JP2014150681A - 電力変換装置及び系統連系システム - Google Patents

電力変換装置及び系統連系システム Download PDF

Info

Publication number
JP2014150681A
JP2014150681A JP2013018689A JP2013018689A JP2014150681A JP 2014150681 A JP2014150681 A JP 2014150681A JP 2013018689 A JP2013018689 A JP 2013018689A JP 2013018689 A JP2013018689 A JP 2013018689A JP 2014150681 A JP2014150681 A JP 2014150681A
Authority
JP
Japan
Prior art keywords
voltage
control
waveform
control gain
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013018689A
Other languages
English (en)
Other versions
JP5924281B2 (ja
Inventor
Takeshi Amimoto
健志 網本
Tatsuya Okuda
達也 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013018689A priority Critical patent/JP5924281B2/ja
Publication of JP2014150681A publication Critical patent/JP2014150681A/ja
Application granted granted Critical
Publication of JP5924281B2 publication Critical patent/JP5924281B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】直流電源から出力される直流電圧が変動した場合にも昇圧回路のよる交流波形の一部波形の成形において高調波と追従性の低下を抑制することができる電力変換装置を提供する。
【解決手段】直流電源である太陽電池1に並列に接続され太陽電池1から出力される直流電圧Viを昇圧して交流波形の一部波形を成形する昇圧回路と、昇圧回路に並列に接続され昇圧回路から出力される電圧を降圧して交流波形の一部波形以外の残部波形を成形するインバータ回路と、直流電圧Viに基づいて制御ゲインKを生成する制御ゲイン生成部206と昇圧回路が一部波形を成形する際の操作量を算出する操作量算出部220とを有し制御ゲインKから操作量を算出し算出された操作量を用いて昇圧回路を制御する制御回路8aとを備えた電力変換装置を提供する。
【選択図】 図3

Description

本発明は、太陽電池や燃料電池等の直流電源から出力される直流電力を交流電力に変換する電力変換装置であって、電力系統に連系する電力変換装置及びこれを備えた系統連系システムに関するものである。
一般的な電力変換装置においては、直流電源から出力される直流電力を交流電力に変換することで電力系統に直流電源が出力する電力を供給する、いわゆるパワーコンディショナと呼ばれるものが広く知られている。この種の電力変換装置は、IGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子を備える昇圧回路とインバータ回路とから構成される。そして、スイッチング素子の高周波スイッチングによって、昇圧回路が直流電源からの直流電圧を交流電力が出力可能な電圧まで昇圧し、インバータ回路が昇圧された直流電圧に基づいて所定の交流波形を成形することで交流電力の供給を可能とし、直流電源と電力系統との系統連系を行っている。
一方、電力変換装置の中には、昇圧回路が直流電圧を昇圧することによって交流波形の一部の波形(以下、「一部波形」と呼ぶ。)を成形し、インバータ回路が直流電圧を降圧することによって交流波形の一部波形以外の残りの波形(以下、「残部波形」と呼ぶ。)を成形し、電力変換装置全体として交流波形を出力し電力系統に連系するものが存在する(例えば、特許文献1参照)。
一般的な電力変換装置では昇圧回路によって交流波形を成形していないところ、上述のように昇圧回路においても交流波形の一部波形を成形する場合には、昇圧回路で交流波形を成形する技術の確立が問題となる。例えば、インバータ回路が交流波形の一部を成形している期間から昇圧回路が交流波形の一部を成形する期間へと切り替わる際に、この切り替えに合わせて高調波の歪みが発生することがある。このような課題に対して、昇圧回路が交流波形の一部を成形する従来の電力変換装置においては、昇圧回路を比例積分制御によって制御し、昇圧回路が交流波形の成形を開始するタイミングから所定の周期の間、比例積分制御の制御ゲインを変更することで、インバータ回路が交流波形の残部波形を成形する期間から昇圧回路が交流波形の一部波形を成形する期間への切り替え時に発生する高調波を抑制する電力変換装置が知られている(例えば、特許文献2参照)。
特開2000−153651号公報 特開2012−165499号公報
ところで、比例積分制御によって出力波形を制御する場合、制御ゲインの値が大きいとオーバーシュートが増加し出力波形の高調波が増加してしまうが、制御ゲインの値が小さいと指令値に対する出力波形の追従性が低下してしまうことから、適切な制御ゲインを設定することが重要となる。しかしながら、太陽電池の場合には日射量等の影響から、燃料電池の場合には充電量等の影響から、直流電源から出力される直流電圧は時々刻々と変化することになり、昇圧回路で交流波形の一部波形を成形する際には、この変化する直流電圧を昇圧することで交流波形を成形する必要がある。
そのため、従来の電力変換装置のように、予め定めたタイミングから一定の期間のみ制御ゲインを最適となるように変更したとしても、太陽電池からの直流電圧の変化によって最適な制御ゲインが変化してしまう。その結果、太陽電池の直流電圧が変動すると昇圧回路が交流波形の一部波形を成形する際の出力波形における高調波の増加や追従性の低下といった問題が発生していた。
本発明は、上述のような問題を解決するためになされたもので、直流電源から出力される直流電圧が変動した場合にも昇圧回路のよる交流波形の一部波形の成形において高調波と追従性の低下を抑制することができる電力変換装置を提供することを目的とする。
本発明にかかる電力変換装置は、直流電源に並列に接続され直流電源から出力される直流電圧を昇圧して交流波形の一部波形を成形する昇圧回路と、昇圧回路に並列に接続され昇圧回路から出力される電圧を降圧して交流波形の一部波形以外の残部波形を成形するインバータ回路と、直流電圧に基づいて制御ゲインを生成する制御ゲイン生成部と昇圧回路が一部波形を成形する際の操作量を算出する操作量算出部とを有し制御ゲインから操作量を算出し算出した操作量を用いて昇圧回路を制御する制御回路とを備えたものである。
本発明にかかる電力変換装置によれば、制御ゲイン生成部が直流電源の直流電圧に基づいて制御ゲインを生成し、その制御ゲインから算出した操作量を用いて昇圧回路の制御を行うため、直流電源から出力される直流電圧が変動した場合でも適切な制御ゲインで昇圧回路を制御することができる。よって、直流電圧が変動した場合にも昇圧回路による交流波形の成形において、出力波形の高調波と追従性の低下を抑制することができる。
本発明の実施の形態1にかかる電力変換装置を備えた系統連系システムと電力系統とを示す回路図である。 本発明の実施の形態1にかかる電力変換装置の動作を示すタイミングチャートである。 本発明の実施の形態1にかかる電力変換装置の制御回路の構成を示すブロック図である。 本発明の実施の形態1にかかる電力変換装置の制御回路が用いるデータテーブルを示す図である。 本発明の実施の形態1にかかる電力変換装置を備えた系統連系システムの変形例と電力系統とを示す回路図である。 本発明の実施の形態2にかかる電力変換装置の制御回路の構成を示すブロック図である。 本発明の実施の形態2にかかる電力変換装置の制御回路が用いるデータテーブルを示す図である。 本発明の実施の形態2にかかる電力変換装置の制御回路の変形例の構成を示すブロック図である。 本発明の実施の形態3にかかる電力変換装置の制御回路の構成を示すブロック図である。
実施の形態1.
まず、本発明の実施の形態1にかかる電力変換装置60及びこれを備えた系統連系システム70の構成を説明する。図1は、本発明の実施の形態1における電力変換装置60を備えた系統連系システム70と電力系統6を示す回路図である。なお、以下においては、直流電源である太陽電池1に実施の形態1にかかる電力変換装置60を用いる場合について説明するが、これに限定されるものではなく、燃料電池等の他の分散型直流電源に用いることとしてもよい。
図1において、系統連系システム70は、直流電力を発電する太陽電池1、及び直流電力を交流電力に変換する電力変換装置60から構成され、電力系統6と接続することで、太陽電池1が発電する電力を電力系統6に供給する。電力変換装置60は、昇圧回路20、平滑コンデンサ3、インバータ回路40、フィルタ回路50、系統連系用スイッチ7、制御回路8、及び各電圧センサ9、11、14、16並びに各電流センサ10、13、15から構成され、太陽電池1が発電する直流電力を交流電力に変換することで、電力系統6に交流電力を出力する。
昇圧回路20は、昇圧用リアクトル2a、及び昇圧用スイッチング素子2b並びに昇圧用スイッチング素子2cから構成される。そして、昇圧回路20は、太陽電池1と並列に接続されており、昇圧用スイッチング素子2b及び2cが対となるように高周波スイッチングを行うことで太陽電池1が出力する直流電圧を昇圧することができる。そして、昇圧回路20は、太陽電池1から出力された直流電圧を昇圧することで交流波形の一部波形を成形する。なお、図1において、昇圧用スイッチング素子2b及び2cにはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いているが、IGBT等の他のスイッチング素子を用いることとしてもよく、昇圧用スイッチング素子2bの代わりに単なるダイオードを用いることとしてもよい。
