WO2017164525A1 - 무선 충전 시스템 및 그를 위한 장치 - Google Patents
무선 충전 시스템 및 그를 위한 장치 Download PDFInfo
- Publication number
- WO2017164525A1 WO2017164525A1 PCT/KR2017/001968 KR2017001968W WO2017164525A1 WO 2017164525 A1 WO2017164525 A1 WO 2017164525A1 KR 2017001968 W KR2017001968 W KR 2017001968W WO 2017164525 A1 WO2017164525 A1 WO 2017164525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless power
- receiver
- charging
- wireless
- power receiver
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03543—Mice or pucks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/039—Accessories therefor, e.g. mouse pads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/039—Accessories therefor, e.g. mouse pads
- G06F3/0395—Mouse pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/40—Structural association with built-in electric component, e.g. fuse
- H01F2027/408—Association with diode or rectifier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/248—Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
- H02J7/0044—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
Definitions
- the present invention relates to wireless charging technology, and more particularly, to a wireless charging system and devices therefor that are capable of maximizing the chargeable area by removing the charging shadow area on the charging bed.
- Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as radio waves and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
- energy transmission using wireless may be classified into electromagnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
- the electromagnetic induction method uses a phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows through one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
- Electromagnetic resonant method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
- the short wavelength wireless power transmission scheme implies, the RF transmission scheme— takes advantage of the fact that energy can be transmitted and received directly in the form of RadioWave.
- This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power.
- the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
- Wireless power transfer technology can be widely used not only for mobile, but also for industries such as IT, railway, automobile, and home appliance industries.
- the direction of the electromagnetic field is opposite to the inside and outside of the winding of the closed loop transmitting coil, and thus, there is a charging shadow area around the winding of the closed loop transmitting coil.
- the conventional wireless charging system cannot use the chargeable region formed in the outer region of the closed loop transmitting coil, and a shielding material corresponding to the area of the closed loop transmitting coil must be used in the wireless power transmitting apparatus. There was a problem.
- the wireless charging system to which the conventional method is applied has a problem that the length of the transmission coil used increases as the closed loop transmission coil is disposed at the outermost part of the charging bed.
- FIGS. 1A to 1D a wireless power device having a plurality of transmission coils provided in the prior art will be described with reference to FIGS. 1A to 1D.
- Reference numerals (a) and (b) of FIG. 1A denote prior art wireless power transmitters and wireless power receivers.
- the wireless power transmitter 11 has a transmitting coil 13 for transmitting wireless power.
- the wireless power transmitter 11 transmits wireless power to the wireless power receiver 15 through the transmission coil 13.
- the wireless power transmitter 11 may transmit power to the wireless power receiver 15 through an electromagnetic resonance method.
- Reference numeral (b) of FIG. 1A represents a side of the wireless power transmitter 11 and the wireless power receiver 15.
- the wireless power receiver 15 may be disposed with a distance sufficient to receive the wireless power in an electromagnetic resonance manner with the wireless power transmitter 11.
- the transmitting coil 13 may be disposed at an outer portion of the wireless power transmitter 11.
- the chargeable area becomes the first area 21 and the second area 25.
- the first region 21 is disposed outside the transmitting coil 13, and the second region 25 is disposed inside the transmitting coil 13.
- the outer and inner parts are set based on the arrangement in and out of the transmission coil.
- the non-chargeable area may be the third area 23 and the fourth area 27.
- the third region 23 is an unchargeable region in which impedance matching between the transmitting coil 13 and the receiving coil (not shown) is difficult.
- the region outside of the transmission coil 13 is an unchargeable external region, and the region inside the transmission coil 13 corresponds to an internal non-chargeable internal region.
- the fourth region 27, which is the center portion of the transmitting coil 13, has a very low magnetic coupling amount with the receiving coil, so that the power transmission efficiency is very low.
- the transmission coil 13 as shown in FIG. 1C may be disposed to overcome the limitation of FIG. 1B.
- the transmitting coil 13 is composed of one to constitute two rings.
- the inner ring is the inner ring, and the inner ring is wrapped around the outer ring.
- the transmitting coil 13 may improve the non-chargeable region of the fourth region 27 through the inner ring region 33, but at the same time, the non-chargeable region may be generated in the inner ring region 31. Accordingly, charging may be cut off and inconveniences may occur.
- the second transmission coil 41 is placed in the chargeable region of the first transmission coil 13 separately from the first transmission coil 13, as shown in FIG. 1D.
- the second transmission coil 41 constitutes an inner ring and the first transmission coil 13 constitutes an outer ring.
- the transmitter alternately applies current to the first transmission coil 13 and the second transmission coil 41, so that the charging region is not broken.
- the magnetic coupling between the first transmission coil 13 and the second transmission coil is very high, resulting in a large power loss. This is because when the magnetic field is generated in the first transmitting coil 13, the second transmitting coil 41 is disposed in the magnetic field generating region.
- the present invention has been devised to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a wireless charging system and an apparatus therefor.
- Another object of the present invention is to provide a wireless charging system capable of removing the charging shadow area and an apparatus therefor.
- Another object of the present invention is to provide a wireless charging system and apparatus therefor that maximizes the chargeable area.
- Another object of the present invention is to provide a wireless power transmitter having a plurality of transmission coils and a driving method thereof for increasing the charging efficiency of the wireless power receiver.
- Another object of the present invention is to provide a wireless power transmitter having a plurality of transmitting coils for converting a charging shadow region into a chargeable region and a driving method thereof.
- Another object of the present invention is to provide a wireless power transmitter and a driving method thereof, which enable wireless charging when wireless charging is not performed according to the alignment of the wireless power receiver.
- the present invention can provide a wireless charging system using a wireless charging system and devices therefor.
- the wireless power receiver is arranged to partially overlap the same plane for receiving a wireless power signal.
- DC power input from the first to Nth output terminals and the first to Nth output terminals configured to be connected to both ends of the first to Nth receiving coils to transfer induced AC power to DC power. It may include a rectifier to convert.
- the size of the overlapping region may be determined such that the coupling coefficient between any two receiving coils among the first to Nth receiving coils has a value equal to 0 or less than a predetermined reference value.
- first to Nth receiving coils may be arranged such that windings of the first to Nth receiving coils form mutual rings.
- each of the first to Nth receiving coils may be configured to have a fan shape.
- the overall appearance of the first to Nth receiving coils arranged to partially overlap may have a circular shape.
- the cabinet of the fan shape may be a value obtained by dividing 360 by the N.
- first to Nth receiving coils may be arranged such that windings of a straight section of the windings of the fan receiving coils are parallel to each other.
- the N may be three or more.
- first to Nth receiving coils may be disposed such that an area of an overlapping region between any two receiving coils of the first to Nth receiving coils is the same.
- the rectifier for each output terminal may be provided.
- the wireless power signal may be an AC power signal modulated at a predetermined resonance frequency and received wirelessly.
- a temperature sensor for temperature measurement may be further provided on one side of the winding of at least one of the first to Nth receiving coils.
- Wireless power transmission pad is a wireless power receiver is disposed in the form of a closed loop at the bottom of the charging bed spaced apart a predetermined distance from the outermost of the charging bed and the outermost of the charging bed and the planar bed It may be configured to include a shielding material mounted to the lower end of the transmission coil so that the transmission coil is mounted to the inner area of the closed loop and cover.
- the predetermined distance spaced inwardly may be determined as the minimum value that can be included in the chargeable bed all the chargeable region formed outside the closed loop.
- the chargeable region formed outside the closed loop may be determined based on the strength of the maximum power that can be transmitted through the transmission coil or the grade of the wireless power transmission apparatus equipped with the wireless power transmission pad.
- the area of the shielding material is greater than or equal to the inner area of the closed loop, characterized in that less than the area of the filling bed.
- a region other than an inner region of the closed loop may be a region in which the wireless power receiver may be disposed in the charging bed.
- the wireless power transmission pad may be mounted in a wireless power transmission apparatus for transmitting wireless power in an electromagnetic resonance method.
- a wireless charging system in another embodiment, includes first to Nth receiving coils and AC powers induced by the first to Nth receiving coils arranged to be partially overlapped in the same plane for receiving electromagnetic signals according to the present invention.
- the wireless power receiver and the wireless power receiver configured to include is disposed, the charging bed having a planar shape and the transmission is spaced a predetermined distance inward from the outermost of the charging bed is mounted in the form of a closed loop at the bottom of the charging bed And a shielding material mounted to a lower end of the transmitting coil to cover an inner area of the coil and the closed loop. It may include a wireless power transmission apparatus.
- a charging shaded region exists around a winding forming the closed loop, and the first to Nth receiving coils are disposed so that at least one receiving coil of the first to Nth receiving coils is not positioned in the charging shaded region.
- the wireless power receiver may be disposed.
- the size of the overlapping region may be determined such that the coupling coefficient between any two receiving coils among the first to Nth receiving coils has a value equal to 0 or less than a predetermined reference value.
- the wireless power transmitter may transmit wireless power to the wireless power receiver in an electromagnetic resonance manner.
- a plurality of transmission coils disposed side by side at a predetermined distance and respectively forming an upper loop and a lower loop; And a control unit controlling to transmit wireless power through the plurality of transmission coils, wherein each of the first transmission coil and the second transmission coil set adjacent to each other among the plurality of transmission coils is an outer region of the first transmission coil.
- the plurality of transmission coils may be arranged such that the charging region by the lower loop of the first transmission coil overlaps the charging shadow region by the upper loop of the second transmission coil.
- First to Nth transmission coils disposed at a predetermined distance, and capable of transmitting wireless power so that the wireless power receiver is charged even if the wireless power receiver is disposed in an area between adjacent transmission coils; And a controller configured to control transmission of wireless power to the wireless power receiver through the first to Nth transmission coils when the wireless power receiver is detected.
- the present invention has the advantage of providing a wireless charging system and a device therefor.
- the present invention has the advantage that can effectively reduce the manufacturing cost of the wireless power transmission apparatus by minimizing the application area of the shielding material and the transmission coil on the charging bed.
- the present invention has the advantage of providing a wireless charging system and apparatus therefor by maximizing the chargeable area by using the chargeable area formed outside the closed loop transmission coil.
- the present invention has the advantage of providing a wireless charging system and a device therefor capable of removing a charging shadow area by mounting a wireless power receiving pad having a minimum coupling coefficient between receiving coils in the wireless power receiving device.
- charging efficiency for the wireless power receiver may be increased, thereby improving charging efficiency and user convenience.
- the charging shadow area can be eliminated to improve the charging efficiency and user convenience.
- the wireless charging when the wireless charging is not performed according to the alignment of the wireless power receiver, the wireless charging is possible, thereby improving user convenience.
- FIGS. 1A to 1D are diagrams illustrating a wireless power transmitter of the prior art.
- 1E is a block diagram illustrating a structure of a wireless power transmission system according to an embodiment of the present invention.
- FIG. 2 is a view for explaining the type and characteristics of a wireless power transmitter according to an embodiment of the present invention.
- FIG 3 is a view for explaining the type and characteristics of a wireless power receiver according to an embodiment of the present invention.
- FIG. 4 is an equivalent circuit diagram of a wireless charging system according to an embodiment of the present invention.
- FIG. 5 is a state transition diagram for explaining a state transition procedure in the wireless power transmitter according to an embodiment of the present invention.
- FIG. 6 is a state transition diagram of a wireless power receiver according to an embodiment of the present invention.
- FIG. 7 is a diagram illustrating an operation region of a wireless power receiver based on V RECT according to an embodiment of the present invention.
- FIG. 8 is a block diagram of a wireless charging system according to an embodiment of the present invention.
- FIG. 9 is a flowchart illustrating a wireless charging procedure according to an embodiment of the present invention.
- FIG. 10 is a view for explaining a problem in the wireless charging system supporting the electromagnetic resonance method according to the prior art.
- FIG. 11 is a view for explaining a problem in a wireless charging system supporting an electromagnetic resonance method according to the prior art.
- FIG. 12 is a view for explaining a stacking structure of a wireless power transmission pad according to the prior art.
- FIG. 13 is a view for explaining the configuration of a wireless charging system according to an embodiment of the present invention.
- FIG. 14 is a view for explaining a stacking structure of a wireless power transmission apparatus according to an embodiment of the present invention.
- 15A and 15B are diagrams for describing the structure of a multi-receive coil mounted in a wireless power receiver according to an embodiment of the present invention.
- 16 is a block diagram illustrating a configuration of a wireless power receiver according to an embodiment of the present invention.
- 17 to 19 are views illustrating chargeable regions generated when a current is applied to a plurality of transmission coils according to an embodiment.
- 20 is a diagram illustrating a process of transmitting and receiving a detection signal through an electromagnetic resonance method according to an embodiment.
- 21 is a diagram illustrating a direction of a magnetic field generated when a current is applied to a plurality of transmission coils according to an embodiment.
- 22 is a diagram illustrating a coupling coefficient according to a position of a wireless power receiver according to an embodiment.
- 23 is a diagram illustrating an interval of a plurality of transmitting coils according to an embodiment.
- 24 to 26 are diagrams for describing wireless power transmission when a receiver is moved on a transmitter according to an embodiment.
- the wireless power receiver is arranged to partially overlap the same plane for receiving a wireless power signal.
- DC power input from the first to Nth output terminals and the first to Nth output terminals configured to be connected to both ends of the first to Nth receiving coils to transfer induced AC power to DC power. It may include a rectifier to convert.
- the apparatus for transmitting wireless power on the wireless power system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a transmitter, a transmitter, A wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably.
- a wireless power receiver a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Or the like can be used in combination.
- the wireless power transmitter may be configured in a pad form, a cradle form, an access point (AP) form, a small base station form, a stand form, a ceiling embed form, a wall mount form, a vehicle embed form, a vehicle mount form, and the like.
- the wireless power transmitter may transmit power to the plurality of wireless power receivers simultaneously or time divisionally.
- the wireless power transmitter according to the present invention may be configured in the form of a mouse pad for charging a wireless mouse.
- the wireless power transmitter may be provided with at least one wireless power transmission means.
- the wireless power transmitter according to the present invention may be linked with other wireless power transmitter in a network connection.
- the wireless power transmitters may interwork with each other using short range wireless communication such as Bluetooth.
- the wireless power transmitters may be interworked using wireless communication technologies such as Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE) / LTE-Advanced, and Wi-Fi.
- WCDMA Wideband Code Division Multiple Access
- LTE Long Term Evolution
- LTE-Advanced Long Term Evolution-Advanced
- Wi-Fi Wi-Fi
- the wireless power transmission means to be applied to the present invention is to use a variety of wireless power transmission standards based on the electromagnetic induction method to generate a magnetic field in the power transmitter coil and to charge using the electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field is used.
- the electromagnetic induction wireless power transmission standard may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) or / and the Power Matters Alliance (PMA).
- the wireless power transmission means may use an electromagnetic resonance method of transmitting power to a wireless power receiver located in close proximity by tuning a magnetic field generated by a transmission coil of the wireless power transmitter to a specific resonance frequency.
- the electromagnetic resonance method may include a wireless charging technology of a resonance method defined in A4WP (Alliance for Wireless Power) which is a wireless charging technology standard apparatus.
- the wireless power transmission unit may use an RF wireless power transmission method that transmits power to a wireless power receiver located at a far distance by putting low power energy on the RF signal.
- the wireless power transmitter according to the present invention may be designed to support at least two or more wireless power transmission methods of the electromagnetic induction method, the electromagnetic resonance method, and the RF wireless power transmission method.
- the wireless power transmitter may transmit power in a wireless power transmission scheme supported by the connected wireless power receiver.
- the wireless power transmitter may select an optimal wireless power transmission scheme for the wireless power receiver and transmit power in the selected wireless power transmission scheme.
- the wireless power transmitter may adaptively determine a wireless power transmission scheme to be used for the wireless power receiver based on the type of the wireless power receiver, the power reception state, the required power, and the like.
- the wireless power receiver may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more wireless power transmitters.
- the wireless power receiver may include at least one of the electromagnetic induction method, the electromagnetic resonance method, and the RF wireless power transmission method.
- the wireless power receiver may receive the power by selecting the optimal wireless power receiving means based on the reception sensitivity or the power transmission efficiency measured for each wireless power receiving means.
- the wireless power receiver includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, and an MP3 player. It may be mounted on a small electronic device such as an electric toothbrush, an electronic tag, a lighting device, a remote control, a fishing bobber, and the like, but the present invention is not limited thereto. It's enough if it's possible.
- the wireless power receiver according to another embodiment of the present invention may be mounted on a home appliance including a TV, a refrigerator, a washing machine, a vehicle, an unmanned aerial vehicle, an air drone, a robot, or the like.
- the wireless power receiver according to the present invention may be equipped with a multi-receive coil and may be mounted on one side of the wireless mouse.
- 1E is a block diagram illustrating a structure of a wireless charging system according to an embodiment of the present invention.
- the wireless charging system may include a wireless power transmitter 100 and a wireless power receiver 200.
- FIG. 1E illustrates that the wireless power transmitter 100 transmits wireless power to one wireless power receiver 200, this is only one embodiment, and wireless power according to another embodiment of the present invention.
- the transmitter 100 may transmit wireless power to the plurality of wireless power receivers 200.
- the wireless power receiver 200 according to another embodiment may simultaneously receive wireless power from the plurality of wireless power transmitters 100.
- the wireless power transmitter 100 may generate an AC power signal using a specific resonance frequency to transmit power to the wireless power receiver 200.
- the wireless power receiver 200 may receive an AC power signal by tuning to the same frequency as the resonance frequency used by the wireless power transmitter 100. That is, the wireless power receiver 200 may wirelessly receive power transmitted by the wireless power transmitter 100 through a resonance phenomenon.
- the resonant frequency used for wireless power transmission may be a 6.78 MHz band, but is not limited thereto.
- the power transmitted by the wireless power transmitter 100 may be transmitted only to the wireless power receiver 200 which is in resonance with the wireless power transmitter 100.
- the maximum number of wireless power receivers 200 that can receive power from one wireless power transmitter 100 is the maximum transmit power level of the wireless power transmitter 100, the maximum power reception level of the wireless power receiver 200, the wireless It may be determined based on the physical structures of the power transmitter 100 and the wireless power receiver 200.
- the wireless power transmitter 100 and the wireless power receiver 200 may perform bidirectional communication in a frequency band different from a frequency band for transmitting wireless power, that is, a resonant frequency band.
- the bidirectional communication may use a half-duplex Bluetooth Low Energy (BLE) communication protocol, but is not limited thereto.
- BLE Bluetooth Low Energy
- the wireless power transmitter 100 and the wireless power receiver 200 may exchange characteristic and state information, that is, power negotiation information, with each other through the bidirectional communication.
- the wireless power receiver 200 may transmit predetermined power reception state information for controlling the power level received from the wireless power transmitter 100 to the wireless power transmitter 100 through bidirectional communication.
- 100 may dynamically control the transmit power level based on the received power reception state information.
- the wireless power transmitter 100 may not only optimize power transmission efficiency, but also prevent load damage due to over-voltage, and prevent unnecessary waste of power due to under-voltage. It can provide a function to.
- the wireless power transmitter 100 performs a function of authenticating and identifying the wireless power receiver 200 through two-way communication, a function of identifying an incompatible device or an unchargeable object, and a function of identifying a valid load. You may.
- the wireless power transmitter 100 may obtain information on power consumption of the electronic device mounted in the wireless power receiver 200 from the wireless power receiver 200 through bidirectional communication.
- the wireless power transmitter 100 may obtain information regarding the maximum charge capacity and the charge amount change of the load connected to the wireless power receiver 200 through bidirectional communication.
- the wireless power transmitter 100 may transmit the output power strength information to the wireless power receiver 200 through a bidirectional communication.
- the wireless power receiver 200 may measure the strength of the power applied to the load during charging and calculate the wireless charging efficiency by using the output power intensity information at the transmitter and the strength of the power applied to the load. .
- the calculated wireless charging efficiency may be transmitted to the wireless power transmitter 100 through bidirectional communication.
- the wireless power transmitter 100 includes a power supplier 110, a power conversion unit 120, a matching circuit 130, a transmission resonator 140, and a main controller. , 150) and a communication unit 160.
- the communication unit may include a data transmitter and a data receiver.
- the power supply unit 110 may supply a specific supply voltage to the power converter 120 under the control of the main controller 150.
- the supply voltage may be a DC voltage or an AC voltage.
- the power converter 120 may convert the voltage received from the power supply unit 110 into a specific voltage under the control of the main controller 150.
- the power converter 120 may include at least one of a DC / DC converter, an AC / DC converter, and a power amplifier.
- the matching circuit 130 is a circuit that matches the impedance between the power converter 120 and the transmission resonator 140 in order to maximize power transmission efficiency.
- the transmission resonator 140 may wirelessly transmit power using a specific resonance frequency according to the voltage applied from the matching circuit 130.
- the wireless power receiver 200 includes a reception resonator 210, a rectifier 220, a DC-DC converter 230, a load 240, a main controller 250. ) And a communication unit 260.
- the communication unit may include a data transmitter and a data receiver.
- the reception resonator 210 may receive power transmitted by the transmission resonator 140 through a resonance phenomenon.
- the rectifier 220 may perform a function of converting an AC voltage applied from the receiving resonator 210 into a DC voltage.
- the DC-DC converter 230 may convert the rectified DC voltage into a specific DC voltage required for the load 240.
- the main controller 250 controls the operations of the rectifier 220 and the DC-DC converter 230 or generates characteristics and state information of the wireless power receiver 200 and controls the communication unit 260 to control the wireless power transmitter 100.
