WO2017213428A1 - 무선 전력 송신 방법 및 이를 위한 장치 - Google Patents

무선 전력 송신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2017213428A1
WO2017213428A1 PCT/KR2017/005941 KR2017005941W WO2017213428A1 WO 2017213428 A1 WO2017213428 A1 WO 2017213428A1 KR 2017005941 W KR2017005941 W KR 2017005941W WO 2017213428 A1 WO2017213428 A1 WO 2017213428A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
packet
response
receiver
power receiver
Prior art date
Application number
PCT/KR2017/005941
Other languages
English (en)
French (fr)
Inventor
박용철
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020187035831A priority Critical patent/KR102127438B1/ko
Priority to CN201780035620.0A priority patent/CN109463026B/zh
Priority to EP21207782.0A priority patent/EP3972088B1/en
Priority to CN202210695951.XA priority patent/CN115051438A/zh
Priority to US16/308,325 priority patent/US10651694B2/en
Priority to EP21157074.2A priority patent/EP3840178A1/en
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to EP23196051.9A priority patent/EP4277318A3/en
Priority to EP17810551.6A priority patent/EP3457527B1/en
Publication of WO2017213428A1 publication Critical patent/WO2017213428A1/ko
Priority to US16/854,130 priority patent/US11289954B2/en
Priority to US17/673,585 priority patent/US11715982B2/en
Priority to US18/210,269 priority patent/US20230327498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0823Network architectures or network communication protocols for network security for authentication of entities using certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Definitions