平滑コンデンサ3は、昇圧回路20に並列に接続されている。そして、平滑コンデンサ3は、昇圧回路20の出力電圧から昇圧用スイッチング素子2b及び2cの高周波スイッチングによって発生する高周波成分を低減し、平滑する。ここで、電力変換装置60は、昇圧回路20によって交流波形の一部波形を成形するため、平滑コンデンサ3の容量が必要以上に大きいと、昇圧回路20の出力から交流波形の周波数成分(50Hz又は60Hz)も低減されてしまい、昇圧回路20によって交流波形の一部波形を成形することが困難となってしまう。そこで、平滑コンデンサ3の容量は、交流波形の周波数成分は低減せずに昇圧用スイッチング素子2b及び2cの高周波スイッチングによって発生する高周波成分のみを低減するように設定する。
インバータ回路40は、インバータ用スイッチング素子4a〜4dで構成される、いわゆる単相のフルブリッジ型インバータである。そして、インバータ回路40は、平滑コンデンサ3に並列に接続され、インバータ用スイッチング素子4a〜4dが高周波のスイッチングを行うことで、平滑コンデンサ3に印加された平滑コンデンサ電圧を降圧して出力することができる。そして、インバータ回路40は、平滑コンデンサ3に印加された平滑コンデンサ電圧を降圧することで、交流波形の残部波形を成形する。なお、図1においては、インバータ用スイッチング素子4a〜4dにはMOSFETを用いているが、IGBT等の他のスイッチング素子を用いることしてもよい。なお、交流波形の残部波形とは、昇圧回路20が成形する交流波形の一部波形以外の残りの波形をいうこととする。
フィルタ回路50は、フィルタリアクトル5aとフィルタコンデンサ5bから構成される、いわゆるLCフィルタである。フィルタ回路50は、インバータ回路40に並列に接続され、インバータ回路40の出力からインバータ用スイッチング素子4a〜4dのスイッチングによって発生する高周波成分を低減する。また、平滑コンデンサ3と同様に、フィルタリアクトル5aのインダクタンス値とフィルタコンデンサ5bの容量は、交流波形の周波数成分が低減されないように設定すればよい。
系統連系用スイッチ7は、フィルタ回路50と電力系統6との間に接続され、太陽電池1と電力系統6との系統連系の入り切りを行う。系統連系は、太陽電池1の発電量等に応じて行う。例えば、太陽電池1が発電することができない夜間などの間では系統連系用スイッチ7をオフにすることで系統連系を行わず、昼間に太陽電池1が十分に発電している時には系統連系用スイッチ7をオンにすることで系統連系を行う。
制御回路8aは、各電圧センサ及び各電流センサからの電圧及び電流情報に基づいて、各スイッチング素子2b及び2cを有する昇圧回路20並びに各スイッチング素子4a、4b、4c、4dを有するインバータ回路40にそれぞれ制御信号S2、S3を出力し、昇圧回路20及びインバータ回路40を制御する。また、系統連系用スイッチ7に制御信号S4を出力することで、系統連系用スイッチ7を制御する。これにより、電力変換装置60による系統連系が可能となる。なお、制御回路8aの具体的な構成や制御方法の詳細については後述して説明する。
電圧センサとしては、太陽電池1の直流電圧を計測する直流電源電圧センサ9、平滑コンデンサ3に印加される電圧を計測する平滑コンデンサ用電圧センサ11、電力変換装置60の出力電圧Voとしてフィルタコンデンサ5bに印加される電圧を計測するフィルタコンデンサ用電圧センサ14及び電力系統6の系統電圧を計測する系統電圧用電圧センサ16が備えられている。ここで、それぞれの電圧は瞬時値を意味している。各電圧センサ11、14、及び16は、特に断りがない限り、それぞれの電圧の瞬時値を計測するものである。
電流センサとしては、昇圧用リアクトル2aに通流する電流を計測する昇圧リアクトル電流センサ10、フィルタリアクトル5aに通流する電流Ifを計測するフィルタリアクトル電流センサ13、及び電力系統6に出力される出力電流Ioを計測する出力電流センサ15が備えられている。なお、各電流センサ10、13、及び15についても、特に断りがない限り、それぞれの電流の瞬時値を計測するものである。
次に、本発明の実施の形態1にかかる電力変換装置の動作について説明する。図2は本発明の実施の形態1にかかる電力変換装置60の動作を示すタイミングチャートである。図2において、時刻t1は昇圧回路20が交流波形の一部の成形を開始する時刻を示しており、時刻t2はインバータ回路40が交流波形の一部の成形を開始する時刻を示している。また、図2は太陽電池1から入力される電圧である太陽電池電圧100、系統電圧101、平滑コンデンサ3に印加される平滑コンデンサ電圧102、電力系統6に出力される出力電圧103についての波形を示している。なお、図2における一点鎖線は太陽電池電圧100を示している。
図2において、時刻t1までの間は、太陽電池1から入力される太陽電池電圧100が十分に高いため、昇圧回路20は動作せず、インバータ回路40によって交流波形の一部を成形する。インバータ回路40による交流波形の成形は、いわゆるPWM(Pulse Width Modulation)制御によって各スイッチング素子のON時間を変化させ、平滑コンデンサ電圧102を降圧することで行う。PWM制御は、フィルタリアクトル用電流センサ13によってフィルタリアクトル電流Ifを計測し、フィルタリアクトル電流Ifが交流波形となるように行う。一方、時刻t1までの間、昇圧回路20は昇圧動作を行わず、すなわち昇圧用スイッチング素子2cはスイッチングを行わずにいる。そして、インバータ回路40によって交流波形を成形可能な間は、上述の動作を継続する。これにより、インバータ回路40によって成形された交流波形の出力電流103が電力系統6に出力されることなり、太陽電池1が発電した電力が電力系統6に供給される。
次に、時刻t1から時刻t2までの間は、インバータ回路40はスイッチング動作を行わず、昇圧回路20によって交流波形の一部を成形する。昇圧回路20による交流波形の成形は、インバータ回路40の場合と同様にPWM制御によって行う。例えば、昇圧リアクトル用電流センサ10によって昇圧リアクトル電流Iiを計測し、昇圧リアクトル電流Iiが二乗の正弦波波形となるようにPWM制御を行う。一方、インバータ回路40は、スイッチング動作を行わずにいる。ただし、系統電圧101の極性に基づいて極性変換を行う。すなわち、系統電圧101が正の時は、インバータ用スイッチング素子4a及び4dをオンとし、インバータ用スイッチング素子4b及び4cをオフとする。また、系統電圧101が負の時は、インバータ用スイッチング素子4a及び4dをオフとし、インバータ用スイッチング素子4b及び4cをオンとする。そして、昇圧回路20が交流波形を成形可能なまでの間は、上述の動作を継続する。これにより、昇圧回路20によって成形された交流波形の出力電流103が電力系統6に出力されることなり、太陽電池1が発電した電力が電力系統6に供給される。
時刻t2以降においては、太陽電池電圧100と系統電圧101との関係から、インバータ回路40による交流波形の一部の成形と昇圧回路20による交流波形の一部の成形を、随時切り替えて繰り返し行えばよい。これにより、昇圧回路20は交流波形の一部波形を成形し、インバータ回路40は残部波形を成形することが可能となり、電力変換装置60は交流波形の電流を電力系統6に出力することができる。
なお、インバータ回路40による交流波形の成形と昇圧回路20による交流波形の成形との切り替えは、太陽電池電圧100と系統電圧101とに基づいて行うことができる。理論的には、太陽電池電圧100と系統電圧101の絶対値とが等しくなるタイミングで切り替えを行えばよいが、現実的には、太陽電池1から電力系統6までの間の素子の電圧降下やインバータ回路40のアーム短絡防止のためのデッドタイムによる電圧降下を考慮する必要がある。
そのため、例えば系統電圧101の絶対値にデッドタイム等の電圧降下に相当する電圧を加算した電圧指令値と太陽電池電圧100とを比較し、電圧指令値が太陽電池電圧100よりも低い間はインバータ回路40が交流波形の一部を成形し、電圧指令値が太陽電池電圧100よりも高い間は昇圧回路20が交流波形の一部を成形する。ただし、デッドタイム等の電圧降下が無視できる程小さい場合には、単に太陽電池電圧100と系統電圧101とを比較し、系統電圧101が太陽電池電圧100よりも低い間はインバータ回路40が交流波形の一部を成形し、系統電圧101が太陽電池電圧100よりも高い間は昇圧回路20が交流波形の一部を成形することとしてもよい。
次に、本発明の実施の形態1にかかる電力変換装置60の制御方法について説明する。図3は本発明の実施の形態1にかかる電力変換装置60における制御回路8aの構成を示すブロック図である。なお、以下においては、昇圧回路20による交流波形の一部波形の成形に関する制御についてのみ説明する。
また、本実施の形態では、比例積分制御により昇圧回路20による交流波形の一部波形の成形を制御することする。ただし、本発明はこれに限定されるものではなく、比例制御又は積分制御のいずれか一方のみにより制御することとしてもよいし、微分制御を加えることとしても構わない。すなわち、比例制御、積分制御、又は微分制御を適宜選択し組み合わせて制御すればよい。また、本稿でいう制御ゲインKとは、比例ゲイン、積分ゲイン、及び微分ゲインを含めたものとする。以下においては、比例ゲインをKp、積分ゲインをKiとし、比例ゲインKpと積分ゲインKiを含めた制御ゲインをKとして説明する。
図3において、制御回路8aは、指令値演算部201、制御量算出部202、操作量算出部220、制御ゲイン生成部206、直流電圧算出部207、及び制御信号生成部221から構成されている。
指令値演算部201は、昇圧回路20が出力すべき出力指令値を演算する。ここで、電力変換装置60が電力系統6と連系している場合には電流制御を行うこととなるため、出力電流の指令値を演算する。一方、電力変換装置60が電力系統6と連系しておらず自律運転する場合には電圧制御を行うため、出力電圧を演算する。ここでは、電流制御を行う場合について説明する。電力変換装置において電流制御を行う場合には、一般的にリアクトルに流れる電流が所定の電流指令値となるように制御する。そのため、昇圧回路20を制御する場合には、昇圧リアクトル電流Ii又はフィルタリアクトル電流Ifを制御することとなる。ここでは、昇圧リアクトル電流Iiをフィードバックし比例積分制御することとする。よって、指令値演算部201は、昇圧リアクトル電流Iiの指令値である昇圧リアクトル電流指令値Iiを演算する。
また、昇圧リアクトル電流指令値Iiは、以下のようにして算出することができる。まず、電力変換装置60が出力する出力電流Ioに相当するフィルタリアクトル電流Ifの指令値Ifを電力系統6の系統電圧等から算出する。そして、太陽電池1から入力される電力と電力系統6へと出力される電力との関係から、昇圧リアクトル電流指令値Iiは、太陽電池1からの入力電圧Viと電力系統6への出力電圧Voから、式(1)に示すように算出される。
Figure 2014150681
制御量算出部202は、制御対象である値を算出し出力する。ここでは、昇圧リアクトル電流Iiを制御するため、昇圧リアクトル電流センサ10によって計測された出力電流値Iiを制御量として算出し出力する。
直流電圧算出部207は、直流電源電圧センサ9が計測した信号より、太陽電池1からの入力電圧Viを算出する。ただし、入力電圧Viの算出は、平滑コンデンサ3に印加される電圧から算出することもできる。つまり、平滑コンデンサ用電圧センサ11が計測した平滑コンデンサ電圧において、昇圧回路20が昇圧していない期間での平滑コンデンサ電圧を入力電圧Viとして算出することができる。
制御ゲイン生成部206は直流電圧算出部207が算出した入力電圧Viに基づいて、制御ゲインKを生成する。より具体的には、入力電圧Viが低下するにつれて、制御ゲインKも小さくなるように生成する。例えば、図4に示すようなデータテーブルをあらかじめ作成し、このデータテーブルを参照して生成することができる。図4において、入力電圧Viの値が、所定の電圧V1場合には制御ゲインKはK1となり、所定の電圧V2(>V1)の場合には制御ゲインKはK2(>K1)となり、所定の電圧V3(>V2)の場合には制御ゲインKはK3(>K2)となる。これにより、入力電圧Viが低下するにつれて制御ゲインKの値を小さくすることができる。
データテーブルの作成方法としては、例えば入力電圧Viが200Vであった場合に安定して動作する制御ゲインKを算出する。そして、入力電圧Viが200Vの時の制御ゲインKを1とすれば、入力電圧が180Vの時の制御ゲインKを0.8とし、入力電圧Viが150Vの時の制御ゲインKを0.5とするように作成することができる。なお、比例ゲインKpと積分ゲインKiは必ずしも同一の倍率で変化させる必要もなく、少なくとも比例ゲインKp又は積分ゲインKiのいずれか一方を、上述のように入力電圧Viの変化に応じて変更することとすればよい。
操作量算出部220は、減算器203、比例積分制御器204、及びデューティ算出部205から構成され、昇圧回路20の操作量を算出する。減算器203は、指令値演算部201が算出した昇圧リアクトル電流指令値Iiと制御量算出部202が算出した昇圧リアクトル電流Iiとの差分を計算し出力する。比例積分制御器204は、減算器203が出力する差分と制御ゲイン生成部206が生成する制御ゲインKを用いて、比例積分制御演算を行う。比例制御の項の算出を例にすると、減算器203が出力する差分に比例ゲインKpを乗算すればよい。そして、比例積分制御器204は比例積分制御演算の演算結果PI1を出力する。デューティ算出部205は、演算結果PI1から昇圧用スイッチング素子2b並びに昇圧用スイッチング素子2cのオン時間とオフ時間の比を示すデューティ指令値D1を算出し、昇圧回路20の操作量として出力する。デューティ指令値D1は、例えば、式(2)を用いて算出することができる。なお、式(2)において、D1は式(3)によって入力電圧Viと出力電圧Voから求まるデューティであり、PI1は比例積分制御演算の演算結果である。
Figure 2014150681
Figure 2014150681
制御信号生成部221は、操作量算出部220のデューティ算出部205が出力するデューティ指令値D1から、昇圧用スイッチング素子2b並びに昇圧用スイッチング素子2cへ出力する制御信号S2を生成し出力する。制御信号S2の生成は、昇圧用スイッチング素子2cのディーティがデューティ指令値D1となるようなパルス信号を昇圧用スイッチング素子2cの制御信号として生成し、これを反転させたパルス信号を昇圧用スイッチング素子2bの制御信号として生成すればよい。
以上のような制御によって動作する中で、日射量等の影響から太陽電池1が出力する直流電圧が時々刻々と変化することになり、昇圧回路20はこの変化する直流電圧を昇圧することで交流波形の一部波形を成形する必要がある。ここで、制御ゲインKを一定のまま昇圧回路20を制御すると、以下のような問題が発生する。比例積分制御において、昇圧リアクトル電流指令値Iiと昇圧リアクトル電流Iiとの差分から演算を行うため、比例積分制御の演算結果PI1は昇圧リアクトル電流指令値Iiと昇圧リアクトル電流Iiとの差分に比例する。また、昇圧リアクトル電流指令値Iiは、式(1)に示すように入力電圧Viで除算した値である。一方、昇圧リアクトル電流Iiは、太陽電池1から入力される電力と電力系統6へと出力される電力との関係から、実質的に式(4)に示す値とみなすことができる。すなわち、電力変換装置60のフィルタリアクトル電流Ifに出力電圧Voを乗算した値を、入力電圧Viで除算した値である。
Figure 2014150681
そのため、式(1)及び式(4)から、昇圧リアクトル電流指令値Iiと昇圧リアクトル電流Iiとの差分は、式(5)に示すように、フィルタリアクトル電流Ifとその指令値Ifとの差分に出力電圧Voを乗算した値に入力電圧Viで除算した値となる。よって、式(6)に示すように、比例積分制御の演算結果PI1は出力電圧Voを入力電圧Viで除算した値に比例することとなる。
Figure 2014150681
Figure 2014150681
このように比例積分制御の演算結果PI1に入力電圧Viの除算が含まれることとなると、制御ゲインKを一定とした場合、太陽電池1からの入力電圧Viが変動すると比例積分制御の演算結果PI1の値も変動することとなる。そのため、入力電圧Viの値によっては、比例積分制御の演算結果PI1の値が大きくなりすぎオーバーシュートが増加し出力波形の高調波が増加する場合や、比例積分制御の演算結果PI1の値が小さすぎるため出力波形の追従性が低下する場合があり、昇圧回路20による交流波形の一部波形の成形が困難となることがあった。通常、比例積分制御を行う場合には、演算結果PI1が適切な値となるようにあらかじめ制御ゲインKを調整することとなるが、上述のように入力電圧Viの変動によっても演算結果PI1の値が変動するため、あらかじめ設定された一定の制御ゲインKを用いる場合では入力電圧Viの変動に対応することができない。つまり、入力電圧Viの変動によって適切な制御ゲインKの値が変動していることとなる。
本発明の実施の形態1では、制御ゲイン生成部206が太陽電池1からの入力電圧Viに基づいて制御ゲインKを生成し、その制御ゲインKを用いて昇圧回路20の制御を行うため、入力電圧Viが変動した場合でも適切な制御ゲインKで昇圧回路20を制御することができる。よって、直流電圧が変動した場合にも昇圧回路20による交流波形の成形において、出力波形の高調波と追従性の低下を抑制することができる。
より具体的には、入力電圧Viが低下するにつれて制御ゲインKを小さくするため、入力電圧Viが変動した場合でも比例積分制御の演算結果PI1の変動が小さくなり、昇圧回路20による交流波形の成形が安定する。
なお、本実施の形態では、制御ゲインKをあらかじめ作成したデータテーブルを参照して生成することとしたが、本発明はこれに限定されず、制御ゲインKを演算等から生成することとしてもよい。例えば、入力電圧Viが変動した場合でも制御ゲインKを入力電圧VIで除算した値が所定の値に定まるように、制御ゲインKを入力電圧Viから算出し生成することとしてもよい。さらには、所定の基準電圧に対する入力電圧Viの変化率を算出し、制御ゲインKを入力電圧Viの基準電圧に対応する基準となる制御ゲイン値から入力電圧Viと同一の変化率で変化させて生成することとしもよい。このような場合でも、入力電圧Viの変動に応じて制御ゲインKが生成されるため、比例積分制御の演算結果PI1の変動が小さくなり、昇圧回路20による交流波形の成形が安定する。
また、昇圧回路20の比例積分制御を行う制御構成は上述した構成に限定されるものではなく、適宜変更することができる。本実施の形態では、昇圧リアクトル電流Iiをフィードバックし、昇圧リアクトル電流Iiとその指令値Iiとの差分から比例積分制御の演算を行うこととしたが、昇圧リアクトル電流Iiとその指令値Iiとの差分は式(5)に示すようにフィルタリアクトル電流Ifとその指令値Ifとの差分によって算出することができる。そのため、例えば、フィルタリアクトル電流Ifをフィードバックし、フィルタリアクトル電流Ifとその指令値Ifとの差分から比例積分制御の演算を行うこととしてもよい。かかる場合においても、比例積分制御の演算結果PI1には入力電圧Viの除算が含まれることとなるが、入力電圧Viに基づいて制御ゲインKを生成しているため、入力電圧Viの変動に対しても昇圧回路20による交流波形の一部の成形を適切に制御することができる。
以上のように、比例積分制御の演算において入力電圧Viが含まれる場合において、制御ゲインKを入力電圧Viに基づいて生成することで、昇圧回路20による交流波形の一部波形の成形を安定して制御することができる。
また、本実施の形態では、昇圧回路20の出力について電流制御する場合について説明したが、電圧制御する場合においても入力電圧Viに基づいて制御ゲインKを生成し制御することができる。このような電圧制御を行う場合においては、昇圧回路20の操作量であるデューティD2を算出するに当たり、式(7)に示すように昇圧回路20の入力電圧Viと出力電圧である平滑コンデンサ電圧Vcとの比である昇圧比αを求める必要があり、昇圧比αを算出する際に式(8)に示すように入力電圧Viの除算が含まれる。
Figure 2014150681
Figure 2014150681
そのため、昇圧回路20の出力電圧である平滑コンデンサ電圧Vcをフィードバックし、式(9)に示すように昇圧比αを比例積分制御によって制御すると、比例積分制御の演算結果PI2に入力電圧Viの除算が含まれることになる。
Figure 2014150681
Figure 2014150681
このような場合でも、入力電圧Viに基づいて制御ゲインKを生成するため、入力電圧Viが変動による比例積分制御の演算結果PI2の変動を抑制することができる。これにより、電力変換装置60が電圧制御している場合であっても、昇圧回路20による交流波形の成形において、出力波形の高調波と追従性の低下を抑制することができる。
また、本実施の形態にかかる電力変換装置60は図1に示す回路構成としたが、これに限定されるものでなく、例えば図5に示すような回路構成の電力変換装置61及びこれを備えた系統連系システム71とすることとしても構わない。図5において、電力変換装置61では太陽電池1正極側端子と平滑コンデンサ3の正極側端子との間にバイパス用スイッチング素子17が設けられている点が、電力変換装置60と相違する。これにより、バイパス用スイッチング素子17がオンの場合には昇圧回路20を迂回する経路が生成されることとなる。そこで、制御回路8bは、昇圧回路20が交流波形の一部を成形しない期間ではバイパス用スイッチング素子17をオンとなるように制御信号S1を出力する。その結果、昇圧回路20での損失を低減することができる。
実施の形態2.
実施の形態1では、太陽電池(直流電源)から出力される入力電圧(直流電圧)のみに基づいて制御ゲインKを生成することとしたが、これに限定されるものではなく、系統電圧と直流電圧との関係から制御ゲインKを生成することとしてもよい。以下、実施の形態2として、系統電圧と直流電圧との関係から制御ゲインKを生成する場合について説明する。なお、本発明の実施の形態2では、本発明の実施の形態1と相違する部分について説明し、同一または対応する部分についての説明は省略した。
本発明の実施の形態2にかかる電力変換装置は、実施の形態1にかかる電力変換装置60と制御回路の構成についてのみ相違する。そのため、制御回路以外の構成については、説明を省略する。図6は実施の形態2にかかる電力変換装置の制御回路8cの構成を示すブロック図である。また、図7は実施の形態2にかかる電力変換装置の制御回路8cが用いるデータテーブルを示す図である。
図6において、図2と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、系統電圧算出部208と除算器209とを有する点で構成が相違している。系統電圧算出部208は、電力系統6の電圧である系統電圧の実効値Vacを算出し出力する。具体的には、系統電圧センサ16が計測する系統電圧から実効値を演算することとすればよい。一方、除算器209は、太陽電池1からの入力電圧Viと系統電圧との関係を示す値として、直流電圧算出部207が出力する太陽電池1からの入力電圧Viを系統電圧算出部208が出力する系統電圧の実効値Vacで除算した除算値Ra(=Vi/Vac)を算出する。そして、入力電圧Viと系統電圧との関係を示す値として除算値Raを出力する。なお、系統電圧の実効値Vacの代わりに系統電圧の最大値等を用いることとしても良い。
制御ゲイン生成部206は、除算器209が出力する除算値Raに基づいて制御ゲインKを生成する。具体的には、除算値Raの値が小さくなるにつれて制御ゲインKの値が小さくなるように生成する。また、制御ゲインKの生成は、例えば、図7に示すようなデータテーブルをあらかじめ作成しておき、これを参照することで行うことができる。
ここで、昇圧回路20の比例積分制御の演算結果PI1は、式(6)に示すように出力電圧Voを入力電圧Viで除算した値に比例することとなる。一方、電力変換装置の出力である出力電圧Voは系統電圧Vacの値と等しくなるところ、系統電圧の実効値Vacの値は電力系統6の状態によって数V程度変化することとなるため、出力電圧Voの実効値も変動する。そのため、出力電圧Voが変動すると、比例積分制御の演算結果PI1も変動することとなり、制御ゲインKを一定の値にしていると昇圧回路20による交流波形の一部波形の成形において、高調波の増加や追従性の低下といった問題が発生することがあった。
しかしながら、本実施の形態においては、入力電圧Viと系統電圧の実効値Vacとの関係を示す除算値Raに基づいて制御ゲインKを生成しているため、系統電圧の実効値Vacの変動に応じて制御ゲインKの値も変動するので、比例積分制御の演算結果PI1の変動を抑制することができる。よって、昇圧回路20による交流波形の一部波形の成形をより安定して行うことが可能となる。
また、本実施の形態では、入力電圧Viを系統電圧の実効値Vacで除算した除算値Raに基づいて制御ゲインKを生成しているため、実施の形態1と同様に入力電圧Viが変動した場合にも、昇圧回路20による交流波形の一部波形の成形をより安定して行うことが可能となる。
なお、本実施の形態では、入力電圧Viを系統電圧の実効値Vacで除算した除算値Raに基づいて制御ゲインKを生成することとしたが、これに限定されず、例えば入力電圧Viと系統電圧の実効値Vacとの差分に基づいて制御ゲインKを生成することとしてもよい。かかる場合、入力電圧Viから系統電圧の実効値Vacを引いた差分の値が小さくなるにつれて制御ゲインKを小さくすることとすればよい。
なお、本実施の形態では、入力電圧Viを系統電圧の実効値Vacで除算した除算値Raに基づいて制御ゲインKを生成することとしたが、これに限定されず、昇圧回路20が交流波形の一部を成形している期間の平滑コンデンサ電圧Vcは、出力電圧Voとほぼ等しいため、例えばVacの代わりに平滑コンデンサ電圧Vcの最大値Vcmを用いて制御ゲインKを生成することとしてもよい。
かかる場合、制御回路8cの代わりに、図8に示すような制御回路8dを用いることとする。図8において、制御回路8dは平滑コンデンサ電圧算出部210を備える点で、制御回路8cと相違し、平滑コンデンサ電圧算出部210は平滑コンデンサ電圧Vcの最大値Vcmを算出する。なお、最大値Vcmの算出は、平滑コンデンサ用電圧センサ11が計測した電圧の最大値を算出することで求めることができる。そして、除算器209は、入力電圧Viを最大値Vcmで除算した除算値Rbを算出し、制御ゲイン生成部206は除算値Rbに基づいて制御ゲインKを生成する。このような場合でも、実施の形態2と同様の効果を奏することができる。
実施の形態3.
実施の形態1では、太陽電池(直流電源)から出力される入力電圧(直流電圧)のみに基づいて制御ゲインKを生成することとしたが、これに限定されるものではなく、制御ゲインKに上限値及び下限値を設けることとしてもよい。以下、実施の形態3として、制御ゲインKに上限値及び下限値を設ける場合について説明する。なお、本発明の実施の形態2では、本発明の実施の形態1と相違する部分である制御回路8eについてのみ説明し、同一または対応する部分についての説明は省略する。
図9は、本発明の実施の形態3にかかる電力変換装置の制御回路8eを示すブロック図である。図9において、図1と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、制御ゲインリミッタ211を有する点で相違する。
制御ゲインリミッタ211は予め定められた上限値及び下限値を記憶し、制御ゲイン生成部206から出力される制御ゲインKの値を上限値及び下限値との間の値となるように制限する。具体的には、制御ゲイン生成部206から出力される制御ゲインKの値と上限値及び下限値とを比較し、制御ゲインKが上限値よりも大きい場合には上限値を制御ゲインKとして出力し、制御ゲインKが下限値よりも小さい場合には下限値を制御ゲインKとして出力する。他の場合においては、制御ゲイン生成部206が出力した制御ゲインKをそのまま出力する。
以上のように、制御ゲインKを生成するに当たり制御ゲインリミッタ211により制御ゲインKの値を予め定められた上限値と下限値の間の値に制限することができる。これにより、入力電圧Viに基づいて制御ゲインKを生成しているため、制御ゲインKの値が入力電圧Viの値によって変化することとなるが、その際必要以上に大きな値や小さな値となることがなくなり、制御ゲインKを入力電圧Viに関係なくあらかじめ定められた範囲の値に制限することができる。よって、昇圧回路20による交流波形の一部波形の成形をより安定して行うことができる。
なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。
1 太陽電池、2a 昇圧用リアクトル、2b、2c 昇圧用スイッチング素子、8a、8b、8c、8d、8e 制御回路、20 昇圧回路、40 インバータ回路、50 フィルタ回路、60、61 電力変換装置、70、71 系統連系システム、S1、S2、S3、S4 制御信号、Ii 昇圧リアクトル電流、If フィルタリアクトル電流、Vi 入力電圧、Vo 出力電圧、100 太陽電池電圧、101 系統電圧、102 平滑コンデンサ電圧、103 出力電流、201 指令値演算部、202 制御量算出部、203 減算器、204 比例積分制御器、205 デューティ算出部、206 制御ゲイン生成部、207 直流電圧算出部、208 系統電圧算出部、209 除算器、210 平滑コンデンサ電圧算出部、211 制御ゲインリミッタ、220 操作量算出部、221 制御信号生成部。

