酸化ニッケルのような有害な初期反応物を用いることなく、単純で実施が容易な通常の操作を伴う。粉末形態でのNiOの使用によって課される費用のかかる取扱い予防措置は、結果として回避される。

Claims (14)

  1. ニッケルサーメット電極の製造方法であって、
    ‐ 固体状態の有機ニッケル塩および少なくとも1種の固体状態のセラミック材料を含む混合物を大気温度で形成し、
    ‐ 前記混合物を成形し、
    ‐ 前記成形した混合物を熱処理して前記ニッケルサーメット電極を形成する、
    連続した工程を含んでなる、製造方法。
  2. 熱処理が還元条件下で行なわれる、請求項1に記載の製造方法。
  3. ‐ 固体状態の有機ニッケル塩および少なくとも1種の固体状態のセラミック材料を含む混合物を大気温度で形成し、
    ‐ 前記混合物を成形し、
    ‐ 前記成形した混合物を酸化条件下で熱処理して酸化ニッケルおよび前記セラミック材料を含む固体セラミック複合材料を形成し、
    ‐ 前記固体セラミック複合材料中で酸化ニッケルを金属ニッケルに還元する、
    連続した工程を含んでなる、請求項1に記載の製造方法。
  4. 前記有機ニッケル塩が、酢酸ニッケル、炭酸ニッケルおよび酒石酸ニッケルから選択される、請求項1〜3のいずれか一項に記載の製造方法。
  5. 前記混合物が、粉末有機ニッケル塩および粉末セラミック材料を混合することによって得られた均質な固体混合物である、請求項1〜4のいずれか一項に記載の製造方法。
  6. 前記混合物が、インキまたはペーストを形成する粘性液体混合物である、請求項1〜4のいずれか一項に記載の製造方法。
  7. 前記混合物の成形が、該混合物の基材上での堆積を含む、請求項1〜6のいずれか一項に記載の製造方法。
  8. 前記基材が固体電解質である、請求項7に記載の製造方法。
  9. 前記セラミック材料が、酸化イットリウムとの立方晶形態で安定化されたジルコンY−ZrO(YSZ)、部分安定化ジルコン(PSZ)、スカンジウム化および/またはセリウム化ジルコン、ならびに置換された酸化セリウムCeOから選択される、請求項1〜8のいずれか一項に記載の製造方法。
  10. 前記有機ニッケル塩が、四水和物結晶形態の酢酸ニッケルNi(CHCOO)・4HOである、請求項1〜9のいずれか一項に記載の製造方法。
  11. 前記混合物がNi(CHCOO)・4HO/YSZ混合物である、請求項9または10に記載の製造方法。
  12. 熱処理が、
    ‐ 120℃までの第一の熱処理、
    ‐ 340℃までの第二の熱処理、
    ‐ 1200℃までのか焼工程、
    の連続した工程で行なわれる、請求項10または11に記載の製造方法。
  13. ‐ 前記第一の熱処理が、大気温度から120℃まで温度を連続的かつ漸進的に上昇させて、1時間温度保持することによって行なわれ、
    ‐ 前記第二の熱処理が、120℃から340℃まで温度を連続的かつ漸進的に上昇させて、1時間温度保持することによって行なわれ、
    ‐ か焼が、340℃から1200℃まで温度を連続的かつ漸進的に上昇させて、3時間温度保持することによって行なわれる、請求項12に記載の製造方法。
  14. ‐ 前記第一の熱処理が、大気温度から120℃まで温度を連続的かつ漸進的に上昇させて、1時間温度保持することによって行なわれ、
    ‐ 前記第二の熱処理が、120℃から340℃まで温度を連続的かつ漸進的に上昇させて、1時間温度保持することによって行なわれ、
    ‐ か焼が、600℃で1時間の第一の温度保持に至るまで温度を連続的かつ漸進的に上昇させ、続いて1200℃で3時間の第二の温度保持に至るまで温度を連続的かつ漸進的に上昇させることによって行なわれる、請求項12に記載の製造方法。
JP2014085680A 2009-01-05 2014-04-17 ニッケルサーメット電極の製造方法 Withdrawn JP2014159642A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0900015 2009-01-05
FR0900015A FR2940856B1 (fr) 2009-01-05 2009-01-05 Procede de fabrication d'une electrode cermet au nickel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011544027A Division JP5615843B2 (ja) 2009-01-05 2009-12-23 ニッケルサーメット電極の製造方法

Publications (1)

Publication Number Publication Date
JP2014159642A true JP2014159642A (ja) 2014-09-04

Family

ID=40578563

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011544027A Expired - Fee Related JP5615843B2 (ja) 2009-01-05 2009-12-23 ニッケルサーメット電極の製造方法
JP2014085680A Withdrawn JP2014159642A (ja) 2009-01-05 2014-04-17 ニッケルサーメット電極の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2011544027A Expired - Fee Related JP5615843B2 (ja) 2009-01-05 2009-12-23 ニッケルサーメット電極の製造方法

Country Status (6)