  • the present invention is directed to a wireless power transmission method and apparatus therefor.
  • Contactless wireless charging is an energy transfer method that removes lines and transfers energy electromagnetically in a method of transmitting energy through a conventional wire and using it as a power source of an electronic device.
  • electromagnetic induction method and resonance method exist.
  • the electromagnetic induction method is a method of generating a magnetic field through the power transmission coil (primary coil) in the power transmission unit and transferring power by placing a receiving coil (secondary coil) at a position where a current can be induced.
  • the resonance method energy is transmitted by using a resonance phenomenon between a transmitting coil and a receiving coil.
  • the resonance mode energy coupling between coils is used by constructing a system in which the resonance frequency of the primary coil and the resonance frequency of the secondary coil are the same.
  • the sender or master that initiates / leads the communication is the power receiver, so the power transmitter can only transmit a response to the request of the power receiver. Even if the power transmitter detects a foreign material in the charging area (or the magnetic field area) or the charging environment is changed, the power transmitter cannot proactively adjust the guaranteed power level directly at a desired timing.
  • an object of the present invention is to propose an efficient and stable power transmission / reception method by allowing a power transmitter to acquire status / permission as a master / sender according to a situation and reflecting the current surrounding situation / environment in real time.
  • a wireless power transmission method of a power transmitter comprising: monitoring placement and removal of an object with respect to an interface surface of the power transmitter; Performing a digital ping and receiving a response from the power receiver; Obtaining configuration information of the power receiver and generating a power delivery contract with the power receiver using the configuration information; Transmitting power to the power receiver based on the power delivery contract; And sending indication information to the power receiver to initiate communication with the power receiver; It may include.
  • the indication information may be information requesting initiation of communication with the power receiver for renegotiating the power delivery contract.
  • the transmitting of the power to the power receiver may include: receiving a predetermined packet from the power receiver;
  • the indication information may be transmitted to the power receiver as a response to the preset packet.
  • an ACK (ACK) response to approve the request of the power receiver included in the predetermined packet a Not-Acknowledge (NAK) response to reject the request, ND (Not-Defined) indicating that the request is invalid
  • ACK acknowledge the request of the power receiver included in the predetermined packet
  • NAK Not-Acknowledge
  • ND Not-Defined
  • the bit pattern of the indication information may be defined as a pattern different from that of the ACK response, the NAK response, and the ND response.
  • the predetermined packet is a Received Power Packet (Received Power Packet) for changing the format of the received power packet determined in the power transfer contract (Control Error Packet) used to determine the operating point of the power transmitter (Control Error Packet) May correspond to
  • the indication information may include request information for requesting the power receiver to acquire a right for the power transmitter to transmit a predetermined packet.
  • the predetermined packet may include a packet including information about a new guaranteed power level of the power transmitter.
  • the transmitting of the power to the power receiver may include: receiving a predetermined packet from the power receiver;
  • the indication information may be transmitted to the power receiver as a response to the predetermined packet, or may be transmitted within the transmission interval when the transmission interval of the predetermined packet is longer than a threshold.
  • the predetermined packet is a Received Power Packet (Received Power Packet) for changing the format of the received power packet determined in the power transfer contract (Control Error Packet) used to determine the operating point of the power transmitter (Control Error Packet) May correspond to
  • the indication is defined.
  • the bit pattern of the information may be defined as a pattern different from the bit patterns of the ACK response, the NAK response, and the ND response.
  • the indication information when the indication information is transmitted to the power receiver as a response to the preset packet, the indication information may further include response information about the preset packet in addition to the request information.
  • the size of the packet carrying the indication information may be determined based on the transmission interval of the predetermined packet.
  • the transmitting of the indication information to the power receiver may be performed when a foreign object is detected on the interface surface or when a surrounding temperature is detected to be higher than a predetermined temperature.
  • a method of receiving wireless power of a power receiver comprising: detecting a digital ping of a power transmitter and transmitting a response to the detected digital ping; Transmitting configuration information of the power receiver and establishing a power transfer agreement with the power transmitter based on the configuration information; Receiving power from the power transmitter based on the power transfer agreement; And receiving indication information from the power transmitter for initiating communication with the power receiver; It may include.
  • a power transmitter comprising: a coil assembly including at least one primary coil for generating a magnetic field; A power conversion unit for converting electrical energy into a power signal; And a communication and control unit for controlling power delivery and communication with the power receiver; Wherein the communication and control unit monitors the placement and removal of an object with respect to the interface surface of the power transmitter, performs a digital ping, receives a response from a power receiver, and Obtain configuration information of the power receiver, generate a power transfer agreement with the power receiver using the configuration information, transmit power to the power receiver based on the power transfer agreement, and transmit the power receiver Instruction information for initiating communication with the system may be transmitted to the power receiver.
  • the power transmitter has an effect of dynamically and appropriately adjusting the guaranteed power level at a desired time point according to the surrounding environment / situation.
  • FIG. 1 illustrates an embodiment of various electronic devices into which a wireless charging system is introduced.
  • FIG. 2 shows a wireless power transmission and reception system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a method for transmitting and receiving power in induction mode.
  • FIG. 4 illustrates a method for controlling power delivery in induction mode.
  • FIG 5 illustrates power transmission equipment according to an embodiment of the present invention.
  • FIG 6 illustrates power receiving equipment according to an embodiment of the present invention.
  • FIG. 7 shows a frame structure for data communication during power delivery.
  • FIG. 8 is a diagram illustrating a sync packet according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a power delivery method in a shared mode.
  • FIG. 10 is a diagram illustrating a method for controlling a wireless power transmission / reception system to which FOD extension is applied according to an embodiment of the present invention.
  • FIG. 11 illustrates a response timing of a power transmitter for a received power packet according to an embodiment of the present invention.
  • FIG. 12 illustrates a power transmitter response format according to an embodiment of the present invention.
  • FIG. 13 illustrates a power management profile of a power transmitter according to an embodiment of the present invention.
  • FIG. 14 illustrates a communication protocol between a power transmitter and a power receiver according to Proposal A of the present invention.
  • 15 is a diagram illustrating a power management profile of a power transmitter according to the proposal A of the present invention.
  • FIG. 16 illustrates a communication protocol between a power transmitter and a power receiver according to Proposal B of the present invention.
  • FIG 17 illustrates 1B (Byte) data according to an embodiment of the present invention.
  • 19 is a flowchart illustrating a method for transmitting and receiving power according to the proposal B or C of the present invention.
  • 20 is a flowchart illustrating an embodiment according to proposal B or C when the power transmitter wants to downgrade the GP level from 15W to 10W.
  • FIG. 21 illustrates a full packet format transmitted by a power transmitter according to an embodiment of the present invention.
  • FIG. 22 illustrates a response packet format transmitted by a power receiver according to an embodiment of the present invention.
  • FIG. 23 is a flowchart illustrating a power transmission method of a wireless power transmitter according to an embodiment of the present invention.
  • FIG. 1 illustrates an embodiment of various electronic devices into which a wireless charging system is introduced.
  • electronic devices are classified according to the amount of power transmitted and received by the wireless charging system.
  • Low power (about 5W or less or about 20W) wireless charging may be applied to wearable devices such as smart watches and smart glasses and mobile / portable electronic devices such as earphones, remote controllers, smartphones, PDAs, and tablet PCs.
  • Medium- and small-sized home appliances such as laptops, robot cleaners, TVs, acoustic devices, cleaners, and monitors may be charged with medium power (less than about 50W or less than about 200W) wireless charging.
  • Kitchen appliances such as blenders, microwave ovens, and rice cookers, personal mobile devices such as wheelchairs, electric kickboards, and electric bicycles, and electronic devices / moving means such as electric vehicles, have high power (approximately 2 kW or less or 22 kW or less).
  • the electronic devices / moving means shown in FIG. 1 may include a power receiver described later.
  • WPC Wireless Power Consortium
  • the present invention relates to a wireless charging system in which a resonance method is added, and to propose a resonance type wireless charging transmitter / receiver compatible with a low power / medium power induction type wireless charging transmitter / receiver.
  • the wireless charging transmitter and the wireless charging receiver of the inductive type and the resonant type proposed by the present invention a charging method using the same, a communication protocol, and the like will be described.
  • the resonance type / mode may be referred to as a shared type / mode.
  • the wireless power transmitter may be referred to as a power transmitter or transmitter
  • the wireless power receiver may be referred to as a power receiver or receiver.
  • FIG. 2 shows a wireless power transmission and reception system according to an embodiment of the present invention.
  • a wireless power transmission / reception system includes a mobile device and a base station that wirelessly receive power.
  • the mobile device includes a power receiver for receiving wireless power through a secondary coil, and a load for receiving, storing, and supplying power received from the power receiver.
  • the power receiver communicates with a power pick-up unit that receives a wireless power signal through a secondary coil and converts it into electrical energy, and communicates with the power transmitter, and controls power transmission and reception (power transmission / reception). It can include / Communications & Control Unit.
  • the mobile device may be referred to as power receiving equipment hereinafter.
  • the base station is an apparatus for providing inductive power or resonant power, and may include one or a plurality of power transmitters and a system unit.
  • the power transmitter may transmit induced / resonant power and control power transmission.
  • the power transmitter has a power conversion unit that converts and transfers electrical energy into a power signal by generating a magnetic field through the primary coil (s) and with the power receiver to deliver power at an appropriate level. It may include a Communications & Control Unit that controls communications and power delivery.
  • the system unit may perform other operational control of the base station, such as input power provisioning, control of a plurality of power transmitters, and user interface control.
  • the base station may be referred to as power transmission equipment below.
  • the power transmitter can control the transmit power by controlling the operating point.
  • the controlling operating point may correspond to a combination of frequency, duty cycle, and voltage amplitude.
  • the power transmitter may control power delivered by adjusting at least one of frequency, duty cycle / duty ratio, and amplitude of the input voltage.
  • the power transmitter may supply a constant power, and the power receiver may control the received power by controlling the resonant frequency.
  • the coil or coil unit may be referred to as a coil assembly, a coil cell, or a cell including the coil and at least one element adjacent to the coil.
  • the power transmission method of the power transmitter / receiver operating in the induction mode will be described. However, at least one of the methods or the steps included in the method described with respect to the induction mode may be used selectively or selectively in the resonance mode.
  • FIG. 3 is a block diagram illustrating a method for transmitting and receiving power in induction mode.
  • wireless charging can be performed in five phases.
  • the five phases include a selection phase, a ping phase, an identification & configuration phase, a negotiation phase and a power transfer phase, but with low power.
  • the negotiation step may be omitted in the power transmission and reception of the mode. That is, power transmission and reception are performed in four steps in the low power mode, and a negotiation step may be additionally performed in the intermediate power mode.
  • the power transmitter monitors contact / departure of the object with respect to the interface surface provided in the transmitter.
  • the wireless power transmitter may detect a contact of an external object by applying a power signal.
  • the power transmitter may apply a short power signal to the primary coil, and detect the current of the primary coil generated by the power signal to monitor the presence of an external object.
  • the power transmitter receives the signal strength information (packet) monitored in the selection step and detects an object based on the detected signal strength information, the power transmitter is a power receiver or a simple external object (key, coin). Etc.) may be selected.
  • the power transmitter may further perform at least one of the ping phase, the identification / configuration phase, and the negotiation phase.
  • the power transmitter may perform a digital ping and wait for a response from the power receiver.
  • Digital ping represents the application / transmission of a power signal to detect and identify a power receiver. Once the power transmitter finds the power receiver, the power transmitter can extend the digital ping to proceed to the identification / configuration phase.
  • the power transmitter may identify the selected power receiver and obtain configuration information of the power receiver, such as the maximum power amount.
  • the power transmitter may receive identification / configuration information to obtain information about the power receiver and use this information to establish a power transfer contract.
  • This power delivery agreement may include restrictions on a plurality of parameters that characterize power delivery in a later power delivery phase.
  • the power receiver may negotiate with the power transmitter to create an additional power transfer agreement.
  • the power transmitter may receive a negotiation request / information from the power receiver, and the negotiation step may proceed only if the target receiver is identified as the intermediate power receiver in the identification / configuration phase.
  • additional parameters may be negotiated, such as the guaranteed power level of the power transmitter and the maximum power of the power receiver. If the power receiver is a low power receiver, the negotiation step may be omitted, and the power receiver may proceed directly from the identification / configuration step.
  • the power transmitter wirelessly provides power to the power receiver.
  • the power transmitter may receive control data for the transmitted power and control power delivery accordingly.
  • the power transmitter may stop the power transfer and proceed to the selection step when the limitations of the parameters according to the power transfer contract are violated during the power transfer.
  • FIG. 4 illustrates a method for controlling power delivery in induction mode.
  • the power transmitter and the power receiver may include a power conversion unit and a power pickup unit, respectively, as shown in FIG. 1.
  • the power transmitter and the power receiver may control the amount of power delivered by performing communication in parallel with the power transmission and reception.
  • the power transmitter and power receiver operate at specific control points.
  • the control point represents the combination of voltage and current provided at the output of the power receiver when power delivery is performed.
  • the power receiver selects the desired control point-the desired output current / voltage, the temperature at a specific location of the mobile device, and additionally the actual control point currently in operation. Determine.
  • the power receiver may use the desired control point and the actual control point to calculate a control error value and transmit it as a control error packet to the power transmitter.
  • the power transmitter can then use the received control error packet to set / control a new operating point—amplitude, frequency and duty cycle—to control power delivery. Therefore, the control error packet is transmitted / received at predetermined time intervals during the power delivery phase.
  • the power receiver may control the control error value to a negative value to reduce the current of the power transmitter, or to control the value to a positive value to increase the current. Can be set and sent.
  • the power receiver may control the power transfer by transmitting a control error packet to the power transmitter.
  • the resonance mode may operate in a manner different from that of the induction mode.
  • one power transmitter should be able to charge multiple power receivers simultaneously.
  • the power transfer to the additional power receivers may be difficult to control since the transferred power is controlled by communication with one power receiver. Therefore, in the resonance mode of the present invention, the power transmitter commonly transmits basic power, and uses a method of controlling the amount of power received by the power receiver by controlling its resonance frequency.
  • the method described with reference to FIG. 4 is not completely excluded, and additional transmission power may be controlled by the method of FIG. 4.
  • FIG 5 illustrates power transmission equipment according to an embodiment of the present invention.
  • the power transmission equipment may include at least one of a cover covering the coil assembly, a power adapter for powering the power transmitter, a power transmitter for transmitting wireless power, or a user interface for providing power delivery progress and other related information.
  • a cover covering the coil assembly a power adapter for powering the power transmitter
  • a power transmitter for transmitting wireless power or a user interface for providing power delivery progress and other related information.
  • the user interface may optionally be included or may be included as another user interface of the power transmission equipment.
  • the power transmitter may include at least one of a coil assembly, a tank circuit (or an impedance matching circuit), an inverter, a communication unit, or a control unit.
  • the coil assembly includes at least one primary coil that generates a magnetic field and may be referred to as a coil cell.
  • the impedance matching circuit may provide impedance matching between the inverter and the primary coil (s).
  • the impedance matching circuit can generate resonance at a suitable frequency that boosts the primary coil current.
  • the impedance matching circuit in a multi-coil power transmitter may further include a multiplex that routes the signal to a subset of primary coils in the inverter.
  • the impedance matching circuit may be referred to as a tank circuit.
  • the inverter can convert a DC input signal into an AC signal.
  • the inverter can be driven half-bridge or full-bridge to produce pulse waves and duty cycles of adjustable frequency.
  • the inverter may also include a plurality of stages to adjust the input voltage level.
  • the communication unit can perform communication with the power receiver.
  • the power receiver performs load modulation to communicate requests and information to the power transmitter.
  • the power transmitter may use a communication unit to monitor the amplitude and / or phase of the current and / or voltage of the primary coil to demodulate the data transmitted by the power receiver.
  • the power transmitter may control the output power to transmit data using a frequency shift keying (FSK) scheme through the communication unit.
  • the wireless charger may further include a current sensor to detect the receiver by detecting a change in current of the primary coil and to detect transmission data of the detected receiver.
  • the control unit can control the communication and power delivery of the power transmitter.
  • the control unit may control the power transfer by adjusting the operating point described above.
  • the operating point may be determined by at least one of an operating frequency, a duty cycle, and an input voltage, for example.
  • the communication unit and the control unit may be provided as separate units / elements / chipsets or as one unit / elements / chipsets as shown in FIG. 1.
  • FIG 6 illustrates power receiving equipment according to an embodiment of the present invention.
  • the power receiving equipment may include at least one of a user interface providing power delivery progress and other related information, a power receiver receiving wireless power, a load circuit or a base that supports and covers the coil assembly.
  • the user interface may optionally be included or may be included as another user interface of the power receiving equipment.
  • the power receiver may include at least one of a power converter, a tank circuit (or an impedance matching circuit), a coil assembly, a communication unit, or a control unit.
  • the power converter can convert AC power received from the secondary coil to a voltage and current suitable for the load circuit.
  • the power converter may include a rectifier.
  • the power converter may adapt the reflected impedance of the power receiver.
  • the impedance matching circuit can provide impedance matching between the combination of power converter and load circuit and the secondary coil.
  • the impedance matching circuit can generate a resonance near 100 kHz that can enhance power transfer.
  • the coil assembly includes at least one secondary coil and, optionally, may further include an element that shields a metallic portion of the receiver from the magnetic field.
  • the communication unit may perform load modulation to communicate requests and other information to the power transmitter.
  • the power receiver may switch a resistor or capacitor to change the reflected impedance.
  • the control unit can control the received power.
  • the control unit can determine / calculate the difference between the actual operating point of the power receiver and the desired operating point.
  • the control unit may adjust / reduce the difference between the actual operating point and the desired operating point by performing the adjustment of the reflection impedance of the power transmitter and / or the operation point adjustment request of the power transmitter. Minimizing this difference can achieve optimal power reception.
  • the communication unit and the control unit may be provided as separate devices / chipsets or as one device / chipset as shown in FIG. 1.
  • the power transmitter In shared mode, the power transmitter must manage the exchange of information with one or more power receivers. To this end, the power transmitter provides a structure for communication with the power receiver, which is the same as the following communication frame.
  • the power transmitter provides a structure that provides a sequence of time slots in which each power receiver can transmit a data packet.
  • a sync pattern as shown in FIG. 7 is provided between each slot.
  • the sync pattern not only separates the slots but also serves to optimize the communication of the power receiver.
  • the sync pattern may provide the receiver with information for collision resolution and guarantee latency.
  • the shared mode protocol may use two types of frames, namely slotted frames and free-format frames.
  • Slot frames can be used by the power receiver to send short data packets to the power transmitter, and free-format frames can be used for other purposes such as bidirectional transmission of larger data packets and coil selection in multi-coil transmitters.
  • Every frame begins with a sync pattern and a measurement slot, which can be used to measure transmit power and receive power.
  • a sync pattern and a measurement slot, which can be used to measure transmit power and receive power.
  • nine slots may be included in one slot frame.
  • the start bit (information) of the sync packet may indicate the start of the frame.
  • FIG. 8 is a diagram illustrating a sync packet according to an embodiment of the present invention.
  • the sync packet may include at least one of a preamble, a start bit, a response field, a type field, an info field, and a parity bit.
  • the preamble includes a sequence of bits set to one.
  • the number of bits included may vary depending on the operating frequency.
  • the start bit may be set to zero.
  • the parity bit is the last bit of the sync pattern, and may be set to 1 when the bits set to 1 included in the data fields included in the sync pattern are even and 0 otherwise.
  • the response field may include the transmitter's response to the communication from the receiver in the preceding slot. 00 indicates that communication was not detected, 01 detected a communication error, 10 received a Not-Acknowledge that the communication was received correctly, and 11 received the communication correctly. Each of the positive responses can be represented.
  • the type field may be set to 1 for the first sync pattern included in the frame and set to 0 for other sync patterns.
  • the info field has different values and meanings according to the sync pattern indicated in the sync field.
  • the info field may indicate whether the frame is a slot frame or a free-format frame. And if the type field is 0, the info field is the next slot allocated to a particular receiver, a locked slot temporarily provided to a particular receiver, or free for use by any receiver. ) May indicate whether the slot.
  • FIG. 9 is a diagram illustrating a power delivery method in a shared mode.
  • the power transfer method may include a selection step, an introduction step, a configuration step, a negotiation step, and a power transfer step.
  • the selection step indicates a selection step in the induction mode as shown in FIG. 3, and in the sharing mode, the selection step may be omitted and the remaining four steps may be described.
  • the presence of frequency shift keying (FSK) in the power signal can be detected immediately before the wake-up timeout.
  • FSK frequency shift keying
  • the power receiver may request a free slot to transmit a Control Information (CI) packet for use in the following steps.
  • the receiver transmits an Initial CI packet. If the power transmitter responds with an ACK, the power receiver may proceed to the configuration step. If the power transmitter responds with a NAK, another receiver may be in the configuration or negotiation phase. Therefore, the receiver may request a free slot again.
  • the receiver receives the ACK, the receiver may determine the location of its private slot in the frame, and then transmit the CI packet using the slot of the location.
  • the power transmitter may provide a series of locked slots for exclusive use of the power receiver. This is for the receiver to proceed with the configuration step without collision.
  • the receiver may transmit two Identification data packets (IDHI and IDLO), optionally at least one proprietary data packets, and a Configuration Packet (CFG) using fixed slots. After completing this step, the receiver proceeds to the negotiation phase.
  • IDHI and IDLO Identification data packets
  • CFG Configuration Packet
  • the transmitter may continue to provide fixed slots for exclusive use of the receiver. This is also to allow the receiver to proceed with the negotiation phase without collision.
  • the receiver may transmit negotiation data packets (including a specific request (SRQ) and a general request (GRQ)) and at least one optional proprietary data packets using fixed slots.
  • the receiver may terminate the negotiation phase by transmitting an SRQ / en-SR packet.
  • the transmitter proceeds to a power delivery phase, which stops providing fixed slots.
  • the receiver transmits the CI packet using the assigned slot. And receive power.
  • the power receiver may include a regulator circuit.
  • the regulator circuit may be included in the communication / control unit described above.
  • the regulator circuit allows the receiver to self-regulate the reflected impedance of the receiver. That is, the receiver can adjust the reflected impedance to deliver the amount of power needed for an external load and to receive excessive power or to prevent overheating.
  • the transmitter may not adjust the power in response to the received CI packet according to the operation mode. In this case, the transmitter may control to prevent an over-voltage situation.
  • This FOD extension for detecting foreign objects that are not wireless charging targets when performing the power transmission / reception / control method in the induction mode described above with reference to FIGS. 3 and 4 will be described.
  • This FOD extension can be performed in such a way that the negotiation phase, calibration phase and renegotiation phase are added to the basic system control method, as shown in FIG. 10. Newly added steps may primarily function to detect foreign bodies.
  • FIGS. 10 is a diagram illustrating a method for controlling a wireless power transmission / reception system to which FOD extension is applied according to an embodiment of the present invention.
  • the description of each step described above with reference to FIGS. 3 and 4 may be applied in the same or similar manner. Hereinafter, descriptions will be given based on differences from FIGS. 3 and 4, and redundant descriptions will be omitted. .
  • the power transmitter may monitor the interface surface to monitor the placement and removal of objects using small measurement signals. This measurement signal should not wake up the power receiver located on the interface surface. If the power transmitter detects a foreign object on the interface surface, the power transmitter must stay in the selection phase and must not provide a power signal to prevent overheating of the foreign material.
  • the power receiver may negotiate with the power transmitter to fine tune the power delivery agreement. To this end, the power receiver may send a negotiation request to the power transmitter that the power transmitter may approve or reject. In addition, to improve the initial assessment of the presence of foreign objects, the power transmitter may compare the quality factor reported by the power receiver with its measurement value (or signal). If the power transmitter detects a foreign object, it must return to the selection step.
  • the power transmitter may improve the ability to detect foreign matter during power transmission.
  • the power transmitter may adjust the parameters of the power loss method.
  • the power receiver can provide its received power under two load conditions.
  • the power transmitter can continually check for new debris on the interface surface.
  • the power transmitter may use, for example, a FOD power loss method based on the corrected power loss calculation.
  • Power receivers can also confirm the placement of new debris. If the power transmitter or power receiver detects a foreign object, the power transmitter and / or power receiver should reduce the power signal or remove the power signal, and return to the selection step.
  • the power receiver may adjust the power delivery agreement if desired. If necessary, the renegotiation phase may be stopped early without changing the power delivery agreement.
  • the power transmitter should receive information from the power receiver that the power transmitter will use to improve the power loss method for the FOD.
  • the power transmitter should receive the received power information from the power receiver, where the power receiver transmits the received power information at light load (disconnected load) and connected load. . If the power transmitter does not receive this received power information, it may remove the power signal and return to the selection step. However, the power transmitter may attempt to improve the power loss method by using the received power information only when it is confirmed that there is no foreign matter.
  • the operation of the power transmitter in the correction phase may be the same as the operation in the power transfer phase, but the following operations may be added.
  • the power transmitter may transmit an ACK response. If not, the power transmitter may send a NAK response.
  • the power transmitter receives a 24-bit received power packet with the mode field set to '010' (correction mode for connected load) and satisfies the received power value, it transmits an ACK response and starts the power transmission step. You can continue. If not, the power transmitter may send a NAK response.
  • the received power packet may correspond to a packet transmitted at least once by the power receiver to the power transmitter in the negotiation step to change the format of the received power packet determined in the power delivery contract.
  • the format of the received power packet in the temporary power transfer contract may be changed based on the received power packet to which the ACK response was sent.
  • the power transmitter may perform the following operations in the power delivery stage of a system in which FOD extension is supported.
  • FIG. 11 illustrates a response timing of a power transmitter for a received power packet according to an embodiment of the present invention.
