JP2014145731A - 物標検出装置及び物標検出方法 - Google Patents

物標検出装置及び物標検出方法 Download PDF

Info

Publication number
JP2014145731A
JP2014145731A JP2013015740A JP2013015740A JP2014145731A JP 2014145731 A JP2014145731 A JP 2014145731A JP 2013015740 A JP2013015740 A JP 2013015740A JP 2013015740 A JP2013015740 A JP 2013015740A JP 2014145731 A JP2014145731 A JP 2014145731A
Authority
JP
Japan
Prior art keywords
target
fusion
distance
detection
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013015740A
Other languages
English (en)
Inventor
Koji Suzuki
浩二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013015740A priority Critical patent/JP2014145731A/ja
Publication of JP2014145731A publication Critical patent/JP2014145731A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】2つの検出手段が同じ物体に属する物標を検出している場合に、一方の検出手段の検出結果と他方の検出手段の検出結果とがフュージョンできない状態になった場合であってもその物体に属する物標を正確に検出できる物標検出装置を提供すること。
【解決手段】本発明の実施例に係る物標検出装置1は、レーダ2の検出結果とレーダ3の検出結果とに基づいてフュージョン物標を導出するフュージョン処理部42を備える。フュージョン処理部42は、レーダ2が外挿により検出する遠距離物標とレーダ3が外挿によらずに検出する近距離物標とが所定のフュージョン可能条件を満たす場合に、遠距離物標と近距離物標とに基づいてフュージョン物標を導出し、所定のフュージョン可能条件を満たさなくなった場合に、近距離物標に基づいてフュージョン物標を導出する。
【選択図】図1

Description

本発明は、2つの検出手段で物標を検出する物標検出装置および物標検出方法に関する。
従来、四輪自動車等の車両の制御技術として、2つの検出手段の検出結果をフュージョンすることによって物標を検出する技術が知られている。
特開2007−232410号公報
しかしながら、特許文献1に記載の物標検出装置は、2つの検出手段が同じ物体に属する物標を検出している場合に、一方の検出手段の検出結果と他方の検出手段の検出結果とをフュージョンできない状態になると、同じ物体に属する物標を2つの別々の物体に属する物標として検出してしまう。
上述の点に鑑み、本発明は、2つの検出手段が同じ物体に属する物標を検出している場合に、一方の検出手段の検出結果と他方の検出手段の検出結果とがフュージョンできない状態になった場合であってもその物体に属する物標を正確に検出できる物標検出装置及び物標検出方法を提供することを目的とする。
上述の目的を達成するために、本発明の実施例に係る物標検出装置は、第1物標検出手段と、前記第1物標検出手段に比べ近距離での物標の検出に適した第2物標検出手段と、前記第1物標検出手段の検出結果と前記第2物標検出手段の検出結果とに基づいてフュージョン物標を導出するフュージョン処理手段と、を備える物標検出装置であって、前記フュージョン処理手段は、前記第1物標検出手段が外挿により検出する第1物標と前記第2物標検出手段が外挿によらずに検出する第2物標とが所定のフュージョン可能条件を満たす場合に、前記第1物標と前記第2物標とに基づいてフュージョン物標を導出し、前記所定のフュージョン可能条件を満たさなくなった場合に、前記第2物標に基づいてフュージョン物標を導出する。
また、本発明の実施例に係る物標検出方法は、第1物標検出手段の検出結果と、前記第1物標検出手段に比べ近距離での物標の検出に適した第2物標検出手段の検出結果とに基づいてフュージョン物標を導出する物標検出方法であって、前記第1物標検出手段が外挿により検出する第1物標と前記第2物標検出手段が外挿によらずに検出する第2物標とが所定のフュージョン可能条件を満たす場合に、前記第1物標と前記第2物標とに基づいてフュージョン物標を導出し、前記所定のフュージョン可能条件を満たさなくなった場合に、前記第2物標に基づいてフュージョン物標を導出するステップを有する。
上述の手段により、本発明は、2つの検出手段が同じ物体に属する物標を検出している場合に、一方の検出手段の検出結果と他方の検出手段の検出結果とがフュージョンできない状態になった場合であってもその物体に属する物標を正確に検出できる物標検出装置及び物標検出方法を提供することができる。
本発明の実施の形態1に係る物標検出装置の機能構成を示すブロック図である。 本発明の実施の形態1に係る物標検出装置が備えるレーダ(第1物標検出手段)の構成を示す図である。 FMCWレーダの探知原理の概要を説明するための図(物標の相対速度が0の場合)である。 FMCWレーダの探知原理の概要を説明するための図(物標の相対速度≠0の場合)である。 物標の相対速度が0の場合のビート周波数の時間変化を示す図である。 物標の相対速度が0でない場合のビート周波数の時間変化を示す図である。 デジタルビート信号に信号処理を施すことによって得られた距離パワースペクトルの例を示す図である。 距離パワースペクトルにおいて一方のピークが低周波ノイズ領域に埋もれた状況を示す図である。 本発明の実施の形態1に係る物標検出装置が備えるレーダ(第2物標検出手段)の構成を示す図である。 本発明の実施の形態1に係る物標検出装置が備える2つのレーダの検出領域を模式的に示す図である。 図10に示す状態での2つのレーダの検知結果を模式的に示す図である。 本発明の実施の形態1に係る物標検出方法の概要を示す図である。 ミリ波フュージョン処理を行う領域を示す図である。 図13の領域Dにおけるフージョン処理の規則を示す図である。 図13の領域Dにおけるフージョン処理の規則を示す図である。 図13の領域Dにおけるフージョン処理の規則を示す図である。 図13の領域Dにおけるフージョン処理の規則を示す図である。 フュージョン不可状態が発生する場合の状況を説明する図である。 本発明の実施の形態1における近距離ミリ波更新処理の概要を示す図である。 本発明の実施の形態2に係る物標検出方法の物理量算出処理で算出されたフュージョン物標の例を示す図である。 本発明の実施の形態2に係る物標検出方法の物理量算出処理で用いるウェイトと衝突予測時間との関係を示す図である。 本発明の実施の形態2における近距離ミリ波更新処理の概要を示す図である。 本発明の実施の形態3に係る物標検出方法の物理量算出処理で用いるウェイトと外挿回数との関係を示す図である。
以下、添付図面を参照して本発明を実施するための最良の形態(以下、「実施の形態」と称する)を説明する。
(実施の形態1)
図1は、本発明の実施の形態1に係る物標検出装置の機能構成を示すブロック図である。同図に示す物標検出装置1は、四輪自動車等の車両に搭載され、車両の周囲の所定の範囲に存在する物体を検出する装置である。物標検出装置1は、2つのレーダ2および3と、レーダ2および3による検出結果を受信し、この受信した内容に基づいた出力信号を生成する演算部4と、演算部4における演算結果や各種設定情報を記憶する記憶部5と、を備える。
演算部4は、2つのレーダ2および3で検出した物標情報が所定の条件を満たすか否かを判定する判定部41と、判定部41での判定結果に基づいて2つのレーダ2および3の検出結果のフュージョン処理を行うフュージョン処理部42を有する。かかる演算部4は、CPU(Central Processing Unit)等を用いて実現される。また、記憶部5は、ROM(Read Only Memory)やRAM(Random Access Memory)等を用いて実現される。
物標検出装置1で検出した物標情報は、車両制御装置6に出力される。車両制御装置6では、物標検出装置1からの出力に応じて車間距離制御や自動ブレーキ制御等の制御を行う。このように、物標検出装置1および車両制御装置6は、全体としてACC(自動車間制御装)、PBA(プリクラッシュブレーキアシスト)、PSB(プリクラッシュシートベルト)等のシステムを構成する。この意味で、物標検出装置1は、前述したシステムにおけるセンサとしての機能を果たす。
以下、物標検出装置1が備える2つのレーダ2および3について詳細に説明する。図2は、第1物標検出手段であるレーダ2の構成を示す図である。同図に示すレーダ2は、レーダ2は、連続波に周波数変調を乗じた送信信号を用いるFMCW(Frequency Modulated Continuous Wave)レーダである。また、レーダ2は、物標の方向を検出する際にデジタルビームフォーミング(DBF)技術によるアンテナビームの形成および走査を行うDBFレーダでもある。
レーダ2は、ミリ波帯の高周波送信信号に応じた電磁波(レーダ波)を所定の範囲に放射出力する送信アンテナ11と、n個の受信用アンテナ素子(CH1〜CHn)を有する受信用アレーアンテナ12とを備える。各アンテナ素子CH1〜CHnは、アイソレータ群13を構成する個々のアイソレータを介して、対応するミキサ14−1〜14−nにそれぞれ接続されている。以後、ミキサ14−1〜14−nを総称する場合には、ミキサ群14と呼ぶ。
ミキサ14−1〜14−nは、各アンテナ素子に到達した受信信号に、送信信号の一部をミキシングすることによってビート信号を得る。ミキサ14−1〜14−nには、ローカル信号としての送信信号成分が与えられる。この送信信号成分は、電圧制御型の発振器(VCO)15から、分岐回路16およびアイソレータ群17を介してミキサ14−1〜14−nに与えられる。
発振器15は、中心周波数がf(例えば60GHz)のバラクタ制御型ガン発振器であり、変調用の直流電源(DC)18から出力される制御電圧によって所定の周波数帯域の被変調波を出力する。発振器15に入力される制御電圧が上昇すると、発振器15から出力される電圧の周波数が高くなり、発振器15に入力される制御電圧が低下すると、発振器15から出力される電圧の周波数が低くなる。
直流電源18は、変調用信号源(SG)19の制御のもと周期的に出力電圧値を変化させる。発振器15へ入力される制御電圧は三角波であるとする。発振器15から出力されたFM被変調波は、分岐回路16を介して送信アンテナ11に出力され、電磁波(レーダ波)として所定の範囲に放射出力される。送信アンテナ11から出力される送信信号の周波数の時間波形は、発振器15へ入力される制御電圧に比例するので三角波となる。
一方、発振器15から出力され、分岐回路16によって分岐されてローカル信号となったFM被変調波は、ミキサ群14において各チャネルの受信信号とそれぞれミキシングされてチャネル別のビート信号を生成する。各チャネルのビート信号は、物標までの距離や相対速度に応じて変化する。
ここで、図3〜図6を参照して、FMCWレーダの探知原理の概要を説明する。図3および図4は、送信周波数の変化を実線で示し、距離Rの位置にあって相対速度が零の物標から反射された受信周波数の変化を破線で示した図である。より具体的には、図3は物標の自車両に対する相対速度が0の場合の送信信号と受信信号の時間変化を示した図であり、図4は物標の自車両に対する相対速度が0でない場合の送信信号と受信信号の時間変化を示した図である。なお、両図ともに横軸tは時間、縦軸fは周波数を表している。これらの図に示す場合、連続波に三角波を乗じて周波数変調した変調信号を送信信号として用いている。
かかる送信信号を放射しているときの受信信号は、物標の相対速度の値によらず、送信信号に対して自車両から物標までの距離Rに応じた時間の遅れT(T=2R/c,cは光速)を生じる。以後、送信信号の中心周波数すなわち搬送波周波数をf、周波数偏移幅をΔF、三角波の周波数をfmとする。
また、受信信号は、物標の相対速度に応じてドップラー効果による周波数偏移を生じる(図3の場合、この周波数偏移は生じない)。なお、図4では、受信信号周波数が送信信号周波数よりも大きな周波数を有するように縦軸方向上方に偏移しているが、これは物標が自車両に対して接近する場合を示している。
ここで、相対速度が0のときに送信信号と受信信号をミキシングして得られるビート信号の周波数(ビート周波数)をf、ドップラー効果による周波数偏移を示すドップラー周波数をf、周波数が増加する区間(アップ区間)のビート周波数をfb、周波数が減少する区間(ダウン区間)のビート周波数をfbとそれぞれおくと、
fb=f−f …(1)
fb=f+f …(2)
が成り立つ。式(1)および(2)において、物標の相対速度が0の場合、ドップラー周波数fは0なので、fb=fb=fとなる(図3を参照)。
したがって、変調サイクルのアップ区間とダウン区間のビート周波数fbおよびfbを別々に測定することにより、fおよびfは、
Figure 2014145731
と求められる。図5は、送信信号および受信信号が図3に示す時間変化を行う場合(物標の相対速度=0)のビート周波数fbの時間変化を示す図であり、図3と図5のt、t、t、tはそれぞれ同じ時刻であることを意味する。また、図6は、送信信号および受信信号が図4に示す時間変化を行う場合(物標の相対速度≠0)のビート周波数fbの時間変化を示す図であり、図4と図6のt、t、t、tもそれぞれ同じ時刻であることを意味する。
上述した式(3)および(4)によって求めたfおよびfを用いることにより、物標の距離Rおよび相対速度Vは、
Figure 2014145731
と求めることができる。なお、ここでの相対速度Vは、説明の便宜上、正負によって物標の向きを指定する場合を示しているが、より一般には、ベクトルの演算を行うことによって物標の向きを求めればよい。
再び図2を参照してレーダ2の構成の説明を続ける。レーダ2は、アイソレータ群13および17、ミキサ群14、発振器15、分岐回路16によって構成される高周波回路20の後段に、低雑音増幅器21、高速A/D変換器22、DBF信号処理部23、および複素FFT演算部24が設けられている。
低雑音増幅器21は、ミキサ群14から出力されたチャネル数nのビート信号をパラレルに増幅する。また、低雑音増幅器21は、アンチエリアシングのために所定のカットオフ周波数(例えば77kHz)のローパスフィルタを内蔵している。
高速A/D変換器22は、各ビート信号をパラレルかつ同時にA/D変換する回路である。具体的には、所定のサンプリング周波数(例えば200kHz)で、FM変調における三角波の周波数アップ区間と周波数ダウン区間の所定数のサンプリングを行う。
DBF信号処理部23は、高速A/D変換器22からチャネル別のデジタルビート信号を取得し、DBF処理および距離、速度演算を施すことによって物標の認識処理を行う。
複素FFT演算部24は、DBF信号処理部23における一連の処理の中の高速フーリエ変換(FFT)演算を代行して実行する。すなわち、DBF信号処理部23からチャネル別デジタルビート信号を受け取り、これに対して複素FFT演算を実施してその結果をDBF信号処理部23に戻す。なお、チャネルごとに得られるビート信号を複素FFT演算して得られるパワースペクトルは、周波数が物標までの距離Rに対応するため、以後の説明では「距離パワースペクトル」と呼ぶ。
距離パワースペクトルは、チャネル毎のアップ区間とダウン区間それぞれ別個に求められるが、各々の距離パワースペクトルには、周波数軸上のビート周波数fbおよびfbに対応しているところにピークが現れる。図7は、物標が自車両に対して近づいてくる場合に求めた距離パワースペクトルのピーク周波数成分の概要を模式的に示す図である。具体的には、周波数が小さい方のピークPがアップ成分のビート周波数fbによるピークであり、周波数が大きい方のピークPがダウン成分のビート周波数fbによるピークである。このようにして得られる2つのピーク周波数成分PおよびPを「ピークペア」と称する。
DBF信号処理部23では、フェーズドアレーアンテナレーダの移相器の機能をデジタル信号処理によって実現することで、ビーム走査やサイドローブ特性等の調整をデジタル状態で行う。ここでは、全てのアンテナのチャネルからの受信信号をA/D変換後にいったん取り込んだ後、各チャネルのビート信号に基づいて、物標の方位θにおける距離と相対速度を演算する。なお、ビーム走査の方位は任意に設定することができる。
DBF方式の利点の一つは、全アンテナ素子(全受信チャネル)の信号をいったんデジタル信号として取り込んでしまうと、それをもとに任意の方向にビーム合成ができるため、一回の信号取り込みで複数のビームを形成することができる点にある(DBF方式の詳細については、例えば特開平11−133142号を参照)。
ところで、FMCW方式では、至近距離に位置する物標からの反射や送受信アンテナ間の結合によってビート周波数の低周波数領域にノイズが発生する。図8は、アップ成分の距離パワースペクトルSpを示す図であり、本来出現するはずのビート周波数fbによるピークPが低周波数領域LAにおけるノイズに埋もれてしまい、そのピークを判別することができなくなった状態を模式的に示す図である。このように、低周波数領域LAにビート周波数に対応するピークが発生すると、アップ成分のビート周波数がノイズに紛れてしまいそのピークを抽出することができず、結果的に物標を検出することができない場合がある。
図8に示すような状況は、例えば空間的には離れていても、物標の相対速度が大きい値を有して自車両に接近してくる場合、すなわち自車両に対する物標までの距離をその物標の自車両に対する相対速度で割って得られる衝突予測時間(TTC)が短い場合に起こり得る。換言すれば、物標までの距離が短くても、物標と自車両との相対速度が0であれば、図8に示すような状況は起こらない。
判定部41では、図8に示すような状況、すなわちピークペアのうちのいずれか一方のピークしか抽出できない状況が発生しているか否かを判定し、かかる状況が発生した場合にはPCS外挿フラグを「1」とセットする。その後、演算部4では所定の外挿を行う。この外挿を行う際には、それまでに記憶部5で記憶している物標情報(物理量、フラグ)や、ピークペアの他方のピーク値(図8に示す場合にはダウン区間のピーク値)を参照する。
次に、第2物標検出手段であるレーダ3の構成を説明する。図9は、レーダ3の構成を示す図である。同図に示すレーダ3は、2チャンネルモノパルス方式レーダであり、レーダ2と同じくFMCW方式を採用している。ここでいうモノパルス方式とは、互いの一部が重なり合った2個のアンテナビームを一組として用い、角度誤差を検出する方式のことである。
レーダ3は、ミリ波帯の高周波信号を発生する発振器31、発振器31で発生した送信信号に応じた電磁波(レーダ波)を所定の範囲に放射出力する送信アンテナ32、離隔配置されて物標からの反射波をそれぞれ受信する2つの受信アンテナ33−1および33−2、受信アンテナ33−1および33−2からの信号に発振器31の出力(ローカル信号)をそれぞれミキシングするミキサ34−1および34−2、ならびにミキサ34−1および34−2で各々ミキシングしたビート信号を取得する信号処理部35を備える。
信号処理部35は、ミキサ34−1および34−2から入力される2つの受信信号の位相差Δφを計測し、物標の方向を示す角度θを求める。この際のθは、次のようにして求められる。受信アンテナ33−1と受信アンテナ33−2の間隔をdとし、受信アンテナ33−1の受信信号と受信アンテナ33−2の受信信号との経路差をxとすると、車両の前方方向からの角度、すなわち受信信号の入射角θ(≪1)は、x=dsinθ≒dθで与えられ、経路差xに応じた位相差Δφは、Δφ=2π(x/λ)で与えられる。したがって、θ≒(x/d=)Δφ・λ/(2πd)となる。なお、位相差Δφは、2つの受信信号を方形波に変換し、方形波間の排他的論理和などをとり、その出力の期間をカウンタでカウントすれば求めることができる。
本実施の形態1では、レーダ3もFMCW方式を採用しているため、信号処理部35では、ビート信号を高速フーリエ変換することによって物標までの距離に応じた距離パワースペクトルを得ることができる。この距離パワースペクトルについては、レーダ2の場合と同様に、アップ成分またはダウン成分のいずれか一方のピークが低周波数領域に埋もれてしまい、抽出できないことが起こりうる(図8を参照)。この場合も、判定部41がピークペアの一方のピークが低周波数領域に埋もれているか否かの判定を行い、埋もれていると判定した場合にはPCS外挿フラグを「1」とし、該当する物標の位置や相対速度を所定の外挿によって求める。
以上説明した2つのレーダ2および3を比較した場合、DBF方式を採用するレーダ2の方が距離パワースペクトルを得るのに必要な演算量が多いが、分解能は高い。このため、レーダ2の方がより遠距離に存在する物標の検出を行うことが可能である。
図10は、レーダ2とレーダ3の検出領域を模式的に示す図である。同図においては、物標検出装置1が車両Cに搭載されており、レーダ2の検出領域Rとレーダ3の検出領域Rはそれぞれ扇型をなしている。各検出領域の扇形の中心角は等しく、その径はレーダ2の検出領域Rの方がレーダ3の検出領域Rよりも大きい。すなわち、レーダ2の方がレーダ3よりも遠方まで検出することができる。なお、本実施の形態1においては、レーダ3の検出領域Rが、レーダ2の検出領域Rとレーダ3の検出領域Rとの重複領域R23と一致するようにレーダ2およびレーダ3の指向性がそれぞれ調整されている。図10では、車両Cが道路Rdに沿って速さvで走行し、その重複領域R23が通過する道路Rdを車両Cが道路Rdに沿って速さvで走行している場合を示している。
以後の説明においては、上述した各レーダの検出領域に鑑み、レーダ2によって検出された物標を「遠距離物標」、レーダ3によって検出された物標を「近距離物標」と称する。また、物標検出装置1を搭載している車両Cを「自車C」と称し、物標となる車両Cを「他車C」と称する。
図11は、図10に示す状況でレーダ2および3がそれぞれ検知した結果を模式的に示す図である。図11では、自車Cのレーダ取付位置を原点とし、鉛直方向(図10の道路Rdに平行な方向)をZ軸方向、横方向(図10の道路Rdに垂直な方向)をX軸方向とする座標系を採用している。レーダ2によって検出された遠距離物標の位置座標を(Z,X)とし、自車Cに対する他車Cの相対速度の大きさをVRfとする。また、レーダ3によって検出された近距離物標を(Z,X)とし、自車Cに対する他車Cの相対速度の大きさをVRnとする。なお、説明の便宜上、自車Cおよび他車Cは、Z軸正の方向の成分のみを有しているとするが、各車両の速度がX軸方向の成分を有していてもかまわない。
図12は、本実施の形態1に係る物標検出方法における物標情報更新処理の概要を示す図である。レーダ2および3は、上述したように物標を検出するまでの計算量が違うため、検出結果を出力するまでの時間も異なる。したがって、検出結果の更新周期も異なり、レーダ2の更新周期Tは、レーダ3の更新周期Tよりも長い(T>T)。本実施の形態1では、レーダ2の更新周期Tとレーダ3の更新周期Tの比が2:1であるとする。すなわち、近距離ミリ波の更新カウンタが更新されるタイミング(図12でt=T、T
、・・・、T)のうち、2回に1回は遠距離ミリ波の更新カウンタも更新される(図1
2でt=T、T、T)。なお、より一般には、T:T=m:n(m>n;mおよび
nは正の整数)となるように調整されていればよい。
上述した2種類の更新タイミングのうち、遠距離物標および近距離物標がともに更新されるタイミングでは、フュージョン処理部42が、レーダ2の検出領域Rとレーダ3の検出領域Rとの重複領域R23において、遠距離物標の距離、横位置、相対速度を基準として融合すべき近距離物標を探索する。以後、このミリ波フュージョン処理によって得られる物標を「フュージョン物標」と称する。これに対して、近距離ミリ波のみが更新されるタイミングでは、その直前のフュージョン処理の結果に応じた物標情報の更新処理を行う。以下、この2つの場合に分けて各々の処理を説明する。
まず、ミリ波フュージョン処理について説明する。このミリ波フュージョン処理では、物標が検出される検出領域に応じて処理の内容が異なる。図13は、かかる領域の設定例を示す図である。同図においては、検出領域が4つの領域D〜Dに分けられており、D、D、D、Dの順に自車Cからの距離が遠い領域である。これら4つの領域によって図10に示す重複領域R23がカバーされる。なお、隣接する領域の境界のZ座標Z、Z、Z、Zは任意であり、各種条件に応じて定めればよく、分割する領域の数も4に限定されるわけではない。
図14−1〜14−4は、各領域D〜Dにおけるミリ波フージョン処理の規則を示す図である。これらの図において、「○」は物標が検出された場合を示し、「×」は物標が未検出であった場合を示している。また、「△」は上述したPCS外挿によって物標が検出された場合を示している。なお、PCS外挿以外の外挿によって検出された場合は○に含まれるものとする。
本実施の形態1においては、レーダ2および3はともにFMCW方式を採用しているため、遠距離物標と近距離物標とがともに3通りの検出結果をとり得る。このため、各検出領域における検出結果の組み合わせは9(=3×3)通りとなり、各々の組み合わせに応じたミリ波フュージョン処理が図14−1〜図14−4で規定されている。これらの組み合わせは記憶部5で記憶されており、演算部4のフュージョン処理部42で検出結果に応じたフュージョン処理を行う際に参照される。
以下、具体的なミリ波フュージョン処理の内容を説明する。まず、遠距離物標のPCS外挿フラグと近距離物標のPCS外挿フラグがともに「0」である場合、すなわち遠距離物標および近距離物標がPCS外挿なしで検出された場合(○)には、判定部41は、近距離物標が、遠距離物標に対して以下に示す3つの条件(以下、「フュージョン可能条件」とする。)を満たすか否かを判定する。
条件1.|Z−Z|<ΔZmax
条件2.|Xf−X|<ΔZmax
条件3.|VRf−VRn|<ΔVRmax
ここで、ΔZmaxは前後距離差評価最大値、ΔXmaxは左右距離差最大値、ΔVRmaxは前後相対速度差最大値である。図11においては、他車Cの遠距離物標Oに対して条件2および3を満たすフュージョン可能領域F内に他車Cの近距離物標Oが入っている場合を例示している。
上記フュージョン可能条件を満たす場合は、検出領域D〜Dのパターンaにしたがう。本実施の形態1では、どの検出領域にある場合であっても、遠距離物標の物理量(物標距離、物標横位置、物標相対速度、物標相対加速度)および各種フラグをフュージョン物標の物理量および各種フラグとしてそのまま登録する。この場合、近距離物標の情報自体は物理量や各種フラグの中に含まれないが、フュージョン対象としての近距離物標の情報は記憶部5に登録される。
ところで、上記フュージョン可能条件を満たす近距離物標が複数ある場合も想定される。この場合には、演算部4で所定の評価値を求める評価値演算処理を行い、求めた評価値が最小または最大(定義による)の近距離物標をフュージョン物標として登録する。評価値Hは、例えば
H=αE+βE+γE ・・・(7)
と定義される。ここで、Eは前後距離差評価値であり、E=|Z−Z|/ΔZmaxである。また、Eは左右距離差評価値であり、E=|X−X|/ΔXmaxである。さらに、Eは前後相対速度差評価値であり、E=|VRf−VRn|/ΔVRmaxである。α、β、およびγは、E、E、およびEの和を取るときのウェイトを与える定数であり、3つのウェイトの比は予め定義されている。なお、評価値Hも一致した場合には、近距離物標を登録する際に付与された物標番号の小さい方(大きい方でも可)を採用すればよい。
次に、遠距離物標のPCS外挿フラグおよび近距離物標のPCS外挿フラグの少なくともいずれか一方が「1」であり、遠距離物標に対して近距離物標が、上記フュージョン可能条件を満たす場合について説明する(各領域のパターンd、e、f)。この場合、例えばパターンd(遠距離物標が○、近距離物標が△)では、全ての領域で遠距離物標単独でフュージョン物標を構成する。この際、近距離物標の方は続く処理へは持ち越さず、探索対象から消去する。一方、パターンe(遠距離物標が△、近距離物標が○)およびパターンf(遠距離物標が△、近距離物標が△)の場合には、全ての領域で近距離物標単独でフュージョン物標を構成し、遠距離物標の方は続く処理へは持ち越さずに探索対象から消去する。
続いて、PCS外挿フラグに関わらず上記フュージョン可能条件のうちの少なくとも1つを満たさない遠距離物標と近距離物標について説明する(各領域のパターンb、c、g,h,i)。まず、遠距離物標はPCS外挿の有無によらず検出され(○または△)、近距離物標が未検出(×)の場合(パターンbおよびc)、直前の遠距離物標をフュージョン物標とし、その遠距離物標の物理量と各種フラグをそのまま登録する。
パターンi(遠距離物標と近距離物標がともに未検出(×))の場合、「物標なし」として登録する。
パターンh(遠距離物標が未検出(×)、近距離物標が検出(○))では、領域によって処理が異なる。領域Dでは、近距離物標単独でフュージョン物標を構成する。領域Dでは、先行車に対応する物標があり、この先行車が発進した場合のみ近距離物標単独でフュージョン物標を構成し、それ以外の場合は「物標なし」として登録する。領域DおよびDでは、「物標なし」として登録する。
パターンg(遠距離物標が未検出(×)、近距離物標がPCS外挿により検出(△))の場合にも、領域によって処理が異なる。この場合、領域D、D、およびDでは近距離物標単独でフュージョン物標を構成する一方、領域Dでは「物標なし」として登録する。
次に、フュージョン可能条件を満たしていた遠距離物標と近距離物標との組み合わせがフュージョン可能条件を満たさなくなった状態(以下、「フュージョン不可状態」とする。)での処理について説明する。
このフュージョン不可状態は、例えば、先行車との衝突を回避するために自車両で急制動が行われた場合に発生し得る。
図15は、フュージョン不可状態が発生する場合の状況を説明する図である。左側のグラフは、車間距離と自車速との関係を示すグラフであり、横軸が自車速を表し、縦軸が車間距離を表す。また、車両位置C1−1〜C1−5はそれぞれ、自車両Cから見た他車両Cの相対位置を示し、車両位置C1−1からC1−5まで他車両Cが自車両Cに相対的に接近する様子を表す。本実施の形態1では、一定の減速度で急減速する他車両との衝突を回避するために車間距離Zにおいて車両制御装置6が自車両を急制動させる。なお、以下に説明する処理は、運転者が自車両を急制動させた場合にも適用される。また、図15において、「×」は、車両位置C1−1〜C1−5のそれぞれにおける他車両Cに関する遠距離物標の位置を表し、「+」は、車両位置C1−1〜C1−5のそれぞれにおける他車両Cに関する近距離物標の位置を表す。また、実線の「×」は、PCS外挿によらずに検出された遠距離物標の位置を表し、破線の「×」は、PCS外挿によって検出された遠距離物標の位置を表す。また、「×」、「+」から下方に延びる矢印は、関連する相対速度の大きさを表す。なお、本実施の形態1では、近距離物標の位置は全てPCS外挿によらずに検出される。自車両Cに比較的近い位置に存在する物体に関する物標を検出する場合、遠距離物標を検出するときに比べ、近距離物標を検出するときにはピークが低周波数領域におけるノイズに埋もれにくいためである。
他車両Cが車両位置C1−1にある場合、自車両Cと他車両Cとの車間距離はZより大きくZより小さいため、他車両Cは、検出領域D内に存在する(図13参照)。また、物標検出装置1は、遠距離物標および近距離物標をPCS外挿なしで検出しており、判定部41は、近距離物標と遠距離物標とがフュージョン可能条件を満たすと判定している。そのため、物標検出装置1は、検出領域Dのパターンa(図14−4参照。)にしたがい、遠距離物標単独でフュージョン物標を構成する。
その後、他車両Cが車両位置C1−2まで接近すると、物標検出装置1は、遠距離物標をPCS外挿なしで検出できなくなり、PCS外挿によって遠距離物標を導き出す。なお、自車両Cと他車両Cとの車間距離は依然としてZより大きいため、他車両Cは、検出領域D内に存在する。また、物標検出装置1は、近距離物標をPCS外挿なしで検出しており、判定部41は、近距離物標と遠距離物標とがフュージョン可能条件を満たすと判定している。そのため、物標検出装置1は、検出領域Dのパターンe(図14−4参照。)にしたがい、遠距離物標単独でフュージョン物標を構成する。
その後、他車両Cが車両位置C1−3まで接近すると、自車両Cと他車両Cとの車間距離はZより小さくなるため、他車両Cは、検出領域D内に進入する。また、この直前に自車両Cでは急制動が開始されている。なお、物標検出装置1は、PCS外挿によって遠距離物標を導き出しており、PCS外挿なしで近距離物標を検出している。また、判定部41は、近距離物標と遠距離物標とがフュージョン可能条件を満たすと判定している。そのため、物標検出装置1は、検出領域Dのパターンe(図14−3参照。)にしたがい、近距離物標単独でフュージョン物標を構成する。また、PCS外挿によって導出される遠距離物標の位置は、PCS外挿なしで検出される近距離物標の位置よりも僅かに自車両Cに近い位置となる。自車両Cで急制動が行われた結果、遠距離物標の位置に基づいて導出される車間距離が近距離物標の位置に基づいて導出される車間距離よりも小さくなり、且つ、遠距離物標の位置に基づいて導出される相対速度が近距離物標の位置に基づいて導出される相対速度よりも絶対値で大きくなるためである。なお、近距離物標の位置に基づいて導出される車間距離及び相対速度は、実際の車間距離及び相対速度にほぼ等しい。
その後、他車両Cが車両位置C1−4まで接近すると、自車両Cと他車両Cとの車間距離はZより小さくなるため、他車両Cは、検出領域D内に進入する。なお、物標検出装置1は、PCS外挿によって遠距離物標を導き出しており、PCS外挿なしで近距離物標を検出している。また、判定部41は、近距離物標と遠距離物標とがフュージョン可能条件を満たすと判定している。そのため、物標検出装置1は、検出領域Dのパターンe(図14−2参照。)にしたがい、近距離物標単独でフュージョン物標を構成する。また、PCS外挿によって導出される遠距離物標の位置は、PCS外挿なしで検出される近距離物標の位置よりもさらに自車両Cに近い位置となる。
その後、他車両Cが車両位置C1−5まで接近すると、自車両Cと他車両Cとの車間距離はZより小さくなるため、他車両Cは、検出領域D内に進入する。なお、物標検出装置1は、PCS外挿によって遠距離物標を導き出しており、PCS外挿なしで近距離物標を検出している。なお、この車両位置C1−5では、判定部41は、近距離物標と遠距離物標とがフュージョン可能条件を満たさないと判定する。自車両Cで急制動が行われた結果、遠距離物標の位置に基づいて導出される車間距離と近距離物標の位置に基づいて導出される車間距離との差が所定の閾値以上となったか、或いは、遠距離物標の位置に基づいて導出される相対速度と近距離物標の位置に基づいて導出される相対速度との差が所定の閾値以上となったためである。そのため、物標検出装置1は、検出領域Dのパターンe(図14−1参照。)にしたがってフュージョン物標を構成することができなくなる。
この場合、物標検出装置1は、他車両Cに関するフュージョン物標を2つ構成することになってしまう。具体的には、物標検出装置1は、PCS外挿によって遠距離物標を導き出したがその遠距離物標との関係でフュージョン可能条件を満たす近距離物標を検出できないとして、検出領域Dのパターンc(図14−1参照。)にしたがい、遠距離物標単独でフュージョン物標を構成する。また、物標検出装置1は、PCS外挿なしに近距離物標を検出したがその近距離物標との関係でフュージョン可能条件を満たす遠距離物標を検出できないとして、検出領域Dのパターンh(図14−1参照。)にしたがい、近距離物標単独でフュージョン物標を構成する。
しかしながら、このままでは、物標検出装置1は、1台の他車両Cに関して2つのフュージョン物標を構成してしまう。
そこで、物標検出装置1は、フュージョン可能条件を満たしていた遠距離物標と近距離物標との組み合わせがフュージョン可能条件を満たさなくなった場合、近距離物標単独でフュージョン物標を構成する。
具体的には、物標検出装置1は、例えば、遠距離物標の位置に基づいて導出される相対速度と近距離物標の位置に基づいて導出される相対速度との差が所定の閾値(例えば10km/hである。)以上となった場合、近距離物標単独でフュージョン物標を構成する。或いは、物標検出装置1は、遠距離物標の位置に基づいて導出される車間距離と近距離物標の位置に基づいて導出される車間距離との差が所定の閾値(例えば5mである。)以上となった場合、近距離物標単独でフュージョン物標を構成する。なお、車間距離の差は、前後距離の差、又は左右距離の差であってもよい。また、物標検出装置1は、自車両Cが減速中であることを追加的な条件としてもよい。
また、上述の例では、物標検出装置1は、仮にフュージョン可能条件が満たされていたならば検出領域Dのパターンe(図14−1の太枠参照。)にしたがってフュージョン物標が構成されていたがフュージョン可能条件が満たされないばかりに2つのフュージョン物標を構成してしまうという状況が発生するのを回避する。しかしながら、物標検出装置1は、仮にフュージョン可能条件が満たされていたならば検出領域D〜Dの何れかにおけるパターンe(図14−2〜図14−4のそれぞれの太枠参照。)にしたがってフュージョン物標が構成されていたがフュージョン可能条件が満たされないばかりに2つのフュージョン物標を構成してしまうという状況が発生するのを回避してもよい。
このように、物標検出装置1は、先行車との衝突を回避するために自車両で急制動が行われた場合であっても、1台の他車両Cに関して2つのフュージョン物標を構成してしまうのを回避することができる。そのため、物標検出装置1は、衝突予測時間(TTC)が無限大に急変するような場合であっても、フュージョン物標の連続性を維持できる。
次に、近距離ミリ波更新処理について、図16を参照して説明する。同図に示すように、近距離ミリ波更新処理は、その直前(1周期Tの分だけ前)に行われたミリ波フュージョン処理の内容と今回更新すべき近距離物標の検出内容に応じて処理が異なる。
まず、直前で実質的にフュージョンされている場合、すなわち直前のミリ波フュージョン処理が図14−1〜14−4のパターンaのいずれかに該当する場合を説明する(パターンj、k、l)。この場合、フュージョン物標は遠距離物標の物理量と各種フラグを受け継いでいるため、今回更新する近距離物標の検出内容に応じて縦方向距離Zのみを推定し、更新する。各種フラグは前回値を保持するが、新規フラグに関しては、その値が「1」ならば「0」へと更新する。
続いて、直前がフュージョンされていない場合について説明する。まず、直前が近距離物標単独で構成されており(例えば領域Dのパターンe、f、g、h等)、今回の近距離物標がPCS外挿の有無によらず検出(○または△)された場合(パターンmおよびn)、新たな近距離物標を単独でフュージョン物標として記憶部5へ登録する。また、直前が近距離物標単独で構成されており、近距離物標が未検出(×)である場合(パターンo)、物理量は更新しない。この場合、各種フラグは前回値を保持するが、物標ロストフラグに関しては、その値が「1」ならば「0」へと更新する。
これに対して、直前がフュージョンされてなく、その際のフュージョン物標が遠距離物標単独で構成されている場合(領域D〜Dのパターンb、c、d、領域Dのパターンa、b、c、d、e、f)は、今回近距離物標として更新すべき情報がない。この場合には、遠距離の縦方向距離Zのみを推定し、更新する。各種フラグについては原則として前回値を保持するが、新規フラグの値が「1」である場合には「0」へ更新する。
なお、図16には示していないが、直前のミリ波フュージョン処理が物標登録されていない場合であっても、図14−1〜14−4において「近距離単独」条件を満たす場合が起こり得る。この場合には、近距離物標の物理量および各種フラグを出力物標として記憶部5へ登録すればよい。
以上説明した本発明の実施の形態1によれば、FMCW方式を用いて検出した信号に周波数解析処理を施すことによって得られるピーク周波数成分のペアを用いて物標検出を行う第1物標検出手段と、前記第1物標検出手段と異なる方式で物標検出を行う第2物標検出手段と、を備えた物標検出装置が、前記ピーク周波数成分のペアの一方が前記低周波数成分に埋もれていると判定した場合、前記低周波数成分に埋もれていないと判定した場合よりも前記第2物標検出手段の検出結果を重視したフュージョン処理を行うことにより、広範囲の物標を高精度で検出することが可能となる。
また、本実施の形態1によれば、たとえ物標からの反射波の距離パワースペクトルにピークペアの一方のピークが埋もれたとしても、高分解能である遠距離物標の情報を捨て去ることなくできるだけ有効活用することにより、より信頼度が高い物標の検出を実現することが可能となる。
(実施の形態2)
本発明の実施の形態2は、物標までの衝突予測時間(TTC)を用いてミリ波フュージョン処理する遠距離物標と近距離物標との混合比を制御することを特徴とする。すなわち、本実施の形態2では、ミリ波フュージョン処理によって物理量を求める際、遠距離物標の物理量と近距離物標の物理量を物標までの衝突予測時間に応じた所定のウェイトで混合する。
本実施の形態2に係る物標検出装置の構成は、上記実施の形態1に係る物標検出装置1の構成と同じである。また、ミリ波フュージョン処理を行う際の規則は、図14−1〜14−4にしたがうものとする。
以下、ミリ波フュージョン処理で行う物理量の演算処理を説明する。この際、各領域のパターンaに相当するフュージョン物標は、遠距離物標のTTCに基づいて遠距離物標の物理量と近距離物標の物理量とを所定のウェイトによってフュージョンする。具体的には、遠距離物標の物理量をP、近距離物標の物理量をPとしたとき、対応するフュージョン物標の物理量Pfusionは、遠距離物標の物理量Pのウェイトをwとして、
fusion=wP+(1−w)P・・・(8)
と定義される。演算部4のフュージョン処理部42では、この定義に従って物理量の演算を行い、記憶部5に登録する。図17は、式(8)に基づいて算出されたフュージョン物標Ofusionの例を示す図である。同図においては、遠距離物標Oや近距離物標Oの中間付近にフュージョン物標Ofusionが生成された状況を模式的に示している。
図18は、遠距離物標の物理量のウェイトwと物標までの衝突予測時間(TTC)の関係を示す図である。同図に示すウェイト曲線Lwは、TTCの値が大きいときには1であるが、TTCが0に近づくにつれて徐々に減少していき、TTCが所定の閾値t(>0)よりも小さいときにw=0となる。すなわち、TTCが小さいほど近距離物標の物理量をより重視したフュージョン処理を行う。なお、閾値tの値は、各種条件に応じて適宜設定すればよい。
本実施の形態2では、各種フラグに関しても、フュージョン物標を構成する際に所定の規則に従ったフラグの設定の切り替えを行う。この規則は予め記憶部5に格納しておき、フュージョン処理部42で適宜読み出す構成としておけばよい。
次に、近距離ミリ波更新処理について説明する。図19は、本実施の形態2における近距離ミリ波更新処理の概要を示す図であり、実施の形態1で説明した図16に対応する図である。本実施の形態2における近距離ミリ波更新処理において、上記実施の形態1における近距離ミリ波更新処理と異なるのは、直前がフュージョンされており、今回の近距離物標が検出(○)、またはPCS外挿による検出(△)の場合、すなわちパターンjおよびkの場合である。この場合、物理量の演算に関しては、直前のミリ波フュージョン処理更新と同じウェイトwを用いることによって遠距離の縦方向距離Zのみを推定し更新する。この点を除く近距離ミリ波更新処理は、上記実施の形態1と同じである。
以上説明した本発明の実施の形態2によれば、FMCW方式を用いて検出した信号に周波数解析処理を施すことによって得られるピーク周波数成分のペアを用いて物標検出を行う第1物標検出手段と、前記第1物標検出手段と異なる方式で物標検出を行う第2物標検出手段と、を備えた物標検出装置が、前記ピーク周波数成分のペアの一方が前記低周波数成分に埋もれていると判定した場合、前記低周波数成分に埋もれていないと判定した場合よりも前記第2物標検出手段の検出結果を重視したフュージョン処理を行うことにより、上記実施の形態1と同様に、広範囲の物標を高精度で検出することが可能となる。
また、本実施の形態2によれば、ミリ波フュージョン処理において物理量を求める際、対応する遠距離物標の物理量と近距離物標の物理量とを所定のウェイトで混合することによってフュージョン物標を算出する際、物標までの衝突予測時間が短くなるにつれて近距離物標の寄与が増えるようにウェイトを定めることにより、遠距離ミリ波と近距離ミリ波のフュージョン結果として遠距離から近距離までの物理量の高精度かつ滑らかな切替を実現することができる。この結果、遠距離ミリ波と近距離ミリ波の分解能の差に起因して、切替タイミングの前後で物標の物理量(物標距離、物標横位置、物標相対速度、物標相対加速度)が大きく変化してしまうのを防止することが可能となる。
(実施の形態3)
本発明の実施の形態3は、ミリ波フュージョン処理で物理量を演算する際に、TTCに基づくウェイトに加えて、物標を一時的にロストした場合に補間する外挿カウンタの値に応じたウェイトを加味することによってフュージョン物標の物理量を算出することを特徴とする。
本実施の形態3に係る物標検出装置は、上記実施の形態1および2に係る物標検出装置と同じ構成を有する。また、本実施の形態3に係る物標検出方法は、上述したフュージョン物標の物理量演算処理を除いて、上記実施の形態2に係る物標検出方法と同じである。
図20は、遠距離物標/近距離物標の物理量のウェイトと対応する物理量の外挿回数との関係を示す図である。同図においてウェイト曲線は4本あるが、これは、遠距離物標と近距離物標の各々に対して、TTCの範囲に応じた2種類のウェイト曲線を適用しているからである。具体的には、ウェイト曲線Luf1およびLuf2が遠距離物標のウェイトと外挿回数の関係であり、ウェイト曲線Lun1およびLun2が近距離物標のウェイトと外挿回数の関係を示している。このうち、ウェイト曲線Luf1およびLun1はTTCが相対的に大きい領域におけるウェイト曲線であり、ウェイト曲線Luf2およびLun2はTTCが相対的に小さい領域におけるウェイト曲線である。
図20からも明らかなように、どのウェイト曲線も、所定の外挿回数を超えるとウェイトuの値が一定となる。また、ウェイト曲線相互間の大小関係は、同じ外挿回数で比較した場合に常に変わらないが、設定によってある外挿回数を超えると等しくなる場合がある。
本実施の形態3では、フュージョン物標の物理量Pfusionは、
Figure 2014145731
と求められる。式(9)において、Pは遠距離物標の物理量、Pは近距離物標の物理量、wは遠距離物標の物理量Pのウェイトである。また、uは外挿回数に基づく遠距離物標に対応するウェイト(ウェイト曲線Luf1およびLuf2に対応)であり、uは外挿回数に基づく近距離物標に対応するウェイト(ウェイト曲線Lun1およびLun2に対応)である。
このように、本実施の形態3では、衝突までの時間TTCと、物標をロストした場合に一時的に補間する外挿カウンタとを用いてミリ波フュージョンする物理量のウェイトを制御している。この結果、遠距離ミリ波と近距離ミリ波の分解能の差に起因して、切替タイミングの前後で物標の物理量(物標距離、物標横位置、物標相対速度、物標相対加速度)が大きく変化してしまうのを防止することが可能となる。
以上説明した本発明の実施の形態3によれば、上述した実施の形態2と同様の効果を得ることができる。
加えて、本実施の形態3によれば、衝突予測時間に加えて外挿回数も加味した上でミリ波フュージョン処理を行うため、衝突予測時間の意味で至近距離に近づくにつれて物理量が変化していく際、一段と違和感が少なくシームレスな切り替えを実現することができる。
(その他の実施の形態)
ここまで、本発明を実施するための最良の形態として、実施の形態1〜3を詳述してきたが、本発明はそれら3つの実施の形態によってのみ限定されるべきものではない。例えば、2つの検出手段の組み合わせは、必ずしも上述した2つのレーダに限られるわけではなく、一方が高分解能のレーダであり、2つのレーダの検出領域が異なっていれば如何なる形式のレーダを適用しても構わない。
このように、本発明は、ここでは記載していないさまざまな実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。
1・・・物標検出装置 2、3・・・レーダ 4・・・演算部 5・・・記憶部 6・・・車両制御装置 11、32・・・送信アンテナ 12・・・受信用アレーアンテナ 13、17・・・アイソレータ群 14・・・ミキサ群 14−1〜14−n・・・ミキサ 15、31・・・発振器 16・・・分岐回路 18・・・直流電源 20・・・高周波回路 21・・・低雑音増幅器 22・・・高速A/D変換器 23・・・DBF信号処理部 24・・・複素FFT演算部 33−1、33−2・・・受信アンテナ 34−1、34−2・・・ミキサ 35・・・信号処理部 41・・・判定部 42・・・フュージョン処理部 C・・・自車(車両) C・・・他車(車両) CH1〜CHn・・・アンテナ素子 F・・・フュージョン可能領域 LA・・・低周波数領域 Luf1、Luf2、Lun1、Lun2、Lw・・・ウェイト曲線 Of・・・遠距離物標 Ofusion・・・フュージョン物標 O・・・近距離物標 R、R・・・検出領域 R23・・・重複領域 Rd・・・道路 Sp・・・距離パワースペクトル

Claims (4)

  1. 第1物標検出手段と、前記第1物標検出手段に比べ近距離での物標の検出に適した第2物標検出手段と、前記第1物標検出手段の検出結果と前記第2物標検出手段の検出結果とに基づいてフュージョン物標を導出するフュージョン処理手段と、を備える物標検出装置であって、
    前記フュージョン処理手段は、前記第1物標検出手段が外挿により検出する第1物標と前記第2物標検出手段が外挿によらずに検出する第2物標とが所定のフュージョン可能条件を満たす場合に、前記第1物標と前記第2物標とに基づいてフュージョン物標を導出し、前記所定のフュージョン可能条件を満たさなくなった場合に、前記第2物標に基づいてフュージョン物標を導出する、
    物標検出装置。
  2. 前記フュージョン処理手段は、前記第1物標と前記第2物標とが前記所定のフュージョン可能条件を満たさなくなった場合で、且つ、当該物標検出装置を搭載する自車両が減速中の場合に、前記第2物標に基づいてフュージョン物標を導出する、
    請求項1に記載の物標検出装置。
  3. 前記フュージョン可能条件は、前記第1物標に基づいて導出される相対速度と前記第2物標に基づいて導出される相対速度との差が所定の閾値以上となった場合、又は、前記第1物標に基づいて導出される車間距離と前記第2物標に基づいて導出される車間距離との差が所定の閾値以上となった場合を含む、
    請求項1又は2に記載の物標検出装置。
  4. 第1物標検出手段の検出結果と、前記第1物標検出手段に比べ近距離での物標の検出に適した第2物標検出手段の検出結果とに基づいてフュージョン物標を導出する物標検出方法であって、
    前記第1物標検出手段が外挿により検出する第1物標と前記第2物標検出手段が外挿によらずに検出する第2物標とが所定のフュージョン可能条件を満たす場合に、前記第1物標と前記第2物標とに基づいてフュージョン物標を導出し、前記所定のフュージョン可能条件を満たさなくなった場合に、前記第2物標に基づいてフュージョン物標を導出するステップを有する、
    物標検出方法。
JP2013015740A 2013-01-30 2013-01-30 物標検出装置及び物標検出方法 Pending JP2014145731A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013015740A JP2014145731A (ja) 2013-01-30 2013-01-30 物標検出装置及び物標検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013015740A JP2014145731A (ja) 2013-01-30 2013-01-30 物標検出装置及び物標検出方法

Publications (1)

Publication Number Publication Date
JP2014145731A true JP2014145731A (ja) 2014-08-14

Family

ID=51426086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013015740A Pending JP2014145731A (ja) 2013-01-30 2013-01-30 物標検出装置及び物標検出方法

Country Status (1)

Country Link
JP (1) JP2014145731A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191617A (ja) * 2015-03-31 2016-11-10 シャープ株式会社 障害物判定装置
JP2019002691A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 物標情報取得装置
JP2019002690A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 物標検出装置
WO2021171638A1 (ja) * 2020-02-25 2021-09-02 古河電気工業株式会社 レーダシステム、処理方法および処理プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139858A (ja) * 2001-11-02 2003-05-14 Fuji Heavy Ind Ltd 車外監視装置
JP2003237509A (ja) * 2002-02-13 2003-08-27 Nissan Motor Co Ltd 車両用外界認識装置
JP2005326296A (ja) * 2004-05-14 2005-11-24 Denso Corp 車両用物体検出装置
JP2008082973A (ja) * 2006-09-28 2008-04-10 Toyota Motor Corp 物標検出装置、物標検出方法、およびコンピュータが実行するためのプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139858A (ja) * 2001-11-02 2003-05-14 Fuji Heavy Ind Ltd 車外監視装置
JP2003237509A (ja) * 2002-02-13 2003-08-27 Nissan Motor Co Ltd 車両用外界認識装置
JP2005326296A (ja) * 2004-05-14 2005-11-24 Denso Corp 車両用物体検出装置
JP2008082973A (ja) * 2006-09-28 2008-04-10 Toyota Motor Corp 物標検出装置、物標検出方法、およびコンピュータが実行するためのプログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191617A (ja) * 2015-03-31 2016-11-10 シャープ株式会社 障害物判定装置
JP2019002691A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 物標情報取得装置
JP2019002690A (ja) * 2017-06-09 2019-01-10 トヨタ自動車株式会社 物標検出装置
WO2021171638A1 (ja) * 2020-02-25 2021-09-02 古河電気工業株式会社 レーダシステム、処理方法および処理プログラム
CN113557446A (zh) * 2020-02-25 2021-10-26 古河电气工业株式会社 雷达系统、处理方法和处理程序
JP7383004B2 (ja) 2020-02-25 2023-11-17 古河電気工業株式会社 レーダシステム、処理方法および処理プログラム

Similar Documents

Publication Publication Date Title
JP5003674B2 (ja) レーダ装置および移動体
JP6077226B2 (ja) レーダ装置、および、信号処理方法
JP4779704B2 (ja) 物標検出装置および物標検出方法
JP5091651B2 (ja) レーダ装置及びターゲットの方位角計測方法
US9310470B2 (en) Radar apparatus and signal processing method
US20120313811A1 (en) Obstacle detection apparatus
JP4281632B2 (ja) 物標検出装置
JP5977059B2 (ja) レーダ装置、および、信号処理方法
US9372260B2 (en) Object detecting device, object detecting method, object detecting program, and motion control system
JP2009041981A (ja) 物体検出装置および方法、ならびに物体検出装置を備えた車両
JP2015137915A (ja) レーダ装置、車両制御システム、および、信号処理方法
JP2014106120A (ja) レーダ装置、および、信号処理方法
US10473760B2 (en) Radar device and vertical axis-misalignment detecting method
JP5122536B2 (ja) レーダ装置
JP4983185B2 (ja) 物標検出装置、物標検出方法、およびコンピュータが実行するためのプログラム
JP2017227510A (ja) レーダ装置および物標検知方法
JP2008082974A (ja) 物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラム
JP6027365B2 (ja) レーダ装置、車両制御システム、および、信号処理方法
JP6231803B2 (ja) レーダ装置、及び、信号処理方法
US9348023B2 (en) Radar apparatus and signal processing method
JP4396436B2 (ja) 物標検出装置
US10191148B2 (en) Radar system for vehicle and method for measuring azimuth therein
JP2011117896A (ja) 電子走査型レーダ装置及びコンピュータプログラム
JP4956778B2 (ja) 物体検出装置および物体検出方法
JP2014145731A (ja) 物標検出装置及び物標検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220