JP2014135382A - 非接触給電システム - Google Patents

非接触給電システム Download PDF

Info

Publication number
JP2014135382A
JP2014135382A JP2013002563A JP2013002563A JP2014135382A JP 2014135382 A JP2014135382 A JP 2014135382A JP 2013002563 A JP2013002563 A JP 2013002563A JP 2013002563 A JP2013002563 A JP 2013002563A JP 2014135382 A JP2014135382 A JP 2014135382A
Authority
JP
Japan
Prior art keywords
coil
primary coil
secondary coil
litz wire
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013002563A
Other languages
English (en)
Other versions
JP5613268B2 (ja
Inventor
Shiro Hasegawa
志朗 長谷川
Masahiro Mori
正裕 森
Tatsuya Iijima
達也 飯島
Kenji Kamiya
賢治 上谷
Sei Miura
聖 三浦
Masahiro Ichikawa
昌宏 市川
Hiroto Nozaki
裕人 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Showa Device Technology Co Ltd
Original Assignee
SWCC Showa Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Device Technology Co Ltd filed Critical SWCC Showa Device Technology Co Ltd
Priority to JP2013002563A priority Critical patent/JP5613268B2/ja
Publication of JP2014135382A publication Critical patent/JP2014135382A/ja
Application granted granted Critical
Publication of JP5613268B2 publication Critical patent/JP5613268B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

【課題】一次コイルと二次コイルの位置ずれによる電力伝送効率の低下を抑制できるとともに、共振現象を利用した大電力伝送を容易に実現できる非接触給電システムを提供する。
【解決手段】電磁誘導型の非接触給電システムにおいて、複数本のエナメル線を撚り合わせてなるリッツ線を、同一平面上に所定の巻数で巻線した渦巻き型コイルで一次コイル(給電側コイル)及び二次コイル(受電側コイル)を構成する。そして、一次コイルと二次コイルの外径比(D2/D1)を0.8〜1.1、内径比(d2/d1)を1.2〜2.0、インダクタンス比(L2/L1)を0.9〜1.1とする。
【選択図】図7

Description

本発明は、電磁誘導型の非接触給電システムに関し、特に給電側コイルと受電側コイルの位置ずれが生じやすいEV用の非接触給電システムに関する。
近年、電気自動車(EV:Electric Vehicle)の充電方法の一つとして、コイルを用いた電磁誘導型の非接触給電システムの実用化が進んでいる。非接触給電システムは、交流電源から電圧が供給される給電側コイル(一次コイル)を有する給電装置と、給電側コイルに対向して配置され、給電側コイルと磁気的に結合する受電側コイル(二次コイル)を有する受電装置とを備える。EV用の非接触給電システムにおいては、給電装置が車外(地上)に設置され、受電装置が車内に設置される。
EV用の非接触給電システムのように、高周波の大電流を流して大電力を伝送する必要がある場合、一次コイル及び二次コイルには、例えば複数本のエナメル線(素線)を撚り合わせてなるリッツ線を、同一平面上に所定の巻数で巻線した渦巻き型コイルが用いられる。一次コイル及び二次コイルを渦巻き型コイルで構成することにより、給電装置及び受電装置の薄型化を図ることができる。また、リッツ線を用いることで、高周波特有の表皮効果や近接効果による交流抵抗の増大を抑制することができる。
また、電磁誘導型の非接触給電システムにおいても、コイルの共振現象を利用することにより、電力伝送効率を高めることができる。この場合、給電回路の共振周波数と、受電回路の共振周波数を合わせる必要があるため、通常、一次コイル及び二次コイルには同じ寸法で、同等のインダクタンスを有するコイルが用いられる。
一次コイルに電流を流したときに一次コイルと二次コイルの双方に鎖交する磁束が多いほど、非接触給電システムにおける電力伝送効率は高くなる。例えば、図1に示すように、一次コイル11と二次コイル21を近接させ、位置ずれのない理想的な配置(軸心が一致した状態)とした場合、一次コイル11の中空部11aを通過するほとんどの磁束Mが、二次コイル21の中空部21aを通過する。一次コイル11と二次コイル21とは磁界を共有する共振関係となるため、コイル間距離(エアギャップ)が100mmあっても、90%以上の電力伝送効率が得られる。
しかしながら、実際には、一次コイル11と二次コイル21とが理想的な配置となるように、給電装置の位置に合わせて車両を停止させることは困難である。つまり、車両の移動方向(前後方向)における位置ずれは、車止めを用いる等してある程度小さくすることができるが、移動方向に直交する方向(左右方向)においては少なからず位置ずれが生じてしまう。そして、一次コイル11と二次コイル21の位置関係が理想的な配置からずれると、一次コイル11の中空部11aを通過した磁束Mの一部が二次コイル21の中空部21aを通過せず漏れ磁束Mとなる。電力の受け渡しに寄与する磁束数が減少することとなるため、電力伝送効率が著しく低下してしまう(図2、図3参照)。
発表資料等によれば、外径が300〜500mm、内径が200〜300mmの2つの円形コイル(円形の渦巻き型コイル)を組み合わせた場合、位置ずれが100mm程度まで大きくなると、電力伝送効率が著しく低下して実用性がなくなることが報告されている。
そこで、非接触給電システムにおいては、位置ずれに対する許容距離が大きく(例えば150mm以上)、高い電力伝送効率を確保できるコイルの組み合わせが求められている。給電装置から受電装置への電力伝送に関する先行技術としては、例えば特許文献1〜4がある。
特許文献1には、長円形の渦巻き型コイルを移動体の移動方向に沿うように配置した非接触給電システムが開示されている。この非接触給電システムでは、一次コイル及び二次コイルを長円形状とすることによりコイルの大型化を図ることができるので、大電力の電力伝送が可能となる。
特許文献2には、二次コイルの内径、外径を、一次コイルの内径、外径よりも小さくした非接触給電システムが開示されている。この非接触給電システムでは、位置ずれが生じても一次コイル及び二次コイルの双方に鎖交する磁束の変化は少ないので、広い範囲で電力伝送効率が安定する。
特許文献3、4には、特許文献2とは逆に、二次コイルの内径を、一次コイルの内径よりも大きくした非接触給電システムが開示されている。この非接触給電システムでは、一次コイルと二次コイルの双方に鎖交する磁束の数が広範囲で安定するので、位置ずれが生じても高い電力伝送効率を確保することができる。
特開2008−120239号公報 特開2009−188131号公報 特開2008−289241号公報 国際公開第99/27603号
しかしながら、特許文献1に記載の非接触給電システムでは、位置ずれが生じると、やはり電力伝送効率が著しく低下する。
特許文献2に記載の非接触給電システムでは、一次コイルと二次コイルが理想的な位置関係に配置された状態であっても漏れ磁束が多く、最大限に電力が伝送される構成ではない。また、漏れ磁束Mによって、二次コイル21の巻線部21bが誘導加熱されるため、二次コイル21の温度が部分的に上昇して不均一となる虞もある。
特許文献3、4に記載の非接触給電システムでは、一次コイルと二次コイルの寸法(内径、外径)が異なるため、インダクタンスも異なっていると考えられる。したがって、共振現象を容易に利用することができず、コイルの共振現象を利用しようとすると、システムごとに適切な共振用コンデンサーを選定する等、煩雑な作業が必要となる。現状では、安定したインダクタンスを有するリッツ線コイルを製造することは困難であるため、コイルのインダクタンスは厳格に管理されていないと考えられる。
本発明の目的は、一次コイルと二次コイルの位置ずれによる電力伝送効率の低下を抑制できるとともに、共振現象を利用した大電力伝送を容易に実現できる非接触給電システムを提供することである。
本発明に係る非接触給電システムは、エアギャップを介して対向して配置される一次コイル及び二次コイルを備え、前記一次コイル側から前記二次コイル側へ非接触で電力を伝送する電磁誘導型の非接触給電システムであって、
前記一次コイル及び前記二次コイルが、複数本のエナメル線を撚り合わせてなるリッツ線を、同一平面上に所定の巻数で巻線した渦巻き型コイルで構成され、
前記一次コイルと前記二次コイルの外径比(D2/D1)が0.8〜1.1、
前記一次コイルと前記二次コイルの内径比(d2/d1)が1.2〜2.0、
前記一次コイルと前記二次コイルのインダクタンス比(L2/L1)が0.9〜1.1であることを特徴とする。
本発明によれば、一次コイルと二次コイルの位置ずれによる電力伝送効率の低下を抑制できるとともに、共振現象を利用した大電力伝送を容易に実現することができる。
同寸法の一次コイルと二次コイルが理想的な配置にある場合の鎖交磁束を示す図である。 同寸法の一次コイルと二次コイルが位置ずれしている場合の鎖交磁束の一例を示す図である。 同寸法の一次コイルと二次コイルが位置ずれしている場合の鎖交磁束を示す図である。 実施の形態に係るEV用の非接触給電システムを示す図である。 一次コイル及び二次コイルの構成を示す図である。 図5におけるA−A断面図である。 一次コイルと二次コイルの寸法を示す図である。 実施の形態に係る一次コイルと二次コイルが理想的な配置にある場合の鎖交磁束を示す図である。 実施の形態に係る一次コイルと二次コイルが位置ずれしている場合の鎖交磁束の一例を示す図である。 実施の形態に係る一次コイル及び二次コイルの製造方法を示す図である。 実施の形態に係る一次コイル及び二次コイルの製造方法を示す図である。 磁性部材付きの一次コイル及び二次コイルを示す図である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図4は、実施の形態に係るEV用の非接触給電システムを示す図である。図4に示すように、非接触給電システム1は、地上に設置される給電装置10と、車両Cに設置される受電装置20を備える。
給電装置10は、一次コイル11を含む給電回路11A、インバーター12、交流電源13等を備える。給電回路11Aは、一次コイル11の他、共振用コンデンサー(図示略)を含んでいてもよい。
受電装置20は、二次コイル21を含む受電回路21A、整流器22、二次電池23等を備える。受電回路21Aは、二次コイル21の他、共振用コンデンサー(図示略)を含んでいてもよい。
給電時には、一次コイル11と二次コイル21とは、エアギャップGを介して対向して配置されることとなる。
給電装置10において、交流電源13から供給された商用周波数の交流電圧は、インバーター12で高周波数(例えば20kHz)の交流電圧に変換され、一次コイル11を含む給電回路11Aに印加される。一次コイル11に交流電流が流れると、一次コイル11の周囲に磁界が発生し、一次コイル11及び二次コイル21の双方と鎖交する磁束により、二次コイル21に電位差(電圧)が生じる。そして、二次コイル21に流れる電流が整流器22を介して取り出され、二次電池23に充電される。
図5は、一次コイル11及び二次コイル21の構成を示す図である。図6は、図5におけるA−A断面図である。
図5、6に示すように、一次コイル11及び二次コイル21は、リッツ線LWを同一平面上に所定の巻数Nで巻線した円環状の渦巻き型コイル(リッツ線コイルとも呼ばれる)である。図5、6では、一次コイル11及び二次コイル21の内径をd、外径をDで示している。一次コイル11及び二次コイル21の両端部には、例えば半田付けにより端子金具(図示略)が接続される。
リッツ線LWは、導体に絶縁被膜を焼き付けたエナメル線(素線)を、複数本撚り合わせたものである。エナメル線の導体は、銅又は銅合金であることが好ましく、アルミニウム、アルミニウム合金、又は銅とアルミニウムのクラッド材等を適用することもできる。また、エナメル線の絶縁皮膜には、ポリウレタン、ポリビニルホルマール、ポリウレタンナイロン、ポリエステル、ポリエステルナイロン、ポリエステルイミド、ポリアミドイミド、ポリエステルイミド/ポリアミドイミド、ポリイミド等、リッツ線11aの端部を端子金具(図示略)に半田付けする際に高温の半田により溶融する樹脂材料が好適である。
図6に示すように、個々のリッツ線LWは、略矩形の断面形状を有する。リッツ線LWの選定を含むコイル設計、及び巻線条件、加圧条件を適宜設定することにより、リッツ線LWの断面の扁平率を制御することができる。また、リッツ線LWの素線径、撚り本数、絶縁材料等の構成は、製造する一次コイル11又は二次コイル21に応じて適宜に選定される。
一次コイル11及び二次コイル21は、内径dが150〜250mm、外径Dが350〜600mm、巻数Nが20〜50ターンであることが好ましい。また、一次コイル11及び二次コイル21の製造に用いられるリッツ線LWは、素線径が0.04〜0.25mm、撚り本数が300〜4000本であることが好ましい。これにより、電気特性(特にインダクタンス)の安定化を図ることができるので、EV用の非接触給電システム1の用途として好適である。
図7に示すように、一次コイル11の外径をD1、二次コイル21の外径をD2としたとき、外径比(D2/D1)は0.8〜1.1である。コイルの外径比(D2/D1)が0.8よりも小さい(外径差が小さい)と、一次コイル11と二次コイル21のインダクタンスL1、L2を同等とするのが困難となる。コイルの外径比(D2/D1)が1.1よりも大きいと、車両Cに設置する二次コイル21が大型になるため好ましくない。
一次コイル11の内径をd1、二次コイル21の内径をd2としたとき、内径比(d2/d1)は1.2〜2.0である。一次コイルと二次コイルの内径比(d2/d1)は、好ましくは1.4〜1.8であり、さらに好ましくは1.5〜1.7である。
コイルの内径比(d2/d1)が1.2よりも小さいと、位置ずれの許容距離が小さくなるので、電力伝送効率の低下を抑制できる範囲が狭くなる。コイルの内径比(d2/d1)が2.0よりも大きいと、二次コイル21の外径を同程度とした場合に巻線できる幅が減少するため、所定のインダクタンスが確保されるように製造するのが困難となり、製造コストが増大する虞がある。所定のインダクタンスを確保するためには重ね巻きすることも考えられるが、コイルの厚みが増大するため、薄型化できる渦巻き型コイルの利点が損なわれる。
二次コイル21の内径d2を一次コイル11の内径d1よりも大きく、具体的には内径比(d2/d1)を1.2〜2.0とすることにより、位置ずれが生じても一次コイル11と二次コイル21の双方に鎖交する磁束の変化は少なくなる(図8、図9参照)。したがって、位置ずれによる電力伝送効率の低下を抑制することができる。また、漏れ磁束が少ないので、誘導加熱によって二次コイル21の巻線部の温度が不均一となることもない。なお、一次コイル11と二次コイル21の外径比(D2/D1)を0.8〜1.1とするので、コイル自体が大型になることもない。
また、一次コイル11のインダクタンスをL1、二次コイル21のインダクタンスをL2としたとき、インダクタンス比(L2/L1)は0.9〜1.1である。これにより、給電回路11Aと受電回路21Aとを容易に共振させることができるので、大電力の伝送が可能となる。なお、給電回路11Aと受電回路21Aにおいて共振用コンデンサーを用いる場合は、同性能のものを適用することができる。
このように、実施の形態に係る非接触給電システム1によれば、一次コイル11と二次コイル21の位置ずれによる電力伝送効率の低下を抑制できるとともに、共振現象を利用した大電力伝送を容易に実現することができる。
一次コイル11から放射される磁束は三次元的に拡散して減衰するため、従来のように一次コイル11と二次コイル21の内径を同じとした組み合わせでは、エアギャップG(伝送距離)が大きくなると、双方に鎖交する磁束が減少し、電力伝送効率が著しく低下する。
本実施の形態では、二次コイル21の内径d2が拡大されているため、内径dが同じコイルの組み合わせと比較すると、エアギャップGを大きくしたときの電力伝送効率の低下は少ない。したがって、エアギャップGを大きく取ることができるので、車両Cへ設置するための設計の自由度が高まり、利便性が増す。例えば、125mmの位置ずれまで許容できる場合、エアギャップGも125mmまで拡大することができる。
逆に、エアギャップGを拡大する必要がない場合は、コイル全体を逆比例して縮小することも可能となる。渦巻き型コイルは、コイルサイズ(外径D)が比較的大きくなるという欠点があるが、これを改善することができる。例えば、一次コイル11と二次コイル21の外径D1、D2を460mm、エアギャップGを100mmとする場合に、二次コイル21の内径d2を拡大することにより125mmの位置ずれに対応できるようになれば、一次コイル11及び二次コイル21の外径D1、D2を100/125(=4/5)、すなわち368mmまで縮小しても同じコイル性能が得られる。すなわち、車両Cに設置するスペースを大幅に縮小できる上、軽量化、コストダウンを図ることもできる。
上述した一次コイル11及び二次コイル21となるリッツ線コイルは、例えば以下に示す方法によって製造することができる。図10に示すように、本実施の形態では、第1工程において、円環状の平面部101と、平面部101の中央に円筒状に形成された内径規制部103と、平面部101の外周縁に起立して形成された外径規制部102とを有する巻枠100を用いる。なお、内径規制部103は円柱状に形成されてもよい。
巻枠100は、後述する第2工程(加圧成形工程)において破損しない程度の強度を有していればよく、例えばアルミニウム合金または鉄で構成される。後述する加圧部材(図示略)も同様である。巻枠100の寸法は、製造するリッツ線コイルの寸法に合わせて設定される。すなわち、内径規制部103の外径がリッツ線コイルの内径dに相当し、外径規制部102の内径がリッツ線コイルの外径Dに相当する。
平面部101には、リッツ線コイルの巻数Nに整合する間隔で巻線時の目印となる標線104が形成される。この標線104に沿ってリッツ線LWを配置していくことで、所望の態様に巻線されているかを確認しつつ巻線することができるので、容易に設計通りの巻数とすることができる。
第1工程では、巻枠100にリッツ線LWを無張力で送り込み、平面部101に所定の巻数Nで、リッツ線LW同士が重ならないように渦巻き状に巻線する。具体的には、リッツ線LWの一端部を巻枠100の内周側(又は外周側)に固定し、巻枠100を所定の回転速度で回転させる。このとき、リッツ線LWの巻き込み位置の周速度に合わせてリッツ線LWを送り込む。これにより、リッツ線LWは無張力の状態で送り込まれる。第1工程では、リッツ線LWを無張力で送り込むため、リッツ線コイルの外周側からリッツ線LWを巻線することもできる。
リッツ線LWの外径が標線104の間隔に略等しい場合、リッツ線LWはほぼ密着した状態で整列して巻線される。この場合、加圧成形によるリッツ線LWの変形量は小さいので、リッツ線LWの扁平率(長辺/短辺)は1.10〜1.60となる。
リッツ線LWの外径が標線104の間隔よりも小さい場合は、リッツ線LWは隙間をあけて巻線されることとなる。リッツ線LWの外径が小さい程、すなわち隙間が大きい程リッツ線LWの扁平率(長辺/短辺)は大きくなる。コイルの径方向において隙間が40%以下であれば、リッツ線LWの扁平率(長辺/短辺)は1.10〜1.60となる。
なお、リッツ線LWの外径が標線104の間隔より大きい場合は、予めリッツ線LWを圧延して扁平させた上で、短辺がコイルの径方向となるように巻線すればよい。
このように、リッツ線LWの外径が標線104の間隔以下である場合、後述する第2工程の加圧成形によりリッツ線LWはコイルの径方向に扁平することとなる。すなわち、リッツ線LWの断面において長辺が径方向に沿うため、リッツ線LWの断面積(外径)を大きくすることなく、リッツ線コイルの大径化を図ることができる。したがって、EV用の非接触給電システム1に好適な、高インダクタンスで軽量のリッツ線コイルを製造することができる。
第1工程では、リッツ線LWの巻線の進行状況に応じて、リッツ線LWの送り出し位置を変化させるのが好ましい。具体的には、トラバース装置を用いることにより、リッツ線LWの送り出し位置を正確に制御することができる。
巻数が増加するに伴ってリッツ線LWの巻き込み位置が変化するため、リッツ線LWの送り出し位置を保持したままとすると、リッツ線LWに張力が付加される虞がある。本実施の形態では、リッツ線LWの送り出し位置を巻線の進行状況に応じて変化させるので、リッツ線LWを確実に無張力で送り込むことができる。
また、巻枠100の平面部101には、リッツ線LWを仮固定する接着部を配置するのが好ましい。例えば、接着部として、帯状の接着テープ(図示略)を、平面部101に放射状に配置する。これにより、巻線されたリッツ線LWはその位置に仮固定され、ばらつかないので、容易に設計通りに巻線することができる。
リッツ線LWを仮固定するための接着部として用いた帯状の接着テープ(図示略)を、巻線後(加圧成形後)にリッツ線コイルの径方向に巻回するようにすれば、コイル形状を保持する機能も兼用させることができる。
第1工程(巻線工程)においてリッツ線LWを巻線し終わった状態では、リッツ線LWの振れやリッツ線LW間の隙間、又はリッツ線LWの浮き上がりなどが残存する。すなわち、コイルとしては欠陥が多く残った状態であり、平坦で安定したコイル形状とはなっていない。そこで、第2工程(加圧成形)を行い、リッツ線コイルを所望の形状に仕上げる。
第2工程では、巻枠100の平面部101に対応する円環形状を有する加圧部材(図示略)によって、巻線されたリッツ線LWを厚さ方向に所定の圧力で加圧成形する。巻線されたリッツ線LWを厚さ方向に加圧成形する(径方向に扁平させる)ことにより、リッツ線LWの断面が矩形となる(図6参照)。
第2工程における加圧力は、要求されるコイル精度に応じて調整される。例えば、第2工程における加圧力を、0.1MPa以上とすることで、素線間の凹凸や隙間をなくすことができる。また、0.5MPa以上とすることで、コイル全体をきれいに平坦化することができる。さらには、5.0MPa以上とすれば、一部の素線を塑性変形させて占積率を上げることができる。
加圧成形したリッツ線コイルのコイル形状を保持するために、リッツ線コイルには所定の処理が施される。例えば、前述したように、帯状の接着テープをコイルの径方向に巻回してコイル形状を固定する。また例えば、リッツ線LWを自己融着線(加熱時に接着力を発現する表層を有するエナメル線)で構成し、加圧成形とともに、又は加圧成形の後に、自己融着線の融着温度で加熱して、リッツ線同士を固着するようにしてもよい。
また例えば、リッツ線コイルの全体に接着剤を塗布してコイル形状を固定するようにしてもよい。この場合、巻枠100には離型剤を塗布しておくのが好ましい。また例えば、リッツ線コイルを含浸ワニスに浸漬してコイル形状を固定するようにしてもよい。
このように、本実施の形態では、環状の平面部101と、平面部101の中央に円筒又は円柱状に形成された内径規制部103と、外周縁に起立して形成された外径規制部102を有する巻枠100に、リッツ線LWを無張力で送り込み、平面部101に所定の巻数Nで渦巻き状に巻線する第1工程(巻線工程)と、平面部101に対応する形状を有する加圧部材(図示略)によって、巻線されたリッツ線LWを厚さ方向に所定の圧力で加圧成形する第2工程(加圧成形工程)とにより、リッツ線コイルを製造する。
かかる製造方法によれば、コイル形状が高精度で制御されるので、EV用の非接触給電システム1に好適な、電気特性(特にインダクタンス)のばらつきが極めて小さいリッツ線コイルを、安定して量産することができる。また、コイル全体が一体化しているので、所定の装置(例えばEV用の非接触給電システム)に組み込む際の取り扱いが容易になる。
[実施例]
実施例では、実施の形態で示した製造方法により、一次コイル及び二次コイルを作製した。
一次コイル11は、内径d1:220mm、外径D1:460mm、巻線幅:120mm、巻数N1:20ターンでリッツ線LWを巻線して作製した。リッツ線LWには、素線径:0.12mm、撚り本数:700本(断面積:7.9mm)のものを用いた。巻線後の加圧成形により、リッツ線LWの断面が6mm(コイル径方向)×2mm(厚さ方向)の矩形状となるようにした。つまり、一次コイル11では、断面略矩形状のリッツ線LWが、長辺がコイルの径方向に沿うようにして配置される。
二次コイル21は、内径d2:380mm、外径D2:460mm、巻線幅:40mm、巻数N2:20ターンでリッツ線LWを巻線して作製した。リッツ線LWには、素線径:0.12mm、撚り本数:700本(断面積:7.9mm)のものを用いた。予めリッツ線LWを圧延した状態で巻線した後、加圧成形により、リッツ線の断面が2mm(コイル径方向)×6mm(厚さ方向)の矩形状となるようにした。つまり、二次コイル21では、断面略矩形状のリッツ線LWが、短辺がコイルの径方向に沿うようにして配置される。
すなわち、実施例では、一次コイル11と二次コイル21の内径比(d2/d1)を1.73とし、外径比(D2/D1)を1.0とした。
また、作製した一次コイル11、二次コイル21のインダクタンスL1、L2を測定したところ、それぞれ320μH、310μHであり、インダクタンス比(L2/L1)は0.97であった。
実施例で作製した一次コイル11と二次コイル21の組み合わせでは、コイルの内径差(d2−d1)が160mmであり、その1/2、すなわち±80mmの範囲で極めて高い効率(理想的な位置関係と同等の効率)で電力伝送することが可能であった。また、実用的な範囲(理想的な位置関係での電力伝送効率の40%)を考えると、±150mmの位置ずれに対応することができた。
以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、図12に示すように、一次コイル11及び二次コイル21の対向面とは反対側の面に、フェライト等の磁性材料からなる磁性部材14、24を配置するようにしてもよい。磁性部材14、24を配置することにより、磁気抵抗の低い通路が形成されるので、結果として一次コイル11及び二次コイル21の性能(Q値)が高まり、漏れ磁束を少なくすることができる。
この場合、二次コイル21側に配置する磁性部材24の内縁部分に、一次コイル側に延びる延出部24aを形成するのが好ましい。これにより、電力伝送に寄与する有効な磁束数が増加し、漏れ磁束が減少するので、高い電力伝送効率を実現することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 非接触給電システム
10 給電装置
11A 給電回路
11 一次コイル(給電側コイル)
12 インバーター
13 交流電源
14 磁性部材
20 受電装置
21A 受電回路
21 二次コイル(受電側コイル)
22 整流器
23 二次電池
24 磁性部材
d コイルの内径
D コイルの外径
LW リッツ線

Claims (6)

  1. エアギャップを介して対向して配置される一次コイル及び二次コイルを備え、前記一次コイル側から前記二次コイル側へ非接触で電力を伝送する電磁誘導型の非接触給電システムであって、
    前記一次コイル及び前記二次コイルが、複数本のエナメル線を撚り合わせてなるリッツ線を、同一平面上に所定の巻数で巻線した渦巻き型コイルで構成され、
    前記一次コイルと前記二次コイルの外径比(D2/D1)が0.8〜1.1、
    前記一次コイルと前記二次コイルの内径比(d2/d1)が1.2〜2.0、
    前記一次コイルと前記二次コイルのインダクタンス比(L2/L1)が0.9〜1.1であることを特徴とする非接触給電システム。
  2. 前記一次コイルと前記二次コイルの内径比(d2/d1)が1.4〜1.8であることを特徴とする請求項1に記載の非接触給電システム。
  3. 前記一次コイルと前記二次コイルの内径比(d2/d1)が1.5〜1.7であることを特徴とする請求項2に記載の非接触給電システム。
  4. 前記リッツ線は、素線径が0.04〜0.25mm、撚り数が300〜4000本であることを特徴とする請求項1から3のいずれか一項に記載の非接触給電システム。
  5. 前記一次コイルの内径が150〜250mmであり、
    前記一次コイル及び前記二次コイルが350〜600mm、巻数が20〜50ターンであることを特徴とする請求項1から4のいずれか一項に記載の非接触給電システム。
  6. 前記一次コイルは、断面形状が略矩形の前記リッツ線を長辺がコイルの径方向に沿うように配置した構成を有し、
    前記二次コイルは、断面形状が略矩形の前記リッツ線を短辺がコイルの径方向に沿うように配置した構成を有することを特徴とする請求項1から5のいずれか一項に記載の非接触給電システム。
JP2013002563A 2013-01-10 2013-01-10 非接触給電システム Expired - Fee Related JP5613268B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002563A JP5613268B2 (ja) 2013-01-10 2013-01-10 非接触給電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002563A JP5613268B2 (ja) 2013-01-10 2013-01-10 非接触給電システム

Publications (2)

Publication Number Publication Date
JP2014135382A true JP2014135382A (ja) 2014-07-24
JP5613268B2 JP5613268B2 (ja) 2014-10-22

Family

ID=51421658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002563A Expired - Fee Related JP5613268B2 (ja) 2013-01-10 2013-01-10 非接触給電システム

Country Status (1)

Country Link
JP (1) JP5613268B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073176A (ja) * 2014-10-02 2016-05-09 トヨタ自動車株式会社 非接触式送電装置
WO2016200011A1 (ko) * 2015-06-11 2016-12-15 엘지전자(주) 무선 전력 전송 시스템의 구조
JP2017034783A (ja) * 2015-07-30 2017-02-09 シンフォニアテクノロジー株式会社 非接触給電装置
JP2017107896A (ja) * 2015-12-07 2017-06-15 国立大学法人広島大学 非接触給電システム
CN108140464A (zh) * 2015-08-07 2018-06-08 纽卡润特有限公司 用于使用磁场耦合来进行无线电力发送的单层多模式天线
US11025070B2 (en) 2015-08-07 2021-06-01 Nucurrent, Inc. Device having a multimode antenna with at least one conductive wire with a plurality of turns
CN113490589A (zh) * 2019-02-28 2021-10-08 富士胶片株式会社 供电部件、线圈配置用磁性片及线圈配置用磁性片的制造方法
US11205848B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Method of providing a single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
US11955809B2 (en) 2015-08-07 2024-04-09 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission incorporating a selection circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289241A (ja) * 2007-05-16 2008-11-27 Seiko Epson Corp 電子機器、充電器および充電システム
JP2008301554A (ja) * 2007-05-29 2008-12-11 Sony Ericsson Mobilecommunications Japan Inc 非接触充電装置
JP2010172084A (ja) * 2009-01-21 2010-08-05 Saitama Univ 非接触給電装置
JP2010259171A (ja) * 2009-04-22 2010-11-11 Panasonic Electric Works Co Ltd 非接触伝送装置
WO2011125328A1 (ja) * 2010-04-07 2011-10-13 パナソニック株式会社 無線電力伝送システム
JP2014093795A (ja) * 2012-10-31 2014-05-19 Equos Research Co Ltd 電力伝送システム
JP2014093320A (ja) * 2012-10-31 2014-05-19 Equos Research Co Ltd 電力伝送システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008289241A (ja) * 2007-05-16 2008-11-27 Seiko Epson Corp 電子機器、充電器および充電システム
JP2008301554A (ja) * 2007-05-29 2008-12-11 Sony Ericsson Mobilecommunications Japan Inc 非接触充電装置
JP2010172084A (ja) * 2009-01-21 2010-08-05 Saitama Univ 非接触給電装置
JP2010259171A (ja) * 2009-04-22 2010-11-11 Panasonic Electric Works Co Ltd 非接触伝送装置
WO2011125328A1 (ja) * 2010-04-07 2011-10-13 パナソニック株式会社 無線電力伝送システム
JP2014093795A (ja) * 2012-10-31 2014-05-19 Equos Research Co Ltd 電力伝送システム
JP2014093320A (ja) * 2012-10-31 2014-05-19 Equos Research Co Ltd 電力伝送システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073176A (ja) * 2014-10-02 2016-05-09 トヨタ自動車株式会社 非接触式送電装置
US10505402B2 (en) 2015-06-11 2019-12-10 Lg Electronics Inc. Structure of wireless power transmission system
WO2016200011A1 (ko) * 2015-06-11 2016-12-15 엘지전자(주) 무선 전력 전송 시스템의 구조
JP2017034783A (ja) * 2015-07-30 2017-02-09 シンフォニアテクノロジー株式会社 非接触給電装置
US11205848B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Method of providing a single structure multi mode antenna having a unitary body construction for wireless power transmission using magnetic field coupling
CN108140464A (zh) * 2015-08-07 2018-06-08 纽卡润特有限公司 用于使用磁场耦合来进行无线电力发送的单层多模式天线
US11025070B2 (en) 2015-08-07 2021-06-01 Nucurrent, Inc. Device having a multimode antenna with at least one conductive wire with a plurality of turns
US11196266B2 (en) 2015-08-07 2021-12-07 Nucurrent, Inc. Device having a multimode antenna with conductive wire width
US11205849B2 (en) 2015-08-07 2021-12-21 Nucurrent, Inc. Multi-coil antenna structure with tunable inductance
US11469598B2 (en) 2015-08-07 2022-10-11 Nucurrent, Inc. Device having a multimode antenna with variable width of conductive wire
US11769629B2 (en) 2015-08-07 2023-09-26 Nucurrent, Inc. Device having a multimode antenna with variable width of conductive wire
US11955809B2 (en) 2015-08-07 2024-04-09 Nucurrent, Inc. Single structure multi mode antenna for wireless power transmission incorporating a selection circuit
JP2017107896A (ja) * 2015-12-07 2017-06-15 国立大学法人広島大学 非接触給電システム
CN113490589A (zh) * 2019-02-28 2021-10-08 富士胶片株式会社 供电部件、线圈配置用磁性片及线圈配置用磁性片的制造方法
US11848149B2 (en) 2019-02-28 2023-12-19 Fujifilm Corporation Power supply member, magnetic sheet for coil arrangement, method of manufacturing magnetic sheet for coil arrangement

Also Published As

Publication number Publication date
JP5613268B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5613268B2 (ja) 非接触給電システム
JP5629304B2 (ja) リッツ線コイル
JP5646688B2 (ja) 非接触給電システム
JP6056100B2 (ja) 渦巻型コイル
JP5490385B2 (ja) 非接触給電装置
JP6035378B1 (ja) リッツ線コイル
US11222745B2 (en) Coil and non-contact power supply device
JP2013207727A (ja) アンテナコイル
JP2013051285A5 (ja)
WO2012001758A1 (ja) 非接触給電装置
JP2013207238A (ja) アンテナコイルの製造方法
JP6971062B2 (ja) 非接触給電装置用コイルおよび非接触給電装置用コイルの製造方法
JP2003086026A (ja) 高周波用積層平角エナメル電線およびその製造方法
JP2011229202A (ja) 無線電力伝送用コイル
CN111226296B (zh) 无线充电系统中的磁线圈的制造方法
JP6499723B2 (ja) 非接触給電装置、コイルおよびコイルの製造方法
JP2013207907A (ja) 集合電線、これを用いた送電装置および電子機器、ならびにワイヤレス電力伝送システム
JP5499349B2 (ja) 巻線構造及びそれを用いた電気機器
JP6539024B2 (ja) コイル、及びコイル部品
JP2013197141A (ja) ワイヤレス電力伝送用コイル
CN216435633U (zh) 一种线圈结构以及无线充电装置
CN112216481A (zh) 磁感线圈
JP6365109B2 (ja) コイルユニット
JP6365108B2 (ja) コイルユニット
JP6365110B2 (ja) コイルユニット

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140905

R150 Certificate of patent or registration of utility model

Ref document number: 5613268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees