JP2014156789A - 水中ポンプ - Google Patents

水中ポンプ Download PDF

Info

Publication number
JP2014156789A
JP2014156789A JP2013026558A JP2013026558A JP2014156789A JP 2014156789 A JP2014156789 A JP 2014156789A JP 2013026558 A JP2013026558 A JP 2013026558A JP 2013026558 A JP2013026558 A JP 2013026558A JP 2014156789 A JP2014156789 A JP 2014156789A
Authority
JP
Japan
Prior art keywords
pressure
submersible pump
cavity
air
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013026558A
Other languages
English (en)
Inventor
Tetsunori Sakatani
哲則 坂谷
Shuhei Yamazaki
修平 山崎
Taishi Shima
泰資 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamoto Pump Mfg Co Ltd
Original Assignee
Kawamoto Pump Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamoto Pump Mfg Co Ltd filed Critical Kawamoto Pump Mfg Co Ltd
Priority to JP2013026558A priority Critical patent/JP2014156789A/ja
Publication of JP2014156789A publication Critical patent/JP2014156789A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】高い軸封性能を維持することができる水中ポンプを提供する。
【解決手段】本発明の一形態にかかる水中ポンプは、電動機と、前記電動機の回転軸に接続されたインペラを有するとともに、前記インペラの背面側の空間から外部に連通する排気部を有するポンプ部と、前記電動機と前記ポンプ部の間に設けられるとともに内部に前記回転軸が貫通する空洞部を形成する軸封ケーシングを有する軸封部と、前記空洞部の圧力調整により前記軸封部の流体の流れを規制して軸封する圧力調整部と、を備えたことを特徴とする。
【選択図】図1