Country Link
US (2) US20110262629A1 (ja)
EP (1) EP2374177B1 (ja)
JP (2) JP5615843B2 (ja)
ES (1) ES2415766T3 (ja)
FR (1) FR2940856B1 (ja)
WO (1) WO2010076274A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2964664B1 (fr) * 2010-09-13 2013-09-13 Commissariat Energie Atomique Encre aqueuse pour la realisation d'electrodes de cellule electrochimique haute temperature
KR101219757B1 (ko) * 2011-10-17 2013-01-09 한국과학기술연구원 고체 산화물 연료전지의 연료극 제조방법
JP2018154864A (ja) * 2017-03-16 2018-10-04 東芝エネルギーシステムズ株式会社 高温水蒸気電解セル、高温水蒸気電解セル用水素極層及び固体酸化物電気化学セル
CN116813309A (zh) * 2022-12-30 2023-09-29 安徽壹石通材料科技股份有限公司 一种提高Ni-YSZ阳极材料孔隙率的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1248589B (it) 1991-06-28 1995-01-19 Eniricerche Spa Cermet di nichel e procedimento per la sua preparazione
JP3160147B2 (ja) * 1994-03-28 2001-04-23 財団法人ファインセラミックスセンター 微細複合セラミックス粉末の製造方法、製造装置、該セラミックス粉末及び該セラミックス粉末を電極材料とする固体電解質型燃料電池
JP3193294B2 (ja) * 1996-05-24 2001-07-30 財団法人ファインセラミックスセンター 複合セラミックス粉末とその製造方法、固体電解質型燃料電池用の電極及びその製造方法
DE19637261C2 (de) * 1996-09-13 1998-08-27 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung einer Anode für Hochtemperatur-Brennstoffzellen mittels Sol-Gel-Methode
JPH11329464A (ja) * 1998-05-18 1999-11-30 Taiheiyo Cement Corp 固体酸化物型燃料電池に用いる多孔質サーメットの製 造方法
US6248468B1 (en) * 1998-12-31 2001-06-19 Siemens Westinghouse Power Corporation Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell
US6589680B1 (en) 1999-03-03 2003-07-08 The Trustees Of The University Of Pennsylvania Method for solid oxide fuel cell anode preparation
EP1527486A4 (en) * 2001-06-29 2008-04-30 Nextech Materials Ltd NANO-COMPOSITE ELECTRODES AND METHOD FOR THE PRODUCTION THEREOF
US6936367B2 (en) * 2002-01-16 2005-08-30 Alberta Research Council Inc. Solid oxide fuel cell system
US7445814B2 (en) * 2003-10-22 2008-11-04 Hewlett-Packard Development Company, L.P. Methods of making porous cermet and ceramic films
JP2005327511A (ja) * 2004-05-12 2005-11-24 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用アノード支持基板およびその製法
US7833469B2 (en) * 2004-12-15 2010-11-16 Coorstek, Inc. Preparation of yttria-stabilized zirconia reaction sintered products

Also Published As

Publication number Publication date
US20140120247A1 (en) 2014-05-01
WO2010076274A1 (fr) 2010-07-08
FR2940856B1 (fr) 2012-05-18
JP5615843B2 (ja) 2014-10-29
EP2374177B1 (fr) 2013-05-29
EP2374177A1 (fr) 2011-10-12
ES2415766T3 (es) 2013-07-26
JP2012514827A (ja) 2012-06-28
US20110262629A1 (en) 2011-10-27
FR2940856A1 (fr) 2010-07-09

Similar Documents

Publication Publication Date Title
Liu et al. Improving the performance of the Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for proton-conducting SOFCs by microwave sintering
JP5689107B2 (ja) NiO−セラミック複合粉体及びNiO−セラミック複合燃料極の製造方法
Narendar et al. The importance of phase purity in Ni–BaZr 0.85 Y 0.15 O 3− δ cermet anodes–novel nitrate-free combustion route and electrochemical study
CA2717285A1 (en) Solid oxide fuel cell reactor
KR101892909B1 (ko) 프로톤 전도성 산화물 연료전지의 제조방법
JP2018098169A (ja) 反応防止膜を含む高温固体酸化物セル、及びその製造方法
Liu et al. Fabrication and characterization of a co-fired La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ cathode-supported Ce0. 9Gd0. 1O1. 95 thin-film for IT-SOFCs
EP2538474A2 (en) Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the material
JP2014159642A (ja) ニッケルサーメット電極の製造方法
KR20100093957A (ko) 연료극 물질, 그의 제조방법 및 이를 포함하는 고체 산화물연료전지
Durango-Petro et al. Ascendable method for the fabrication of micro-tubular solid oxide fuel cells by ram-extrusion technique
KR20200015060A (ko) 고체산화물 연료전지 및 이를 제조하는 방법
US9799908B2 (en) Method of preparing an electrochemical half-cell
Abdul et al. A Review on the Process-Structure-Performance of Lanthanum Strontium Cobalt Ferrite Oxide for Solid Oxide Fuel Cells Cathodes
Lim et al. Ceramic nanocomposites for solid oxide fuel cells
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
Yamamoto et al. Anomalous low-temperature sintering of a solid electrolyte thin film of tailor-made nanocrystals on a porous cathode support for low-temperature solid oxide fuel cells
KR101521508B1 (ko) 고체 산화물형 연료 전지의 지지체를 겸하는 연료극 및 연료극 지지형 고체 산화물형 연료 전지
JP2010118155A (ja) 固体酸化物形燃料電池セル及びその製造方法
JP2010108697A (ja) 固体酸化物形燃料電池セル及びその製造方法
Li et al. High thermal stability of three-dimensionally ordered nano-composite cathodes for solid oxide fuel cells
KR100898219B1 (ko) 다공성 나노 복합분말, 이의 제조방법, 및 이를 이용한고체산화물 연료극 및 연료전지
KR20140032597A (ko) 원통형 고체산화물 연료전지용 유닛 셀, 그의 제조방법 및 그를 포함하는 원통형 고체산화물 연료전지
CN111819720B (zh) 燃料电池用电解质层-阳极复合部件、电池结构体、燃料电池以及复合部件的制造方法
KR101257431B1 (ko) 막-전극 어셈블리, 이의 제조 방법 및 상기 막-전극 어셈블리를 포함하는 스택 및 고체 산화물 연료전지

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140916