  • the power transmitter may send an ACK response and then proceed with the renegotiation step.
  • the power transmitter may remove the power signal and return to the selection phase.
  • the power transmitter receives a 24-bit received power packet with the mode field set to '000' (correction mode for light load)
  • the power transmitter transmits / receives the received power packet as shown in FIG. You must send a response within t_response from the time of receipt.
  • the power transmitter may transmit an ACK response indicating this to the power receiver.
  • the power transmitter may transmit a NAK response indicating this to the power receiver.
  • the power transmitter may send a NAK response in the following cases.
  • the power receiver can continue to send power to the power receiver to reduce power consumption. After successively sending several NAK responses without a sufficient reduction in power level detected, the power transmitter must terminate the power transfer.
  • the power receiver Upon receiving the NAK response, the power receiver either reduces its power consumption, sends an end power packet with the end power delivery code set to 0x0B (Power Delivery Resume), or the user determines why the power transmitter sent the NAK response. It can be induced to solve.
  • the power receiver may request a power transmitter capability packet to determine what level of power consumption should be reduced.
  • the power transmitter may request the power receiver to reduce power consumption. none.
  • the power receiver needs to be always ready for the power reduction triggered by the power transmitter, which can occur at any time.
  • the power transmitter may ignore the received power value and transmit a Not-Defined (ND) response.
  • ND Not-Defined
  • the power transmitter may transmit an ACK / NAK / ND response to a specific packet transmitted by the power receiver, and the embodiment of FIG. 12 may exist as a format of the response.
  • FIG. 12 illustrates a power transmitter response format according to an embodiment of the present invention.
  • the power transmitter response format may be implemented as a bit pattern of 8 bit size.
  • the ACK response indicating the request approval may be configured as '11111111'
  • the NAK response rejecting the request is '00000000'
  • the ND response indicating that the request is unrecognized or invalid may be configured in a '01010101' bit pattern format.
  • this is only an embodiment and may be configured with various bit patterns.
  • the sender or master that initiates / leads the communication is the power receiver, so that only the response of the power receiver's request can be transmitted. Even if foreign matter is detected in the charging area (or magnetic field area) or the current charging environment is changed and power level adjustment is required, the power level cannot be directly lowered at a desired timing. Therefore, as described above, when the WPC standard detects a foreign matter (or confirms that the foreign material is located in the magnetic field / charge region) in the power transmission step of transmitting power, the power transmitter may receive a received power packet transmitted by the power receiver. It is defined to induce the power receiver to reduce the received power level by sending a NAK response for. Such a solution using the NAK response to inform the power receiver of the foreign material detection to reduce the power level may be referred to as a "short-term solution.”
  • the meaning of the NAK response can be ambiguous. That is, when following the short-term solution described above, the NAK response is indicative of an implicit request for power renegotiation (or a foreign object detection / reduction of power levels), in addition to the meaning of rejection of a previously defined request of a power receiver. Since the implicit meaning) is further included, the meaning of the NAK response may be multiplexed to confuse the operation of the power receiver based on the NAK response.
  • the power transmitter can transmit such a NAK response to the power receiver only when a received power packet in which the mode field is set to '000' is transmitted, the power control point of the foreign matter detection is limited to a specific time point. This exists.
  • the power transmitter since the power receiver does not expect any response from the power transmitter with respect to the received power packet with the mode field set to '100', the power transmitter sets the power level when receiving the received power packet with the mode field set to '100'. You will not be able to send a NAK response to reduce it. In this case, the power transmitter must defer the transmission of the NAK response to reduce the power level until a received power packet in which the mode field is set to '000' is transmitted. As a result, power is continuously transmitted to the foreign matter, which may cause a fire or the like.
  • FIG. 13 illustrates a power management profile of a power transmitter according to an embodiment of the present invention.
  • the power receiver may assume that a reduction in power level is needed due to foreign object detection or the surrounding environment of the power transmitter. In particular, when receiving 5W from the power transmitter, the power receiver may stop receiving power after receiving the NAK response.
  • this short-term solution does not provide a clear way to increase the power level even when the power transmitter's charging conditions need to be increased again, such as improved charging conditions or debris removal.
  • the present specification proposes a variety of methods for controlling the power level immediately / efficiently according to the situation by the power transmitter acts as a master / sender to resume / start / lead the communication with the power receiver. .
  • RFR a new bit pattern for the power transmitter to request renegotiation from the power receiver
  • the power transmitter may request power renegotiation from the power receiver by sending the RFR to the power receiver.
  • the RFR may be configured with an 8-bit sized bit pattern and may be defined with various 8-bit sized bit patterns except the bit pattern defined for the ACK / NAK / ND response in the standard.
  • the RFR may be defined as '00001111', '11110000', '10101010', '10110110', '00110011' or '01001001'.
  • the newly defined RFR may be used to indicate a request for transmission power renegotiation.
  • the power receiver receiving the RFR may transmit a renegotiation packet to the power transmitter, and the power transmitter may transmit an ACK / NAK / ND response to the renegotiation packet.
  • the power transmitter sends an ACK response
  • the power transmitter and the power receiver may enter a renegotiation phase.
  • the power receiver may query the Guaranteed Power (GP) of the power transmitter, which may respond in response to the power level currently available to the power receiver as a GP.
  • the power transmitter may transmit an ACK response thereto to establish a new power contract with the power receiver.
  • a power transmitter and a power receiver enter a power transfer stage by entering a power transfer contract at a level of 15W.
  • the power transmitter detects anomalies in other surroundings, such as rising temperatures or foreign objects, to bring down the GP from 15W to 10W.
  • the power transmitter may send an RFR as a response to the received power packet of the power receiver.
  • the power receiver receiving the RFR may send a renegotiation packet to the power transmitter requesting a power contract renegotiation, which may enter the renegotiation phase by sending an ACK response.
  • the power transmitter and power receiver can re-contract the power contract to 10W, the new GP level desired by the power transmitter.
  • FIG. 14 illustrates a communication protocol between a power transmitter and a power receiver according to Proposal A of the present invention.
  • FIG. 14 (a) illustrates a communication protocol when the power transmitter receives a received power packet (RPP)
  • FIG. 14 (b) shows a case where the power transmitter receives a control error (CE) packet.
  • RPP received power packet
  • CE control error
  • the control error packet here refers to a specific packet used to control the operating point of the power transmitter.
  • boxes marked with hatching indicate steps performed by the power transmitter, and other boxes indicate steps performed by the power receiver, respectively.
  • a power receiver may first transmit an RPP or CE packet to a power transmitter. In this case, if it is determined that the power transmission contract concluded with the power receiver in the negotiation phase needs to be changed (or the GP level needs to be changed / adjusted) according to the current situation detected by the power transmitter, the entry into the renegotiation phase is performed. The requesting RFR can be sent to the power receiver. The power receiver may enter the renegotiation phase to adjust / change the GP level with the power transmitter by sending a renegotiation packet to the power transmitter.
  • the power receiver may transmit a general request (GRQ) / cap packet to the power transmitter to receive a capability packet of the power transmitter including (maximum) GP level information information that the power transmitter can transmit at present.
  • the power transmitter may transmit a PTC (Power Transmitter Capability) packet including its power transmission capability information to the power receiver.
  • the PTC packet contains power transmission capability information such as power class information of the power transmitter, (maximum / new) GP level information of the power transmitter determined in consideration of current ambient conditions / conditions, and / or power transmitters capable of transmitting in ideal ambient conditions / conditions. (Maximum / new) GP level information may be included.
  • the power receiver may send an SRQ / gp packet containing the GP level information it requests to the power transmitter.
  • the SRQ / gp packet may correspond to an SRQ packet in which the request parameter field is set to indicate a 'guaranteed power value', and is defined to indicate a GP level desired / requested by the power receiver in units of 0.5 W. Can be.
  • the power transmitter can transmit an ACK response as a response to the SRQ / gp packet.
  • the power receiver may send an SRQ / en packet to the power transmitter indicating the end of the (re) negotiation phase.
  • Such an SRQ / en packet may correspond to an SRQ packet in which 'change count' is set in the request parameter field.
  • the power transmitter receives the SRQ / en packet and the change count value calculated by the power transmitter and the change count value included in the SRQ / en match, the power transmitter transmits an ACK signal to terminate the negotiation / renegotiation phase of the power transmission / reception period.
  • the power transmitter and the receiver may enter the power delivery phase to transmit and receive power at the negotiated GP level in the negotiation / renegotiation phase.
  • the differential parameter count values calculated by each of the power transmitter and power receiver in the negotiation / renegotiation phase must coincide with each other. More specifically, if the power transmitter did not send an ACK response to both the SRQ packet and the FOD status packet with the request value set to 0x02 (ie, received power packet type) at the beginning of the negotiation / renegotiation phase, it must return to the selection phase. .
  • the power transmitter should verify that the change count value received in the SRQ packet matches the number of different parameters between the effective power transfer contract and the temporary power transfer contract. If both match, the power transmitter should send an ACK response. Thereafter, the power transmitter may copy the temporary power transfer agreement to the effective power transfer agreement and proceed to the calibration step. Otherwise, the power transmitter can copy the effective power transfer agreement into a temporary power transfer agreement, send a NAK response, and maintain the negotiation / renegotiation phase.
  • 15 is a diagram illustrating a power management profile of a power transmitter according to the proposal A of the present invention.
  • the power transmitter has the effect of dynamically adjusting the GP appropriately at the desired time according to the situation.
  • the GP level can be reduced, but in case of the present proposal A, the GP level can be increased as well as the GP level.
  • the power transmitter of the proposal A has the advantage that can implement a more flexible power management profile, as shown in Figure 15 according to the current charging conditions.
  • Proposal B Defining a new bit pattern for Request for Communication (RFC) or Request for Sender (RFS)
  • RFC or RFS a new bit pattern for a power transmitter to request communication with a power receiver (or request acknowledgment of status as a Master / Sender that resumes / initiates / initiates communication), And may be defined, and the power transmitter may resume / initiate communication with the power receiver by sending an RFC or RFS to the power receiver.
  • the RFC or RFS may be configured with an 8-bit sized bit pattern, and may be defined with various 8-bit sized bit patterns except for bit patterns defined for ACK / NAK / ND responses in the standard. For example, RFC or RFS may be defined as '00001111', '11110000', '101010', '10110110', '00110011' or '01001001'.
  • This proposal B has the effect of providing an extended Qi protocol by enabling the full packet transmission of the power transmitter without conflicting with the Qi communication protocol already defined in the WPC standard.
  • the power transmitter may transmit the RFC or RFS to the power receiver in response to a specific packet (eg, CE or RPP packet).
  • a specific packet eg, CE or RPP packet.
  • the transmission of such an RFC or RFS may be interpreted to mean that the power transmitter asks the power receiver for permission to acquire status / authorization as a master / sender capable of (primarily) sending a full packet. That is, if the power transmitter wants to acquire a status / permission as a master / sender capable of transmitting (or initiating the transmission of a packet) a full packet from the power receiver, the power transmitter receives an RFC or RFS. Can be sent to.
  • the power receiver may transmit an ACK response to the power transmitter as a response to the RFC or the RFS when the power receiver approves the acquisition of the authority for the full packet transmission of the power transmitter.
  • the power transmitter receiving the ACK response may transmit a full packet to the power receiver.
  • the power receiver may send an ACK / NAK / ND or specific packet requested by the power transmitter in response to the received (full) packet.
  • the communication protocol with the power receiver initiated / led by the power transmitter may be terminated when the power receiver receives a NAK or ND response, or when there are no more packets to send to the power receiver.
  • the power transmitter can use this RFC or RFS to resume / start / initiate communication with the power receiver. Therefore, when the transmitter needs to change the airborne power transmission contract with the power receiver according to the surrounding environment such as foreign matter is detected, the power transmitter acquires the status / permission as a master / sender by using RFC or RFS, full) By transmitting the packet to the power receiver, it can be efficiently negotiated / controlled.
  • FIG. 16 illustrates a communication protocol between a power transmitter and a power receiver according to Proposal B of the present invention.
  • boxes marked with hatching indicate steps performed by the power transmitter, and other boxes indicate steps performed by the power receiver, respectively.
  • the description in each step described above with reference to FIG. 14 with respect to the drawings may be applied in the same manner, and hereinafter, descriptions will be made based on differences from FIG. 14 and redundant descriptions will be omitted.
  • a power transmitter may receive a CE (or RPP) packet from a power receiver and transmit an RFC or RFS to the power receiver in response thereto. If the power receiver approves the request according to the RFC or the RFS, an ACK packet may be transmitted to the power transmitter. Next, the power transmitter may transmit a PTC packet including its power transmission capability information to the power receiver, and may enter / return into the negotiation / renegotiation phase with the power receiver. Description of the packet transmission and reception in the negotiation / renegotiation step is as described above with reference to FIG. 14.
  • Proposal C Defining a new bit pattern for Request for Communication (RFC) or Request for Sender (RFS) combined with ACK / NAK / ND responses
  • proposal C may be proposed that newly defines an RFC or RFS in the form of a combined ACK / NAK / ND response.
  • RFC or RFS refers to a new bit pattern for requesting the communication (or requesting to acquire status as a master / sender) of resuming / initiating / leading the communication described above in proposal B.
  • the RFC or the RFS may be defined in a form combined with an ACK / NAK / ND response and differently in the proposal C, and may be defined in the form of a joint encoded bit pattern.
  • the RFC or RFS combined with (or jointly encoded) the ACK response may perform the function of requesting the power transmitter to acquire status as a master / sender of the power transmitter while simultaneously approving the power receiver's request.
  • the RFC or RFS in combination with the ACK / NAK / ND response may be defined as a new bit pattern as follows.
  • RFCs or RFSs in the form of combined ACK / NAK / ND responses may be signaled / encoded in various embodiments (eg, may be defined and tabled by content) and may be defined between the power transmitter and the power receiver. It can be promised in advance.
  • the power transmitter may transmit an RFC or RFS combined with an ACK / NAK / ND response as a response to a specific packet transmitted by the power receiver.
  • the specific packet may mean a predetermined packet that does or does not require a response of the power transmitter as follows.
  • SRP Specific Request Packet
  • CE packets Examples of packets that do not require a response from the power transmitter: CE packets
  • the power receiver is set as a master / sender that directs communication (or mainly transmits full packets), as defined in the Qi protocol of the WPC standard. .
  • the RFC or RFS combined with the ACK / NAK / ND response will be abbreviated as 'RFC or RFS'.
  • the power transmitter wants to be a master / sender, it can request approval for it by sending an RFC or RFS to the power receiver.
  • This may be referred to as a collision avoidance mechanism.
  • the power transmitter is a response to a packet that requires a response from the power transmitter, or a packet (eg, CE packet) transmission interval / period is sufficient (over a preset time) to transmit an RFC or RFS.
  • a packet eg, CE packet
  • the RFC or RFS may be transmitted within a corresponding transmission interval / period. In the latter case, the collision between the packet transmitted by the power receiver and the RFC or RFS can be prevented in advance.
  • the case where the transmission interval / period between packets is long may correspond to the case where the CE packet is transmitted.
  • the power receiver first stabilizes the shaking rectified voltage at the first power transfer stage and generates CE packets in short periods (e.g. 32ms) in order to reach the operating point quickly.
  • a short period e.g., about 32 ms
  • a CE packet is transmitted less than a preset time
  • Longer e.g, about 250 ms sufficiently longer than the set time may mean that the power transceiver is in a stable state.
  • the power transmitter according to the proposal C may transmit the RFS or the RFC to the power receiver only within the CE packet transmission interval only after confirming that the power transmitter and the receiver are stable as the period / interval at which the CE packet is transmitted is sufficiently long. This may be interpreted as that packet transmission of the power receiver is prioritized over packet transmission of the power transmitter, or that the status as a master / sender of the power receiver takes precedence over the status as a master / sender of the power transmitter. According to this embodiment, the collision between the RFC or the RFS and the CE packet is prevented, and the effect that the power transceiver can perform communication in a stable state occurs.
  • the power receiver when the power receiver approves obtaining status as the master / sender of the power transmitter, it may send an ACK response in response to the RFC or RFS.
  • the power transmitter may report that it has acquired a status as a master / sender, and may transmit various full packets for communicating with the power receiver. For example, as described above, a full packet including information for negotiating / re-negotiating a power transfer contract that has been concluded in accordance with foreign matter detection or the like (for example, power transmission capability information of a power transmitter) is dominantly powered. Can be sent to the receiver.
  • the power receiver may send an ACK / NAK / ND or specific packet requested by the power transmitter in response to the received (full) packet.
  • the power receiver may send an ACK / NAK / ND or specific packet requested by the power transmitter in response to the received (full) packet.
  • the communication protocol with the power receiver initiated / led by the power transmitter may be terminated when the power receiver receives a NAK or ND response, or when there are no more packets to send to the power receiver.
  • FIG 17 illustrates 1B (Byte) data according to an embodiment of the present invention.
  • 1B data may be configured with a total size of 11 bits by adding 3 bits (start, parity, and stop bits). Therefore, the bit size of a 4B size RFC, RFS, or (full) packet can be determined to be 44 bits in total, and assuming a 5 ms transmission time per bit, the time required for transmitting 44 bits RFC, RFS or (full) packet. Is 220ms in total, less than 250ms.
  • the RFC, RFS, or (full) packet transmitted by the power transmitter is sized (e.g., 44 bits) such that the CE packet can be transmitted within the maximum time interval (e.g., 250 ms) at which the CE packet is transmitted, Collision with the packet can be prevented as much as possible.
  • FIGS. 14 and 16 illustrates a communication protocol between a power transmitter and a power receiver according to Proposal C of the present invention.
  • boxes marked with hatching indicate steps performed by the power transmitter, and other boxes indicate steps performed by the power receiver, respectively.
  • 14 and 16 may be applied in the same manner as described above with reference to FIGS. 14 and 16, and hereinafter, descriptions will be made based on differences from FIGS. 14 and 16, and redundant descriptions will be omitted.
  • a power transmitter may receive an RPP (or CE) packet from a power receiver and transmit an RFC or RFS to the power receiver in response thereto. If the power receiver approves the request according to the RFC or the RFS, an ACK packet may be transmitted to the power transmitter. Next, the power transmitter may transmit a PTC packet including its power transmission capability information to the power receiver, and may enter / return into the negotiation / renegotiation phase with the power receiver.
  • the packet transmission / reception related description in the negotiation / renegotiation step has been described above with reference to FIGS. 14 and 16.
  • Security certificate related packets include, for example, GET_DIGESTS (packet to request digest of a certificate chain), GET_CERTIFICATE (packet to request a certificate), and CHALLENGE (packet to verify that the receiver has an encryption key. A random number of -byte size) may exist.
  • the power transmitter of proposal B may also be a response to a packet that requires a response, or because the packet (eg, CE packet) transmission interval / period transmits an RFC or RFS (over a preset time). If it is long enough, it can transmit the RFC or RFS within the transmission interval / period.
  • the power transmitter of proposal B may also lose its status / permission as a master / sender based on the reasons mentioned above.
  • FIG. 19 is a flowchart illustrating a method for transmitting and receiving power according to the proposal B or C of the present invention.
  • the above-described embodiments may be applied in the same or similar manner, and redundant descriptions thereof will be omitted.
  • the power receiver is set as a master / sender and assumes / presumes a PRx-mastered Qi protocol that proactively transmits full packets such as CE packets and RPPs. do.
  • the RFC (or RFS) for acquiring the status / permission as a master / transmitter may be transmitted to the power receiver PRx.
  • the RFC (or RFS) may be an RFC (or RFS) combined with an ACK / NAK / ND response.
  • the power receiver (PRx) approves the acquisition of status / authorization as a master / sender of the power transmitter (PTx), it can transmit an ACK response, and if it refuses, it can send a NAK response.
  • the power receiver PRx acquires the status / permission as the master / sender and enables transmission of the full packet.
  • the full packet is then a packet containing the new GP information of the power transmitter (PTx) (for example, to renegotiate the GP with the power receiver (PRx) (or to change the pending power transfer agreement). PTC or newly defined packet).
  • the current WPC standard does not define the full packet format that the power transmitter can transmit and the packet format for the power receiver's response because the power receiver is set as a master / sender. Accordingly, various full packet formats that the power transmitter can transmit in FIG. 21 and various response packet formats that the power receiver can transmit in FIG. 22 will be described later.
  • the power receiver PRx may transmit an ACK / NAK / ND response or a response packet as a response to the received (full) packet.
  • the power receiver PRx may return to the PRx-mastered Qi protocol that is its master / sender after not receiving a packet from the power transmitter PTx for a predetermined time or transmitting a NAK / ND response.
  • the power transmitter PTx may receive a NAK / ND response from the power receiver or terminate the PTx-mastered Qi protocol, which is its master / sender, when there are no more packets to transmit, and may return to the PRx-mastered Qi protocol.
  • the power transmitter may transmit a full packet.
  • the power transmitter may also receive an ACK / NAK / ND response or response packet as a response thereto.
  • FIG. 20 is a flowchart illustrating an embodiment according to proposal B or C when the power transmitter wants to downgrade the GP level from 15W to 10W.
  • the GP level is determined to be 15W according to the last power transfer agreement between the power transmitter and the power receiver, and that the power transmitter is currently transmitting power to the power receiver at 15W.
  • the above description with respect to FIG. 19 may be applied in the same or similar manner, and redundant descriptions are omitted.
  • the power transmitter PTx may recognize a reason for newly negotiating the GP level with the power receiver while detecting power in the charging area while transmitting power at a level of 15W.
  • the power transmitter may transmit an RFC (or RFS) to the power receiver PRx for obtaining status / permission as a master / sender.
  • the RFC (or RFS) may be an RFC (or RFS) combined with an ACK / NAK / ND response.
  • the power receiver (PRx) approves the acquisition of status / authorization as a master / sender of the power transmitter (PTx), it can transmit an ACK response, and if it refuses, it can send a NAK response.
  • the power receiver PRx When receiving the ACK response, acquires the status / permission as the master / sender and enables transmission of the full packet.
  • the power transmitter PTx may transmit a full packet including new GP level (eg, 10W) information downgraded from 15W to the power receiver PRx due to a foreign material detection or the like.
  • an ACK response may be transmitted to the power transmitter PTx. This allows for a downgraded new GP level power delivery agreement.
  • FIG. 21 illustrates a full packet format transmitted by a power transmitter according to an embodiment of the present invention.
  • the full packet of FIG. 21 illustrates a GP packet including GP level information that the power transmitter wants to newly contract with the power receiver.
  • 2 bits of a GP packet may be set to a reserved bit (or header, 0x01), and the remaining 6 bits may be set to a field indicating a new GP level requested by the power transmitter.
  • the field 6 bits may be defined to indicate a new GP level / value in a specific level / value unit (for example, 0.5 W unit).
  • the power transmitter may set the field to a specific value by reflecting / considering the current surrounding situation / environment. For example, if the temperature of the power transmitter exceeds a predetermined temperature, the power transmitter may set the field value to a GP level lower than the GP level negotiated in the previous power delivery agreement with the power receiver. If the temperature of the power transmitter is lowered below the preset temperature according to the surrounding situation / environment, the power transmitter may raise the GP level of the corresponding field again.
  • FIG. 22 illustrates a response packet format transmitted by a power receiver according to an embodiment of the present invention.
  • the response packet format of the power receiver may be defined / similar to the response packet format of the power transmitter (see FIG. 12). That is, the ACK response that acknowledges the request of the power transmitter may be configured as '11111111', the NAK response that rejects the request is '00000000', and the ND response indicating that the request is unrecognized or invalid may be configured in a '01010101' bit pattern format. have. However, this is only an embodiment and may be configured with various bit patterns.
  • the header size of the response packet may be set differently for each response type.
  • the header size of the ACK response packet may be set to 0x06
  • the header size of the NAK response packet to 0x07
  • the header size of the ND packet to 0x08.
  • FIG. 23 is a flowchart illustrating a power transmission method of a wireless power transmitter according to an embodiment of the present invention.
  • the above-described embodiments may be applied in the same or similar manner, and redundant descriptions thereof will be omitted.
  • the power transmitter may perform a selection step of monitoring placement and removal of an object with respect to an interface surface of the power transmitter (S2310).
  • the power transmitter may perform a digital ping and receive a response from the power receiver to recognize the arrangement on the interface surface of the power receiver (S2320).
  • the power transmitter may acquire configuration information of the power receiver and generate a power delivery contract with the power receiver using the configuration information (S2330).
  • the configuration information may include information about a power reception capability of the power receiver such as maximum GP level information that the power receiver can receive.
  • the power delivery contract may include GP level information determined by the power transmitter in consultation with the power receiver.
  • the power transmitter may transmit a specific level of power to the power receiver based on the established / generated power transfer agreement with the power receiver (S2340). More specifically, the power transmitter may transmit power to the power receiver at a particular level determined according to the GP level information included in the power delivery contract.
  • the power transmitter may transmit the indication information for initiating communication with the power receiver to the power receiver (S2350).
  • the indication information transmitting step may be performed when a foreign object is detected on the interface surface or when the ambient temperature is detected to be higher than a predetermined temperature.
  • the indication information may be information requesting initiation of communication with a power receiver for renegotiating a power delivery contract.
  • the indication information may correspond to the RFR described above with reference to the proposal A. If a bit pattern for an ACK response for approving a request of a power receiver included in a predetermined packet, a NAK response for rejecting a request, and an ND response for indicating that the request is invalid is defined, the bit pattern of the indication information may be It may be defined as a pattern different from the bit patterns of the ACK response, the NAK response, and the ND response.
  • the transmitting of the power to the power receiver further includes receiving a predetermined packet from the power receiver, wherein the indication information is transmitted to the power receiver as a response to the predetermined packet.
  • the predetermined packet is a Received Power Packet (Received Power Packet) for changing the format of the received power packet determined in the power transfer contract (Control Error Packet) used to determine the operating point of the power transmitter It may correspond to.
  • the indication information may include request information for requesting the power receiver to acquire a right for the power transmitter to transmit a predetermined packet.
  • the indication information may correspond to the above-described RFC or RFS. This is as described above in connection with the proposal B above.
  • the predetermined packet may include a packet including information about a new guaranteed power level of the power transmitter.
  • the step of transmitting the power to the power receiver may include receiving a predetermined packet from the power receiver, wherein the indication information is power as a response to the predetermined packet. If the transmission interval of the predetermined packet is transmitted to the receiver or longer than the threshold, it may be transmitted within the transmission interval.
  • the preset packet may correspond to a received power packet for changing the format of the received power packet determined in the power transmission contract or a control error packet used for determining an operating point of the power transmitter. Can be.
  • bit pattern of an indication information is an ACK response. May be defined as a pattern different from the bit patterns of the NAK response and the ND response.
  • the indication information When the indication information is transmitted to the power receiver as a response to the preset packet, the indication information may further include response information about the preset packet in addition to the request information. This is the same as described above with respect to proposal C.
  • the size of the packet carrying the indication information may be determined based on the transmission interval of the preset packet. This has been described above with reference to FIG. 17.
  • the present invention can be applied to various wireless charging technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

본 발명의 일 실시예에 따르면, 복수의 코일들(Multi Coils)을 포함하는 전력 송신기의 무선 전력 송신 방법에 있어서, 제1 전력 수신기로 전력을 전송하는 중 제2 전력 수신기를 감지하는 단계; 전력 전송에 적합한 적어도 하나의 1차(Primary) 코일을 결정하는 단계; 상기 결정된 적어도 하나의 1차 코일을 이용하여 상기 제2 전력 수신기가 공유 모드 프로토콜(Shared Mode Protocol)을 지원하는지 여부를 결정하는 단계; 및 상기 제2 전력 수신기가 상기 공유 모드 프로토콜을 지원하는 경우, 상기 공유 모드 프로토콜에 따라 상기 제1 및 제2 전력 수신기로 전력을 전송하는 단계; 를 포함하되, 상기 공유 모드 프로토콜은 상기 전력 송신기와 복수의 전력 수신기들 사이의 정보 교환을 동시에 매니징하는 프로토콜일 수 있다.

Description

무선 전력 송신 방법 및 이를 위한 장치
본 발명은 무선 전력 송신 방법 및 이를 위한 장치를 대상으로 한다.
무접점(Contactless) 무선 충전 방식은 기존의 유선을 통해 에너지를 전송하여 전자기기의 전원으로 사용하는 방식에서, 선을 제거하고 전자기적으로 에너지를 전달하는 에너지 전달 방식이다. 무접점 무선 전송 방식에는 전자기 유도 방식 및 공진 방식이 존재한다. 전자기 유도 방식은 전력 송신부에서 전력 송신 코일(1차 코일)을 통해 자기장을 발생시키고, 전류가 유도될 수 있는 위치에 수신 코일(2차 코일)을 위치시킴으로써 전력을 전달하는 방식이다. 공진 방식은, 송신 코일 및 수신 코일 간의 공명 현상을 이용하여 에너지를 전송한다. 다만, 1차 코일의 공진 주파수와 2차 코일의 공진 주파수를 동일하게 시스템을 구성함으로써 코일 간의 공진 모드 에너지 결합을 사용한다.
현재 WPC 표준에 정의되어 있는 전력 송신기 및 전력 수신기간 통신 프로토콜에서 통신을 개시/주도하는 송신자(sender) 또는 마스터는 전력 수신기로 되어 있기 때문에, 전력 송신기는 전력 수신기의 요청에 대한 응답만 전송할 수 있어 전력 송신기가 충전 영역(또는 자기장 영역) 내에 이물질을 검출하거나 충전 환경이 변경되어도 원하는 타이밍에 주도적으로 직접 보장 전력 레벨을 조절할 수 없게 되어 있다.
따라서, 본 발명은 전력 송신기가 상황에 따라 마스터/송신자로서의 지위/권한 획득을 가능하도록 하여 현재 주변 상황/환경을 실시간으로 반영하여 효율적이고 안정적인 전력 송수신 방법을 제안함이 목적이다.
본 발명의 일 실시 예에 따르면, 전력 송신기의 무선 전력 송신 방법에 있어서, 상기 전력 송신기의 인터페이스 표면에 대한 오브젝트의 배치(placement) 및 제거(removal)를 모니터링하는 단계; 디지털 핑(ping)을 수행하고, 전력 수신기로부터 응답을 수신하는 단계; 상기 전력 수신기의 구성(configuration) 정보를 획득하고, 상기 구성 정보를 이용하여 상기 전력 수신기와 전력 전달 계약을 생성하는 단계; 상기 전력 전달 계약에 기초하여 전력을 상기 전력 수신기로 전송하는 단계; 및 상기 전력 수신기와의 통신을 개시(initiate)하기 위한 지시 정보를 상기 전력 수신기로 전송하는 단계; 를 포함할 수 있다.
또한, 상기 지시 정보는 상기 전력 전달 계약을 재협상하기 위한 상기 전력 수신기와의 통신의 개시를 요청하는 정보일 수 있다.
또한, 상기 전력을 상기 전력 수신기로 전송하는 단계는, 상기 전력 수신기로부터 기설정된 패킷을 수신하는 단계; 를 포함하고, 상기 지시 정보는 상기 기 설정된 패킷에 대한 응답으로서 상기 전력 수신기로 전송될 수 있다.
또한, 상기 기설정된 패킷에 포함된 상기 전력 수신기의 요청을 승인하는 ACK(Acknoledge) 응답, 상기 요청을 거절하는 NAK(Not-Acknowledge) 응답, 상기 요청이 유효하지 않음을 나타내는 ND(Not-Defined) 응답을 위한 비트 패턴이 각각 정의된 경우, 상기 지시 정보의 비트 패턴은 상기 ACK 응답, 상기 NAK 응답 및 상기 ND 응답의 비트 패턴과 다른 패턴으로 정의될 수 있다.
또한, 상기 기설정된 패킷은 상기 전력 전달 계약에서 결정된 수신 전력 패킷의 형식을 변경하기 위한 수신 전력 패킷(Received Power Packet) 또는 상기 전력 송신기의 동작 포인트를 결정하기 위해 사용되는 제어 에러 패킷(Control Error Packet)에 해당할 수 있다.
또한, 상기 지시 정보는 상기 전력 송신기가 소정의 패킷을 전송할 수 있는 권한 획득을 상기 전력 수신기에 요청하는 요청 정보를 포함할 수 있다.
또한, 상기 소정의 패킷은 상기 전력 송신기의 새로운 보장 전력(Guaranteed Power) 레벨에 관한 정보가 포함된 패킷을 포함할 수 있다.
또한, 상기 전력을 상기 전력 수신기로 전송하는 단계는, 상기 전력 수신기로부터 기설정된 패킷을 수신하는 단계; 를 포함하고, 상기 지시 정보는, 상기 기설정된 패킷에 대한 응답으로서 상기 전력 수신기로 전송되거나, 또는 상기 기설정된 패킷의 전송 간격이 스레시홀드 이상으로 길어진 경우 상기 전송 간격 내에서 전송될 수 있다.
또한, 상기 기설정된 패킷은 상기 전력 전달 계약에서 결정된 수신 전력 패킷의 형식을 변경하기 위한 수신 전력 패킷(Received Power Packet) 또는 상기 전력 송신기의 동작 포인트를 결정하기 위해 사용되는 제어 에러 패킷(Control Error Packet)에 해당할 수 있다.
또한, 상기 기설정된 패킷에 포함된 상기 전력 수신기의 요청을 승인하는 ACK 응답, 상기 요청을 거절하는 NAK 응답, 상기 요청이 유효하지 않음을 나타내는 ND 응답을 위한 비트 패턴이 각각 정의된 경우, 상기 지시 정보의 비트 패턴은 상기 ACK 응답, 상기 NAK 응답 및 상기 ND 응답의 비트 패턴과 다른 패턴으로 정의될 수 있다.
또한, 상기 지시 정보가 상기 기설정된 패킷에 대한 응답으로서 상기 전력 수신기로 전송되는 경우, 상기 지시 정보는 상기 요청 정보에 추가로 상기 기설정된 패킷에 대한 응답 정보를 더 포함할 수 있다.
또한, 상기 지시 정보가 상기 기설정된 패킷의 전송 간격 내에서 전송되는 경우, 상기 지시 정보를 나르는 패킷의 사이즈는 상기 기설정된 패킷의 전송 간격을 기초로 결정될 수 있다.
또한, 상기 지시 정보를 상기 전력 수신기로 전송하는 단계는, 상기 인터페이스 표면에 이물질(Foreign Object)이 검출된 경우 또는 주변의 온도가 기설정된 온도 이상으로 높게 검출된 경우에 수행될 수 있다.
또한, 본 발명의 다른 실시예에 따른 전력 수신기의 무선 전력 수신 방법에 있어서, 전력 송신기의 디지털 핑(ping) 수행을 검출하고, 상기 검출된 디지털 핑에 대한 응답을 전송하는 단계; 상기 전력 수신기의 구성(configuration) 정보를 전송하고, 상기 구성 정보에 기초한 전력 전달 계약을 상기 전력 송신기와 확립(establish)하는 단계; 상기 전력 전달 계약에 기초하여 전력을 상기 전력 송신기로부터 수신하는 단계; 및 상기 전력 수신기와의 통신을 개시(initiate)하기 위한 지시 정보를 상기 전력 송신기로부터 수신하는 단계; 를 포함할 수 있다.
또한, 본 발명의 다른 실시예에 따른 전력 송신기에 있어서, 자기장을 생성하는 적어도 하나의 1차 코일을 포함하는, 코일 어셈블리; 전기 에너지를 전력 신호로 변환하는, 전력 변환 유닛; 및 전력 수신기와의 통신 및 전력 전달을 컨트롤하는, 통신 및 컨트롤 유닛; 을 포함하되, 상기 통신 및 컨트롤 유닛은, 상기 전력 송신기의 인터페이스 표면에 대한 오브젝트의 배치(placement) 및 제거(removal)를 모니터링하고, 디지털 핑(ping)을 수행하고, 전력 수신기로부터 응답을 수신하고, 상기 전력 수신기의 구성(configuration) 정보를 획득하고, 상기 구성 정보를 이용하여 상기 전력 수신기와 전력 전달 계약을 생성하고, 상기 전력 전달 계약에 기초하여 전력을 상기 전력 수신기로 전송하고, 상기 전력 수신기와의 통신을 개시(initiate)하기 위한 지시 정보를 상기 전력 수신기로 전송할 수 있다.
본 발명의 일 실시예에 따르면, 전력 송신기는 주변 환경/상황에 따라 자신이 원하는 시점에 보장 전력 레벨을 동적으로 적절하게 조절할 수 있다는 효과를 갖는다.
또한, 본 발명의 일 실시예에 따르면, 이미 WPC 표준에서 기정의되어 있는 Qi 통신 프로토콜과의 충돌없이 전력 송신기의 full 패킷 전송이 가능하다는 효과를 갖는다.
또한, 본 발명의 일 실시예에 따르면, 전력 수신기가 전송하는 패킷과의 충돌없이 전력 송신기의 full 패킷 전송이 가능하다는 효과를 갖는다.
이외에, 본 발명의 실시예에 따른 다양한 효과는 이하에서 상세히 후술하기로 한다.
도 1은 무선 충전 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 2는 본 발명의 일 실시예에 따른 무선 전력 송수신 시스템을 나타낸다.
도 3은 유도 모드에서의 전력 송수신 방법을 나타내는 블록도이다.
도 4은 유도 모드에서의 전력 전달 컨트롤 방법을 나타낸다.
도 5는 본 발명의 일 실시예에 따른 전력 송신 장비를 나타낸다.
도 6는 본 발명의 일 실시예에 따른 전력 수신 장비를 나타낸다.
도 7은 전력 전달 동안의 데이터 통신을 위한 프레임 스트럭처를 나타낸다.
도 8은 본 발명의 일 실시예에 따른 싱크 패킷을 예시한 도면이다.
도 9는 공유 모드에서의 전력 전달 방법을 예시한 도면이다.
도 10은 본 발명의 일 실시예에 따라 FOD 확장이 적용된 무선 전력 송수신 시스템 제어 방법을 예시한 도면이다.
도 11은 본 발명의 일 실시예에 따른 수신 전력 패킷에 대한 전력 송신기의 응답 타이밍을 예시한 도면이다.
도 12는 본 발명의 일 실시예에 따른 전력 송신기 응답 포맷을 예시한 도면이다.
도 13은 본 발명의 일 실시예에 따른 전력 송신기의 전력 관리 프로필을 예시한다.
도 14는 본 발명의 제안 A에 따른 전력 송신기 및 전력 수신기간 통신 프로토콜을 예시한다.
도 15는 본 발명의 제안 A에 따른 전력 송신기의 전력 관리 프로필을 예시한 도면이다.
도 16은 본 발명의 제안 B에 따른 전력 송신기 및 전력 수신기간 통신 프로토콜을 예시한다.
도 17은 본 발명의 일 실시예에 따른 1B(Byte) 데이터를 예시한다.
도 18은 본 발명의 제안 C에 따른 전력 송신기 및 전력 수신기간 통신 프로토콜을 예시한다.
도 19는 본 발명의 제안 B 또는 C에 따른 전력 송수신 방법에 관한 순서도를 예시한다.
도 20은 전력 송신기가 GP 레벨을 15W에서 10W로 다운 그레이드하고자 하는 경우의 제안 B 또는 C에 따른 실시예를 예시한 순서도이다.
도 21은 본 발명의 일 실시예에 따른 전력 송신기가 전송하는 (full) 패킷 포맷을 예시한다.
도 22는 본 발명의 일 실시예에 따른 전력 수신기가 전송하는 응답 패킷 포맷을 예시한다.
도 23은 본 발명의 일 실시예에 따른 무선 전력 송신기의 전력 송신 방법에 관한 순서도이다.
본 명세서에서 사용되는 용어는 본 명세서에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도, 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한 특정 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 실시예의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 아닌 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.
더욱이, 이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 실시예를 상세하게 설명하지만, 실시예들에 의해 제한되거나 한정되는 것은 아니다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
도 1은 무선 충전 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다. 도 1에서는 무선 충전 시스템에서 송수신하는 전력 양에 따라 전자 기기들을 분류하였다.
스마트 시계, 스마트 글래스와 같은 웨어러블 기기들 및 이어폰, 리모콘, 스마트폰, PDA, 태블릿 PC 등의 모바일/포터블 전자 기기들에는 소전력(약 5W이하 또는 약 20W 이하) 무선 충전이 적용될 수 있다. 노트북, 로봇 청소기, TV, 음향 기기, 청소기, 모니터와 같은 중/소형 가전 기기들에는 중전력(약 50W이하 또는 약 200W)이하) 무선 충전이 적용될 수 있다. 그리고 믹서기, 전자 레인지, 전기 밥솥과 같은 주방 기기, 휠체어, 전기 킥보드, 전기 자전거 등의 개인용 이동 기기 및 전기 자동차 등의 전자 기기/이동 수단들에는 대전력(약 2kW 이하 또는 22kW이하) 무선 충전이 적용할 수 있다. 도 1에서 도시한 전자 기기들/이동 수단들은 후술하는 전력 수신기를 포함할 수 있다.
이하에서는 소전력 및 모바일 기기를 위주로 설명하나 이는 실시예에 대한 것으로 본 발명에 따른 무선 전력 송수신 방법은 상술한 다양한 전자 기기에 적용될 수 있다.
무선 전력 송수신 장치들의 표준화를 위해 WPC(Wireless Power Consortium)에서 무선 전력 송/수신 관련 기술을 규격화하고 있다.
최근 개발되는 무선 충전 시스템은 약 5W까지의 저전력 송수신을 지원할 수 있다. 다만, 최근 모바일 기기의 크기가 커지고 배터리 용량도 증가되고 있는데, 이러한 저전력 충전 방식의 경우 충전 시간이 길고 효율이 떨어지는 문제점이 있어, 약 15W~20W까지의 중간전력 송수신을 지원하는 무선 충전 시스템이 개발되고 있다. 이와 함께 동시에 복수의 전자 기기를 충전하기 위해 공진 방식이 추가된 무선 충전 시스템 또한 개발되고 있다. 본 발명은 공진 방식이 추가된 무선 충전 시스템에 대한 것으로서, 저전력/중간 전력의 유도 타입의 무선 충전 송/수신기와 호환이 가능한 공진 타입의 무선 충전 송/수신기를 제안하고자 한다.
이하에서, 본 발명이 제안하는 유도 타입(inductive) 및 공진 타입(resonant)의 무선 충전 송신기 및 무선 충전 수신기와 이들을 사용한 충전 방법 및 통신 프로토콜 등에 대하여 설명하도록 한다. 또한, 이하에서 공진 타입/모드는 공유(shared) 타입/모드라고 지칭할 수 있다. 또한 이하에서 무선 전력 송신기는 전력 송신기 또는 송신기로, 무선 전력 수신기는 전력 수신기 또는 수신기로 지칭할 수도 있다.
도 2는 본 발명의 일 실시예에 따른 무선 전력 송수신 시스템을 나타낸다.
도 2에서, 무선 전력 송수신 시스템은 무선으로 전력을 수신하는 모바일 기기(Mobile Device) 및 베이스 스테이션(Base Station)을 포함한다.
모바일 기기는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 전력 수신기(Power Receiver) 및 전력 수신기에서 수신한 전력을 전달받아 저장하고 기기에 공급하는 로드(Load)를 포함한다. 그리고 전력 수신기는 2차 코일을 통해 무선 전력 신호를 수신하여 전기 에너지로 변환하는 전력 픽업 유닛(Power Pick-Up Unit) 및 전력 송신기와의 통신 및 전력 신호 송수신(전력 전달/수신)을 제어하는 통신/컨트롤 유닛(Communications & Control Unit)을 포함할 수 있다. 모바일 기기는 이하에서 전력 수신 장비로 지칭될 수도 있다.
베이스 스테이션은 유도 전력(inductive power) 또는 공진 전력(resonant power)을 제공하는 장치로서, 하나 또는 복수의 전력 송신기들(Power Transmitter) 및 시스템 유닛을 포함할 수 있다. 전력 송신기는 유도/공진 전력을 전송하고, 전력 전송을 제어할 수 있다. 전력 송신기는, 1차 코일(Primary Coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환/전달하는 전력 변환 유닛(Power Conversion Unit) 및 적절한 레벨로 전력을 전달하도록 전력 수신기와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 유닛(Communications & Control Unit)을 포함할 수 있다. 시스템 유닛은 입력 전력 프로비저닝(provisioning), 복수의 전력 송신기들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션의 기타 동작 제어를 수행할 수 있다. 베이스 스테이션은 이하에서 전력 송신 장비로 지칭될 수도 있다.
전력 송신기는 동작 포인트를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트(operating point)는 주파수, 듀티 사이클(duty cycle) 및 전압 진폭의 조합에 해당될 수 있다. 전력 송신기는 주파수, 듀티 사이클/듀티비(duty ratio) 및 입력 전압의 진폭 중 적어도 하나를 조절하여 전달되는 전력을 컨트롤할 수 있다. 또한, 전력 송신기는 일정한 전력을 공급하고, 전력 수신기가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.
유도 모드 - Low Power 및 Mid Power
이하에서는 먼저 유도 모드에서 동작하는 전력 송신기/수신기의 전력 전달 방법에 대하여 설명하도록 한다. 다만, 유도 모드에 대해 설명한 방법 또는 방법에 포함된 단계들 중 적어도 하나는 선택적으로 또는 옵셔널하게 공진 모드에서 사용될 수도 있다.
도 3은 유도 모드에서의 전력 송수신 방법을 나타내는 블록도이다.
본 발명에 따른 무선 충전 시스템에서, 무선 충전은 5개의 단계(phase)들을 통해 수행될 수 있다. 5개의 단계들은 셀렉션 단계(selection phase), 핑 단계(ping phase), 식별/구성 단계(identification & configuration phase), 협상 단계(negotiation phase) 및 전력 전달 단계(power transfer phase)를 포함하며, 다만 저전력 모드의 전력 송수신에서 협상 단계는 생략될 수도 있다. 즉, 저전력 모드에서는 4개의 단계들로 전력 송수신이 수행되며, 중간 전력 모드에서 협상 단계가 추가로 수행될 수 있다.
셀렉션 단계에서, 전력 송신기는 송신기에 구비된 인터페이스 표면에 대한 오브젝트의 접촉/이탈을 모니터링한다. 도 2에서와 같이, 무선 전력 송신기는 전력 신호를 인가하여 외부 오브젝트의 접촉을 감지할 수 있다. 다시 말하면, 전력 송신기는 1차 코일에 짧은 전력 신호를 인가하고, 이 전력 신호로 인해 발생하는 1차 코일의 전류를 감지하여 외부 오브젝트의 존재를 모니터링할 수 있다. 그리고 전력 송신기는 셀렉션 단계에서 모니터링된 신호 강도(signal strength) 정보(패킷)를 수신, 이에 기초하여 오브젝트를 검출(디텍트; detect)하면, 이 오브젝트가 전력 수신기인지 또는 단순한 외부 오브젝트(열쇠, 동전 등)인지 여부를 선택할 수도 있다. 이러한 선택을 위해, 전력 송신기는 핑 단계, 식별/구성 단계 및 협상 단계 중 적어도 하나의 단계를 추가로 수행할 수 있다.
핑 단계에서, 전력 송신기는 디지털 핑을 수행하고, 전력 수신기의 응답을 대기할 수 있다. 디지털 핑은 전력 수신기를 검출 및 식별하기 위한 전력 신호의 인가/전송을 나타낸다. 전력 송신기가 전력 수신기를 발견하면, 전력 송신기는 디지털 핑을 확장하여 식별/구성 단계로 진행할 수 있다.
식별/구성 단계에서, 전력 송신기는 선택된 전력 수신기를 식별하고 최대 전력 양과 같은 전력 수신기의 구성(configuration) 정보를 획득할 수 있다. 다시 말하면, 전력 송신기는 식별/구성 정보를 수신하여 전력 수신기에 대한 정보를 획득하고, 이 정보를 사용하여 전력 전달 계약(Power Transfer Contract)를 확립(establish)할 수 있다. 이 전력 전달 계약은 이후의 전력 전달 단계에서 전력 전달을 특징짓는 복수의 파라미터들에 대한 제한을 포함할 수 있다.
협상 단계에서, 전력 수신기는 추가적인 전력 전달 계약을 생성하기 위해 전력 송신기와 협상할 수 있다. 다시 말하면, 전력 송신기는 전력 수신기로부터 협상 요청/정보를 수신할 수 있으며, 협상 단계는 식별/구성 단계에서 대상 수신기가 중간 전력 수신기인 것으로 확인된 경우에만 진행될 수 있다. 협상 단계에서, 전력 송신기의 보장(guaranteed) 전력 레벨 및 전력 수신기의 최대 전력과 같은 추가적인 파라미터들이 협상될 수 있다. 전력 수신기가 저전력 수신기인 경우에는 협상 단계는 생략하고, 식별/구성 단계에서 바로 전력 전달 단계로 진행할 수 있다.
전력 전달 단계에서, 전력 송신기는 전력 수신기로 무선으로 전력을 제공한다. 전력 송신기는 송신되는 전력에 대한 컨트롤 데이터를 수신하여 이에 따라 전력 전달을 제어할 수 있다. 그리고 전력 송신기는 전력 전달 중 전력 전달 계약에 따른 파라미터들의 제한이 위반되면 전력 전달을 중지하고 셀렉션 단계로 진행할 수도 있다.
도 4은 유도 모드에서의 전력 전달 컨트롤 방법을 나타낸다.
도 4에서 전력 송신기(Power Transmitter) 및 전력 수신기(Power Receiver)는 도 1에서 도시한 바와 같이 각각 전력 변환 유닛 및 전력 픽업 유닛을 포함할 수 있다.
상술한 유도 모드의 전력 전달 단계에서, 전력 송신기 및 전력 수신기는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다. 전력 송신기 및 전력 수신기는 특정 컨트롤 포인트에서 동작한다. 컨트롤 포인트는 전력 전달이 수행될 때 전력 수신기의 출력단(output)에서 제공되는 전압 및 전류의 조합(combination)을 나타낸다.
조금 더 상세히 설명하면, 전력 수신기는 원하는 컨트롤 포인트(desired Control Point)- 원하는 출력 전류/전압, 모바일 기기의 특정 위치의 온도 등을 선택하고, 추가로 현재 동작하고 있는 실제 컨트롤 포인트(actual Control Point)를 결정한다. 전력 수신기는 원하는 컨트롤 포인트와 실제 컨트롤 포인트를 사용하여, 컨트롤 에러 값(Control Error Value)을 산출하고, 이를 컨트롤 에러 패킷으로서 전력 송신기로 전송할 수 있다.
그리고 전력 송신기는 수신한 컨트롤 에러 패킷을 사용하여 새로운 동작 포인트- 진폭, 주파수 및 듀티 사이클-를 설정/컨트롤하여 전력 전달을 제어할 수 있다. 따라서 컨트롤 에러 패킷은 전력 전달 단계에서 일정 시간 간격으로 전송/수신되며, 실시예로서 전력 수신기는 전력 송신기의 전류를 저감하려는 경우 컨트롤 에러 값을 음수로, 전류를 증가시키려는 경우 컨트롤 에러 값을 양수로 설정하여 전송할 수 있다. 이와 같이 유도 모드에서는 전력 수신기가 컨트롤 에러 패킷을 전력 송신기로 송신함으로써 전력 전달을 제어할 수 있다.
이하에서 설명할 공진 모드에서는 유도 모드에서와는 다른 방식으로 동작할 수 있다. 공진 모드에서는 하나의 전력 송신기가 복수의 전력 수신기를 동시에 충전할 수 있어야 한다. 다만 상술한 유도 모드와 같이 전력 전달을 컨트롤하는 경우, 전달되는 전력이 하나의 전력 수신기와의 통신에 의해 컨트롤되므로 추가적인 전력 수신기들에 대한 전력 전달은 컨트롤이 어려울 수 있다. 따라서 본 발명의 공진 모드에서는 전력 송신기는 기본 전력을 공통적으로 전달하고, 전력 수신기가 자체의 공진 주파수를 컨트롤함으로써 수신하는 전력량을 컨트롤하는 방법을 사용하고자 한다. 다만, 이러한 공진 모드의 동작에서도 도 4에서 설명한 방법이 완전히 배제되는 것은 아니며, 추가적인 송신 전력의 제어를 도 4의 방법으로 수행할 수도 있다.
공유(shared) 모드 (공진 모드 )
도 5는 본 발명의 일 실시예에 따른 전력 송신 장비를 나타낸다.
도 5에서, 전력 송신 장비는 코일 어셈블리를 덮는 커버, 전력 송신기로 전력을 공급하는 전력 어답터, 무선 전력을 송신하는 전력 송신기 또는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스는 옵셔널하게 포함되거나, 전력 송신 장비의 다른 사용자 인터페이스로서 포함될 수도 있다.
전력 송신기는 코일 어셈블리, 탱크 회로(또는 임피던스 매칭 회로), 인버터, 통신 유닛 또는 컨트롤 유닛 중 적어도 하나를 포함할 수 있다.
코일 어셈블리는 자기장을 생성하는 적어도 하나의 1차 코일을 포함하며, 코일 셀로 지칭될 수도 있다.
임피던스 매칭 회로는 인버터와 1차 코일(들) 간의 임피던스 매칭을 제공할 수 있다. 임피던스 매칭 회로는 1차 코일 전류를 부스팅(boosting)하는 적합한(suitable) 주파수에서 공진(resonance)을 발생시킬 수 있다. 다중-코일(multi-coil) 전력 송신기에서 임피던스 매칭 회로는 인버터에서 1차 코일들의 서브세트로 신호를 라우팅하는 멀티플렉스를 추가로 포함할 수도 있다. 임피던스 매칭 회로는 탱크 회로(tank circuit)로 지칭될 수도 있다.
인버터는 DC 입력 신호를 AC 신호로 전환할 수 있다. 인버터는 가변(adjustable) 주파수의 펄스 웨이브 및 듀티 사이클을 생성하도록 하프-브리지 또는 풀-브리지로 구동될 수 있다. 또한 인버터는 입력 전압 레벨을 조정하도록 복수의 스테이지들을 포함할 수도 있다.
통신 유닛은 전력 수신기와의 통신을 수행할 수 있다. 전력 수신기는 전력 송신기에 대한 요청 및 정보를 통신하기 위해 로드(load) 변조를 수행한다. 따라서 전력 송신기는 통신 유닛을 사용하여 전력 수신기가 전송하는 데이터를 복조하기 위해 1차 코일의 전류 및/또는 전압의 진폭 및/또는 위상을 모니터링할 수 있다. 또한, 전력 송신기는 통신 유닛을 통해 FSK(Frequency Shift Keying) 방식 등을 사용하여 데이터를 전송하도록 출력 전력을 컨트롤할 수도 있다. 이를 위해, 무선 충전기는 추가로 전류 센서를 포함하여, 1차 코일의 전류 변화를 감지함으로써 수신기를 발견하고, 디텍팅된 수신기의 전송 데이터를 검출할 수 있다.
컨트롤 유닛은 전력 송신기의 통신 및 전력 전달을 컨트롤할 수 있다. 컨트롤 유닛은 상술한 동작 포인트를 조정하여 전력 전송을 제어할 수 있다. 동작 포인트는, 예를 들면, 동작 주파수, 듀티 사이클 및 입력 전압 중 적어도 하나에 의해 결정될 수 있다.
통신 유닛 및 컨트롤 유닛은 별개의 유닛/소자/칩셋으로 구비되거나, 도 1에서 나타낸 바와 같이 하나의 유닛/소자/칩셋으로 구비될 수도 있다.
도 6는 본 발명의 일 실시예에 따른 전력 수신 장비를 나타낸다.
도 6에서, 전력 수신 장비는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스, 무선 전력을 수신하는 전력 수신기, 로드 회로 또는 코일 어셈블리를 받치며 커버하는 베이스 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스는 옵셔널하게 포함되거나, 전력 수신 장비의 다른 사용자 인터페이스로서 포함될 수도 있다.
전력 수신기는 전력 컨버터, 탱크 회로(또는 임피던스 매칭 회로), 코일 어셈블리, 통신 유닛 또는 컨트롤 유닛 중 적어도 하나를 포함할 수 있다.
전력 컨버터는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 실시예로서, 전력 컨버터는 정류기(rectifier)를 포함할 수 있다. 추가로, 전력 컨버터는 전력 수신기의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
임피던스 매칭 회로는 전력 컨버터 및 로드 회로의 조합과 2차 코일 간의 임피던스 매칭을 제공할 수 있다. 실시예로서, 임피던스 매칭 회로는 전력 전달을 강화할 수 있는 100kHz 근방의 공진을 발생시킬 수 있다.
코일 어셈블리는 적어도 하나의 2차 코일을 포함하며, 옵셔널하게는 자기장으로부터 수신기의 금속 부분을 쉴딩(shield)하는 엘러먼트(element)를 더 포함할 수도 있다.
통신 유닛은 전력 송신기로 요청(request) 및 다른 정보를 통신하기 위해 로드 변조를 수행할 수 있다. 이를 위해 전력 수신기는 반사 임피던스를 변경하도록 저항 또는 커패시터를 스위칭할 수도 있다.
컨트롤 유닛은 수신 전력을 컨트롤할 수 있다. 이를 위해 컨트롤 유닛은 전력 수신기의 실제 동작 포인트와 원하는 동작 포인트의 차이를 결정/산출할 수 있다. 그리고 컨트롤 유닛은 전력 송신기의 반사 임피던스의 조정 및/또는 전력 송신기의 동작 포인트 조정 요청을 수행함으로써 실제 동작 포인트와 원하는 동작 포인트의 차이를 조정/저감할 수 있다. 이 차이를 최소화하는 경우 최적의 전력 수신을 수행할 수 있다.
통신 유닛 및 컨트롤 유닛은 별개의 소자/칩셋으로 구비되거나, 도 1에서 나타낸 바와 같이 하나의 소자/칩셋으로 구비될 수도 있다.
공유 모드에서, 전력 송신기는 하나 이상의 전력 수신기와의 정보 교환을 매니징하여야 한다. 이를 위해, 전력 송신기는 전력 수신기와의 통신을 위한 스트럭처를 제공하며, 이러한 스트럭처는 이하의 통신 프레임과 같다.
도 7에서, 전력 송신기는 각 전력 수신기가 데이터 패킷을 전송할 수 있는 타임 슬롯들의 시퀀스를 제공하는 스트럭처를 제공한다. 각각의 슬롯들 사이에는 도 7와 같은 싱크 패턴이 제공된다. 싱크 패턴은 슬롯들을 분리할 뿐 아니라, 전력 수신기의 통신을 최적화시키는 역할을 수행한다. 특히, 싱크 패턴은 수신기에게 충돌 해결(collision resolution) 및 레이턴시 보장(guaranteed latency)을 위한 정보를 제공할 수도 있다.
도 7은 전력 전달 동안의 데이터 통신을 위한 프레임 스트럭처를 나타낸다. 공유 모드 프로토콜은 2 종류의 프레임들, 즉, 슬롯(slotted) 프레임 및 자유-포맷(free-format) 프레임을 사용할 수 있다. 슬롯 프레임은 전력 수신기가 전력 송신기로 짧은 데이터 패킷을 전송하는데 사용될 수 있으며, 자유-포맷 프레임은 양방향의 더 큰 데이터 패킷 전송 및 멀티 코일 송신기에서의 코일 선택과 같은 다른 목적에 사용될 수 있다.
모든 프레임은 싱크 패턴과 측정(measurement) 슬롯으로 시작되며, 측정 슬롯은 송신 전력 및 수신 전력 측정에 사용될 수 있다. 실시예로서 하나의 슬롯 프레임에는 9개의 슬롯들이 포함될 수도 있다. 자유-포맷 프레임의 경우 싱크 패턴과 측정 프레임 이후로는 특정 형식 제한이 없다. 싱크 패킷의 시작 비트(정보)가 프레임의 시작을 나타낼 수 있다.
도 8은 본 발명의 일 실시예에 따른 싱크 패킷을 예시한 도면이다.
도 8에서와 같이, 싱크 패킷은 프리앰블, 시작 비트, 응답(response) 필드, 타입 필드, 인포(Info) 필드 및 패리티 비트 중 적어도 하나를 포함할 수 있다.
프리앰블은, 1로 설정되는 비트들의 시퀀스를 포함한다. 포함되는 비트들의 수는 동작 주파수에 따라 변경될 수 있다. 시작 비트는, 0으로 설정될 수 있다. 패리티 비트는 싱크 패턴의 마지막 비트로서, 싱크 패턴에 포함된 데이터 필드들에 포함된 1로 설정된 비트들이 짝수인 경우에는 1로, 다른 경우에는 0으로 설정될 수 있다.
응답 필드는 선행 슬롯에서 수신기로부터의 통신에 대한 송신기의 응답을 포함할 수 있다. 00은 통신을 디텍팅하지 못하였음을, 01은 통신 에러를 디텍팅하였음을, 10은 통신을 정확히(correctly) 수신하였음에 대한 부정 응답(Not-Acknowledge)을, 11은 통신을 정확히 수신하였음에 대한 긍정 응답(Acknoledge)을 각각 나타낼 수 있다.
타입 필드는 프레임에 포함된 첫번째 싱크 패턴의 경우 1로 설정되고, 다른 싱크 패턴들에 대해서는 0으로 설정될 수 있다.
인포 필드는 싱크 필드에서 나타내어진 싱크 패턴에 따라 상이한 값과 의미를 갖는다. 먼저, 타입 필드가 1인 경우, 인포 필드는 프레임이 슬롯 프레임인지 또는 자유-포맷 프레임인지를 나타낼 수 있다. 그리고 타입 필드가 0인 경우, 인포 필드는 다음 슬롯이 특정 수신기에게 배정(allocate)된 슬롯인지, 일시적으로 특정 수신기에게 제공되는 고정된(locked) 슬롯인지, 또는 아무 수신기나 사용할 수 있는 자유(free) 슬롯인지를 나타낼 수 있다.
도 9는 공유 모드에서의 전력 전달 방법을 예시한 도면이다.
공유 모드에서, 전력 전달 방법은 셀렉션 단계, 소개(introduction) 단계, 구성(configuration) 단계, 협상(Negotiation) 단계 및 전력 전달(Power Transfer) 단계를 포함할 수 있다.
셀렉션 단계는, 도 3와 같은 유도 모드에서의 셀렉션 단계를 나타내며, 공유 모드에서는 셀렉션 단계를 생략하고 나머지 4단계로 설명할 수도 있다. 공유 모드에서는 웨이크업(wake-up) 타임 아웃 전에 전력 신호에서 FSK(Frequency Shift Keying)의 존재를 디텍팅하면 바로 소개 단계로 진행할 수 있다.
소개 단계에서, 전력 수신기는 다음 단계들에서 사용할 CI(Control Information; 컨트롤 정보) 패킷을 전송할 자유 슬롯을 요청할 수 있다. 이를 위해, 수신기는 최초(Initial) CI 패킷을 전송한다. 전력 송신기가 ACK으로 응답하는 경우, 전력 수신기는 구성 단계로 진행할 수 있다. 전력 송신기가 NAK로 응답하는 경우, 다른 수신기가 구성 단계 또는 협상 단계를 진행 중일 수 있다. 따라서 수신기는 다시 프리 슬롯을 요청할 수 있다. 수신기가 ACK을 수신한 경우 수신기는 프레임에서 자신의 전용(private) 슬롯의 위치를 결정하고, 이후에는 해당 위치의 슬롯을 사용하여 CI 패킷을 전송할 수 있다.
구성 단계에서, 전력 송신기는 전력 수신기의 독점적인(exclusive) 사용을 위해 일련의 고정된 슬롯들(a series of locked slots)을 제공할 수 있다. 이는 수신기가 충돌 없이 구성 단계를 진행하기 위함이다. 수신기는 고정된 슬롯들을 사용하여 2개의 식별 데이터 패킷(Identification data packets; IDHI and IDLO), 선택적으로 적어도 하나의 소유(proprietary) 데이터 패킷들, 및 구성 패킷(Configuration Packet, CFG)을 전송할 수 있다. 이 단계를 완료하면, 수신기는 협상 단계로 진행한다.
협상 단계에서도, 송신기는 고정된 슬롯들을 계속 수신기의의 독점적 사용을 위해 제공할 수 있다. 이 또한 수신기가 충돌 없이 협상 단계를 진행하기 위함이다. 수신기는 고정된 슬롯들을 사용하여 협상 데이터 패킷(SRQ(Specific Request) 및 GRQ(General Request)를 포함하는) 및 적어도 하나의 선택적인 소유 데이터 패킷(optional proprietary data packets)을 전송할 수 있다. 그리고 수신기는 SRQ/en(SRQ/End-Negotiation) 패킷을 전송함으로써 협상 단계를 종료할 수 있다. 이 단계가 종료되면, 송신기는 전력 전달 단계로 진행하며, 송신기는 고정된 슬롯들의 제공을 중단한다.
전력 전달 단계에서 수신기는 CI 패킷을 배정된 슬롯을 사용하여 전송한다. 그리고 전력을 수신한다. 전력 수신기는 레귤레이터 회로를 포함할 수도 있다. 레귤레이터 회로는 상술한 통신/컨트롤 유닛에 포함될 수 있다. 레귤레이터 회로를 통해 수신기는 수신기의 반사 임피던스를 자기-조정(self-regulate)할 수 있다. 즉, 수신기는 외부 로드에 필요한 전력 양을 전달하고 과도한 전력을 수신하거나 과열을 방지하도록 반사 임피던스를 조정할 수 있다. 공유 모드에서는 동작 모드에 따라서 송신기가 수신한 CI 패킷에 대응하여 전력을 조정하지 않을 수 있으므로, 이러한 경우 전압-초과(over-voltage) 상황을 방지하도록 컨트롤할 수 있다.
FOD (Foreign Object Detection) 확장(extensions)
이하에서는 도 3 및 도 4와 관련하여 상술한 유도 모드에서의 전력 송수신/컨트롤 방법 수행 시, 무선 충전 대상이 아닌 이물질(Foreign object)을 검출하기 위한 FOD 확장에 관해 살펴본다. 이러한 FOD 확장은, 도 10에 도시한 바와 같이, 협상 단계(negotiation phase), 보정 단계(calibration phase) 및 재협상 단계(renegotiation phase)가 기본적인 시스템 제어 방법에 추가되는 방식으로 수행될 수 있다. 새로 추가된 단계들은 주로 이물질을 검출하기 위한 기능을 수행할 수 있다.
도 10은 본 발명의 일 실시예에 따라 FOD 확장이 적용된 무선 전력 송수신 시스템 제어 방법을 예시한 도면이다. 본 도면과 관련하여 앞서 도 3 및 도 4에서 상술한 각 단계에 관한 설명이 동일/유사하게 적용될 수 있으며, 이하에서는 도 3 및 도 4과의 차이점을 중심으로 설명하며, 중복되는 설명은 생략한다.
도 10을 참조하면, 셀렉션 단계(Selection phase)에서 전력 송신기는, 인터페이스 표면을 모니터링하여 작은 측정 신호를 사용하여 물체(object)의 배치 및 제거를 모니터링할 수 있다. 이 측정 신호는 인터페이스 표면에 위치한 전력 수신기를 깨우지(wake up) 않아야 한다. 전력 송신기가 인터페이스 표면의 이물질을 감지하면, 전력 송신기는 셀렉션 단계에 머물러야 하며, 이물질의 과열을 방지하기 위해 전력 신호를 제공해서는 안된다.
협상 단계(negotiation phase)에서 전력 수신기는, 전력 전달 계약을 미세 조정하기 위해 전력 송신기와 협상할 수 있다. 이를 위해, 전력 수신기는 전력 송신기가 승인하거나 거부할 수 있는 협상 요청을 전력 송신기로 보낼 수 있다. 또한 이물질 존재 여부에 대한 초기 평가 능력을 향상시키기 위해, 전력 송신기는 전력 수신기가 보고한 품질 요소(quality factor)를 자신의 측정 값(또는 신호)과 비교할 수 있다. 만일, 전력 송신기가 이물질을 검출하면, 셀렉션 단계로 회귀해야 한다.
보정 단계(calibration phase)에서 전력 송신기는, 전력 전송 중 이물질을 검출하는 능력을 향상시킬 수 있다. 특히, 전력 송신기는 전력 손실 방법의 파라미터를 조절할 수 있다. 여기서, 전력 수신기는 자신의 수신 전력을 두 가지 로드 조건에서 제공할 수 있다.
전력 전달 단계(power transfer phase)에서 전력 송신기는 인터페이스 표면에 새로운 이물질이 놓여있는지 지속적으로 확인할 수 있다. 이를 위해, 전력 송신기는 예를 들어, 보정된 전력 손실 계산을 기반으로 한 FOD 전력 손실 방법을 사용할 수 있다. 전력 수시기 또한, 새로운 이물질의 배치를 확인할 수 있다. 만일, 전력 송신기 또는 전력 수신기가 이물질을 검출한 경우, 전력 송신기 및/또는 전력 수신기는 전력 신호를 줄이거나 전력 신호를 제거하고, 셀렉션 단계로 회귀해야 한다.
재협상 단계(renegotiation phase)에서 전력 수신기는, 원하는 경우 전력 전달 계약을 조절할 수 있다. 필요하다면, 재협상 단계는 전력 전달 계약의 변경 없이 조기에 중단될 수도 있다.
보정 단계에서 전력 송신기는 전력 수신기로부터 전력 송신기가 FOD를 위한 전력 손실 방법을 개선하는 데 사용할 정보를 수신해야 한다. 특히, 전력 송신기는 수신 전력 정보(Received Power information)를 전력 수신기로부터 수신해야 하며, 이때의 전력 수신기는 light load (disconnected load) 및 connected load에서 수신 전력 정보를 송신한다. . 만일, 전력 송신기가 이러한 수신 전력 정보를 수신하지 못한다면, 전력 신호를 제거하고 셀렉션 단계로 회귀할 수 있다. 다만, 전력 송신기는 이물질이 없음을 확인한 경우에 한하여 이러한 수신 전력 정보를 이용하여 전력 손실 방법의 개선을 시도할 수 있다.
보정 단계에서의 전력 송신기의 동작은 전력 전달 단계에서의 동작과 동일할 수 있으나, 아래의 동작들이 추가될 수 있다.
- 만일, 전력 송신기가 모드 필드가 ‘001’로 설정(light load를 위한 보정 모드)된 24-bit 수신 전력 패킷을 수신하고, 수신된 전력 값을 만족하면, ACK 응답을 전송할 수 있다. 그렇지 않은 경우, 전력 송신기는 NAK 응답을 전송할 수 있다.
- 만일, 전력 송신기가 모드 필드가 ‘010’으로 설정(connected load를 위한 보정 모드)된 24-bit 수신 전력 패킷을 수신하고, 수신된 전력 값을 만족하면, ACK 응답을 전송하고 전력 전송 단계를 계속 진행할 수 있다. 그렇지 않은 경우, 전력 송신기는 NAK 응답을 전송할 수 있다.
여기서, 수신 전력 패킷(Received Power Packet; RPP)은, 전력 전달 계약에서 결정된 수신 전력 패킷의 형식을 변경하기 위해 협상 단계에서 전력 수신기에 의해 전력 송신기로 적어도 한 번 전송되는 패킷에 해당할 수 있다. 전력 송신기가 이러한 수신 전력 패킷에 대해 ACK 응답을 전송하는 경우, 임시 전력 전달 계약에서의 수신 전력 패킷의 형식이 ACK 응답이 전송된 수신 전력 패킷에 기초하여 변경될 수 있다.
FOD 확장이 지원되는 시스템의 전력 전달 단계에서 전력 송신기는 아래와 같은 동작을 수행할 수 있다.
도 11은 본 발명의 일 실시예에 따른 수신 전력 패킷에 대한 전력 송신기의 응답 타이밍을 예시한 도면이다.
- 만일 전력 송신기가 재협상 패킷(Renegotiate Packet)을 수신한 경우, 전력 송신기는 ACK 응답을 전송하고, 이어서 재협상 단계를 진행할 수 있다.
- 만일 전력 송신기가 전력 전달 계약에서 합의된 형식과 다른 형식의 수신 전력 패킷을 수신한 경우, 전력 신호를 제거하고 셀렉션 단계로 회귀할 수 있다.
- 만일 전력 송신기가 모드 필드가 ‘000’으로 설정(light load를 위한 보정 모드)된 24-bit 수신 전력 패킷을 수신한 경우, 전력 송신기는 도 11에 도시한 바와 같이, 수신 전력 패킷이 전송/수신된 시점으로부터 t_response 내에 응답을 전송해야 한다. 전력 송신기는 전력 전달이 현 상태로 진행 가능하다고 판단한 경우, 이를 지시하는 ACK 응답을 전력 수신기로 전송할 수 있다. 또는, 전력 송신기는 전력 수신기가 전력 소비를 줄여야 한다고 판단한 경우, 이를 지시하는 NAK 응답을 전력 수신기로 전송할 수 있다. 특히, 전력 송신기는 아래와 같은 경우들에 NAK 응답을 전송할 수 있다.
1) 이물질이 자기장에 위치했음을 확인한 경우
2) 주위 온도가 높아 현재의 전력 레벨을 계속해서 지원할 수 없는 경우
3) 낮은 커플링 조건 등으로 인해 한계에 가깝거나 한계를 초과하여 동작하는 경우
전력 송신기가 NAK 응답을 보낸 경우, 전력 수신기가 전력 소비를 줄일 수 있도록 하기 위해 계속해서 전력을 전력 수신기로 전송할 수 있다. 전력 레벨의 충분한 감소가 검출되지 않은 채 몇 번의 NAK 응답을 연속적으로 전송한 후, 전력 송신기는 전력 전송을 종료해야 한다.
NAK 응답을 수신한 전력 수신기는 자신의 전력 소비를 줄이거나, 종료 전력 전달 코드가 0x0B(전력 전달 재시작)으로 설정된 종료 전력 패킷을 전송하거나, 혹은 전력 송신기가 NAK 응답을 보내게 된 이유를 사용자가 해결할 수 있도록 유도할 수 있다. 전력 수신기는 줄여야 하는 전력 소비 레벨이 얼만큼인지를 결정하기 위해 전력 전송 성능 패킷(power transmitter capability packet)을 요청(retrieve)할 수 있다.
만일 전력 수신기가 수신 전력 패킷 이후에 응답을 요청하지 않은 경우(예를 들어, 모드 필드가 ‘100’으로 설정된 수신 전력 패킷을 전송한 경우), 전력 송신기는 전력 소비를 줄이도록 전력 수신기에 요청할 수 없다. 따라서, 전력 수신기는 언제든지 발생 가능한 전력 송신기에 의해 트리거링되는 전력 감소에 항상 대비하고 있을 필요가 있다.
만일, 전력 송신기가 모드 필드가 ‘001’ 또는 ‘010’으로 설정된 수신 전력 패킷을 수신한 경우, 수신 전력 값을 무시할 수 있으며, ND(Not-Defined) 응답을 전송할 수 있다.
만일, 전력 송신기가 0x0B(전력 전달 재시작)의 종료 전력 전달 코드(End power transfer code)가 포함된 종료 전력 전달 패킷(End Power Transfer Packet)을 수신한 경우, 전력 신호를 제거하고, 이물질의 존재를 검출하기 위해 시도하고, t_restart(=500ms) 이내에 핑 단계를 계속 진행할 수 있다.
이렇듯 전력 송신기는 전력 수신기가 전송한 특정 패킷에 대하여 ACK/NAK/ND 응답을 전송할 수 있으며, 이러한 응답의 포맷으로는 도 12의 실시예가 존재할 수 있다.
도 12는 본 발명의 일 실시예에 따른 전력 송신기 응답 포맷을 예시한 도면이다.
도 12를 참조하면, 전력 송신기 응답 포맷은 8bit 사이즈의 비트 패턴으로 구현될 수 있다. 특히, 요청 승인을 지시하는 ACK 응답은 ‘11111111’, 요청을 거절하는 NAK 응답은 ‘00000000’, 인식 불가능한 또는 유효하지 않은 요청임을 지시하는 ND 응답은 ‘01010101’ 비트 패턴 포맷으로 구성될 수 있다. 그러나, 이는 실시예에 불과하며 다양한 비트 패턴으로 구성될 수 있다.
현재 WPC 표준에 정의되어 있는 전력 송신기 및 전력 수신기간 통신 프로토콜에서 통신을 개시/주도하는 송신자(sender) 또는 마스터는 전력 수신기로 되어 있기 때문에, 전력 수신기의 요청에 대한 응답만 전송할 수 있어 전력 송신기가 충전 영역(또는 자기장 영역) 내에 이물질을 검출하던지 현재 충전 환경이 변하여 전력 레벨 조절이 필요해도 원하는 타이밍에 직접 전력 레벨을 낮출 수는 없다. 따라서, WPC 표준에는 앞서 상술한 바와 같이, 전력을 전송하는 전력 전달 단계에서 이물질을 검출한 경우(또는 이물질이 자기장/충전 영역에 위치했음을 확인한 경우), 전력 송신기는 전력 수신기가 전송한 수신 전력 패킷에 대해 NAK 응답을 전송함으로써 전력 수신기가 수신 전력 레벨을 줄일 수 있게 유도하도록 정의되어 있다. 이렇듯 NAK 응답을 이용하여 이물질 검출을 전력 수신기로 알려 전력 레벨을 줄이도록 유도하는 솔루션은 ‘숏-텀(short-term) 솔루션’이라 지칭될 수 있다.
이러한 숏-텀 솔루션은 다음과 같은 단점을 갖는다.
우선, NAK 응답의 의미가 모호해질 수 있다. 즉, 상술한 숏-텀 솔루션에 따를 때, NAK 응답은 이미 정의된 전력 수신기의 요청에 대한 거절의 의미 외에도, 전력 재협상을 위한 암시적 요청의 의미(또는 이물질 검출/전력 레벨의 감소를 지시하는 암시적인 의미)가 추가로 포함되기 때문에, NAK 응답의 의미가 다중화되어 NAK 응답에 기초한 전력 수신기의 동작에 혼동을 줄 수 있다.
또한, 전력 송신기는 모드 필드가 ‘000’으로 설정된 수신 전력 패킷이 전송된 경우에만 이러한 NAK 응답을 전력 수신기로 전송할 수 있기 때문에, 이물질 검출에 따른 전력 레벨의 조절 가능 시점이 특정 시점으로 제한된다는 단점이 존재한다. 특히, 모드 필드가 ‘100’으로 설정된 수신 전력 패킷에 대하여 전력 수신기는 전력 송신기로부터 어떠한 응답을 기대하지 않기 때문에, 모드 필드가 ‘100’으로 설정된 수신 전력 패킷을 수신한 경우 전력 송신기는 전력 레벨을 줄이기 위한 NAK 응답을 전송할 수 없게 된다. 이 경우, 전력 송신기는 모드 필드가 ‘000’으로 설정된 수신 전력 패킷이 전송될 때까지, 전력 레벨을 줄이기 위한 NAK 응답의 전송을 미뤄야 한다. 그 결과, 이물질에 지속적으로 전력이 전송되어 화재 등의 위험이 발생할 수 있다.
또한, 숏-텀 솔루션에 따르면, 전력 레벨 조절에 있어 유연성(flexibility)이 떨어진다는 단점이 존재한다.
도 13은 본 발명의 일 실시예에 따른 전력 송신기의 전력 관리 프로필을 예시한다.
숏-텀 솔루션에서, 전력 수신기는 이물질 검출 또는 전력 송신기의 주변 환경으로 인해 전력 레벨의 감소가 필요하다고 가정할 수 있다. 특히, 전력 송신기로부터 5W를 수신 중이었던 경우, 전력 수신기는 NAK 응답을 수신한 후에 전력 수신을 중단할 수 있다. 그러나, 이러한 숏-텀 솔루션은 전력 송신기의 충전 조건이 개선되거나 이물질이 제거되는 등 감소된 전력 레벨을 다시 증가할 필요가 있는 경우에도, 전력 레벨을 다시 증가 시키기 위한 명확한 방법을 제시하지 못한다.
따라서, 본 명세서에서는, 상술한 숏-텀 솔루션에서의 문제점을 방지하고, 보다 효율적으로 이물질 검출에 따른 전력 레벨 조절 방법에 대해 제안하기로 한다. 특히, 본 명세서에서는 전력 송신기가 전력 수신기와의 통신을 재개/개시/주도하는 마스터/송신자(sender)로서의 역할을 수행하여, 상황에 따라 즉각/효율적으로 전력 레벨을 조절하기 위한 다양한 방법을 제안한다.
이물질 검출 및 충전 환경 변화에 따른 전력 레벨 조절 방법
제안 A. RFR(Request for Renegotiation)을 위한 새로운 비트 패턴 정의
일 실시예로서, 전력 송신기가 전력 수신기에 재협상을 요청하기 위한 새로운 비트 패턴인 RFR이 정의될 수 있으며, 전력 송신기는 RFR을 전력 수신기로 전송함으로써 전력 재협상을 전력 수신기로 요청할 수 있다. RFR은 8-비트 사이즈의 비트 패턴으로 구성될 수 있으며, 표준에 ACK/NAK/ND 응답을 위해 정의된 비트 패턴을 제외한 다양한 8-bit 사이즈의 비트 패턴으로 정의될 수 있다. 예를 들어, RFR은 ‘00001111’, ‘11110000’, ‘10101010’, ‘10110110’, ‘00110011’ 또는 ‘01001001’으로 정의될 수 있다. 다만, 비트 디코딩만으로 비트 패턴을 분류하기 위해, 3bit만 디코딩하더라도 비트 패턴이 구분될 수 있도록 RFR을 정의하는 것이 바람직할 수 있다.
새롭게 정의된 RFR은 전송 파워 재협상 요청을 지시하는 용도로 사용될 수 있다. 이러한 RFR을 수신한 전력 수신기는 재협상 패킷을 전력 송신기로 전송할 수 있으며, 전력 송신기는 재협상 패킷에 대한 ACK/NAK/ND 응답을 전송할 수 있다. 전력 송신기가 ACK 응답을 전송한 경우 전력 송신기 및 전력 수신기는 재협상 단계로 진입할 수 있다.
재협상 단계에서 전력 수신기는 전력 송신기의 보장 전력(Guaranteed Power; GP)를 문의(inquiry)할 수 있으며, 전력 송신기는 이에 대한 응답으로 GP로서 현재 전력 수신기에 제공 가능한 전력 레벨을 응답할 수 있다. 전력 수신기가 해당 GP를 특정 요청 패킷(specific request packet)을 통해 전력 송신기에 요청하면, 전력 송신기는 이에 대한 ACK 응답을 전송하여 전력 수신기와 새로운 전력 계약을 맺을 수 있다.
구체적인 예로, 전력 송신기와 전력 수신기가 15W의 레벨로 전력 전달 계약을 맺고 전력 전달 단계로 진입한 경우를 가정할 수 있다. 전력 전달 단계에서 전력 송신기가 전력을 송신하는 동안(또는 전력 수신기를 충전하는 동안) 전력 송신기는, 온도가 올라가거나 이물질이 검출되는 등 기타 주변 환경의 이상을 검출하여 GP를 15W에서 10W로 다운-그레이드하고자 하는 경우, 전력 송신기는 전력 수신기의 수신 전력 패킷에 대한 응답으로서 RFR을 전송할 수 있다. RFR을 수신한 전력 수신기는 전력 계약 재협상을 요청하는 재협상 패킷을 전력 송신기로 전송할 수 있으며, 전력 송신기는 이에 대해 ACK 응답을 전송함으로써 재협상 단계로 진입할 수 있다. 재협상 단계에서 전력 송신기와 전력 수신기는 전력 송신기가 원하는 새로운 GP 레벨인 10W로 전력 계약을 다시 체결할 수 있다.
도 14는 본 발명의 제안 A에 따른 전력 송신기 및 전력 수신기간 통신 프로토콜을 예시한다. 특히, 도 14(a)는 전력 송신기가 수신 전력 패킷(RPP)을 수신한 경우의 통신 프로토콜을 예시하며, 도 14(b)는 전력 송신기가 제어 에러(Control Error; CE) 패킷을 수신한 경우의 통신 프로토콜을 예시한다. 여기서 제어 에러 패킷은 전력 송신기의 동작 포인트를 제어하는 데 사용되는 특정 패킷을 나타낸다. 본 도면에서 해칭으로 표시된 박스는 전력 송신기에 의해 진행되는 단계를 나타내며, 그 외의 박스는 전력 수신기에 의해 진행되는 단계를 각각 나타낸다.
도 14를 참조하면, 우선 전력 수신기는 RPP 또는 CE 패킷을 전력 송신기로 전송할 수 있다. 이때 만일, 전력 송신기가 검출한 현재 상황에 따라 협상 단계에서 전력 수신기와 체결한 전력 전달 계약을 변경할 필요가 있다(또는, GP 레벨 변경/조절할 필요가 있다)고 판단한 경우, 재협상 단계로의 진입을 요청하는 RFR을 전력 수신기로 전송할 수 있다. 전력 수신기는 재협상 패킷을 전력 송신기로 전송함으로써 전력 송신기와 함께 GP 레벨을 조절/변경하기 위한 재협상 단계로 진입할 수 있다.
재협상 단계에서 전력 수신기는 전력 송신기가 현재 송신 가능한 (최대) GP 레벨 정보 정보가 포함된 전력 송신기의 Capability packet 을 수신하기 위해 GRQ(General Request)/cap 패킷을 전력 송신기로 전송할 수 있다. GRQ/cap 패킷에 대한 응답으로 전력 송신기는 자신의 전력 전송 능력 정보가 포함된 PTC(Power Transmitter Capability) 패킷을 전력 수신기로 전송할 수 있다. PTC 패킷에는 전력 전송 능력 정보로서 전력 송신기의 전력 클래스 정보, 현재의 주변 상황/조건을 고려하여 결정된 전력 송신기의 (최대/새로운) GP 레벨 정보 및/또는 이상적인 주변 상황/조건에서 전송 가능한 전력 송신기의 (최대/새로운) GP 레벨 정보가 포함되어 있을 수 있다.
PTC 패킷에 대한 응답으로서 전력 수신기는 자신이 요청하는 GP 레벨 정보가 포함된 SRQ/gp 패킷을 전력 송신기로 전송할 수 있다. 이러한 SRQ/gp 패킷은 요청 파라미터 필드가 ‘보장된 전력 값(Guaranteed Power Value)’을 지시하도록 설정된 SRQ 패킷에 해당할 수 있으며, 전력 수신기가 원하는/요청하는 GP 레벨을 0.5W 단위로 지시하도록 정의될 수 있다.
이러한 SRQ/gp 패킷을 통해 전력 수신기가 원하는/요청하는 GP 레벨의 수용이 가능한 경우, 전력 송신기는 SRQ/gp 패킷에 대한 응답으로서 ACK 응답을 전송할 수 있다.
이러한 ACK 응답에 대한 응답으로서 전력 수신기는 (재)협상 단계의 종료를 지시하는 SRQ/en 패킷을 전력 송신기로 전송할 수 있다. 이러한 SRQ/en 패킷은 요청 파라미터 필드에 ‘변경 카운트(change count)’가 설정된 SRQ 패킷에 해당할 수 있다. 전력 송신기는 SRQ/en 패킷을 수신 후 전력 송신기가 계산한 변경 카운트 값과 SRQ/en에 실려있는 변경 카운트 값이 일치하면, ACK 신호를 전송하는 것으로 전력 송수신기간의 협상/재협상 단계는 종료될 수 있으며, 나아가 협상/재협상 단계에서 협상된 GP 레벨로 전력을 송수신하기 위해, 전력 송신기 및 수신기는 전력 전달 단계로 진입할 수 있다.
협상/재협상 단계를 성공적으로 종료하기 위해서는, 전력 송신기 및 전력 수신기 각각이 계산한 협상/재협상 단계에서의 차등 파라미터 카운트 값이 서로 일치해야 한다. 보다 상세하게는, 전력 송신기가 협상/재협상 단계의 초기에 요청 값이 0x02(즉, 수신 전력 패킷 타입)로 설정된 SRQ 패킷 및 FOD 상태 패킷 모두에 대한 ACK 응답을 보내지 않았다면, 셀렉션 단계로 복귀해야 한다.
그렇지 않은 경우, 전력 송신기는 SRQ 패킷을 통해 수신된 변경 카운트 값이 유효 전력 전달 계약과 임시 전력 전송 계약간에 서로 다른 매개 변수의 개수와 일치하는지 확인해야 한다. 둘이 일치하는 경우, 전력 송신기는 ACK 응답을 보내야 한다. 이후, 전력 송신기는 임시 전력 전송 계약을 유효 전력 전송 계약으로 복사하고 보정 단계로 진행할 수 있다. 그렇지 않으면, 전력 송신기는 유효 전력 전달 계약을 임시 전력 전달 계약으로 복사하고, NAK 응답을 보내고, 협상/재협상 단계를 유지할 수 있다.
도 15는 본 발명의 제안 A에 따른 전력 송신기의 전력 관리 프로필을 예시한 도면이다.
제안 A를 따를 때, 전력 송신기는 상황에 따라 원하는 시점에 GP를 동적으로 적절하게 조절할 수 있다는 효과를 갖는다. 특히, 앞서 상술한 숏-텀 솔루션에서는 GP 레벨의 감소만 가능했으나, 본 제안 A의 경우 GP 레벨의 감소뿐만 아니라 증가도 가능하다는 효과가 발생한다. 그 결과, 제안 A의 전력 송신기는 현재의 충전 조건에 따라 도 15와 같이, 보다 유연한 전력 관리 프로필을 구현할 수 있다는 장점을 갖는다.
제안 B. RFC(Request for Communication) 또는 RFS(Request for Sender)을 위한 새로운 비트 패턴 정의
다른 실시예로서, 전력 송신기가 전력 수신기와의 통신을 요청(또는 통신을 재개/개시/주도하는 마스터(Master)/송신자(Sender)로서의 지위 획득 승인 요청)하기 위한 새로운 비트 패턴인 RFC 또는 RFS가 정의될 수 있으며, 전력 송신기는 RFC 또는 RFS를 전력 수신기로 전송함으로써 전력 수신기와의 통신을 재개/개시할 수 있다. RFC 또는 RFS는 8-비트 사이즈의 비트 패턴으로 구성될 수 있으며, 표준에 ACK/NAK/ND 응답을 위해 정의된 비트 패턴을 제외한 다양한 8-bit 사이즈의 비트 패턴으로 정의될 수 있다. 예를 들어, RFC 또는 RFS는 ‘00001111’, ‘11110000’, ‘10101010’, ‘10110110’, ‘00110011’ 또는 ‘01001001’으로 정의될 수 있다.
이러한 제안 B는 이미 WPC 표준에서 기정의되어 있는 Qi 통신 프로토콜과의 충돌없이 전력 송신기의 full 패킷 전송을 가능하도록 하여, 확장된 Qi 프로토콜을 제공한다는 효과를 갖는다.
제안 B에 따른 구체적인 통신 프로토콜을 살펴보면, 우선 전력 송신기는 특정 패킷(예를 들어, CE 또는 RPP 패킷)에 대한 응답으로서 RFC 또는 RFS를 전력 수신기로 전송할 수 있다. 이러한 RFC 또는 RFS의 전송은 전력 송신기가 (주도적으로) (full) 패킷을 전송할 수 있는 마스터/송신자로서의 지위/권한 획득의 승인을 전력 수신기에게 요청하는 의미로 해석될 수 있다. 즉, 전력 송신기는 전력 수신기로부터 (full) 패킷을 전송(또는 패킷의 전송을 개시)할 수 있는 마스터(Master)/송신자(Sender)로서의 지위/권한을 획득하고자 하는 경우, RFC 또는 RFS를 전력 수신기로 전송할 수 있다. 전력 수신기는 전력 송신기의 (full) 패킷 전송에 대한 권한 획득을 승인하는 경우, RFC 또는 RFS에 대한 응답으로서 ACK 응답을 전력 송신기로 전송할 수 있다. 이러한 ACK 응답을 수신한 전력 송신기는 (full) 패킷을 전력 수신기로 전송할 수 있다. 전력 수신기는 수신된 (full) 패킷에 대한 응답으로 ACK/NAK/ND 또는 전력 송신기에 의해 요청된 특정 패킷을 전송할 수 있다.
전력 송신기가 개시/주도한 전력 수신기와의 통신 프로토콜은 전력 수신기가 NAK 또는 ND 응답을 수신하거나, 전력 수신기로 전송할 패킷이 더 이상 존재하지 않는 경우에 종료될 수 있다.
전력 송신기는 이렇듯 RFC 또는 RFS를 이용하여 전력 수신기와의 통신을 재개/개시/주도할 수 있다. 따라서, 전력 송신기는 이물질이 검출되는 등 주변 환경에 따라 전력 수신기와 기체결한 전력 전달 계약을 변경할 필요가 있는 경우, RFC 또는 RFS를 이용하여 마스터/송신자로서의 지위/권한을 획득하고, 주도적으로 (full) 패킷을 전력 수신기로 전송함으로써 이를 효율적으로 협상/조절할 수 있게 된다.
도 16은 본 발명의 제안 B에 따른 전력 송신기 및 전력 수신기간 통신 프로토콜을 예시한다. 본 도면에서 해칭으로 표시된 박스는 전력 송신기에 의해 진행되는 단계를 나타내며, 그 외의 박스는 전력 수신기에 의해 진행되는 단계를 각각 나타낸다. 본 도면과 관련하여 앞서 도 14와 관련하여 상술한 각 단계에서의 설명이 동일하게 적용될 수 있으며, 이하에서는 도 14와의 차이점을 중심으로 설명하며, 중복되는 설명은 생략한다.
도 16을 참조하면, 전력 송신기는 전력 수신기로부터 CE(또는 RPP) 패킷을 수신하고, 이에 대한 응답으로서 RFC 또는 RFS를 전력 수신기로 전송할 수 있다. 만일, 전력 수신기가 RFC 또는 RFS에 따른 요청을 승인하는 경우, ACK 패킷을 전력 송신기로 전송할 수 있다. 다음으로, 전력 송신기는 자신의 전력 전송 능력 정보가 포함된 PTC 패킷을 전력 수신기로 전송할 수 있으며, 전력 수신기와 함께 협상/재협상 단계로 진입/회귀할 수 있다. 협상/재협상 단계에서의 패킷 송수신 관련 설명은 도 14와 관련하여 상술한 바와 같다.
제안 C. ACK/NAK/ND 응답과 결합된 RFC(Request for Communication) 또는 RFS(Request for Sender)을 위한 새로운 비트 패턴 정의
다른 실시예로서, ACK/NAK/ND 응답과 결합된 형태의 RFC 또는 RFS를 새롭게 정의하는 제안 C가 제안될 수 있다. 여기서 RFC 또는 RFS는 앞서 제안 B에서 상술한 통신을 요청(또는 통신을 재개/개시/주도하는 마스터(Master)/송신자(Sender)로서의 지위 획득 승인 요청)하기 위한 새로운 비트 패턴을 의미한다. 다만, 본 실시예에서의 RFC 또는 RFS는 제안 C에서와 다르게, ACK/NAK/ND 응답과 결합된 형태로 정의될 수 있으며, 조인트 인코딩된 비트 패턴 형태로 정의될 수 있다. 예를 들어, ACK 응답과 결합(또는 조인트 인코딩)된 RFC 또는 RFS는 전력 송신기가 전력 수신기의 요청을 승인함과 동시에 전력 송신기의 마스터/송신자로서의 지위 획득을 요청하는 기능을 수행할 수 있다.
예를 들어, ACK/NAK/ND 응답과 결합된 형태의 RFC 또는 RFS는 아래와 같이 새로운 비트 패턴으로 정의될 수 있다.
- ‘11110000’: ACK 응답과 결합된 RFC/RFS을 지시
- ‘00001111’: NAK 응답과 결합된 RFC/RFS를 지시
- ‘01010000’: ND 응답과 결합된 RFC/RFS를 지시
- ‘01011111’: 마스터/송신자로서의 지위 해제를 요청(또는 통신의 종료를 지시)
이외에도, ACK/NAK/ND 응답과 결합된 형태의 RFC 또는 RFS는 다양한 실시예로 시그널링/인코딩될 수 있으며(예를 들어, 컨텐츠별로 테이블화되어 정의될 수 있음), 전력 송신기와 전력 수신기 사이에 사전에 약속될 수 있다.
본 제안이 도출된 동기는 이미 WPC 표준에서 기정의되어 있는 Qi 통신 프로토콜과의 충돌없이 전력 송신기가 full 패킷 전송을 가능하도록 하여, Qi 프로토콜을 확장하기 위함이다.
본 실시예에서 전력 송신기는 전력 수신기가 전송한 특정 패킷에 대한 응답으로써 ACK/NAK/ND 응답과 결합된 RFC 또는 RFS를 전송할 수 있다. 여기서 특정 패킷은 아래와 같이 전력 송신기의 응답을 요구하거나 요구하지 않는 기설정된 패킷을 의미할 수 있다.
- 전력 송신기의 응답을 요구하는 패킷의 예: SRP(Specific Request Packet), RPP
- 전력 송신기의 응답을 요구하지 않는 패킷의 예: CE 패킷
본 실시예에 따르면, 전력 송신기와 전력 수신기 사이의 양방향(bilateral) 통신을 필요로 하는 특정 기능/어플리케이션(예를 들어, 인증 프로토콜)의 지원이 가능하다.
제안 C에 따른 전력 송신기 및 전력 수신기간 통신 프로토콜을 구체적으로 살펴보면 아래와 같다. 이하에서 제안되는 통신 프로토콜에서도, WPC 표준의 Qi 프로토콜에 기정의되어 있는 바와 같이, 전력 수신기가 통신을 주도하는(또는 주로 full 패킷을 전송하는) 마스터/송신자로 설정되어 있는 경우를 가정/전제한다. 또한, 이하에서는 설명의 편의를 위해 ACK/NAK/ND 응답과 결합된 RFC 또는 RFS를 ‘RFC 또는 RFS’로 약칭하기로 한다.
우선, 전력 송신기가 자신이 마스터/송신자가 되기를 원하는 경우, RFC 또는 RFS를 전력 수신기로 전송함으로써 이에 대한 승인을 요청할 수 있다. 이는 충돌 회피 메커니즘이라 지칭될 수 있다. 구체적으로, 전력 송신기는 전력 송신기의 응답을 필요로 하는 패킷에 대한 응답으로서, 혹은 패킷(예를 들어, CE 패킷) 전송 간격/주기가 RFC 또는 RFS를 전송하기에 (기설정된 시간 이상으로) 충분히 긴 경우 해당 전송 간격/주기 내에, RFC 또는 RFS를 전송할 수 있다. 후자의 경우, 전력 수신기가 전송하는 패킷과 RFC 또는 RFS 사이의 충돌을 사전에 방지할 수 있다는 효과를 갖는다.
후자의 경우처럼 패킷 사이의 전송 간격/주기가 길어지는 경우는, 주로 CE 패킷이 전송되는 경우에 해당할 수 있다. 기정의된 WPC 표준에 따르면, 전력 수신기는 처음 전력 전송 단계에 진입 시, 흔들리는 정류 전압을 안정화시키고, 동작 포인트(operating point)까지 신속히 도달하기 위해 짧은 주기(예를 들어, 32ms)로 CE 패킷을 전력 송신기로 전송하게 된다. 즉, CE 패킷이 전송되는 주기/간격이 (기설정된 시간 미만으로) 짧음(예를 들어, 약 32ms)은 전력 송수신기가 안정화된 상태가 아님을 의미하며, CE 패킷의 전송 주기/간격이 (기설정된 시간 이상으로) 충분히 길어짐(예를 들어, 약 250ms)은 전력 송수신기가 안정된 상태임을 의미할 수 있다. 불안정한 상태에서 전력 송신기의 마스터/송신자로서의 지위를 승인하는 경우, 전력 송신기 및 전력 수신기 사이의 통신에 있어 혼란이 야기될 수 있으며, 둘 모두 불안정하게 동작할 수 있다. 따라서, 제안 C에 따른 전력 송신기는 CE 패킷이 전송되는 주기/간격이 충분히 길어짐에 따라 자신과 전력 수신기가 안정되었음을 확인한 후에야 비로소, CE 패킷 전송 간격 내에 RFS 또는 RFC를 전력 수신기로 전송할 수 있다. 이는, 전력 수신기의 패킷 전송이 전력 송신기의 패킷 전송보다 우선시되는 것으로, 또는 전력 수신기의 마스터/송신자로서의 지위가 전력 송신기의 마스터/송신자로서의 지위보다 우선하는 것으로 해석될 수 있다. 이러한 본 실시예에 따르면, RFC 또는 RFS와 CE 패킷과의 충돌이 방지되고, 전력 송수신기가 안정된 상태에서 통신을 수행할 수 있다는 효과가 발생한다.
다음으로, 전력 수신기가 전력 송신기의 마스터/송신자로서의 지위 획득을 승인하는 경우, RFC 또는 RFS에 대한 응답으로 ACK 응답을 전송할 수 있다.
ACK 응답을 수신한 전력 송신기는 마스터/송신자로서의 지위를 획득한 것으로 보고 전력 수신기와 통신을 수행하기 위한 다양한 (full) 패킷을 전송할 수 있다. 예를 들어, 앞서 상술한 바와 같이 이물질 검출 등에 따라 기체결된 전력 전달 계약을 협상/재협상하기 위한 정보(예를 들어, 전력 송신기의 전력 전송 능력 정보)가 포함된 (full) 패킷을 주도적으로 전력 수신기로 전송할 수 있다.
전력 수신기는 수신된 (full) 패킷에 대한 응답으로 ACK/NAK/ND 또는 전력 송신기에 의해 요청된 특정 패킷을 전송할 수 있다. 전력 수신기는 수신된 (full) 패킷에 대한 응답으로 ACK/NAK/ND 또는 전력 송신기에 의해 요청된 특정 패킷을 전송할 수 있다.
전력 송신기가 개시/주도한 전력 수신기와의 통신 프로토콜은 전력 수신기가 NAK 또는 ND 응답을 수신하거나, 전력 수신기로 전송할 패킷이 더 이상 존재하지 않는 경우에 종료될 수 있다.
전력 수신기가 CE 패킷을 전송 중인 경우에 있어서, 전력 송신기가 CE 패킷 전송 사이의 간격/주기에 전송하고자 하는 RFC, RFS 및/또는 (full) 패킷의 크기는 최대 CE 패킷 사이의 간격/주기에 기초하여 결정될 수 있다. 예를 들어, CE 패킷 사이의 최대 간격/주기가 250ms인 경우를 가정하면, RFC, RFS 또는 (full) 패킷의 크기는 4B(Byte)(=페이로드(3B)+checksum(1B))로 제한될 수 있다.
도 17은 본 발명의 일 실시예에 따른 1B(Byte) 데이터를 예시한다.
도 17을 참조하면, 1B 데이터는 3bits(Start, Parity 및 Stop 비트)가 추가되어 총 11bits의 사이즈로 구성될 수 있다. 따라서, 4B 사이즈의 RFC, RFS 또는 (full) 패킷의 비트 사이즈는 총 44bits로 결정될 수 있으며, 1bit당 전송 시간이 5ms가 소요된다고 가정하면, 44bits의 RFC, RFS 또는 (full) 패킷의 전송 소요 시간은 총 220ms로 250ms 이하이다.
다시 말하면, 전력 송신기가 전송하는 RFC, RFS 또는 (full) 패킷은 CE 패킷이 전송되는 최대 시간 간격(예를 들어, 250ms) 내에 전송될 수 있도록 사이즈가 결정(예를 들어, 44bits)되어, CE 패킷과의 충돌이 최대한 방지될 수 있다.
도 18은 본 발명의 제안 C에 따른 전력 송신기 및 전력 수신기간 통신 프로토콜을 예시한다. 본 도면에서 해칭으로 표시된 박스는 전력 송신기에 의해 진행되는 단계를 나타내며, 그 외의 박스는 전력 수신기에 의해 진행되는 단계를 각각 나타낸다. 본 도면과 관련하여 앞서 도 14 및 16과 관련하여 상술한 각 단계에서의 설명이 동일하게 적용될 수 있으며, 이하에서는 도 14 및 16과의 차이점을 중심으로 설명하며, 중복되는 설명은 생략한다.
도 18을 참조하면, 전력 송신기는 전력 수신기로부터 RPP(또는 CE) 패킷을 수신하고, 이에 대한 응답으로서 RFC 또는 RFS를 전력 수신기로 전송할 수 있다. 만일, 전력 수신기가 RFC 또는 RFS에 따른 요청을 승인하는 경우, ACK 패킷을 전력 송신기로 전송할 수 있다. 다음으로, 전력 송신기는 자신의 전력 전송 능력 정보가 포함된 PTC 패킷을 전력 수신기로 전송할 수 있으며, 전력 수신기와 함께 협상/재협상 단계로 진입/회귀할 수 있다. 협상/재협상 단계에서의 패킷 송수신 관련 설명은 도 14 및 16과 관련하여 상술한 바와 같다.
한편, 본 도면에는 도시하지 않았으나, 전력 송신기가 마스터/송신자로서의 지위 획득 후 전송하는 (full) 패킷으로는, 앞서 상술한 PTC 외에 보안 인증(Authentication) 관련 패킷이 존재할 수 있다. 보안 인증 관련 패킷으로는, 예를 들어, GET_DIGESTS (인증 체인(Certificate chain)의 digest를 요청하기 위한 패킷), GET_CERTIFICATE (인증 요청하기 위한 패킷) 및 CHALLENGE(수신기가 암호화 키를 갖고 있는지 확인하기 위해 32-byte 크기의 난수(nonce)를 전송)가 존재할 수 있다.
앞서 상술한 실시예들은 제안 B에도 동일하게 적용될 수 있다. 예를 들어, 제안 B의 전력 송신기 역시 응답을 필요로 하는 패킷에 대한 응답으로서, 혹은 패킷(예를 들어, CE 패킷) 전송 간격/주기가 RFC 또는 RFS를 전송하기에 (기설정된 시간 이상으로) 충분히 긴 경우 해당 전송 간격/주기 내에, RFC 또는 RFS를 전송할 수 있다. 또한, 제안 B의 전력 송신기 역시 상술한 이유들에 기초하여 마스터/송신자로서의 지위/권한을 잃을 수 있다.
도 19는 본 발명의 제안 B 또는 C에 따른 전력 송수신 방법에 관한 순서도를 예시한다. 본 순서도와 관련하여 앞서 상술한 실시예들이 동일/유사하게 적용될 수 있으며, 중복되는 설명은 생략한다. 또한, 본 순서도에서도, WPC 표준의 Qi 프로토콜에 기정의되어 있는 바와 같이, 전력 수신기가 마스터/송신자로 설정되어 주도적으로 CE 패킷, RPP와 같은 full 패킷을 전송하는 PRx-mastered Qi 프로토콜을 가정/전제한다.
1. 우선, 전력 송신기(PTx)는 자신이 통신 프로토콜을 개시/주도해야 할 특정 사유가 발생하였음을 인식한 경우(예를 들어, 이물질 검출 등 협상/재협상 단계로 회귀하거나 GP 레벨을 새롭게 협상해야 하는 사유가 발생한 경우), 마스터/송신자로서의 지위/권한을 획득하기 위한 RFC(또는 RFS)를 전력 수신기(PRx)로 전송할 수 있다. 이때, RFC(또는 RFS)는 ACK/NAK/ND 응답과 결합된 형태의 RFC(또는 RFS)일 수 있다.
2. 만일, 전력 수신기(PRx)가 전력 송신기(PTx)의 마스터/송신자로서의 지위/권한 획득을 승인하는 경우 ACK 응답을 전송할 수 있으며, 거절하는 경우 NAK 응답을 전송할 수 있다.
3. ACK 응답을 수신한 경우, 전력 수신기(PRx)는 마스터/송신자로서의 지위/권한을 획득하게 되어 (full) 패킷의 전송이 가능하게 된다. 이때 전송되는 (full) 패킷은 전력 수신기(PRx)와 GP를 재협상하기 위해(또는 기체결한 전력 전달 계약을 변경하기 위해) 전력 송신기(PTx)의 새로운 GP 정보가 포함된 패킷(예를 들어, PTC 혹은 새롭게 정의된 패킷)에 해당할 수 있다. 현재 WPC 표준에는 전력 수신기가 마스터/송신자로 설정되어 있어 전력 송신기가 전송할 수 있는 다양한 (full) 패킷 포맷과 전력 수신기의 응답을 위한 패킷 포맷이 정의되어 있지 않다. 따라서, 이하의 도 21에서는 전력 송신기가 전송할 수 있는 다양한 (full) 패킷 포맷, 도 22에서는 전력 수신기가 전송할 수 있는 다양한 응답 패킷 포맷에 대해 후술하기로 한다.
4. 전력 수신기(PRx)는 수신한 (full) 패킷에 대한 응답으로서 ACK/NAK/ND 응답 또는 응답 패킷을 전송할 수 있다. 전력 수신기(PRx)는 기설정된 시간 동안 전력 송신기(PTx)로부터 패킷을 수신하지 않거나 NAK/ND 응답을 전송한 후에 자신이 마스터/송신자인 PRx-mastered Qi 프로토콜로 회귀할 수 있다. 전력 송신기(PTx)는 전력 수신기로부터 NAK/ND 응답을 수신하거나, 더 이상 전송할 패킷이 없는 경우 자신이 마스터/송신자인 PTx-mastered Qi 프로토콜을 종료하고, PRx-mastered Qi 프로토콜로 회귀할 수 있다. 또는, 전력 송신기는 전력 수신기로부터 ACK 응답을 수신한 경우, 다음 (full) 패킷을 전송할 수 있다. 전력 송신기는 이에 대한 응답으로서도 역시 ACK/NAK/ND 응답 또는 응답 패킷을 수신할 수 있다.
도 20은 전력 송신기가 GP 레벨을 15W에서 10W로 다운 그레이드하고자 하는 경우의 제안 B 또는 C에 따른 실시예를 예시한 순서도이다. 본 순서도와 관련하여, 전력 송신기와 전력 수신기간에 마지막으로 체결된 전력 전달 계약에 따라 GP 레벨이 15W로 결정되었으며, 현재 전력 송신기가 15W로 전력 수신기에 전력을 전송 중임을 가정한다. 또한, 본 순서도와 관련하여 도 19와 관련하여 상술한 설명이 동일/유사하게 적용될 수 있으며, 중복되는 설명은 생략한다.
1. 우선, 전력 송신기(PTx)는 15W의 레벨로 전력을 전송하던 중, 충전 영역 내에 이물질을 검출하는 등 전력 수신기와 GP 레벨을 새롭게 협상할 사유를 인지할 수 있다. 이 경우, 전력 송신기는 마스터/송신자로서의 지위/권한을 획득하기 위한 RFC(또는 RFS)를 전력 수신기(PRx)로 전송할 수 있다. 이때, RFC(또는 RFS)는 ACK/NAK/ND 응답과 결합된 형태의 RFC(또는 RFS)일 수 있다.
2. 만일, 전력 수신기(PRx)가 전력 송신기(PTx)의 마스터/송신자로서의 지위/권한 획득을 승인하는 경우 ACK 응답을 전송할 수 있으며, 거절하는 경우 NAK 응답을 전송할 수 있다.
3. ACK 응답을 수신한 경우, 전력 수신기(PRx)는 마스터/송신자로서의 지위/권한을 획득하게 되어 (full) 패킷의 전송이 가능하게 된다. 전력 송신기(PTx)는 이물질 검출 등의 사유로 15W에서 다운 그레이드된 새로운 GP 레벨(예를 들어, 10W) 정보가 포함된 (full) 패킷을 전력 수신기(PRx)로 전송할 수 있다.
4. 전력 수신기(PRx)가 (full) 패킷을 통해 새롭게 제안된 GP 레벨(예를 들어, 10W)을 승인하는 경우, ACK 응답을 전력 송신기(PTx)로 전송할 수 있다. 이로써 다운 그레이드된 새로운 GP 레벨의 전력 전달 계약이 체결될 수 있다.
도 21은 본 발명의 일 실시예에 따른 전력 송신기가 전송하는 (full) 패킷 포맷을 예시한다. 특히, 도 21의 (full) 패킷은 전력 송신기가 새롭게 전력 수신기와 계약하고 싶은 GP 레벨 정보가 포함된 GP 패킷을 예시한다.
도 21을 참조하면, GP 패킷의 2bits는 예비 비트(또는 헤더, 0x01)로 설정되며, 나머지 6bits는 전력 송신기가 요청하는 새로운 GP 레벨을 지시하는 필드로 설정될 수 있다. 이때, 상기 필드(6bits)는 새로운 GP 레벨/값을 특정 레벨/값 단위(예를 들어, 0.5W 단위)로 지시하도록 정의될 수 있다.
전력 송신기는 현재 주변 상황/환경을 반영/고려하여 상기 필드를 특정 값으로 설정할 수 있다. 예를 들어, 전력 송신기의 온도가 기설정된 온도를 초과한 경우, 전력 송신기는 전력 수신기와 이전 전력 전달 계약에서 협의된 GP 레벨보다 낮은 GP 레벨로 상기 필드 값을 설정할 수 있다. 만일, 추후 주변 상황/환경에 따라 전력 송신기의 온도가 기설정된 온도 이하로 내려간 경우에는, 전력 송신기는 다시 해당 필드의 GP 레벨을 상승시킬 수 있다.
도 22는 본 발명의 일 실시예에 따른 전력 수신기가 전송하는 응답 패킷 포맷을 예시한다.
도 22를 참조하면, 전력 수신기의 응답 패킷 포맷은 전력 송신기의 응답 패킷 포맷(도 12 참조)과 동일/유사하게 정의될 수 있다. 즉, 전력 송신기의 요청을 승인하는 ACK 응답은 ‘11111111’, 요청을 거절하는 NAK 응답은 ‘00000000’, 인식 불가능한 또는 유효하지 않은 요청임을 지시하는 ND 응답은 ‘01010101’ 비트 패턴 포맷으로 구성될 수 있다. 그러나, 이는 실시예에 불과하며 다양한 비트 패턴으로 구성될 수 있다.
이때, 응답 패킷의 헤더 사이즈는 응답 타입 별로 서로 다르게 설정될 수 있다. 예를 들어, ACK 응답 패킷의 헤더 사이즈는 0x06으로, NAK 응답 패킷의 헤더 사이즈는 0x07로, ND 패킷의 헤더 사이즈는 0x08로 설정될 수 있다.
도 23은 본 발명의 일 실시예에 따른 무선 전력 송신기의 전력 송신 방법에 관한 순서도이다. 본 순서도와 관련하여 앞서 상술한 실시예들이 동일/유사하게 적용될 수 있으며, 중복되는 설명은 생략한다.
우선, 전력 송신기는 상기 전력 송신기의 인터페이스 표면에 대한 오브젝트의 배치(placement) 및 제거(removal)를 모니터링하는 셀렉션 단계를 수행할 수 있다(S2310).
다음으로, 전력 송신기는 디지털 핑을 수행하고, 전력 수신기로부터 응답을 수신하여 전력 수신기의 인터페이스 표면 상의 배치를 인식할 수 있다(S2320).
다음으로, 전력 송신기는 전력 수신기의 구성 정보를 획득하고, 구성 정보를 이용하여 전력 수신기와 전력 전달 계약을 생성할 수 있다(S2330). 이때 구성 정보에는 전력 수신기가 수신 가능한 최대 GP 레벨 정보 등 전력 수신기의 전력 수신 능력에 관한 정보가 포함되어 있을 수 있다. 전력 전달 계약에는 전력 송신기가 전력 수신기와 협의하여 결정된 GP 레벨 정보가 포함되어 있을 수 있다.
다음으로, 전력 송신기는 전력 수신기와 확립한/생성한 전력 전달 계약에 기초하여 특정 레벨의 전력을 전력 수신기로 전송할 수 있다(S2340). 보다 상세하게는, 전력 송신기는 전력 전달 계약에 포함된 GP 레벨 정보에 따라 결정된 특정 레벨로 전력을 전력 수신기로 전송할 수 있다.
다음으로, 전력 송신기는 전력 수신기와의 통신을 개시하기 위한 지시 정보를 전력 수신기로 전송할 수 있다(S2350). 이러한 지시 정보 전송 단계는, 인터페이스 표면에 이물질(Foreign Object)이 검출된 경우 또는 주변의 온도가 기설정된 온도 이상으로 높게 검출된 경우에 수행될 수 있다.
일 실시예로서 지시 정보는, 전력 전달 계약을 재협상하기 위한 전력 수신기와의 통신의 개시를 요청하는 정보일 수 있다. 예를 들어, 지시 정보는 앞서 제안 A와 관련하여 상술한 RFR에 해당할 수 있다. 만일, 기설정된 패킷에 포함된 전력 수신기의 요청을 승인하는 ACK 응답, 요청을 거절하는 NAK 응답, 요청이 유효하지 않음을 나타내는 ND 응답을 위한 비트 패턴이 각각 정의된 경우, 지시 정보의 비트 패턴은 ACK 응답, NAK 응답 및 ND 응답의 비트 패턴과 다른 패턴으로 정의될 수 있다.
본 순서도에는 도시하지 않았으나, 상기 전력을 상기 전력 수신기로 전송하는 단계는, 전력 수신기로부터 기설정된 패킷을 수신하는 단계를 더 포함하고, 이때 지시 정보는 기설정된 패킷에 대한 응답으로서 전력 수신기로 전송될 수 있다. 또한, 기설정된 패킷은 상기 전력 전달 계약에서 결정된 수신 전력 패킷의 형식을 변경하기 위한 수신 전력 패킷(Received Power Packet) 또는 상기 전력 송신기의 동작 포인트를 결정하기 위해 사용되는 제어 에러 패킷(Control Error Packet)에 해당할 수 있다.
다른 실시예로서 지시 정보는, 전력 송신기가 소정의 패킷을 전송할 수 있는 권한 획득을 전력 수신기에 요청하는 요청 정보를 포함할 수 있다. 예를 들어, 지시 정보는 앞서 상술한 RFC 또는 RFS에 해당할 수 있다. 이에 관하여는 앞서 제안 B와 관련하여 상술한 바와 같다. 소정의 패킷은 전력 송신기의 새로운 보장 전력(Guaranteed Power) 레벨에 관한 정보가 포함된 패킷을 포함할 수 있다.
본 순서도에는 도시하지 않았으나, 상기 전력을 상기 전력 수신기로 전송하는 단계는, 상기 전력 수신기로부터 기설정된 패킷을 수신하는 단계를 포함할 수 있으며, 이때의 지시 정보는, 기설정된 패킷에 대한 응답으로서 전력 수신기로 전송되거나, 또는 기설정된 패킷의 전송 간격이 스레시홀드 이상으로 길어진 경우 상기 전송 간격 내에서 전송될 수 있다. 기설정된 패킷은 전력 전달 계약에서 결정된 수신 전력 패킷의 형식을 변경하기 위한 수신 전력 패킷(Received Power Packet) 또는 상기 전력 송신기의 동작 포인트를 결정하기 위해 사용되는 제어 에러 패킷(Control Error Packet)에 해당할 수 있다. 기설정된 패킷에 포함된 전력 수신기의 요청을 승인하는 ACK 응답, 요청을 거절하는 NAK 응답, 요청이 유효하지 않음을 나타내는 ND 응답을 위한 비트 패턴이 각각 정의된 경우, 지시 정보의 비트 패턴은 ACK 응답, NAK 응답 및 ND 응답의 비트 패턴과 다른 패턴으로 정의될 수 있다.
지시 정보가 기설정된 패킷에 대한 응답으로서 전력 수신기로 전송되는 경우, 지시 정보는 상기 요청 정보에 추가로 상기 기설정된 패킷에 대한 응답 정보를 더 포함할 수 있다. 이에 관하여는 앞서 제안 C와 관련하여 상술한 바와 같다.
지시 정보가 기설정된 패킷의 전송 간격 내에서 전송되는 경우, 지시 정보를 나르는 패킷의 사이즈는 기설정된 패킷의 전송 간격을 기초로 결정될 수 있다. 이에 관하여는 앞서 도 17과 관련하여 상술한 바와 같다.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시예들을 병합하여 새로운 실시예를 구현하도록 설계하는 것도 가능하다. 또한, 본 발명은 상술한 바와 같이 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상술한 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
또한, 이상에서는 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시예에 한정되지 아니하며, 청구 범위에서 청구하는 요지를 벗어남이 없이 당해 명세서가 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 명세서의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.
본 발명은 다양한 무선 충전 기술에 적용될 수 있다.

Claims (15)

  1. 전력 송신기의 무선 전력 송신 방법에 있어서,
    상기 전력 송신기의 인터페이스 표면에 대한 오브젝트의 배치(placement) 및 제거(removal)를 모니터링하는 단계;
    디지털 핑(ping)을 수행하고, 전력 수신기로부터 응답을 수신하는 단계;
    상기 전력 수신기의 구성(configuration) 정보를 획득하고, 상기 구성 정보를 이용하여 상기 전력 수신기와 전력 전달 계약을 생성하는 단계;
    상기 전력 전달 계약에 기초하여 전력을 상기 전력 수신기로 전송하는 단계; 및
    상기 전력 수신기와의 통신을 개시(initiate)하기 위한 지시 정보를 상기 전력 수신기로 전송하는 단계; 를 포함하는, 무선 전력 송신 방법.
  2. 제 1 항에 있어서,
    상기 지시 정보는 상기 전력 전달 계약을 재협상하기 위한 상기 전력 수신기와의 통신의 개시를 요청하는 정보인, 무선 전력 송신 방법.
  3. 제 2 항에 있어서,
    상기 전력을 상기 전력 수신기로 전송하는 단계는, 상기 전력 수신기로부터 기설정된 패킷을 수신하는 단계; 를 포함하고,
    상기 지시 정보는 상기 기설정된 패킷에 대한 응답으로서 상기 전력 수신기로 전송되는, 무선 전력 송신 방법.
  4. 제 3 항에 있어서,
    상기 기설정된 패킷에 포함된 상기 전력 수신기의 요청을 승인하는 ACK(Acknoledge) 응답, 상기 요청을 거절하는 NAK(Not-Acknowledge) 응답, 상기 요청이 유효하지 않음을 나타내는 ND(Not-Defined) 응답을 위한 비트 패턴이 각각 정의된 경우,
    상기 지시 정보의 비트 패턴은 상기 ACK 응답, 상기 NAK 응답 및 상기 ND 응답의 비트 패턴과 다른 패턴으로 정의되는, 무선 전력 송신 방법.
  5. 제 4 항에 있어서,
    상기 기설정된 패킷은 상기 전력 전달 계약에서 결정된 수신 전력 패킷의 형식을 변경하기 위한 수신 전력 패킷(Received Power Packet) 또는 상기 전력 송신기의 동작 포인트를 결정하기 위해 사용되는 제어 에러 패킷(Control Error Packet)에 해당하는, 무선 전력 송신 방법.
  6. 제 1 항에 있어서,
    상기 지시 정보는 상기 전력 송신기가 소정의 패킷을 전송할 수 있는 권한 획득을 상기 전력 수신기에 요청하는 요청 정보를 포함하는, 무선 전력 송신 방법.
  7. 제 6 항에 있어서,
    상기 소정의 패킷은 상기 전력 송신기의 새로운 보장 전력(Guaranteed Power) 레벨에 관한 정보가 포함된 패킷을 포함하는, 무선 전력 송신 방법.
  8. 제 6 항에 있어서,
    상기 전력을 상기 전력 수신기로 전송하는 단계는, 상기 전력 수신기로부터 기설정된 패킷을 수신하는 단계; 를 포함하고,
    상기 지시 정보는,
    상기 기설정된 패킷에 대한 응답으로서 상기 전력 수신기로 전송되거나, 또는
    상기 기설정된 패킷의 전송 간격이 스레시홀드 이상으로 길어진 경우 상기 전송 간격 내에서 전송되는, 무선 전력 송신 방법.
  9. 제 8 항에 있어서,
    상기 기설정된 패킷은 상기 전력 전달 계약에서 결정된 수신 전력 패킷의 형식을 변경하기 위한 수신 전력 패킷(Received Power Packet) 또는 상기 전력 송신기의 동작 포인트를 결정하기 위해 사용되는 제어 에러 패킷(Control Error Packet)에 해당하는, 무선 전력 송신 방법.
  10. 제 8 항에 있어서,
    상기 기설정된 패킷에 포함된 상기 전력 수신기의 요청을 승인하는 ACK 응답, 상기 요청을 거절하는 NAK 응답, 상기 요청이 유효하지 않음을 나타내는 ND 응답을 위한 비트 패턴이 각각 정의된 경우,
    상기 지시 정보의 비트 패턴은 상기 ACK 응답, 상기 NAK 응답 및 상기 ND 응답의 비트 패턴과 다른 패턴으로 정의되는, 무선 전력 송신 방법.
  11. 제 8 항에 있어서,
    상기 지시 정보가 상기 기설정된 패킷에 대한 응답으로서 상기 전력 수신기로 전송되는 경우,
    상기 지시 정보는 상기 요청 정보에 추가로 상기 기설정된 패킷에 대한 응답 정보를 더 포함하는, 무선 전력 송신 방법.
  12. 제 8 항에 있어서,
    상기 지시 정보가 상기 기설정된 패킷의 전송 간격 내에서 전송되는 경우,
    상기 지시 정보를 나르는 패킷의 사이즈는 상기 기설정된 패킷의 전송 간격을 기초로 결정되는, 무선 전력 송신 방법.
  13. 제 1 항에 있어서,
    상기 지시 정보를 상기 전력 수신기로 전송하는 단계는,
    상기 인터페이스 표면에 이물질(Foreign Object)이 검출된 경우 또는 주변의 온도가 기설정된 온도 이상으로 높게 검출된 경우에 수행되는, 무선 전력 송신 방법.
  14. 전력 수신기의 무선 전력 수신 방법에 있어서,
    전력 송신기의 디지털 핑(ping) 수행을 검출하고, 상기 검출된 디지털 핑에 대한 응답을 전송하는 단계;
    상기 전력 수신기의 구성(configuration) 정보를 전송하고, 상기 구성 정보에 기초한 전력 전달 계약을 상기 전력 송신기와 확립(establish)하는 단계;
    상기 전력 전달 계약에 기초하여 전력을 상기 전력 송신기로부터 수신하는 단계; 및
    상기 전력 수신기와의 통신을 개시(initiate)하기 위한 지시 정보를 상기 전력 송신기로부터 수신하는 단계; 를 포함하는, 무선 전력 수신 방법.
  15. 전력 송신기에 있어서,
    자기장을 생성하는 적어도 하나의 1차 코일을 포함하는, 코일 어셈블리;
    전기 에너지를 전력 신호로 변환하는, 전력 변환 유닛; 및
    전력 수신기와의 통신 및 전력 전달을 컨트롤하는, 통신 및 컨트롤 유닛; 을 포함하되,
    상기 통신 및 컨트롤 유닛은,
    상기 전력 송신기의 인터페이스 표면에 대한 오브젝트의 배치(placement) 및 제거(removal)를 모니터링하고,
    디지털 핑(ping)을 수행하고, 전력 수신기로부터 응답을 수신하고,
    상기 전력 수신기의 구성(configuration) 정보를 획득하고, 상기 구성 정보를 이용하여 상기 전력 수신기와 전력 전달 계약을 생성하고,
    상기 전력 전달 계약에 기초하여 전력을 상기 전력 수신기로 전송하고,
    상기 전력 수신기와의 통신을 개시(initiate)하기 위한 지시 정보를 상기 전력 수신기로 전송하는, 전력 송신기.
PCT/KR2017/005941 2016-06-08 2017-06-08 무선 전력 송신 방법 및 이를 위한 장치 WO2017213428A1 (ko)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201780035620.0A CN109463026B (zh) 2016-06-08 2017-06-08 无线电力传输方法及其设备
EP21207782.0A EP3972088B1 (en) 2016-06-08 2017-06-08 Wireless power transmission method and device therefor
CN202210695951.XA CN115051438A (zh) 2016-06-08 2017-06-08 无线电力传输方法及其设备
US16/308,325 US10651694B2 (en) 2016-06-08 2017-06-08 Wireless power transmission method and device therefor
EP21157074.2A EP3840178A1 (en) 2016-06-08 2017-06-08 Device and method for performing authentication in wireless power transmission system
KR1020187035831A KR102127438B1 (ko) 2016-06-08 2017-06-08 무선 전력 송신 방법 및 이를 위한 장치
EP23196051.9A EP4277318A3 (en) 2016-06-08 2017-06-08 Wireless power transmission method and device therefor
EP17810551.6A EP3457527B1 (en) 2016-06-08 2017-06-08 Wireless power transmission method and device therefor
US16/854,130 US11289954B2 (en) 2016-06-08 2020-04-21 Wireless power transmission method and device therefor
US17/673,585 US11715982B2 (en) 2016-06-08 2022-02-16 Wireless power transmission method and device therefor
US18/210,269 US20230327498A1 (en) 2016-06-08 2023-06-15 Wireless power transmission method and device therefor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662347575P 2016-06-08 2016-06-08
US62/347,575 2016-06-08
US201662413947P 2016-10-27 2016-10-27
US62/413,947 2016-10-27
US201662425042P 2016-11-21 2016-11-21
US62/425,042 2016-11-21
US201762471896P 2017-03-15 2017-03-15
US62/471,896 2017-03-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/308,325 A-371-Of-International US10651694B2 (en) 2016-06-08 2017-06-08 Wireless power transmission method and device therefor
US16/854,130 Continuation US11289954B2 (en) 2016-06-08 2020-04-21 Wireless power transmission method and device therefor

Publications (1)

Publication Number Publication Date
WO2017213428A1 true WO2017213428A1 (ko) 2017-12-14

Family

ID=60578848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005941 WO2017213428A1 (ko) 2016-06-08 2017-06-08 무선 전력 송신 방법 및 이를 위한 장치

Country Status (9)

Country Link
US (4) US10651694B2 (ko)
EP (4) EP4277318A3 (ko)
KR (1) KR102127438B1 (ko)
CN (2) CN115051438A (ko)
ES (1) ES2969027T3 (ko)
FI (1) FI3972088T3 (ko)
HU (1) HUE064897T2 (ko)
PL (1) PL3972088T3 (ko)
WO (1) WO2017213428A1 (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190052117A1 (en) * 2017-08-11 2019-02-14 Integrated Device Technology, Inc. Wireless power transmitter to receiver communication during power transfer phase
EP3512071A1 (en) * 2018-01-15 2019-07-17 Samsung Electronics Co., Ltd. Electronic device and method for transmission of reason wireless charging is stopping
WO2019160249A1 (ko) * 2018-02-13 2019-08-22 엘지이노텍(주) 과열 방지를 위한 무선 전력 송신 방법 및 장치
CN110622392A (zh) * 2018-04-16 2019-12-27 Lg电子株式会社 用于在无线功率传输系统中执行功率控制的装置和方法
WO2020027521A1 (ko) * 2018-08-01 2020-02-06 엘지전자 주식회사 이물질 검출에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2020130265A1 (ko) * 2018-12-18 2020-06-25 엘지전자 주식회사 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2020171316A1 (ko) * 2019-02-19 2020-08-27 엘지전자 주식회사 무선전력 전송 시스템에서 충전 상태 정보를 제공하는 장치 및 방법
EP3734795A4 (en) * 2018-01-10 2021-02-24 LG Electronics Inc. DEVICE AND METHOD FOR IMPLEMENTING CURRENT CONTROL IN A WIRELESS POWER TRANSMISSION SYSTEM
WO2021045487A1 (en) * 2019-09-03 2021-03-11 Samsung Electronics Co., Ltd. Method of wireless charging and electronic device supporting wireless charging
US11005307B2 (en) 2018-04-16 2021-05-11 Lg Electronics Inc. Apparatus and method for performing power control in wireless power transfer system
EP3903406A4 (en) * 2019-02-19 2022-03-09 Samsung Electronics Co., Ltd. DATA COMMUNICATION METHOD FOR WIRELESS CHARGING AND ELECTRONIC DEVICE USING THE SAME
CN111602311B (zh) * 2018-01-15 2024-10-22 三星电子株式会社 发送无线充电停止原因的电子装置和方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE064897T2 (hu) 2016-06-08 2024-04-28 Lg Electronics Inc Vezeték nélküli energiaátviteli eljárás és ehhez való eszköz
JP7414526B2 (ja) * 2018-04-16 2024-01-16 エルジー エレクトロニクス インコーポレイティド 無線電力伝送システムにおいてデータストリームの送信を行う装置及び方法
US11005298B2 (en) * 2018-08-29 2021-05-11 Integrated Device Technology, Inc. Wireless power maximum efficiency tracking by system control
WO2020166784A1 (ko) * 2019-02-14 2020-08-20 엘지전자 주식회사 무선전력 전송 시스템에서 근거리 통신을 이용한 전력 할당 및 아웃밴드 활성화를 수행하는 장치 및 방법
KR102667984B1 (ko) 2019-02-19 2024-05-23 삼성전자 주식회사 무선 충전 수신기의 수신 전력을 조정하는 무선 충전 송신기 및 방법
US11973542B2 (en) * 2019-04-17 2024-04-30 Lg Electronics Inc. Method for controlling communication connection in wireless power transmission system, and apparatus therefor
US11148537B2 (en) * 2019-04-26 2021-10-19 Hyundai Motor Company Method and apparatus for controlling wireless power transfer
KR20240010082A (ko) * 2019-04-29 2024-01-23 엘지전자 주식회사 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법
US11336127B2 (en) * 2019-08-15 2022-05-17 Mediatek Singapore Pte. Ltd. Calibration of foreign object detection in wireless power systems with authentication
CN110474436B (zh) * 2019-08-30 2021-08-24 维沃移动通信有限公司 一种无线充电方法及相关设备
CN114450868A (zh) * 2019-10-02 2022-05-06 Lg 电子株式会社 无线功率接收装置、无线功率发送装置以及使用其的功率校准方法
EP3829071B1 (en) * 2019-11-29 2023-07-19 ElectDis AB Method, apparatuses and test system for transferring data during power transfer in a wireless power transfer system
US20230198318A1 (en) * 2020-01-20 2023-06-22 Lg Electronics Inc. Wireless power reception device, wireless power reception method, and wireless charging service providing method
KR102644215B1 (ko) * 2020-02-19 2024-03-05 주식회사 히타치엘지 데이터 스토리지 코리아 무선 전력 전송 장치 및 방법
JP7471905B2 (ja) * 2020-05-08 2024-04-22 キヤノン株式会社 受電装置、送電装置、それらの制御方法、およびプログラム
US11728690B2 (en) 2020-06-29 2023-08-15 Renesas Electronics America Inc. Foreign object detection using wireless power receiver's response to modified transmitter behavior
JP2022025563A (ja) * 2020-07-29 2022-02-10 Tdk株式会社 送電装置、ワイヤレス電力伝送システム及び情報通信システム
KR20220086196A (ko) * 2020-12-16 2022-06-23 삼성전자주식회사 무선 전력 전송을 위한 전자 장치
US20220197364A1 (en) * 2020-12-22 2022-06-23 Intel Corporation Power management for universal serial bus (usb) type-c port
KR20230160272A (ko) * 2021-03-23 2023-11-23 엘지전자 주식회사 무선 전력 전송 시스템에서 pwm에 기반한 통신 품질향상 방법 및 장치
KR20230164697A (ko) * 2021-04-26 2023-12-04 엘지전자 주식회사 무선 전력 전송 시스템에서 데이터 전송 방법 및 장치
US20240204578A1 (en) * 2021-04-30 2024-06-20 Lg Electronics Inc. Method and device for high-speed data transmission in wireless power transmission system
KR102682437B1 (ko) 2021-10-19 2024-07-04 주식회사 히타치엘지 데이터 스토리지 코리아 무선 전력 전송 장치 및 방법
WO2023167833A1 (en) * 2022-03-01 2023-09-07 General Electric Company Object detection techniques in a multi-function hob
WO2024101599A1 (ko) * 2022-11-10 2024-05-16 엘지전자 주식회사 무선 전력 전송 시스템에서 고전력 모드에서 충전을 위한 프로파일을 정의하는 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268311A (ja) * 2008-04-28 2009-11-12 Sony Corp 送電装置、送電方法、プログラム、および電力伝送システム
US20100253281A1 (en) * 2009-04-07 2010-10-07 Qualcomm Incorporated Wireless power transmission scheduling
KR20150023897A (ko) * 2012-06-29 2015-03-05 코닌클리케 필립스 엔.브이. 무선 유도 전력 전송
KR20160011143A (ko) * 2014-06-20 2016-01-29 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20160030907A (ko) * 2016-03-02 2016-03-21 엘지이노텍 주식회사 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640439A (zh) * 2008-07-16 2010-02-03 精工爱普生株式会社 输电/受电控制装置、输电/受电装置、电子设备及无接点电力传输方法
JP5446922B2 (ja) * 2010-01-25 2014-03-19 ソニー株式会社 電力管理装置、電子機器及び電子機器登録方法
CN102570623A (zh) * 2010-12-27 2012-07-11 佛山市顺德区顺达电脑厂有限公司 无线供电控制装置及方法
KR101688948B1 (ko) * 2011-05-27 2016-12-22 엘지전자 주식회사 무선 전력 전송을 이용한 데이터 통신 연결 수립
KR101338732B1 (ko) * 2011-11-10 2013-12-06 엘지이노텍 주식회사 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법
RU2643153C2 (ru) 2012-07-30 2018-01-31 Конинклейке Филипс Н.В. Беспроводная индукционная передача электроэнергии
US9287718B2 (en) * 2013-03-01 2016-03-15 Nokia Technologies Oy Method, apparatus, and computer program product for foreign object detection parameter and charging data communication with wireless charging capable battery pack
US10097315B2 (en) * 2013-04-19 2018-10-09 Qualcomm Incorporated Group scheduling and acknowledgement for wireless transmission
KR101490732B1 (ko) * 2013-04-23 2015-02-09 엘지이노텍 주식회사 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법
US20160085955A1 (en) * 2013-06-10 2016-03-24 Doosra, Inc. Secure Storing and Offline Transferring of Digitally Transferable Assets
KR101604310B1 (ko) * 2013-06-16 2016-03-17 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
WO2015156628A1 (ko) * 2014-04-11 2015-10-15 엘지전자(주) 무선 전력 송신기 및 무선 전력 송신 방법
US10362010B2 (en) * 2014-05-29 2019-07-23 Apple Inc. Management of credentials on an electronic device using an online resource
US10103553B2 (en) 2014-10-22 2018-10-16 Lg Electronics Inc. Wireless power transmitter and receiver
HUE064897T2 (hu) * 2016-06-08 2024-04-28 Lg Electronics Inc Vezeték nélküli energiaátviteli eljárás és ehhez való eszköz
US11405873B2 (en) * 2017-05-01 2022-08-02 Lg Electronics Inc. Device and method for performing authentication in wireless power transmission system
WO2018203652A1 (ko) * 2017-05-01 2018-11-08 엘지전자 주식회사 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268311A (ja) * 2008-04-28 2009-11-12 Sony Corp 送電装置、送電方法、プログラム、および電力伝送システム
US20100253281A1 (en) * 2009-04-07 2010-10-07 Qualcomm Incorporated Wireless power transmission scheduling
KR20150023897A (ko) * 2012-06-29 2015-03-05 코닌클리케 필립스 엔.브이. 무선 유도 전력 전송
KR20160011143A (ko) * 2014-06-20 2016-01-29 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20160030907A (ko) * 2016-03-02 2016-03-21 엘지이노텍 주식회사 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190052117A1 (en) * 2017-08-11 2019-02-14 Integrated Device Technology, Inc. Wireless power transmitter to receiver communication during power transfer phase
US11664688B2 (en) 2018-01-10 2023-05-30 Lg Electronics Inc. Apparatus and method for performing power calibration in wireless power transmission system
EP4007122A1 (en) * 2018-01-10 2022-06-01 Lg Electronics Inc. Apparatus and method for performing power calibration in wireless power transmission system
US11139702B2 (en) 2018-01-10 2021-10-05 Lg Electronics Inc. Apparatus and method for performing power calibration in wireless power transmission system
EP3734795A4 (en) * 2018-01-10 2021-02-24 LG Electronics Inc. DEVICE AND METHOD FOR IMPLEMENTING CURRENT CONTROL IN A WIRELESS POWER TRANSMISSION SYSTEM
CN111602311A (zh) * 2018-01-15 2020-08-28 三星电子株式会社 发送无线充电停止原因的电子装置和方法
US11159064B2 (en) 2018-01-15 2021-10-26 Samsung Electronics Co., Ltd. Electronic device and method for transmission of reason wireless charging is stopping
CN111602311B (zh) * 2018-01-15 2024-10-22 三星电子株式会社 发送无线充电停止原因的电子装置和方法
US12107443B2 (en) 2018-01-15 2024-10-01 Samsung Electronics Co., Ltd. Electronic device and method for transmission of reason wireless charging is stopping
EP3512071A1 (en) * 2018-01-15 2019-07-17 Samsung Electronics Co., Ltd. Electronic device and method for transmission of reason wireless charging is stopping
WO2019160249A1 (ko) * 2018-02-13 2019-08-22 엘지이노텍(주) 과열 방지를 위한 무선 전력 송신 방법 및 장치
US11005307B2 (en) 2018-04-16 2021-05-11 Lg Electronics Inc. Apparatus and method for performing power control in wireless power transfer system
JP7258768B2 (ja) 2018-04-16 2023-04-17 エルジー エレクトロニクス インコーポレイティド 無線電力送信システムにおいて電力制御を行う装置及び方法
JP7429677B2 (ja) 2018-04-16 2024-02-08 エルジー エレクトロニクス インコーポレイティド 無線電力送信システムにおいて電力制御を行う装置及び方法
CN110622392A (zh) * 2018-04-16 2019-12-27 Lg电子株式会社 用于在无线功率传输系统中执行功率控制的装置和方法
CN110622392B (zh) * 2018-04-16 2023-12-01 Lg电子株式会社 用于在无线功率传输系统中执行功率控制的装置和方法
US10998775B2 (en) 2018-04-16 2021-05-04 Lg Electronics Inc. Apparatus and method for performing power control in wireless power transfer system
JP2022017404A (ja) * 2018-04-16 2022-01-25 エルジー エレクトロニクス インコーポレイティド 無線電力送信システムにおいて電力制御を行う装置及び方法
EP3579380B1 (en) * 2018-04-16 2023-09-06 LG Electronics Inc. Apparatus and method for performing power control in wireless power transmission system
US11658520B2 (en) 2018-04-16 2023-05-23 Lg Electronics Inc. Apparatus and method for performing power control in wireless power transfer system
JP2020522213A (ja) * 2018-04-16 2020-07-27 エルジー エレクトロニクス インコーポレイティド 無線電力送信システムにおいて電力制御を行う装置及び方法
WO2020027521A1 (ko) * 2018-08-01 2020-02-06 엘지전자 주식회사 이물질 검출에 기반하여 무선전력 전송을 수행하는 장치 및 방법
US11757310B2 (en) 2018-08-01 2023-09-12 Lg Electronics Inc. Apparatus and method for performing wireless power transmission on basis of foreign material detection
US11146120B2 (en) 2018-08-01 2021-10-12 Lg Electronics Inc. Apparatus and method for performing wireless power transmission on basis of foreign material detection
EP3829027A4 (en) * 2018-08-01 2021-07-07 Lg Electronics Inc. APPARATUS AND METHOD FOR CARRYING OUT WIRELESS POWER TRANSMISSION BASED ON FOREIGN BODY DETECTION
US12095524B2 (en) 2018-12-18 2024-09-17 Lg Electronics Inc. Device and method for performing wireless power transfer on basis of heterogeneous communication
WO2020130265A1 (ko) * 2018-12-18 2020-06-25 엘지전자 주식회사 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법
US11387687B2 (en) 2019-02-19 2022-07-12 Samsung Electronics Co., Ltd Data communication method for wireless charging and electronic device using same
EP3903406A4 (en) * 2019-02-19 2022-03-09 Samsung Electronics Co., Ltd. DATA COMMUNICATION METHOD FOR WIRELESS CHARGING AND ELECTRONIC DEVICE USING THE SAME
WO2020171316A1 (ko) * 2019-02-19 2020-08-27 엘지전자 주식회사 무선전력 전송 시스템에서 충전 상태 정보를 제공하는 장치 및 방법
US11509173B2 (en) 2019-09-03 2022-11-22 Samsung Electronics Co., Ltd. Method of wireless charging and electronic device supporting wireless charging
WO2021045487A1 (en) * 2019-09-03 2021-03-11 Samsung Electronics Co., Ltd. Method of wireless charging and electronic device supporting wireless charging

Also Published As

Publication number Publication date
FI3972088T3 (fi) 2024-01-12
US11289954B2 (en) 2022-03-29
EP3457527A4 (en) 2019-12-25
US11715982B2 (en) 2023-08-01
EP4277318A3 (en) 2023-12-27
US20200251937A1 (en) 2020-08-06
EP3457527B1 (en) 2021-03-24
US10651694B2 (en) 2020-05-12
US20220173625A1 (en) 2022-06-02
US20230327498A1 (en) 2023-10-12
CN109463026A (zh) 2019-03-12
KR20190000363A (ko) 2019-01-02
EP3457527A1 (en) 2019-03-20
EP3972088A1 (en) 2022-03-23
KR102127438B1 (ko) 2020-06-26
EP4277318A2 (en) 2023-11-15
EP3840178A1 (en) 2021-06-23
ES2969027T3 (es) 2024-05-16
US20190260241A1 (en) 2019-08-22
HUE064897T2 (hu) 2024-04-28
CN109463026B (zh) 2022-07-12
CN115051438A (zh) 2022-09-13
EP3972088B1 (en) 2023-10-25
PL3972088T3 (pl) 2024-03-18

Similar Documents

Publication Publication Date Title
WO2017213428A1 (ko) 무선 전력 송신 방법 및 이를 위한 장치
WO2018093099A1 (ko) 무선 전력 전달 방법 및 이를 위한 장치
WO2018056633A1 (ko) 무선 전력 전달 방법 및 이를 위한 장치
WO2017111369A1 (ko) 다중 모드를 지원하는 무선 전력 송신기
WO2019139326A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
WO2019039898A1 (ko) 무선전력 전송시스템에서 통신을 수행하는 장치 및 방법
WO2017026721A1 (ko) 무선 전력 전송 시스템 및 이의 구동 방법
WO2018021665A1 (ko) 무선 전력 수신기의 위치 확인 방법 및 장치
WO2017030354A1 (ko) 무선 전력 송신기 및 이와 연결되는 차량 제어 유닛
WO2019203420A1 (ko) 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법
WO2016140465A1 (ko) 무선 전력 송신기 및 수신기
WO2019160351A1 (ko) 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법
WO2019004753A1 (ko) 멀티 코일 기반의 무선전력 전송장치 및 방법
WO2018004130A1 (ko) 무선 전력 송신 코일 형상 및 코일의 배치 방법
WO2017003117A1 (ko) 다중 모드 무선 전력 송신 방법 및 그를 위한 장치
WO2017195977A2 (ko) 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2017065526A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2020050592A1 (ko) 무선전력 전송 시스템에서 가변 통신 속도를 지원하는 장치 및 방법
WO2017069469A1 (ko) 무선 신호를 송수신하기 위한 무선 전력 송신기, 무선 전력 수신기, 무선 시스템 및 이의 동작 방법
WO2017018668A1 (ko) 무선 전력 수신기 식별 방법 및 장치
WO2021045526A1 (ko) 무선 전력 전송 관련 정보의 통신을 위한 방법, 장치, 컴퓨터 프로그램 및 그 기록 매체
WO2017034143A1 (ko) 무전전력전송 시스템 및 이의 구동 방법
WO2021020833A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 이물질 검출 방법
WO2018194337A1 (ko) 무선 충전을 위한 무선 전력 송신 장치
WO2021066611A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이들을 이용한 전력 보정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035831

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017810551

Country of ref document: EP

Effective date: 20181213