Description

本発明は、汚水等の送水に用いる水中ポンプに関する。
例えば住宅、学校、病院、工場などでは、汚物槽を設置して汚物や汚水を溜めておき、汚物槽内に配置された水中ポンプにより、溜まった汚物・汚水を他の設備へ中継させることが行われている。汚水等の送水に用いる水中ポンプは、例えばインペラを収容するインペラケーシングと乾式水中電動機の間に一定量の潤滑油を封入した軸封室が配置されている。電動機の回転軸が軸封室を貫通している。軸封室には電動機側とポンプ側の相互をシールするための軸封装置が備えられている。軸封装置としては例えばメカニカルシールが用いられ、潤滑油により、上下のメカニカルシールのメインテンリング(固定側)とシールリング(回転側)の摺動面の潤滑及び冷却を行っている。
特開2005―240764号公報
上記の水中ポンプではメカニカルシールの摩耗や劣化によって軸封性能が低下することがある。
実施形態では、高い軸封性能を維持することができる水中ポンプを提供する。
本発明の一形態にかかる水中ポンプは、電動機と、前記電動機の回転軸に接続されたインペラを有するとともに、前記インペラの背面側の空間から外部に連通する排気部を有するポンプ部と、前記電動機と前記ポンプ部の間に設けられるとともに内部に前記回転軸が貫通する空洞部を形成する軸封ケーシングを有する軸封部と、前記空洞部の圧力調整により前記軸封部の流体の流れを規制して軸封する圧力調整部と、を備えたことを特徴とする。
実施形態によれば高い軸封性能を維持することができる。
本発明の一実施形態に係る水中ポンプの設置状態を示す説明図。 同水中ポンプの構成を示す断面図。 同水中ポンプの動作を説明するフローチャート。 同水中ポンプにおける運転条件例を示す表。 同水中ポンプにおける電動機内及び軸封部内の空気圧縮比率を示す表。 同水中ポンプにおける排水槽水位の変化に伴う電動機内及び軸封部内の空気圧縮比率を示す表。 他の実施形態に係る水中ポンプの構成を示す断面図。 他の実施形態に係る水中ポンプの構成を示す断面図。
以下、本発明の一実施の形態に係る水中ポンプ10を、図1及び図2を用いて説明する。図1は本発明の一実施の形態に係る水中ポンプ10の設置状態を示す説明図である。図2は水中ポンプ10の構成を断面で示す説明図である。なお、説明のため、各図において適宜構成を省略して示している。また、図中矢印X,Y,Zは互いに直交する3方向を示している。図1中、Bはボルトを、Fは水の流れを、Kは電源ケーブル、Lはライナリングをそれぞれ示す。
水中ポンプ10は、汚水槽及び下水道等に設置され、異物(汚物等)を含む汚水を移送する所謂水中汚水ポンプと呼ばれるものである。例えばここでは図1に示すように、地下の排水槽100内に複数の水中ポンプ10が設置されている。排水槽100の側部には流入管101及び吐出管102が設けられている。排水槽100の上部にはマンホール103が設置されている。排水槽100内には水面の高さ(水位)を検出する水位検出手段としての複数のフロートスイッチ104,105が設けられている。
図2に示すように、水中ポンプ10は、電動機11と、電動機11の回転軸24に接続されたインペラを有するポンプ部12と、電動機11とポンプ部12の間に設けられるとともに回転軸24が貫通する空洞部30aを内部に有する軸封部13と、空洞部30aの圧力を調整する圧力調整部14と、これら各部の動作を制御する制御部15と、を備える。
電動機11は、全閉式の乾式水中電動機であり、電動機ケーシング21と、固定子22と、回転子23と、回転軸24と、を備えている。電動機11は、外部電源等に接続される電源ケーブルKを有している。
電動機ケーシング21は、上部材25、中部材26、下部材27を組み立てて構成され、上下両端が閉塞する円筒形状に形成されている。
上部材25は中部材26の上側開口を塞いでいる。上部材25には第1の空気孔25aが形成されている。この第1の空気孔25aによって、電動機ケーシング21の内部と圧縮空気供給部61とがホース62を介して連通している。
中部材26は、上下に開口する円筒状に構成され、固定子22の側周部を覆っている。
下部材27は中部材26の下側開口を塞ぐとともに下方に延びる円筒形状を構成し、軸封部13の軸封ケーシング30の一部を構成している。下部材27の中央部に開口部27aが設けられている。この開口部27aにベアリング等の軸受35が設けられ、この軸受35を介して回転軸24が下部材27に回転可能に軸支されている。
固定子22は、電動機ケーシング21の内面に固定されている。また固定子22は、電源ケーブルKを介して供給された電力により、回転子23を回転可能にとしている。回転子23は、回転軸24と固定されている。回転子23の回転に追従して回転軸24が回転させられる。
回転軸24の上部はベアリング等の軸受28を介して電動機11に回転可能に軸支されている。また、回転軸24は電動機ケーシング21の下端から突出し、重力方向に延設され、図中Z方向に沿う軸心Cを中心として回転する。
軸封部13は、内部に空洞部30aを有する軸封ケーシング30を備え、電動機11、ポンプ部12及び回転軸24間を液密に仕切る。軸封ケーシング30は、電動機ケーシング21の下部材27の一部と、ポンプケーシング40の上部ケーシング41の一部で形成され、両端が閉塞する円筒状に形成されている。軸封ケーシング30の両端を形成する下部材27、上部ケーシング41にそれぞれ形成された開口部27a、41aを通って回転軸24が貫通し、回転可能に支持されている。
軸封ケーシング30内には所定の空間を有する空洞部30aが形成されている。この軸封ケーシング30内にはオイルは封入されておらず空気の層のみが形成されている。水の浸入は圧力調整部14による空洞部30a内圧調整によって防止されている。
空洞部30aには水きりまたはオイルシール34が設けられ、軸封ケーシング30と回転軸24との間を密閉している。このオイルシール34により回転軸24の回転に伴う水面からの飛沫が電動機11下面に付着するのを防止している。
軸封部13は圧力調整部14によって空洞部30aの圧力が調整可能に構成され、この圧力調整によってポンプ部12からの汚水の浸入及び電動機11への異物混入を防止している。なお、軸封部13において回転軸24にはメカニカルシールは装着されていない。
ポンプ部12は、渦巻型のポンプケーシング40を備えている。ポンプケーシング40は、上部ケーシング41,および下部ケーシング42、を組み立てて構成され、その内側にインペラ50を収容する円筒状のポンプ室43を形成している。
上部ケーシング41は円形状に構成され、中心部に開口41aを有している。この上部の開口41aの上部にはブッシュ46が設けられ、開口41aの下部にはインペラ50と摺動可能なライナリングLが設けられている。ここでは開口41a下部においてインペラ50との間に僅かなギャップを形成するライナリングLを装着することでスラスト荷重の低減を図るとともに、開口41aの上部において回転軸24との間にブッシュ46を介在させて回転軸24及びインペラ50を回動可能に支持している。ブッシュ46によってインペラ50の背面部48から圧力水が電導機11側に流入しにくい構成としている。
なお、上部ケーシング41の軸封ケーシング30の底面を中央に向かって下降傾斜する円錐状とし、軸封ケーシング30の中央の異物進入防止用のブッシュ46を最下部に位置させている。このため圧縮空気を補充した際に空洞部30aに侵入した汚水が空洞部内30aに残留することがない。
下部ケーシング42は、円形状の底部42aと円筒状の側部42bを有して構成され、ボルトBによって上部ケーシング41に取り付けられている。底部42aには吸込開口44が設けられ、側部42bの一部には吐出開口45が形成されている。吐出開口45には、外部へと連通する吐出配管47が接続される。吸込開口44にはインペラ50と摺動可能なライナリングLが設けられている。吸込開口44においてインペラ50の下部を回転可能に支持している。
回転軸24は軸封部を通ってその先端がポンプケーシング40内に至っている。ポンプケーシング40内において回転軸24の先端はインペラ50の上側のシュラウド51の貫通孔51aに貫通し、インペラナット57によって固定されている。そして、回転軸24の先端とインペラナット57との間に形成される空間に、シールパッキン58が設けられている。シールパッキン58は回転軸24に挿入されており、圧縮空気が回転軸24とインペラ50の貫通孔51aとの間のギャップを通過してインペラ50の吸込側に流出することを防止する。
インペラ50は、例えばノンクロッグのクローズドインペラであって、所定の粒径の異物を通過可能の形成されている。このようなインペラ50は、例えば、上下一対のシュラウド51、52と、これらシュラウド51,52間に一体に設けられた羽根53と、を備えている。インペラ50は、流体を吸込む吸込口54と、吸込んだ流体を吐出する吐出口55をそれぞれ有している。
図1に示す上側のシュラウド51は、円板状に形成されている。下側のシュラウド52は、円環状に形成されている。シュラウド52は、その中央側に、吸込口54が形成されている。羽根53は、シュラウド51,52間に例えば1枚設けられている。羽根53は、その一方の端部が、シュラウド51,52の中心側に、その他方の端部がシュラウド51,52の外周縁に配置され、回転中心からの径が各位置で異なる形状、例えば渦巻形状やインボリュート形状に形成されている。なお、その詳細な形状は、インペラ50が、汚水を所定のポンプ効率で圧送(移送)可能な形状であれば、適宜設定可能である。
羽根53は、シュラウド51,52間であって、そのシュラウド51,52の外周側に位置する端部と中途部との間に、シュラウド52の吸込口54から吸い込まれた汚水をポンプ室へ移動させる開口を形成する。この羽根53によって吸込口54から吸込んだ汚水を吐出口55へ吐出する。吐出口55は、所定の粒径、即ち、インペラ50内を通過可能な異物の最大粒径の異物が吐出可能に形成されている。
ポンプ部12にはインペラ50の背面側と外部とを連通する排気部56が設けられている。排気部56は、シュラウド51の貫通孔51aと上部ケーシング41の開口部41aとの間に形成された排気隙間56aと、この排気隙間56aと水中ポンプ10の外部の排水槽100とを連通する排気路56bと、を備えて構成される。この排気部56を通って、インペラ50の背面部48の空気が排気され、内圧の上昇を抑えている。
圧力調整部14は、空洞部30aに圧縮空気を供給する圧縮空気供給部としてのコンプレッサ(空圧源)61と、ホース62とを備えて構成されている。ホース62の途中には、コンプレッサ61側から順番に、逆止弁63、圧力センサ(圧力検出部)64、エアフィルタ65、オートドレン66が設けられている。
コンプレッサ61は例えば地上に設置されておりその空気供給出口にホース62の一端が接続されている。
逆止弁63は、ホース62の中途部に設けられ、内部の流体の流れる方向を規制し、逆流を防止する。
圧力センサ64は、コンプレッサ61の二次側においてホース62内部の空圧を測定する。コンプレッサ61の二次側においてホース62は空洞部30aに連通しているため、圧力センサ64で空圧を検知することにより、空洞部30a内の圧力状態を検出することが可能になっている。
エアフィルタ65はホース62の中途部に設けられ、ホース62内部を通る空気中の塵埃を除去することにより塵埃が電動機内部に侵入するのを防止する。
オートドレン66はホース62の中途部に設けられ、空気中の水分を分離して排水することにより水分が電動機に浸入するのを防止する。
制御部15は、フロートスイッチ104,105や圧力センサ64に接続され、これら検出手段の検出結果に基づいて水中ポンプ10や圧力調整部14の動作を制御する。この制御部15には無停電電源装置15aが設けられている。
以下、本実施形態にかかる水中ポンプ10の動作について、図3のフローチャートを参照して、説明する。例えば水中ポンプ10が停止し、圧縮空気供給部61が作動していない状態を初期状態とする。この水中ポンプ1ではフロートスイッチ104,105により排水槽100内の水位を検出するとともに、圧力センサ64によりホース62内の圧力を検出することにより、軸封部13の空洞部30aの圧力を検出している。
フロートスイッチ105によって排水槽100内の水位が一定の高水位に達したことが検出されると(ST1のY)、制御部15は、圧力調整部14を作動させて圧縮空気供給処理を行う(ST2)。圧縮空気供給処理としては、例えば圧縮空気供給部61を作動させることにより、圧縮空気が、ホース62、第1の空気孔25a、電動機ケーシング内を27bから軸封部13内に供給される。これにより、軸封部13内の圧力が上昇する。これに伴いインペラ背面部に設けられた排気部56から排気が行われる。このとき、ホース62に設けられたエアフィルタ65及びオートドレン66により、空気中の塵埃や水分等の異物が除去される。
この圧縮空気供給処理では電動機上部より圧縮空気を供給し、排気部56から加熱された空気を排気させることにより、電動機を直接強制空冷することができる。
そして、予め設定された一定時間t1が経過したら(ST3のY)、水中ポンプ10を起動する(ST4)。一定時間t1はコンプレッサの時間当たりの圧縮空気供給量と空洞部30aの容積との比率によって決定されるが例えば10秒とする。
ST4では、電源ケーブルKを介して電力を供給することで、電導機11を駆動する。電導機11は、固定子22により、回転子23に固定された回転軸24を回転させる。回転子23の回転により、ポンプ部12のインペラ50が回転し、吸込口58から吸い込まれた汚水がインペラ50の吐出口55から吐出され、ケーシング41及びインペラ50により圧送される。この圧送によりポンプ部12は、この圧送された水を、水中ポンプ10の二次側へ移送することが可能となる。
ポンプの起動後は、圧力センサにて空気吐出圧力を検知する(ST5)。そして吐出圧力が予め設定された一定値(例えば1.5m)未満の状態が一定時間(例えば10秒)続く場合には(ST5のY)、何らかの異常があると判定し、故障通知を行い(ST6)、ポンプを停止させる(ST7)。一方、空気吐出圧力が一定値以上の通常範囲内である場合には(ST5のN)、ST8に進み、処理を続行する。
ついで、ST8として圧縮空気供給時間を検出し、一定時間t2経過したら(ST8のY)、供給停止する(ST9)。例えば圧縮空気供給部61を停止することにより圧縮空気供給を停止する。
さらに本実施形態では水中ポンプ運転中に、圧力センサにて空洞部の内圧を検出し(ST10)、検出圧力がある一定値(例えば0.5m毎)上昇するごとに(ST10のY)、コンプレッサを運転して圧縮空気を供給する(ST11)。これにより空洞部内の水位上昇を防止する。
そして、フロートスイッチ104によって排水槽100内の水位が一定の低水位を下回ることが検出されると(ST12のY)、制御部15は、ポンプを停止する(ST13)。
なお、排水槽100の水位が低下して水中ポンプが停止すれば加圧された空洞部の空気は排気部56より排水槽100へ排気されて空洞部内の水位は排水槽100と同レベルまで低下する。よって、電動機11内部への汚水侵入は防止される。
ポンプ停止から一定時間t3経過したら(ST14のY)、圧縮空気の供給を停止する(ST15)。一定時間t3は空洞部30a内の圧力低下速度によって決定されるが例えば10秒とする。
さらに、本実施形態において、制御部15は、ポンプ停止状態が一定時間t4連続する場合には、圧縮空気供給を行うことにより、空洞部内圧と静水圧との釣り合いをとる(ST18)一定時間t4は汚水の流入量と排水槽100の容積との割合によって決定されるが例えば10分とする。
また、制御部15は、ポンプ停止中において、静水圧上昇を検知し、静水圧が一定値以上(例えば0.5m毎)上昇する場合に(ST17のY)、圧縮空気供給を行うことにより、空洞部内圧と静水圧の釣り合いを取る(ST18)。
ポンプ停止状態においては、以上ST16〜ST18の動作を、再び排水槽100が高水位になるまで繰り返し行い(ST19のN)、再び排水槽100の水位が高水位になると、ST2に戻る。
次に、本実施形態にかかる水中ポンプの設定について図4乃至6を参照して説明する。図4は本実施形態にかかるポンプ装置の運転例と各部圧の実測値を示す。
実験により、空洞部30a内にはポンプ吐出圧力の約7.5%が作用することがわかっている。このため、コンプレッサ61による圧縮空気の圧力は水中ポンプの運転圧力の約10%に、想定される排水槽100の最大水深を加算した数値に設定する。ここでは、どの運転でも空洞部圧力は吐出圧力×7.6%〜8.1%〜9.7%であることから、標準値を10%とし、圧縮空気圧力=締切圧力×標準値10%+最大水深2mに設定した運転例を示す。この設定により、水中ポンプの運転流量が変動して吐出圧力ひいてはインペラ背面圧力が上昇しても空洞部内の水位が上昇して電動機内部に侵入することが防止できる。なお、ポンプの運転圧力としては締切圧力もしくは高揚程側の仕様点を選択すればよい。
図4に示されるように、インペラ背面の圧力は通常の運転点ではポンプ運転圧力の77%程度になることが判明し、空洞部圧力は排気部の作用により8.1%と判明した。よって、空気圧力を10%以上とすれば、空洞部に水が浸入しない。また空気圧力を70%以下とすればケーシング側に空気が浸水しない。また、排気部が異物などにより閉塞すると空洞部の圧力はインペラ背面圧力と同じ77%程度となるため、空気圧力を70%以下とすれば、正常時はケーシング側に空気が排気されず、排水槽100などの外部と連通する排気部が異物などにより閉塞した場合でも確実に空洞部内の水位上昇を防止することができる。このような設定により、圧縮空気が軸封ケーシングに装着されたライナリングとインペラのギャップを通過してインペラ背面よりケーシング内に侵入し、配水管内に気泡が流出することが防止できる。
図5は水中ポンプのライナリング摩耗による空洞部圧力が変化した場合の電動機と空洞部の空気圧縮比率を示す。
比率はポンプ吐出圧力との比率を表す。図中左側のグラフは水中ポンプで発生する空洞部圧力を示しており正常な空洞部圧力は図7より0.035MPaとしている。初期設定より圧力が上昇した場合は0.049MPaとなり、比率は15%となっている。
図中右側のグラフは供給する空気圧力を示している。供給する空気圧力は最初に設定される。例えばユーザは水中ポンプの運転点より求めた空洞部圧力=吐出圧力×10%(標準値)=0.04MPa より、供給する空気圧を設定する。
図5に示されるように、空気圧0.04MPaにすれば空気は常に排気部から外側へ向かうようになる。空洞部圧力が同圧の0.04MPaになると、空洞部への水の浸入が始まる。空洞部圧力が0.049MPaになると、空洞部内の空気は19.8%圧縮され水位が上がる。したがって、空洞部容積が20%以上あればライナリングが摩耗しても水位がモータ下面まで来ることはない。正常時には−13.5%となっており、空洞部には水がなく、排気部より放出されることとなる。
図5に示すように、軸封ケーシング内部の空洞部の容積を、電動機の内容積の20%以上とすることにより、異物進入防止用のブッシュやライナリングが摩耗して空洞部へのポンプ圧力比率が上昇しても、確実に空洞部内の水面が電動機内部へ侵入することを防止できる。
すなわち図4,5に示されるように、空気圧力を「ポンプ締め切り圧力の10%+最大水深2m」に設定し、軸封ケーシング30の内容積を電動機内容積の20%以上にすれば、圧力比率が15%まで上昇しても、軸封ケーシング30の空洞部内の水面は、電動機フレームの下面まで上昇することは無く、電動機内部へ侵入することを防止できる。
図6は低水位で停電した場合の排水槽100の水位の変化に伴う電動機と空洞部の空気圧縮比率を示す計算表である。低水位(0.1m)で空洞部内圧がバランスしているところで停電した場合は排水槽の水位上昇により空洞部の内圧が上がり、水位も上昇する。図6の計算表より電動機容積比が20%なら2mの排水槽まで対応でき、水位がモータまで来ないことが分かる。同様に電導機容積比が29%あれば3mの排水槽まで対応でき、50%なら5mの排水槽まで対応できることが分かる。
図6のように、空洞部の容積を、電動機の内部容積の30〜50%とすることで、満水水位が最大3〜5mの排水水槽に対応可能となる。すなわち、水中ポンプの連続運転可能最低水位(例:水深1m=絶対圧0.0098MPa)において、長時間停電した場合に排水槽の最高水位となり、最大の静水圧が作用しても、電動機内部への汚水の侵入を防止することができる。なお、空圧系に無停電電源を取り付けることとした場合にはこの停電状態については考慮する必要はない。
本実施形態にかかる水中ポンプによれば、軸封装置内の圧力調整によって高い軸封性能を維持することが可能となる。すなわち、汚水水中ポンプでは固形物や高粘性物などを含む汚水を処理することがあり、また長期間の使用によりインペラ背部の圧力水の浸入によりオイルの白濁化や液質劣化が生じるため、メカニカルシールの劣化や破損によって軸封性能が損なわれるが、本実施形態では内圧を上昇させて軸封部の流体の流れを規制して軸封することによりメカニカルシールなどの軸封装置を装着しなくても電動機内部へ汚水浸入を確実に防止できる。このため、軸封性能を長期間維持することが容易となる。
また、圧縮空気を送り込む構成としたことにより常に地上側の乾燥空気が供給されるため、汚水から発生する腐食性ガスや湿気、結露から電動機内部を保護することも可能であり、水中に溶解する空気分も常に補給される。このため、装置寿命を長期化できる。
また、電動機ケーシングと軸封ケーシング30に第1及び第2の空気孔を設けて連通路を構成したため、軸受の内部を流通させる場合に比べて空気量の制約が少なく軸受内部のグリースの飛散も回避できる。
コンプレッサ61や逆止弁63、圧力センサ64、エアフィルタ65、オートドレン66を地上へ設置したことによりメンテナンスや部品交換が容易であり長寿命化が図れる。
上部ケーシング41の軸封ケーシング30の底面を中央に向かって下降傾斜する円錐状として、軸封ケーシング30中央の異物進入防止用のブッシュを最下部に配置したため、圧縮空気を補充した際に空洞部30aに侵入した汚水が空洞部内に残留することを防止できる。
水中ポンプの停止中は空洞部内の圧力は排水槽100の水位とバランスして低下しているため、高水位になってからコンプレッサを起動する方式では水中ポンプの起動によるインペラ廃背部の急激な圧力上昇にコンプレッサの吐出能力が追従する必要があるが、本実施形態では水中ポンプの起動に先行してコンプレッサを一定時間運転することにより空洞部内部の圧力を高圧にすることができ、コンプレッサの容量をいたずらに大きくする必要がなくなる。
ポンプを停止して一定時間経過した後にコンプレッサを停止することとし、水中ポンプ運転中の圧縮空気供給を継続させることとしたので、軸封ケーシング30のライナリングに付着した汚物などを高圧の圧縮空気で洗浄することができる。例えば汚水水中ポンプの場合には吐出側への気泡の流出が問題となることはない。
また、逆止弁63を接続し、ポンプ起動一定時間経過した後にコンプレッサを停止することとしたが、空洞部内には圧縮空気が充填されているため水位の上昇はなく、コンプレッサによる消費電力を低減することができ、コンプレッサの寿命も延伸することができる。
ポンプ運転中の空洞部内の空気圧力を検出し、一定値上昇するごとに圧縮空気を供給することとしたため、汚水管内に汚物が詰まってポンプ圧力が上昇するような場合も、空洞部内の水位上昇を防止することが可能となる。
さらに、ポンプ停止中の静水圧を検出して検出圧力がある一定値上昇するごとにコンプレッサを一定時間運転して、空洞部内の圧力を排水送の静水圧と釣り合わせることとしたため、空洞部内の水位上昇を防止できる。
さらに、コンプレッサ運転時に、一定時間、吐出圧力が一定圧力未満であった場合にコンプレッサ故障と判断して故障表示及び警報送出してポンプの運転を停止することにより、コンプレッサの故障を早期発見して電動機への汚水の浸入を未然に防止できる。
また、圧縮空気供給を制御する制御部15に無停電電源装置15aを備えることにより、長時間停電した場合であっても圧力検出部64やコンプレッサ61や制御基板の電源を確保して静水圧検出による圧縮空気供給制御を継続することも可能である。
なお、一般的に排水槽の静水圧に対応した外圧式の乾式水中電動機を利用して、信頼性向上のために内部のOリングを変更するかOリング溝寸法を変更して、コンプレッサの空圧に対応した内圧型の圧力容器構造とすることにより、既存の外圧式の乾式水中電動機を利用することもできる。
インペラの吸込部は運転中に負圧になるため、圧縮空気が回転軸とインペラとのギャップを通過して吸い込み部に流出し、インペラを通過して配水管に気泡が流出することが考えられるが、本実施形態ではインペラとケーシングとの間にシールパッキンを設けたため、圧縮空気の吸い込み部への流出を防止することができる。
本実施形態によれば、圧縮空気供給によって水位を調整することとしたため、例えばマグネットカップリングによる電磁結合方式やキャンドモーターを使用してメカニカルシールを省略する構造と比べてケーシングの構造が単純であり、マグネットなどの特別な部品も不要である。マグネットカップリングマグネットやキャンドモーター方式に用いられるキャンなどの部品間の小さなギャップでの汚物付着や汚物蓄積による不都合も生じにくいため、汚水水中ポンプにも適用可能である。
なお、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能である。
上記実施形態では電動機11を通して空洞部30aに圧縮空気を供給したがこれに限られるものではない。例えば他の実施形態として、図7に示すように軸封ケーシング30の側部に第3の空気孔27cを形成し、この第3の空気孔27cに直接ホース62を接続することとしてもよい。この場合にもコンプレッサ61からホース62、第3の空気孔27cを通じて空洞部30aに圧縮空気を供給して空洞部30aの内圧を上昇させて軸封することによりメカニカルシールなどの軸封装置を装着しなくても電動機内部へ汚水浸入を確実に防止できる。このため、軸封性能を長期間維持することが容易となる。
また、他の実施形態として図8に示すように、第1〜第3の空気孔25a,27b,27cを設け、コンプレッサ61からホース62、第3の空気孔27cを通じて空洞部30aに連通させて空洞部30a内に圧縮空気を供給するとともに、空洞部30aからの空気を第2の空気孔27b、第1の空気孔25a、第1の空気孔25aに連結したチューブ68を通じて外部へ排気させることとしてもよい。この場合には電動機下部から冷気を送り込み電動機上部より排熱を取り出すことが可能となる。
上記実施形態ではコンプレッサの動作制御により圧力調整を行ったが、例えば既設の空圧配管に電磁弁を接続して開閉制御することで圧力調整を行うこととしてもよい。これにより、空洞部内の空気が圧縮されて水位が上昇することなく、常に排気部より余剰の気泡が排気され空洞部内の水位を適切な位置で静止させることが可能となる。
例えば、他の実施形態として、複数台の水中ポンプに一括して圧縮空気を供給するシステムも可能であり、あるいは水中ポンプ個別に電磁弁を設けて圧縮空気の供給を個別に制御してもよい。
さらに、上記実施形態の構成要件のうち一部を省略しても本発明を実現可能である。
10…水中ポンプ、11…電動機(モータ)、12…ポンプ部、13…軸封部、14…圧力調整部、15…制御部、21…電動機ケーシング、22…固定子、23…回転子、24…回転軸、25…上部材、25a…第1の空気孔、26…中部材、27…下部材(軸封ケーシング30)、27a…開口部、27a.41a…開口部、27b…第2の空気孔、27c…第3の空気孔、30a…空洞部、30…軸封ケーシング、34…オイルシール、40…ポンプケーシング、41…上部ケーシング(軸封ケーシング)、41a…開口、42…下部ケーシング、42a…底部、42b…側部、43…ポンプ室、44…吸込開口、45…吐出開口、46…ブッシュ、47…吐出配管、48…背面部、50…インペラ、51…シュラウド、51a…貫通孔、52…シュラウド、53…羽根、54…吸込口、55…吐出口、56…排気部、56a…排気隙間、56b…排気路、57…インペラナット、58…シールパッキン、61…コンプレッサ(圧縮空気供給部)、62…ホース、63…逆止弁、64…圧力センサ(圧力検出部)、65…エアフィルタ、66…オートドレン、100…排水槽、101…流入管、102…吐出管、103…マンホール、104.105…フロートスイッチ。

Claims (12)

  1. 電動機と、
    前記電動機の回転軸に接続されたインペラを有するとともに、前記インペラの背面側の空間から外部に連通する排気部を有するポンプ部と、
    前記電動機と前記ポンプ部の間に設けられるとともに内部に前記回転軸が貫通する空洞部を形成する軸封ケーシングを有する軸封部と、
    前記空洞部の圧力調整により前記軸封部の流体の流れを規制して軸封する圧力調整部と、を備えたことを特徴とする水中ポンプ。
  2. 前記水中ポンプの動作及び前記圧力調整部の動作を制御する制御部を備え、
    前記圧力調整部は、前記空洞部に圧縮空気を供給する圧縮空気供給部と、前記空洞部と前記圧縮空気供給部とを連通する連通路と、を備え、
    前記制御部は前記圧力調整部に前記圧縮空気を供給して前記空洞部内の圧力を上昇させることにより前記ポンプ部側から前記軸封部への流体の進入を防止することを特徴とする請求項1記載の水中ポンプ。
  3. 前記空洞部内の圧力は、前記水中ポンプの運転圧力の10〜70%に前記水中ポンプが設置される水槽の最大水深を加算した空気圧力に設定されることを特徴とする請求項1記載の水中ポンプ。
  4. 前記空洞部内の容積は前記電動機の内部容積の20〜50%に設定されることを特徴とすることを特徴とする請求項1記載の水中ポンプ。
  5. 前記電動機は、電動機ケーシングと、固定子と、前記回転軸に連結される回転子とを備える全閉式の乾式水中電動機であり、
    前記電動機ケーシングには前記連通路に連通する第1の空気孔が形成され、
    前記電動機と前記空洞部とを仕切る前記軸封ケーシングには前記空洞部側と前記電導機側とを連通する第2の空気孔が形成され、
    前記連通路は、前記圧縮空気供給部から前記第1の空気孔に至る連通管、前記第1の空気孔、前記電動機部内、及び前記第2の空気孔を通って前記空洞部に至る流路で構成されることを特徴とする請求項1記載の水中ポンプ。
  6. 前記軸封ケーシングの側部に第3の空気孔が形成され、
    前記連通路は前記圧縮空気供給部から前記第3の空気孔に至る連通管及び前記第3の空気孔を通って前記空洞部に至る流路で構成されることを特徴とする請求項1記載の水中ポンプ。
  7. 前記電動機の前記回転軸先端と前記インペラとを固定するインペラナットを備え、
    前記インペラナットと前記回転軸との間に形成される空間にシールパッキンが設けられたことを特徴とする請求項1記載の水中ポンプ。
  8. 前記水中ポンプ及び前記圧力調整部の動作を制御する制御部と、前記水中ポンプが設置される水槽の水位を検出する水位検出手段と、を備え、
    前記制御部は、前記水槽の水位が所定値まで上昇したら、前記空洞部内に前記圧縮空気を供給し、供給開始から一定時間経過後に前記水中ポンプを駆動するとともに、
    前記水槽の水位が所定値まで低下したら、前記水中ポンプを停止し、ポンプ停止から一定時間経過後に、前記圧縮空気の供給を停止することを特徴とする請求項1記載の水中ポンプ。
  9. 前記水中ポンプ及び前記圧力調整部の動作を制御する制御部を備え、
    前記制御部は、前記水中ポンプが一定時間運転されない場合には圧縮空気を供給して前記空洞部内の空気圧力を静水圧と釣り合わせることを特徴とする請求項1記載の水中ポンプ。
  10. 前記水中ポンプ及び前記圧力調整部の動作を制御する制御部と、前記連通路に設けられた空気逆流防止用の逆止弁と、前記逆止弁の二次側に設けられ前記通路内の圧力を検出する圧力検出部と、を備え、
    前記制御部は、水中ポンプの起動後一定時間経過した後に圧縮空気の供給を停止するとともに、前記空洞部内の圧力が一定値上昇すると、空気を供給して空洞部内の水位を調整することを特徴とする請求項1記載の水中ポンプ。
  11. 前記水中ポンプ及び前記圧力調整部の動作を制御する制御部と、水中ポンプ停止中の静水圧を検出する検出手段と、を備え、
    前記静水圧が一定値上昇すると、前記圧縮空気を供給して前記空洞部内の空気圧と前記静水圧とを釣り合わせることを特徴とする請求項1記載の水中ポンプ。
  12. 前記水中ポンプ及び前記圧力調整部の動作を制御する制御部と、
    前記圧縮空気供給時の空気吐出圧力を検出する検出手段と、を備え、
    前記制御部は、前記圧縮空気の供給時に一定時間の間空気吐出圧力が一定圧力未満である場合に、報知を行うとともに水中ポンプを停止させることを特徴とする請求項1記載の水中ポンプ。
JP2013026558A 2013-02-14 2013-02-14 水中ポンプ Pending JP2014156789A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026558A JP2014156789A (ja) 2013-02-14 2013-02-14 水中ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026558A JP2014156789A (ja) 2013-02-14 2013-02-14 水中ポンプ

Publications (1)

Publication Number Publication Date
JP2014156789A true JP2014156789A (ja) 2014-08-28

Family

ID=51577813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026558A Pending JP2014156789A (ja) 2013-02-14 2013-02-14 水中ポンプ

Country Status (1)

Country Link
JP (1) JP2014156789A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044114A (ja) * 2015-08-25 2017-03-02 株式会社鶴見製作所 水中電動ポンプ
CN114562465A (zh) * 2022-03-14 2022-05-31 李长赫 一种防泥沙翻涌的深井泵
WO2022196412A1 (ja) * 2021-03-15 2022-09-22 イーグル工業株式会社 軸封装置
WO2023056595A1 (zh) * 2021-10-08 2023-04-13 绿美泵业有限公司 一种潜水泵的密封组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54206A (en) * 1977-06-02 1979-01-05 Kubota Ltd Shaft sealing device for underwater power unit
JPS54183701U (ja) * 1978-06-19 1979-12-26
JPH05231377A (ja) * 1992-02-24 1993-09-07 Shin Meiwa Ind Co Ltd 水中ポンプ
JPH09324787A (ja) * 1996-06-04 1997-12-16 Tsurumi Mfg Co Ltd 水中電動ポンプ
JP2003529702A (ja) * 1999-10-04 2003-10-07 ローレンス ポンプ インコーポレイテッド 軸封部を備えた水中用モータ
JP2008280853A (ja) * 2007-05-08 2008-11-20 Hitachi Koki Co Ltd 空気圧縮機
JP2012211535A (ja) * 2011-03-31 2012-11-01 Chugoku Electric Power Co Inc:The 水中機器の運転システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54206A (en) * 1977-06-02 1979-01-05 Kubota Ltd Shaft sealing device for underwater power unit
JPS54183701U (ja) * 1978-06-19 1979-12-26
JPH05231377A (ja) * 1992-02-24 1993-09-07 Shin Meiwa Ind Co Ltd 水中ポンプ
JPH09324787A (ja) * 1996-06-04 1997-12-16 Tsurumi Mfg Co Ltd 水中電動ポンプ
JP2003529702A (ja) * 1999-10-04 2003-10-07 ローレンス ポンプ インコーポレイテッド 軸封部を備えた水中用モータ
JP2008280853A (ja) * 2007-05-08 2008-11-20 Hitachi Koki Co Ltd 空気圧縮機
JP2012211535A (ja) * 2011-03-31 2012-11-01 Chugoku Electric Power Co Inc:The 水中機器の運転システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044114A (ja) * 2015-08-25 2017-03-02 株式会社鶴見製作所 水中電動ポンプ
WO2022196412A1 (ja) * 2021-03-15 2022-09-22 イーグル工業株式会社 軸封装置
WO2023056595A1 (zh) * 2021-10-08 2023-04-13 绿美泵业有限公司 一种潜水泵的密封组件
CN114562465A (zh) * 2022-03-14 2022-05-31 李长赫 一种防泥沙翻涌的深井泵

Similar Documents

Publication Publication Date Title
USRE39813E1 (en) Vacuum-assisted pump
US8998586B2 (en) Self priming pump assembly with a direct drive vacuum pump
JP2014156789A (ja) 水中ポンプ
JP4644406B2 (ja) 軸封部を備えた水中用モータ
MXPA06004143A (es) Bomba trituradora de aguas residuales de dos etapas.
CA2845547C (en) Bearing assembly for a vertical turbine pump
US3395644A (en) Motor pump unit
KR101234992B1 (ko) 설치 및 유지보수가 용이한 양수기
KR100973833B1 (ko) 양흡입 펌프
CN109372758B (zh) 一种立式液下长轴泵
JP6216814B2 (ja) 補助加圧ポンプユニット
JP6966388B2 (ja) ポンプ
US4913629A (en) Wellpoint pumping system
KR100950847B1 (ko) 마그네트 펌프의 리어 컨테인먼트 쉘 구조체
JP2007231874A (ja) ガスシール型キャンドモータポンプ
JP2007138716A (ja) ポンプおよびその軸封装置
JP4709878B2 (ja) 立軸ポンプ
JP7383557B2 (ja) ポンプ
KR20110107574A (ko) 가압용 수중펌프 유닛
JP2010138876A (ja) ポンプ設備とその運転方法
KR20200001362U (ko) 원심펌프용 누설 테스트 지그
JP2012219718A (ja) ブラケット及び水中ポンプ
JP4704066B2 (ja) 立軸ポンプ
RU48376U1 (ru) Центробежный вертикальный насос
KR100885549B1 (ko) 물을 작동매체로 사용하는 가변속 구동장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328