Claims (8)

  1. 直流電源に並列に接続され、前記直流電源から出力される直流電圧を昇圧して交流波形の一部波形を成形する昇圧回路と、
    前記昇圧回路に並列に接続され、前記昇圧回路から出力される電圧を降圧して前記交流波形の前記一部波形以外の残部波形を成形するインバータ回路と、
    前記直流電圧に基づいて制御ゲインを生成する制御ゲイン生成部と前記昇圧回路が前記一部波形を成形する際の操作量を算出する操作量算出部とを有し、前記制御ゲインから前記操作量を算出し、算出した前記操作量を用いて前記昇圧回路を制御する制御回路と、
    を備えたことを特徴とする電力変換装置。
  2. 前記制御回路は、
    前記昇圧回路の制御量を算出する制御量算出部と前記昇圧回路の出力指令値を演算する指令値演算部とを有し、
    前記操作量算出部が前記制御量と前記出力指令値との差分及び前記制御ゲインから前記操作量を算出する、
    ことを特徴とする請求項1に記載の電力変換装置。
  3. 前記制御ゲイン生成部は、
    前記直流電圧が低下するにつれて前記制御ゲインが小さくなるように前記制御ゲインを生成する、
    ことを特徴とする請求項1又は2に記載の電力変換装置。
  4. 前記インバータ回路は電力系統に並列接続し、
    前記制御ゲイン生成部は、
    前記直流電圧と前記系統電圧との関係から前記制御ゲインを生成する、
    ことを特徴とする請求項1又は2に記載の電力変換装置。
  5. 前記制御ゲイン生成部は、
    前記直流電圧を前記系統電圧の実効値で除算した値が小さくなるにつれ前記制御ゲインが小さくなるように前記制御ゲインを生成する、
    ことを特徴とする請求項4に記載の電力変換装置。
  6. 前記制御ゲインは比例ゲインと積分ゲインとを含む、
    ことを特徴とする請求項1ないし5のいずれか1項に記載の電力変換装置。
  7. 前記制御回路は、
    前記制御ゲインを、予め定められた上限値以下の値で、かつ、予め定められた下限値以上の値に制限する制御ゲインリミッタを有する、
    ことを特徴とする請求項1ないし6のいずれか1項に記載の電力変換装置。
  8. 直流電力を出力する直流電源である太陽電池と、
    前記太陽電池から出力される直流電力を交流電力に変換し前記電力系統に出力する請求項1ないし7のいずれか1項に記載の電力変換装置と、
    を備えたことを特徴とする系統連系システム。
JP2013018689A 2013-02-01 2013-02-01 電力変換装置及び系統連系システム Expired - Fee Related JP5924281B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013018689A JP5924281B2 (ja) 2013-02-01 2013-02-01 電力変換装置及び系統連系システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013018689A JP5924281B2 (ja) 2013-02-01 2013-02-01 電力変換装置及び系統連系システム

Publications (2)

Publication Number Publication Date
JP2014150681A true JP2014150681A (ja) 2014-08-21
JP5924281B2 JP5924281B2 (ja) 2016-05-25

Family

ID=51573229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013018689A Expired - Fee Related JP5924281B2 (ja) 2013-02-01 2013-02-01 電力変換装置及び系統連系システム

Country Status (1)

Country Link
JP (1) JP5924281B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184998A (ja) * 2015-03-25 2016-10-20 アイシン精機株式会社 系統連系制御装置
JP2018098855A (ja) * 2016-12-09 2018-06-21 住友電気工業株式会社 Dc/dcコンバータ及びその制御方法並びに電力変換装置
CN112803783A (zh) * 2021-03-17 2021-05-14 北京动力源科技股份有限公司 一种基于数字控制的直流变换器增益调制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10301646A (ja) * 1997-04-25 1998-11-13 Omron Corp インバータ
JP2000152651A (ja) * 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
JP2009207307A (ja) * 2008-02-28 2009-09-10 Hitachi Appliances Inc モータ駆動装置
JP2012165499A (ja) * 2011-02-03 2012-08-30 Nippon Soken Inc 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10301646A (ja) * 1997-04-25 1998-11-13 Omron Corp インバータ
JP2000152651A (ja) * 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 系統連系インバータ装置
JP2009207307A (ja) * 2008-02-28 2009-09-10 Hitachi Appliances Inc モータ駆動装置
JP2012165499A (ja) * 2011-02-03 2012-08-30 Nippon Soken Inc 電力変換装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184998A (ja) * 2015-03-25 2016-10-20 アイシン精機株式会社 系統連系制御装置
JP2018098855A (ja) * 2016-12-09 2018-06-21 住友電気工業株式会社 Dc/dcコンバータ及びその制御方法並びに電力変換装置
CN112803783A (zh) * 2021-03-17 2021-05-14 北京动力源科技股份有限公司 一种基于数字控制的直流变换器增益调制系统
CN112803783B (zh) * 2021-03-17 2022-07-26 北京动力源科技股份有限公司 一种基于数字控制的直流变换器增益调制系统

Also Published As

Publication number Publication date
JP5924281B2 (ja) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5325983B2 (ja) Dc/dc電力変換装置
JP6481621B2 (ja) 電力変換装置及び三相交流電源装置
JP5267589B2 (ja) 電力変換装置
JP6153144B1 (ja) Dc/dcコンバータの制御装置および制御方法
KR102441722B1 (ko) 변환 장치
Rosas-Caro et al. Quadratic buck–boost converter with positive output voltage and continuous input current for PEMFC systems
WO2016125292A1 (ja) Dc-dcコンバータ、電力変換装置、発電システムおよびdc-dc変換方法
JP6201613B2 (ja) インバータ装置、パワーコンディショナ、発電システム及び、インバータ装置の制御方法
JP2006238628A (ja) 電力変換装置
Tang et al. Improved one-cycle-control scheme for three-phase active rectifiers with input inductor-capacitor-inductor filters
JP2017060303A (ja) 電源装置
JP5924281B2 (ja) 電力変換装置及び系統連系システム
JP2013236435A (ja) 昇降圧dc/dcコンバータ
KR101870749B1 (ko) 계통연계형 싱글스테이지 플라이백 인버터의 제어 장치
JP4878645B2 (ja) 電力変換装置
JP5323383B2 (ja) 電力変換装置
JP2014096899A (ja) 電力変換装置及び系統連系システム
Rajani et al. DC link voltage stabilization in renewable source connected DC micro grid using adaptive sliding mode controller
JP2014007820A (ja) 電力変換装置
JP2011259621A (ja) 電源回路
JP2011097786A (ja) 系統連系インバータ装置及び系統連系システム
Zhu et al. Neutral-point voltage waveform control method for mitigating the low-frequency ripple current in E-capless full-bridge inverter
JP2016046931A (ja) 電力変換装置
JP2012170176A (ja) 電力変換装置
JP6372642B2 (ja) 無効電力制御装置、無効電力制御方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R151 Written notification of patent or utility model registration

Ref document number: 5924281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees