WO2016200011A1 - 무선 전력 전송 시스템의 구조 - Google Patents

무선 전력 전송 시스템의 구조 Download PDF

Info

Publication number
WO2016200011A1
WO2016200011A1 PCT/KR2016/001652 KR2016001652W WO2016200011A1 WO 2016200011 A1 WO2016200011 A1 WO 2016200011A1 KR 2016001652 W KR2016001652 W KR 2016001652W WO 2016200011 A1 WO2016200011 A1 WO 2016200011A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wireless power
single coil
power
less
Prior art date
Application number
PCT/KR2016/001652
Other languages
English (en)
French (fr)
Inventor
이성훈
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US15/735,454 priority Critical patent/US10505402B2/en
Priority to KR1020167016614A priority patent/KR102579343B1/ko
Publication of WO2016200011A1 publication Critical patent/WO2016200011A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/006Details of transformers or inductances, in general with special arrangement or spacing of turns of the winding(s), e.g. to produce desired self-resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support

Definitions

  • the present specification is directed to the resonance structure of the wireless power transmission system.
  • Contactless wireless power transmission system is an energy transmission method that removes wires and delivers energy electromagnetically in a method of transmitting energy through a conventional wire and using it as a power source of an electronic device.
  • Electromagnetic induction and resonant methods exist in a contactless wireless power transfer system.
  • the electromagnetic induction method is a method of generating a magnetic field through the power transmission coil (primary coil) in the power transmission unit and transferring power by placing a receiving coil (secondary coil) at a position where a current can be induced.
  • the resonance method energy is transmitted by using a resonance phenomenon between a transmitting coil and a receiving coil.
  • the resonance mode energy coupling between coils is used by constructing a system in which the resonance frequency of the primary coil and the resonance frequency of the secondary coil are the same.
  • Representative products that can apply high power wireless power transmission using a magnetic induction method are kitchen appliances, which require 200W to 2.4kW power transmission support in general kitchen appliances.
  • a magnetic field-based wireless power transmission technology is applied to home appliances, and a resonance structure capable of wirelessly transmitting power in a range of 200W to 2.4kW (medium / large power) is proposed.
  • a coil assembly for a wireless power transmitter comprising: a single coil composed of a wire and having a circular hole formed therein; A plurality of shields coupled to the single coil; Including, the outer diameter of the single coil (Outer diameter) is about 185mm or more and 195mm or less, the inner diameter (Inner diameter) of the single coil may be about 75mm or more and 85mm or less.
  • each of the plurality of shielding materials includes first and second protrusions protruding in the same direction, and the single coil is inserted between the first and second protrusions of the plurality of shielding materials and the plurality of shielding agents. Can be combined.
  • the single coil may be formed by winding the wire by a predetermined number of turns.
  • the preset number of turns may be about 32 or more and about 33 or less.
  • the single coil is formed by stacking the wire in two layers, and may be about 3.3 mm and 3.6 mm or less in total.
  • Inductance of the coil assembly may be about 246 uH or more and 266 uH or less.
  • the initial permeability of ferrite of the plurality of shielding agents may be greater than 2500.
  • a wireless power transmitter comprising: a coil assembly comprising a coil for generating a magnetic field; An inverter, converting the DC signal into an AC signal; A tank circuit providing impedance matching between the inverter and the coil; A communication unit for communicating with the power receiver; And a control unit for controlling power delivery;
  • the coil assembly comprises a single coil consisting of a wire and a circular hole formed therein and a plurality of shields coupled to the single coil (Ferrites);
  • the outer diameter of the single coil may be about 185 mm or more and 195 mm or less, and the inner diameter of the single coil may be about 75 mm or more and 85 mm or less.
  • each of the plurality of shielding materials includes first and second protrusions protruding in the same direction, and the single coil is inserted between the first and second protrusions of the plurality of shielding materials and the plurality of shielding agents. Can be combined.
  • the single coil may be formed by winding the wire by a predetermined number of turns.
  • the preset number of turns may be about 32 or more and about 33 or less.
  • the single coil is formed by stacking the wire in two layers, and may be about 3.3 mm and 3.6 mm or less in total.
  • Inductance of the coil assembly may be about 246 uH or more and 266 uH or less.
  • the initial permeability of ferrite of the plurality of shielding agents may be greater than 2500.
  • the coil assembly for a wireless power receiver comprising: a single coil including a wire and a circular hole therein; A plurality of shields coupled to the single coil; Including, the outer diameter of the single coil (Outer diameter) is about 165mm or more and 175mm or less, the inner diameter (inner diameter) of the single coil is about 70mm or more and 80mm or less, each of the plurality of shielding materials in the same direction
  • the first coil and the second protrusion may protrude, and the single coil may be inserted between the first and second protrusions of the plurality of shielding materials to be combined with the plurality of shielding agents.
  • ICNIRP EMF Regulation
  • FIG. 1 illustrates electronic devices classified according to the amount of power transmitted and received in a wireless charging system.
  • FIG. 2 is a block diagram of a wireless power transmission / reception system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of an IPS according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a wireless device according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a direct heating device according to an embodiment of the present invention.
  • 6 is a table of wireless power receivers classified by class according to the amount of power that can be supported.
  • FIG. 7 illustrates a dual coil structure and a single coil structure included in a coil assembly for a wireless power transmitter.
  • FIG. 8 illustrates single coil structures included in a coil assembly for a wireless power receiver.
  • FIG 9 illustrates a coil assembly for a wireless power transmitter / receiver according to an embodiment of the present invention.
  • FIG. 10 is a plan view of a shield structure of a coil assembly for a wireless power transmitter according to an embodiment of the present invention.
  • FIG. 11 is a plan view, an enlarged view, and a sectional view of a shield structure of a coil assembly for a wireless power receiver according to an embodiment of the present invention.
  • FIG. 12 is a graph illustrating a distribution of coupling coefficients between the wireless power transmitters and receivers according to the shielding structures shown in FIGS. 10 and 11.
  • FIG. 13 is a simulation result of measuring electromagnetic waves of the wireless charging system combining the 11 th shield structure and the c th shield structure.
  • FIG. 14 is a graph illustrating a distribution of coupling coefficients between a wireless power transmitter / receiver according to an outer diameter and an inner diameter length of a single coil for a wireless power transmitter combined with a shielding structure proposed in the present invention.
  • 15 is a graph showing power transmission efficiency of a wireless power transmitter / receiver according to an embodiment of the present invention.
  • FIG. 16 is a graph illustrating an electromagnetic wave B emitted by a wireless power transmitter / receiver according to an embodiment of the present invention.
  • WPC Wireless Power Consortium
  • Wireless charging systems which have been developed until recently, can support low power transmission and reception of up to about 5W.
  • a wireless charging system supporting intermediate power transmission / reception of about 15W to 20W has been developed.
  • a wireless charging system in which a resonance method for simultaneously charging a plurality of electronic devices is added has also been developed.
  • FIG. 1 illustrates an embodiment of various electronic devices into which a wireless power transmission / reception system is introduced.
  • FIG. 1 illustrates electronic devices classified according to the amount of power transmitted and received in a wireless power transmission / reception system.
  • wearable devices such as a smart watch, smart glass, head mounted display, and smart ring and earphones, a remote controller, a smartphone, a PDA, and a tablet
  • a small power (about 5W or less or about 20W or less) wireless charging method may be applied to mobile electronic devices (or portable electronic devices) such as a PC.
  • Mobile electronic devices or portable electronic devices
  • Medium and small household appliances such as laptops, robot cleaners, TVs, acoustic devices, cleaners, and monitors may be applied with a medium power (less than about 50W or less than about 200W) wireless charging scheme.
  • Personal mobile devices such as blenders, microwave ovens, kitchen appliances such as electric cookers, wheelchairs, electric kickboards, electric bicycles, and electric vehicles, have high power (about 2 kW or less or 22 kW or less). Wireless charging may be applied.
  • the electronic devices / moving means described above may each include a wireless power receiver described below. Therefore, the above-described electronic devices / moving means can be charged by receiving power wirelessly from the wireless power transmitter.
  • FIG. 2 is a block diagram of a wireless power transmission / reception system according to an embodiment of the present invention.
  • the wireless power transmission / reception system 2000 includes a mobile device 2010 that wirelessly receives power, and a base station 2020 that wirelessly transmits power.
  • the mobile device may be referred to as a 'power receiver product' and the base station may be referred to as a 'power transmitter product'.
  • the mobile device 2010 receives a power receiver 2011 that receives wireless power through a secondary coil and a load that receives and stores the power received from the power receiver 2011 and supplies the power to the device. Load) (2012).
  • the power receiver 2011 may include a power pick-up unit 2013 and a communications & control unit 2014.
  • the power pickup unit 2013 may receive the wireless power signal through the secondary coil and convert it into electrical energy.
  • the communication / control unit 2014 may control power signal transmission / reception (power transmission / reception).
  • the base station 2020 is an apparatus for providing inductive power or resonant power, and may include at least one power transmitter 2021 and a system unit 2024.
  • the power transmitter 2021 may transmit induced power or resonant power and control transmission.
  • the power transmitter 2021 is configured to transfer power to an appropriate level and a power conversion unit 2022 that converts electrical energy into a power signal by generating a magnetic field through a primary coil (s).
  • a Communication / Control Unit 2023 that controls communication and power delivery with the power receiver 2011.
  • System unit 2024 may perform other operational control of base station 2020 such as input power provisioning, control of a plurality of power transmitters, and user interface control.
  • the power transmitter 2021 may control the transmission power by controlling the operating point.
  • the controlling operating point may correspond to a combination of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
  • the power transmitter 2021 may control the transmission power by adjusting at least one of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
  • the power transmitter 2021 may supply constant power
  • the power receiver 2011 may control the reception power by controlling the resonance frequency.
  • the coil or coil unit may be referred to as a coil assembly, a coil cell, or a cell including the coil and at least one element adjacent to the coil.
  • a wireless power transmission / reception system (or power transmitter and / or receiver) that transmits wireless power may operate in an inductive power transfer mode, an induction heating (IH) mode, or a combination of the two modes. Can be.
  • IH induction heating
  • the power transmitter 2021 may charge power by transmitting power (induced or resonant power) to the power receiver 2011.
  • the power transmitter 2021 may transmit power to the power receiver 2011 to heat the power receiver.
  • the principle that the power transmitter 2021 heats the power receiver 2011 is related to a magnetic induction phenomenon.
  • Magnetic induction is a phenomenon in which an electromotive force is generated in a conductor located in a time-varying magnetic field, which is a magnetic field that changes over time. If the conductor is composed of a sheet of metal, the electromotive force can heat the conductor by causing a eddy current to flow through the conductor. This phenomenon is also known as an induction heating effect, and recently, various household appliances such as cooking induction ranges, IH pressure cookers, etc. have been introduced.
  • the power transmission equipment may be referred to as an 'inductive power supply (IPS)'.
  • the power receiving equipment can be broadly classified into a 'wireless appliance (or indirect heating appliance)' and 'direct heating appliance'.
  • a wireless device may represent a device that receives power (induced or resonant power) from an IPS and converts it to electrical power and uses it to drive a motor and / or a heating element. Thus, the wireless device can operate in an inductive power transfer (or receive) mode.
  • a direct heating device may refer to a device in which the flat metal contained in the base is directly heated by induction heating. Thus, the direct heating device can operate in induction power transfer mode and / or induction heating mode.
  • FIG. 3 is a block diagram of an IPS according to an embodiment of the present invention.
  • the IPS includes a cover 3010 covering the IPS, a Mains Filter (or power adapter) 3070 for supplying power to the power transmitter PTx, a power transmitter PTx for transmitting wireless power, and power. It may include at least one of the user interface 3060 for providing the delivery progress and other related information. In particular, the user interface 3060 may optionally be included in the IPS or may be included as another user interface of the IPS.
  • the power transmitter which is the central element of the IPS, includes a coil assembly 3020, a tank circuit (or impedance matching circuit) 3040, an inverter 3080, a communication unit 3030, and a control unit 3050. It may include at least one.
  • Coil assembly 3020 may include a frame (or ferrite / ferrite leg) that includes (or carries) ferrite elements as well as at least one coil to create a magnetic field.
  • Tank circuit 3040 may include an energy storage capacitor and additional impedance matching elements.
  • the inverter 3080 may convert a DC input into an AC signal.
  • Inverter 3080 may include a full-bridge topology to support frequency control and duty cycle.
  • the communication unit 3030 may include a separate coil having the same center as the power coil, and may communicate with the power receiver PRx by transmitting power using the same.
  • This configuration provides spatially localized communication protocols (in-band communication) and ensures that IPSs perform (1: 1) communication with devices that are providing power.
  • a time division multiplex may be used as the power line communication protocol.
  • the control unit 3050 may control the above-described configurations of the IPS.
  • the control unit 3050 may control communication and power delivery of the power transmitter PTx.
  • the control unit 3050 may control at least one of the above-described configurations of the IPS to perform various embodiments described herein.
  • the above-described configurations of the IPS may be provided as separate units / devices / chipsets or may be provided as one unit / devices / chipsets.
  • the communication unit 3030 and the control unit 3050 may be provided as separate devices / chipsets, or may be provided as one device / chipset.
  • the above-described configurations of the IPS may be optionally included, or a new configuration may be added to the IPS.
  • a wireless device refers to an electric and / or indirect heating appliance wirelessly charged by IPS such as a blender, a juicer, a rice cooker, and a soy milk maker.
  • the wireless device includes a user interface 4020 that provides power reception progress and other related information, a power receiver for receiving wireless power (PRx), a load circuit 4080, and a base that covers or supports the wireless device ( 4010).
  • the user interface 4020 may optionally be included in the wireless device, or may be included as another user interface of the wireless device.
  • the power receiver PRx which is the central element of the wireless device, includes at least one of a power converter 4050, a tank circuit (or impedance matching circuit) 4060, a coil assembly 4070, a communication unit 4040, and a control unit 4030. It may include.
  • the power converter 4050 may convert AC power received from the secondary coil to a voltage and current suitable for the load circuit.
  • the power converter 4050 may include a rectifier.
  • the rectifier may have a full-wave rectification topology.
  • the power converter 4050 may adapt the reflected impedance of the power receiver PRx.
  • Tank circuit 4060 may include an energy storage capacitor and additional impedance matching elements.
  • Coil assembly 4070 may include a frame (or shield) that includes (or carries) at least one coil as well as a ferrite element to create a magnetic field.
  • the communication unit 4040 includes a separate coil having the same center as the power coil, and may communicate with the power transmitter PTx by transmitting power using the separated coil. This configuration provides spatially localized communication protocols (in-band communication) and ensures communication with IPSs providing power to wireless devices.
  • the control unit 4030 may control the above-described configurations of the wireless device.
  • the control unit 4030 may control communication and power reception of the power receiver PRx.
  • the control unit 4030 may control at least one of the above-described components of the wireless device to perform various embodiments described herein.
  • the above-mentioned components of the wireless device may be provided as separate units / elements / chipsets or may be provided as one unit / elements / chipsets.
  • the communication unit 4040 and the control unit 4030 may be provided as separate devices / chipsets, or may be provided as one device / chipset.
  • the above-described configurations of the wireless device may be optionally included, or a new configuration may be added to the wireless device.
  • the direct heating device herein refers to various home appliances that are directly heated using induction heat, such as kettles, coffee pots, smart fans, and the like.
  • a direct heating device includes a user interface 5020 that provides power reception progress and other related information, a power receiver for receiving wireless power (PRx), a base that covers or supports the direct heating device. At least one of the 5010 and the sensor unit 5030 may be included. In particular, the user interface 5010 may optionally be included in a direct heating device, or may be included as another user interface of the direct heating device.
  • the power receiver PRx which is the central element of the direct heating appliance, may include at least one of a power pickup unit 5060, a communication unit 5050, and a control unit 5040.
  • the power pickup unit 5060 may receive power from the IPS to directly drive the heating device.
  • the communication unit 5050 may include a separate coil having the same center as the power coil, and may communicate with the power transmitter PTx by transmitting power using the separated coil. This configuration provides a spatially localized communication protocol (in-band communication) and ensures communication with the IPS, which is providing power directly to the heating device.
  • the sensor unit 5030 may directly sense and / or monitor the temperature of the heating device.
  • the control unit 5040 can control the configurations of the direct heating appliance described above.
  • the control unit 5040 may control communication and power reception of the power receiver PRx.
  • the control unit 5040 may control at least one of the above-described configurations of the direct heating device to perform the various embodiments described herein.
  • the above-described configurations of the direct heating device may be provided as separate units / elements / chipsets or as one unit / elements / chipsets.
  • the communication unit 5050 and the control unit 5040 may be provided as separate devices / chipsets or may be provided as one device / chipset.
  • the above-described configurations of the direct heating device may be optionally included, or a new configuration may be added to the direct heating device.
  • 6 is a table of wireless power receivers classified by class according to the amount of power that can be supported.
  • the wireless power receiver supporting medium power wireless charging of about 200 to 250 W is class A
  • the wireless power receiver supporting high power wireless charging of about 1.2 kW to 1.4 kw is class B
  • Wireless power receivers supporting large power wireless charging of about 1.5 kW to 2.4 kW can be classified into class C.
  • a single coil structure is proposed as an efficient coil structure that can be applied to the wireless power receiver of the class A to C (mainly, class B and C) and the corresponding wireless power transmitter, which will be described later in detail. Let's do it.
  • FIG. 7 illustrates a dual coil structure and a single coil structure included in a coil assembly for a wireless power transmitter.
  • both of the dual / single coils may have a donut shape (or a ring shape) having a circular hole therein, and the wire is wound in a circle by a predetermined number of turns.
  • the wire a Litz wire composed of an outer diameter of about 3.3 to 3.6 mm, a thin wire diameter of about 0.1 mm, and 400 to 600 strands may be used.
  • an outer coil (or a primary coil) and an inner coil (or a secondary coil), may be configured.
  • the outer diameter and inner diameter of the outer coil are larger than the outer diameter and inner diameter of the inner coil.
  • the outer diameter of the outer coil may be about 220 mm
  • the inner diameter may be about 170 mm
  • the outer diameter of the inner coil may be about 160 mm
  • the inner diameter may be about 62 mm.
  • the dual coil structure is formed by placing the inner coil in a circular hole formed inside the outer coil.
  • the outer diameter and the inner diameter of the single coil may be selected as the length of the optimized wireless power transmission efficiency performance, in the present specification is about 190 ( ⁇ 5) mm as the outer diameter of the single coil, about 80 ( ⁇ 5) mm as the inner diameter Suggest a choice.
  • the result of the efficiency increase by selecting the length as the length of the outer diameter and the inner diameter will be described in detail below with reference to FIGS. 14 to 17.
  • the inner coil may support wireless power transmission in the range of about 200W to 2kW, but some wireless power receivers require support for wireless charging of 2kW or more, so the use of the outer coil may be limited. Furthermore, the system complexity is high for dual coils compared to these limitations (two coils present).
  • the system complexity is small (one coil exists), and the wireless charging of about 200W to 2.4kW can be supported, the coupling of the system is high, and the amount of emitted electromagnetic waves is EMF regulation (ICNIRP). ), It has the advantage of low possibility of human harm.
  • FIG. 8 illustrates single coil structures included in a coil assembly for a wireless power receiver.
  • FIG. 8A illustrates a coil structure for a wireless power receiver corresponding to a wireless power transmitter including dual coils
  • FIG. 8B illustrates a wireless power receiver corresponding to a wireless power transmitter including a single coil. For coil structure.
  • each single coil may have a donut shape (or a ring shape) having a circular hole therein, and a wire (eg, a Litz wire) has a predetermined number of turns. It can be formed by winding in a circle as many as of turns.
  • a wire eg, a Litz wire
  • the outer diameter may be about 160mm, the inner diameter may be about 74mm.
  • the outer diameter and the inner diameter may be selected to have a length optimized for wireless power reception efficiency performance, and in the present specification, about 170 ( ⁇ 5) mm, it is suggested to select about 75 ( ⁇ 5) mm as inner diameter.
  • Figure 9 illustrates a coil assembly for a wireless power transmitter / receiver according to an embodiment of the present invention. More specifically, Figure 9 (a) is an exploded perspective view of the coil assembly (TxC, RxC) for wireless power transmitter and receiver, Figure 9 (b) is a perspective view of the coil assembly (TxC, RxC) for wireless power transmitter and receiver. .
  • the single coils C1 and C2 for the wireless power transmitter / receiver proposed in the present invention may be combined with at least one shielding agent F1 and F2.
  • the shields F1 and F2 minimize the electromagnetic waves (or electric fields) leaking from the single / dual coils and have a function of increasing the wireless power efficiency between the wireless power transmitters / receivers (that is, increasing the coupling coefficients).
  • the at least one shielding agent F1 and F2 may be combined with the single coils C1 and C2, and may be located on one side of the single coil C1 for the wireless power transmitter and one side of the single coil C2 for the wireless power receiver. have. In this case, the plurality of shielding agents F1 and F2 may be located at the bottom of the single coil C1 for the wireless power transmitter and the top of the single coil C2 for the wireless power transmitter.
  • Each shield (f) may have a variety of shapes, in this case the shield (f) has a '' 'shape having a first and second protrusions protruding in the same direction.
  • the single coils C1 and C2 may be inserted between the first and second protrusions to be combined with the shielding agent f.
  • the shielding agent f may be configured to minimize leakage electromagnetic waves and increase wireless power efficiency.
  • the plurality of shielding agents (F1, F2) are included in the coil assembly (TxC, RxC), in order to achieve the above object, the plurality of shielding agents (F1, F2) are arranged in accordance with a predetermined rule, It may be combined with single coils C1 and C2.
  • FIG. 10 is a plan view of a shield structure of a coil assembly for a wireless power transmitter according to an embodiment of the present invention.
  • a shielding structure that may be applied to a coil assembly for a wireless power transmitter may vary. More specifically, as the shielding structure, the shape of each shielding agent and the arrangement structure of the plurality of shielding agents may be variously determined according to an embodiment, and the present specification introduces a total of 12 kinds of shielding structures (Nos. 1 to 12). In FIG. 10, the black areas represent protrusions. For reference, the shield structure 11 is the same as the shield structure for the wireless power transmitter shown in FIG.
  • FIG. 11 is a plan view, an enlarged view, and a sectional view of a shield structure of a coil assembly for a wireless power receiver according to an embodiment of the present invention.
  • a shielding structure that may be applied to a coil assembly for a wireless power receiver may vary. More specifically, as the shielding structure, the shape of each shielding agent and the arrangement structure of the plurality of shielding agents may be variously determined according to embodiments, and the present specification introduces a total of five shielding structures (a to e).
  • FIG. 11 (a) is a plan view of the arrangement of the five shields
  • FIG. 11 (b) is a plan view of one shield which constitutes the shielding structure shown in FIG. 11 (a)
  • FIG. 11 (c) is a view of FIG. It is sectional drawing of each shielding agent shown by ().
  • the black areas represent protrusions, and the units of length shown in FIGS. 11 (b) and 11 (c) are mm.
  • the c shielding structure is the same as the shielding structure for the wireless power receiver shown in FIG. 9.
  • FIG. 12 is a graph illustrating a distribution of coupling coefficients between the wireless power transmitters and receivers according to the shielding structures shown in FIGS. 10 and 11.
  • the coupling coefficient distribution is an index indicating how well coupling is performed between the wireless power transmitter and the wireless power receiver, and the larger the coupling coefficient distribution is, the higher the wireless power transmission efficiency is.
  • the measurement was performed based on the wireless power receiver having shielding number a of FIG. 11.
  • the coupling coefficient distribution according to the shielding structure of the wireless power receiver illustrated in FIG. 12 (b) was measured based on the wireless power transmitter having the shielding structure of FIG. 10.
  • the coupling coefficient distribution of the shield structures 9 to 11 was found to be higher than 0.62. That is, as a result of measuring the coupling coefficient for each shield structure for the transmitter, the wireless power transmission efficiency of shield structures No. 9 to 11 was the highest. Therefore, in the present specification, it is proposed to use the shield structures No. 9 to No. 11 as shield structures for the wireless power transmitter.
  • the coupling coefficient distribution of the c shield structure was the highest as 0.626. That is, as a result of measuring the coupling coefficient for each shield structure for the receiver, the wireless power transmission efficiency of shield number c was the highest. Accordingly, in the present specification, it is proposed to use the c shielding structure as the shielding structure for the wireless power receiver corresponding to the shielding structure for the wireless power transmitters 9 to 11 described above.
  • FIG. 13 is a simulation result of measuring electromagnetic waves of the wireless charging system combining the 11 th shield structure and the c th shield structure.
  • the wireless power system applying the shielding structures 11 and c has been confirmed to have a very high power transmission efficiency by increasing the coupling coefficient up to 0.65.
  • FIG. 14 is a graph illustrating a distribution of coupling coefficients between a wireless power transmitter / receiver according to an outer diameter and an inner diameter length of a single coil for a wireless power transmitter combined with a shielding structure proposed in the present invention.
  • FIG. 14 (a) shows the distribution of coupling coefficients between the wireless power transmitter / receiver according to the outer diameter of the single coil when the inner diameter of the single coil for the wireless power transmitter is fixed to 80 mm when the shielding structures 11 and c are applied.
  • Indicates. 14 (b) shows the distribution of coupling coefficients between the wireless power transmitter / receiver according to the inner diameter of the single coil when the outer diameter of the single coil for the wireless power transmitter is fixed to 190 mm when the shielding structures 11 and c are applied. .
  • the coupling coefficient was the highest as 0.64. That is, the wireless power transmission efficiency was the highest when the outer diameter of the single coil is 190mm.
  • the coupling coefficient was the highest as 0.64. That is, when the inner diameter of the single coil is 80mm, the wireless power transmission efficiency is the highest.
  • an outer diameter of a single coil for a wireless power transmitter may be determined to be 190 ( ⁇ 5) mm and an inner diameter of 80 ( ⁇ 5) mm, which is determined by an optimal length of wireless power efficiency according to simulation results.
  • the single coil may be configured by stacking two layers of wire rotated by about 32 ( ⁇ 1) turns, in which case the thickness of the single coil may be about 3.3 mm to 3.6 mm.
  • the inductance of a single coil combined with a shielding agent may be about 256 ( ⁇ 10) uH.
  • the remaining physical properties are substantially the same as the dual coil.
  • the outer diameter of the single coil for the wireless power receiver may be determined to be about 170 ( ⁇ 5) mm, the inner diameter is about 75 ( ⁇ 5) mm.
  • the single coil may be configured by stacking two layers of wire rotated by about 28 ( ⁇ 1) turns, in which case the thickness of the single coil may be about 3.3 mm to 3.6 mm.
  • 15 is a graph showing power transmission efficiency of a wireless power transmitter / receiver according to an embodiment of the present invention.
  • the distance (ie, z-distance) between the wireless power transmitter and the receiver was kept below 2 cm.
  • the wireless power transmission / reception efficiency of the wireless power transmitter / receiver to which the structure proposed in the present specification is applied is maintained at 88% or more, and thus has high efficiency.
  • the wireless power transmitter / receiver of the present invention has the highest wireless power transmission efficiency when the received power is about 1500W to 1800W.
  • FIG. 16 is a graph illustrating an electromagnetic wave B emitted by a wireless power transmitter / receiver according to an embodiment of the present invention.
  • the experiment to obtain this graph follows the standard method of electromagnetic measurement introduced in IEC62233 and assumes a wireless power transmission / reception of about 2.1 kW.
  • the values determined in ICNIRP 98 and ICNIRP 2010 were used as reference electromagnetic wave (Bref) values.
  • B / Bref may be maintained at 40 (when Bref is ICNIRP 98) or 10 or less (when Bref is ICNIRP 2010). That is, it can be seen from the graph of FIG. 16 that the wireless power transmitter / receiver of the present invention satisfies all predefined electromagnetic emission criteria.
  • the present invention can be applied to various wireless charging technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명의 일 실시예에 따르면, 무선 전력 송신기용 코일 어셈블리에 있어서, 와이어로 구성되며 내부에 원형의 홀(hole)이 형성된, 싱글 코일; 및 상기 싱글 코일과 결합되는 복수의 차폐재들(Ferrites); 을 포함하되, 상기 싱글 코일의 외경(Outer diameter)은 약 185mm 이상 및 195mm 이하이며, 상기 싱글 코일의 내경(Inner diameter)은 약 75mm 이상 및 85mm 이하일 수 있다.

Description

무선 전력 전송 시스템의 구조
본 명세서는 무선 전력 전송 시스템의 공진 구조를 대상으로 한다.
무접점(Contactless) 무선 전력 전송 시스템은 기존의 유선을 통해 에너지를 전송하여 전자기기의 전원으로 사용하는 방식에서, 선을 제거하고 전자기적으로 에너지를 전달하는 에너지 전달 방식이다. 무접점 무선 전력 전송 시스템에는 전자기 유도 방식 및 공진 방식이 존재한다. 전자기 유도 방식은 전력 송신부에서 전력 송신 코일(1차 코일)을 통해 자기장을 발생시키고, 전류가 유도될 수 있는 위치에 수신 코일(2차 코일)을 위치시킴으로써 전력을 전달하는 방식이다. 공진 방식은, 송신 코일 및 수신 코일 간의 공명 현상을 이용하여 에너지를 전송한다. 다만, 1차 코일의 공진 주파수와 2차 코일의 공진 주파수를 동일하게 시스템을 구성함으로써 코일 간의 공진 모드 에너지 결합을 사용한다.
기존 유도 방식 무선 전력 전송 시스템은 최대 5W(수신부 기준)의 저전력 휴대 기기(스마트폰)에 적용되어 별도 전원선을 휴대 기기에 꽂지 않고 무선 충전기(송신부)에 올려 놓으면 충전이 되는 제품으로 이미 시장에 널리 소개되어 있다.
최근 들어 동일한 원리인 자기 유도 방식을 이용해서 보다 높은 전력을 무선으로 전송하는 기술이 소개되고 있고, 이를 제품에 적용하기 위한 국제 표준화 작업도 진행 중에 있다.
자기 유도 방식을 이용한 고출력 무선 전력 전송을 적용할 수 있는 대표적 제품은 주방용 가전 기기로, 일반적인 주방 가전 기기의 경우 200W~2.4kW 전력의 전송 지원을 요구한다.
따라서, 본 발명에서는 이와 같은 주방용 가전 기기에 무선 전력 전송 시스템을 적용하여, 별도의 전원선 연결 없이도 테이블의 특정 위치(하단에 송신부가 위치한 경우)에 기기를 올려놓으면 무선으로 동작할 수 있도록, 무선 전력 전송 시스템의 핵심 구성 요소인 공진 구조를 제안하고자 한다.
본 명세서에서는 자기장 기반 무선 전력 전송 기술을 가전 기기에 적용하여, 200W~2.4kW(중/대전력) 범위에서 효율적으로 전력을 무선 전송할 수 있는 공진 구조를 제안하고자 한다.
본 발명의 일 실시예에 따르면, 무선 전력 송신기용 코일 어셈블리에 있어서, 와이어로 구성되며 내부에 원형의 홀(hole)이 형성된, 싱글 코일; 및 상기 싱글 코일과 결합되는 복수의 차폐재들(Ferrites); 을 포함하되, 상기 싱글 코일의 외경(Outer diameter)은 약 185mm 이상 및 195mm 이하이며, 상기 싱글 코일의 내경(Inner diameter)은 약 75mm 이상 및 85mm 이하일 수 있다.
또한, 상기 복수의 차폐재들 각각은 동일한 방향으로 돌출된 제1 및 제2 돌출부를 포함하고, 상기 싱글 코일은 상기 복수의 차폐재들의 상기 제1 및 제2 돌출부 사이에 삽입되어 상기 복수의 차폐제들과 결합될 수 있다.
또한, 상기 싱글 코일은 상기 와이어가 기설정된 턴 수(Number of turns)만큼 감겨 형성될 수 있다.
또한, 상기 기설정된 턴 수는 약 32번 이상 및 33번 이하일 수 있다.
또한, 상기 싱글 코일은 상기 와이어가 2 레이어로 쌓여 형성되며, 총 약 3.3mm 및 3.6mm 이하일 수 있다.
또한, 상기 코일 어셈블리의 인덕턴스(Inductance)는 약 246uH이상 및 266uH 이하일 수 있다.
또한, 상기 복수의 차폐제들의 초기 투과율(Initial permeability of ferrite)은 2500 초과일 수 있다.
또한, 본 발명의 다른 실시예에 따른 무선 전력 송신기에 있어서, 자기장을 생성하는 코일을 포함하는, 코일 어셈블리; DC 신호를 AC 신호로 전환하는, 인버터; 상기 인버터와 상기 코일 사이의 임피던스 매칭을 제공하는, 탱크 회로(tank circuit); 전력 수신기와 통신을 수행하는 통신 유닛; 및 전력 전달을 컨트롤하는, 컨트롤 유닛; 을 포함하되, 상기 코일 어셈블리는, 와이어로 구성되며 내부에 원형의 홀(hole)이 형성된 싱글 코일 및 상기 싱글 코일과 결합되는 복수의 차폐재들(Ferrites); 을 포함하며, 상기 싱글 코일의 외경(Outer diameter)은 약 185mm 이상 및 195mm 이하이며, 상기 싱글 코일의 내경(Inner diameter)은 약 75mm 이상 및 85mm 이하일 수 있다.
또한, 상기 복수의 차폐재들 각각은 동일한 방향으로 돌출된 제1 및 제2 돌출부를 포함하고, 상기 싱글 코일은 상기 복수의 차폐재들의 상기 제1 및 제2 돌출부 사이에 삽입되어 상기 복수의 차폐제들과 결합될 수 있다.
또한, 상기 싱글 코일은 상기 와이어가 기설정된 턴 수(Number of turns)만큼 감겨 형성될 수 있다.
또한, 상기 기설정된 턴 수는 약 32번 이상 및 33번 이하일 수 있다.
또한, 상기 싱글 코일은 상기 와이어가 2 레이어로 쌓여 형성되며, 총 약 3.3mm 및 3.6mm 이하일 수 있다.
또한, 상기 코일 어셈블리의 인덕턴스(Inductance)는 약 246uH이상 및 266uH 이하일 수 있다.
또한, 상기 복수의 차폐제들의 초기 투과율(Initial permeability of ferrite)은 2500 초과일 수 있다.
또한, 본 발명의 다른 실시예에 따른 무선 전력 수신기용 코일 어셈블리에 있어서, 와이어를 포함하며 내부에 원형의 홀(hole)이 형성된, 싱글 코일; 및 상기 싱글 코일과 결합되는 복수의 차폐재들(Ferrites); 을 포함하되, 상기 싱글 코일의 외경(Outer diameter)은 약 165mm 이상 및 175mm 이하이며, 상기 싱글 코일의 내경(Inner diameter)은 약 70mm 이상 및 80mm 이하이고, 상기 복수의 차폐재들 각각은 동일한 방향으로 돌출된 제1 및 제2 돌출부를 포함하고, 상기 싱글 코일은 상기 복수의 차폐재들의 상기 제1 및 제2 돌출부 사이에 삽입되어 상기 복수의 차폐제들과 결합될 수 있다.
본 발명의 일 실시예에 따르면, 무선 전력 송/수신 시스템에 싱글 코일 구조를 적용함으로써, 시스템 복잡성이 줄어들고, 200W~2.4kW의 무선 충전의 지원이 가능하며, 시스템의 커플링이 높으며, 방출되는 전자파 양이 EMF 규정(ICNIRP)을 만족하여 인체 유해 가능성을 줄인다는 효과를 갖는다.
또한, 본 발명의 일 실시예에 따르면, 무선 전력 송/수신기 사이의 결합 계수가 높은 싱글 코일 구조 및 차폐 구조를 적용하여 무선 전력 송/수신 효율이 최적화한다는 효과를 갖는다.
이외에, 본 발명의 실시예에 따른 다양한 효과는 이하에서 상세히 후술하기로 한다.
도 1에는 무선 충전 시스템에서 송신 및 수신하는 전력 양에 따라 전자 기기들을 분류하여 도시하였다.
도 2는 본 발명의 일 실시예에 따른 무선 전력 송/수신 시스템의 블록도이다.
도 3은 본 발명의 일 실시예에 따른 IPS의 블록도이다.
도 4는 본 발명의 일 실시예에 따른 무선 기기의 블록도이다.
도 5는 본 발명의 일 실시예에 따른 직접 가열 기기의 블록도이다.
도 6은 지원 가능한 전력량에 따라 무선 전력 수신 장비를 클래스별로 구분한 표이다.
도 7은 무선 전력 송신기용 코일 어셈블리에 포함되는 듀얼 코일 구조 및 싱글 코일 구조를 도시한 도면이다.
도 8은 무선 전력 수신기용 코일 어셈블리에 포함되는 싱글 코일 구조들을 도시한 도면이다.
도 9는 본 발명의 일 실시예에 따른 무선 전력 송/수신기용 코일 어셈블리를 도시한 도면이다.
도 10은 본 발명의 일 실시예에 따른 무선 전력 송신기용 코일 어셈블리의 차폐 구조의 평면도이다.
도 11은 본 발명의 일 실시예에 따른 무선 전력 수신기용 코일 어셈블리의 차폐 구조의 평면도, 확대도 및 단면도이다.
도 12는 도 10 및 11에 도시된 차폐 구조에 따른 무선 전력 송/수신기 사이의 결합 계수 분포를 나타낸 그래프이다.
도 13은 11번 차폐 구조 및 c번 차폐 구조를 결합한 무선 충전 시스템의 전자기파를 측정한 시뮬레이션 결과이다.
도 14는 본 발명에서 제안된 차폐 구조와 결합되는 무선 전력 송신기용 싱글 코일의 외경 및 내경 길이에 따른 무선 전력 송/수신기 사이의 결합 계수 분포를 나타낸 그래프이다.
도 15는 본 발명의 일 실시예에 따른 무선 전력 송/수신기의 전력 송신 효율을 나타낸 그래프이다.
도 16은 본 발명의 일 실시예에 따른 무선 전력 송/수신기가 방사하는 전자파(B)에 관한 그래프이다.
본 명세서에서 사용되는 용어는 본 명세서에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한 특정 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 실시예의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 아닌 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
더욱이, 이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 실시예를 상세하게 설명하지만, 실시예들에 의해 제한되거나 한정되는 것은 아니다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
무선 전력 송/수신기(Transmitter/Receiver)들의 표준화를 위해 WPC(Wireless Power Consortium)에서 무선 전력 송/수신 관련 기술을 규격화하고 있다.
최근까지 개발되는 무선 충전 시스템은 약 5W까지의 저전력 송/수신을 지원할 수 있다. 다만, 최근 모바일 기기의 크기가 커지고 배터리 용량도 증가되고 있어, 이러한 저전력 충전 방식의 경우 충전 시간이 길고 효율이 떨어지는 문제점이 있다. 이에, 약 15W~20W까지의 중간 전력 송/수신을 지원하는 무선 충전 시스템이 개발되고 있다. 또한, 충전 효율을 증대시키기 위해 복수의 전자 기기를 동시에 충전하기 위한 공진 방식이 추가된 무선 충전 시스템 또한 개발되고 있다.
도 1은 무선 전력 송/수신 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 1에는 무선 전력 송/수신 시스템에서 송신 및 수신하는 전력 양에 따라 전자 기기들을 분류하여 도시하였다.
도 1을 참조하면, 스마트 시계(Smart watch), 스마트 글래스(Smart Glass), HMD(Head Mounted Display), 및 스마트 링(Smart ring)과 같은 웨어러블 기기들 및 이어폰, 리모콘, 스마트폰, PDA, 태블릿 PC 등의 모바일 전자 기기들(또는 포터블 전자 기기들)에는 소전력(약 5W이하 또는 약 20W 이하) 무선 충전 방식이 적용될 수 있다. 노트북, 로봇 청소기, TV, 음향 기기, 청소기, 모니터와 같은 중/소형 가전 기기들에는 중전력(약 50W이하 또는 약 200W)이하) 무선 충전 방식이 적용될 수 있다. 믹서기, 전자 레인지, 전기 밥솥과 같은 주방용 가전 기기, 휠체어, 전기 킥보드, 전기 자전거, 전기 자동차 등의 개인용 이동 기기들(또는, 전자 기기/이동 수단들)은 대전력(약 2kW 이하 또는 22kW이하) 무선 충전 방식이 적용될 수 있다.
상술한(또는 도 1에 도시된) 전자 기기들/이동 수단들은 후술하는 무선 전력 수신기를 각각 포함할 수 있다. 따라서, 상술한 전자 기기들/이동 수단들은 무선 전력 송신기로부터 무선으로 전력을 수신하여 충전될 수 있다.
이하에서는 전력 무선 충전 방식이 적용되는 모바일 기기를 중심으로 설명하나 이는 실시예에 불과하며, 본 발명에 따른 무선 충전 방법은 상술한 다양한 전자 기기에 적용될 수 있다.
도 2는 본 발명의 일 실시예에 따른 무선 전력 송/수신 시스템의 블록도이다.
도 2를 참조하면, 무선 전력 송/수신 시스템(2000)은 무선으로 전력을 수신하는 모바일 기기(Mobile Device)(2010) 및 무선으로 전력을 송신하는 베이스 스테이션(Base Station)(2020)을 포함한다. 이하에서 모바일 기기는 ‘전력 수신 장비(Power Receiver Product)’로, 베이스 스테이션은 ‘전력 송신 장비(Power Transmitter Product)’로 지칭될 수도 있다.
모바일 기기(2010)는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 전력 수신기(Power Receiver)(2011) 및 전력 수신기(2011)에서 수신한 전력을 전달받아 저장하고 기기에 공급하는 로드(Load)(2012)를 포함한다.
전력 수신기(2011)는 전력 픽업 유닛(Power Pick-Up Unit)(2013) 및 통신/컨트롤 유닛(Communications & Control Unit)(2014)을 포함할 수 있다. 전력 픽업 유닛(2013)은 2차 코일을 통해 무선 전력 신호를 수신하여 전기 에너지로 변환할 수 있다. 통신/컨트롤 유닛(2014)은 전력 신호 송/수신(전력 전달/수신)을 제어할 수 있다.
베이스 스테이션(2020)은 유도 전력(inductive power) 또는 공진 전력(resonant power)를 제공하는 장치로서, 적어도 하나의 전력 송신기(Power Transmitter)(2021) 및 시스템 유닛(2024)을 포함할 수 있다.
전력 송신기(2021)는 유도 전력 또는 공진 전력을 전송하고, 전송을 제어할 수 있다. 전력 송신기(2021)는, 1차 코일(Primary Coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환하는 전력 변환 유닛(Power Conversion Unit)(2022) 및 적절한 레벨로 전력을 전달하도록 전력 수신기(2011)와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 유닛(Communications & Control Unit)(2023)을 포함할 수 있다. 시스템 유닛(2024)은 입력 전력 프로비저닝(provisioning), 복수의 전력 송신기들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션(2020)의 기타 동작 제어를 수행할 수 있다.
전력 송신기(2021)는 동작 포인트를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트(operating point)는 주파수(또는 위상), 듀티 사이클(duty cycle), 듀티 비(duty ratio) 및 전압 진폭의 조합에 해당될 수 있다. 전력 송신기(2021)는 주파수(또는 위상), 듀티 사이클, 듀티비 및 전압 진폭 중 적어도 하나를 조절하여 송신 전력을 컨트롤할 수 있다.
또한, 전력 송신기(2021)는 일정한 전력을 공급하고, 전력 수신기(2011)가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.
무선 전력을 전송하는 무선 전력 송/수신 시스템(혹은 전력 송신기 및/또는 수신기)은 유도 전력 전송(Inductive Power Transfer) 모드, 유도 가열(Induction Heating; IH) 모드, 또는 상기 두 모드의 조합으로 동작할 수 있다.
유도 전력 전송 모드에서 전력 송신기(2021)는 전력(유도 또는 공진 전력)을 전력 수신기(2011)로 전송하여 전력 수신기를 충전할 수 있다.
유도 가열 모드에서 전력 송신기(2021)는 전력 수신기(2011)로 전력을 전송하여 전력 수신기를 가열할 수 있다. 전력 송신기(2021)가 전력 수신기(2011)를 가열하는 원리는 자기 유도(magnetic induction) 현상과 관련이 있다. 자기 유도 현상은, 시간에 따라 변하는 자기장인 시변 자기장(time-varying magnetic field)이 적절한 곳에 위치한 도체(conductor)에 기전력(electromotive force)을 발생시키는 현상이다. 만일, 도체가 금속제 시트(sheet of metal)로 구성된 경우라면, 기전력은 상기 도체에 와상 전류를 흐르게 함으로써 상기 도체를 가열할 수 있다. 이러한 현상은 유도 가열 효과로도 잘 알려져 있으며, 최근에는 이를 이용하여 조리용 인덕션 레인지, IH 압력 밥솥 등 가정에서 사용하는 다양한 가전 제품들이 출시되고 있다.
이하에서는 이러한 유도 가열 모드 및/또는 유도 전력 전송 모드로 동작하는 무선 송/수신 시스템의 전력 송신 장비 및 전력 수신 장비에 관해 보다 상세히 후술하기로 한다.
이하에서 전력 송신 장비는 ‘유도 전력 공급기(Inductive Power Supply; IPS)’이라 지칭될 수 있다. 또한, 이하에서 전력 수신 장비는, 크게 ‘무선 기기(Cordless Appliance)(또는 간접 가열 기기(Indirect Heating Appliance))’ 및 ‘직접 가열 기기(Direct Heating Appliance)’로 구별될 수 있다. 무선 기기는 IPS로부터 전력(유도 또는 공진 전력)을 수신하여 이를 전기적 전력(electrical power)으로 변환하고, 이를 모터 및/또는 가열 부품(heating element)을 구동하는 데 사용하는 기기를 나타낼 수 있다. 따라서, 무선 기기는 유도 전력 전송(또는 수신) 모드로 동작할 수 있다. 또한, 직접 가열 기기는 유도 열(induction heating)에 의해 베이스에 포함되어 있는 평평한 금속이 직접적으로 가열되는 기기를 나타낼 수 있다. 따라서, 직접 가열 기기는 유도 전력 전송 모드 및/또는 유도 가열 모드로 동작할 수 있다.
도 3은 본 발명의 일 실시예에 따른 IPS의 블록도이다.
도 3을 참조하면, IPS는 상기 IPS를 덮는 커버(3010), 전력 송신기(PTx)로 전력을 공급하는 Mains Filter(또는 전력 어답터)(3070), 무선 전력을 송신하는 전력 송신기(PTx) 및 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(3060) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(3060)는 IPS에 선택적으로(optionally) 포함되거나, IPS의 다른 사용자 인터페이스로서 포함될 수도 있다.
IPS의 중심 엘리멘트인 전력 송신기(PTx)는 코일 어셈블리(3020), 탱크 회로(tank circuit)(또는 임피던스 매칭 회로)(3040), 인버터(3080), 통신 유닛(3030) 및 컨트롤 유닛(3050) 중 적어도 하나를 포함할 수 있다.
코일 어셈블리(3020)는 자기장을 생성하기 위해 적어도 하나의 코일 뿐만 아니라 페라이트 엘리먼트(ferrite element)를 포함하는(또는 나르는) 프레임(또는 차폐제(ferrite/ferrite leg)))을 포함할 수 있다.
탱크 회로(3040)는 에너지 저장 커패시터(energy storage capacitor) 및 추가적인 임피던스 매칭 엘리먼트들을 포함할 수 있다.
인버터(3080)는 DC 인풋을 AC 신호로 전환할 수 있다. 인버터(3080)는 풀-브리지 토폴로지(full-bridge topology)를 포함하여 주파수 제어 및 듀티 사이클을 지원할 수 있다.
통신 유닛(3030)은 전력 코일과 중심이 같은 분리된 코일을 별도로 포함하며, 이를 이용해 전력을 전송함으로써 전력 수신기(PRx)와 통신을 수행할 수 있다. 이러한 구성은 공간적으로 로컬라이즈된 통신 프로토콜(전력선 통신: in-band communication)을 제공하며, IPS가 전력을 제공하고 있는 기기와의 (1:1) 통신 수행을 보장한다. 이때, 전력선 통신 프로토콜로서 시분할 다중 방식(Time Division Multiplex)이 이용될 수 있다.
컨트롤 유닛(3050)은 상술한 IPS의 구성들을 제어할 수 있다. 특히, 컨트롤 유닛(3050)은 전력 송신기(PTx)의 통신 및 전력 전달을 제어할 수 있다. 또한, 컨트롤 유닛(3050)은 상술한 IPS의 구성들 중 적어도 하나를 제어하여 본 명세서에서 설명하는 다양한 실시예들을 수행할 수 있다.
상술한 IPS의 구성들은 별개의 유닛/소자/칩셋으로 구비되거나, 하나의 유닛/소자/칩셋으로 구비될 수도 있다. 예를 들어, 통신 유닛(3030) 및 컨트롤 유닛(3050)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다. 또한, 상술한 IPS의 구성들은 선택적으로 포함되거나, 새로운 구성이 IPS에 추가될 수 있다.
도 4는 본 발명의 일 실시예에 따른 무선 기기의 블록도이다. 본 명세서에서 무선 기기는 믹서기(blender), 착즙기(juicer), 전기 밥솥(rice cooker), soy milk maker와 같이 IPS에 의해 무선 충전되는 전동 및/또는 간접 가열 기기(Indirect Heating Appliance)를 나타낸다.
도 4를 참조하면, 무선 기기는 전력 수신 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(4020), 무선 전력을 수신하는 전력 수신기(PRx), 로드 회로(4080) 및 무선 기기를 커버하거나 받치는 베이스(4010) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(4020)는 무선 기기에 선택적으로(optionally) 포함되거나, 무선 기기의 다른 사용자 인터페이스로서 포함될 수도 있다.
무선 기기의 중심 엘리먼트인 전력 수신기(PRx)는 전력 컨버터(4050), 탱크 회로(또는 임피던스 매칭 회로)(4060), 코일 어셈블리(4070), 통신 유닛(4040) 및 컨트롤 유닛(4030) 중 적어도 하나를 포함할 수 있다.
전력 컨버터(4050)는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 전력 컨버터(4050)는 정류기(rectifier)를 포함할 수 있다. 이때, 정류기는 전파 정류기 토폴로지(full-wave rectification topology)를 가질 수 있다. 추가로, 전력 컨버터(4050)는 전력 수신기(PRx)의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
탱크 회로(4060)는 에너지 저장 커패시터(energy storage capacitor) 및 추가적인 임피던스 매칭 엘리먼트들을 포함할 수 있다.
코일 어셈블리(4070)는 자기장을 생성하기 위해 적어도 하나의 코일 뿐만 아니라 페라이트 엘리먼트(ferrite element)를 포함하는(또는 나르는) 프레임(또는 차폐제)을 포함할 수 있다.
통신 유닛(4040)은 전력 코일과 중심이 같은 분리된 코일을 별도로 포함하며, 이를 이용해 전력을 전송함으로써 전력 송신기(PTx)와 통신을 수행할 수 있다. 이러한 구성은 공간적으로 로컬라이즈된 통신 프로토콜(전력선 통신: in-band communication)을 제공하며, 무선 기기로 전력을 제공하고 있는 IPS와의 통신 수행을 보장한다.
컨트롤 유닛(4030)은 상술한 무선 기기의 구성들을 제어할 수 있다. 특히, 컨트롤 유닛(4030)은 전력 수신기(PRx)의 통신 및 전력 수신을 제어할 수 있다. 또한, 컨트롤 유닛(4030)은 상술한 무선 기기의 구성들 중 적어도 하나를 제어하여 본 명세서에서 설명하는 다양한 실시예들을 수행할 수 있다.
상술한 무선 기기의 구성들은 별개의 유닛/소자/칩셋으로 구비되거나, 하나의 유닛/소자/칩셋으로 구비될 수도 있다. 예를 들어, 통신 유닛(4040) 및 컨트롤 유닛(4030)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다. 또한, 상술한 무선 기기의 구성들은 선택적으로 포함되거나, 새로운 구성이 무선 기기에 추가될 수 있다.
도 5는 본 발명의 일 실시예에 따른 직접 가열 기기의 블록도이다. 본 명세서에서 직접 가열 기기는 주전자, 커피 포트, 스마트 팬 등과 같이 유도 열을 이용하여 직접 가열되는 다양한 가전 기기를 나타낸다.
도 5를 참조하면, 직접 가열 기기는 전력 수신 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(5020), 무선 전력을 수신하는 전력 수신기(PRx), 금속 물질을 포함하며 직접 가열 기기를 커버하거나 받치는 베이스(5010) 및 센서 유닛(5030) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(5010)는 직접 가열 기기에 선택적으로(optionally) 포함되거나, 직접 가열 기기의 다른 사용자 인터페이스로서 포함될 수도 있다.
직접 가열 기기의 중심 엘리먼트인 전력 수신기(PRx)는 전력 픽업(power pickup) 유닛(5060), 통신 유닛(5050) 및 컨트롤 유닛(5040) 중 적어도 하나를 포함할 수 있다.
전력 픽업 유닛(5060)은 IPS로부터 전력을 수신하여 직접 가열 기기를 구동할 수 있다.
통신 유닛(5050)은 전력 코일과 중심이 같은 분리된 코일을 별도로 포함하며, 이를 이용해 전력을 전송함으로써 전력 송신기(PTx)와 통신을 수행할 수 있다. 이러한 구성은 공간적으로 로컬라이즈된 통신 프로토콜(전력선 통신: in-band communication)을 제공하며, 직접 가열 기기로 전력을 제공하고 있는 IPS와의 통신 수행을 보장한다.
센서 유닛(5030)은 직접 가열 기기의 온도를 센싱 및/또는 모니터링할 수 있다.
컨트롤 유닛(5040)은 상술한 직접 가열 기기의 구성들을 제어할 수 있다. 특히, 컨트롤 유닛(5040)은 전력 수신기(PRx)의 통신 및 전력 수신을 제어할 수 있다. 또한, 컨트롤 유닛(5040)은 상술한 직접 가열 기기의 구성들 중 적어도 하나를 제어하여 본 명세서에서 설명하는 다양한 실시예들을 수행할 수 있다.
상술한 직접 가열 기기의 구성들은 별개의 유닛/소자/칩셋으로 구비되거나, 하나의 유닛/소자/칩셋으로 구비될 수도 있다. 예를 들어, 통신 유닛(5050) 및 컨트롤 유닛(5040)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다. 또한, 상술한 직접 가열 기기의 구성들은 선택적으로 포함되거나, 새로운 구성이 직접 가열 기기에 추가될 수 있다.
도 6은 지원 가능한 전력량에 따라 무선 전력 수신 장비를 클래스별로 구분한 표이다.
도 6을 참조하면, 약 200~250W의 중전력 무선 충전을 지원하는 무선 전력 수신 장비는 class A로, 약 1.2kW~1.4kw의 대전력 무선 충전을 지원하는 무선 전력 수신 장비는 class B로, 약 1.5kW~2.4kW의 대전력 무선 충전을 지원하는 무선 전력 수신 장비는 class C로 구분될 수 있다.
본 명세서에서는 이러한 class A~C(주로는 class B 및 C)의 무선 전력 수신 장비 및 이에 대응되는 무선 전력 송신 장비에 적용될 수 있는 효율적인 코일 구조로서 싱글 코일 구조를 제안하며, 이에 대해서 이하에서 상세히 후술하기로 한다.
도 7은 무선 전력 송신기용 코일 어셈블리에 포함되는 듀얼 코일 구조 및 싱글 코일 구조를 도시한 도면이다.
도 7을 참조하면, 듀얼/싱글 코일의 경우 모두 내부에 원형의 홀(hole)을 갖는 도넛 형태(또는 링 형태)를 가질 수 있으며, 와이어가 기설정된 턴수(number of turns) 만큼 원형으로 감겨 형성될 수 있다. 이 경우, 와이어로는 외경 약 3.3~3.6mm, 세선 직경 약 0.1mm, 및 400~600 가닥으로 구성된 리츠(Litz) 와이어가 사용될 수 있다.
듀얼 코일의 경우, 외곽 코일(또는 주(primary) 코일)(Outer Coil) 및 내부 코일(또는 부(secondary) 코일)의 두 가지 종류의 코일들로 구성될 수 있다. 외곽 코일의 외경(Outer diameter) 및 내경(Inner diameter)은 내부 코일의 외경 및 내경보다 크다. 예를 들어, 외곽 코일의 외경은 약 220mm, 내경은 약 170mm일 수 있으며, 내부 코일의 외경은 약 160mm, 내경은 약 62mm일 수 있다. 외곽 코일 내부에 형성된 원형의 홀 내에 내부 코일이 위치함으로써 듀얼 코일 구조가 형성된다.
싱글 코일의 경우, 듀얼 코일과 달리 하나의 코일로 구성될 수 있다. 이때, 싱글 코일의 외경 및 내경은 무선 전력 전송 효율 성능이 최적화된 길이로 선택될 수 있으며, 본 명세서에서는 싱글 코일의 외경으로서 약 190(±5)mm, 내경으로서 약 80(±5)mm을 선택할 것을 제안한다. 상기 길이를 외경 및 내경의 길이로서 선택함에 따른 효율성 상승 결과는 도 14 내지 17과 관련하여 이하에서 상세히 설명하기로 한다.
듀얼 코일에서 내부 코일은 약 200W~2kW 범위에서의 무선 전력 송신 지원이 가능한데 비해, 일부 무선 전력 수신 장비의 경우 2kW 이상의 무선 충전의 지원을 요구하므로, 외곽 코일의 사용이 제한될 수 있다. 나아가, 이러한 제한에 비해 듀얼 코일의 경우 시스템 복잡도가 높다(2개의 코일 존재).
이에 반해 싱글 코일 구조의 경우, 시스템의 복잡도가 적고(1개의 코일 존재), 약 200W~2.4kW의 무선 충전의 지원이 가능하며, 시스템의 커플링이 높으며, 방출되는 전자파 양이 EMF 규정(ICNIRP)을 만족하여 인체 유해 가능성도 낮다는 장점을 갖는다.
도 8은 무선 전력 수신기용 코일 어셈블리에 포함되는 싱글 코일 구조들을 도시한 도면이다. 보다 상세하게는, 도 8(a)는 듀얼 코일을 포함하는 무선 전력 송신기에 대응되는 무선 전력 수신기용 코일 구조이며, 도 8(b)는 싱글 코일을 포함하는 무선 전력 송신기에 대응되는 무선 전력 수신기용 코일 구조이다.
도 8을 참조하면, 각 싱글 코일 모두 내부에 원형의 홀(hole)을 갖는 도넛 형태(또는 링 형태)를 가질 수 있으며, 와이어(예를 들어, 리츠(Litz) 와이어)가 기설정된 턴수(number of turns) 만큼 원형으로 감겨 형성될 수 있다.
듀얼 코일과 대응되는 무선 전력 수신기용 싱글 코일의 경우(도 8(a)), 외경은 약 160mm, 내경은 약 74mm일 수 있다.
싱글 코일과 대응되는 무선 전력 수신기용 싱글 코일의 경우(도 8(b))에도, 외경 및 내경은 무선 전력 수신 효율 성능이 최적화된 길이로 선택될 수 있으며, 본 명세서에서는 외경으로서 약 170(±5)mm, 내경으로서 약 75(±5)mm을 선택할 것을 제안한다.
도 9는 본 발명의 일 실시예에 따른 무선 전력 송/수신기용 코일 어셈블리를 도시한 도면이다. 보다 상세하게는, 도 9(a)는 무선 전력 송/수신기용 코일 어셈블리(TxC, RxC)의 분해 사시도, 도 9(b)는 무선 전력 송/수신기용 코일 어셈블리(TxC, RxC)의 사시도이다.
도 9를 참조하면, 본 발명에서 제안하는 무선 전력 송/수신기용 싱글 코일(C1, C2)은 모두 적어도 하나의 차폐제(F1, F2)와 결합될 수 있다. 차폐제(F1, F2)는 싱글/듀얼 코일로부터 누설되는 전자파(또는 전기장)을 최소화하며, 무선 전력 송/수신기 사이의 무선 전력 효율을 높이는 기능(즉, 결합 계수 상승)을 갖는다.
적어도 하나의 차폐제(F1, F2)는 싱글 코일(C1, C2)과 결합될 수 있으며, 무선 전력 송신기용 싱글 코일(C1)의 일면 및 무선 전력 수신기용 싱글 코일(C2)의 일면에 위치할 수 있다. 본 도면의 경우, 복수의 차폐제들(F1, F2)은 무선 전력 송신기용 싱글 코일(C1)의 하단 및 무선 전력 송신기용 싱글 코일(C2)의 상단에 위치할 수 있다.
각 차폐제(f)는 다양한 형상을 가질 수 있는데, 본 도면의 경우 차폐제(f)는 동일한 방향으로 돌출된 제1 및 제2 돌출부를 갖는 ‘ㄷ’자 형상을 갖는다. 이때, 싱글 코일(C1, C2)은 제1 및 제2 돌출부 사이에 삽입되어 차폐제(f)와 결합될 수 있다. 그러나, 이에 한정되는 것은 아니며, 차폐제(f)s는 누설 전자파를 최소화하며, 무선 전력 효율을 높일 수 있는 형상으로 구성될 수 있다. 또한, 복수개의 차폐제들(F1, F2)이 코일 어셈블리(TxC, RxC)에 포함되는 경우에는 상술한 목적을 달성하기 위해, 복수의 차폐제들(F1, F2)은 기설정된 규칙에 따라 배열되어 각 싱글 코일(C1, C2)과 결합될 수 있다.
이하에서는, 본 발명의 무선 전력 송/수신기용 코일 어셈블리(TxC, RxC)에 적용될 수 있는 다양한 차폐 구조를 소개하며, 이 중 가장 성능이 좋은 차폐 구조를 무선 전력 송/수신기용 코일 어셈블리(TxC, RxC)에 적용할 차폐 구조로서 제안한다.
도 10은 본 발명의 일 실시예에 따른 무선 전력 송신기용 코일 어셈블리의 차폐 구조의 평면도이다.
도 10을 참조하면, 무선 전력 송신기용 코일 어셈블리에 적용될 수 있는 차폐 구조는 다양할 수 있다. 보다 상세하게는, 차폐 구조로서 각 차폐제의 형상 및 복수의 차폐제들의 배치 구조는 실시예에 따라 다양하게 결정될 수 있으며, 본 명세서에서는 총 12종의 차폐 구조(1~12번)를 소개한다. 도 10에서 검정색 영역은 돌출부를 나타낸다. 참고로, 11번 차폐 구조는 도 9에 도시된 무선 전력 송신기용 차폐 구조와 동일하다.
도 11은 본 발명의 일 실시예에 따른 무선 전력 수신기용 코일 어셈블리의 차폐 구조의 평면도, 확대도 및 단면도이다.
도 11을 참조하면, 무선 전력 수신기용 코일 어셈블리에 적용될 수 있는 차폐 구조는 다양할 수 있다. 보다 상세하게는, 차폐 구조로서 각 차폐제의 형상 및 복수의 차폐제들의 배치 구조는 실시예에 따라 다양하게 결정될 수 있으며, 본 명세서에서는 총 5종의 차폐 구조(a~e번)를 소개한다. 도 11(a)는 5종 차폐제들의 배치 평면도이며, 도 11(b)는 도 11(a)에 도시된 차폐 구조를 구성하는 하나의 차폐제의 평면도이며, 도 11(c)는 도 11(b)에 도시된 각 차폐제의 단면도이다. 도 11(a) 및 11(b)에서 검정색 영역은 돌출부를 나타내며, 도 11(b) 및 11(c)에 나타난 길이의 단위는 mm이다. 참고로, c번 차폐 구조는 도 9에 도시된 무선 전력 수신기용 차폐 구조와 동일하다.
도 12는 도 10 및 11에 도시된 차폐 구조에 따른 무선 전력 송/수신기 사이의 결합 계수 분포를 나타낸 그래프이다. 여기서 결합 계수 분포는 무선 전력 송신기 및 무선 전력 수신기 사이에 얼마나 결합이 잘 되어 있는지를 나타내주는 지표로서 결합 계수 분포가 클수록 무선 전력 전송 효율이 높음을 의미한다.
도 12(a)에 도시된 무선 전력 송신기의 차폐 구조에 따른 결합 계수 분포의 경우, 도 11의 a번 차폐 구조를 갖는 무선 전력 수신기를 기준으로 측정하였다. 또한, 도 12(b)에 도시된 무선 전력 수신기의 차폐 구조에 따른 결합 계수 분포의 경우, 도 10의 11번 차폐 구조를 갖는 무선 전력 송신기를 기준으로 측정하였다.
도 12(a)를 참조하면, 9번~11번 차폐 구조들의 결합 계수 분포가 0.62 이상으로 높게 나타났다. 즉, 송신기용 차폐 구조별 결합 계수의 측정 결과 9번~11번 차폐 구조들의 무선 전력 송신 효율이 가장 높은 것으로 나타났다. 따라서, 본 명세서에서는 9번~11번 차폐 구조들을 무선 전력 송신기용 차폐 구조로 사용할 것을 제안한다.
도 12(b)를 참조하면, c번 차폐 구조의 결합 계수 분포가 0.626으로 가장 높게 나타났다. 즉, 수신기용 차폐 구조별 결합 계수의 측정 결과 c번 차폐 구조들의 무선 전력 송신 효율이 가장 높은 것으로 나타났다. 따라서, 본 명세서에서는 상술한 9번~11번의 무선 전력 송신기용 차폐 구조에 대응되는 무선 전력 수신기용 차폐 구조로서 c번 차폐 구조를 사용할 것을 제안한다.
이하에서는 무선 전력 송신기용 차폐 구조로서 11번 차폐 구조, 무선 전력 수신기용 차폐 구조로서 c번 차폐 구조를 적용한 무선 전력 시스템(도 9 참조)을 기준으로 설명한다.
도 13은 11번 차폐 구조 및 c번 차폐 구조를 결합한 무선 충전 시스템의 전자기파를 측정한 시뮬레이션 결과이다.
도 13을 참조하면, 11번 및 c번 차폐 구조를 적용한 무선 전력 시스템은 결합 계수가 최대 0.65까지 증가하여 매우 높은 전력 전송 효율을 갖는 것으로 확인되었다.
도 14는 본 발명에서 제안된 차폐 구조와 결합되는 무선 전력 송신기용 싱글 코일의 외경 및 내경 길이에 따른 무선 전력 송/수신기 사이의 결합 계수 분포를 나타낸 그래프이다. 특히, 도 14(a)는 11번 및 c번 차폐 구조가 적용된 경우, 무선 전력 송신기용 싱글 코일의 내경이 80mm로 고정되었을 때 해당 싱글 코일의 외경에 따른 무선 전력 송/수신기 사이의 결합 계수 분포를 나타낸다. 도 14(b)는 11번 및 c번 차폐 구조가 적용된 경우, 무선 전력 송신기용 싱글 코일의 외경이 190mm로 고정되었을 때 해당 싱글 코일의 내경에 따른 무선 전력 송/수신기 사이의 결합 계수 분포를 나타낸다.
도 14(a)를 참조하면, 싱글 코일의 외경이 190mm일 때 결합 계수가 0.64로 가장 높게 나타났다. 즉, 싱글 코일의 외경이 190mm일 때 무선 전력 송신 효율이 가장 높은 것으로 나타났다.
도 14(b)를 참조하면, 싱글 코일의 내경이 80mm일 때 결합 계수가 0.64로 가장 높게 나타났다. 즉, 싱글 코일의 내경이 80mm일 때 무선 전력 송신 효율이 가장 높은 것으로 나타났다.
이러한 실험 결과에 기초하여, 무선 전력 송신기용 싱글 코일의 구체적인 물리적 특성은 아래의 표 1과 같이 제안될 수 있다.
Figure PCTKR2016001652-appb-T000001
표 1을 참조하면, 무선 전력 송신기용 싱글 코일의 외경은 190(±5)mm, 내경은 80(±5)mm로 결정될 수 있으며, 이는 시뮬레이션 결과에 따라 무선 전력 효율이 최적화된 길이로 결정된 것이다. 또한, 싱글 코일은 약 32(±1) 턴수로 회전된 와이어가 2 레이어로 쌓여 구성될 수 있으며, 이 경우 싱글 코일의 두께는 약 3.3mm~3.6mm일 수 있다. 또한 차폐제와 결합된 싱글 코일의 인덕턴스는 약 256(±10)uH일 수 있다. 이외에 나머지 물리적 특성은 듀얼 코일과 실질적으로 동일하다.
또한, 상술한 무선 전력 송신기와 대응되는 c번 차폐 구조가 적용된 무선 전력 수신기용 싱글 코일의 구체적인 물리적 특성은 아래의 표 2와 같이 제안될 수 있다.
Figure PCTKR2016001652-appb-T000002
표 2를 참조하면, 무선 전력 수신기용 싱글 코일의 외경은 약 170(±5)mm, 내경은 약 75(±5)mm로 결정될 수 있다. 또한, 싱글 코일은 약 28(±1) 턴수로 회전된 와이어가 2 레이어로 쌓여 구성될 수 있으며, 이 경우 싱글 코일의 두께는 약 3.3mm~3.6mm일 수 있다.
도 15는 본 발명의 일 실시예에 따른 무선 전력 송/수신기의 전력 송신 효율을 나타낸 그래프이다. 본 그래프를 획득하기 위한 실험에서 무선 전력 송신기 및 수신기 사이의 거리(즉, z-distance)는 2cm 이하로 유지되었다.
도 15를 참조하면, 본 명세서에서 제안하는 구조가 적용된 무선 전력 송/수신기의 무선 전력 송/수신 효율은 88% 이상으로 유지되어 높은 효율을 갖는 것으로 나타났다. 특히, 본 발명의 무선 전력 송/수신기는 수신 전력이 약 1500W~1800W인 경우에 가장 높은 무선 전력 송신 효율을 갖는 것으로 나타났다.
도 16은 본 발명의 일 실시예에 따른 무선 전력 송/수신기가 방사하는 전자파(B)에 관한 그래프이다. 본 그래프를 획득하기 위한 실험은 IEC62233에 소개된 표준 전자파 측정 방법을 따랐으며, 약 2.1kW의 무선 전력 송/수신 상황을 가정하였다. 또한 기준 전자파(Bref) 값으로 ICNIRP 98 및 ICNIRP 2010에서 결정된 값을 사용하였다.
도 16을 참조하면, z-distance와 무관하게 B/Bref는 40(Bref가 ICNIRP 98의 경우) 또는 10 이하(Bref가 ICNIRP 2010인 경우)로 유지됨을 확인할 수 있다. 즉, 도 16의 그래프를 통해 본 발명의 무선 전력 송/수신기는 미리 규정된 전자파 방사 기준을 모두 만족함을 확인할 수 있다.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시예들을 병합하여 새로운 실시예를 구현하도록 설계하는 것도 가능하다. 또한, 상술한 장치는 상술한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상술한 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
또한, 이상에서는 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시예에 한정되지 아니하며, 청구 범위에서 청구하는 요지를 벗어남이 없이 당해 명세서가 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 명세서의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.
본 발명은 다양한 무선 충전 기술에 적용될 수 있다.

Claims (15)

  1. 무선 전력 송신기용 코일 어셈블리에 있어서,
    와이어로 구성되며 내부에 원형의 홀(hole)이 형성된, 싱글 코일; 및
    상기 싱글 코일과 결합되는 복수의 차폐재들(Ferrites); 을 포함하되,
    상기 싱글 코일의 외경(Outer diameter)은 약 185mm 이상 및 195mm 이하이며,
    상기 싱글 코일의 내경(Inner diameter)은 약 75mm 이상 및 85mm 이하인, 무선 전력 송신기용 코일 어셈블리.
  2. 제 1 항에 있어서,
    상기 복수의 차폐재들 각각은 동일한 방향으로 돌출된 제1 및 제2 돌출부를 포함하고,
    상기 싱글 코일은 상기 복수의 차폐재들의 상기 제1 및 제2 돌출부 사이에 삽입되어 상기 복수의 차폐제들과 결합되는, 무선 전력 송신기용 코일 어셈블리.
  3. 제 1 항에 있어서,
    상기 싱글 코일은 상기 와이어가 기설정된 턴 수(Number of turns)만큼 감겨 형성되는, 무선 전력 송신기용 코일 어셈블리.
  4. 제 3 항에 있어서,
    상기 기설정된 턴 수는 약 32번 이상 및 33번 이하인, 무선 전력 송신기용 코일 어셈블리.
  5. 제 1 항에 있어서,
    상기 싱글 코일은 상기 와이어가 2 레이어로 쌓여 형성되며, 총 약 3.3mm 및 3.6mm 이하인, 무선 전력 송신기용 코일 어셈블리.
  6. 제 1 항에 있어서,
    상기 코일 어셈블리의 인덕턴스(Inductance)는 약 246uH이상 및 266uH 이하인, 무선 전력 송신기용 코일 어셈블리.
  7. 제 1 항에 있어서,
    상기 복수의 차폐제들의 초기 투과율(Initial permeability of ferrite)은 2500 초과인, 무선 전력 송신기용 코일 어셈블리.
  8. 무선 전력 송신기에 있어서,
    자기장을 생성하는 코일을 포함하는, 코일 어셈블리;
    DC 신호를 AC 신호로 전환하는, 인버터;
    상기 인버터와 상기 코일 사이의 임피던스 매칭을 제공하는, 탱크 회로(tank circuit);
    전력 수신기와 통신을 수행하는 통신 유닛; 및
    전력 전달을 컨트롤하는, 컨트롤 유닛; 을 포함하되,
    상기 코일 어셈블리는,
    와이어로 구성되며 내부에 원형의 홀(hole)이 형성된 싱글 코일 및 상기 싱글 코일과 결합되는 복수의 차폐재들(Ferrites); 을 포함하며,
    상기 싱글 코일의 외경(Outer diameter)은 약 185mm 이상 및 195mm 이하이며,
    상기 싱글 코일의 내경(Inner diameter)은 약 75mm 이상 및 85mm 이하인, 무선 전력 송신기.
  9. 제 8 항에 있어서,
    상기 복수의 차폐재들 각각은 동일한 방향으로 돌출된 제1 및 제2 돌출부를 포함하고,
    상기 싱글 코일은 상기 복수의 차폐재들의 상기 제1 및 제2 돌출부 사이에 삽입되어 상기 복수의 차폐제들과 결합되는, 무선 전력 송신기.
  10. 제 8 항에 있어서,
    상기 싱글 코일은 상기 와이어가 기설정된 턴 수(Number of turns)만큼 감겨 형성되는, 무선 전력 송신기.
  11. 제 10 항에 있어서,
    상기 기설정된 턴 수는 약 32번 이상 및 33번 이하인, 무선 전력 송신기.
  12. 제 8 항에 있어서,
    상기 싱글 코일은 상기 와이어가 2 레이어로 쌓여 형성되며, 총 약 3.3mm 및 3.6mm 이하인, 무선 전력 송신기.
  13. 제 8 항에 있어서,
    상기 코일 어셈블리의 인덕턴스(Inductance)는 약 246uH이상 및 266uH 이하인, 무선 전력 송신기.
  14. 제 8 항에 있어서,
    상기 복수의 차폐제들의 초기 투과율(Initial permeability of ferrite)은 2500 초과인, 무선 전력 송신기.
  15. 무선 전력 수신기용 코일 어셈블리에 있어서,
    와이어를 포함하며 내부에 원형의 홀(hole)이 형성된, 싱글 코일; 및
    상기 싱글 코일과 결합되는 복수의 차폐재들(Ferrites); 을 포함하되,
    상기 싱글 코일의 외경(Outer diameter)은 약 165mm 이상 및 175mm 이하이며, 상기 싱글 코일의 내경(Inner diameter)은 약 70mm 이상 및 80mm 이하이고,
    상기 복수의 차폐재들 각각은 동일한 방향으로 돌출된 제1 및 제2 돌출부를 포함하고, 상기 싱글 코일은 상기 복수의 차폐재들의 상기 제1 및 제2 돌출부 사이에 삽입되어 상기 복수의 차폐제들과 결합되는, 무선 전력 수신기용 코일 어셈블리.
PCT/KR2016/001652 2015-06-11 2016-02-18 무선 전력 전송 시스템의 구조 WO2016200011A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/735,454 US10505402B2 (en) 2015-06-11 2016-02-18 Structure of wireless power transmission system
KR1020167016614A KR102579343B1 (ko) 2015-06-11 2016-02-18 무선 전력 전송 시스템의 구조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562174278P 2015-06-11 2015-06-11
US62/174,278 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016200011A1 true WO2016200011A1 (ko) 2016-12-15

Family

ID=57503594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001652 WO2016200011A1 (ko) 2015-06-11 2016-02-18 무선 전력 전송 시스템의 구조

Country Status (3)

Country Link
US (1) US10505402B2 (ko)
KR (1) KR102579343B1 (ko)
WO (1) WO2016200011A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108462261A (zh) * 2018-02-09 2018-08-28 宁波微鹅电子科技有限公司 一种线圈模组、电能发射电路和电能接收电路
CN108667151A (zh) * 2018-05-21 2018-10-16 重庆大学 基于凹凸磁芯的无线能量发射机构及其参数设计方法
CN108736578A (zh) * 2018-05-30 2018-11-02 哈尔滨工业大学 一种可无线供电的电动轮椅系统
CN109217484A (zh) * 2017-06-29 2019-01-15 沈阳新松机器人自动化股份有限公司 一种无线充电对准装置及系统
CN109391290A (zh) * 2017-08-09 2019-02-26 佛山市顺德区美的电热电器制造有限公司 一种通信方法、装置及设备
CN111371158A (zh) * 2020-03-16 2020-07-03 电子科技大学 一种置于微波炉内的逻辑控制无线充电装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11154154B2 (en) * 2016-12-02 2021-10-26 Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co.,Ltd. Split-type electric pressure cooker
CN112913109B (zh) 2018-10-26 2023-08-04 Lg电子株式会社 用于在无线功率传输系统中发送或接收数据的设备和方法
KR102204909B1 (ko) 2018-12-06 2021-01-20 한국과학기술원 무선 전력 전송 장치 및 이를 이용하는 전기 자전거
TWI679825B (zh) * 2019-01-10 2019-12-11 友達光電股份有限公司 顯示裝置以及無線傳輸裝置
WO2020190096A1 (ko) * 2019-03-21 2020-09-24 에스케이씨 주식회사 이동수단의 무선충전용 수신장치 및 이를 포함하는 이동수단
KR102204236B1 (ko) * 2019-04-30 2021-01-18 에스케이씨 주식회사 자성 패드, 이의 제조방법 및 이를 포함하는 무선 충전 소자
EP4100974A4 (en) * 2020-02-04 2024-02-28 Resonant Link, Inc. MAGNETIC CORE STRUCTURES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110006528A (ko) * 2009-07-14 2011-01-20 엘지전자 주식회사 유도 가열 조리 장치
US20140070766A1 (en) * 2011-01-26 2014-03-13 Panasonic Corporation Non-contact charging module and reception-side and transmission-side non-contact charging apparatuses using the same
JP2014135382A (ja) * 2013-01-10 2014-07-24 Swcc Showa Device Technology Co Ltd 非接触給電システム
KR20150005479A (ko) * 2014-07-08 2015-01-14 한국전기연구원 다중기기의 자유 위치 무선 충전을 위한 무선 전력 송신 및 수신 장치
US20150054350A1 (en) * 2012-03-20 2015-02-26 Auckland Uniservices Ltd. Winding arrangements in wireless power transfer systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283858B2 (en) * 2009-02-05 2016-03-15 Auckland Uniservices Ltd Inductive power transfer apparatus
JP2013051285A (ja) * 2011-08-30 2013-03-14 Heads Corp コイル装置及びコア付コイル装置
US9441603B2 (en) * 2012-09-05 2016-09-13 Lear Corporation Apparatus for providing concentrated inductive power transfer
JP6091262B2 (ja) * 2012-11-01 2017-03-08 矢崎総業株式会社 給電部、受電部及び給電システム
KR102042674B1 (ko) * 2013-05-23 2019-11-11 삼성전자주식회사 무선 전력 전송 장치 및 무선 전력 전송 방법
CN106165250B (zh) * 2014-04-11 2019-06-25 Lg电子株式会社 无线电力发送器以及无线电力发送方法
DE102015202032A1 (de) * 2015-02-05 2016-08-11 Würth Elektronik eiSos Gmbh & Co. KG Induktor, insbesondere zur magnetisch gekoppelten Energieübertragung, sowie Verfahren zum Betreiben eines derartigen Induktors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110006528A (ko) * 2009-07-14 2011-01-20 엘지전자 주식회사 유도 가열 조리 장치
US20140070766A1 (en) * 2011-01-26 2014-03-13 Panasonic Corporation Non-contact charging module and reception-side and transmission-side non-contact charging apparatuses using the same
US20150054350A1 (en) * 2012-03-20 2015-02-26 Auckland Uniservices Ltd. Winding arrangements in wireless power transfer systems
JP2014135382A (ja) * 2013-01-10 2014-07-24 Swcc Showa Device Technology Co Ltd 非接触給電システム
KR20150005479A (ko) * 2014-07-08 2015-01-14 한국전기연구원 다중기기의 자유 위치 무선 충전을 위한 무선 전력 송신 및 수신 장치

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217484A (zh) * 2017-06-29 2019-01-15 沈阳新松机器人自动化股份有限公司 一种无线充电对准装置及系统
CN109217484B (zh) * 2017-06-29 2021-09-03 沈阳新松机器人自动化股份有限公司 一种无线充电对准装置及系统
CN109391290A (zh) * 2017-08-09 2019-02-26 佛山市顺德区美的电热电器制造有限公司 一种通信方法、装置及设备
CN108462261A (zh) * 2018-02-09 2018-08-28 宁波微鹅电子科技有限公司 一种线圈模组、电能发射电路和电能接收电路
CN108462261B (zh) * 2018-02-09 2020-10-09 宁波微鹅电子科技有限公司 一种线圈模组、电能发射电路和电能接收电路
CN108667151A (zh) * 2018-05-21 2018-10-16 重庆大学 基于凹凸磁芯的无线能量发射机构及其参数设计方法
CN108736578A (zh) * 2018-05-30 2018-11-02 哈尔滨工业大学 一种可无线供电的电动轮椅系统
CN111371158A (zh) * 2020-03-16 2020-07-03 电子科技大学 一种置于微波炉内的逻辑控制无线充电装置
CN111371158B (zh) * 2020-03-16 2022-05-06 电子科技大学 一种置于微波炉内的逻辑控制无线充电装置

Also Published As

Publication number Publication date
KR20180016237A (ko) 2018-02-14
KR102579343B1 (ko) 2023-09-15
US10505402B2 (en) 2019-12-10
US20180219422A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2016200011A1 (ko) 무선 전력 전송 시스템의 구조
WO2017078473A1 (ko) 차량용 무선 전력 송신기 및 수신기
WO2017082475A1 (ko) 무선 전력 전송 시스템 통신 프로토콜
WO2019004753A1 (ko) 멀티 코일 기반의 무선전력 전송장치 및 방법
KR102209040B1 (ko) 무선 전력 송신기의 코일 구조
WO2019039898A1 (ko) 무선전력 전송시스템에서 통신을 수행하는 장치 및 방법
WO2017213428A1 (ko) 무선 전력 송신 방법 및 이를 위한 장치
WO2020050592A1 (ko) 무선전력 전송 시스템에서 가변 통신 속도를 지원하는 장치 및 방법
WO2019203420A1 (ko) 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법
WO2016209051A1 (ko) 무선 전력 수신 장치 및 이를 포함하는 무선 전력 전송 시스템
WO2017122934A1 (ko) 무선 전력 송신기 및 수신기
WO2017069469A1 (ko) 무선 신호를 송수신하기 위한 무선 전력 송신기, 무선 전력 수신기, 무선 시스템 및 이의 동작 방법
WO2018034392A1 (ko) 무선 전력 송신기 및 수신기
WO2021020833A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 이물질 검출 방법
WO2020149492A1 (ko) 멀티 코일을 이용하여 다수의 기기에 무선전력을 전송하는 장치 및 방법
WO2021066611A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이들을 이용한 전력 보정 방법
WO2019177306A1 (ko) 무선전력 전송 시스템에서 향상된 통신 속도를 지원하는 장치 및 방법
WO2020130265A1 (ko) 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2021235908A1 (ko) 무선전력 전송장치, 무선전력 전송장치에 의한 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신장치에 의한 무선전력 수신방법
WO2021201413A1 (ko) 무선전력 전송장치 및 무선전력 전송방법
WO2017119622A1 (ko) 무선 전력 송신기 및 수신기
WO2016163750A1 (ko) 무선 전력 송신 장치 및 그 제어 방법
WO2020004691A1 (ko) 무선전력 수신장치 및 방법
WO2021167341A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 데이터 전송 스트림을 이용한 무선전력 수신장치와 무선전력 전송장치 사이의 메시지 전송/수신 방법
WO2021182818A1 (ko) 무선전력 전송장치, 무선전력 수신장치 및 이들의 인증 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167016614

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15735454

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807654

Country of ref document: EP

Kind code of ref document: A1