WO2018004130A1 - 무선 전력 송신 코일 형상 및 코일의 배치 방법 - Google Patents

무선 전력 송신 코일 형상 및 코일의 배치 방법 Download PDF

Info

Publication number
WO2018004130A1
WO2018004130A1 PCT/KR2017/005368 KR2017005368W WO2018004130A1 WO 2018004130 A1 WO2018004130 A1 WO 2018004130A1 KR 2017005368 W KR2017005368 W KR 2017005368W WO 2018004130 A1 WO2018004130 A1 WO 2018004130A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
coil
coil portion
power transmitter
outer coil
Prior art date
Application number
PCT/KR2017/005368
Other languages
English (en)
French (fr)
Inventor
배수호
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to CN201780041099.1A priority Critical patent/CN109463025A/zh
Priority to EP17820407.9A priority patent/EP3480918B1/en
Priority to US16/312,902 priority patent/US11190040B2/en
Publication of WO2018004130A1 publication Critical patent/WO2018004130A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections

Definitions

  • the present invention relates to wireless power transmission, and more particularly, to a method of arranging a wireless power transmission coil.
  • Portable terminals such as mobile phones and laptops include a battery that stores power and circuits for charging and discharging the battery. In order for the battery of the terminal to be charged, power must be supplied from an external charger.
  • the terminal is supplied with commercial power and converted into a voltage and a current corresponding to the battery to supply electrical energy to the battery through the terminal of the battery.
  • Supply method This terminal supply method is accompanied by the use of a physical cable (cable) or wire. Therefore, when handling a lot of terminal supply equipment, many cables occupy considerable working space, are difficult to organize, and are not good in appearance.
  • the terminal supply method may cause problems such as instantaneous discharge phenomenon due to different potential difference between the terminals, burnout and fire caused by foreign substances, natural discharge, deterioration of battery life and performance.
  • a charging system (hereinafter referred to as a "wireless charging system") and a control method using a method of transmitting power wirelessly have been proposed.
  • the wireless charging system was not pre-installed in some portable terminals in the past and the consumer had to separately purchase a wireless charging receiver accessory, the demand for the wireless charging system was low, but the number of wireless charging users is expected to increase rapidly. It is expected to be equipped with wireless charging function.
  • the wireless charging system includes a wireless power transmitter for supplying electrical energy through a wireless power transmission method and a wireless power receiver for charging the battery by receiving the electrical energy supplied from the wireless power transmitter.
  • the wireless charging system may transmit power by at least one wireless power transmission method (eg, electromagnetic induction method, electromagnetic resonance method, RF wireless power transmission method, etc.).
  • wireless power transmission method eg, electromagnetic induction method, electromagnetic resonance method, RF wireless power transmission method, etc.
  • the wireless power transmission scheme may use various wireless power transmission standards based on an electromagnetic induction scheme that generates a magnetic field in the power transmitter coil and charges using an electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field.
  • the electromagnetic induction wireless power transmission standard may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) or / and the Power Matters Alliance (PMA).
  • the wireless power transmission method may use an electromagnetic resonance method of transmitting power to a wireless power receiver located in close proximity by tuning a magnetic field generated by a transmission coil of the wireless power transmitter to a specific resonance frequency.
  • the electromagnetic resonance method may include a wireless charging technology of a resonance method defined in an A4WP (Alliance for Wireless Power) standard device, which is a wireless charging technology standard device.
  • Such a wireless charging system may be designed to support at least two or more wireless power transmission methods of the electromagnetic induction method, the electromagnetic resonance method, and the RF wireless power transmission method.
  • the wireless power transmitter may be designed to transmit power to the wireless power receiver through a plurality of wireless power transmission schemes.
  • the area of the wireless power transmission area may be affected by the number of wireless power transmission coils, and a plurality of wireless power transmission coils may be used in the wireless power transmitter to increase the wireless power transmission area.
  • a wireless power transmitter including a plurality of wireless power transmission coils can charge a plurality of portable terminals using a wide power transmission area.
  • the present invention has been devised to solve the above-described problems of the prior art, and an object of the present invention is to provide a shape of a wireless power transmission coil and a method of arranging the coil.
  • the present invention relates to a shape of a wireless power transmission coil, and in the case of using a plurality of wireless power transmission coils, a shape of a wireless power transmission coil transmitting uniform power regardless of the position of the wireless power receiver in a region where wireless power transmission is possible. And a method of arranging the coils.
  • the wireless power transmitter that can convert a voltage received from the power supply to a specific voltage (convertor)
  • a conversion unit ;
  • a transmission resonator receiving the specific voltage from the power converter and including a wireless power transmission coil to wirelessly transmit power using a specific resonance frequency;
  • a matching circuit for matching an impedance between the transmission resonator and the power converter;
  • Communication unit capable of data communication with the wireless power receiver;
  • a main control unit controlling the power conversion unit, the transmission resonator, and the communication unit.
  • the wireless power transmission coil includes a plurality of coil pairs including two coils in which currents flow in opposite directions and spaced apart by a first interval, and each of the plurality of coil pairs is spaced apart by a second interval.
  • the first interval and the second interval may be determined according to the magnitude of the current flowing through the pair of coils.
  • the first distance and the second distance may be wide in proportion to the minimum magnitude of the current flowing through the pair of coils.
  • the wireless power transmission coil according to the electromagnetic resonance method according to an embodiment of the present invention a plurality of coil pair (pair) including two coils in which current flows in opposite directions and spaced apart by a first distance;
  • Each of the plurality of coil pairs may be spaced apart by a second distance, and the first distance and the second distance may be determined according to the magnitude of current flowing through the pair of coils.
  • the first distance and the second distance may be wide in proportion to the minimum magnitude of the current flowing through the pair of coils.
  • the wireless power transmission coil according to the electromagnetic resonance method according to an embodiment of the present invention, the outer coil is wound so that the current flows in the first direction; An inner coil positioned inside the outer coil and wound and disposed to flow a current in a direction opposite to the first direction; And a connection part connecting the outer coil and the inner coil in series or in parallel. It includes, wherein the inner coil, the interval of the outer coil may be determined according to the magnitude of the current flowing in the outer coil and the inner coil.
  • the interval may be wide in proportion to the minimum magnitude of the current flowing through the outer coil and the inner coil.
  • the connection unit when the connection unit connects the outer coil and the inner coil in series, the outer coil and the inner coil may be one loop.
  • a pair of coils in which current flows in the opposite direction is disposed N + 1 times, and each pair of coils constitutes the pair of coils.
  • the coils are arranged at a first distance, and a pair of coils wound N + 1th and another pair of coils wound Nth are arranged with a second distance interposed therebetween, the first distance and the second distance.
  • the distance may be determined according to the magnitude of the current flowing through the pair of coils.
  • the first distance and the second distance may be wide in proportion to the minimum magnitude of the current flowing through the pair of coils.
  • the wireless power transmission coil according to the electromagnetic resonance method according to an embodiment of the present invention, the N-th coil is disposed wound N-th so that current flows in the first direction; An N + 1 coil positioned outside the N-th coil and wound to flow a current in a direction opposite to the first direction; It includes, the connecting portion for connecting the N-th coil and the N + +1 coil in series or in parallel; The interval between the Nth coil and the N + 1th coil may be determined according to the magnitude of current flowing through the Nth coil and the N + 1th coil.
  • the interval between the Nth coil and the N + 1th coil may be wide in proportion to the minimum magnitude of the current flowing through the Nth coil and the N + 1th coil.
  • the wireless power transmitter including a converter (converter) for converting the voltage received from the power supply to a specific voltage;
  • a power transmitter including a wireless power transmitter coil receiving the specific voltage from the power converter and wirelessly transmitting power using a specific resonance frequency;
  • Communication unit capable of data communication with the wireless power receiver;
  • a controller for controlling the power converter, the power transmitter, and the communication unit, wherein the wireless power transmitter coil includes an outer coil part having a first loop shape and a second loop shape disposed inside the first loop shape.
  • the direction of the current flowing through the outer coil portion is a direction opposite to the direction of the current flowing through the inner coil portion adjacent to the outer coil portion, adjacent to the outer coil portion and the outer coil portion
  • the direction of the magnetic field by the outer coil part and the direction of the magnetic field by the inner coil part may be the same.
  • the outer coil portion and the inner coil portion adjacent to the outer coil portion may be spaced apart by a first interval, and the first interval may be determined according to the magnitude of the current flowing in the power transmitter.
  • the first end of the outer coil portion is connected to the power conversion unit
  • the second end of the outer coil portion is connected to the first end of the inner coil portion
  • the second of the inner coil portion An end may be connected to the power conversion unit.
  • the current flowing in the outer coil portion flows from the first end of the outer coil portion to the second end of the outer coil portion, and the current flowing in the inner coil portion at the first end of the inner coil portion. It may flow to the second end of the inner coil portion.
  • first end of the outer coil portion and the second end of the inner coil portion may be adjacent to each other.
  • the outer coil part and the inner coil part may be connected in parallel.
  • the first end and the second end of the outer coil portion are connected to the power conversion portion
  • the first end of the inner coil portion is connected to the first end of the outer coil portion
  • the inner coil portion The second end of the may be connected to the power conversion unit.
  • the current flowing in the outer coil portion flows from the first end of the outer coil portion to the second end of the outer coil portion, and the current flowing in the inner coil portion at the first end of the inner coil portion. It may flow to the second end of the inner coil portion.
  • the first distance and the second distance may be wide in proportion to the minimum magnitude of the current flowing through the pair of coils.
  • the present invention can transmit power to a plurality of wireless power receivers at one time using a plurality of wireless power transmission coils.
  • a plurality of wireless power transmission coils may be appropriately arranged to allow wireless power transmission in a uniform area.
  • the present invention can save the raw material cost by appropriately disposing the wireless power transmission coil to consider the distance between the coils.
  • the present invention can be arranged so that the magnetic fields generated in each of the plurality of wireless power transmission coils are not attenuated with each other, thereby reducing power consumed during wireless power transmission.
  • FIG. 1 is a block diagram illustrating a structure of a wireless power transmission system of an electromagnetic resonance method according to an embodiment of the present invention.
  • FIG. 2 is an equivalent circuit diagram of a wireless power transmission system of an electromagnetic resonance method according to an embodiment of the present invention.
  • FIG. 3 is a state transition diagram illustrating a state transition procedure in the wireless power transmitter of the electromagnetic resonance method according to an embodiment of the present invention.
  • FIG. 4 is a state transition diagram of an electromagnetic resonance wireless power receiver according to an embodiment of the present invention.
  • FIG. 5 is a diagram for describing an operation region of an electromagnetic resonance type wireless power receiver based on VRECT according to an exemplary embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a wireless charging procedure of the electromagnetic resonance method according to an embodiment of the present invention.
  • FIG. 7 is a diagram for describing an area of a magnetic field when there is only one wireless power transmission coil according to an electromagnetic resonance method according to an embodiment of the present invention.
  • FIG. 8 is a diagram for describing an area attenuated by a magnetic field generated when two wireless power transmission coils according to an electromagnetic resonance method according to an embodiment of the present invention exist.
  • FIG. 9 is a diagram for describing a region of a magnetic field when a plurality of wireless power transmission coils according to an electromagnetic resonance method according to an embodiment of the present invention are connected in series.
  • FIG. 10 is a diagram for describing a region of a magnetic field when a plurality of wireless power transmission coils according to an electromagnetic resonance method according to an embodiment of the present invention are connected in parallel.
  • FIG. 11 is a diagram for describing an arrangement interval when a wireless power transmission coil pair according to an electromagnetic resonance method is wound a plurality of times.
  • a wireless power transmitter using an electromagnetic resonance method includes: a power converter including a converter capable of converting a voltage received from a power supply into a specific voltage; A transmission resonator receiving the specific voltage from the power converter and including a wireless power transmission coil to wirelessly transmit power using a specific resonance frequency; A matching circuit for matching an impedance between the transmission resonator and the power converter; Communication unit capable of data communication with the wireless power receiver; And a main control unit controlling the power conversion unit, the transmission resonator, and the communication unit.
  • the wireless power transmission coil includes a plurality of coil pairs including two coils in which currents flow in opposite directions and spaced apart by a first interval, and each of the plurality of coil pairs is spaced apart by a second interval. The first interval and the second interval may be determined according to the magnitude of the current flowing through the pair of coils.
  • the apparatus for transmitting wireless power on the wireless power charging system is a wireless power transmitter, wireless power transmitter, wireless power transmitter, wireless power transmitter, transmitter, transmitter, transmitter, transmitting side for convenience of description.
  • a wireless power transmitter, a wireless power transmitter, and a wireless charging device will be used in combination.
  • a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Terminals and the like may be used interchangeably.
  • the wireless power transmitter may not only be used on a desk or a table, but also may be developed and applied to an automobile and used in a vehicle.
  • the wireless power transmitter installed in the vehicle may be provided in the form of a cradle that can be fixed and mounted simply and stably.
  • the terminal according to the present invention is a mobile phone, smart phone, laptop computer, digital broadcasting terminal, PDA (Personal Digital Assistants), PMP (Portable Multimedia Player), navigation, MP3 player, electric It may be used in small electronic devices such as toothbrushes, electronic tags, lighting devices, remote controls, fishing bobbers, and the like, but is not limited thereto.
  • the term “terminal” or “device” may be used interchangeably.
  • the wireless power receiver according to another embodiment of the present invention may be mounted in a vehicle, an unmanned aerial vehicle, an air drone, or the like.
  • the wireless power receiver may be provided with at least one wireless power transmission scheme, and may simultaneously receive wireless power from two or more wireless power transmitters.
  • the wireless power transmission method may include at least one of the electromagnetic induction method, electromagnetic resonance method, RF wireless power transmission method.
  • the wireless power transmitter and the wireless power receiver constituting the wireless power system may exchange control signals or information through in-band communication or Bluetooth low energy (BLE) communication.
  • in-band communication and BLE communication may be performed by a pulse width modulation method, a frequency modulation method, a phase modulation method, an amplitude modulation method, an amplitude and phase modulation method, or the like.
  • the wireless power receiver may transmit various control signals and information to the wireless power transmitter by generating a feedback signal by switching ON / OFF the current induced through the receiving coil in a predetermined pattern.
  • the information transmitted by the wireless power receiver may include various state information including received power strength information.
  • the wireless power transmitter may calculate the charging efficiency or the power transmission efficiency based on the received power strength information.
  • the wireless power transmitter according to the present invention may be designed to support at least two or more wireless power transmission methods of the electromagnetic induction method, the electromagnetic resonance method, and the RF wireless power transmission method.
  • FIG. 1 is a block diagram illustrating a structure of a wireless power transmission system according to an embodiment of the present invention.
  • the wireless power transmission system may include a wireless power transmitter 100 and a wireless power receiver 200.
  • FIG. 1 illustrates that the wireless power transmitter 100 transmits wireless power to one wireless power receiver 200, this is only one embodiment, and wireless power according to another embodiment of the present invention.
  • the transmitter 100 may transmit wireless power to the plurality of wireless power receivers 200.
  • the wireless power receiver 200 according to another embodiment may simultaneously receive wireless power from the plurality of wireless power transmitters 100.
  • the wireless power transmitter 100 may generate a magnetic field using a specific power transmission frequency to transmit power to the wireless power receiver 200.
  • the wireless power receiver 200 may receive power by tuning to the same frequency as that used by the wireless power transmitter 100.
  • the frequency for power transmission may be a 6.78MHz band, but is not limited thereto.
  • the maximum number of wireless power receivers 200 that can receive power from one wireless power transmitter 100 is the maximum power transmission level of the wireless power transmitter 100, the maximum power reception level of the wireless power receiver 200, the wireless It may be determined based on the physical structures of the power transmitter 100 and the wireless power receiver 200.
  • the wireless power transmitter 100 and the wireless power receiver 200 may perform bidirectional communication in a frequency band different from a frequency band for transmitting wireless power, that is, a resonant frequency band.
  • the bidirectional communication may use a half-duplex Bluetooth Low Energy (BLE) communication protocol.
  • BLE Bluetooth Low Energy
  • the wireless power transmitter 100 and the wireless power receiver 200 may exchange characteristic and state information, that is, power negotiation information, with each other through the bidirectional communication.
  • the wireless power receiver 200 may transmit predetermined power reception state information for controlling the power level received from the wireless power transmitter 100 to the wireless power transmitter 100 through bidirectional communication.
  • 100 may dynamically control the transmit power level based on the received power reception state information.
  • the wireless power transmitter 100 may not only optimize power transmission efficiency, but also prevent load damage due to over-voltage, and prevent unnecessary waste of power due to under-voltage. It can provide a function to.
  • the wireless power transmitter 100 performs a function of authenticating and identifying the wireless power receiver 200 through two-way communication, identifying an incompatible device or an unchargeable object, and identifying a valid load. You may.
  • the wireless power transmitter 100 includes a power supplier 110, a power conversion unit 120, a matching circuit 130, a transmission resonator 140, and a main controller. , 150) and a communication unit 160.
  • the communication unit may include a data transmitter and a data receiver.
  • the power supply unit 110 may supply a specific supply voltage to the power converter 120 under the control of the main controller 150.
  • the supply voltage may be a DC voltage or an AC voltage.
  • the power converter 120 may convert the voltage received from the power supply 110 into a specific voltage under the control of the main controller 150.
  • the power converter 120 may include at least one of a DC / DC converter, an AC / DC converter, and a power amplifier.
  • the matching circuit 130 is a circuit that matches the impedance between the power converter 120 and the transmission resonator 140 in order to maximize power transmission efficiency.
  • the transmission resonator 140 or the power transmitter may wirelessly transmit power using a specific resonance frequency according to the voltage applied from the matching circuit 130.
  • the transmission resonator 140 may include a wireless power transmission coil, and may wirelessly transmit power by using a specific resonance frequency of an induced voltage generated by a current flowing in the wireless power transmission coil.
  • the wireless power receiver 200 includes a reception resonator 210, a rectifier 220, a DC-DC converter 230, a load 240, a main controller 250. ) And a communication unit 260.
  • the communication unit may include a data transmitter and a data receiver.
  • the reception resonator 210 may receive power transmitted by the transmission resonator 140 through a resonance phenomenon.
  • the rectifier 220 may perform a function of converting an AC voltage applied from the receiving resonator 210 into a DC voltage.
  • the DC-DC converter 230 may convert the rectified DC voltage into a specific DC voltage required for the load 240.
  • the main controller 250 controls the operations of the rectifier 220 and the DC-DC converter 230 or generates characteristics and state information of the wireless power receiver 200 and controls the communication unit 260 to control the wireless power transmitter 100.
  • the characteristics and state information of the wireless power receiver 200 may be transmitted to the.
  • the main controller 250 may control the operation of the rectifier 220 and the DC-DC converter 230 by monitoring the intensity of the output voltage and the current in the rectifier 220 and the DC-DC converter 230. have.
  • the intensity information of the monitored output voltage and current may be transmitted to the wireless power transmitter 100 in real time through the communication unit 260.
  • the main controller 250 compares the rectified DC voltage with a predetermined reference voltage to determine whether it is an over-voltage state or an under-voltage state, and a system error state is detected according to the determination result. If so, the detection result may be transmitted to the wireless power transmitter 100 through the communication unit 260.
  • the main controller 250 when the main controller 250 detects a system error condition, the main controller 250 controls the operation of the rectifier 220 and the DC-DC converter 230 or a predetermined overcurrent including a switch or a zener diode to prevent damage to the load.
  • the blocking circuit may be used to control the power applied to the load 240.
  • the main controller 150 and 250 and the communication unit 160 and 260 are configured as different modules, but this is only one embodiment, and another embodiment of the present invention is a main controller ( It should be noted that the 150 and 250 and the communication unit 160 and 260 may be configured as one module.
  • FIG. 2 is an equivalent circuit diagram of a wireless power transmission system of an electromagnetic resonance method according to an embodiment of the present invention.
  • FIG. 2 shows the interface point on an equivalent circuit in which reference parameters, which will be described later, are measured.
  • I TX and I TX _COIL are root mean square (RMS) currents applied to the matching circuit (or matching network) 220 of the wireless power transmitter and RMS currents applied to the transmission resonator coil 225 of the wireless power transmitter, respectively. do.
  • RMS root mean square
  • Z TX _IN and Z TX _IN_COIL refer to an input impedance before the matching circuit 220 of the wireless power transmitter, an input impedance after the matching circuit 220 and the transmitting resonator coil 225, respectively.
  • L1 and L2 mean an inductance value of the transmitting resonator coil 225 and an inductance value of the receiving resonator coil 227, respectively.
  • Z RX _ IN refers to the input impedance at the rear end of the matching circuit 230 and the front end of the filter / rectifier / load 240 of the wireless power receiver.
  • the resonance frequency used for the operation of the wireless power transmission system according to an embodiment of the present invention may be 6.78MHz ⁇ 15kHz.
  • the wireless power transmission system may provide simultaneous charging of multiple wireless power receivers, i.e., multi-charging, in which case the wireless power receiver remains even if the wireless power receiver is newly added or deleted.
  • the amount of change in received power may be controlled so as not to exceed a predetermined reference value.
  • the received power variation may be ⁇ 10%, but is not limited thereto.
  • the condition for maintaining the received power change amount should not overlap with the existing wireless power receiver when the wireless power receiver is added to or deleted from the charging area.
  • the real part of the Z TX _IN may be inversely related to the load resistance of the rectifier, hereinafter referred to as R RECT . That is, increasing R RECT may decrease Z TX _IN, and decreasing R RECT may increase Z TX _IN .
  • Resonator Coupling Efficiency may be the maximum power reception ratio calculated by dividing the power transferred from the receiver resonator coil to the load 240 by the power carried in the resonant frequency band by the transmitter resonator coil 225. have.
  • Resonator matching efficiency between the wireless power transmitter and wireless power receiver can be calculated if the reference port impedance (Z TX_IN) and receiving a reference port impedance (Z _IN RX) of the cavity resonator is a transmission that is perfectly matched.
  • Table 1 below is an example of the minimum resonator matching efficiency according to the class of the wireless power transmitter and the class of the wireless power receiver according to the embodiment of the present invention.
  • the minimum resonator matching efficiency corresponding to the class and category shown in Table 1 may increase.
  • FIG. 3 is a state transition diagram illustrating a state transition procedure in the wireless power transmitter of the electromagnetic resonance method according to an embodiment of the present invention.
  • a state of the wireless power transmitter is largely configured as a configuration state 310, a power save state 320, a low power state 330, and a power transfer state. , 340), a local fault state 350, and a locking fault state 360.
  • the wireless power transmitter may transition to configuration state 310.
  • the wireless power transmitter may transition to the power saving state 320 when the predetermined reset timer expires or the initialization procedure is completed in the configuration state 310.
  • the wireless power transmitter may generate a beacon sequence and transmit it through the resonant frequency band.
  • the wireless power transmitter may control the beacon sequence to be started within a predetermined time after entering the power saving state 320.
  • the wireless power transmitter may control the beacon sequence to be started within 50 ms after the power saving state 320 transition, but is not limited thereto.
  • the wireless power transmitter periodically generates and transmits a first beacon sequence for detecting the wireless power receiver, and detects a change in impedance of the reception resonator, that is, a load variation.
  • a load variation that is, a load variation.
  • the first beacon and the first beacon sequence will be referred to as short beacon and short beacon sequences, respectively.
  • the wireless power transmitter according to the present invention may be provided with a predetermined sensing means for detecting a change in reactance and resistance in a reception resonator according to a short beacon.
  • the wireless power transmitter may periodically generate and transmit a second beacon sequence for supplying sufficient power for booting and response of the wireless power receiver.
  • the second beacon and the second beacon sequence will be referred to as long beacon and long beacon sequences, respectively.
  • the wireless power receiver may broadcast a predetermined response signal through the out-of-band communication channel.
  • the Long Beacon sequence may be generated and transmitted at a predetermined time interval (t LONG _BEACON_PERIOD ) during a relatively long period (t LONG_BEACON ) compared to the Short Beacon to supply sufficient power for booting the wireless power receiver.
  • t LONG _BEACON may be set to 105 ms + 5 ms and t LONG _BEACON_PERIOD may be set to 850 ms, respectively.
  • the current strength of the long beacon may be relatively strong compared to the current strength of the short beacon.
  • the Long Beacon may maintain a constant power during the transmission interval.
  • the wireless power transmitter may wait to receive a predetermined response signal during the long beacon transmission period.
  • the response signal will be referred to as an advertisement signal.
  • the wireless power receiver may broadcast the advertisement signal through an out-of-band communication frequency band different from the resonant frequency band.
  • the advertisement signal may include message identification information for identifying a message defined in the corresponding out-of-band communication standard, unique service for identifying whether the wireless power receiver is a legitimate or compatible receiver for the wireless power transmitter, or wireless power receiver identification.
  • Information, output power information of the wireless power receiver, rated voltage / current information applied to the load, antenna gain information of the wireless power receiver, information for identifying the category of the wireless power receiver, wireless power receiver authentication information, with overvoltage protection Information on whether or not, may include at least one or any one of the software version information mounted on the wireless power receiver.
  • the wireless power transmitter may transition from the power saving state 320 to the low power state 330 and then establish an out-of-band communication link with the wireless power receiver. Subsequently, the wireless power transmitter may perform a registration procedure for the wireless power receiver via the established out-of-band communication link. For example, when the out-of-band communication is Bluetooth low power communication, the wireless power transmitter may perform Bluetooth pairing with the wireless power receiver and exchange at least one of state information, characteristic information, and control information with each other through the paired Bluetooth link. have.
  • the wireless power transmitter transmits a predetermined control signal to the wireless power receiver for initiating charging through out-of-band communication in the low power state 330, that is, the predetermined predetermined control signal requesting that the wireless power receiver delivers power to the load.
  • the state of the wireless power transmitter may transition from the low power state 330 to the power transfer state 340.
  • the state of the wireless power transmitter may transition to the power saving state 320 in the low power state 330.
  • the wireless power transmitter may be driven by a separate Link Expiration Timer for connection with each wireless power receiver, and the wireless power receiver may indicate that the wireless power transmitter is present in the wireless power transmitter at a predetermined time period. Must be sent before the link expiration timer expires.
  • the link expiration timer is reset each time the message is received and an out-of-band communication link established between the wireless power receiver and the wireless power receiver may be maintained if the link expiration timer has not expired.
  • the state of the wireless power transmitter May transition to a power saving state 320.
  • the wireless power transmitter in the low power state 330 may drive a predetermined registration timer when a valid advertisement signal is received from the wireless power receiver. In this case, when the registration timer expires, the wireless power transmitter in the low power state 330 may transition to the power saving state 320. In this case, the wireless power transmitter may output a predetermined notification signal indicating that registration has failed through notification display means provided in the wireless power transmitter, including, for example, an LED lamp, a display screen, a beeper, and the like. have.
  • the wireless power transmitter may transition to the low power state 330 when charging of all connected wireless power receivers is completed.
  • the wireless power receiver may allow registration of a new wireless power receiver in states other than configuration state 310, local failure state 350, and lock failure state 360.
  • the wireless power transmitter may dynamically control the transmission power based on state information received from the wireless power receiver in the power transmission state 340.
  • the receiver state information transmitted from the wireless power receiver to the wireless power transmitter is for reporting the required power information, voltage and / or current information measured at the rear of the rectifier, charging state information, overcurrent and / or overvoltage and / or overheating state. It may include at least one of information indicating whether the means for interrupting or reducing the power delivered to the load according to the information, overcurrent or overvoltage is activated.
  • the receiver state information may be transmitted at a predetermined cycle or whenever a specific event occurs.
  • the means for cutting off or reducing power delivered to the load according to the overcurrent or overvoltage may be provided using at least one of an ON / OFF switch and a zener diode.
  • a wireless power transmitter may receive power for each wireless power receiver based on at least one of its currently available power, priority for each wireless power receiver, and the number of connected wireless power receivers. May be adaptively determined.
  • the power strength for each wireless power receiver may be determined by a ratio of power to the maximum power that can be processed by the rectifier of the wireless power receiver.
  • the wireless power transmitter may transmit a predetermined power control command including information about the determined power intensity to the corresponding wireless power receiver.
  • the wireless power receiver may determine whether power control is possible using the power intensity determined by the wireless power transmitter, and transmit the determination result to the wireless power transmitter through a predetermined power control response message.
  • the power transmission state 340 may be any one of a first state 341, a second state 342, and a third state 343 according to the power reception state of the connected wireless power receiver.
  • the second state 342 may mean that there is no wireless power receiver in which the power reception state of the at least one wireless power receiver connected to the wireless power transmitter is a low voltage state and a high voltage state.
  • the third state 343 may mean that a power reception state of at least one wireless power receiver connected to the wireless power transmitter is a high voltage state.
  • the wireless power transmitter may transition to the lock failure state 360 when a system error is detected in the power saving state 320, the low power state 330, or the power transmission state 340.
  • the wireless power transmitter in the lock failure state 360 may transition to the configuration state 310 or the power saving state 320 when it is determined that all connected wireless power receivers have been removed from the charging area.
  • the wireless power transmitter may transition to the local failure state 350 when a local failure is detected.
  • the wireless power transmitter having the local failure state 350 may transition to the lock failure state 360 again.
  • transition to configuration state 310 may occur.
  • the wireless power transmitter may cut off the power supplied to the wireless power transmitter.
  • the wireless power transmitter may transition to the local failure state 350 when the failure of overvoltage, overcurrent, overheating, etc. is detected, but is not limited thereto.
  • the wireless power transmitter may transmit a predetermined power control command to at least one connected wireless power receiver to reduce the strength of the power received by the wireless power receiver.
  • the wireless power transmitter may transmit a predetermined control command to the connected at least one wireless power receiver to stop charging of the wireless power receiver.
  • the wireless power transmitter can prevent device damage due to overvoltage, overcurrent, overheating, and the like.
  • the wireless power transmitter may transition to the lock failure state 360 when the intensity of the output current of the transmission resonator is greater than or equal to the reference value.
  • the wireless power transmitter transitioned to the lock failure state 360 may attempt to make the intensity of the output current of the transmission resonator less than or equal to the reference value for a predetermined time.
  • the attempt may be repeated for a predetermined number of times. If the lock failure state 360 is not released despite the repetition, the wireless power transmitter transmits a predetermined notification signal indicating that the lock failure state 360 is not released to the user by using a predetermined notification means. can do. In this case, when all the wireless power receivers located in the charging area of the wireless power transmitter are removed from the charging area by the user, the lock failure state 360 may be released.
  • the lock failure state 360 is automatically released.
  • the state of the wireless power transmitter may automatically transition from the lock failure state 360 to the power saving state 320 to perform the detection and identification procedure for the wireless power receiver again.
  • the wireless power transmitter of the power transmission state 340 transmits continuous power, and adaptively controls the output power based on the state information of the wireless power receiver and a predefined optimal voltage region setting parameter. have.
  • the wireless power transmitter may increase the output power if the power reception state of the wireless power receiver is in the low voltage region, and reduce the output power if the wireless power receiver is in the high voltage region.
  • the wireless power transmitter may control the transmission power to maximize the power transmission efficiency.
  • the wireless power transmitter may control the transmission power so that the deviation of the amount of power required by the wireless power receiver is equal to or less than the reference value.
  • the wireless power transmitter may stop power transmission when the rectifier output voltage of the wireless power receiver reaches a predetermined overvoltage region, that is, when an over voltage is detected.
  • FIG. 4 is a state transition diagram of an electromagnetic resonance wireless power receiver according to an embodiment of the present invention.
  • a state of the wireless power receiver is largely divided into a disabled state 410, a boot state 420, an enable state 430 (or an on state), and a system error state (see FIG. 4).
  • System Error State, 440 can be configured.
  • the state of the wireless power receiver may be determined based on the intensity of the output voltage at the rectifier terminal of the wireless power receiver, hereinafter, referred to as a V RECT business card.
  • the activation state 430 may be classified into an optimal voltage state 431, a low voltage state 432, and a high voltage state 433 according to the value of V RECT .
  • the wireless power receiver in the deactivated state 410 may transition to the boot state 420 if the measured V RECT value is greater than or equal to a predefined V RECT_BOOT value.
  • boot state 420 the wireless power receiver establishes an out-of-band communication link with the wireless power transmitter and V RECT Wait until the value reaches the power required by the load stage.
  • Wireless power receiver in boot state 420 is V RECT When it is confirmed that the value has reached the power required for the load stage, the transition to the active state 430 may begin charging.
  • the wireless power receiver in the activated state 430 may transition to the boot state 420 when charging is confirmed to be completed or stopped.
  • the wireless power receiver in the activated state 430 may transition to the system error state 440 when a predetermined system error is detected.
  • the system error may include overvoltage, overcurrent and overheating as well as other predefined system error conditions.
  • the wireless power receiver in the active state 430 is V RECT If the value falls below the V RECT _BOOT value, it may transition to an inactive state 410.
  • the wireless power receiver of the boot state 420 or system failure condition 440 may be shifted to, disable state (410) falls below a value V RECT V RECT _BOOT value.
  • FIG. 5 is a diagram for describing an operation region of an electromagnetic resonance type wireless power receiver based on VRECT according to an exemplary embodiment of the present invention.
  • V RECT _ BOOT if the V RECT value is smaller than the predetermined V RECT _ BOOT , the wireless power receiver is maintained in an inactive state 510.
  • the wireless power receiver transitions to the boot state 520 and may broadcast the advertisement signal within a predetermined time. Thereafter, when the advertisement signal is detected by the wireless power transmitter, the wireless power transmitter may transmit a predetermined connection request signal for establishing an out-of-band communication link to the wireless power receiver.
  • the wireless power receiver is normally set to communicate the out-of-band link, if a successful registration, V RECT value of the minimum output voltage of the rectifier for a normal charge-to below, for convenience of explanation V RECT _ MIN as business card is reached You can wait until
  • V RECT _ MIN If the V RECT value exceeds V RECT _ MIN , the state of the wireless power receiver transitions from the boot state 520 to the activated state 530 and may begin charging the load.
  • V RECT _ MAX which is a predetermined reference value for determining the overvoltage
  • the activation state 530 is divided into a low voltage state 532, an optimum voltage state 531, and a high voltage state 533 according to the value of V RECT . Can be.
  • the wireless power receiver transitioned to the high voltage state 533 may suspend the operation of cutting off the power supplied to the load for a predetermined time, which is referred to as a high voltage state holding time for convenience of description below.
  • the high voltage state holding time may be determined in advance so that no damage occurs to the wireless power receiver and the load in the high voltage state 533.
  • the wireless power receiver may transmit a predetermined message indicating overvoltage occurrence to the wireless power transmitter through the out-of-band communication link within a predetermined time.
  • the wireless power receiver may control the voltage applied to the load by using an overvoltage blocking means provided to prevent damage of the load due to the overvoltage in the system error state 540.
  • an ON / OFF switch or a zener diode may be used as the overvoltage blocking means.
  • the wireless power receiver may transmit a predetermined message indicating the occurrence of overheating to the wireless power transmitter.
  • the wireless power receiver may reduce the heat generated internally by driving the provided cooling fan.
  • the wireless power receiver may receive wireless power in cooperation with a plurality of wireless power transmitters.
  • the wireless power receiver may transition to the system error state 540 when it is determined that the wireless power transmitter determined to receive the actual wireless power is different from the wireless power transmitter to which the actual out-of-band communication link is established.
  • FIG. 6 is a flowchart illustrating a wireless charging procedure of the electromagnetic resonance method according to an embodiment of the present invention.
  • the wireless power transmitter when the wireless power transmitter is configured to receive power, that is, booting is completed, the wireless power transmitter may generate a beacon sequence and transmit it through a transmission resonator (S601).
  • the wireless power receiver may broadcast an advertisement signal including its identification information and characteristic information (S603).
  • the advertisement signal may be repeatedly transmitted at a predetermined period until the connection request signal, which will be described later, is received from the wireless power transmitter.
  • the wireless power transmitter may transmit a predetermined connection request signal for establishing an out-of-band communication link to the wireless power receiver (S605).
  • the wireless power receiver may establish an out-of-band communication link and transmit its static state information through the set out-of-band communication link (S607).
  • the static state information of the wireless power receiver identifies category information, hardware and software version information, maximum rectifier output power information, initial reference parameter information for power control, information on a required voltage or power, and whether a power regulation function is installed. And at least one of information on supportable out-of-band communication schemes, information on supportable power control algorithms, and information on preferred rectifier stage voltage values initially set in the wireless power receiver.
  • the wireless power transmitter may transmit the static state information of the wireless power transmitter to the wireless power receiver through an out-of-band communication link (S609).
  • the static state information of the wireless power transmitter may include at least one of transmitter power information, class information, hardware and software version information, information on the maximum number of supported wireless power receivers, and / or information on the number of wireless power receivers currently connected. It can be configured to include one.
  • the wireless power receiver monitors its real-time power reception state and charging state, and may transmit dynamic state information to the wireless power transmitter in a periodic or specific event occurrence (S611).
  • the dynamic state information of the wireless power receiver includes information on the rectifier output voltage and current, information on the voltage and current applied to the load, information on the internal measurement temperature of the wireless power receiver, and change of reference parameters for power control ( It may be configured to include at least one of the rectified voltage minimum value, the rectified voltage maximum value, the initially set preferred rectifier terminal voltage change value), the charging state information, system error information, alarm information.
  • the wireless power transmitter may perform power adjustment by changing a setting value included in the existing static state information when receiving reference parameter change information for power control.
  • the wireless power transmitter may control the wireless power receiver to start charging by issuing a predetermined control command through the out-of-band communication link (S613).
  • the wireless power transmitter may dynamically control the transmission power by receiving the dynamic state information from the wireless power receiver (S615).
  • the wireless power receiver may transmit the dynamic state information to the wireless power transmitter including data for identifying the system error and / or data indicating that the charging is completed ( S617).
  • the system error may include overcurrent, overvoltage, overheating, and the like.
  • the wireless power transmitter when the currently available power does not meet the required power of all connected wireless power receivers, the wireless power transmitter according to another embodiment of the present invention redistributes power to be transmitted to each wireless power receiver and issues a predetermined control command. It may be transmitted to the corresponding wireless power receiver.
  • the wireless power transmitter redistributes power to be received for each connected wireless power receiver based on currently available power, and transmits it to the corresponding wireless power receiver through a predetermined control command.
  • the wireless power transmitter may remain when wireless charging of the previously connected wireless power receiver is completed or the out-of-band communication link is released, including, for example, when the wireless power receiver is removed from the charging area.
  • the power to be received for each wireless power receiver may be redistributed and transmitted to the corresponding wireless power receiver through a predetermined control command.
  • the wireless power transmitter may determine whether the wireless power receiver has a power regulation function through a predetermined control procedure. In this case, when a power redistribution situation occurs, the wireless power transmitter may perform power redistribution only for the wireless power receiver equipped with the power adjustment function.
  • the power redistribution situation may receive a valid advertisement signal from an unconnected wireless power receiver to receive a dynamic parameter indicating a new wireless power receiver is added or indicates a current state of the connected wireless power receiver, or the connected wireless power receiver is Occurs when an event occurs such that it is confirmed that it no longer exists, the charging of the connected wireless power receiver is completed, or an alarm message indicating a system error state of the connected wireless power receiver is received.
  • a valid advertisement signal from an unconnected wireless power receiver to receive a dynamic parameter indicating a new wireless power receiver is added or indicates a current state of the connected wireless power receiver, or the connected wireless power receiver is Occurs when an event occurs such that it is confirmed that it no longer exists, the charging of the connected wireless power receiver is completed, or an alarm message indicating a system error state of the connected wireless power receiver is received.
  • the system error state may include an overvoltage state, an overcurrent state, an overheat state, a network connection state, and the like.
  • the wireless power transmitter may transmit power redistribution related information to the wireless power receiver through a predetermined control command.
  • the power redistribution related information is a wireless power transmitter command for power control
  • the wireless power transmitter may determine whether it is possible to provide the amount of power required by the wireless power receiver based on its available power. As a result of determination, when the required amount of power exceeds the available amount of power, the wireless power transmitter may check whether the power control function is installed in the corresponding wireless power receiver. As a result of the check, when the power adjustment function is mounted, the wireless power receiver may determine an amount of power to be received by the wireless power receiver within the amount of available power, and transmit the determined result to the wireless power receiver through a predetermined control command.
  • the power redistribution may be performed within a range in which the wireless power transmitter and the wireless power receiver can operate normally and / or a normal charging range.
  • the wireless power receiver may support a plurality of out-of-band communication schemes. If it is desired to change the currently set out-of-band communication link in another manner, the wireless power receiver may transmit a predetermined control signal for requesting the out-of-band communication change to the wireless power transmitter. When the out-of-band communication change request signal is received, the wireless power transmitter may release the currently set out-of-band communication link and establish a new out-of-band communication link by the out-of-band communication method requested by the wireless power receiver.
  • the out-of-band communication scheme applicable to the present invention may include Near Field Communication (NFC), Radio Frequency Identification (RFID), Bluetooth Low Energy (BLE), Wideband Code Division Multiple Access (WCDMA), and Long LTE.
  • NFC Near Field Communication
  • RFID Radio Frequency Identification
  • BLE Bluetooth Low Energy
  • WCDMA Wideband Code Division Multiple Access
  • Long LTE Long LTE.
  • Term Evolution / LTE-Advance communication and Wi-Fi communication.
  • the wireless power transmitting coil may have a form as shown in FIG. 7.
  • FIG. 7 is a diagram for describing an area of a magnetic field when there is only one wireless power transmission coil according to an electromagnetic resonance method according to an embodiment of the present invention.
  • the wireless power transmission coil may be divided into a coil inner region and a coil outer region as a single loop. At this time, the current flowing through the immediately preceding coil may generate a concentric magnetic field centered on the coil. Arrows shown in FIG. 7 indicate the direction of current.
  • the wireless power transmission region according to the magnetic field region generated by the coil may be divided into an outer region 710 and an inner region 720.
  • the wireless power transmission region may be determined according to the region of the magnetic field generated by the current in the outer region of the coil, and the size of the charging pad of the wireless charging device including the wireless power transmitter may be determined according to the region of the magnetic field.
  • FIG. 8 illustrates an arrangement of coils capable of increasing the central magnetic flux of the wireless power transmission coil
  • the arrangement of the coils shown in FIG. 8 generates another problem, and is optimized in FIGS. 9 and 10 to solve this problem.
  • a method of disposing a wireless power transmission coil will be described.
  • FIG. 8 is a diagram for describing an area attenuated by a magnetic field generated when two wireless power transmission coils according to an electromagnetic resonance method according to an embodiment of the present invention exist.
  • a coil may be further disposed inside to increase the amount of magnetic flux at the center of the wireless power transmission coil.
  • a plurality of wireless power transmission coils can be solved by using a plurality of wireless power transmission coils in the vicinity of the wireless power transmission coil, where an area where wireless power transmission is impossible (often a dead-zone) can be solved. Can be.
  • the magnetic flux may be increased at the center of the coil, but the magnetic fields are offset from each other in the region 830 between the outer coil 810 and the inner coil 820 to be located in the interregion.
  • Another problem may occur in that the wireless power receiver does not receive power.
  • the direction of the magnetic field generated by the current flowing through the coil is the direction in which the remaining four fingers are wound when the thumb of the right hand is directed in the direction of current according to the Enfer law.
  • the direction of the magnetic field generated in the outer coil 810 rises vertically in the outer region of the outer coil 810 to center the coil. It is wound in the form of concentric circles and descends vertically from the inner region.
  • the direction of the magnetic field generated in the inner coil 820 is perpendicular to the outer region of the inner coil 820. It is the direction to go up.
  • FIG. 9 is a diagram for describing a region of a magnetic field when a plurality of wireless power transmission coils according to an electromagnetic resonance method according to an embodiment of the present invention are connected in series.
  • the direction (clockwise) of the current flowing through the outer coil 910 and the direction (counterclockwise) of the current flowing through the inner coil 920 are opposite to each other.
  • the vertical directions in the space between the magnetic field by the outer coil 910 and the magnetic field by the inner coil 920 are the same and are not canceled, and the outer coil 910 and the inner coil 920 are not offset. Wireless power transfer can be performed smoothly in the inter-region.
  • the outer coil 910 and the inner coil 920 may be in the form of one closed loop, and one closed loop may be in the form of a series connection in which the same current flows.
  • the loop shape of the outer coil 910 may be referred to as a "first loop shape,” and the loop shape of the inner coil 920 may be referred to as a "second loop shape.”
  • the first loop shape and the second loop shape mean a shape having a loop shape as a whole.
  • the first loop shape and the second loop shape may not necessarily be closed loops, but may include shapes in which a part is open.
  • the connecting portion 940 can be connected along the outer coil 910 and the inner coil 920 by a series connection, the connecting portion 940 is structurally the first end of the outer coil 910 And a power switching unit, a second end of the outer coil may be connected to the first end of the inner coil 920, and a second end of the inner coil 920 may be connected to the power switching unit.
  • the outer coil 910 and the inner coil 920 may be connected in the form of parallel connection in addition to the connection portion 940 in the form of a series connection.
  • connection portion 1030 connecting the outer coil 1010 and the inner coil 1020.
  • the connection part 1030 may have a parallel connection type such that voltages applied to the outer coil 1010 and the inner coil 1020 are the same. That is, in FIG. 9 and FIG. 10, the difference between the connecting portions 1030 is merely a design difference for the directions of the currents flowing through the outer coil 1010 and the inner coil 1020 to be opposite directions, respectively.
  • connection portion 1030 may connect the first end and the second end of the outer coil 1010 and the power conversion unit, the first end of the inner coil 1020 and the outer coil 1010 The first end may be connected, and the second end of the inner coil may be connected to the power conversion unit.
  • connection structure of the connection part 940 as described above, the current flowing in the outer coil 1010 flows from the first end of the outer coil 1010 to the second end of the outer coil 1010, the inner coil 1020 The current flowing in flows from the first end of the inner coil 1020 to the second end of the inner coil 1020.
  • connection portion 1030 When the connection portion 1030 is in the form of a parallel connection, the magnitude of the current flowing through each of the outer coil 1010 and the inner coil 1020 may be different, and the area and intensity of the magnetic field generated in each may also be different.
  • the magnitude of the current flowing through the inner coil 1020 may be greater than that of the outer coil 1010, and the gap between the outer coil 1010 and the inner coil 1020 may be adjusted in consideration of this.
  • FIG. 11 is a diagram for describing an arrangement interval when a wireless power transmission coil pair according to an electromagnetic resonance method is wound a plurality of times.
  • the outer coil 1110 and the inner coil 1120 may form a pair of coil pairs, and the interval between the outer coil 1110 and the inner coil 1120 is referred to as a first interval 1130.
  • the interval between each coil pair is referred to as a second interval 1140.
  • the arrow shown in FIG. 11 indicates the direction of the current, and the direction of the current flowing through the coils is opposite to the direction of the current flowing in the coils adjacent to each coil.
  • the first interval between the outer coil 1110 and the inner coil 1120 may be determined by the magnitude of the current flowing in the coil. have.
  • the reference interval according to the reference current may be determined experimentally, and the first interval may be determined to be wider than the reference interval as the maximum magnitude of the current applied to the coil increases.
  • a pair of coil pairs including the outer coil 1110 and the inner coil 1120 may be wound N times, and when the N + 1 turns, the second interval between each coil pair also flows through the coil. It can be determined according to the maximum size of.
  • the second interval may experimentally determine a reference interval according to the reference current at which the interference of the magnetic field is the minimum value, and the second interval may be determined to be wider than the reference interval as the maximum magnitude of the current applied to the coil increases.
  • the method according to the embodiment described above may be stored in a computer-readable recording medium that is produced as a program for execution on a computer, and examples of the computer-readable recording medium include ROM, RAM, CD-ROM, magnetic tape , Floppy disks, optical data storage, and the like, and also include those implemented in the form of carrier waves (eg, transmission over the Internet).
  • the computer readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments for implementing the above-described method may be easily inferred by programmers in the art to which the embodiments belong.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명의 일 실시예에 따른 전자기 공진 방식에 의한 무선 전력 송신기는, 전원공급부로부터 수신된 전압을 특정 전압으로 변환시킬 수 있는 컨버터(convertor)를 포함하는 전력변환부; 전력변환부로부터의 특정 전압을 전달 받아 특정 공진 주파수를 이용하여 무선으로 전력을 전송하는 무선 전력 송신 코일을 포함하는 전력송신부; 무선 전력 수신기와 데이터 통신이 가능한 통신부; 및 전력변환부, 전력송신부 및 통신부를 제어하는 제어부를 포함하며, 무선 전력 송신 코일은, 제1 루프 형상을 갖는 외측코일부 및 제1 루프 형상 내부에 배치되고 제2 루프 형상을 갖는 내측코일부를 포함하고, 외측코일부를 흐르는 전류의 방향은 외측코일부와 인접한 내측코일부에 흐르는 전류의 방향과 반대방향이며, 외측코일부와 외측코일부에 인접한 내측코일부 사이의 제 1영역에서는, 외측코일부에 의한 자기장의 방향과 내측코일부에 의한 자기장의 방향이 동일일 할 수 있다.

Description

무선 전력 송신 코일 형상 및 코일의 배치 방법
본 발명은 무선 전력 전송에 관한 것으로, 상세하게 무선 전력 송신 코일의 배치 방법에 관한 것이다.
휴대폰, 노트북과 같은 휴대용 단말은 전력을 저장하는 배터리와 배터리의 충전 및 방전을 위한 회로를 포함한다. 이러한 단말의 배터리가 충전되려면, 외부의 충전기로부터 전력을 공급받아야 한다.
일반적으로 배터리에 전력을 충전시키기 위한 충전장치와 배터리 간의 전기적 연결방식의 일 예로, 상용전원을 공급받아 배터리에 대응하는 전압 및 전류로 변환하여 해당 배터리의 단자를 통해 배터리로 전기에너지를 공급하는 단자공급방식을 들 수 있다. 이러한 단자공급방식은 물리적인 케이블(cable) 또는 전선의 사용이 동반된다. 따라서 단자공급방식의 장비들을 많이 취급하는 경우, 많은 케이블들이 상당한 작업 공간을 차지하고 정리가 곤란하며 외관상으로도 좋지 않다. 또한 단자공급방식은 단자들간의 서로 다른 전위차로 인한 순간방전현상, 이물질에 의한 소손 및 화재 발생, 자연방전, 배터리의 수명 및 성능 저하 등의 문제점을 야기할 수 있다.
최근 이와 같은 문제점을 해결하기 위하여, 무선으로 전력을 전송하는 방식을 이용한 충전시스템(이하 "무선 충전 시스템"이라 칭함.)과 제어방법들이 제시되고 있다. 또한, 무선 충전 시스템이 과거에는 일부 휴대용 단말에 기본 장착되지 않고 소비자가 별도 무선 충전 수신기 액세서리를 별도로 구매해야 했기에 무선 충전 시스템에 대한 수요가 낮았으나 무선 충전 사용자가 급격히 늘어날 것으로 예상되며 향후 단말 제조사에서도 무선충전 기능을 기본 탑재할 것으로 예상된다.
일반적으로 무선 충전 시스템은 무선 전력 전송 방식으로 전기에너지를 공급하는 무선 전력 송신기와 무선 전력 송신기로부터 공급되는 전기에너지를 수신하여 배터리를 충전하는 무선 전력 수신기로 구성된다.
이러한 무선 충전 시스템은 적어도 하나의 무선 전력 전송 방식(예를 들어, 전자기 유도 방식, 전자기 공진 방식, RF 무선 전력 전송 방식 등)에 의해 전력을 전송할 수 있다.
일 예로, 무선 전력 전송 방식은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기 유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무선 전력 전송 표준이 사용될 수 있다. 여기서, 전자기 유도 방식의 무선 전력 전송 표준은 WPC(Wireless Power Consortium) 또는/및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
다른 일 예로, 무선 전력 전송 방식은 무선 전력 송신기의 송신 코일에 의해 발생되는 자기장을 특정 공진 주파수에 동조하여 근거리에 위치한 무선 전력 수신기에 전력을 전송하는 전자기 공진(Electromagnetic Resonance) 방식이 이용될 수도 있다. 여기서, 전자기 공진 방식은 무선 충전 기술 표준 기구인 A4WP(Alliance for Wireless Power) 표준 기구에서 정의된 공진 방식의 무선 충전 기술을 포함할 수 있다.
또 다른 일 예로, 무선 전력 전송 방식은 RF 신호에 저전력의 에너지를 실어 원거리에 위치한 무선 전력 수신기로 전력을 전송하는 RF 무선 전력 전송 방식이 이용될 수도 있다.
이러한, 무선 충전 시스템은 상기한 전자기 유도 방식, 전자기 공진 방식, RF 무선 전력 전송 방식 중 적어도 2개 이상의 무선 전력 전송 방식을 지원할 수 있도록 설계될 수도 있다. 다시 말해서, 무선 전력 송신기가 복수의 무선 전력 전송 방식을 통해 무선 전력 수신기에 전력을 전송할 수 있도록 설계될 수 있다.
한편, 무선 전력 전송이 가능한 영역의 넓이는 무선 전력 송신 코일의 개수에 영향을 받을 수 있고, 무선 전력 전송 영역을 넓히기 위해서 무선 전력 송신기에 복수개의 무선 전력 송신 코일을 사용할 수 있다. 복수개의 무선 전력 송신 코일을 포함하는 무선 전력 송신기는 넓은 전력 전송 영역을 이용하여 복수의 휴대 단말기들을 충전할 수 있다.
다만, 복수개의 무선 전력 송신 코일을 이용함으로써 한 개의 무선 전력 송신 코일을 이용할 때보다 넓은 충전 영역을 이용할 수 있지만, 넓은 무선 충전 영역 안에서는 무선 전력 수신기의 위치에 무관하게 균일한 전력 전송이 이루어져야 한다.
따라서, 복수의 무선 전력 송신 코일을 이용하는 경우, 무선 전력 수신기로 균일한 전력이 전송되도록 복수의 무선 전력 송신 코일을 효과적으로 배치하는 방안이 필요하다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 무선 전력 송신 코일 형상 및 코일의 배치 방법을 제공하는 것이다.
본 발명은 무선 전력 송신 코일의 형상에 관한 발명으로, 복수개의 무선 전력 송신 코일을 사용하는 경우 무선 전력 전송이 가능한 영역 안에서 무선 전력 수신기의 위치에 무관하게 균일한 전력을 전송하는 무선 전력 송신 코일 형상 및 코일의 배치 방법을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 전자기 공진 방식에 의한 무선 전력 송신기는, 전원공급부로부터 수신된 전압을 특정 전압으로 변환시킬 수 있는 컨버터(convertor)를 포함하는 전력변환부; 상기 전력변환부로부터의 상기 특정 전압을 전달 받아 특정 공진 주파수를 이용시켜 무선으로 전력을 전송하는 무선 전력 송신 코일을 포함하는 송신공진기; 상기 송신공진기와 상기 전력변환부 사이에서 임피던스(impedance)를 정합하는 매칭회로; 무선 전력 수신기와 데이터 통신이 가능한 통신부; 및 상기 전력변환부, 상기 송신공진기 및 상기 통신부를 제어하는 주제어부; 를 포함하며, 상기 무선 전력 송신 코일은, 전류가 서로 반대 방향으로 흐르며 제1간격만큼 이격된 두 코일을 포함하는 복수의 코일 페어;를 포함하며, 상기 복수의 코일 페어 각각은 제2간격 만큼 이격되어 있고, 상기 제1간격 및 상기 제2간격은 상기 한 쌍의 코일에 흐르는 전류의 크기에 따라 결정될 수 있다.
실시예에 따라, 상기 제1거리 및 상기 제2거리는, 상기 한 쌍의 코일에 흐르는 전류의 최소 크기에 비례하여 넓을 수 있다.
또한, 본 발명의 일 실시예에 따른 전자기 공진 방식에 의한 무선 전력 송신 코일은, 전류가 서로 반대 방향으로 흐르며 제1 거리만큼 이격된 두 코일을 포함하는 복수의 코일 페어(pair); 를 포함하며, 상기 복수의 코일 페어 각각은 제2거리 만큼 이격되어 있고, 상기 제1거리 및 상기 제2거리는 상기 한 쌍의 코일에 흐르는 전류의 크기에 따라 결정될 수 있다.
실시예에 따라, 상기 제1거리 및 상기 제2거리는, 상기 한 쌍의 코일에 흐르는 전류의 최소 크기에 비례하여 넓을 수 있다.
또한, 본 발명의 일 실시예에 따른 전자기 공진 방식에 의한 무선 전력 송신 코일은, 제1방향으로 전류가 흐르도록 감겨 배치되는 외측 코일; 상기 외측 코일보다 안쪽에 위치하며, 상기 제1방향과 반대 방향으로 전류가 흐르도록 감겨 배치되는 내측 코일; 및 상기 외측 코일과 상기 내측 코일을 직렬 또는 병렬로 연결하는 연결부; 를 포함하며, 상기 내측 코일은, 상기 외측 코일의 간격은 상기 외측 코일 및 상기 내측 코일에 흐르는 전류의 크기에 따라 결정될 수 있다.
실시예에 따라, 상기 간격은, 상기 외측 코일 및 상기 내측 코일에 흐르는 전류의 최소 크기에 비례하여 넓을 수 있다.
실시예에 따라, 상기 연결부가 상기 외측 코일과 상기 내측 코일을 직렬로 연결하는 경우, 상기 외측 코일과 상기 내측 코일은 하나 루프일 수 있다.
또한, 본 발명의 일 실시예에 따른 전자기 공진 방식에 의한 무선 전력 송신 코일은, 전류가 반대 방향으로 흐르는 한 쌍의 코일이 N+1번 감겨 배치되어 있고, 상기 한 쌍의 코일을 이루는 각각의 코일은 제1거리를 두고 배치되어 있으며, N+1번째 감겨있는 한 쌍의 코일과 N번째 감겨있는 다른 한 쌍의 코일은 제2거리를 사이에 두고 배치되며, 상기 제1거리 및 상기 제2거리는 상기 한 쌍의 코일에 흐르는 전류의 크기에 따라 결정될 수 있다.
실시예에 따라, 상기 제1거리 및 상기 제2거리는, 상기 한 쌍의 코일에 흐르는 전류의 최소 크기에 비례하여 넓을 수 있다.
또한, 본 발명의 일 실시예에 따른 전자기 공진 방식에 의한 무선 전력 송신 코일은, 제1방향으로 전류가 흐르도록 N번째 감겨 배치되는 제N코일; 상기 제N코일보다 바깥쪽에 위치하며, 상기 제1방향과 반대 방향으로 전류가 흐르도록 감겨 배치되는 제N+1코일; 을 포함하며, 상기 제N코일과 상기 제N+1코일을 직렬 또는 병렬로 연결하는 연결부; 상기 제N코일과 상기 제N+1코일 사이의 간격은 상기 제N코일 및 상기 제N+1코일에 흐르는 전류의 크기에 따라 결정될 수 있다.
실시예에 따라, 상기 제N코일과 상기 제N+1코일 사이의 간격은, 상기 제N코일과 상기 제N+1코일에 흐르는 전류의 최소 크기에 비례하여 넓을 수 있다.
또한, 본 발명의 일 실시예에 따른 전자기 공진 방식에 의한 무선 전력 송신기는, 전원공급부로부터 수신된 전압을 특정 전압으로 변환시킬 수 있는 컨버터(convertor)를 포함하는 전력변환부; 상기 전력변환부로부터의 상기 특정 전압을 전달 받아 특정 공진 주파수를 이용하여 무선으로 전력을 전송하는 무선 전력 송신 코일을 포함하는 전력송신부; 무선 전력 수신기와 데이터 통신이 가능한 통신부; 및 상기 전력변환부, 상기 전력송신부 및 상기 통신부를 제어하는 제어부를 포함하며, 상기 무선 전력 송신 코일은, 제1 루프 형상을 갖는 외측코일부 및 상기 제1 루프 형상 내부에 배치되고 제2 루프 형상을 갖는 내측코일부를 포함하고, 상기 외측코일부를 흐르는 전류의 방향은 상기 외측코일부와 인접한 상기 내측코일부에 흐르는 전류의 방향과 반대방향이며, 상기 외측코일부와 상기 외측코일부에 인접한 상기 내측코일부 사이의 제 1영역에서는, 상기 외측코일부에 의한 자기장의 방향과 상기 내측코일부에 의한 자기장의 방향이 동일할 수 있다.
실시예에 따라, 상기 외측코일부와 상기 외측코일부에 인접한 상기 내측코일부는 제1간격만큼 이격되고, 상기 제1간격은 상기 전력송신부에 흐르는 전류의 크기에 따라 결정될 수 있다.
실시예에 따라, 상기 외측코일부의 제1 단부는 상기 전력전환부와 연결되고, 상기 외측코일부의 제2 단부는 상기 내측코일부의 제1 단부에 연결되며, 상기 내측코일부의 제2 단부는 상기 전력전환부와 연결될 수 있다.
실시예에 따라, 상기 외측코일부에 흐르는 전류는 상기 외측코일부의 제1 단부에서 상기 외측코일부의 제2 단부로 흐르고, 상기 내측코일부에 흐르는 전류는 상기 내측코일부의 제1 단부에서 상기 내측코일부의 제2 단부로 흐를 수 있다.
실시예에 따라, 상기 외측코일부의 제1 단부와 상기 내측코일부의 제2 단부는 인접하여 배치될 수 있다.
실시예에 따라, 상기 외측코일부와 상기 내측코일부는 병렬로 연결될 수 있다.
실시예에 따라, 상기 외측코일부의 제1 단부 및 제2 단부는 상기 전력전환부와 연결되고, 상기 내측코일부의 제1 단부는 상기 외측코일부의 제1 단부와 연결되고 상기 내측코일부의 제2 단부는 상기 전력전환부와 연결될 수 있다.
실시예에 따라, 상기 외측코일부에 흐르는 전류는 상기 외측코일부의 제1 단부에서 상기 외측코일부의 제2 단부로 흐르고, 상기 내측코일부에 흐르는 전류는 상기 내측코일부의 제1 단부에서 상기 내측코일부의 제2 단부로 흐를 수 있다.
실시예에 따라, 상기 제1거리 및 상기 제2거리는, 상기 한 쌍의 코일에 흐르는 전류의 최소 크기에 비례하여 넓을 수 있다.
본 발명에 따른 무선 전력 전송 방식 스위칭 방법 및 장치에 대한 효과를 설명하면 다음과 같다.
첫째, 본 발명은 복수개의 무선 전력 송신 코일을 이용하여 한번에 여러 개의 무선 전력 수신기로 전력을 전송할 수 있다.
둘째, 본 발명은 복수개의 무선 전력 송신 코일을 적절하게 배치하여 균일한 영역에서 무선 전력 전송이 이루어지도록 할 수 있다.
셋째, 본 발명은 무선 전력 송신 코일을 적절하게 배치하여 코일 사이의 간격을 고려함으로써 원 재료비를 절약할 수 있다.
넷째, 본 발명은 복수개의 무선 전력 송신 코일 각각에서 발생되는 자기장이 서로 감쇠되지 않도록 배치됨으로써, 무선 전력 전송 시 소모되는 전력을 줄일 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1은 본 발명의 일 실시예에 따른 전자기 공진 방식의 무선 전력 전송 시스템의 구조를 설명하기 위한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 전자기 공진 방식의 무선 전력 전송 시스템의 등가 회로도이다.
도 3은 본 발명의 일 실시예에 따른 전자기 공진 방식의 무선 전력 송신기에서의 상태 천이 절차를 설명하기 위한 상태 천이도이다.
도 4는 본 발명의 일 실시예에 따른 전자기 공진 방식의 무선 전력 수신기의 상태 천이도이다.
도 5는 본 발명의 일 실시예에 따른 VRECT에 따른 전자기 공진 방식의 무선 전력 수신기의 동작 영역을 설명하기 위한 도면이다.
도 6은 본 발명의 일 실시예에 따른 전자기 공진 방식의 무선 충전 절차를 설명하기 위한 흐름도이다.
도 7은 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 무선 전력 송신 코일이 한 개일 경우, 자기장의 영역을 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 무선 전력 송신 코일이 두 개일 경우, 각각에서 발생되는 자기장에 의해 감쇠되는 영역을 설명하기 위한 도면이다.
도 9는 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 복수 개의 무선 전력 송신 코일이 직렬 연결된 경우, 자기장의 영역을 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 복수 개의 무선 전력 송신 코일이 병렬 연결된 경우, 자기장의 영역을 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 무선 전력 송신 코일 페어가 복수 번 감겨 있을 때, 배치 간격을 설명하기 위한 도면이다.
일 실시예에 따른 전자기 공진 방식에 의한 무선 전력 송신기는, 전원공급부로부터 수신된 전압을 특정 전압으로 변환시킬 수 있는 컨버터(convertor)를 포함하는 전력변환부; 상기 전력변환부로부터의 상기 특정 전압을 전달 받아 특정 공진 주파수를 이용시켜 무선으로 전력을 전송하는 무선 전력 송신 코일을 포함하는 송신공진기; 상기 송신공진기와 상기 전력변환부 사이에서 임피던스(impedance)를 정합하는 매칭회로; 무선 전력 수신기와 데이터 통신이 가능한 통신부; 및 상기 전력변환부, 상기 송신공진기 및 상기 통신부를 제어하는 주제어부; 를 포함하며, 상기 무선 전력 송신 코일은, 전류가 서로 반대 방향으로 흐르며 제1간격만큼 이격된 두 코일을 포함하는 복수의 코일 페어;를 포함하며, 상기 복수의 코일 페어 각각은 제2간격 만큼 이격되어 있고, 상기 제1간격 및 상기 제2간격은 상기 한 쌍의 코일에 흐르는 전류의 크기에 따라 결정될 수 있다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 본 발명의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다. 이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 저장매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를 구현할 수 있다. 컴퓨터 프로그램의 저장매체로서는 자기 기록매체, 광 기록매체, 캐리어 웨이브 매체 등이 포함될 수 있다.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)", "전(앞) 또는 후(뒤)"에 형성되는 것으로 기재되는 경우에 있어, "상(위) 또는 하(아래)" 및"전(앞) 또는 후(뒤)"는 두 개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
그리고 본 발명을 설명함에 있어서 관련된 공지기술에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
실시예의 설명에 있어서, 무선 전력 충전 시스템상에서 무선 전력을 송신하는 장치는 설명의 편의를 위해 무선 전력 송신기, 무선 전력 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 전력 전송 장치, 무선 전력 전송기, 무선충전장치 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 전력 수신 장치, 무선 전력 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 단말 등이 혼용되어 사용될 수 있다.
본 발명에 따른 무선충전장치는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 벽걸이 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 전력을 전송할 수도 있다.
일 예로, 무선 전력 송신기는 통상적으로 책상이나 탁자 위 등에서 놓여서 사용될 수 있을 뿐만 아니라, 자동차용으로도 개발되어 적용되어 차량 내에서 사용될 수 있다. 차량에 설치되는 무선 전력 송신기는 간편하고 안정적으로 고정 및 거치할 수 있는 거치대 형태로 제공될 수 있다.
본 발명에 따른 단말은 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌 등의 소형 전자 기기 등에 사용될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 모바일 디바이스 기기(이하, "디바이스"라 칭함.)라면 족하고, 단말 또는 디바이스라는 용어는 혼용하여 사용될 수 있다. 본 발명의 다른 일 실시예에 따른 무선 전력 수신기는 차량, 무인 항공기, 에어 드론 등에도 탑재될 수 있다.
본 발명의 일 실시예에 따른 무선 전력 수신기는 적어도 하나의 무선 전력 전송 방식이 구비될 수 있으며, 2개 이상의 무선 전력 송신기로부터 동시에 무선 전력을 수신할 수도 있다. 여기서, 무선 전력 전송 방식은 상기 전자기 유도 방식, 전자기 공진 방식, RF 무선 전력 전송 방식 중 적어도 하나를 포함할 수 있다.
일반적으로, 무선 전력 시스템을 구성하는 무선 전력 송신기와 무선 전력 수신기는 인밴드 통신 또는 BLE(Bluetooth Low Energy) 통신을 통해 제어 신호 또는 정보를 교환할 수 있다. 여기서, 인밴드 통신, BLE 통신은 펄스 폭 변조(Pulse Width Modulation) 방식, 주파수 변조 방식, 위상 변조 방식, 진폭 변조 방식, 진폭 및 위상 변조 방식 등으로 수행될 수 있다. 일 예로, 무선 전력 수신기는 수신 코일을 통해 유도된 전류를 소정 패턴으로 ON/OFF 스위칭하여 궤환 신호(feedback signal)를 생성함으로써 무선 전력 송신기에 각종 제어 신호 및 정보를 전송할 수 있다. 무선 전력 수신기에 의해 전송되는 정보는 수신 전력 세기 정보를 포함하는 다양한 상태 정보를 포함할 수 있다. 이때, 무선 전력 송신기는 수신 전력 세기 정보에 기반하여 충전 효율 또는 전력 전송 효율을 산출할 수 있다.
본 발명의 또 다른 일 예로, 본 발명에 따른 무선 전력 송신기는 상기한 전자기 유도 방식, 전자기 공진 방식, RF 무선 전력 전송 방식 중 적어도 2개 이상의 무선 전력 전송 방식을 지원할 수 있도록 설계될 수도 있다.
이하, 무선 전력 전송 방식 중에서 전자기 공진 방식에 대해 도 1 내지 도 6에서 설명하고, 전자기 공진 방식에 따른 무선 전력 송신 코일의 배치에 대해 도 7 내지 도 11에서 설명한다.
도 1은 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 구조를 설명하기 위한 블록도이다.
도 1을 참조하면, 무선 전력 전송 시스템은 무선 전력 송신기(100)와 무선 전력 수신기(200)를 포함하여 구성될 수 있다.
상기 도 1에는 무선 전력 송신기(100)가 하나의 무선 전력 수신기(200)에 무선 전력을 전송하는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 무선 전력 송신기(100)는 복수의 무선 전력 수신기(200)에 무선 전력을 전송할 수도 있다. 또 다른 일 실시예에 따른 무선 전력 수신기(200)는 복수의 무선 전력 송신기(100)로부터 동시에 무선 전력을 수신할 수도 있음을 주의해야 한다.
무선 전력 송신기(100)는 특정 전력 전송 주파수를 이용하여 자기장을 발생시켜 무선 전력 수신기(200)에 전력을 송신할 수 있다.
무선 전력 수신기(200)는 무선 전력 송신기(100)에 의해 사용되는 주파수와 동일한 주파수로 동조하여 전력을 수신할 수 있다.
일 예로, 전력 전송을 위한 주파수는 6.78MHz 대역일 수 있으나, 이에 국한되지는 않는다.
즉, 무선 전력 송신기(100)에 의해 전송된 전력은 무선 전력 송신기(100)와 공진을 이루는 무선 전력 수신기(200)에 전달될 수 있다.
하나의 무선 전력 송신기(100)로부터 전력을 수신할 수 있는 무선 전력 수신기(200)의 최대 개수는 무선 전력 송신기(100)의 최대 전력 전송 레벨, 무선 전력 수신기(200)의 최대 전력 수신 레벨, 무선 전력 송신기(100) 및 무선 전력 수신기(200)의 물리적인 구조에 기반하여 결정될 수 있다.
무선 전력 송신기(100)와 무선 전력 수신기(200)는 무선 전력 전송을 위한 주파수 대역-즉, 공진 주파수 대역-과는 상이한 주파수 대역으로 양방향 통신을 수행할 수 있다. 일 예로, 양방향 통신은 반이중 방식의 BLE(Bluetooth Low Energy) 통신 프로토콜이 사용될 수 있다.
무선 전력 송신기(100)와 무선 전력 수신기(200)는 상기 양방향 통신을 통해 서로의 특성 및 상태 정보-즉, 전력 협상 정보-를 교환할 수 있다.
일 예로, 무선 전력 수신기(200)는 무선 전력 송신기(100)로부터 수신되는 전력 레벨을 제어하기 위한 소정 전력 수신 상태 정보를 양방향 통신을 통해 무선 전력 송신기(100)에 전송할 수 있으며, 무선 전력 송신기(100)는 수신된 전력 수신 상태 정보에 기반하여 동적으로 전송 전력 레벨을 제어할 수 있다. 이를 통해, 무선 전력 송신기(100)는 전력 전송 효율을 최적화시킬 수 있을 뿐만 아니라 과전압(Over-Voltage)에 따른 부하 파손을 방지하는 기능, 저전압(Under-Voltage)에 따라 불필요한 전력이 낭비되는 것을 방지하는 기능 등을 제공할 수 있다.
또한, 무선 전력 송신기(100)는 양방향 통신을 통해 무선 전력 수신기(200)에 대한 인증 및 식별하는 기능, 호환되지 않는 장치 또는 충전이 불가능한 물체를 식별하는 기능, 유효한 부하를 식별하는 기능 등을 수행할 수도 있다.
이하에서는, 보다 구체적으로 공진 방식의 무선 전력 전송 과정을 상기 도 1을 참조하여 설명하기로 한다.
무선 전력 송신기(100)는 전원공급부(power supplier, 110), 전력변환부(Power Conversion Unit, 120), 매칭회로(Matching Circuit, 130), 송신공진기(Transmission Resonator, 140), 주제어부(Main Controller, 150) 및 통신부(Communication Unit, 160)를 포함하여 구성될 수 있다. 통신부는 데이터 송신기(Data Transmitter)와 데이터 수신기(Data receiver)를 포함할 수 있다.
전원공급부(110)는 주제어부(150)의 제어에 따라 전력변환부(120)에 특정 공급 전압을 공급할 수 있다. 이때, 공급 전압은 DC 전압 또는 AC 전압일 수 있다.
전력변환부(120)는 주제어부(150)의 제어에 따라 전원공급부(110)로부터 수신된 전압을 특정 전압으로 변환시킬 수 있다. 이를 위해, 전력변환부(120)는 DC/DC 변환기(DC/DC convertor), AC/DC 변환기(AC/DC convertor), 전력 증폭기(Power amplifier) 중 적어도 하나를 포함하여 구성될 수 있다.
매칭회로(130)는 전력 전송 효율을 극대화시키기 위해 전력변환부(120)와 송신공진기(140) 사이의 임피던스를 정합하는 회로이다.
송신공진기(140, 또는 전력송신부)는 매칭회로(130)로부터 인가된 전압에 따라 특정 공진 주파수를 이용하여 무선으로 전력을 전송할 수 있다. 송신공진기(140)는 무선 전력 송신 코일을 포함할 수 있고, 무선 전력 송신 코일에 흐르는 전류에 의해 발생되는 유도 전압을 특정 공진 주파수를 이용하여 무선으로 전력을 전송할 수 있다.
무선 전력 수신기(200)는 수신공진기(Reception Resonator, 210), 정류기(Rectifier, 220), DC-DC 변환기(DC-DC Converter, 230), 부하(Load, 240), 주제어부(Main Controller, 250) 및 통신부(Communication Unit, 260)를 포함하여 구성될 수 있다. 통신부는 데이터 송신기(Data Transmitter)와 데이터 수신기(Data receiver)를 포함할 수 있다.
수신공진기(210)는 공진 현상을 통해 송신공진기(140)에 의해 송출된 전력을 수신할 수 있다.
정류기(220)는 수신공진기(210)로부터 인가되는 AC 전압을 DC 전압으로 변환하는 기능을 수행할 수 있다.
DC-DC 변환기(230)는 정류된 DC 전압을 부하(240)에 요구되는 특정 DC 전압으로 변환할 수 있다.
주제어부(250)는 정류기(220) 및 DC-DC 변환기(230)의 동작을 제어하거나 무선 전력 수신기(200)의 특성 및 상태 정보를 생성하고 통신부(260)를 제어하여 무선 전력 송신기(100)에 상기 무선 전력 수신기(200)의 특성 및 상태 정보를 전송할 수 있다. 일 예로, 주제어부(250)는 정류기(220)와 DC-DC 변환기(230)에서의 출력 전압 및 전류의 세기를 모니터링하여 정류기(220) 및 DC-DC 변환기(230)의 동작을 제어할 수 있다.
모니터링된 출력 전압 및 전류의 세기 정보는 통신부(260)를 통해 무선 전력 송신기(100)에 실시간으로 전송될 수 있다.
또한, 주제어부(250)는 정류된 DC 전압을 소정 기준 전압과 비교하여 과전압 상태(Over-Voltage State)인지 저전압 상태(Under-Voltage State)인지를 판단하고, 판단 결과에 따라 시스템 오류 상태가 감지되면, 감지 결과를 통신부(260)를 통해 무선 전력 송신기(100)에 전송할 수도 있다.
또한, 주제어부(250)는 시스템 오류 상태가 감지되면, 부하의 훼손을 방지하기 위해 정류기(220) 및 DC-DC 변환기(230)의 동작을 제어하거나 스위치 또는(및) 제너 다이오드를 포함한 소정 과전류 차단 회로를 이용하여 부하(240)에 인가되는 전력을 제어할 수도 있다.
상기한 도 1에서는 주제어부(150, 250)와 통신부(160, 260)가 서로 다른 모듈로 구성된 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예는 주제어부(150, 250)와 통신부(160, 260)가 하나의 모듈로 구성될 수도 있음을 주의해야 한다.
도 2는 본 발명의 일 실시예에 따른 전자기 공진 방식의 무선 전력 전송 시스템의 등가 회로도이다.
상세하게, 도 2는 후술할 레퍼런스 파라메터들이 측정되는 등가 회로상에서의 인터페이스 지점을 보여준다.
이하에서는, 상기 도 2에 표시된 레퍼런스 파라메터들의 의미를 간단히 설명하기로 한다.
ITX와 ITX _COIL은 각각 무선 전력 송신기의 매칭 회로(또는 매칭 네트워크)(220)에 인가되는 RMS(Root Mean Square) 전류와 무선 전력 송신기의 송신 공진기 코일(225)에 인가되는 RMS 전류를 의미한다.
ZTX _IN과 ZTX _IN_COIL은 각각 무선 전력 송신기의 매칭 회로(220) 전단의 입력 임피던스(Input Impedance)와 매칭 회로(220) 후단 및 송신공진기 코일(225) 전단에서의 입력 임피던스를 의미한다.
L1과 L2는 각각 송신공진기 코일(225)의 인덕턴스 값과 수신공진기 코일(227)의 인덕턴스 값을 의미한다.
ZRX _IN은 무선전력수신기의 매칭회로(230) 후단과 필터/정류기/부하(240) 전단에서의 입력 임피던스를 의미한다.
본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 동작에 사용되는 공진 주파수는 6.78MHz ± 15㎑일 수 있다.
또한, 일 실시예에 따른 무선 전력 전송 시스템은 복수의 무선 전력 수신기에 대한 동시 충전-즉, 멀티 충전-을 제공할 수 있으며, 이 경우, 무선 전력 수신기가 새로 추가되거나 삭제되더라도 남아 있는 무선 전력 수신기의 수신 전력 변화량은 소정 기준치 이상을 초과하지 않도록 제어될 수 있다. 일 예로, 수신 전력 변화량은 ±10%일 수 있으나 이에 국한되지는 않는다.
상기 수신 전력 변화량을 유지하기 위한 조건은 무선 전력 수신기가 충전 영역에 추가 또는 삭제 시 기존 무선 전력 수신기와 중첩되지 않아야 한다.
무선 전력 수신기의 매칭 회로(230)가 정류기에 연결된 경우, 상기 ZTX _IN의 실수부(Real Part)는 정류기의 부하 저항-이하, RRECT이라 명함-과 역의 관계일 수 있다. 즉, RRECT의 증가는 ZTX _IN을 감소시키고, RRECT의 감소는 ZTX _IN을 증가시킬 수 있다.
본 발명에 따른 공진기 정합 효율(Resonator Coupling Efficiency)은 수신공진기 코일에서 부하(240)로 전달되는 전력을 송신공진기 코일(225)에서 공진 주파수 대역에 실어주는 전력으로 나누어 산출되는 최대 전력 수신 비율일 수 있다. 무선 전력 송신기와 무선 전력 수신기 사이의 공진기 정합 효율은 송신공진기의 레퍼런스 포트 임피던스(ZTX_IN)과 수신공진기의 레퍼런스 포트 임피던스(ZRX _IN)가 완벽하게 매칭되는 경우에 산출될 수 있다.
하기 표 1은 본 발명의 일 실시예에 따른 무선 전력 송신기의 등급 및 무선 전력 수신기의 클래스에 따른 최소 공진기 정합 효율의 예이다.
카테고리 1 카테고리 2 카테고리 3 카테고리 4 카테고리 5 카테고리 6 카테고리 7
등급 1 N/A N/A N/A N/A N/A N/A N/A
등급 2 N/A 74%(-1.3) 74%(-1.3) N/A N/A N/A N/A
등급 3 N/A 74%(-1.3) 74%(-1.3) 76%(-1.2) N/A N/A N/A
등급 4 N/A 50%(-3) 65%(-1.9) 73%(-1.4) 76%(-1.2) N/A N/A
등급 5 N/A 40%(-4) 60%(-2.2) 63%(-2) 73%(-1.4) 76%(-1.2) N/A
등급 6 N/A 30%(-5.2) 50%(-3) 54%(-2.7) 63%(-2) 73%(-1.4) 76%(-1.2)
만약, 복수의 무선 전력 수신기가 사용될 경우, 상기 표 1에 표시된 클래스 및 카테고리에 대응되는 최소 공진기 정합 효율은 증가할 수도 있다.
도 3은 본 발명의 일 실시예에 따른 전자기 공진 방식의 무선 전력 송신기에서의 상태 천이 절차를 설명하기 위한 상태 천이도이다.
도 3을 참조하면, 무선 전력 송신기의 상태는 크게 구성 상태(Configuration State, 310), 전력 절약 상태(Power Save State, 320), 저전력 상태(Low Power State, 330), 전력 전송 상태(Power Transfer State, 340), 로컬 장애 상태(Local Fault State, 350) 및 잠금 장애 상태(Latching Fault State, 360)을 포함하여 구성될 수 있다.
무선 전력 송신기에 전력이 인가되면, 무선 전력 송신기는 구성 상태(310)로 천이할 수 있다. 무선 전력 송신기는 구성 상태(310)에서 소정 리셋 타이머가 만료되거나 초기화 절차가 완료되면, 전력 절약 상태(320)로 천이할 수 있다.
전력 절약 상태(320)에서, 무선 전력 송신기는 비콘 시퀀스를 생성하여 공진 주파수 대역을 통해 전송할 수 있다.
여기서, 무선 전력 송신기는 전력 절약 상태(320)에 진입한 후 소정 시간 이내에 비콘 시퀀스가 개시될 수 있도록 제어할 수 있다. 일 예로, 무선 전력 송신기는 전력 절약 상태(320) 천이 후 50ms 이내에 비콘 시퀀스가 개시될 수 있도록 제어할 수 있으나, 이에 국한되지는 않는다.
전력 절약 상태(320)에서, 무선 전력 송신기는 무선 전력 수신기를 감지하기 위한 제1 비콘 시퀀스(First Beacon Sequece)를 주기적으로 생성하여 전송하고, 수신 공진기의 임피던스 변화-즉, Load Variation-를 감지할 수 있다. 이하, 설명의 편의를 위해 제1 비콘과 제1 비콘 시퀀스를 각각 Short Beacon과 Short Beacon 시퀀스라 명하기로 한다.
특히, Short Beacon 시퀀스는 무선 전력 수신기가 감지되기 전까지 무선 전력 송신기의 대기 전력이 절약될 수 있도록 짧은 구간 동안(tSHORT _BEACON) 일정 시간 간격(tCYCLE)으로 반복 생성되어 전송될 수 있다. 일 예로, tSHORT _BEACON은 30ms이하, tCYCLE은 250ms ±5 ms로 각각 설정될 수 있다. 또한, Short Beacon의 전류 세기는 소정 기준치이상이고, 일정 시간 구간 동안 점증적으로 증가될 수 있다. 일 예로, Short Beacon의 최소 전류 세기는 상기 테이블 2의 카테고리 2 이상의 무선 전력 수신기가 감지될 수 있도록 충분히 크게 설정될 수 있다.
본 발명에 따른 무선 전력 송신기는 Short Beacon에 따른 수신 공진기에서의 리액턴스(reactance) 및 저항(resistance) 변화를 감지하기 위한 소정 센싱 수단이 구비될 수 있다.
또한, 전력 절약 상태(320)에서, 무선 전력 송신기는 무선 전력 수신기의 부팅(Booting) 및 응답에 필요한 충분한 전력을 공급하기 위한 제2 비콘 시퀀스를 주기적으로 생성하여 전송할 수 있다. 이하, 설명의 편의를 위해 제2 비콘과 제2 비콘 시퀀스를 각각 Long Beacon과 Long Beacon 시퀀스라 명하기로 한다.
즉, 무선 전력 수신기는 제2 비콘 시퀀스를 통해 부팅이 완료되면, 대역외 통신 채널을 통해 소정 응답 신호를 브로드캐스팅할 수 있다.
특히, Long Beacon 시퀀스는 무선 전력 수신기의 부팅에 필요한 충분한 전원을 공급하기 위해 Short Beacon에 비해 상대적으로 긴 구간 동안(tLONG_BEACON)동안 일정 시간 간격(tLONG _BEACON_PERIOD)으로 생성되어 전송될 수 있다. 일 예로, tLONG _BEACON은 105 ms+5 ms, tLONG _BEACON_PERIOD 은 850ms로 각각 설정될 수 있으며, Long Beacon의 전류 세기는 Short Beacon의 전류 세기에 비해 상대적으로 강할 수 있다. 또한, Long Beacon은 전송 구간 동안 일정 세기의 전력이 유지될 수 있다.
이 후, 무선 전력 송신기는 수신 공진기의 임피던스 변화가 감지된 후, 무선 전력 송신기는 Long Beacon 전송 구간 동안 소정 응답 시그널의 수신을 대기할 수 있다. 이하, 설명의 편의를 위해 상기 응답 시그널을 광고 시그널(Advertisement Signal)이라 명하기로 한다. 여기서, 무선 전력 수신기는 공진 주파수 대역과는 상이한 대역외 통신 주파수 대역을 통해 광고 시그널을 브로드캐스팅할 수 있다.
일 예로, 광고 시그널은 해당 대역외 통신 표준에 정의된 메시지를 식별하기 위한 메시지 식별 정보, 무선 전력 수신기가 적법한 또는 해당 무선 전력 송신기에 호환 가능한 수신기인지를 식별하기 위한 고유한 서비스 또는 무선 전력 수신기 식별 정보, 무선 전력 수신기의 출력 전력 정보, 부하에 인가되는 정격 전압/전류 정보, 무선 전력 수신기의 안테나 이득 정보, 무선 전력 수신기의 카테고리를 식별하기 위한 정보, 무선 전력 수신기 인증 정보, 과전압 보호 기능의 탑재 여부에 관한 정보, 무선 전력 수신기에 탑재된 소프트웨어 버전 정보 중 적어도 하나 또는 어느 하나를 포함할 수 있다.
무선 전력 송신기는 광고 시그널이 수신되면, 전력 절약 상태(320)에서 저전력 상태(330)로 천이한 후, 무선 전력 수신기와의 대역외 통신 링크를 설정할 수 있다. 연이어, 무선 전력 송신기는 설정된 대역외 통신 링크를 통해 무선 전력 수신기에 대한 등록 절차를 수행할 수 있다. 일 예로, 대역외 통신이 블루투스 저전력 통신인 경우, 무선 전력 송신기는 무선 전력 수신기와 블루투스 페어링을 수행하고, 페어링된 블루투스 링크를 통해 서로의 상태 정보, 특성 정보 및 제어 정보 중 적어도 하나를 교환할 수 있다.
무선 전력 송신기가 저전력 상태(330)에서 대역외 통신을 통해 충전을 개시하기 위한 소정 제어 신호-즉, 무선 전력 수신기가 부하에 전력을 전달하도록 요청하는 소정 소정 제어 신호-를 무선 전력 수신기에 전송하면, 무선 전력 송신기의 상태는 저전력 상태(330)에서 전력 전송 상태(340)로 천이될 수 있다.
만약, 저전력 상태(330)에서 대역외 통신 링크 설정 절차 또는 등록 절차가 정상적으로 완료되지 않은 경우, 무선 전력 송신기의 상태는 저전력 상태(330)에서 전력 절약 상태(320)에 천이될 수 있다.
무선 전력 송신기는 각 무선 전력 수신기와의 접속을 위한 별도의 분리된 링크 만료 타이머(Link Expiration Timer)가 구동될 수 있으며, 무선 전력 수신기는 소정 시간 주기로 무선 전력 송신기에 자신이 존재함을 알리는 소정 메시지를 링크 만료 타이머가 만료되기 이전에 전송해야 한다. 링크 만료 타이머는 상기 메시지가 수신될 때마다 리셋되며, 링크 만료 타이머가 만료되지 않으면 무선 전력 수신기와 무선 전력 수신기 사이에 설정된 대역외 통신 링크는 유지될 수 있다.
만약, 저전력 상태(330) 또는 전력 전송 상태(340)에서, 무선 전력 송신기와 적어도 하나의 무선 전력 수신기 사이에 설정된 대역외 통신 링크에 대응되는 모든 링크 만료 타이머가 만료된 경우, 무선 전력 송신기의 상태는 전력 절약 상태(320)로 천이될 수 있다.
또한, 저전력 상태(330)의 무선 전력 송신기는 무선 전력 수신기로부터 유효한 광고 시그널이 수신되면 소정 등록 타이머를 구동시킬 수 있다. 이때, 등록 타이머가 만료되면, 저전력 상태(330)의 무선 전력 송신기는 전력 절약 상태(320)로 천이할 수 있다. 이때, 무선 전력 송신기는 등록에 실패하였음을 알리는 소정 알림 신호를 무선 전력 송신기에 구비된 알림 표시 수단-예를 들면, LED 램프, 디스플레이 화면, 비퍼(beeper) 등을 포함함-을 통해 출력할 수도 있다.
또한, 전력 전송 상태(340)에서, 무선 전력 송신기는 접속된 모든 무선 전력 수신기의 충전이 완료되면, 저전력 상태(330)로 천이될 수 있다.
특히, 무선 전력 수신기는 구성 상태(310), 로컬 장애 상태(350) 및 잠금 장애 상태(360)를 제외한 나머지 상태에서 새로운 무선 전력 수신기의 등록을 허용할 수 있다.
또한, 무선 전력 송신기는 전력 전송 상태(340)에서 무선 전력 수신기로부터 수신되는 상태 정보에 기반하여 전송 전력을 동적으로 제어할 수 있다.
이때, 무선 전력 수신기로부터 무선 전력 송신기에 전송되는 수신기 상태 정보는 요구 전력 정보, 정류기 후단에서 측정된 전압 및/또는 전류 정보, 충전 상태 정보, 과전류 및/또는 과전압 및/또는 과열 상태를 통보하기 위한 정보, 과전류 또는 과전압에 따라 부하에 전달되는 전력을 차단하거나 감소시키는 수단이 활성화되었는지 여부를 지시하는 정보 중 적어도 하나를 포함할 수 있다. 이때, 수신기 상태 정보는 미리 지정된 주기로 전송되거나 특정 이벤트가 발생될 때마다 전송될 수 있다. 또한, 상기 과전류 또는 과전압에 따라 부하에 전달되는 전력을 차단하거나 감소시키는 수단은 ON/OFF 스위치, 제너다이오드 중 적어도 하나를 이용하여 제공될 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 수신기로부터 무선 전력 송신기에 전송되는 수신기 상태 정보는 무선 전력 수신기에 유선으로 외부 전원이 연결되었음을 알리는 정보, 대역외 통신 방식이 변경되었음을 알리는 정보-일 예로, NFC(Near Field Communication)에서 BLE(Bluetooth Low Energy) 통신으로 변경될 수 있음- 중 적어도 하나를 더 포함할 수도 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 송신기는 자신의 현재 가용한 전력, 무선 전력 수신기 별 우선 순위, 접속된 무선 전력 수신기의 개수 중 적어도 하나에 기반하여 무선 전력 수신기 별 수신해야 할 전력 세기를 적응적으로 결정할 수도 있다. 여기서, 무선 전력 수신기 별 전력 세기는 해당 무선 전력 수신기의 정류기에서 처리 가능한 최대 전력 대비 얼마의 비율로 전력을 수신해야 하는지로 결정될 수 있다.
이 후, 무선 전력 송신기는 결정된 전력 세기에 관한 정보가 포함된 소정 전력 제어 명령을 해당 무선 전력 수신기에 전송할 수 있다. 이때, 무선 전력 수신기는 무선 전력 송신기에 의해 결정된 전력 세기로 전력 제어가 가능한지 여부를 판단하고, 판단 결과를 소정 전력 제어 응답 메시지를 통해 무선 전력 송신기에 전송할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 수신기는 무선 전력 송신기의 전력 제어 명령에 따라 무선 전력 제어가 가능한지 여부를 지시하는 소정 수신기 상태 정보를 상기 전력 제어 명령을 수신하기 이전에 전송할 수도 있다.
전력 전송 상태(340)는 접속된 무선 전력 수신기의 전력 수신 상태에 따라 제1 상태(341), 제2 상태(342) 및 제3 상태(343) 중 어느 하나의 상태일 수 있다.
일 예로, 제1 상태(341)는 무선 전력 송신기에 접속된 모든 무선 전력 수신기의 전력 수신 상태가 정상 전압인 상태임을 의미할 수 있다.
제2 상태(342)는 무선 전력 송신기에 접속된 적어도 하나의 무선 전력 수신기의 전력 수신 상태가 저전압 상태이고 고전압 상태인 무선 전력 수신기가 존재하지 않음을 의미할 수 있다.
제3 상태(343)는 무선 전력 송신기에 접속된 적어도 하나의 무선 전력 수신기의 전력 수신 상태가 고전압 상태임을 의미할 수 있다.
무선 전력 송신기는 전력 절약 상태(320) 또는 저전력 상태(330) 또는 전력 전송 상태(340)에서 시스템 오류가 감지되면, 잠금 장애 상태(360)로 천이될 수 있다
잠금 장애 상태(360)의 무선 전력 송신기는 접속된 모든 무선 전력 수신기가 충전 영역에서 제거된 것으로 판단되면, 구성 상태(310) 또는 전력 절약 상태(320)로 천이할 수 있다.
또한, 잠금 장애 상태(360)에서, 무선 전력 송신기는 로컬 장애가 감지되면, 로컬 장애 상태(350)로 천이할 수 있다. 여기서, 로컬 장애 상태(350)인 무선 전력 송신기는 로컬 장애가 해제되면, 다시 잠금 장애 상태(360)로 천이될 수 있다.
반면, 구성 상태(310), 전력 절약 상태(320), 저전력 상태(330), 전력 전송 상태(340) 중 어느 하나의 상태에서 로컬 장애 상태(350)로 천이된 경우, 무선 전력 송신기는 로컬 장애가 해제되면, 구성 상태(310)로 천이될 수 있다.
무선 전력 송신기는 로컬 장애 상태(350)로 천이되면, 무선 전력 송신기에 공급되는 전원을 차단할 수도 있다. 일 예로, 무선 전력 송신기는 과전압, 과전류, 과열 등의 장애가 감지되면 로컬 장애 상태(350)로 천이될 수 있으나 이에 국한되지는 않는다.
일 예로, 무선 전력 송신기는 과전류, 과전압, 과열 등이 감지되면, 무선 전력 수신기에 의해 수신되는 전력의 세기를 감소시키기 위한 소정 전력 제어 명령을 접속된 적어도 하나의 무선 전력 수신기에 전송할 수도 있다.
다른 일 예로, 무선 전력 송신기는 과전류, 과전압, 과열 등이 감지되면, 무선 전력 수신기의 충전을 중단시키기 위한 소정 제어 명령을 접속된 적어도 하나의 무선 전력 수신기에 전송할 수도 있다.
상기와 같은 전력 제어 절차를 통해, 무선 전력 송신기는 과전압, 과전류, 과열 등에 따른 기기 파손을 미연에 방지할 수 있다.
무선 전력 송신기는 송신 공진기의 출력 전류의 세기가 기준치 이상인 경우, 잠금 장애 상태(360)로 천이할 수 있다. 이때, 잠금 장애 상태(360)로 천이된 무선 전력 송신기는 송신 공진기의 출력 전류의 세기를 미리 지정된 시간 동안 기준치 이하가 되도록 시도할 수 있다. 여기서, 상기 시도는 미리 지정된 회수 동안 반복 수행될 수 있다. 만약, 반복 수행에도 불구하고, 잠금 장애 상태(360)가 해제되지 않는 경우, 무선 전력 송신기는 소정 알림 수단을 이용하여 사용자에게 잠금 장애 상태(360)가 해제되지 않음을 지시하는 소정 알림 신호를 송출할 수 있다. 이때, 무선 전력 송신기의 충전 영역에 위치한 모든 무선 전력 수신기가 사용자에 의해 충전 영역에서 제거되면, 잠금 장애 상태(360)가 해제될 수 있다.
반면, 송신 공진기의 출력 전류의 세기가 미리 지정된 시간 이내에 기준치 이하로 떨어지거나 상기 미리 지정된 반복 수행 동안 송신 공진기의 출력 전류의 세기가 기준치 이하로 떨어지는 경우, 잠금 장애 상태(360)는 자동으로 해제될 수 있으며, 이때, 무선 전력 송신기의 상태는 잠금 장애 상태(360)에서 전력 절약 상태(320)로 자동 천이되어 무선 전력 수신기에 대한 감지 및 식별 절차를 다시 수행할 수 있다.
전력 전송 상태(340)의 무선 전력 송신기는 연속된 전력을 송출하고, 무선 전력 수신기의 상태 정보 및 미리 정의된 최적 전압 영역(Optimal Voltage Region) 설정 파라메터에 기반하여 적응적으로 송출 전력을 제어할 수 있다.
일 예로, 최적 전압 영역(Optimal Voltage Region) 설정 파라메터는 저전압 영역을 식별하기 위한 파라메터, 최적 전압 영역을 식별하기 위한 파라메터, 고전압 영역을 식별하기 위한 파라메터, 과전압 영역을 식별하기 위한 파라메터 중 적어도 하나를 포함할 수 있다.
무선 전력 송신기는 무선 전력 수신기의 전력 수신 상태가 저전압 영역에 있으면, 송출 전력을 증가시키고, 고전압 영역에 있으면, 송출 전력을 감소시킬 수 있다.
또한, 무선 전력 송신기는 전력 전송 효율이 최대화되도록 송출 전력을 제어할 수도 있다.
또한, 무선 전력 송신기는 무선 전력 수신기에 의해 요구된 전력량의 편차가 기준치 이하가 되도록 송출 전력을 제어할 수도 있다.
또한, 무선 전력 송신기는 무선 전력 수신기의 정류기 출력 전압이 소정 과전압 영역에 도달한 경우-즉, Over Voltage가 감지된 경우-, 전력 전송을 중단할 수도 있다.
도 4는 본 발명의 일 실시예에 따른 전자기 공진 방식의 무선 전력 수신기의 상태 천이도이다.
도 4을 참조하면, 무선 전력 수신기의 상태는 크게 비활성화 상태(Disable State, 410), 부트 상태(Boot State, 420), 활성화 상태(Enable State, 430)(또는, On state) 및 시스템 오류 상태(System Error State, 440)을 포함하여 구성될 수 있다.
이때, 무선 전력 수신기의 상태는 무선 전력 수신기의 정류기단에서의 출력 전압의 세기-이하, 설명의 편의를 위해 VRECT이라 명함-에 기반하여 결정될 수 있다.
활성화 상태(430)는 VRECT의 값에 따라 최적 전압 상태(Optimum Voltage State, 431), 저전압 상태(Low Voltage State, 432) 및 고전압 상태(High Voltage State, 433)로 구분될 수 있다.
비활성화 상태(410)의 무선 전력 수신기는 측정된 VRECT 값이 미리 정의된 VRECT_BOOT 값보다 크거나 같으면, 부트 상태(420)로 천이할 수 있다.
부트 상태(420)에서, 무선 전력 수신기는 무선 전력 송신기와의 대역외 통신 링크를 설정하고 VRECT 값이 부하단에 요구되는 전력에 도달할 때까지 대기할 수 있다.
부트 상태(420)의 무선 전력 수신기는 VRECT 값이 부하단에 요구되는 전력에 도달된 것이 확인되면, 활성화 상태(430)로 천이하여 충전을 시작할 수 있다.
활성화 상태(430)의 무선 전력 수신기는 충전이 완료되거나 충전이 중단된 것이 확인되면, 부트 상태(420)로 천이될 수 있다.
또한, 활성화 상태(430)의 무선 전력 수신기는 소정 시스템 오류가 감지되면, 시스템 오류 상태(440)로 천이할 수 있다. 여기서, 시스템 오류는 과전압, 과전류 및 과열뿐만 아니라 미리 정의된 다른 시스템 오류 조건이 포함될 수 있다.
또한, 활성화 상태(430)의 무선 전력 수신기는 VRECT 값이 VRECT _BOOT 값 이하로 떨어지면, 비활성화 상태(410)로 천이될 수도 있다.
또한, 부트 상태(420) 또는 시스템 오류 상태(440)의 무선 전력 수신기는 VRECT 값이 VRECT _BOOT 값 이하로 떨어지면, 비활성화 상태(410)로 천이될 수도 있다.
이하에서는, 활성화 상태(430)내에서의 무선 전력 수신기의 상태 천이를 후술할 도 5를 참조하여 상세히 설명하기로 한다.
도 5는 본 발명의 일 실시예에 따른 VRECT에 따른 전자기 공진 방식의 무선 전력 수신기의 동작 영역을 설명하기 위한 도면이다.
도 5을 참조하면, VRECT 값이 소정 VRECT _ BOOT 보다 작으면, 무선 전력 수신기는 비활성화 상태(510)에 유지된다.
이 후, VRECT 값이 VRECT _BOOT 이상으로 증가되면, 무선 전력 수신기는 부트 상태(520)로 천이되며, 미리 지정된 시간 이내에 광고 시그널을 브로드캐스팅할 수 있다. 이 후, 광고 시그널이 무선 전력 송신기에 의해 감지되면, 무선 전력 송신기는 대역외 통신 링크 설정을 위한 소정 연결 요청 시그널을 무선 전력 수신기에 전송할 수 있다.
무선 전력 수신기는 대역외 통신 링크가 정상적으로 설정되고, 등록에 성공한 경우, VRECT 값이 정상적인 충전을 위한 정류기에서의 최소 출력 전압-이하, 설명의 편의를 위해 VRECT _ MIN이라 명함-에 도달할 때까지 대기할 수 있다.
VRECT 값이 VRECT _MIN을 초과하면, 무선 전력 수신기의 상태는 부트 상태(520)에서 활성화 상태(530)로 천이되며 부하에 충전을 시작할 수 있다.
만약, 활성화 상태(530)에서 VRECT 값이 과전압을 판단하기 위한 소정 기준치인 VRECT _MAX을 초과하면, 무선 전력 수신기는 활성화 상태(530)에서 시스템 오류 상태(540)로 천이될 수 있다.
도 5를 참조하면, 활성화 상태(530)는 VRECT의 값에 따라 저전압 상태(Low Voltage State, 532), 최적 전압 상태(Optimum Voltage State, 531) 및 고전압 상태(High Voltage State, 533)로 구분될 수 있다.
저전압 상태(532)는 VRECT _BOOT <= VRECT <= VRECT _ MIN인 상태를 의미하고, 최적 전압 상태(531)은 VRECT _MIN < VRECT <=VRECT _ HIGH인 상태를 의미하고, 고전압 상태(533)는 VRECT_HIGH < VRECT <=VRECT _ MAX인 상태를 의미할 수 있다.
특히, 고전압 상태(533)로 천이된 무선 전력 수신기는 부하에 공급되는 전력을 차단하는 동작을 미리 지정된 시간-이하 설명의 편의를 위해 고전압 상태 유지 시간이라 명함- 동안 유보시킬 수도 있다. 이때, 고전압 상태 유지 시간은 고전압 상태(533)에서 무선 전력 수신기 및 부하에 피해가 발생되지 않도록 미리 결정될 수 있다.
무선 전력 수신기는 시스템 오류 상태(540)로 천이되면, 과전압 발생을 지시하는 소정 메시지를 미리 지정된 시간 이내에 대역외 통신 링크를 통해 무선 전력 송신기에 전송할 수 있다.
또한, 무선 전력 수신기는 시스템 오류 상태(540)에서 과전압에 따른 부하의 피해를 방지하기 위해 구비된 과전압 차단 수단을 이용하여 부하에 인가되는 전압을 제어할 수도 있다. 여기서, 과전압 차단 수단으로 ON/OFF 스위치 또는/및 제너다이오드 등이 사용될 수 있다.
상기 실시예에서는 무선 전력 수신기에 과전압이 발생되어 시스템 오류 상태(540)로 천이된 경우, 무선 전력 수신기에서의 시스템 오류 대응 방법 및 수단을 설명하고 있으나 이는 하나의 실시예에 불과하며, 본 발명의 다른 실시예는 무선 전력 수신기에 과열, 과전류 등에 의해서도 시스템 오류 상태로 천이될 수도 있다.
일 예로, 과열에 따라 시스템 오류 상태로 천이된 경우, 무선 전력 수신기는 과열 발생을 알리는 소정 메시지를 무선 전력 송신기에 전송할 수 있다. 이때, 무선 전력 수신기는 구비된 냉각팬 등을 구동하여 내부 발생된 열을 감소시킬 수도 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 수신기는 복수의 무선 전력 송신기와 연동하여 무선 전력을 수신할 수도 있다. 이 경우, 무선 전력 수신기는 실제 무선 전력을 수신하기로 결정된 무선 전력 송신기와 실제 대역외 통신 링크가 설정된 무선 전력 송신기가 서로 상이한 것으로 판단되면, 시스템 오류 상태(540)로 천이할 수도 있다.
이하에서는 본 발명에 따른 무선 전력 송신기와 무선 전력 수신기 사이의 시그널링 절차를 후술할 도면을 참조하여 상세히 설명하기로 한다.
도 6은 본 발명의 일 실시예에 따른 전자기 공진 방식의 무선 충전 절차를 설명하기 위한 흐름도이다.
도 6을 참조하면, 무선 전력 송신기는 전원 인가에 따라 무선 전력 송신기 구성, 즉, 부팅이 완료되면, 비콘 시퀀스를 생성하여 송신 공진기를 통해 전송할 수 있다(S601).
무선 전력 수신기는 비콘 시퀀스가 감지되면 자신의 식별 정보 및 특성 정보가 포함된 광고 시그널을 브로드캐스팅할 수 있다(S603). 이때, 광고 시그널은 후술할 연결 요청 신호가 무선 전력 송신기로부터 수신되기 이전까지 소정 주기로 반복 전송될 수 있음을 주의해야 한다.
무선 전력 송신기는 광고 시그널이 수신되면, 대역외 통신 링크를 설정하기 위한 소정 연결 요청 신호를 무선 전력 수신기에 전송할 수 있다(S605).
무선 전력 수신기는 연결 요청 신호가 수신되면, 대역외 통신 링크를 설정하고, 설정된 대역외 통신 링크를 통해 자신의 정적 상태 정보를 전송할 수 있다(S607).
여기서, 무선 전력 수신기의 정적 상태 정보는 카테고리 정보, 하드웨어 및 소프트웨어 버전 정보, 최대 정류기 출력 전력 정보, 전력 제어를 위한 초기 기준 파라메터 정보, 요구 전압 또는 전력에 관한 정보, 전력 조절 기능 탑재 여부를 식별하기 위한 정보, 지원 가능한 대역외 통신 방식에 관한 정보, 지원 가능한 전력 제어 알고리즘에 관한 정보, 무선전력수신기에 초기 설정된 선호 정류기단 전압값 정보 중 적어도 하나를 포함할 수 있다.
무선 전력 송신기는 무선 전력 수신기의 정적 상태 정보가 수신되면, 무선 전력 송신기의 정적 상태 정보를 대역외 통신 링크를 통해 무선 전력 수신기에 전송할 수 있다(S609).
여기서, 무선 전력 송신기의 정적 상태 정보는 송신기 전력 정보, 클래스 정보, 하드웨어 및 소프트웨어 버전 정보, 지원 가능한 무선 전력 수신기의 최대 개수에 관한 정보 및/또는 현재 접속된 무선 전력 수신기의 개수에 관한 정보 중 적어도 하나를 포함하여 구성될 수 있다.
이 후, 무선 전력 수신기는 자신의 실시간 전력 수신 상태 및 충전 상태를 모니터링하며, 주기적 또는 특정 이벤트 발생 시 동적 상태 정보를 무선 전력 송신기에 전송할 수 있다(S611).
여기서, 무선 전력 수신기의 동적 상태 정보는 정류기 출력 전압 및 전류에 관한 정보, 부하에 인가되는 전압 및 전류에 관한 정보, 무선 전력 수신기의 내부 측정 온도에 관한 정보, 전력 제어를 위한 기준 파라메터 변경 정보(정류 전압 최소 값, 정류 전압 최대 값, 초기 설정된 선호 정류기단 전압 변경 값), 충전 상태 정보, 시스템 오류 정보, 경보 정보 중 적어도 하나를 포함하여 구성될 수 있다. 무선 전력 송신기는 상기 전력 제어를 위한 기준 파라메터 변경 정보 수신시 기존 정적 상태 정보에 포함된 설정 값을 변경하여 전력 조절을 수행할 수 있다.
또한, 무선 전력 송신기는 무선 전력 수신기를 충전하기 위한 충분한 전력이 준비되면, 대역외 통신 링크를 통해 소정 제어 명령을 송출하여 무선 전력 수신기가 충전을 개시하도록 제어할 수 있다(S613).
이 후, 무선 전력 송신기는 무선 전력 수신기로부터 동적 상태 정보를 수신하여 송출 전력을 동적으로 제어할 수 있다(S615).
또한, 무선 전력 수신기는 내부 시스템 오류가 감지되거나 충전이 완료된 경우, 동적 상태 정보에 해당 시스템 오류를 식별하기 위한 데이터 및/또는 충전이 완료되었음을 지시하는 데이터를 포함하여 무선 전력 송신기에 전송할 수도 있다(S617). 여기서, 시스템 오류는 과전류, 과전압, 과열 등을 포함할 수 있다.
또한, 본 발명의 다른 일 실시예에 따른 무선 전력 송신기는 현재 가용한 전력이 접속된 모든 무선 전력 수신기의 요구 전력을 충족하지 못하는 경우, 각 무선 전력 수신기에 전송할 전력을 재분배하고 이를 소정 제어 명령을 통해 해당 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 무선 충전 중 새로운 무선 전력 수신기가 등록된 경우, 현재 가용한 전력에 기반하여 접속된 무선 전력 수신기 별 수신할 전력을 재분배하고, 이를 소정 제어 명령을 통해 해당 무선 전력 수신기에 전송할 수도 있다
또한, 무선 전력 송신기는 무선 충전 중 기존 접속된 무선 전력 수신기의 충전이 완료되거나 대역외 통신 링크가 해제-예를 들면, 무선 전력 수신기가 충전 영역에서 제거된 경우를 포함함-되는 경우, 남아있는 무선 전력 수신기 별 수신할 전력을 재분배하고 이를 소정 제어 명령을 통해 해당 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 소정 제어 절차를 통해 무선 전력 수신기가 전력 조절 기능이 탑재되었는지 여부를 확인할 수도 있다. 이 경우, 무선 전력 송신기는 전력 재분배 상황이 발생된 경우, 전력 조절 기능이 탑재된 무선 전력 수신기에 대해서만 전력 재분배를 수행할 수도 있다.
일 예로, 전력 재분배 상황은 연결되지 않은 무선 전력 수신기로부터 유효한 광고 시그널을 수신하여 새로운 무선 전력 수신기가 추가되거나 연결된 무선 전력 수신기의 현재 상태 등을 지시하는 동적 파라메터를 수신되거나, 기 연결된 무선 전력 수신기가 더 이상 존재하지 않음이 확인되거나, 기 연결된 무선 전력 수신기의 충전이 완료되거나, 기 연결된 무선 전력 수신기의 시스템 오류 상태를 지시하는 알람(Alert) 메시지가 수신되는 등의 이벤트가 발생된 경우 발생될 수 있다.
여기서, 시스템 오류 상태는 과전압 상태, 과전류 상태, 과열 상태, 네트워크 연결 상태 등을 포함할 수 있다.
일 예로, 무선 전력 송신기는 소정 제어 명령을 통해 전력 재분배 관련 정보를 무선 전력 수신기에 전송할 수 있다.
여기서, 전력 재분배 관련 정보는 전력 제어를 위한 무선 전력 송신기 명령,
일 예로, 무선 전력 송신기는 새로운 무선 전력 수신기가 등록되면, 자신의 가용한 전력량에 기반하여 무선 전력 수신기에 의해 요구된 전력량을 제공 가능한지 여부를 판단할 수 있다. 판단 결과, 요구된 전력량이 가용한 전력량을 초과하는 경우, 무선 전력 송신기는 해당 무선 전력 수신기에 전력 조절 기능이 탑재되었는지 여부를 확인할 수 있다. 확인 결과, 전력 조절 기능이 탑재된 경우, 무선 전력 수신기는 가용한 전력량 내에서 무선 전력 수신기가 수신할 전력의 양을 결정하고, 결정된 결과를 소정 제어 명령을 통해 무선 전력 수신기에 전송할 수도 있다.
물론, 상기 전력 재분배는 무선 전력 송신기 및 무선 전력 수신기가 정상적으로 동작 가능한 범위 및/또는 정상적인 충전이 가능한 범위 내에서 수행될 수 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 수신기는 복수의 대역외 통신 방식을 지원할 수 있다. 만약, 현재 설정된 대역외 통신 링크를 다른 방식으로 변경하고자 하는 경우, 무선 전력 수신기는 대역외 통신 변경을 요청하는 소정 제어 신호를 무선 전력 송신기에 전송할 수 있다. 무선 전력 송신기는 대역외 통신 변경 요청 신호가 수신되면, 현재 설정된 대역외 통신 링크를 해제하고, 무선 전력 수신기에 의해 요청된 대역외 통신 방식으로 새로운 대역외 통신 링크를 설정할 수 있다.
일 예로, 본 발명에 적용 가능한 대역외 통신 방식에는 NFC(Near Field Communication) 통신, RFID(Radio Frequency Identification) 통신, BLE(Bluetooth Low Energy) 통신, WCDMA(Wideband Code Division Multiple Access) 통신, LTE(Long Term Evolution)/LTE-Advance 통신, Wi-Fi 통신 중 적어도 하나를 포함할 수 있다.
한편, 무선 전력 송신기가 포함하는 무선 전력 송신 코일이 한 개일 경우, 상기 무선 전력 송신 코일은 도 7과 같은 형태를 가질 수 있다.
도 7은 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 무선 전력 송신 코일이 한 개일 경우, 자기장의 영역을 설명하기 위한 도면이다.
도 7를 참조하면, 무선 전력 송신 코일은 단일 루프 형태로서 코일 안쪽 영역과 코일 바깥쪽 영역으로 구분될 수 있다. 이때, 직전 코일을 흐르는 전류는 코일을 중심으로 하는 동심원 형태의 자기장을 발생시킬 수 있다. 도 7에 도시된 화살표는 전류의 방향을 나타낸다.
한 개의 루프 형태의 코일이 사용되는 경우, 코일에 의해 발생되는 자기장 영역에 따른 무선 전력 전송 영역은 바깥쪽 영역(710)과 안쪽 영역(720)으로 구분될 수 있다.
무선 전력 전송 영역은 코일의 바깥쪽 영역에서 전류에 의해 발생되는 자기장의 영역에 따라 결정될 수 있고, 자기장의 영역에 따라 무선 전력 송신기를 포함하는 무선 충전 장치의 충전 패드의 크기가 결정될 수 있다.
한편, 무선 전력 송신 코일의 근처에서는 무선 전력 전송이 불가능한 영역(흔히, 데드존(dead-zone))이 생길 수 있다. 무선 전력 수신 코일에 의한 자기장의 방향이 서로 반대방향이 되고 무선 전력 송수신 코일에서 발생되는 각각 자기장이 상쇄되어 송수신 코일간에 충분한 자기장의 결합을 확보하지 못하기 때문에 코일의 바로 인접한 영역에서는 무선 전력 전송이 불가능하다.
도 7에서와 같이 무선 전력 송신 코일이 한 개인 경우 발생할 수 있는 문제점은 중심부에서는 자속량이 매우 적어 무선 전력 전송량이 적을 수 있다는 것이다. 이러한 문제점을 해소하기 위한 방법 및 한계점을 도 8에서 설명한다.
도 8에서는 무선 전력 송신 코일의 중심부 자속량을 증가시킬 수 있는 코일의 배치를 제시하지만, 도 8에서 제시하는 코일의 배치는 다른 문제점을 발생시키며, 이를 해결하기 위해 도 9 및 도 10에서 최적화된 무선 전력 전송 코일의 배치 방법을 설명한다.
도 8은 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 무선 전력 송신 코일이 두 개일 경우, 각각에서 발생되는 자기장에 의해 감쇠되는 영역을 설명하기 위한 도면이다.
도 8을 참조하면, 무선 전력 송신 코일의 중심부의 자속량을 증가시키기 위해 안쪽에 코일을 추가로 배치할 수 있다.
무선 전력 송신 코일을 한 개가 아닌 복수개를 이용할 경우, 자기장이 발생할 수 있는 충전 영역이 넓어져서 충전 패드의 크기가 커질 수 있고 이에 따라 한번에 복수개의 휴대 단말기들을 충전할 수 있는 효과가 있다. 또한, 무선 전력 송신 코일의 근처에서는 무선 전력 전송이 불가능한 영역(흔히, 데드존(dead-zone))이 생기는 것을 복수의 무선 전력 송신 코일을 사용하여 해결할 수 있으며, 코일 중심부에서 자속량을 증가시킬 수 있다.
한편, 도 8과 같은 코일을 배치하는 경우, 코일의 중심부에서 자속량을 증가시킬 수 있으나, 외측 코일(810)과 내측 코일(820) 사이 영역(830)에서 자기장이 서로 상쇄되어 사이 영역에 위치하는 무선 전력 수신기는 전력을 수신하지 못하는 또 다른 문제점이 발생할 수 있다.
코일에 흐르는 전류에 의해 발생되는 자기장의 방향은 앙페르 법칙에 따라 오른손의 엄지손가락이 전류의 방향을 향하게 할 때 나머지 네 손가락이 감아 쥐는 방향이다.
외측 코일(810)에 흐르는 전류의 방향이 화살표 방향(시계방향)일 때, 외측코일(810)에서 발생되는 자기장의 방향은 외측 코일(810)의 바깥쪽 영역에서 수직 방향으로 올라와서 코일을 중심으로 하는 동심원 형태로 감기며 안쪽 영역에서 수직 방향으로 내려간다.
내측 코일(820)에 흐르는 전류의 방향이 외측 코일에 흐르는 전류의 방향(시계방향)과 동일할 때, 내측 코일(820)에서 발생되는 자기장의 방향은 내측 코일(820)의 바깥쪽 영역에서 수직 방향으로 올라오는 방향이다.
이 때, 외측 코일(810)의 안쪽 영역에서 내려가는 방향의 자기장과 내측 코일(820)의 바깥쪽 영역에서 올라오는 자기장이 서로 상쇄되어, 사이 영역(830)에서 자기장이 약해 무선 전력 전송이 불가하는 데드존이 발생할 수 있다.
이러한 문제점은 외측 코일(810) 및 내측 코일(820)에 흐르는 전류의 방향이 같기 때문이며, 따라서 도 9 내지 도 10에서는 외측 코일(810) 및 내측 코일(820)에 흐르는 전류의 방향이 반대 방향이 되도록 코일을 배치하는 방법에 대해 설명한다.
도 9는 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 복수 개의 무선 전력 송신 코일이 직렬 연결된 경우, 자기장의 영역을 설명하기 위한 도면이다.
도 9를 참조하면, 외측 코일(910)에 흐르는 전류의 방향(시계방향)과 내측 코일(920)에 흐르는 전류의 방향(반시계방향)이 서로 반대 방향이다.
이러한 코일의 배치에 따라, 앙페르 법칙에 의해 외측 코일(910)에 흐르는 전류에 의해 발생되는 자기장의 안쪽 영역에서 방향과 내측 코일(920)에 흐르는 전류에 의해 발생되는 자기장의 바깥쪽 영역에서 방향이 수직으로 내려가는 방향으로 동일하다.
따라서, 도 8에서와 같이 외측 코일(910)에 의한 자기장과 내측 코일(920)에 의한 자기장의 사이 공간에서의 수직 방향이 동일하여 상쇄되지 않고, 외측 코일(910)과 내측 코일(920)의 사이 영역에서도 무선 전력 전송이 원활하게 수행될 수 있다.
외측 코일(910) 및 내측 코일(920)은 하나의 닫힌 루프 형태일 수 있고, 하나의 닫힌 루프 형태는 동일한 전류가 흐르도록 연결되는 직렬 연결 형태일 수 있다.
일 실시예로, 외측 코일(910)이 갖는 루프 형태를 "제1 루프 형상"이라 지칭할 수 있고, 내측 코일(920)이 갖는 루프 형태를 "제2 루프 형상" 이라 지칭할 수 있으며, 제1루프 형상 및 제2루프 형상은 전체적으로 루프 형태를 갖는 형상을 의미하는 것으로 반드시 폐루프일 필요는 없고 일부분이 개방되어 있는 형상도 포함할 수 있다.
연결부(940)가 직렬 연결 형태일 경우, 외측 코일(910) 및 내측 코일(920)은 하나의 닫힌 루프 형태일 수 있다. 외측 코일(910) 및 내측 코일(920)이 직렬 연결로 연결된 경우, 외측 코일(910) 및 내측 코일(920)에 흐르는 전류의 크기는 동일할 수 있다.
본 발명의 일 실시예로, 연결부(940)는 외측 코일(910)과 내측 코일(920)을 직렬 연결에 의해 따라 연결할 수 있고, 연결부(940)는 구조적으로 외측 코일(910)의 제1단부와 전력전환부를 연결할 수 있고, 외측 코일의 제2단부를 내측 코일(920)의 제1단부와 연결할 수 있으며, 내측 코일(920)의 제2단부를 전력전환부와 연결할 수 있다.
상기와 같은 연결부(940)의 연결 구조에 의해, 외측 코일(910)에 흐르는 전류는 외측 코일(910)의 제1단부에서 외측 코일(910)의 제2단부로 흐르게 되고, 내측 코일(920)에 흐르는 전류는 내측 코일(920)의 제1단부에서 내측 코일의 제2단부로 흐르게 된다. 이에, 외측코일(910)의 제1 단부와 내측코일(920)의 제2 단부는 인접하여 배치될 수 있다.
다른 실시예로, 직렬 연결 형태의 연결부(940) 이외에 도 10에서는 병렬 연결의 형태로 외측 코일(910) 및 내측 코일(920)이 연결될 수 있다.
도 10은 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 복수 개의 무선 전력 송신 코일이 병렬 연결된 경우, 자기장의 영역을 설명하기 위한 도면이다.
도 10을 참조하면, 도 9와 차이점은 외측 코일(1010) 및 내측 코일(1020)을 연결하는 연결부(1030)의 형태이다. 연결부(1030)이 외측 코일(1010) 및 내측 코일(1020)에 인가되는 전압이 동일하도록 하는 병렬 연결 형태일 수 있다. 즉, 도 9와 도 10에 있어서, 연결부(1030)의 차이는 외측 코일(1010) 및 내측 코일(1020) 각각에 흐르는 전류의 방향이 각각 반대 방향이 되도록 하기 위한 설계상의 차이점에 불과하다.
본 발명의 일 실시예로, 연결부(1030)는 외측코일(1010)의 제1 단부 및 제 2단부와 전력전환부를 연결할 수 있고, 내측 코일(1020)의 제1단부와 외측 코일(1010)의 제1단부를 연결할 수 있으며, 내측 코일의 제2단부를 전력 전환부와 연결할 수 있다.
상기와 같은 연결부(940)의 연결 구조에 의해, 외측 코일(1010)에 흐르는 전류는 외측 코일(1010)의 제1단부에서 외측 코일(1010)의 제2단부로 흐르게 되고, 내측 코일(1020)에 흐르는 전류는 내측 코일(1020)의 제1단부에서 내측 코일(1020)의 제2단부로 흐르게 된다.
연결부(1030)의 형태가 병렬 연결 형태인 경우, 외측 코일(1010) 및 내측 코일(1020) 각각에 흐르는 전류의 크기는 다를 수 있고, 각각에서 발생되는 자기장의 영역 및 세기 역시 다를 수 있다.
일 실시예로, 외측 코일(1010)보다 내측 코일(1020)에 흐르는 전류의 크기가 클 수 있고, 이를 고려하여 외측 코일(1010) 및 내측 코일(1020) 사이의 간격을 조절할 수 있다.
이 때, 외측 코일(1010) 및 내측 코일(1020)의 사이 간격 및 외측 코일(1010) 및 내측 코일(1020)을 한 쌍으로 하는 코일 페어 각각의 간격에 대한 배치에 대해서는 도 11에서 설명한다.
도 11은 본 발명의 일 실시예에 따른 전자기 공진 방식에 따른 무선 전력 송신 코일 페어가 복수 번 감겨 있을 때, 배치 간격을 설명하기 위한 도면이다.
도 11을 참조하면, 외측 코일(1110) 및 내측 코일(1120)이 한 쌍의 코일 페어를 이룰 수 있고, 외측 코일(1110)과 내측 코일(1120) 사이 간격을 제1간격(1130)이라고 하고, 한 쌍의 코일 페어가 복수 회 감겨 있을 때 각각의 코일 페어 사이의 간격을 제2간격(1140)이라고 한다.
도 11에 도시된 화살표는 전류의 방향을 나타내며, 코일에 흐르는 전류의 방향은 각각의 코일에 인접한 코일에 흐르는 전류의 방향과 반대 방향이 되도록 한다.
제1간격 및 제2간격에 대한 배치는 코일 각각에서 발생되는 자기장의 간섭이 발생하지 않도록 즉, 자기장이 상쇄되지 않도록 하기 위함이다.
비오 - 사바르 법칙에 의해 단일 코일에서 흐르는 전류의 세기가 커지면 자기장의 세기가 커지므로, 외측 코일(1110)과 내측 코일(1120) 사이의 제1간격은 코일에 흐르는 전류의 크기에 의해 결정될 수 있다.
일 실시예로, 기준 전류에 따른 기준 간격은 실험적으로 결정될 수 있고, 코일에 인가되는 전류의 최대 크기가 클수록 제1간격이 기준 간격 대비 넓게 결정될 수 있다.
한편, 외측 코일(1110) 및 내측 코일(1120)을 포함하는 한 쌍의 코일 페어가 N회 감겨 있을 수 있고, N+1회 감기는 경우 각각의 코일 페어 사이의 제2간격 역시 코일에 흐르는 전류의 최대 크기에 따라 결정될 수 있다.
제2간격 역시, 실험적으로 자기장의 간섭이 최소값이 되는 기준 전류에 따른 기준 간격을 결정하고, 코일에 인가되는 전류의 최대 크기가 클수록 제2간격이 기준 간격 대비 넓게 결정될 수 있다.
상술한 실시예에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상술한 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
실시예에 따른 무선 전력 송신기는 무선 전력 수신기로 균일한 전력이 전송되도록 효과적으로 배치된 복수의 무선 전력 송신 코일을 포함하는 무선 전력 송신기에 이용될 수 있다.
100 : 무선 전력 송신기
110 : 전원 공급부
120 : 전력변환부
130 : 매칭회로
140 : 송신공진기
150 : 주제어부
160 : 통신부
200 : 무선 전력 수신기
210 : 수신공진기
220 : 정류기
230 : DC-DC 변환기
240 : 부하
250 : 주제어부
260 : 통신부
201 : 매칭 회로
202 : 송신 공진기 코일
203 : 수신 공진기 코일
204 : 매칭회로
211 : L1
212 : L2

Claims (10)

  1. 전자기 공진 방식에 의한 무선 전력 송신기에 있어서,
    전원공급부로부터 수신된 전압을 특정 전압으로 변환시킬 수 있는 컨버터(convertor)를 포함하는 전력변환부;
    상기 전력변환부로부터의 상기 특정 전압을 전달 받아 특정 공진 주파수를 이용하여 무선으로 전력을 전송하는 무선 전력 송신 코일을 포함하는 전력송신부;
    무선 전력 수신기와 데이터 통신이 가능한 통신부; 및
    상기 전력변환부, 상기 전력송신부 및 상기 통신부를 제어하는 제어부를 포함하며,
    상기 무선 전력 송신 코일은,
    제1 루프 형상을 갖는 외측코일부 및 상기 제1 루프 형상 내부에 배치되고 제2 루프 형상을 갖는 내측코일부를 포함하고,
    상기 외측코일부를 흐르는 전류의 방향은 상기 외측코일부와 인접한 상기 내측코일부에 흐르는 전류의 방향과 반대방향이며,
    상기 외측코일부와 상기 외측코일부에 인접한 상기 내측코일부 사이의 제 1영역에서는, 상기 외측코일부에 의한 자기장의 방향과 상기 내측코일부에 의한 자기장의 방향이 동일한,
    무선 전력 송신기.
  2. 제1항에 있어서,
    상기 외측코일부와 상기 외측코일부에 인접한 상기 내측코일부는 제1간격만큼 이격되고,
    상기 제1간격은 상기 전력송신부에 흐르는 전류의 크기에 따라 결정되는,
    무선 전력 송신기.
  3. 제2항에 있어서,
    상기 외측코일부의 제1 단부는 상기 전력전환부와 연결되고, 상기 외측코일부의 제2 단부는 상기 내측코일부의 제1 단부에 연결되며, 상기 내측코일부의 제2 단부는 상기 전력전환부와 연결되는,
    무선 전력 송신기.
  4. 제3항에 있어서,
    상기 외측코일부에 흐르는 전류는 상기 외측코일부의 제1 단부에서 상기 외측코일부의 제2 단부로 흐르고,
    상기 내측코일부에 흐르는 전류는 상기 내측코일부의 제1 단부에서 상기 내측코일부의 제2 단부로 흐르는,
    무선 전력 송신기.
  5. 제4항에 있어서,
    상기 외측코일부의 제1 단부와 상기 내측코일부의 제2 단부는 인접하여 배치되는,
    무선 전력 송신기.
  6. 제2항에 있어서,
    상기 외측코일부와 상기 내측코일부는 병렬로 연결되는,
    무선 전력 송신기.
  7. 제6항에 있어서,
    상기 외측코일부의 제1 단부 및 제2 단부는 상기 전력전환부와 연결되고, 상기 내측코일부의 제1 단부는 상기 외측코일부의 제1 단부와 연결되고 상기 내측코일부의 제2 단부는 상기 전력전환부와 연결되는,
    무선 전력 송신기.
  8. 제7항에 있어서,
    상기 외측코일부에 흐르는 전류는 상기 외측코일부의 제1 단부에서 상기 외측코일부의 제2 단부로 흐르고,
    상기 내측코일부에 흐르는 전류는 상기 내측코일부의 제1 단부에서 상기 내측코일부의 제2 단부로 흐르는,
    무선 전력 송신기.
  9. 제2항에 있어서,
    상기 제1거리 및 상기 제2거리는,
    상기 한 쌍의 코일에 흐르는 전류의 최소 크기에 비례하여 넓은,
    무선 전력 송신기.
  10. 전자기 공진 방식에 의한 무선 전력 송신 코일에 있어서,
    제1방향으로 전류가 흐르도록 N번째 감겨 배치되는 제N코일;
    상기 제N코일보다 바깥쪽에 위치하며, 상기 제1방향과 반대 방향으로 전류가 흐르도록 감겨 배치되는 제N+1코일;
    을 포함하며,
    상기 제N코일과 상기 제N+1코일을 직렬 또는 병렬로 연결하는 연결부;
    상기 제N코일과 상기 제N+1코일 사이의 간격은 상기 제N코일 및 상기 제N+1코일에 흐르는 전류의 크기에 따라 결정되는,
    무선 전력 송신 코일.
PCT/KR2017/005368 2016-06-30 2017-05-24 무선 전력 송신 코일 형상 및 코일의 배치 방법 WO2018004130A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780041099.1A CN109463025A (zh) 2016-06-30 2017-05-24 无线电力传输线圈的形状和线圈配置方法
EP17820407.9A EP3480918B1 (en) 2016-06-30 2017-05-24 Wireless power transmitter and wireless power transmission coil
US16/312,902 US11190040B2 (en) 2016-06-30 2017-05-24 Shape of wireless power transmission coil and coil configuration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0082224 2016-06-30
KR1020160082224A KR102589290B1 (ko) 2016-06-30 2016-06-30 무선 전력 송신 코일 형상 및 코일의 배치 방법

Publications (1)

Publication Number Publication Date
WO2018004130A1 true WO2018004130A1 (ko) 2018-01-04

Family

ID=60787323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005368 WO2018004130A1 (ko) 2016-06-30 2017-05-24 무선 전력 송신 코일 형상 및 코일의 배치 방법

Country Status (5)

Country Link
US (1) US11190040B2 (ko)
EP (1) EP3480918B1 (ko)
KR (1) KR102589290B1 (ko)
CN (1) CN109463025A (ko)
WO (1) WO2018004130A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695956A (zh) * 2018-05-29 2018-10-23 京东方科技集团股份有限公司 无线充电及通信电路和无线电子设备
CN113474858A (zh) * 2019-02-15 2021-10-01 犀能新能源科技私人有限公司 基于电磁感应的无线电力传输

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098639A1 (zh) * 2016-11-29 2018-06-07 华为技术有限公司 一种掉电处理、获取连接关系的方法及设备
EP3346581B1 (en) * 2017-01-04 2023-06-14 LG Electronics Inc. Wireless charger for mobile terminal in vehicle
WO2019208960A1 (ko) * 2018-04-25 2019-10-31 엘지전자 주식회사 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
DE102018212957B3 (de) 2018-08-02 2020-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Übertragung von daten von einem benutzerendgerät zu einem anderen gerät
JP7366655B2 (ja) * 2019-09-10 2023-10-23 東芝テック株式会社 非接触給電システム及び送電装置
WO2021059285A1 (en) * 2019-09-26 2021-04-01 Soreq Nuclear Research Center Wireless enhanced power transfer
CN114730100A (zh) * 2019-11-12 2022-07-08 美国斯耐普公司 眼戴设备的nfc通信和qi无线充电
US20230136343A1 (en) * 2021-11-03 2023-05-04 Nucurrent, Inc. Wireless Power Transmission Antenna with Internal Repeater and Inter-Turn Emissions Mitigation
US11848566B2 (en) 2021-11-03 2023-12-19 Nucurrent, Inc. Dual communications demodulation of a wireless power transmission system having an internal repeater
US11831176B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transfer systems with substantial uniformity over a large area
US11824371B2 (en) * 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and repeater filter
US11955819B2 (en) 2021-11-03 2024-04-09 Nucurrent, Inc. Communications modulation in wireless power receiver with multi-coil receiver antenna
US11862984B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power receiver with repeater for enhanced power harvesting
US11831177B2 (en) * 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmitter with internal repeater and enhanced uniformity
US11831175B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with antenna molecules
US11831173B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with series coil molecule configuration
US11824372B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with puzzled antenna molecules
US11962337B2 (en) 2021-11-03 2024-04-16 Nucurrent, Inc. Communications demodulation in wireless power transmission system having an internal repeater
US12027880B2 (en) 2021-11-03 2024-07-02 Nucurrent, Inc. Wireless power transfer from mouse pad to mouse
US11824373B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with parallel coil molecule configuration
US11862991B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and in-coil tuning
CN113964957B (zh) * 2021-11-18 2023-12-05 重庆前卫无线电能传输研究院有限公司 一种套筒式无线能量信号传输耦合机构及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130241300A1 (en) * 2012-03-14 2013-09-19 Sony Corporation Detecting apparatus, power receiving apparatus, power transmitting apparatus, and contactless power supply system
WO2013141620A1 (ko) * 2012-03-23 2013-09-26 Kim Seon Seob 무접점충전시스템용 수신부의 2차 코일
WO2014109460A1 (ko) * 2013-01-09 2014-07-17 한국전기연구원 다중기기의 자유 위치 무선 충전을 위한 무선전력전송 시스템
KR20150090179A (ko) * 2012-11-27 2015-08-05 퀄컴 인코포레이티드 무선 충전 시스템들 및 방법들
WO2015167099A1 (ko) * 2014-04-30 2015-11-05 한국전기연구원 무선 전력 송신 장치, 무선 전력 수신 장치 및 코일 구조물

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364992B1 (ko) * 2011-01-28 2014-02-20 삼성전자주식회사 무선 전력 전송 장치 및 방법
KR101325549B1 (ko) * 2011-12-22 2013-11-07 (주)그린파워 전류변압기 기반의 전자기장 차폐장치를 구비한 무선 전력전송 장치
KR20150035512A (ko) 2012-03-20 2015-04-06 오클랜드 유니서비시즈 리미티드 무선 전력 전송 시스템들에서의 권선 배열들
KR101497140B1 (ko) 2013-01-09 2015-03-03 한국전기연구원 다중기기의 자유 위치 무선 충전을 위한 무선전력전송 시스템
JP2014225962A (ja) * 2013-05-16 2014-12-04 ソニー株式会社 検知装置、給電システム、および、検知装置の制御方法
JP2014225963A (ja) 2013-05-16 2014-12-04 ソニー株式会社 検知装置、給電システム、および、検知装置の制御方法
US9685792B2 (en) * 2014-03-05 2017-06-20 Intel Corporation Magnetic field distrubtion in wireless power
JP6515349B2 (ja) * 2014-05-19 2019-05-22 パナソニックIpマネジメント株式会社 携帯端末充電装置と、それを搭載した自動車
US10063100B2 (en) * 2015-08-07 2018-08-28 Nucurrent, Inc. Electrical system incorporating a single structure multimode antenna for wireless power transmission using magnetic field coupling
JP6522546B2 (ja) 2016-05-12 2019-05-29 マクセル株式会社 電力コイル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130241300A1 (en) * 2012-03-14 2013-09-19 Sony Corporation Detecting apparatus, power receiving apparatus, power transmitting apparatus, and contactless power supply system
WO2013141620A1 (ko) * 2012-03-23 2013-09-26 Kim Seon Seob 무접점충전시스템용 수신부의 2차 코일
KR20150090179A (ko) * 2012-11-27 2015-08-05 퀄컴 인코포레이티드 무선 충전 시스템들 및 방법들
WO2014109460A1 (ko) * 2013-01-09 2014-07-17 한국전기연구원 다중기기의 자유 위치 무선 충전을 위한 무선전력전송 시스템
WO2015167099A1 (ko) * 2014-04-30 2015-11-05 한국전기연구원 무선 전력 송신 장치, 무선 전력 수신 장치 및 코일 구조물

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108695956A (zh) * 2018-05-29 2018-10-23 京东方科技集团股份有限公司 无线充电及通信电路和无线电子设备
CN108695956B (zh) * 2018-05-29 2021-05-07 京东方科技集团股份有限公司 无线充电及通信电路和无线电子设备
US11398745B2 (en) 2018-05-29 2022-07-26 Boe Technology Group Co., Ltd. Wireless charging and communication circuit, wireless electronic device, and wireless charging and communication circuit system
CN113474858A (zh) * 2019-02-15 2021-10-01 犀能新能源科技私人有限公司 基于电磁感应的无线电力传输
EP3924987A4 (en) * 2019-02-15 2022-10-19 Xnergy Autonomous Power Technologies Pte. Ltd. WIRELESS ENERGY TRANSFER BASED ON MAGNETIC INDUCTION

Also Published As

Publication number Publication date
US11190040B2 (en) 2021-11-30
US20190148971A1 (en) 2019-05-16
CN109463025A (zh) 2019-03-12
KR20180002999A (ko) 2018-01-09
EP3480918B1 (en) 2024-06-26
EP3480918A4 (en) 2020-01-08
EP3480918A1 (en) 2019-05-08
KR102589290B1 (ko) 2023-10-13

Similar Documents

Publication Publication Date Title
WO2018004130A1 (ko) 무선 전력 송신 코일 형상 및 코일의 배치 방법
WO2017030354A1 (ko) 무선 전력 송신기 및 이와 연결되는 차량 제어 유닛
WO2017111369A1 (ko) 다중 모드를 지원하는 무선 전력 송신기
WO2017003117A1 (ko) 다중 모드 무선 전력 송신 방법 및 그를 위한 장치
WO2016200028A1 (ko) 무선 충전 시스템을 이용한 전력 관리 방법 및 그를 위한 장치 및 시스템
WO2017122928A1 (ko) 무선 전력 제어 방법 및 그를 위한 장치
WO2017209381A1 (ko) 무선 전력 송신 방법 및 그를 위한 장치
WO2017209390A1 (ko) 무선 전력 전송 방식 스위칭 방법 및 장치
WO2017018668A1 (ko) 무선 전력 수신기 식별 방법 및 장치
WO2019143028A1 (ko) 높은 품질 인자를 가지는 무선 충전 코일
WO2017034134A1 (ko) 무선 충전 배터리 및 무선 충전 제어 방법
WO2018093099A1 (ko) 무선 전력 전달 방법 및 이를 위한 장치
WO2017164525A1 (ko) 무선 충전 시스템 및 그를 위한 장치
WO2017195977A2 (ko) 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2016182208A1 (ko) 무선 전력 송신 방법, 무선 전력 수신 방법 및 이를 위한 장치
WO2016024813A1 (en) Method for determining cross connection in wireless charging
WO2017131345A1 (ko) 무선 전력 공급 방법 및 그를 위한 장치
WO2019203420A1 (ko) 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법
WO2017142235A1 (ko) 무선 전력 전송 장치를 포함하는 마우스 패드 및 마우스
WO2019139326A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
WO2018004116A1 (ko) 무선 충전 시스템에서의 무선 전력 송신 방법 및 장치
WO2018048111A1 (ko) 근거리 통신 안테나를 포함하는 무선 전력 수신기의 제어 방법 및 장치
WO2016056863A1 (en) Apparatus and method for transmitting/receiving power transmitting unit presence information in wireless charging network
WO2017200193A1 (ko) 무선 전력 제어 방법 및 장치
WO2019208960A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820407

Country of ref document: EP

Effective date: 20190130