- the characteristics and state information of the wireless power receiver 200 may be transmitted to the.
- the main controller 250 may control the operation of the rectifier 220 and the DC-DC converter 230 by monitoring the intensity of the output voltage and the current in the rectifier 220 and the DC-DC converter 230. have.
- the intensity information of the monitored output voltage and current may be transmitted to the wireless power transmitter 100 through the communication unit 260.
- the main controller 250 compares the rectified DC voltage with a predetermined reference voltage to determine whether it is in an over-voltage state or an under-voltage state, and according to the determination result, the main controller 250 is in a system error state. If detected, the detection result may be transmitted to the wireless power transmitter 100 through the communication unit 260.
- the main controller 250 when the main controller 250 detects a system error condition, the main controller 250 controls the operation of the rectifier 220 and the DC-DC converter 230 or a predetermined overcurrent including a switch or a zener diode to prevent damage to the load.
- the blocking circuit may be used to control the power applied to the load 240.
- the main control unit 250 determines that the local failure state, and the predetermined failure notification message to the wireless power transmitter 100 through the communication unit 260. You can also send.
- the main controller 150 or 250 and the communication unit 160 or 260 of each of the transceivers are shown as being configured with different modules, respectively, but this is only one embodiment and another embodiment of the present invention. It should be noted that the main controller 150 or 250 and the communication unit 160 or 260 may be configured as a single module, respectively.
- the main controller 250 of the wireless power receiver 200 may include the maximum charging capacity of the load 240, the current state of charge of the load 240, that is, the amount of power charged to the load 240 so far, and (and ) May include information about a current charging ratio to a maximum charging capacity, and an estimated time to complete charging of the load 240 based on the amount of power applied to the load 240.
- the wireless power receiver 200 may transmit the calculated charging completion time required to the microprocessor (not shown) of an electronic device, for example, a smartphone, connected through a predetermined interface. Subsequently, the microprocessor may display the estimated time required for completion of charging through the display means provided in the electronic device.
- the main controller 250 controlling the operation of the wireless power receiver 200 and the microprocessor mounted on the electronic device are described as separate hardware devices. However, this is only one embodiment. In addition, it should be noted that the main controller 250 and the microprocessor may be mounted in one hardware device and configured as separate software modules. In addition, the wireless power receiver 200 may transmit the calculated charging completion estimated time required to the wireless power transmitter 100 through bidirectional communication.
- the wireless power receiver 200 may detect an operation state change of the connected electronic device and recalculate an estimated time required to complete charging.
- the change in the operating state of the electronic device may include at least one of a power ON / OFF state change of the electronic device, a change in the execution state of an application on the electronic device, a change in the ON / OFF state of the electronic device display, and a change in power consumption of the electronic device. It may include. That is, the wireless power receiver 200 adaptively calculates or measures the real-time power consumption of the electronic device according to the change in the operating state of the electronic device, and estimates the estimated time to complete charging based on the calculated or measured power consumption. You can also ship.
- the recharged estimated completion time may be displayed through the display means of the electronic device as well as transmitted to the wireless power transmitter 100 through bidirectional communication.
- the wireless power transmitter 100 has an event such as a new wireless power receiver is added to the charging area during charging, the connection with the wireless power receiver being charged is released, or the charging of the wireless power receiver is completed. If detected, a power redistribution procedure for the remaining charging target wireless power receivers may be performed. In this case, the power redistribution result may be transmitted to the wireless power receiver (s) connected through the out-of-band communication.
- the wireless power receiver 200 may recalculate the estimated time required for completion of charging according to the power redistribution result, and the recalculated estimated time required for recharging may be displayed through the display means of the electronic device, and wireless power may be obtained through bidirectional communication. May be transmitted to the transmitter 100.
- the wireless power receiver 200 has been described as calculating the estimated time required for the completion of charging, but this is only one embodiment, and the wireless power transmitter 200 according to another embodiment of the present invention provides wireless power.
- the estimated time required for completion of charging may be calculated based on information on the maximum charging capacity of the load collected from the receiver 200, information on the amount of charge of the current load, information on power intensity applied to the load, and the like.
- the estimated time required for the completion of charging may be calculated for each wireless power receiver or electronic device that receives the wireless power from the wireless power transmitter 100, and the wireless power transmitter 200 estimates the completion of charging calculated through the display means provided. Information about the time required can be displayed.
- the wireless power transmitter 200 may provide information about wireless charging efficiency of each device that is being charged to another networked wireless power transmitter or (and) a specific home network server or (and) a specific cloud server, and the estimated time to complete charging. Information regarding the amount of power consumed may be transmitted.
- the home network server or the cloud server may store and process the information received from the wireless power transmitter 200, and extract and transmit the corresponding statistical information when requested from the user or the user terminal.
- FIG. 2 is a view for explaining the type and characteristics of a wireless power transmitter according to an embodiment of the present invention.
- types and characteristics may be classified into classes and categories, respectively.
- the type and characteristics of the wireless power transmitter can be largely identified through the following three parameters.
- the wireless power transmitter may be identified by a rating determined according to the strength of the maximum power applied to the transmission resonator 140.
- the rating of the wireless power transmitter is the maximum value of the power (P TX_IN_COIL ) applied to the transmission resonator 140, the predefined maximum input power for each rating specified in the following wireless power transmitter rating table-hereinafter, business card It may be determined by comparing with (P TX _IN_MAX ).
- P TX _IN_COIL may be an average real value calculated by dividing a product of voltage V (t) and current I (t) applied to the transmission resonator 140 for a unit time by a corresponding unit time.
- the grade disclosed in Table 1 is merely an example, and a new grade may be added or deleted.
- the values for the maximum input power for each class, the minimum category support requirement, and the maximum number of devices that can be supported may also change according to the purpose, shape, and implementation of the wireless power transmitter.
- the class of the wireless power transmitter may be determined as class 3.
- the wireless power transmitter may be identified according to Minimum Category Support Requirements corresponding to the identified class.
- the minimum category support requirement may be a supportable number of wireless power receivers corresponding to a category of the highest level among wireless power receiver categories that can be supported by a wireless power transmitter of a corresponding class. That is, the minimum category support requirement may be the minimum number of maximum category devices that the wireless power transmitter can support. In this case, the wireless power transmitter may support all categories of wireless power receivers corresponding to the maximum category or less according to the minimum category requirement.
- the wireless power transmitter can support a wireless power receiver of a category higher than the category specified in the minimum category support requirement, the wireless power transmitter may not be limited to supporting the wireless power receiver.
- a class 3 wireless power transmitter should support at least one category 5 wireless power receiver.
- the wireless power transmitter may support the wireless power receiver 100 corresponding to a category lower than the category level corresponding to the minimum category support requirement.
- the wireless power transmitter may support a wireless power receiver having a higher level category if it is determined that the wireless power transmitter can support a higher level category than the category corresponding to the minimum category support requirement.
- the wireless power transmitter may be identified by the maximum number of devices that can be supported corresponding to the identified class.
- the maximum supportable device number may be identified by the maximum supportable number of wireless power receivers corresponding to the lowest level category among the categories supported in the corresponding class, hereinafter, simply the maximum number of devices that can be supported by a business card. .
- a class 3 wireless power transmitter should be able to support up to two wireless power receivers of at least category 3.
- the wireless power transmitter can support more than the maximum number of devices corresponding to its class, it is not limited to supporting more than the maximum number of devices.
- the wireless power transmitter according to the present invention should be able to perform wireless power transmission at least up to the number defined in Table 1 within the available power, unless there is a special reason for not allowing the power transmission request of the wireless power receiver.
- the wireless power transmitter may not accept the power transmission request of the wireless power receiver.
- power adjustment of the wireless power receiver may be controlled.
- the wireless power transmitter may not accept the power transmission request of the corresponding wireless power receiver.
- the wireless power transmitter may not accept the power transmission request of the corresponding wireless power receiver.
- the wireless power transmitter may not accept the power transmission request of the corresponding wireless power receiver.
- the wireless power transmitter according to the present invention may perform a power redistribution procedure based on the amount of power currently available.
- the power redistribution procedure may further perform the power redistribution procedure by considering at least one of a category, a wireless power reception state, a required power amount, a priority, and a power consumption amount to be described later of the power transmission target wireless power receiver.
- the wireless power receiver is connected to the wireless power receiver by using at least one control signal through at least one information of the category, wireless power reception status, required power amount, priority, power consumption amount through the out-of-band communication channel It may be delivered periodically or aperiodically to the transmitter.
- the wireless power transmitter may transmit the power redistribution result to the corresponding wireless power receiver through out-of-band communication.
- the wireless power receiver may recalculate the estimated time to complete charging based on the received power redistribution result and transmit the recalculation result to the microprocessor of the connected electronic device. Subsequently, the microprocessor may control the display of the electronic device to display the estimated time required for recharging completion. In this case, the displayed charging completion time required may be controlled to disappear after being displayed on a predetermined time screen.
- the microprocessor may control to display the information on the reason for recalculation when the estimated time required for completion of recharging is recalculated.
- the wireless power transmitter may also transmit information on the reason for the power redistribution generated when the power redistribution result is transmitted to the wireless power receiver.
- the wireless power receiver may transmit the recalculated charge completion estimated time to the wireless power transmitter through bidirectional communication.
- the wireless power transmitter may display the received charge completion estimated time required through the display means provided and transmit it to a networked home network server or a cloud server.
- a wireless power transmitter detects an internal system error (eg, including overvoltage, overcurrent, overheating, etc.)
- the wireless power transmitter displays the detection result through display means provided with a network, and It can also be sent to a connected home network server or (and) cloud server.
- the wireless power transmitter if it is confirmed that the collected or calculated wireless charging efficiency or wireless power transmission efficiency is less than a predetermined reference value, and displays through the display means provided with a confirmation result, the network connected home network It may also notify the server or (and) the cloud server.
- a user may connect to a home network server or a cloud server to identify a wireless power transmitter with low wireless charging efficiency.
- the wireless power transmitter with low wireless charging efficiency may be determined as a wireless power transmitter located in a wireless power shadow area.
- the wireless power transmitter corresponds to a networked home network server or (and) a cloud server when the number of times that the power transmission request from the wireless power receiver is rejected due to a lack of available power exceeds a reference value. You may be notified.
- an area in which a wireless power transmitter is installed in which the number of times of rejecting the power transmission request is greater than the reference value is required to install an additional wireless power transmitter or to be replaced by a wireless power transmitter having a higher power transmission capacity, that is, a higher grade. It can be judged as a region.
- an area in which a wireless power transmitter having a number of times of rejecting a power transmission request or more is installed may be classified as a dangerous area in which an unauthorized or invalid wireless power receiver or an electronic device equipped with a wireless power receiver is located.
- FIG 3 is a view for explaining the type and characteristics of a wireless power receiver according to an embodiment of the present invention.
- the average output power P RX_OUT of the receiving resonator 210 is equal to the voltage V (t) and the current I (t) output by the receiving resonator 210 for a unit time. It may be a real value calculated by dividing the product by the corresponding unit time.
- the average output voltage P RX _ OUT of the receiving resonator 210 may be a real value calculated by dividing the product of the voltage V (t) and the current I (t) measured at the rear end of the rectifier by unit time. It is not limited to this.
- the category of the wireless power receiver may be defined based on the maximum output power P RX _ OUT_MAX of the reception resonator 210, as shown in Table 2 below.
- TBD Bluetooth handset Category 2 3.5 W Feature Phone Category 3 6.5 W Smartphone Category 4 13 W Tablet Category 5 25 W Small laptop Category 6 37.5 W laptop Category 6 50 W TBD
- the category 3 wireless power receiver may supply 5W of power to the charging port of the load.
- a microprocessor of a wireless power receiver or an electronic device interoperating with a wireless power receiver may include a maximum load capacity of a load, a current amount of charge, a maximum or average input power of a wireless power transmitter, Based on the current charging efficiency at the category load stage of the wireless power receiver, an estimated time required for the corresponding load to be charged may be calculated.
- the maximum input power corresponding to the category of the wireless power receiver may be adaptively changed, and accordingly, the estimated time to complete the charging may be recalculated.
- the calculated information about the estimated time required for completion of charging may be transmitted to the wireless power transmitter through a bidirectional communication channel.
- the wireless power transmitter may receive information about the charging efficiency, the category of the wireless power receiver, the maximum charging capacity of the load, the amount of charge of the current load, and the like from the wireless power receiver through bidirectional communication.
- the wireless power transmitter may calculate an estimated time required for the corresponding load to be charged.
- FIG. 4 is an equivalent circuit diagram of a wireless charging system according to an embodiment of the present invention.
- FIG. 4 shows the interface point on an equivalent circuit in which reference parameters, which will be described later, are measured.
- I TX and I TX _COIL are root mean square (RMS) currents applied to the matching circuit (or matching network) 420 of the wireless power transmitter and RMS currents applied to the transmission resonator coil 425 of the wireless power transmitter, respectively. do.
- RMS root mean square
- Z TX _IN denotes an input impedance after the power supply / amplifier / filter 410 of the wireless power transmitter and an input impedance before the matching circuit 420.
- Z TX _IN_COIL means input impedance after the matching circuit 420 and before the transmission resonator coil 425.
- L1 and L2 mean an inductance value of the transmission resonator coil 425 and an inductance value of the reception resonator coil 427, respectively.
- Z RX _ IN denotes an input impedance at the rear of the matching circuit 430 of the wireless power receiver and the front of the filter / rectifier / load 440 of the wireless power receiver.
- Resonant frequency used for the operation of the wireless charging system according to an embodiment of the present invention may be 6.78MHz ⁇ 15kHz.
- the wireless charging system may provide simultaneous charging of multiple wireless power receivers, i.e., multi-charging, in which case the remaining wireless power receiver may be added even if the wireless power receiver is newly added or deleted.
- the received power change amount can be controlled so as not to exceed a predetermined reference value or more.
- the amount of change in the received power may be ⁇ 10%, but is not limited thereto. If it is impossible to control the received power change amount not to exceed the reference value, the wireless power transmitter may not accept the power transmission request from the newly added wireless power receiver.
- the condition for maintaining the received power variation amount should not overlap with the existing wireless power receiver when the wireless power receiver is added to or deleted from the charging area.
- the real part of the Z TX _IN may be inversely related to the load resistance of the rectifier, hereinafter referred to as R RECT . That is, increasing R RECT may decrease Z TX _IN, and decreasing R RECT may increase Z TX _IN .
- Resonator Coupling Efficiency may be the maximum power reception ratio calculated by dividing the power transmitted from the receiver resonator coil to the load 440 by the power carried in the resonant frequency band by the transmitter resonator coil 425. have.
- Resonator matching efficiency between the wireless power transmitter and wireless power receiver can be calculated if the reference port impedance (Z TX_IN) and receiving a reference port impedance (Z _IN RX) of the cavity resonator is a transmission that is perfectly matched.
- Table 3 below is an example of the minimum resonator matching efficiency according to the class of the wireless power transmitter and the class of the wireless power receiver according to an embodiment of the present invention.
- the minimum resonator matching efficiency corresponding to the class and category shown in Table 3 may increase.
- a microprocessor of a wireless power receiver or an electronic device connected to a wireless power receiver may include a maximum load capacity of a load, a charge amount of a current load, a charging efficiency of a load, and a category of a wireless power receiver.
- the time required to complete charging of the corresponding load may be calculated based on at least one of the minimum resonator matching efficiencies corresponding to the class of the wireless power transmitter.
- FIG. 5 is a state transition diagram for explaining a state transition procedure in the wireless power transmitter according to an embodiment of the present invention.
- a state of the wireless power transmitter is largely configured as a configuration state 510, a power save state 520, a low power state 530, and a power transfer state. , 540), a local fault state 550, and a locking fault state 560.
- the wireless power transmitter may transition to configuration state 510.
- the wireless power transmitter may transition to the power saving state 520 when the predetermined reset timer expires or the initialization procedure is completed in the configuration state 510.
- the wireless power transmitter may generate a beacon sequence and transmit it through the resonant frequency band.
- the wireless power transmitter may control the beacon sequence to be started within a predetermined time after entering the power saving state 520.
- the wireless power transmitter may control the beacon sequence to be started within 50 ms after the power saving state 520 transition, but is not limited thereto.
- the wireless power transmitter periodically generates and transmits a first beacon sequence for sensing the wireless power receiver, and detects a change in impedance of the reception resonator, that is, a load variation.
- a load variation that is, a load variation.
- the first beacon and the first beacon sequence will be referred to as short beacon and short beacon sequences, respectively.
- the short beacon sequence may be repeatedly generated and transmitted at a predetermined time interval t CYCLE for a short period (t SHORT _ BEACON ) to save standby power of the wireless power transmitter until the wireless power receiver is detected.
- t SHORT _BEACON may be set to 30 ms or less and t CYCLE to 250 ms ⁇ 5 ms.
- the current strength of the short beacon is more than a predetermined reference value, and may increase gradually over a period of time.
- the minimum current strength of the short beacon may be set large enough so that the wireless power receiver of category 2 or more of Table 2 may be detected.
- the wireless power transmitter according to the present invention may be provided with a predetermined sensing means for detecting a change in reactance and resistance in a reception resonator according to a short beacon.
- the wireless power transmitter may periodically generate and transmit a second beacon sequence for supplying sufficient power for booting and responding to the wireless power receiver.
- the second beacon and the second beacon sequence will be referred to as long beacon and long beacon sequences, respectively.
- the wireless power receiver may broadcast a predetermined response signal through the out-of-band communication channel.
- the Long Beacon sequence may be generated and transmitted at a predetermined time interval (t LONG _BEACON_PERIOD ) during a relatively long period (t LONG_BEACON ) compared to the Short Beacon to supply sufficient power for booting the wireless power receiver.
- t LONG _BEACON may be set to 105 ms + 5 ms and t LONG _BEACON_PERIOD may be set to 850 ms, respectively.
- the current strength of the long beacon may be relatively strong compared to the current strength of the short beacon.
- the long beacon may maintain a constant power during the transmission interval.
- the wireless power transmitter may wait to receive a predetermined response signal during the long beacon transmission period.
- the response signal will be referred to as an advertisement signal.
- the wireless power receiver may broadcast the advertisement signal through an out-of-band communication frequency band different from the resonant frequency band.
- the advertisement signal may include message identification information for identifying a message defined in the corresponding out-of-band communication standard, unique service for identifying whether the wireless power receiver is a legitimate or compatible receiver for the wireless power transmitter, or wireless power receiver identification.
- Information, output power information of the wireless power receiver, rated voltage / current information applied to the load, antenna gain information of the wireless power receiver, information for identifying the category of the wireless power receiver, wireless power receiver authentication information, with overvoltage protection Information on whether or not, may include at least one or any one of the software version information mounted on the wireless power receiver.
- the advertisement signal may further include information about the maximum charging capacity of the load, information about the current charging amount of the load.
- the wireless power transmitter may transition from the power saving state 520 to the low power state 530 and then establish an out-of-band communication link with the wireless power receiver. Subsequently, the wireless power transmitter may perform a registration procedure for the wireless power receiver via the established out-of-band communication link. For example, when the out-of-band communication is Bluetooth low power communication, the wireless power transmitter may perform Bluetooth pairing with the wireless power receiver and exchange at least one of state information, characteristic information, and control information with each other through the paired Bluetooth link. have.
- the wireless power transmitter transmits a predetermined control signal to the wireless power receiver for initiating charge through out-of-band communication in the low power state 530, that is, the predetermined control signal requesting that the wireless power receiver delivers power to the load.
- the state of the wireless power transmitter may transition from the low power state 530 to the power transfer state 540.
- the state of the wireless power transmitter may transition to the power saving state 520 in the low power state 530.
- the wireless power transmitter may be driven by a separate Link Expiration Timer for connection with each wireless power receiver, and the wireless power receiver may indicate that the wireless power transmitter is present in the wireless power transmitter at a predetermined time period. Must be sent before the link expiration timer expires.
- the link expiration timer is reset each time the message is received and an out-of-band communication link established between the wireless power receiver and the wireless power receiver may be maintained if the link expiration timer has not expired.
- the state of the wireless power transmitter May transition to a power saving state 520.
- the wireless power transmitter in the low power state 530 may drive a predetermined registration timer when a valid advertisement signal is received from the wireless power receiver. In this case, when the registration timer expires, the wireless power transmitter in the low power state 530 may transition to the power saving state 520. In this case, the wireless power transmitter may output a predetermined notification signal indicating that registration has failed through notification display means provided in the wireless power transmitter, including, for example, an LED lamp, a display screen, a beeper, and the like. have.
- the wireless power transmitter may transition to the low power state 530 when charging of all connected wireless power receivers is completed.
- the wireless power receiver may allow registration of a new wireless power receiver in states other than configuration state 510, local failure state 550, and lock failure state 560.
- the wireless power transmitter may dynamically control the transmission power based on state information received from the wireless power receiver in the power transmission state 540.
- the receiver state information transmitted from the wireless power receiver to the wireless power transmitter is for reporting the required power information, voltage and / or current information measured at the rear of the rectifier, charging state information, overcurrent and / or overvoltage and / or overheating state. It may include at least one of information indicating whether the means for interrupting or reducing the power delivered to the load according to the information, overcurrent or overvoltage is activated.
- the receiver state information may be transmitted at a predetermined cycle or whenever a specific event occurs.
- the means for cutting off or reducing power delivered to the load according to the overcurrent or overvoltage may be provided using at least one of an ON / OFF switch and a zener diode.
- the charging state information may include at least one of information on the current charge amount of the load, information indicating whether the charging of the load is completed, information on the estimated time required to complete the charge.
- Receiver state information transmitted from a wireless power receiver to a wireless power transmitter is information indicating that an external power source is wired to the wireless power receiver, information indicating that an out-of-band communication scheme has been changed. It may further include at least one of-can be changed from NFC (Near Field Communication) to Bluetooth Low Energy (BLE) communication.
- NFC Near Field Communication
- BLE Bluetooth Low Energy
- a wireless power transmitter may receive power for each wireless power receiver based on at least one of its currently available power, priority for each wireless power receiver, and the number of connected wireless power receivers.
- the power strength to be transmitted for each wireless power receiver may be adaptively determined.
- the power strength to be transmitted for each wireless power receiver may be determined by a ratio of power to the maximum power that can be processed by the rectifier of the wireless power receiver.
- the wireless power transmitter may transmit a predetermined power control command including information on the determined power ratio to the corresponding wireless power receiver.
- the wireless power receiver may determine whether power control is possible at a power ratio determined by the wireless power transmitter, and transmit the determination result to the wireless power transmitter through a predetermined power control response message.
- the wireless power receiver before receiving the power control command receives predetermined receiver status information indicating whether wireless power control is possible according to a power adjustment command of the wireless power transmitter. You can also send.
- the power transmission state 540 may be any one of a first state 541, a second state 542, and a third state 543 according to the power reception state of the connected wireless power receiver.
- the first state 541 may mean that power reception states of all wireless power receivers connected to the wireless power transmitter are normal voltages.
- the second state 542 may mean that there is no wireless power receiver having a low voltage state and a high voltage state of at least one wireless power receiver connected to the wireless power transmitter.
- the third state 543 may mean that the power reception state of at least one wireless power receiver connected to the wireless power transmitter is a high voltage state.
- the wireless power transmitter may transition to the lock failure state 560 when a system error is detected in the power saving state 520 or the low power state 530 or the power transfer state 540.
- the wireless power transmitter in the lock failure state 560 may transition to the configuration state 510 or the power saving state 520 when it is determined that all connected wireless power receivers have been removed from the charging area.
- the wireless power transmitter may transition to local failure state 550 if a local failure is detected.
- the wireless power transmitter having the local failure state 550 may transition back to the lock failure state 560.
- transition to configuration state 510 in any one of the configuration state 510, power saving state 520, low power state 530, power transmission state 540, the wireless power transmitter has a local failure Once released, transition to configuration state 510 may occur.
- the wireless power transmitter may cut off the power supplied to the wireless power transmitter.
- the wireless power transmitter may transition to a local failure state 550 when a failure such as an overvoltage, an overcurrent, an overheat, or the like is detected, but is not limited thereto.
- the wireless power transmitter may transmit a predetermined power control command to at least one connected wireless power receiver to reduce the strength of the power received by the wireless power receiver.
- the wireless power transmitter may transmit a predetermined control command to the connected at least one wireless power receiver to stop charging of the wireless power receiver.
- the wireless power transmitter can prevent device damage due to overvoltage, overcurrent, overheating, and the like.
- the wireless power transmitter when the wireless power transmitter detects an overcurrent, an overvoltage, an overheating, a local failure of the connected wireless power receiver, including an expiration of a timer for handling a message, and the like, the wireless power transmitter transmits a detection result to a networked home network server Or (and) transmit to a cloud server for wireless power management.
- the wireless power transmitter transmits the detection result to a networked home network server or (and) cloud server for wireless power management or (and) adjacent wireless power. It may also transmit to the transmitter.
- the wireless power transmitter may transition to the lock failure state 560 when the intensity of the output current of the transmission resonator is greater than or equal to the reference value.
- the wireless power transmitter transitioned to the lock failure state 560 may attempt to make the intensity of the output current of the transmission resonator less than or equal to the reference value for a predetermined time.
- the attempt may be repeated for a predetermined number of times. If the lock failure state 560 is not released despite the repetition, the wireless power transmitter transmits a predetermined notification signal indicating that the lock failure state 560 is not released to the user by using a predetermined notification means. can do. In this case, when all the wireless power receivers located in the charging area of the wireless power transmitter are removed from the charging area by the user, the lock failure state 560 may be released.
- the wireless power transmitter may transmit a predetermined notification signal indicating that the lock failure state 560 is not released when the lock failure state 560 is not released for a predetermined time. May be sent to a cloud server for and / or to a neighboring wireless power transmitter.
- the lock failure state 560 is automatically released.
- the state of the wireless power transmitter may automatically transition from the lock failure state 560 to the power saving state 520 to perform the detection and identification procedure for the wireless power receiver again.
- the wireless power transmitter of the power transmission state 540 transmits continuous power and adaptively controls the output power based on the state information of the wireless power receiver and a predefined optimal voltage region setting parameter. have.
- the optimal voltage region setting parameter may include at least one of a parameter for identifying a low voltage region, a parameter for identifying an optimal voltage region, a parameter for identifying a high voltage region, and a parameter for identifying an overvoltage region. It may include.
- the wireless power transmitter may increase the output power if the power reception state of the wireless power receiver is in the low voltage region, and reduce the output power if the wireless power receiver is in the high voltage region.
- the wireless power transmitter may control the transmission power to maximize the power transmission efficiency.
- the wireless power transmitter may control the transmission power so that the deviation of the amount of power required by the wireless power receiver is equal to or less than the reference value.
- the wireless power transmitter may stop power transmission when the rectifier output voltage of the wireless power receiver reaches a predetermined overvoltage region, that is, when an over voltage is detected.
- the wireless power receiver or the electronic device connected to the wireless power receiver according to the present invention may calculate the estimated time to complete the charging of the load when the change in the power received in the power transmission state 540 is stabilized below the reference value. Can be.
- the wireless power receiver may determine that power reception is stabilized when the average intensity of the voltage or current measured at the rear end of the rectifier for a unit time is less than or equal to a reference value based on a predetermined optimal voltage or current intensity.
- the wireless power transmitter may determine whether power control to the corresponding wireless power receiver is stabilized based on state information received from the wireless power receiver. If the power control is stabilized, the wireless power transmitter may calculate the estimated time required for completing the charging based on the maximum charging capacity of the previously collected load, the current charging amount of the load, the charging efficiency of the load, and the like.
- the wireless power transmitter may receive voltage strength information V RECT measured at the rear of the rectifier from the wireless power receiver.
- the wireless power transmitter may determine that the power control is stabilized when the deviation of the V RECT value continuously received within a predetermined number remains within the reference value or the deviation of the V RECT value received for the predetermined time remains within the reference value. have.
- the wireless power transmitter may determine that power control is stabilized when the state information is not received from the wireless power receiver for a predetermined time in the power transmission state 540.
- FIG. 6 is a state transition diagram of a wireless power receiver according to an embodiment of the present invention.
- a state of a wireless power receiver may be classified into a disable state (610), a boot state (620), an enable state (630) (or an on state), and a system error state ( System Error State, 640).
- the state of the wireless power receiver may be determined based on the intensity of the output voltage at the rectifier terminal of the wireless power receiver, hereinafter, referred to as a V RECT business card.
- the activation state 630 may be divided into an optimal voltage state 631, a low voltage state 632, and a high voltage state 633 according to the value of V RECT .
- the wireless power receiver in the inactive state 610 may transition to the boot state 620 if the measured V RECT value is greater than or equal to the predefined V RECT_BOOT value.
- the wireless power receiver establishes an out-of-band communication link with the wireless power transmitter and V RECT Wait until the value reaches the power required by the load stage.
- Wireless power receiver in boot state 620 is V RECT When it is confirmed that the value has reached the power required for the load, the transition to the active state 630 may begin charging.
- the wireless power receiver in the activated state 630 may transition to the boot state 620 when charging is confirmed to be completed or stopped.
- the wireless power receiver in the activated state 630 may transition to the system error state 640.
- the system error may include overvoltage, overcurrent and overheating as well as other predefined system error conditions.
- the wireless power receiver in the activated state 630 is V RECT If the value falls below the V RECT _BOOT value, it may transition to an inactive state 610.
- the wireless power receiver of the boot state 620 or system failure condition 640 may be shifted by, inactive 610 falls below the value V RECT V RECT _BOOT value.
- the wireless power receiver or the electronic device connected to the wireless power receiver according to the present invention may calculate the estimated time to complete the charging of the load when the change in the power received in the activation state 630 is stabilized below the reference value. have.
- the wireless power receiver may determine that power reception is stabilized when the average intensity of the voltage V RECT measured at the rear end of the rectifier for a unit time has a deviation below a reference value based on a predetermined optimal voltage intensity.
- FIG. 7 is a diagram illustrating an operation region of a wireless power receiver based on V RECT according to an embodiment of the present invention.
- the wireless power receiver is maintained in an inactive state 610.
- the wireless power receiver transitions to the boot state 620 and may broadcast the advertisement signal within a predetermined time. Thereafter, when the advertisement signal is detected by the wireless power transmitter, the wireless power transmitter may transmit a predetermined connection request signal for establishing an out-of-band communication link to the wireless power receiver.
- the wireless power receiver is normally set to communicate the out-of-band link, if a successful registration, V RECT value of the minimum output voltage of the rectifier for a normal charge-to below, for convenience of explanation V RECT _ MIN as business card is reached You can wait until
- V RECT _ MIN If the V RECT value exceeds V RECT _ MIN , the state of the wireless power receiver transitions from boot state 620 to activation state 630 and may begin charging the load.
- V RECT _ MAX which is a predetermined reference value for determining the overvoltage
- the activation state 630 is divided into a low voltage state 632, an optimum voltage state 631, and a high voltage state 633 according to the value of V RECT . Can be.
- the wireless power receiver transitioned to the high voltage state 633 may suspend the operation of cutting off the power supplied to the load for a predetermined time, which is referred to as a high voltage state holding time for convenience of description below.
- the high voltage state holding time may be predetermined to prevent damage to the wireless power receiver and the load in the high voltage state 633.
- the wireless power receiver may transmit a predetermined message indicating an overvoltage occurrence to the wireless power transmitter through the out-of-band communication link within a predetermined time.
- the wireless power receiver may control the voltage applied to the load by using an overvoltage blocking means provided to prevent damage of the load due to the overvoltage in the system error state 630.
- an ON / OFF switch or a zener diode may be used as the overvoltage blocking means.
- the wireless power receiver may transmit a predetermined message indicating the occurrence of overheating to the wireless power transmitter.
- the wireless power receiver may reduce the heat generated internally by driving the provided cooling fan.
- the wireless power receiver may receive wireless power in cooperation with a plurality of wireless power transmitters.
- the wireless power receiver may transition to the system error state 640 if it is determined that the wireless power transmitter determined to receive the actual wireless power is different from the wireless power transmitter to which the actual out-of-band communication link is established.
- the wireless power receiver may determine that power reception is stabilized when the strength of the voltage V RECT measured at the rear of the rectifier is maintained at the optimum voltage state 631 for a predetermined time.
- the electronic device connected to the wireless power receiver or the wireless power receiver may calculate an estimated time required to complete charging of the load.
- FIG. 8 is a block diagram of a wireless charging system according to an embodiment of the present invention.
- the wireless charging system may be configured in a star topology, but is not limited thereto.
- the wireless power transmitter may collect various characteristic information and state information from the wireless power receiver through an out-of-band communication link, and control the operation and transmission power of the wireless power receiver based on the collected information.
- the wireless power transmitter may transmit its characteristic information and predetermined control signals to the wireless power receiver via an out-of-band communication link.
- the wireless power transmitter may determine the power transmission order for each wireless power receiver of the connected wireless power receiver, and may transmit wireless power according to the determined power transmission order.
- the wireless power transmitter may include a category of the wireless power receiver, a pre-assigned priority for each wireless power receiver, a power reception efficiency of the wireless power receiver or a power transmission efficiency in the wireless power transmitter, and a minimum between the wireless power transmitter and the wireless power receiver.
- the power transmission order may be determined based on at least one of resonance matching efficiency, charging efficiency at a load, a charging state of the wireless power receiver, and whether a system error occurs for each wireless power receiver.
- the wireless power transmitter may simultaneously transmit power to the plurality of wireless power receivers.
- the wireless power transmitter may determine a transmission slot for each connected wireless power receiver and transmit power in a time division manner.
- the wireless power transmitter may determine the amount of power to be transmitted for each connected wireless power receiver. For example, the wireless power transmitter may calculate the amount of power to be transmitted for each wireless power receiver based on the currently available power and the power reception efficiency for each wireless power receiver, and transmit the information about the calculated power to the wireless power receiver through a predetermined control message. You can also send.
- the wireless power transmitter is a wireless power receiver that is being charged when a new wireless power receiver is added to the charging area, when the existing wireless power receiver is being removed from the charging area, when the charging of the existing wireless power receiver is completed.
- the power redistribution procedure may be initiated.
- the power redistribution result may be transmitted to the connected wireless power receiver through a predetermined control message.
- the wireless power transmitter may generate and provide a timing synchronization signal (Tim Synchronization Signal) for acquiring time synchronization with the network-connected wireless power receiver (s).
- the time synchronization signal is a frequency band for transmitting wireless power, i.e., in-band, or a frequency band for performing out-of-band communication, i.e., out-of-band. Can be sent through.
- the wireless power transmitter and the wireless power receiver may manage communication timing and communication sequences of each other based on the time synchronization signal.
- FIG. 8 illustrates a configuration in which a wireless charging system including one wireless power transmitter and a plurality of wireless power receivers is connected to a network in a star topology, this is only one embodiment, and according to another embodiment of the present invention.
- a wireless charging system a plurality of wireless power transmitters and a plurality of wireless power receivers are connected to each other to form a link dynamically to transmit and receive wireless power.
- the wireless power transmitter may share its status information and / or status information of the wireless power receiver connected to the wireless power transmitter with another networked wireless power transmitter through a separate communication channel.
- the wireless power receiver may control the power to be seamlessly received through the handover between the wireless power transmitters.
- the wireless power receiver sums the powers received from the respective wireless power transmitters, and based on that, charging of the load is performed. You can also calculate the estimated time to complete. That is, the electronic device connected to the wireless power receiver or the wireless power receiver may adaptively calculate the charging completion time required according to the handover and control the electronic device to be displayed on the display screen.
- the wireless power transmitter also acts as a network coordinator and can exchange information with the wireless power receiver via an out-of-band communication link.
- the wireless power transmitter may receive various information of the wireless power receiver to generate and manage a predetermined device control table, and transmit network management information to the wireless power receiver based on the device control table. This allows the wireless power transmitter to create and maintain a wireless charging system network.
- FIG. 9 is a flowchart illustrating a wireless charging procedure according to an embodiment of the present invention.
- the wireless power transmitter may generate a beacon sequence when the wireless power transmitter is configured, ie, boot, and transmit the beacon sequence through the transmission resonator (S901).
- the wireless power receiver may broadcast an advertisement signal including its identification information and characteristic information (S903).
- the advertisement signal may be repeatedly transmitted at a predetermined period until the connection request signal, which will be described later, is received from the wireless power transmitter.
- the wireless power transmitter may transmit a predetermined connection request signal for establishing the out-of-band communication link to the wireless power receiver (S905).
- the wireless power receiver may establish an out-of-band communication link and transmit its static state information through the set out-of-band communication link (S907).
- the static state information of the wireless power receiver identifies category information, hardware and software version information, maximum rectifier output power information, initial reference parameter information for power control, information on a required voltage or power, and whether a power regulation function is installed. And at least one of information on supportable out-of-band communication schemes, information on supportable power control algorithms, and information on preferred rectifier stage voltage values initially set in the wireless power receiver.
- the static state information of the wireless power receiver may further include information on the maximum capacity of the load, information on the current charge amount of the load, and the like.
- the wireless power transmitter may transmit the static state information of the wireless power transmitter to the wireless power receiver through an out-of-band communication link (S909).
- the static state information of the wireless power transmitter may include information about transmitter output power information, rating information, hardware and software version information, information about the maximum number of wireless power receivers that can be supported, and / or information about the number of wireless power receivers currently connected. It may be configured to include at least one.
- the wireless power receiver monitors its real-time power reception state and charging state, and may transmit dynamic state information to the wireless power transmitter in a periodic or specific event (S911).
- the dynamic state information of the wireless power receiver includes information on the rectifier output voltage and current, information on the voltage and current applied to the load, information on the internal measurement temperature of the wireless power receiver, and change of reference parameters for power control ( Rectified voltage minimum value, rectified voltage maximum value, default preferred rectifier terminal voltage change value), charge status information, including information on whether the charge is completed, information on the current charge amount of the load, etc., system error Information, alert information, including, for example, local fault information, and the like.
- the wireless power transmitter may perform power adjustment by changing a setting value included in the existing static state information when the reference parameter change information for power control is received.
- the wireless power transmitter may control the wireless power receiver to start charging by issuing a predetermined control command through the out-of-band communication link (S913).
- the wireless power transmitter may dynamically control the transmission power by receiving the dynamic state information from the wireless power receiver (S915).
- the wireless power receiver may transmit the dynamic state information to the wireless power transmitter including data for identifying the system error and / or data indicating that the charging is completed ( S917).
- the system error may include overcurrent, overvoltage, overheating, and the like.
- the wireless power transmitter when the currently available power does not meet the required power of all connected wireless power receivers, the wireless power transmitter according to another embodiment of the present invention redistributes power to be transmitted to each wireless power receiver and issues a predetermined control command. It can also be transmitted to the corresponding wireless power receiver.
- the wireless power transmitter redistributes power to be received for each connected wireless power receiver based on the currently available power, and the wireless power receiver is received through a predetermined control command. Can also be sent to
- the wireless power transmitter may remain when wireless charging of the previously connected wireless power receiver is completed or the out-of-band communication link is released, including, for example, when the wireless power receiver is removed from the charging area.
- the power to be received for each wireless power receiver may be redistributed and transmitted to the corresponding wireless power receiver through a predetermined control command.
- the wireless power transmitter may determine whether the wireless power receiver has a power regulation function through a predetermined control procedure. In this case, when a power redistribution situation occurs, the wireless power transmitter may perform power redistribution only for the wireless power receiver equipped with the power adjustment function.
- the power redistribution situation may receive a valid advertisement signal from an unconnected wireless power receiver to receive a dynamic parameter indicating a new wireless power receiver is added or indicates the current state of the connected wireless power receiver, or a previously connected wireless power receiver is provided. Occurs when an event occurs such that it is confirmed that it no longer exists, the charging of the connected wireless power receiver is completed, or an alarm message indicating a system error state of the connected wireless power receiver is received. have.
- the system error state may include an overvoltage state, an overcurrent state, an overheat state, a network connection error state, and the like.
- the wireless power transmitter may transmit power redistribution related information to the wireless power receiver through a predetermined control command.
- the power redistribution related information may include command information for controlling power of a wireless power receiver, information for identifying whether to allow or deny a power transmission request, and a valid load variation of the wireless power receiver. It may include time information for generating a.
- the command for controlling the wireless power receiver power is a first command for controlling the wireless power receiver providing power received to the load, and a second command for allowing the wireless power receiver to indicate that charging is being made.
- the control unit may include a power control command for indicating a ratio of the maximum power provided by the wireless power transmitter to the maximum rectifier power of the wireless power receiver.
- the wireless power transmitter may not transmit the power adjustment command to the corresponding wireless power receiver.
- the wireless power transmitter may determine whether it is possible to provide the amount of power required by the wireless power receiver based on its available power. As a result of determination, when the required amount of power exceeds the available amount of power, the wireless power transmitter may check whether the power control function is installed in the corresponding wireless power receiver. As a result of the check, when the power adjustment function is mounted, the wireless power receiver may determine an amount of power to be received by the wireless power receiver within the amount of available power, and transmit the determined result to the wireless power receiver through a predetermined control command.
- the power redistribution may be performed within a range in which the wireless power transmitter and the wireless power receiver can operate normally and / or a normal charging range.
- the information for identifying whether to allow or deny the power transmission request may include a grant condition and a reason for rejection.
- the grant condition may include a grant subject to a wait for a certain time due to the lack of available power.
- Reasons for rejection may include rejection due to lack of available power, rejection due to exceeding the number of acceptable wireless power receivers, rejection due to overheating of the wireless power transmitter, rejection due to a limited class of wireless power transmitter, and the like.
- the wireless power transmitter collects detailed information on grant and rejection according to the power transmission request for a unit of time, and collects the detailed grant and rejection information from a networked home network server or cloud. You can send it to a server.
- the detailed grant and reject information collected is the number of times the total power transmission request has been received, the total grant count, the total reject count, the immediate grant count, the wait grant count, the reject count due to lack of power, and the rejection due to exceeding the number of wireless power receivers.
- the information may include at least one of the number of times of rejection due to an error of the wireless power transmitter system, the number of times of rejection due to authentication failure, and the number of times of rejection according to a limited grade.
- the home network server or cloud server for power management statistically processes the collected detailed grant and reject information for each wireless power transmitter and automatically transmits the processed statistical information to a predetermined user terminal or the like to request a user's inquiry. Accordingly, it can be transmitted to the corresponding user terminal.
- the user may determine whether to expand / change / remove the wireless power transmitter based on the received statistical information.
- the home network server or cloud server for power management may determine whether to expand / change / remove the wireless power transmitter based on the collected detailed grant and reject information for each wireless power transmitter, and determine the determination result. It may be transmitted to a predetermined user terminal.
- the wireless power receiver may support a plurality of out-of-band communication schemes. If the current out-of-band communication link is to be changed in another manner, the wireless power receiver may transmit a predetermined control signal to the wireless power transmitter requesting the out-of-band communication change. When the out-of-band communication change request signal is received, the wireless power transmitter may release the currently set out-of-band communication link and establish a new out-of-band communication link by the out-of-band communication method requested by the wireless power receiver.
- the out-of-band communication scheme applicable to the present invention may include Near Field Communication (NFC), Radio Frequency Identification (RFID), Bluetooth Low Energy (BLE), Wideband Code Division Multiple Access (WCDMA), and Long LTE.
- NFC Near Field Communication
- RFID Radio Frequency Identification
- BLE Bluetooth Low Energy
- WCDMA Wideband Code Division Multiple Access
- Long LTE Long LTE.
- Term Evolution / LTE-Advance communication and Wi-Fi communication.
- the communication between the transmitters may be performed through any one or at least one of a wired or wireless IP network, wideband code division multiple access (WCDMA) communication, long term evolution (LTE) / LTE-advance communication, and Wi-Fi communication. It may be, but is not limited thereto.
- FIG. 10 is a view for explaining a problem in the wireless charging system supporting the electromagnetic resonance method according to the prior art.
- the wireless power transmission pad 1000 that transmits power by a conventional electromagnetic resonance method is disposed in a charging bed 1001 and a lower portion of the charging bed 1001 having a planar shape and having a wireless power receiver. It is mounted in the form of a loop, it may be configured to include a transmission coil 1002 for transmitting an electromagnetic signal.
- the internal magnetic flux direction of the closed-loop transmitting coil and the external magnetic flux direction are opposite to each other, and the magnetic fluxes passing through the receiving coils located above or near the transmitting coil winding cancel each other so that the sum of the magnetic fluxes is almost zero. Accordingly, there is a charging shaded area 1003-that is, a dead zone-that is not wirelessly chargeable within a certain distance of the inside / outside of the transmission coil winding.
- the area or size of the charging shadow area 1003 may vary depending on the strength of the power flowing through the transmission coil.
- the area or the size of the charging shadow area 1003 may be different depending on the type of transmission coil mounted in the wireless power transmission device.
- the area or the size of the charging shadow area 1003 may be differently determined according to the grade of the wireless power transmitter as shown in Table 1 above.
- FIG. 11 is a view for explaining a problem in a wireless charging system supporting an electromagnetic resonance method according to the prior art.
- the conventional wireless power transmission pad 1100 is a closed loop at the edge portion of the charging bed 1101, that is, the outermost region, in order to minimize the area or size of the charging shaded region 1003 described in FIG. 10 above. Was configured to be mounted.
- the receiving coils such as the identification numbers 1111 and 1112 are located in the chargeable area
- normal charging may be performed.
- the center portion of the charging bed 1101 may be generated in another charging shaded region 1122 in which the magnetic flux of the transmitting coil 1102 does not reach.
- the receiving coil 1113 is located in the charging shading region 1122 formed in the center portion of the charging bed 1101, normal charging cannot be performed.
- the transmission coil 1102 in the form of a closed loop is mounted on the outermost side of the charging bed 1101, the length of the winding used for the transmission coil 1102, that is, the closed loop area of the transmission coil 1102 is
- the area of application of a shielding material (not shown) for preventing electromagnetic signals generated by the transmitting coil 1102 from affecting the control circuit (not shown) can also be increased in proportion to the increased closed loop area.
- the method of mounting the closed-loop transmission coil 1102 at the outermost part of the charging bed 1101 not only increases the manufacturing cost of the wireless power transmission apparatus but also causes the charging bed 1101 to have another charging shadow in the center portion. There is a disadvantage that can generate region 1122.
- FIG. 12 is a view for explaining a stacking structure of a wireless power transmission pad according to the prior art.
- the conventional wireless power transmission pad 1200 has a closed loop transmission coil 1202 mounted on the outermost portion of the charging bed 1201.
- a shield 1203 may be mounted at a lower end of the transmitting coil 1202 to block the electromagnetic signal generated from the transmitting coil 1202 from being transmitted to the control circuit board 1204.
- the area of the shielding material 1203 has to be mounted larger than the closed loop area of the transmitting coil 1202.
- FIG. 13 is a view for explaining the configuration of a wireless charging system according to an embodiment of the present invention.
- the wireless power transmission pad 1300 is disposed at a predetermined distance from the outermost side of the charging bed 1301 and the charging bed 1301 in which the wireless power receiver is disposed and has a flat shape. And a shielding material (not shown) mounted at the bottom of the transmitting coil 1302 so that the area corresponding to the closed loop is covered with a transmitting coil 1302 mounted in the form of a closed loop at the bottom of the charging bed 1301. Can be.
- the wireless power transmission apparatus according to the present invention may further include a control circuit board (not shown) for controlling the operation of the wireless power transmission pad 1300.
- the distance from which the closed-loop transmitting coil 1302 is spaced inwardly from the edge of the charging bed 1301 may be determined as a minimum value in which the chargeable area formed as the outer portion of the closed loop may be included in the charging bed.
- the chargeable region formed outside the closed loop may be determined based on the strength of the maximum power that can be transmitted through the transmitting coil 1302, but this is only one embodiment, and according to another embodiment of the present invention
- the chargeable region formed around the closed loop may be further determined based on the thickness of the transmitting coil, the number of turns of the transmitting coil, the material of the transmitting coil, and the like.
- the present invention by placing a closed loop transmitting coil 1302 spaced inward from the edge of the charging bed 1301, it is possible to generate another charging shadow area in the center portion of the charging bed 1301. There is an advantage that can be prevented in advance.
- the present invention has an advantage that the shielding and transmitting coil costs can be reduced by disposing a closed loop transmitting coil 1302 spaced inward from the edge of the charging bed 1301.
- the application area of the shielding material (not shown) according to the present invention may be determined to be larger than or equal to the inner area of the closed loop and smaller than the area of the filling bed 1301.
- the wireless power receiver applied to the wireless charging system according to the present invention may be equipped with a multi-receive coil.
- the placement of the receive coils should be determined such that the magnetic coupling coefficient between each receive coil has a value of zero or as small as possible.
- each receiving coil does not operate independently, and thus it is difficult to achieve the object of the present invention to overcome the dead zone.
- charging power is higher than receiving power in a state in which power is independently received for each receiving coil in a state in which magnetic flux between receiving coils is affected.
- the multi receiving coil according to the exemplary embodiment of the present invention may be configured by arranging the receiving coils to partially overlap each other, as shown in FIG. 1310.
- each receiving coil constituting the multi receiving coil is shown in FIG. 13 as a circle, this is only one embodiment, and a receiving coil according to another embodiment of the present invention will be described later.
- the fan coil may have a fan shape, and the final shape in which the fan coils are arranged may have a circle shape.
- the multiple receiving coils can be configured such that the receiving coils form a mutual ring.
- the multi-receive coil is illustrated as being configured using three receive coils in FIG. 13, this is only one embodiment, and the multi-receive coil according to another embodiment of the present invention may have four or more receive coils. It may be configured using. In this case as well, the size of the overlapping region must be determined so that the coupling coefficient between any two receiving coils among the first to Nth receiving coils has a value equal to 0 or less than a predetermined reference value.
- the first to Nth receiving coils may be arranged such that the area of the overlapping region between any two receiving coils of the first to Nth receiving coils is the same.
- the first receiving coil 1311 may be located in the charging shadow area, and the remaining second to third receiving coils 1312 and 1313 may be located in the chargeable area.
- the multi-receiving coil of the drawing identification number 1330 indicates that the first receiving coil 1331 is located in the charging shadow area, but the remaining second receiving coil 1332 and the third receiving coil 1333 are located in the chargeable area. Can be.
- the third receiving coil 1333 it can be seen that wireless charging is possible by utilizing the chargeable region formed at the outer side of the closed loop transmitting coil 1302.
- the multiple receiving coils composed of at least three receiving coils are placed in the charging bed 1301, at least one receiving coil is located in the chargeable area, and thus, wireless charging is interrupted or failed. There is an advantage that can be prevented.
- FIG. 14 is a view for explaining a stacking structure of a wireless power transmission apparatus according to an embodiment of the present invention.
- the stacked structure of the wireless power transmitter 1400 may include a charging bed 1401, a transmitting coil 1402 and a transmitting coil 1402 mounted in a closed loop on one side of a lower end of the charging bed 1402.
- both terminals of the transmitting coil 1402 should be electrically connected to the control circuit board 1403.
- shielding material 1403 may include sintered Ni-Zn ferrite, half silted Mn-Zn ferrite, amorphous FeSiB ribbon, Sendust-silicon, and the like.
- the shielding material 1403 is a metal-based magnetic powder and a polymer composite material (including a film and a coating) made of one or a combination of two or more elements such as Fe, Ni, Co, Mo, Si, Al, and B. It may be made of.
- the shielding material 1403 may be a polymer composite material (including a film and a coating) with a ferrite powder composed of a combination of two or more elements such as Fe, Ni, Mn, Zn, Co, Cu, and Ca. .
- the shielding material 1403 may be a ferrite-based sintered body made of a combination of two or more elements such as Fe, Ni, Mn, Zn, Co, Cu, and Ca, or may be half slitting processed to impart impact resistance.
- the shielding material 1403 may be a ferrite-based sintered body made of a combination of two or more elements of Fe, Co, Ba, Sr, Zn, Ti, and Sn.
- the shielding material 1403 is a polymer composite material with a ferritic powder composed of a combination of two or more elements of Fe, Ni, Mn, Zn, Co, Cu, Ca, Li, Ba, Sr, Ti, and Sn. It may be.
- the shielding material 1403 may be permalloy.
- FeSi, FeNi, FeCo, Ni and the like may be utilized.
- the shielding material 1403 may be configured in the form of a double-sided adhesive sheet or in the form of a sand dust block processed by mixing a metal powder and a synthetic resin having magnetic properties.
- the transmitting coil 1402 according to the present invention is arranged to be spaced inward from the edge of the charging bed 1401, and the area of the shielding material 1403 is equal to or larger than the closed loop area of the minimum transmitting coil 1402. It can be configured to. That is, the area of the shielding material 1403 may be larger than or equal to the closed loop area of the transmitting coil 1402 and smaller than the area of the charging bed 1401.
- the wireless power transmission apparatus 1400 according to the present invention may reduce manufacturing costs because fewer transmission coils and shielding materials are used, compared to the conventional method of disposing a closed loop transmission coil on the outermost side of a charging bed. There is an advantage.
- the wireless power transmission apparatus 1400 according to the present invention as shown in FIG. 11, the charging shadow area of the center portion of the charging bed that can be generated by placing the transmission coil of the closed loop form on the outermost of the charging bed There is an advantage that can be effectively prevented.
- 15A and 15B are diagrams for describing a structure of a multi-receive coil mounted in a wireless power receiver according to an embodiment of the present invention.
- the multi receiving coil 1500 is illustrated as being configured by combining three independent receiving coils, this is only one embodiment, and may be configured by combining two or four or more receiving coils. Be careful.
- the multi receiver coil 1500 may be configured to include a coil arrangement region 1510 and an output terminal region 1520.
- the first receiving coil 1501, the second receiving coil 1502, and the third receiving coil 1503 may be disposed in the coil arrangement area 1510.
- the first to third receiving coils 1501 to 1503 may be disposed such that some regions overlap each other. In this case, a region overlapping between the receiving coils should be determined such that the magnetic coupling coefficients between the receiving coils are 0 or the magnetic coupling coefficients are small enough to mean that the receiving coils operate independently of each other.
- windings of the first to third receiving coils 1501 to 1503 may be configured to form mutual rings.
- first to third receiving coils 1501 to 1503 may have a fan shape, and the overall arrangement of the first to third receiving coils 1501 to 1503 on the coil arrangement region 1510 may be circular. It may be in the form.
- the fan-shaped cabinet may be 120 degrees, which is 360 divided by 3, but is not limited thereto. If the multi-receiving coil is configured as receiving coils having four fan shapes, the cabinet of the fan may be 90 degrees, but is not limited thereto.
- the first to third receiving coils may be disposed such that the windings of the straight section of the fan coil windings are parallel to each other.
- each of the first to third receiving coils 1501 to 1503 may be 5
- the first to Nth receiving coils may have the same area of the region overlapping any two receiving coils among the first to Nth receiving coils. This can be arranged.
- both ends of each of the first to third receiving coils 1501 to 1503 may be coupled to an output terminal provided in the output terminal region 1520.
- the output terminal corresponding to each receiving coil may be connected to the rectifier.
- each receiving coil may be provided with a temperature sensing hole (1504 to 1506) so that a temperature sensor for measuring the temperature can be mounted.
- the multi-receive coil 1500 may be printed on a printed circuit board, but this is only one embodiment, and the multi-receive coil 1500 according to another embodiment of the present invention may include a copper coil wound a predetermined number of times. It may also be constructed by attaching a receiving coil made by adhering to a shielding material or a metal plate or made through nicking of a metal plate (for example, a copper plate) to the shielding material.
- FIG. 15B illustrates a structure of a multi receiving coil 1550 according to another embodiment.
- the multi receiving coil 1550 may be largely configured to include a coil arrangement region 1530 and an output terminal region 1540.
- the first receiving coil 1531, the second receiving coil 1532, and the third receiving coil 1533 may be disposed in the coil arrangement area 1530. As shown in FIG. 15B, the first to third receiving coils 1531 to 1533 may be disposed such that some regions overlap each other. In this case, a region overlapping between the receiving coils should be determined such that the magnetic coupling coefficients between the receiving coils are 0 or the magnetic coupling coefficients are small enough to mean that the receiving coils operate independently of each other.
- the windings of the first to third receiving coils 1531 to 1533 may be configured to form mutual rings.
- an area in which all of the first to third receiving coils 1531 to 1533 overlap each other may have a triangular shape, and on the coil arrangement area 1530 of the first to third receiving coils 1531 to 1533.
- the overall arrangement can be circular.
- FIG. 15B shows an arrangement structure of the multi receive coils 1550 when the number of receive coils is three.
- an angle at which two different receiving coil windings intersect hereinafter, for convenience of explanation, a crossing angle of a receiving coil may be 60 degrees, but is not limited thereto.
- the first to Nth receiving coils may have the same area of the region overlapping any two receiving coils among the first to Nth receiving coils. This can be arranged.
- both ends of each of the first to third receiving coils 1531 to 1533 may be coupled to an output terminal provided in the output terminal region 1540.
- the output terminal corresponding to each receiving coil may be connected to the rectifier.
- a temperature sensing hole (not shown) may be further provided at one side of each receiving coil so that a temperature sensor for temperature measurement may be mounted.
- the multi receiving coil 1550 may be printed and printed on a printed circuit board, but this is only one embodiment, and the multi receiving coil 1500 according to another exemplary embodiment of the present invention may include a copper coil wound a predetermined number of times. It may also be constructed by attaching a receiving coil made by adhering to a shielding material or a metal plate or made through nicking of a metal plate (for example, a copper plate) to the shielding material.
- 16 is a block diagram illustrating a configuration of a wireless power receiver according to an embodiment of the present invention.
- the wireless power receiver 1600 may include a receiver 1610, a rectifier 1620, a DC / DC converter 1630, and a load 1640.
- the receiver 1610 may be configured to include first to Nth receive coils as a multi receive coil.
- N may have a value of 3 or more.
- the rectifier 1620 may include a rectifier having the same number as the number of receiving coils included in the receiver 1610.
- a switch may be further provided between the receiver 1610 and the rectifier 1620.
- the AC power received through the receiving coils may be measured to select a receiving coil capable of receiving power above a predetermined reference value, and the AC power corresponding to the selected receiving coil may be configured to be delivered to the rectifier.
- the power sensor (s) (not shown) for measuring the strength of the AC power for each receiving coil and the receiving coil to receive power based on the sensing value of the power sensor, and the AC power of the selected receiving coil
- a control unit for controlling the switch to be delivered to this rectifier may further be included.
- the control unit May select the receiving coil for charging based on the strength of the rectifier output power for each receiving coil, that is, the DC power obtained through the switch control.
- the wireless power receiver may perform charging through a selected one of the receiving coils included in the multi receiving coils, but this is only an example, and the wireless power receiving device according to another example may be connected to the multi receiving coils. Note that charging may be performed using a plurality of receiving coils selected from among the included receiving coils.
- the DC / DC converter 1630 may convert DC power received from the rectifier 1620 into specific DC power required by the load 1640.
- 17 to 19 are views illustrating chargeable regions generated when a current is applied to a plurality of transmission coils according to an embodiment.
- a magnetic field is formed in the first region 1711, the second region 1713, and the third region 1715, thereby forming a corresponding region ( If the wireless power receiver is disposed at 1711, 1713, and 1715, charging may be performed.
- the second area 1713 is an area inside the first transmission coil and corresponds to an internal charging area.
- the first area 1711 and the third area 1715 correspond to areas outside the first transmission coil 1710.
- charging is not performed even if the wireless power receiver is disposed in an area (charge shading area) in which the first transmission coil 1710 is disposed. This is because the magnetic flux cancels out and the magnetic flux coupling becomes zero or an approximation of zero.
- the magnetic flux cancels out and the magnetic flux coupling becomes zero or an approximation of zero.
- the magnetic flux formed inside and outside the first transmission coil 1710 so that the reception coil is positioned on the first transmission coil 1710
- the magnetic flux passing through the receiving coil and the magnetic field formed inside the first transmitting coil 1710 are offset with the magnetic flux passing through the receiving coil.
- the center of the receiving coil is located at the center of the first transmitting coil 1710, the magnetic flux is completely canceled out and the magnetic flux coupling becomes zero.
- the charging shaded area includes a charging shaded inner region disposed inside the first transmission coil 1710 and a charged shaded outer region disposed outside the first transmission coil 1710. According to FIG. 17, a charging shaded region is formed between the second region 1713 and the third region 1715 between the first region 1711 and the second region 1713. At this time, if a current is applied to the second transmission coil 1720, the charging shaded region between the second region 1713 and the third region 1715 may be converted into a chargeable region.
- a magnetic field is formed in the fourth region 1721, the fifth region 1723, and the sixth region 1725, thereby forming a corresponding region ( If the wireless power receiver is disposed at 1721, 1723, and 1725, charging may be performed.
- the wireless power receiver is located in the region where the second transmission coil 1720 is disposed (between the fourth region 1721 and the fifth region 1723, and between the fifth region 1723 and the sixth region 1725). Even if is placed, charging is not performed. This is because the magnetic flux cancels out and the magnetic flux coupling becomes zero or an approximation of zero. 17, a detailed method will be omitted.
- the charging shadow region inevitably generated in the transmitting coil may be converted into the chargeable region by the power transmission of the adjacent transmitting coil.
- 20 is a diagram illustrating a process of transmitting and receiving a detection signal through an electromagnetic resonance method according to an embodiment. 1E to 7 and 20 will be described with reference to the reference numerals.
- the main controller 150 of the transmitter 100 may control a voltage application sequence to the first transmission coil 1710 to the third transmission coil 1730.
- the main controller 150 may determine the order to apply a voltage to the first transmission coil 1710 to the third transmission coil 1730, or control the voltage to be applied only to a specific coil.
- the main controller 150 may control the first transmission coil 1710 to the third transmission coil 1730 to periodically transmit the short beacon sequence in the power saving state 520.
- the main controller 150 may detect a change in the impedance of the receiver 1700 through the first transmission coil 1710 to the third transmission coil 1730. This is referred to as a short beacon sequence.
- the main controller 150 may periodically generate and transmit a long beacon sequence to the receiver 1700 so that the receiver 1700 supplies sufficient power for booting and responding in the power saving state 520.
- the main controller 150 may transmit wireless power to the receiver 1700 through the first transmission coil 1710.
- the main controller 550 may transmit wireless power through the corresponding transmission coil.
- the receiver 1700 is simultaneously detected by the first transmission coil 1710 and the second transmission coil 1720, and the receiver 1700 is located in the charging shadow area (1721 of FIG. 18).
- wireless power may be controlled to be transmitted to the receiver 1700 through the second transmission coil 1720.
- 21 is a diagram illustrating a direction of a magnetic field generated when a current is applied to a plurality of transmission coils according to an embodiment.
- the third region 1715 may form a magnetic flux in an upward direction.
- Magnetic flux may also be formed in a direction in which the fourth region 1721 and the sixth region 1725 by the second transmission coil 1720 rise from the bottom to the top.
- magnetic flux may be formed in a downward direction on the second region 1713 by the first transmission coil 1710 and the fifth region 1723 by the second transmission coil 1720.
- the magnetic flux of FIG. 21 is an example when the receiver 1700 is not disposed, and the magnetic flux of the magnetic flux is different from the scope of the present invention.
- 22 is a diagram illustrating a coupling coefficient according to a position of a wireless power receiver according to an embodiment.
- a wireless power receiver may be disposed in the fourth region 1721, the fifth region 1723, and the sixth region 1725.
- a wireless power receiver may be disposed in the tenth region 2210 but will not be discussed in detail here.
- the diameter of the wireless power receiver may be larger than the width D3 of the second transmission coil 1720, it will be described here with the assumption that the diameter of the receiver is smaller than the width of the second transmission coil 1720.
- the second transmission coil 1720 may have a transmission efficiency of about 10%. In this specification, it is assumed that charging is possible when the absolute value of the coupling coefficient is 0.03 or more.
- the absolute value of the coupling coefficient can also be changed. For example, if the transmission efficiency is set to 7%, charging can be performed even when the absolute value of the coupling coefficient is greater than 0.03.
- the absolute value of the coupling coefficient may be changed in various ways depending on the thickness, position of the coil, the shape, thickness, and position of the receiver coil.
- An absolute value of the coupling coefficient greater than 0.03 corresponds to the fourth region 121, the fifth region 1723, and the sixth region 1726. In this region, charging can be normally performed. However, in the region where the second transmission coil 1720 is disposed, the absolute value of the coupling coefficient is 0.03 or less, so that charging is impossible.
- 23 is a diagram illustrating an interval of a plurality of transmitting coils according to an embodiment.
- the receiver 1700 has a diameter of D1, and it is assumed that the first to third transmitting coils 1710, 1720, and 1730 have a width of D3 and a distance of D2 between the transmitting coils. In addition, it is assumed that D2 is (1/2) * D1. In addition, the upper portion of the coil of the first transmission coil 1710 (the intermediate point between the first region and the second region, the outside of the first transmission coil, the inside of the first transmission coil inside), the third transmission coil 1730 It is assumed that the width of the lower portion (the middle point of the eighth and ninth regions) where the coil is located is (1/3) * D1.
- the point where the coupling coefficient is the largest by the coil in the middle of the fourth region and the fifth region as the second transmission coil 1720 is, for example, (1/2) * D1 point ( Inside the transmitting coil) and the point with the largest coupling coefficient in the coil between the fifth and sixth regions is (1/2) * D1 (inside the transmitting coil) from the coil between the fifth and sixth regions. It can be a point, but when averaged, the center point of D3 can have the highest coupling coefficient.
- the chargeable width can be 3 * D3 + 2 * D2-(1/3) * 2 * D1.
- the length of the D2 may be changed to find the point where the magnetic flux coupling between the plurality of transmitting coils 1710 to 1730 is the best, and may be configured differently according to the thickness of the transmitting coil and the size of the receiver 1700.
- the receiver 1700 is assumed to be a wireless mouse and the transmitter is assumed to be a wireless mouse pad.
- the first transmission coil 1710 detects and identifies the receiver 1700.
- the main controller 150 may transmit the wireless power to the receiver 1700 through the first transmission coil 1710.
- the main controller 150 detects and identifies the receiver 1700 with the second transmission coil 1720, the first transmission is performed.
- the power of the coil 1710 may be cut off. That is, when the receiver 1700 enters a predetermined region of the second transmission coil 1720, the power of the first transmission coil 1710 is cut off, and wireless power is transferred to the receiver 1700 through the second transmission coil 1720. Can transmit
- the receiver 1700 If the receiver 1700 is in the region of the second transmission coil 1720 and enters the region of the third transmission coil 1730, the power of the second transmission coil 1720 is cut off and the third transmission coil is cut off. Power can be supplied to 1730.
- the main controller 150 may detect and identify the receiver 1700 through the first transmission coil 1710 and the second transmission coil 1720. Since the area where the receiver 1700 is disposed is a shaded area of the first transmission coil 1710, the main controller 150 cuts off the power of the first transmission coil 1710 and wirelessly via the second transmission coil 1720. Power may be sent to the receiver 1700. As a result, even if the receiver 1700 moves on the transmitter, seamless wireless power transmission and reception are possible. For example, referring to FIGS. 17 to 19, when wireless power is transmitted from the second area 1713 to the first transmission coil 1710 to the receiver 1700, and the receiver 1700 is moved to the fourth area 1721.
- the controller 150 cuts off the power of the first transmission coil 1710 and transmits wireless power through the second transmission coil 1720, or the first transmission coil 1710 and the second transmission coil 1720 are connected to each other. Wireless power can be transmitted together. Then, when the receiver 1700 is moved to the third area 1715, the wireless power is transmitted to the first transmission coil 1710, or simultaneously wirelessly transmitted to the first transmission coil 1710 and the second transmission coil 1720. Can transmit power. Then, in the fifth region 1723, the main controller 150 may transmit wireless power to the receiver 1700 only through the second transmission coil 1720.
- the main controller 150 may include the first transmission coil 1710 and the first transmission coil 1710.
- the wireless power may be transmitted to the receiver 1700 through both of the two transmission coils 1720.
- an electromagnetic resonance method is described, but the present invention may be implemented through a magnetic induction method.
- the method according to the embodiment described above may be stored in a computer-readable recording medium that is produced as a program for execution on a computer, and examples of the computer-readable recording medium include ROM, RAM, CD-ROM, magnetic tape , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of carrier waves (eg, transmission over the Internet).
- the computer readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
- functional programs, codes, and code segments for implementing the above-described method may be easily inferred by programmers in the art to which the embodiments belong.
- the present invention can be used in the field of wireless charging, and in particular, can be applied to a wireless power receiver and a wireless power transmitter.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
본 발명은 무선 충전 시스템을 이용한 무선 충전 시스템 및 그를 위한 장치에 과한 것으로서, 본 발명의 일 실시예에 따른 무선 전력 수신 장치는 무선 전력 신호를 수신하기 위해 동일 평면에 일부 중첩되도록 배치되는 제1 내지 제N 수신 코일과 상기 제1 내지 제N 수신 코일 중 적어도 어느 하나에 의해 유도된 교류 전력을 전달하기 위해 상기 제1 내지 제N 수신 코일 각각의 양 종단이 연결되도록 형성된 제1 내지 제N 출력 단자와 상기 제1 내 제N 출력 단자로부터 입력되는 상기 교류 전력을 직류 전력으로 변환하는 정류기를 포함할 수 있다. 따라서, 본 발명은 충전 중단을 최소화시킬 뿐만 아니라 무선 전력 송신 장치의 제조 비용을 최소화시킬 수 있는 장점이 있다.
Description
본 발명은 무선 충전 기술에 관한 것으로서, 상세하게, 충전 베드상의 충전 음영 지역을 제거함으로써, 충전 가능 영역을 최대화시키는 것이 가능한 무선 충전 시스템 및 그를 위한 장치들에 관한 것이다.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다.
언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 핸드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다.
현재까지 무선을 이용한 에너지 전달 방식은 크게 전자기 유도 방식, 전자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 RF 전송 방식 등으로 구분될 수 있다.
전자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.
전자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.
단파장 무선 전력 전송 방식-간단히, RF 전송 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.
무선 전력 전송 기술은 모바일 뿐만 아니라 IT, 철도, 자동차, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.
일반적으로, 폐루프 송신 코일의 권선을 중심으로 내부와 외부는 전자기장의 방향이 반대이고 이에 따라, 폐루프 송신 코일의 권선 주변에는 충전 음영 영역이 존재한다.
만약, 무선 전력 수신 장치의 수신 코일이 충전 음영 영역에 위치하는 경우, 무선 충전이 정상적으로 이루어질 수 없는 문제점이 있다.
이에 따라, 종래에는 충전 베드의 최외곽에 폐루프 송신 코일을 배치함으로써, 충전 음영 영역을 최소화시키려는 시도가 있었다.
하지만, 종래의 방식이 적용된 무선 충전 시스템은 폐루프 송신 코일의 외부 영역에 형성되는 충전 가능 영역을 사용할 수 없을 뿐만 아니라 폐루프 송신 코일의 면적에 해당되는 크기의 차폐재가 무선 전력 송신 장치에 사용되어야 하는 문제점이 있었다.
또한, 종래의 방식이 적용된 무선 충전 시스템은 폐루프 송신 코일을 충전 베드의 최외곽에 배치함에 따라 사용되는 송신 코일의 길이가 증가하는 문제점이 있었다.
이하, 종래 기술에서 제공하는 복수의 송신 코일이 구비된 무선 전력 기기를 도 1a 내지 도 1d를 참조하여 설명하기로 한다.
도 1a의 도면 부호 (a) 및 (b)는 는 종래기술의 무선 전력 송신기 및 무선 전력 수신기를 나타낸다. 도 1a의 도면 부호 (a)에 따르면, 무선 전력 송신기(11)는 무선 전력 전송하는 송신 코일(13)를 내장한다. 무선 전력 전송기(11)는 송신 코일(13)을 통해 무선 전력을 무선 전력 수신기(15)로 전송한다. 무선 전력 송신기(11)는 전자기 공진 방식을 통해 무선 전력 수신기(15)에 파워를 전송할 수 있다. 도 1a의 도면 부호 (b)는 무선 전력 송신기(11) 및 무선 전력 수신기(15)의 측면을 표현한 것이다. 무선 전력 수신기(15)는 전자기 공진 방식으로 무선 전력을 수신하기에 충분한 거리를 무선 전력 송신기(11)와 두어 배치될 수 있다.
도 1b는 상술한 송신 코일(13)의 충전 가능 영역을 설명하기 위한 도면이다. 송신 코일(13)은 무선 전력 송신기(11)의 외곽부분에 배치될 수 있다. 충전 가능 영역은 제1 영역(21), 제2 영역(25)이 된다. 제1 영역(21)은 송신 코일(13)에 외곽에 배치되고, 제2 영역(25)은 송신 코일(13)의 내부에 배치된다. 외곽 및 내부를 송신 코일의 내외에 배치된 것에 기초하여 설정하기로 한다.
여기서, 충전 불가능한 영역은 제3 영역(23), 제4 영역(27)이 될 수 있다. 제3 영역(23)은 송신 코일(13) 및 수신 코일(미도시)의 임피던스의 매칭이 어려운 충전 불가 영역이다. 제3 영역(23)도 송신 코일(13)의 외부에 있는 영역은 충전 불가 외부 영역이고 송신 코일(13)의 내부에 있는 영역은 충전 불가 내부 영역에 해당된다. 송신 코일(13)의 센터 부분인 제4 영역(27)은 수신코일과의 자기결합량이 매우 적어 전력전송 효율이 매우 낮게 형성된다.
종래기술에서는 도 1b의 한계를 극복하기 위해서 도 1c와 같은 송신 코일(13)이 배치될 수 있다. 송신 코일(13)은 하나로 구성되어 고리를 두개 구성한다. 내부의 고리를 내부 고리로 내부 고리를 외곽에서 감싸는 고리를 외부 고리라 할 수 있다. 송신 코일(13)은 제4 영역(27)의 충전 불가 영역을 내부 고리 영역을 통해 개선(33)하나, 이와 동시에 내부 고리 영역(31)에 충전 불가 영역이 발생될 수 있다. 이에 따라, 충전이 끊어질 수 있고, 사용상 불편함이 발생될 수 있다.
종래기술에서는 도 1c와 같은 문제점을 해결하기 위해 제1 송신 코일(13)과 별개로 제2 송신 코일(41)를 제1 송신 코일(13)의 충전 가능 영역에 둠으로 도 1d와 같이 도 1c에서 설명한 문제점을 해결하였다. 여기서, 제2 송신 코일(41)이 내부 고리를 구성하고 제1 송신 코일(13)이 외부 고리를 구성한다. 송신기는 제1 송신 코일(13)과 제2 송신 코일(41)에 교대로 전류를 인가하여, 충전 영역에 끊어짐이 없게 되었다. 그러나, 도 1d와 같은 경우에도 제1 송신 코일(13)과 제2 송신 코일 간 자기 결합이 매우 높아져 전력 손실이 커지게 되어 있다. 이는 제1 송신 코일(13)에서 자기장이 발생되는 경우, 자기장 발생 영역에 제2 송신 코일(41)이 배치되기 떄문이다.
따라서, 보다 개선된 무선 전력 송신 기기의 대두가 요청된다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 무선 충전 시스템 및 그를 위한 장치를 제공하는 것이다.
본 발명의 다른 목적은 충전 음영 영역을 제거하는 것이 가능한 무선 충전 시스템 및 그를 위한 장치를 제공하는 것이다.
본 발명의 다른 목적은 충전 가능 영역을 극대화시키는 것이 무선 충전 시스템 및 그를 위한 장치를 제공하는 것이다.
본 발명의 또 다른 목적은 수신 코일 간 결합계수가 최소 값을 가지는 무선 전력 수신 패드를 무선 전력 수신 장치에 탑재함으로써, 충전 음영 영역을 제거하는 것이 가능한 무선 충전 시스템 및 그를 위한 장치를 제공하는 것이다.
본 발명의 다른 목적은 무선 전력 수신기에 대한 충전 효율을 높이는 복수의 송신 코일을 구비한 무선 전력 송신기 및 그 구동 방법을 제공함에 있다.
본 발명의 다른 목적은 충전 음영 영역을 충전 가능 영역으로 전환시키는 복수의 송신 코일을 구비한 무선 전력 송신기 및 그 구동 방법을 제공함에 있다.
본 발명의 다른 목적은 무선 전력 수신기의 얼라인먼트에 따라 무선 충전이 수행되지 않는 경우, 무선 충전을 가능케하는 무선 전력 송신기 및 그 구동 방법을 제공함에 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명은 무선 충전 시스템을 이용한 무선 충전 시스템 및 그를 위한 장치 들을 제공할 수 있다.
본 발명의 일 실시예에 따른 무선 전력 수신 장치는 무선 전력 신호를 수신하기 위해 동일 평면에 일부 중첩되도록 배치되는 제1 내지 제N 수신 코일과 상기 제1 내지 제N 수신 코일 중 적어도 어느 하나에 의해 유도된 교류 전력을 전달하기 위해 상기 제1 내지 제N 수신 코일 각각의 양 종단이 연결되도록 형성된 제1 내지 제N 출력 단자와 상기 제1 내 제N 출력 단자로부터 입력되는 상기 교류 전력을 직류 전력으로 변환하는 정류기를 포함할 수 있다.
또한, 상기 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이의 결합 계수가 0 또는 소정 기준치 이하인 값을 갖도록 상기 중첩되는 영역의 크기가 결정될 수 있다.
또한, 상기 제1 내지 제N 수신 코일의 권선이 상호 고리를 형성되도록 상기 제1 내지 제N 수신 코일이 배치될 수 있다.
또한, 상기 제1 내지 제N 수신 코일 각각은 부채꼴의 형태를 가지도록 구성될 수 있다.
또한, 상기 일부 중첩되도록 배치된 상기 제1 내지 제N 수신 코일의 전체적인 외형이 원의 형태를 가질 수 있다.
또한, 상기 부채꼴의 내각은 360을 상기 N으로 나눈 값일 수 있다.
또한, 상기 부채꼴를 이루는 수신 코일의 권선 중 직선 구간의 권선이 상호 평행하도록 상기 제1 내지 제N 수신 코일이 배치될 수 있다.
또한, 상기 N은 3이상일 수 있다.
또한, 상기 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이에 중첩되는 영역의 면적이 모두 동일하도록 상기 제1 내지 제N 수신 코일이 배치될 수 있다.
또한, 상기 출력 단자 별 상기 정류기가 구비될 수 있다.
또한, 상기 무선 전력 신호는 소정 공진 주파수로 변조되어 무선으로 수신되는 교류 전력 신호일 수 있다.
또한, 상기 제1 내지 제N 수신 코일 중 적어도 하나의 권선 내부 일측에 온도 측정을 위한 온도 센서가 더 구비될 수도 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신 패드는 무선 전력 수신 장치가 배치되고 평면 형태를 가지는 충전 베드과 상기 충전 베드의 최외곽으로부터 내측으로 일정 거리 이격되어 상기 충전 베드의 하단에 폐루프의 형태로 장착되는 송신 코일과 상기 폐루프의 내부 면적이 커버되도록 상기 송신 코일의 하단에 장착되는 차폐재를 포함하여 구성될 수 있다.
여기서, 상기 내측으로 이격되는 일정 거리는 상기 폐루프의 외곽으로 형성되는 충전 가능 영역이 상기 충전 베드에 모두 포함될 수 있는 최소값으로 결정될 수 있다.
또한, 상기 폐루프의 외곽으로 형성되는 충전 가능 영역은 상기 송신 코일을 통해 전송 가능한 최대 전력의 세기 또는 상기 무선 전력 송신 패드가 장착되는 무선 전력 송신 장치의 등급에 기반하여 결정될 수 있다.
또한, 상기 차폐재의 면적은 상기 폐루프의 내부 면적보다 크거나 같고, 상기 충전 베드의 면적보다 작은 것을 특징으로 한다.
또한, 상기 무선 전력 수신 장치를 상기 충전 베드에 배치 가능한 영역에서 상기 폐루프의 내부 영역을 제외한 영역도 충전 가능 영역일 수 있다.
또한, 상기 무선 전력 송신 패드는 전자기 공진 방식으로 무선 전력을 전송하는 무선 전력 송신 장치에 탑재될 수 있다.
본 발명의 또 다른 일 실시예에 무선 충전 시스템은 따른 전자기 신호를 수신하기 위해 동일 평면에 일부 중첩되도록 배치되는 제1 내지 제N 수신 코일과 상기 제1 내지 제N 수신 코일에 의해 유도된 교류 전력을 전달하기 위해 상기 제1 내지 제N 수신 코일 각각의 양 종단을 연결하도록 형성된 제1 내 제N 출력 단자와 상기 제1 내 제N 출력 단자로부터 입력되는 상기 교류 전력을 직류 전력으로 변환하는 정류기를 포함하여 구성된 무선 전력 수신 장치와 상기 무선 전력 수신 장치가 배치되며 평면 형태를 가지는 충전 베드와 상기 충전 베드의 최외곽으로부터 내측으로 일정 거리 이격되어 상기 충전 베드의 하단에 폐루프의 형태로 장착되는 송신 코일과 상기 폐루프의 내부 면적이 커버되도록 상기 송신 코일의 하단에 장착되는 차폐재를 포함하여 구성된 무선 전력 송신 장치를 포함할 수 있다.
여기서, 상기 폐루프를 형성하는 권선 주변으로 충전 음영 영역이 존재하며, 상기 제1 내지 제N 수신 코일 중 적어도 하나의 수신 코일이 상기 충전 음영 영역에 위치되지 않도록 상기 제1 내지 제N 수신 코일이 상기 무선 전력 수신 장치에 배치될 수 있다.
또한, 상기 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이의 결합 계수가 0 또는 소정 기준치 이하인 값을 갖도록 상기 중첩되는 영역의 크기가 결정될 수 있다.
또한, 상기 무선 전력 송신 장치는 전자기 공진 방식으로 상기 무선 전력 수신 장치에 무선 전력을 전송할 수 있다.
본 발명의 일 실시예에 따른 복수의 송신 코일이 구비된 무선 전력 송신기는
소정 거리를 두고 나란히 배치되되, 상부 루프 및 하부 루프를 각각 형성하는 복수의 송신코일; 및 상기 복수의 송신코일을 통해 무선 전력을 송출하도록 제어하는 제어부;를 포함하며, 상기 복수의 송신코일 중 서로 인접한 제1 송신코일 및 제2 송신코일 세트 각각은, 상기 제1 송신코일의 외측 영역 중에서 제1 송신코일의 하부 루프에 의한 충전 영역이 상기 제2 송신코일의 상부 루프에 의한 충전 음영 영역을 오버랩하도록 상기 복수의 송신코일이 배치될 수 있다.
소정 거리를 두고 각각 배치되되, 인접한 송신코일 사이의 영역에 무선 전력 수신기가 배치되더라도, 상기 무선 전력 수신기가 충전되도록 무선 전력 송출이 가능한 제1 내지 제N 송신코일; 및 무선 전력 수신기가 감지되면, 상기 제1 내지 제N 송신코일을 통해 무선 전력을 상기 무선 전력 수신기로 송출하도록 제어하는 제어부;를 포함할 수 있다.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 따른 방법 및 장치에 대한 효과에 대해 설명하면 다음과 같다.
본 발명은 무선 충전 시스템 및 그를 위한 장치를 제공하는 장점이 있다.
또한, 본 발명은 충전 베드상의 차폐재 및 송신 코일의 적용 면적을 최소화시킴으로써 무선 전력 송신 장치의 제조 비용을 효과적으로 절감할 수 있는 장점이 있다.
또한, 본 발명은 폐루프 송신 코일 외곽에 형성되는 충전 가능 영역을 사용함으로써, 충전 가능 영역을 극대화시키는 것이 무선 충전 시스템 및 그를 위한 장치를 제공하는 장점이 있다.
본 발명은 수신 코일 간 결합계수가 최소 값을 가지는 무선 전력 수신 패드를 무선 전력 수신 장치에 탑재함으로써, 충전 음영 영역을 제거하는 것이 가능한 무선 충전 시스템 및 그를 위한 장치를 제공하는 장점이 있다.
본 발명에 따르면, 복수의 송신 코일이 구비된 무선 전력 기기 및 그 구동 방법을 제공되는 장점이 있다.
본 발명에 따르면, 무선 전력 수신기에 대한 충전 효율이 높아져 충전 효율성 및 사용자 편의성이 향상될 수 있다.
본 발명에 따르면, 충전 음영 영역이 해소되어 충전 효율성 및 사용자 편의성이 향상될 수 있다.
본 발명에 따르면, 무선 전력 수신기의 얼라인먼트에 따라 무선 충전이 수행되지 않는 경우, 무선 충전이 가능케되어 사용자 편의성이 향상될 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1a 내지 도 1d는 종래기술의 무선 전력 송신 기기를 나타내는 도면이다.
도 1e는 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 구조를 설명하기 위한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 무선 전력 송신기의 타입 및 특성을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 무선 전력 수신기의 타입 및 특성을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 무선 충전 시스템의 등가 회로도이다.
도 5는 본 발명의 일 실시예에 따른 무선 전력 송신기에서의 상태 천이 절차를 설명하기 위한 상태 천이도이다.
도 6은 본 발명의 일 실시예에 따른 무선 전력 수신기의 상태 천이도이다.
도 7은 본 발명의 일 실시예에 따른 VRECT에 따른 무선 전력 수신기의 동작 영역을 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 무선 충전 시스템의 구성도이다.
도 9는 본 발명의 일 실시예에 따른 무선 충전 절차를 설명하기 위한 흐름도이다.
도 10은 종래 기술에 따른 전자기 공진 방식을 지원하는 무선 충전 시스템에서의 문제점을 설명하기 위한 도면이다.
도 11은 종래 기술에 따른 전자기 공진 방식을 지원하는 무선 충전 시스템에서의 문제점을 설명하기 위한 도면이다.
도 12는 종래 기술에 따른 무선 전력 송신 패드의 적층 구조를 설명하기 위한 도면이다.
도 13은 본 발명의 일 실시예에 따른 무선 충전 시스템의 구성을 설명하기 위한 도면이다.
도 14는 본 발명의 일 실시예에 따른 무선 전력 송신 장치의 적층 구조를 설명하기 위한 도면이다.
도 15a 및 15b는 본 발명의 일 실시예에 따른 무선 전력 수신 장치에 장착되는 멀티 수신 코일의 구조를 설명하기 위한 도면이다.
도 16은 본 발명의 일 실시예에 따른 무선 전력 수신 장치의 구성을 설명하기 위한 블록도이다.
도 17 내지 도 19는 실시예에 따른 복수의 송신코일에 전류가 인가되는 경우 생성되는 충전 가능 영역을 나타내는 도면이다.
도 20은 실시예에 따른 전자기 공진 방식을 통해 감지신호를 송수신하는 과정을 나타내는 도면이다.
도 21은 실시예에 따른 복수의 송신코일에 전류가 인가되는 경우 생성되는 자기장의 방향을 나타내는 도면이다.
도 22는 실시예에 따른 무선 전력 수신기의 위치에 따른 결합계수를 나타내는 도면이다.
도 23은 실시예에 따른 복수의 송신 코일의 간격을 나타내는 도면이다.
도 24 내지 도 26은 실시예에 따른 수신기가 송신기 상에서 이동될 때, 무선 전력 전송을 설명하기 위한 도면이다.
본 발명의 일 실시예에 따른 무선 전력 수신 장치는 무선 전력 신호를 수신하기 위해 동일 평면에 일부 중첩되도록 배치되는 제1 내지 제N 수신 코일과 상기 제1 내지 제N 수신 코일 중 적어도 어느 하나에 의해 유도된 교류 전력을 전달하기 위해 상기 제1 내지 제N 수신 코일 각각의 양 종단이 연결되도록 형성된 제1 내지 제N 출력 단자와 상기 제1 내 제N 출력 단자로부터 입력되는 상기 교류 전력을 직류 전력으로 변환하는 정류기를 포함할 수 있다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 본 발명의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다. 이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 저장매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를 구현할 수 있다. 컴퓨터 프로그램의 저장매체로서는 자기 기록매체, 광 기록매체, 캐리어 웨이브 매체 등이 포함될 수 있다.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)", "전(앞) 또는 후(뒤)"에 형성되는 것으로 기재되는 경우에 있어, "상(위) 또는 하(아래)" 및"전(앞) 또는 후(뒤)"는 두 개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
실시예의 설명에 있어서, 무선 전력 시스템상에서 무선 전력을 송신하는 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다.
또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.
본 발명에 따른 무선 전력 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 벽걸이 형태, 차량 매립 형태, 차량 거치 형태 등으로 구성될 수 있으며, 하나의 무선 전력 송신기는 복수의 무선 전력 수신기에 동시 또는 시분할하여 전력을 전송할 수 있다.
특히, 본 발명에 따른 무선 전력 송신기는 무선 마우스의 충전을 위한 마우스 패드의 형태로 구성될 수 있다.
이를 위해, 무선 전력 송신기는 적어도 하나의 무선 전력 전송 수단을 구비할 수도 있다.
또한, 본 발명에 따른 무선 전력 송신기는 다른 무선 전력 송신기와 네트워크 연결되어 연동될 수 있다. 일 예로, 무선 전력 송신기는 블루투스와 같은 근거리 무선 통신을 이용하여 상호 연동될 수 있다. 다른 일 예로, 무선 전력 송신기는 WCDMA(Wideband Code Division Multiple Access), LTE(Long Term Evolution)/LTE-Advanced, Wi-Fi 등의 무선 통신 기술을 이용하여 상호 연동될 수도 있다.
본 발명에 적용되는 무선 전력 전송 수단은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기 유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 여기서, 전자기 유도 방식의 무선파워 전송 표준은 WPC(Wireless Power Consortium) 또는/및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
다른 일 예로, 무선 전력 전송 수단은 무선 파워 송신기의 송신 코일에 의해 발생되는 자기장을 특정 공진 주파수에 동조하여 근거리에 위치한 무선 파워 수신기에 전력을 전송하는 전자기 공진(Electromagnetic Resonance) 방식이 이용될 수도 있다. 일 예로, 전자기 공진 방식은 무선 충전 기술 표준 기구인 A4WP(Alliance for Wireless Power)에서 정의된 공진 방식의 무선 충전 기술을 포함할 수 있다.
또 다른 일 예로, 무선 전력 전송 수단은 RF 신호에 저전력의 에너지를 실어 원거리에 위치한 무선 파워 수신기로 전력을 전송하는 RF 무선 파워 전송 방식이 이용될 수도 있다.
본 발명의 또 다른 일 예로, 본 발명에 따른 무선 전력 송신기는 상기한 전자기 유도 방식, 전자기 공진 방식, RF 무선 파워 전송 방식 중 적어도 2개 이상의 무선 전력 전송 방식을 지원할 수 있도록 설계될 수도 있다.
이 경우, 무선 전력 송신기는 접속된 무선 전력 수신기가 지원 가능한 무선 전력 전송 방식으로 전력을 전송할 수 있다. 일 예로, 무선 전력 수신기가 복수의 무선 전력 전송 방식을 지원하는 경우, 무선 전력 송신기는 해당 무선 전력 수신기를 위한 최적의 무선 전력 전송 방식을 선택하고, 선택된 무선 전력 전송 방식으로 전력을 전송할 수도 있다. 다른 일 예로, 무선 전력 송신기는 무선 전력 수신기의 타입, 전력 수신 상태, 요구되는 전력 등에 기반하여 적응적으로 해당 무선 전력 수신기를 위해 사용할 무선 전력 전송 방식을 결정할 수도 있다.
또한, 본 발명의 일 실시예에 따른 무선 전력 수신기는 적어도 하나의 무선 전력 수신 수단이 구비될 수 있으며, 2개 이상의 무선 전력 송신기로부터 동시에 무선 전력을 수신할 수도 있다. 여기서, 무선 전력 수신 수단은 상기 전자기 유도 방식, 전자기 공진 방식, RF 무선 파워 전송 방식 중 적어도 하나를 포함할 수 있다.
또한, 본 발명의 다른 일 실시예에 따른 무선 전력 수신기는 무선 전력 수신 수단 별 측정된 수신 감도 또는 전력 전송 효율 등에 기반하여 최적의 무선 전력 수신 수단을 선택하여 전력을 수신할 수도 있다.
본 발명에 따른 무선 전력 수신기는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌 등의 소형 전자 기기 등에 탑재될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 무선으로 전력 수신이 가능하거나 배터리 충전이 가능한 기기라면 족하다. 본 발명의 다른 일 실시예에 따른 무선 전력 수신기는 TV, 냉장고, 세탁기 등을 포함하는 댁내 가전기기, 차량, 무인 항공기, 에어 드론, 로봇 등에도 탑재될 수 있다.
특히, 본 발명에 따른 무선 전력 수신기는 멀티 수신 코일이 탑재될 수 있으며, 무선 마우스의 일측에 장착될 수 있다.
이하에서는 무선 충전 방식이 전자기 공진 방식인 경우를 예를 들어, 본 발명의 일 실시예에 따른 무선 충전 시스템 및 그를 위한 무선 전력 송신 장치 및 무선 전력 수신 장치를 상세히 설명하기로 한다.
도 1e는 본 발명의 일 실시예에 따른 무선 충전 시스템의 구조를 설명하기 위한 블록도이다.
도 1e를 참조하면, 무선 충전 시스템은 무선 전력 송신기(100)와 무선 전력 수신기(200)를 포함하여 구성될 수 있다.
상기 도 1e에는 무선 전력 송신기(100)가 하나의 무선 전력 수신기(200)에 무선 파워를 전송하는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 무선 전력 송신기(100)는 복수의 무선 전력 수신기(200)에 무선 파워를 전송할 수도 있다. 또 다른 일 실시예에 따른 무선 전력 수신기(200)는 복수의 무선 전력 송신기(100)로부터 동시에 무선 전력을 수신할 수도 있음을 주의해야 한다.
무선 전력 송신기(100)는 특정 공진 주파수를 이용하여 교류 전력 신호를 발생시켜 무선 전력 수신기(200)에 전력을 송신할 수 있다.
무선 전력 수신기(200)는 무선 전력 송신기(100)에 의해 사용되는 공진 주파수와 동일한 주파수로 동조하여 교류 전력 신호를 수신할 수 있다. 즉, 무선 전력 수신기(200)는 공진 현상을 통해 무선 전력 송신기(100)에 의해 송출되는 전력을 무선으로 수신할 수 있다.
일 예로, 무선 전력 전송을 위해 사용되는 공진 주파수는 6.78MHz 대역일 수 있으나, 이에 국한되지는 않는다.
이때, 무선 전력 송신기(100)에 의해 전송된 전력은 무선 전력 송신기(100)와 공진을 이루는 무선 전력 수신기(200)에만 전달될 수 있다.
하나의 무선 전력 송신기(100)로부터 전력을 수신할 수 있는 무선 전력 수신기(200)의 최대 개수는 무선 전력 송신기(100)의 최대 전송 파워 레벨, 무선 전력 수신기(200)의 최대 전력 수신 레벨, 무선 전력 송신기(100) 및 무선 전력 수신기(200)의 물리적인 구조에 기반하여 결정될 수 있다.
무선 전력 송신기(100)와 무선 전력 수신기(200)는 무선 전력 전송을 위한 주파수 대역-즉, 공진 주파수 대역-과는 상이한 주파수 대역으로 양방향 통신을 수행할 수 있다. 일 예로, 양방향 통신은 반이중 방식의 BLE(Bluetooth Low Energy) 통신 프로토콜이 사용될 수 있으나, 이에 한정되지는 않는다.
무선 전력 송신기(100)와 무선 전력 수신기(200)는 상기 양방향 통신을 통해 서로의 특성 및 상태 정보-즉, 전력 협상 정보-를 교환할 수 있다.
일 예로, 무선 전력 수신기(200)는 무선 전력 송신기(100)로부터 수신되는 전력 레벨을 제어하기 위한 소정 전력 수신 상태 정보를 양방향 통신을 통해 무선 전력 송신기(100)에 전송할 수 있으며, 무선 전력 송신기(100)는 수신된 전력 수신 상태 정보에 기반하여 동적으로 전송 전력 레벨을 제어할 수 있다. 이를 통해, 무선 전력 송신기(100)는 전력 전송 효율을 최적화시킬 수 있을 뿐만 아니라 과전압(Over-Voltage)에 따른 부하 파손을 방지하는 기능, 저전압(Under-Voltage)에 따라 불필요한 전력이 낭비되는 것을 방지하는 기능 등을 제공할 수 있다.
또한, 무선 전력 송신기(100)는 양방향 통신을 통해 무선 전력 수신기(200)를 인증하고 식별하는 기능, 호환되지 않는 장치 또는, 충전이 불가능한 물체를 식별하는 기능, 유효한 부하를 식별하는 기능 등을 수행할 수도 있다.
또한, 무선 전력 송신기(100)는 양방향 통신을 통해 무선 전력 수신기(200)에 탑재된 전자 기기의 소비 전력에 관한 정보를 해당 무선 전력 수신기(200)로부터 획득할 수도 있다.
또한, 무선 전력 송신기(100)는 양방향 통신을 통해 무선 전력 수신기(200)에 연결된 부하의 최대 충전 용량 및 충전량 변화에 관한 정보를 획득할 수 있다.
또한, 무선 전력 송신기(100)는 양방향 통신을 통해 송신단에서 출력 전력 세기 정보를 무선 전력 수신기(200)에 전송할 수 있다. 이 경우, 무선 전력 수신기(200)는 충전 중 부하에 인가되는 전력의 세기를 측정하고, 상기 송신단에서의 출력 전력 세기 정보와 부하에 인가되는 전력의 세기를 이용하여 무선 충전 효율을 산출할 수도 있다. 산출된 무선 충전 효율은 양방향 통신을 통해 무선 전력 송신기(100)에 전송될 수 있다.
이하에서는, 보다 구체적으로 공진 방식의 무선 전력 전송 과정을 상기 도 1e를 참조하여 설명하기로 한다.
무선 전력 송신기(100)는 전원공급부(power supplier, 110), 전력변환부(Power Conversion Unit, 120), 매칭회로(Matching Circuit, 130), 송신공진기(Transmission Resonator, 140), 주제어부(Main Controller, 150) 및 통신부(Communication Unit, 160)를 포함하여 구성될 수 있다. 통신부는 데이터 송신기(Data Transmitter)와 데이터 수신기(Data receiver)를 포함할 수 있다.
전원공급부(110)는 주제어부(150)의 제어에 따라 전력변환부(120)에 특정 공급 전압을 공급할 수 있다. 이때, 공급 전압은 DC 전압 또는 AC 전압일 수 있다.
전력변환부(120)는 주제어부(150)의 제어에 따라 전력공급부(110)로부터 수신된 전압을 특정 전압으로 변환시킬 수 있다. 이를 위해, 전력변환부(120)는 DC/DC 변환기(DC/DC convertor), AC/DC 변환기(AC/DC convertor), 파워 증폭기(Power amplifier) 중 적어도 하나를 포함하여 구성될 수 있다.
매칭회로(130)는 전력 전송 효율을 극대화시키기 위해 전력변환부(120)와 송신공진기(140) 사이의 임피던스를 정합하는 회로이다.
송신공진기(140)는 매칭회로(130)로부터 인가된 전압에 따라 특정 공진 주파수를 이용하여 무선으로 전력을 전송할 수 있다.
무선 전력 수신기(200)는 수신공진기(Reception Resonator, 210), 정류기(Rectifier, 220), DC-DC 변환기(DC-DC Converter, 230), 부하(Load, 240), 주제어부(Main Controller, 250) 및 통신부(Communication Unit, 260)를 포함하여 구성될 수 있다. 통신부는 데이터 송신기(Data Transmitter)와 데이터 수신기(Data receiver)를 포함할 수 있다.
수신공진기(210)는 공진 현상을 통해 송신공진기(140)에 의해 송출된 전력을 수신할 수 있다.
정류기(220)는 수신공진기(210)로부터 인가되는 AC 전압을 DC 전압으로 변환하는 기능을 수행할 수 있다.
DC-DC 변환기(230)는 정류된 DC 전압을 부하(240)에 요구되는 특정 DC 전압으로 변환할 수 있다.
주제어부(250)는 정류기(220) 및 DC-DC 변환기(230)의 동작을 제어하거나 무선 전력 수신기(200)의 특성 및 상태 정보를 생성하고 통신부(260)를 제어하여 무선 전력 송신기(100)에 상기 무선 전력 수신기(200)의 특성 및 상태 정보를 전송할 수 있다. 일 예로, 주제어부(250)는 정류기(220)와 DC-DC 변환기(230)에서의 출력 전압 및 전류의 세기를 모니터링하여 정류기(220) 및 DC-DC 변환기(230)의 동작을 제어할 수 있다.
또한, 모니터링된 출력 전압 및 전류의 세기 정보는 통신부(260)를 통해 무선 전력 송신기(100)에 전송될 수 있다.
또한, 주제어부(250)는 정류된 DC 전압을 소정 기준 전압과 비교하여 과전압 상태(Over-Voltage State)인지 저전압 상태(Under-Voltage State)인지를 판단하고, 판단 결과에 따라 시스템 오류 상태인 것으로 감지되면, 감지 결과를 통신부(260)를 통해 무선 전력 송신기(100)에 전송할 수도 있다.
또한, 주제어부(250)는 시스템 오류 상태가 감지되면, 부하의 훼손을 방지하기 위해 정류기(220) 및 DC-DC 변환기(230)의 동작을 제어하거나 스위치 또는(및) 제너 다이오드를 포함한 소정 과전류 차단 회로를 이용하여 부하(240)에 인가되는 전력을 제어할 수도 있다.
또한, 주제어부(250)는 외부 또는 내부 메시지 핸들링을 위해 구동된 소정 타이머가 만료된 경우, 로컬 장애 상태인 것으로 판단하고, 소정 장애 알림 메시지를 통신부(260)를 통해 무선 전력 송신기(100)에 전송할 수도 있다.
상기한 도 1에서는 송수신기 각각의 주제어부(150 또는 250)와 통신부(160 또는 260)가 각각 서로 다른 모듈로 구성된 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예는 주제어부(150 또는 250)와 통신부(160 또는 260)가 각각 하나의 모듈로 구성될 수도 있음을 주의해야 한다.
본 발명에 따른 무선 전력 수신기(200)의 주제어부(250)는 부하(240)의 최대 충전 용량, 부하(240)의 현재 충전 상태-즉, 현재까지 부하(240)에 충전된 전력량 또는(및) 최대 충전 용량 대비 현재 충전 비율에 관한 정보 등을 포함함- 및 부하(240)에 인가되는 전력량에 기반하여 해당 부하(240)의 충전이 완료되기까지의 예상 소요 시간을 산출할 수도 있다. 무선 전력 수신기(200)는 소정 인터페이스 통해 연결된 전자 기기-예를 들면, 스마트폰-의 마이크로 프로세서(미도시)에 산출된 충전 완료 예상 소요 시간을 전송할 수 있다. 연이어, 마이크로 프로세서는 충전 완료 예상 소요 시간을 전자기기에 구비된 디스플레이 수단을 통해 표시할 수 있다. 이상에서는, 무선 전력 수신기(200)의 동작을 제어하는 주제어부(250)와 전자기기에 탑재된 마이크로 프로세서가 별개의 하드웨어 장치로 구성되는 것을 예를 들어 설명하고 있으나, 이는 하나의 실시예에 불과하며, 주제어부(250) 및 마이크로 프로세서는 하나의 하드웨어 장치에 탑재되어 별도의 소프트웨어 모듈로 구성될 수도 있음을 주의해야 한다. 또한, 무선 전력 수신기(200)는 산출된 충전 완료 예상 소요 시간을 양방향 통신을 통해 무선 전력 송신기(100)에 전송할 수도 있다.
또한, 본 발명에 따른 무선 전력 수신기(200)는 연결된 전자기기의 동작 상태변화를 감지하여 충전 완료까지의 예상 소요 시간을 재산출할 수도 있다. 일 예로, 전자기기의 동작 상태 변화는 전자기기의 전원 ON/OFF 상태 변화, 전자기기상에서의 어플리케이션의 실행 상태 변화, 전자기기 디스플레이의 ON/OFF 상태 변화, 전자기기의 소모 전력 변화 중 적어도 하나를 포함할 수 있다. 즉, 무선 전력 수신기(200)는 전자기기의 동작 상태 변화에 따라 적응적으로 전자기기의 실시간 소모 전력을 산출 또는 측정하고, 산출 또는 측정된 소모 전력에 기반하여 충전 완료까지의 예상 소요 시간을 재산출할 수도 있다. 물론, 재산출된 충전 완료 예상 소요 시간은 전자기기의 표시 수단을 통해 표시될 수 있을 뿐만 아니라 양방향 통신을 통해 무선 전력 송신기(100)에 전송될 수 있다.
또한, 본 발명에 따른 무선 전력 송신기(100)는 충전 중 충전 영역에 새로운 무선 전력 수신기가 추가되거나, 충전 중인 무선 전력 수신기와의 접속이 해제되거나, 무선 전력 수신기의 충전이 완료되는 등의 이벤트가 감지되면, 나머지 충전 대상 무선 전력 수신기들을 위한 전력 재분배 절차를 수행할 수도 있다. 이때, 전력 재분배 결과는 대역외 통신을 통해 접속된 무선 전력 수신기(들)에 전송될 수 있다. 무선 전력 수신기(200)는 전력 재분배 결과에 따라 충전 완료 예상 소요 시간을 재산출할 수 있으며, 재산출된 충전 완료 예상 소요 시간은 전자기기의 표시 수단을 통해 표시될 수 있고, 양방향 통신을 통해 무선 전력 송신기(100)에 전송될 수 있다.
이상에서는, 무선 전력 수신기(200)가 충전 완료 예상 소요 시간을 산출하는 것으로 설명되고 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 무선 전력 송신기(200)가 무선 전력 수신기(200)로부터 수집된 부하의 최대 충전 용량에 관한 정보, 현재 부하의 충전량에 관한 정보, 부하에 인가되는 전력 세기에 관한 정보 등에 기반하여 충전 완료 예상 소요 시간을 산출할 수도 있다. 이때, 충전 완료 예상 소요 시간은 무선 전력 송신기(100)로부터 무선 전력을 수신하는 무선 전력 수신기 또는 전자 기기 별로 산출될 수 있으며, 무선 전력 송신기(200)는 구비된 표시 수단을 통해 산출된 충전 완료 예상 소요 시간에 대한 정보를 표시할 수 있다.
다른 일 예로, 무선 전력 송신기(200)는 네트워크 연결된 다른 무선 전력 송신기 또는(및) 특정 홈 네트워크 서버 또는(및) 특정 클라우드 서버에 충전 중인 기기 별 무선 충전 효율에 관한 정보, 충전 완료 예상 소요 시간에 관한 정보, 소모 전력량에 관한 정보 등을 전송할 수도 있다.
상기 홈 네트워크 서버 또는(및) 상기 클라우드 서버는 무선 전력 송신기(200)로부터 수신된 정보를 통계 처리하여 저장하고, 사용자 또는 사용자 단말로부터 요청 시 해당 통계 정보를 추출하여 전송할 수도 있다.
도 2는 본 발명의 일 실시예에 따른 무선 전력 송신기의 타입 및 특성을 설명하기 위한 도면이다.
본 발명에 따른 무선 전력 송신기와 무선 전력 수신기는 각각 등급(Class)과 카테고리(Category)로 타입 및 특성이 분류될 수 있다.
무선 전력 송신기의 타입 및 특성은 크게 다음의 3가지 파라메터를 통해 식별될 수 있다.
첫째, 무선 전력 송신기는 송신 공진기(140)에 인가되는 최대 전력의 세기에 따라 결정되는 등급에 의해 식별될 수 있다.
여기서, 무선 전력 송신기의 등급은 송신 공진기(140)에 인가되는 파워(PTX_IN_COIL)의 최대 값을 하기 무선 전력 송신기 등급 표-이하, 표 1이라 명함-에 명기된 등급 별 미리 정의된 최대 입력 파워(PTX
_IN_MAX)와 비교하여 결정될 수 있다. 여기서, PTX
_IN_COIL은 송신공진기(140)에 단위 시간 동안 인가되는 전압(V(t))과 전류(I(t))의 곱을 해당 단위 시간으로 나누어 산출되는 평균 실수 값일 수 있다.
등급(Class) | 최대 입력 파워 | 최소 카테고리지원 요구 조건 | 지원 가능 최대 디바이스의 개수 |
등급 1 | 2W | 1 x 등급1 | 1 x 등급1 |
등급 2 | 10W | 1 x 등급3 | 2 x 등급2 |
등급 3 | 16W | 1 x 등급4 | 2 x 등급3 |
등급 4 | 33W | 1 x 등급5 | 3 x 등급3 |
등급 5 | 50W | 1 x 등급6 | 4 x 등급3 |
등급 6 | 70W | 1 x 등급6 | 5 x 등급3 |
상기 표 1에 개시된 등급은 일 실시예에 불과하며, 새로운 등급이 추가되거나 삭제될 수도 있다. 또한, 등급 별 최대 입력 파워, 최소 카테고리 지원 요구 조건, 지원 가능 최대 디바이스 개수에 대한 값도 무선 전력 송신기의 용도, 형상 및 구현 형태 등에 따라 변경될 수도 있음을 주의해야 한다.
일 예로, 상기 표 1을 참조하면, 송신 공진기(140)에 인가되는 파워(PTX_IN_COIL)의 최대 값이 등급 3에 대응되는 PTX
_IN_MAX 값보다 크거나 같고, 등급 4에 대응되는 PTX
_IN_MAX 값보다 작은 경우, 해당 무선 전력 송신기의 등급은 등급 3으로 결정될 수 있다.
둘째, 무선 전력 송신기는 식별된 등급에 대응되는 최소 카테고리 지원 요구 조건(Minimum Category Support Requirements)에 따라 식별될 수도 있다.
여기서, 최소 카테고리 지원 요구 조건은 해당 등급의 무선 전력 송신기가 지원 가능한 무선 전력 수신기 카테고리 중 가장 높은 수준의 카테고리에 해당되는 무선 전력 수신기의 지원 가능 개수일 수 있다. 즉, 최소 카테고리 지원 요구 조건은 해당 무선 전력 송신기가 지원 가능한 최대 카테고리 디바이스의 최소 개수일 수 있다. 이때, 무선 전력 송신기는 상기 최소 카테고리 요구 조건에 따른 최대 카테고리 이하에 해당하는 모든 카테고리의 무선 전력 수신기를 지원할 수 있다.
다만, 만약, 무선 전력 송신기가 상기 최소 카테고리 지원 요구 조건에 명시된 카테고리보다 더 높은 카테고리의 무선 전력 수신기를 지원할 수 있다면, 무선 전력 송신기가 해당 무선 전력 수신기를 지원하는 것을 제한하지는 않을 수 있다.
일 예로, 상기 표 1을 참조하면, 등급 3인 무선 전력 송신기는 적어도 하나의 카테고리 5인 무선 전력 수신기를 지원해야 한다. 물론, 이 경우, 무선 전력 송신기는 최소 카테고리 지원 요구 조건에 해당되는 카테고리 수준 보다 낮은 수준의 카테고리에 해당되는 무선 전력 수신기(100)를 지원할 수 있다.
또한, 무선 전력 송신기는 최소 카테고리 지원 요구 조건에 대응되는 카테고리보다 더 높은 수준의 카테고리를 지원 가능한 것으로 판단되면, 더 높은 수준의 카테고리를 갖는 무선 전력 수신기를 지원할 수도 있음을 주의해야 한다.
셋째, 무선 전력 송신기는 식별된 등급에 대응되는 지원 가능 최대 디바이스 개수에 의해 식별될 수도 있다. 여기서, 지원 가능 최대 디바이스 개수는 해당 등급에서 지원 가능한 카테고리 중 가장 낮은 수준의 카테고리에 해당되는 무선 전력 수신기의 최대 지원 가능 개수-이하, 간단히 지원 가능 디바이스의 최대 개수라 명함-에 의해 식별될 수도 있다.
일 예로, 상기 표 1을 참조하면, 등급 3의 무선 전력 송신기는 최소 카테고리 3인 무선 전력 수신기를 최대 2개까지 지원할 수 있어야 한다.
다만, 무선 전력 송신기가 자신의 등급에 상응하는 최대 디바이스 개수 이상을 지원할 수 있는 경우, 최대 디바이스 개수 이상을 지원하는 것을 제한하지는 않는다.
본 발명에 따른 무선 전력 송신기는 무선 전력 수신기의 전력 전송 요청을 허락하지 않을 특별한 이유가 없는 경우, 가용한 파워 내에서 적어도 상기 표 1에 정의된 개수까지는 무선 전력 전송을 수행할 수 있어야 한다.
일 예로, 무선 전력 송신기는 해당 전력 전송 요청을 수용할 정도의 가용한 파워가 남아있지 않는 경우, 해당 무선 전력 수신기의 전력 전송 요청을 수락하지 않을 수 있다. 또는, 무선 전력 수신기의 전력 조정을 제어할 수 있다.
다른 일 예로, 무선 전력 송신기는 전력 전송 요청을 수락하면 수용 가능한 무선 전력 수신기의 개수를 초과하는 경우, 해당 무선 전력 수신기의 전력 전송 요청을 수락하지 않을 수 있다.
또 다른 일 예로, 무선 전력 송신기는 전력 전송을 요청한 무선 전력 수신기의 카테고리가 자신의 등급에서 지원 가능한 카테고리 수준을 초과하는 경우, 해당 무선 전력 수신기의 전력 전송 요청을 수락하지 않을 수 있다.
또 다른 일 예로, 무선 전력 송신기는 내부 온도가 기준치 이상을 초과하는 경우, 해당 무선 전력 수신기의 전력 전송 요청을 수락하지 않을 수 있다.
특히, 본 발명에 따른 무선 전력 송신기는 현재 가용한 전력량에 기반하여 전력 재분배 절차를 수행할 수 있다. 이때, 전력 재분배 절차는 전력 전송 대상 무선 전력 수신기의 후술할 카테고리, 무선 전력 수신 상태, 요구 전력량, 우선 순위, 소모 전력량 중 적어도 하나를 더 고려하여 전력 재분배 절차를 수행할 수 있다.
여기서, 무선 전력 수신기는 해당 무선 전력 수신기의 카테고리, 무선 전력 수신 상태, 요구 전력량, 우선 순위, 소모 전력량 중 적어도 하나의 정보를 대역외 통신 채널을 통해 적어도 하나의 제어 신호를 이용하여 접속된 무선 전력 송신기에 주기적 또는 비주기적으로 전달될 수 있다.
무선 전력 송신기는 전력 재분배 절차가 완료되면, 전력 재분배 결과를 대역외 통신을 통해 해당 무선 전력 수신기에 전송할 수 있다.
무선 전력 수신기는 수신된 전력 재분배 결과에 기반하여 충전 완료까지의 예상 소요 시간을 재산출하고, 재산출 결과를 연결된 전자기기의 마이크로 프로세서에 전송할 수 있다. 연이어, 마이크로 프로세서는 전자기기에 구비된 디스플레이에 재산출된 충전 완료 예상 소요 시간이 표시되도록 제어할 수 있다. 이때, 표시된 충전 완료 예상 소요 시간은 일정 시간 화면에 표시된 후 사라지도록 제어될 수 있다.
본 발명의 다른 일 실시예에 따른 마이크로 프로세서는 충전 완료 예상 소요 시간이 재산출된 경우, 재산출된 이유에 대한 정보가 함께 표시되도록 제어할 수도 있다. 이를 위해, 무선 전력 송신기는 전력 재분배 결과 전송 시 해당 전력 재분배가 발생된 이유에 관한 정보도 함께 무선 전력 수신기에 전송할 수도 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 수신기는 재산출된 충전 완료 예상 소요 시간을 양방향 통신을 통해 무선 전력 송신기에 전송할 수 있다. 이 경우, 무선 전력 송신기는 수신된 충전 완료 예상 소요 시간을 구비된 표시 수단을 통해 표시하고, 네트워크 연결된 홈 네트워크 서버 또는(및) 클라우드 서버에 전송할 수도 있다.
또한, 본 발명의 일 실시예에 따른 무선 전력 송신기는 내부 시스템 오류-예를 들면, 과전압, 과전류, 과열 등을 포함함-가 감지된 경우, 감지 결과를 구비된 표시 수단을 통해 표시하고, 네트워크 연결된 홈 네트워크 서버 또는(및) 클라우드 서버에 전송할 수도 있다.
또한, 본 발명의 일 실시예에 따른 무선 전력 송신기는 수집 또는 산출된 무선 충전 효율 또는 무선 전력 전송 효율이 소정 기준치 이하인 것이 확인되면, 확인 결과를 구비된 표시 수단을 통해 표시하고, 네트워크 연결된 홈 네트워크 서버 또는(및) 클라우드 서버에 해당 사실을 통보할 수도 있다. 사용자는 홈 네트워크 서버 또는 클라우드 서버에 접속하여 무선 충전 효율이 낮은 무선 전력 송신기를 식별할 수 있다. 여기서, 무선 충전 효율이 낮은 무선 전력 송신기는 무선 전력 음영 지역에 위치한 무선 전력 송신기로 판단될 수 있다.
또한, 본 발명의 일 실시예에 따른 무선 전력 송신기는 가용한 전력 부족으로 인해 무선 전력 수신기로부터의 전력 전송 요청을 거절한 횟수가 기준치 이상인 경우, 네트워크 연결된 홈 네트워크 서버 또는(및) 클라우드 서버에 해당 사실을 통보할 수도 있다. 여기서, 전력 전송 요청을 거절한 횟수가 기준치 이상인 무선 전력 송신기가 설치된 지역은 추가적인 무선 전력 송신기의 설치가 요구되거나, 보다 전력 전송 용량이 높은-즉, 등급이 높은- 무선 전력 송신기로 교체 설치되어야 되는 지역으로 판단될 수 있다. 다른 일 예로, 전력 전송 요청을 거절한 횟수가 기준치 이상인 무선 전력 송신기가 설치된 지역은 인증되지 않았거나 유효하지 않은 무선 전력 수신기 또는 무선 전력 수신기가 탑재된 전자 기기가 위치한 위험 지역으로 분류될 수 있다.
도 3은 본 발명의 일 실시예에 따른 무선 전력 수신기의 타입 및 특성을 설명하기 위한 도면이다.
도 3에 도시된 바와 같이, 수신공진기(210)의 평균 출력 파워(PRX_OUT)은 단위 시간 동안 수신공진기(210)에 의해 출력되는 전압(V(t))와 전류(I(t))의 곱을 해당 단위 시간으로 나누어 산출되는 실수 값일 수 있다. 일 예로, 수신공진기(210)의 평균 출력 전압(PRX
_OUT)은 정류기 후단에서 측정된 전압(V(t))와 전류(I(t))의 곱을 단위 시간으로 나누어 산출되는 실수 값일 수 있으나, 이에 한정되지는 않는다.
무선 전력 수신기의 카테고리는 하기 표 2에 도시된 바와 같이, 수신 공진기(210)의 최대 출력 파워(PRX
_OUT_MAX)에 기반하여 정의될 수 있다.
카테고리(Category) | 최대 입력 파워 | 응용 예 |
카테고리 1 | TBD | 블루투스 핸드셋 |
카테고리 2 | 3.5W | 피쳐폰 |
카테고리 3 | 6.5W | 스마트폰 |
카테고리 4 | 13W | 테블릿 |
카테고리 5 | 25W | 소형 랩탑 |
카테고리 6 | 37.5W | 랩탑 |
카테고리 6 | 50W | TBD |
일 예로, 부하단에서의 충전 효율이 80%이상인 경우, 카테고리 3의 무선 전력 수신기는 부하의 충전 포트에 5W의 전력을 공급할 수 있다.
상기 표 2에 개시된 카테고리는 일 실시예에 불과하며, 새로운 카테고리가 추가되거나 삭제될 수도 있다. 또한, 상기 표 2에 보여지는 카테고리 별 최대 출력 파워, 응용 어플리케이션의 예도 무선 전력 수신기의 용도, 형상 및 구현 형태 등에 따라 변경될 수도 있음을 주의해야 한다.
본 발명의 일 실시예에 따른 무선 전력 수신기 또는 무선 전력 수신기와 연동되는 전자기기의 마이크로 프로세서는 부하의 최대 충전 용량(Maximum Load Capacitance), 현재 부하의 충전량, 무선 전력 송신기의 최대 또는 평균 입력 파워, 무선 전력 수신기의 카테고리 부하단에서의 현재 충전 효율 등에 기반하여 해당 부하가 충전 완료되기까지의 예상 소요 시간을 산출할 수 있다. 여기서, 무선 전력 송신기의 전력 재분배에 따라 무선 전력 수신기의 카테고리에 대응되는 최대 입력 파워는 적응적으로 변경될 수 있으며, 그에 따라 충전 완료되기까지의 예상 소요 시간은 재산출되어 변경될 수 있다. 이때, 산출된 충전 완료 예상 소요 시간에 관한 정보는 양방향 통신 채널을 통해 무선 전력 송신기에 전송될 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신기는 양방향 통신을 통해 부하단에서의 충전 효율, 무선 전력 수신기의 카테고리, 부하의 최대 충전 용량, 현재 부하의 충전량 등에 관한 정보를 무선 전력 수신기로부터 수신할 수 있으며, 이 경우, 무선 전력 송신기는 해당 부하가 충전 완료되기까지의 예상 소요 시간을 산출할 수도 있다.
도 4는 본 발명의 일 실시예에 따른 무선 충전 시스템의 등가 회로도이다.
상세하게, 도 4는 후술할 레퍼런스 파라메터들이 측정되는 등가 회로상에서의 인터페이스 지점을 보여준다.
이하에서는, 상기 도 4에 표시된 레퍼런스 파라메터들의 의미를 간단히 설명하기로 한다.
ITX와 ITX
_COIL은 각각 무선 전력 송신기의 매칭 회로(또는 매칭 네트워크)(420)에 인가되는 RMS(Root Mean Square) 전류와 무선 전력 송신기의 송신 공진기 코일(425)에 인가되는 RMS 전류를 의미한다.
ZTX
_IN 은 무선 전력 송신기의 전원부/증폭기/필터(410) 후단의 입력 임피던스(Input Impedance)와 매칭 회로(420) 전단의 입력 임피던스(Input Impedance)를 의미한다.
ZTX
_IN_COIL은 매칭 회로(420) 후단 및 송신 공진기 코일(425) 전단에서의 입력 임피던스를 의미한다.
L1과 L2는 각각 송신 공진기 코일(425)의 인덕턴스 값과 수신 공진기 코일(427)의 인덕턴스 값을 의미한다.
ZRX
_IN은 무선전력수신기의 매칭 회로(430) 후단과 무선전력수신기의 필터/정류기/부하(440) 전단에서의 입력 임피던스를 의미한다.
본 발명의 일 실시예에 따른 무선 충전 시스템의 동작에 사용되는 공진 주파수는 6.78MHz ± 15㎑일 수 있다.
또한, 일 실시예에 따른 무선 충전 시스템은 복수의 무선 전력 수신기에 대한 동시 충전-즉, 멀티 충전-을 제공할 수 있으며, 이 경우, 무선 전력 수신기가 새로 추가되거나 삭제되더라도 남아 있는 무선 전력 수신기의 수신 파워 변화량은 소정 기준치 이상을 초과하지 않도록 제어될 수 있다. 일 예로, 수신 파워 변화량은 ±10%일 수 있으나 이에 국한되지는 않는다. 만약, 수신 파워 변화량이 기준치 이상 초과되지 않도록 제어하는 것이 불가능할 경우, 무선 전력 송신기는 새롭게 추가된 무선 전력 수신기로부터 전력 전송 요청을 수락하지 않을 수도 있다.
상기 수신 파워 변화량을 유지하기 위한 조건은 무선 전력 수신기가 충전 영역에 추가 또는 삭제 시 기존 무선 전력 수신기와 중첩되지 않아야 한다.
무선 전력 수신기의 매칭 회로(430)가 정류기에 연결된 경우, 상기 ZTX
_IN의 실수부(Real Part)는 정류기의 부하 저항-이하, RRECT이라 명함-과 역의 관계일 수 있다. 즉, RRECT의 증가는 ZTX
_IN을 감소시키고, RRECT의 감소는 ZTX
_IN을 증가시킬 수 있다.
본 발명에 따른 공진기 정합 효율(Resonator Coupling Efficiency)은 수신공진기 코일에서 부하(440)로 전달되는 파워를 송신공진기 코일(425)에서 공진 주파수 대역에 실어주는 파워로 나누어 산출되는 최대 파워 수신 비율일 수 있다. 무선 전력 송신기와 무선 전력 수신기 사이의 공진기 정합 효율은 송신공진기의 레퍼런스 포트 임피던스(ZTX_IN)과 수신공진기의 레퍼런스 포트 임피던스(ZRX
_IN)가 완벽하게 매칭되는 경우에 산출될 수 있다.
하기 표 3은 본 발명의 일 실시예에 따른 무선 전력 송신기의 등급 및 무선 전력 수신기의 클래스에 따른 최소 공진기 정합 효율의 예이다.
카테고리 1 | 카테고리 2 | 카테고리 3 | 카테고리 4 | 카테고리 5 | 카테고리 6 | 카테고리 7 | |
등급 1 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
등급 2 | N/A | 74%(-1.3) | 74%(-1.3) | N/A | N/A | N/A | N/A |
등급 3 | N/A | 74%(-1.3) | 74%(-1.3) | 76%(-1.2) | N/A | N/A | N/A |
등급 4 | N/A | 50%(-3) | 65%(-1.9) | 73%(-1.4) | 76%(-1.2) | N/A | N/A |
등급 5 | N/A | 40%(-4) | 60%(-2.2) | 63%(-2) | 73%(-1.4) | 76%(-1.2) | N/A |
등급 5 | N/A | 30%(-5.2) | 50%(-3) | 54%(-2.7) | 63%(-2) | 73%(-1.4) | 76%(-1.2) |
만약, 복수의 무선 전력 수신기가 사용될 경우, 상기 표 3에 표시된 클래스 및 카테고리에 대응되는 최소 공진기 정합 효율은 증가할 수도 있다.
본 발명의 일 실시예에 따른 무선 전력 수신기 또는 무선 전력 수신기와 연결된 전자기기의 마이크로프로세서는 부하의 최대 충전 용량(Maximum Load Capacitance), 현재 부하의 충전량, 부하의 충전 효율, 무선 전력 수신기의 카테고리와 무선 전력 송신기의 등급에 상응하는 최소 공진기 정합 효율 중 적어도 하나에 기반하여 해당 부하의 충전이 완료되기까지 소요되는 시간을 산출할 수도 있다.
도 5는 본 발명의 일 실시예에 따른 무선 전력 송신기에서의 상태 천이 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 무선 전력 송신기의 상태는 크게 구성 상태(Configuration State, 510), 전력 절약 상태(Power Save State, 520), 저전력 상태(Low Power State, 530), 전력 전송 상태(Power Transfer State, 540), 로컬 장애 상태(Local Fault State, 550) 및 잠금 장애 상태(Latching Fault State, 560)을 포함하여 구성될 수 있다.
무선 전력 송신기에 전력이 인가되면, 무선 전력 송신기는 구성 상태(510)로 천이할 수 있다. 무선 전력 송신기는 구성 상태(510)에서 소정 리셋 타이머가 만료되거나 초기화 절차가 완료되면, 전력 절약 상태(520)로 천이할 수 있다.
전력 절약 상태(520)에서, 무선 전력 송신기는 비콘 시퀀스를 생성하여 공진 주파수 대역을 통해 전송할 수 있다.
여기서, 무선 전력 송신기는 전력 절약 상태(520)에 진입한 후 소정 시간 이내에 비콘 시퀀스가 개시될 수 있도록 제어할 수 있다. 일 예로, 무선 전력 송신기는 전력 절약 상태(520) 천이 후 50ms 이내에 비콘 시퀀스가 개시될 수 있도록 제어할 수 있으나, 이에 국한되지는 않는다.
전력 절약 상태(520)에서, 무선 전력 송신기는 무선 전력 수신기를 감지하기 위한 제1 비콘 시퀀스(First Beacon Sequence)를 주기적으로 생성하여 전송하고, 수신 공진기의 임피던스 변화-즉, Load Variation-를 감지할 수 있다. 이하, 설명의 편의를 위해 제1 비콘과 제1 비콘 시퀀스를 각각 Short Beacon과 Short Beacon 시퀀스라 명하기로 한다.
특히, Short Beacon 시퀀스는 무선 전력 수신기가 감지되기 전까지 무선 전력 송신기의 대기 전력이 절약될 수 있도록 짧은 구간 동안(tSHORT
_BEACON) 일정 시간 간격(tCYCLE)으로 반복 생성되어 전송될 수 있다. 일 예로, tSHORT
_BEACON은 30ms이하, tCYCLE은 250ms ±5 ms로 각각 설정될 수 있다. 또한, Short Beacon의 전류 세기는 소정 기준치이상이고, 일정 시간 구간 동안 점증적으로 증가될 수 있다. 일 예로, Short Beacon의 최소 전류 세기는 상기 표 2의 카테고리 2 이상의 무선 전력 수신기가 감지될 수 있도록 충분히 크게 설정될 수 있다.
본 발명에 따른 무선 전력 송신기는 Short Beacon에 따른 수신 공진기에서의 리액턴스(reactance) 및 저항(resistance) 변화를 감지하기 위한 소정 센싱 수단이 구비될 수 있다.
또한, 전력 절약 상태(520)에서, 무선 전력 송신기는 무선 전력 수신기의 부팅(Booting) 및 응답에 필요한 충분한 전력을 공급하기 위한 제2 비콘 시퀀스를 주기적으로 생성하여 전송할 수 있다. 이하, 설명의 편의를 위해 제2 비콘과 제2 비콘 시퀀스를 각각 Long Beacon과 Long Beacon 시퀀스라 명하기로 한다.
즉, 무선 전력 수신기는 제2 비콘 시퀀스를 통해 부팅이 완료되면, 대역외 통신 채널을 통해 소정 응답 신호를 브로드캐스팅할 수 있다.
특히, Long Beacon 시퀀스는 무선 전력 수신기의 부팅에 필요한 충분한 전원을 공급하기 위해 Short Beacon에 비해 상대적으로 긴 구간 동안(tLONG_BEACON)동안 일정 시간 간격(tLONG
_BEACON_PERIOD)으로 생성되어 전송될 수 있다. 일 예로, tLONG
_BEACON은 105 ms+5 ms, tLONG
_BEACON_PERIOD 은 850ms로 각각 설정될 수 있으며, Long Beacon의 전류 세기는 Short Beacon의 전류 세기에 비해 상대적으로 강할 수 있다. 또한, Long Beacon은 전송 구간 동안 일정 세기의 파워가 유지될 수 있다.
이 후, 무선 전력 송신기는 수신 공진기의 임피던스 변화가 감지된 후, 무선 전력 송신기는 Long Beacon 전송 구간 동안 소정 응답 시그널의 수신을 대기할 수 있다. 이하, 설명의 편의를 위해 상기 응답 시그널을 광고 시그널(Advertisement Signal)이라 명하기로 한다. 여기서, 무선 전력 수신기는 공진 주파수 대역과는 상이한 대역외 통신 주파수 대역을 통해 광고 시그널을 브로드캐스팅할 수 있다.
일 예로, 광고 시그널은 해당 대역외 통신 표준에 정의된 메시지를 식별하기 위한 메시지 식별 정보, 무선 전력 수신기가 적법한 또는 해당 무선 전력 송신기에 호환 가능한 수신기인지를 식별하기 위한 고유한 서비스 또는 무선 전력 수신기 식별 정보, 무선 전력 수신기의 출력 파워 정보, 부하에 인가되는 정격 전압/전류 정보, 무선 전력 수신기의 안테나 이득 정보, 무선 전력 수신기의 카테고리를 식별하기 위한 정보, 무선 전력 수신기 인증 정보, 과전압 보호 기능의 탑재 여부에 관한 정보, 무선 전력 수신기에 탑재된 소프트웨어 버전 정보 중 적어도 하나 또는 어느 하나를 포함할 수 있다. 다른 일 예로, 광고 시그널은 부하의 최대 충전 용량에 관한 정보, 부하의 현재 충전량에 관한 정보 등을 더 포함할 수도 있다.
무선 전력 송신기는 광고 시그널이 수신되면, 전력 절약 상태(520)에서 저전력 상태(530)로 천이한 후, 무선 전력 수신기와의 대역외 통신 링크를 설정할 수 있다. 연이어, 무선 전력 송신기는 설정된 대역외 통신 링크를 통해 무선 전력 수신기에 대한 등록 절차를 수행할 수 있다. 일 예로, 대역외 통신이 블루투스 저전력 통신인 경우, 무선 전력 송신기는 무선 전력 수신기와 블루투스 페어링을 수행하고, 페어링된 블루투스 링크를 통해 서로의 상태 정보, 특성 정보 및 제어 정보 중 적어도 하나를 교환할 수 있다.
무선 전력 송신기가 저전력 상태(530)에서 대역외 통신을 통해 충전을 개시하기 위한 소정 제어 신호-즉, 무선 전력 수신기가 부하에 전력을 전달하도록 요청하는 소정 제어 신호-를 무선 전력 수신기에 전송하면, 무선 전력 송신기의 상태는 저전력 상태(530)에서 전력 전송 상태(540)로 천이될 수 있다.
만약, 저전력 상태(530)에서 대역외 통신 링크 설정 절차 또는 등록 절차가 정상적으로 완료되지 않은 경우, 무선 전력 송신기의 상태는 저전력 상태(530)에서 전력 절약 상태(520)에 천이될 수 있다.
무선 전력 송신기는 각 무선 전력 수신기와의 접속을 위한 별도의 분리된 링크 만료 타이머(Link Expiration Timer)가 구동될 수 있으며, 무선 전력 수신기는 소정 시간 주기로 무선 전력 송신기에 자신이 존재함을 알리는 소정 메시지를 링크 만료 타이머가 만료되기 이전에 전송해야 한다. 링크 만료 타이머는 상기 메시지가 수신될 때마다 리셋되며, 링크 만료 타이머가 만료되지 않으면 무선 전력 수신기와 무선 전력 수신기 사이에 설정된 대역외 통신 링크는 유지될 수 있다.
만약, 저전력 상태(530) 또는 전력 전송 상태(540)에서, 무선 전력 송신기와 적어도 하나의 무선 전력 수신기 사이에 설정된 대역외 통신 링크에 대응되는 모든 링크 만료 타이머가 만료된 경우, 무선 전력 송신기의 상태는 전력 절약 상태(520)로 천이될 수 있다.
또한, 저전력 상태(530)의 무선 전력 송신기는 무선 전력 수신기로부터 유효한 광고 시그널이 수신되면 소정 등록 타이머를 구동시킬 수 있다. 이때, 등록 타이머가 만료되면, 저전력 상태(530)의 무선 전력 송신기는 전력 절약 상태(520)로 천이할 수 있다. 이때, 무선 전력 송신기는 등록에 실패하였음을 알리는 소정 알림 신호를 무선 전력 송신기에 구비된 알림 표시 수단-예를 들면, LED 램프, 디스플레이 화면, 비퍼(beeper) 등을 포함함-을 통해 출력할 수도 있다.
또한, 전력 전송 상태(540)에서, 무선 전력 송신기는 접속된 모든 무선 전력 수신기의 충전이 완료되면, 저전력 상태(530)로 천이될 수 있다.
특히, 무선 전력 수신기는 구성 상태(510), 로컬 장애 상태(550) 및 잠금 장애 상태(560)를 제외한 나머지 상태에서 새로운 무선 전력 수신기의 등록을 허용할 수 있다.
또한, 무선 전력 송신기는 전력 전송 상태(540)에서 무선 전력 수신기로부터 수신되는 상태 정보에 기반하여 전송 전력을 동적으로 제어할 수 있다.
이때, 무선 전력 수신기로부터 무선 전력 송신기에 전송되는 수신기 상태 정보는 요구 전력 정보, 정류기 후단에서 측정된 전압 및/또는 전류 정보, 충전 상태 정보, 과전류 및/또는 과전압 및/또는 과열 상태를 통보하기 위한 정보, 과전류 또는 과전압에 따라 부하에 전달되는 전력을 차단하거나 감소시키는 수단이 활성화되었는지 여부를 지시하는 정보 중 적어도 하나를 포함할 수 있다. 이때, 수신기 상태 정보는 미리 지정된 주기로 전송되거나 특정 이벤트가 발생될 때마다 전송될 수 있다. 또한, 상기 과전류 또는 과전압에 따라 부하에 전달되는 전력을 차단하거나 감소시키는 수단은 ON/OFF 스위치, 제너다이오드 중 적어도 하나를 이용하여 제공될 수 있다. 또한, 상기 충전 상태 정보는 부하의 현재 충전량에 관한 정보, 부하의 충전이 완료되었는지 여부를 지시하는 정보, 충전 완료 예상 소요 시간에 관한 정보 중 적어도 하나를 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 수신기로부터 무선 전력 송신기에 전송되는 수신기 상태 정보는 무선 전력 수신기에 유선으로 외부 전원이 연결되었음을 알리는 정보, 대역외 통신 방식이 변경되었음을 알리는 정보-일 예로, NFC(Near Field Communication)에서 BLE(Bluetooth Low Energy) 통신으로 변경될 수 있음- 중 적어도 하나를 더 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 송신기는 자신의 현재 가용한 전력, 무선 전력 수신기 별 우선 순위, 접속된 무선 전력 수신기의 개수 중 적어도 하나에 기반하여 무선 전력 수신기 별 수신해야 할 파워 세기 또는 무선 전력 수신기 별 전송되어야 할 파워 세기를 적응적으로 결정할 수 있다. 여기서, 무선 전력 수신기 별 전송되어야 할 파워 세기는 해당 무선 전력 수신기의 정류기에서 처리 가능한 최대 파워 대비 얼마의 비율로 파워를 수신해야 하는지로 결정될 수 있다.
이 후, 무선 전력 송신기는 결정된 파워 비율에 관한 정보가 포함된 소정 전력 제어 명령을 해당 무선 전력 수신기에 전송할 수 있다. 이때, 무선 전력 수신기는 무선 전력 송신기에 의해 결정된 파워 비율로 전력 제어가 가능한지 여부를 판단하고, 판단 결과를 소정 전력 제어 응답 메시지를 통해 무선 전력 송신기에 전송할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 수신기는 무선 전력 송신기의 전력 제어 명령(Power Adjustment Command)에 따라 무선 전력 제어가 가능한지 여부를 지시하는 소정 수신기 상태 정보를 상기 전력 제어 명령을 수신하기 이전에 전송할 수도 있다.
전력 전송 상태(540)는 접속된 무선 전력 수신기의 전력 수신 상태에 따라 제1 상태(541), 제2 상태(542) 및 제3 상태(543) 중 어느 하나의 상태일 수 있다.
일 예로, 제1 상태(541)는 무선 전력 송신기에 접속된 모든 무선 전력 수신기의 전력 수신 상태가 정상 전압인 상태임을 의미할 수 있다.
제2 상태(542)는 무선 전력 송신기에 접속된 적어도 하나의 무선 전력 수신기의 전력 수신 상태가 저전압 상태이고 고전압 상태인 무선 전력 수신기가 존재하지 않음을 의미할 수 있다.
제3 상태(543)는 무선 전력 송신기에 접속된 적어도 하나의 무선 전력 수신기의 전력 수신 상태가 고전압 상태임을 의미할 수 있다.
무선 전력 송신기는 전력 절약 상태(520) 또는 저전력 상태(530) 또는 전력 전송 상태(540)에서 시스템 오류가 감지되면, 잠금 장애 상태(560)로 천이될 수 있다
잠금 장애 상태(560)의 무선 전력 송신기는 접속된 모든 무선 전력 수신기가 충전 영역에서 제거된 것으로 판단되면, 구성 상태(510) 또는 전력 절약 상태(520)로 천이할 수 있다.
또한, 잠금 장애 상태(560)에서, 무선 전력 송신기는 로컬 장애가 감지되면, 로컬 장애 상태(550)로 천이할 수 있다. 여기서, 로컬 장애 상태(550)인 무선 전력 송신기는 로컬 장애가 해제되면, 다시 잠금 장애 상태(560)로 천이될 수 있다.
반면, 구성 상태(510), 전력 절약 상태(520), 저전력 상태(530), 전력 전송 상태(540) 중 어느 하나의 상태에서 로컬 장애 상태(550)로 천이된 경우, 무선 전력 송신기는 로컬 장애가 해제되면, 구성 상태(510)로 천이될 수 있다.
무선 전력 송신기는 로컬 장애 상태(550)로 천이되면, 무선 전력 송신기에 공급되는 전원을 차단할 수도 있다. 일 예로, 무선 전력 송신기는 과전압, 과전류, 과열 등의 장애가 감지되면 로컬 장애 상태(550)로 천이될 수 있으나 이에 국한되지는 않는다.
일 예로, 무선 전력 송신기는 과전류, 과전압, 과열 등이 감지되면, 무선 전력 수신기에 의해 수신되는 전력의 세기를 감소시키기 위한 소정 전력 제어 명령을 접속된 적어도 하나의 무선 전력 수신기에 전송할 수도 있다.
다른 일 예로, 무선 전력 송신기는 과전류, 과전압, 과열 등이 감지되면, 무선 전력 수신기의 충전을 중단시키기 위한 소정 제어 명령을 접속된 적어도 하나의 무선 전력 수신기에 전송할 수도 있다.
상기와 같은 전력 제어 절차를 통해, 무선 전력 송신기는 과전압, 과전류, 과열 등에 따른 기기 파손을 미연에 방지할 수 있다.
또한, 무선 전력 송신기는 접속된 무선 전력 수신기의 과전류, 과전압, 과열, 로컬 장애-예를 들면, 메시지 핸들링을 위한 타이머의 만료 등을 포함함- 등이 감지되면, 감지 결과를 네트워크 연결된 홈 네트워크 서버 또는(및) 무선 전력 관리를 위한 클라우드 서버에 전송할 수도 있다.
또한, 무선 전력 송신기는 송신기 내부에서의 과전류, 과전압, 과열, 로컬 장애 등이 감지된 경우, 감지 결과를 네트워크 연결된 홈 네트워크 서버 또는(및) 무선 전력 관리를 위한 클라우드 서버 또는(및) 인접 무선 전력 송신기에 전송할 수도 있다.
무선 전력 송신기는 송신 공진기의 출력 전류의 세기가 기준치 이상인 경우, 잠금 장애 상태(560)로 천이할 수 있다. 이때, 잠금 장애 상태(560)로 천이된 무선 전력 송신기는 송신 공진기의 출력 전류의 세기를 미리 지정된 시간 동안 기준치 이하가 되도록 시도할 수 있다. 여기서, 상기 시도는 미리 지정된 회수 동안 반복 수행될 수 있다. 만약, 반복 수행에도 불구하고, 잠금 장애 상태(560)가 해제되지 않는 경우, 무선 전력 송신기는 소정 알림 수단을 이용하여 사용자에게 잠금 장애 상태(560)가 해제되지 않음을 지시하는 소정 알림 신호를 송출할 수 있다. 이때, 무선 전력 송신기의 충전 영역에 위치한 모든 무선 전력 수신기가 사용자에 의해 충전 영역에서 제거되면, 잠금 장애 상태(560)가 해제될 수 있다.
또한, 무선 전력 송신기는 잠금 장애 상태(560)가 소정 시간 동안 해제되지 않는 경우, 잠금 장애 상태(560)가 해제되지 않음을 지시하는 소정 알림 신호를 네트워크 연결된 홈 네트워크 서버 또는(및) 무선 전력 관리를 위한 클라우드 서버 또는(및) 인접 무선 전력 송신기에 전송할 수도 있다.
반면, 송신 공진기의 출력 전류의 세기가 미리 지정된 시간 이내에 기준치 이하로 떨어지거나 상기 미리 지정된 반복 수행 동안 송신 공진기의 출력 전류의 세기가 기준치 이하로 떨어지는 경우, 잠금 장애 상태(560)는 자동으로 해제될 수 있으며, 이때, 무선 전력 송신기의 상태는 잠금 장애 상태(560)에서 전력 절약 상태(520)로 자동 천이되어 무선 전력 수신기에 대한 감지 및 식별 절차를 다시 수행할 수 있다.
전력 전송 상태(540)의 무선 전력 송신기는 연속된 전력을 송출하고, 무선 전력 수신기의 상태 정보 및 미리 정의된 최적 전압 영역(Optimal Voltage Region) 설정 파라메터에 기반하여 적응적으로 송출 전력을 제어할 수 있다.
일 예로, 최적 전압 영역(Optimal Voltage Region) 설정 파라메터는 저전압 영역을 식별하기 위한 파라메터, 최적 전압 영역을 식별하기 위한 파라메터, 고전압 영역을 식별하기 위한 파라메터, 과전압 영역을 식별하기 위한 파라메터 중 적어도 하나를 포함할 수 있다.
무선 전력 송신기는 무선 전력 수신기의 전력 수신 상태가 저전압 영역에 있으면, 송출 전력을 증가시키고, 고전압 영역에 있으면, 송출 전력을 감소시킬 수 있다.
또한, 무선 전력 송신기는 전력 전송 효율이 최대화되도록 송출 전력을 제어할 수도 있다.
또한, 무선 전력 송신기는 무선 전력 수신기에 의해 요구된 전력량의 편차가 기준치 이하가 되도록 송출 전력을 제어할 수도 있다.
또한, 무선 전력 송신기는 무선 전력 수신기의 정류기 출력 전압이 소정 과전압 영역에 도달한 경우-즉, Over Voltage가 감지된 경우-, 전력 전송을 중단할 수도 있다.
본 발명에 따른 무선 전력 수신기 또는 무선 전력 수신기와 연결된 전자 기기는 전력 전송 상태(540)에서 수신되는 전력의 변화가 기준치 이하로 안정화된 경우, 부하의 충전이 완료되기까지의 예상 소요 시간을 산출할 수 있다.
일 예로, 무선 전력 수신기는 단위 시간 동안 정류기 후단에서 측정된 전압 또는 전류의 평균 세기가 소정 최적 전압 또는 전류 세기를 중심으로 기준치 이하의 편차를 가지는 경우, 전력 수신이 안정화된 것으로 판단할 수 있다.
다른 일예로, 무선 전력 송신기는 무선 전력 수신기로부터 수신되는 상태 정보에 기반하여 해당 무선 전력 수신기로의 전력 제어가 안정화되었는지 여부를 확인할 수 있다. 만약, 전력 제어가 안정화된 경우, 무선 전력 송신기는 기 수집된 부하의 최대 충전 용량, 부하의 현재 충전량, 부하의 충전 효율 등에 기반하여 충전 완료 예상 소요 시간을 산출할 수도 있다.
일 예로, 무선 전력 송신기는 정류기 후단에서 측정된 전압 세기 정보(VRECT)를 무선 전력 수신기로부터 수신할 수 있다. 이 경우, 무선 전력 송신기는 소정 개수의 연속하여 수신된 VRECT 값의 편차가 기준치 이내로 유지되거나 소정 시간 동안 수신된 VRECT 값의 편차가 기준치 이내로 유지되는 경우, 전력 제어가 안정화된 것으로 판단할 수 있다.
다른 일 예로, 무선 전력 송신기는 전력 전송 상태(540)에서 소정 시간 동안 무선 전력 수신기로부터 상태 정보가 수신되지 않는 경우, 전력 제어가 안정화된 것으로 판단할 수도 있다.
도 6은 본 발명의 일 실시예에 따른 무선 전력 수신기의 상태 천이도이다.
도 6을 참조하면, 무선 전력 수신기의 상태는 크게 비활성화 상태(Disable State, 610), 부트 상태(Boot State, 620), 활성화 상태(Enable State, 630)(또는, On state) 및 시스템 오류 상태(System Error State, 640)을 포함하여 구성될 수 있다.
이때, 무선 전력 수신기의 상태는 무선 전력 수신기의 정류기단에서의 출력 전압의 세기-이하, 설명의 편의를 위해 VRECT이라 명함-에 기반하여 결정될 수 있다.
활성화 상태(630)는 VRECT의 값에 따라 최적 전압 상태(Optimum Voltage State, 631), 저전압 상태(Low Voltage State, 632) 및 고전압 상태(High Voltage State, 633)로 구분될 수 있다.
비활성화 상태(610)의 무선 전력 수신기는 측정된 VRECT 값이 미리 정의된 VRECT_BOOT 값보다 크거나 같으면, 부트 상태(620)로 천이할 수 있다.
부트 상태(620)에서, 무선 전력 수신기는 무선 전력 송신기와의 대역외 통신 링크를 설정하고 VRECT
값이 부하단에 요구되는 전력에 도달할 때까지 대기할 수 있다.
부트 상태(620)의 무선 전력 수신기는 VRECT
값이 부하단에 요구되는 전력에 도달된 것이 확인되면, 활성화 상태(630)로 천이하여 충전을 시작할 수 있다.
활성화 상태(630)의 무선 전력 수신기는 충전이 완료되거나 충전이 중단된 것이 확인되면, 부트 상태(620)로 천이될 수 있다.
또한, 활성화 상태(630)의 무선 전력 수신기는 소정 시스템 오류가 감지되면, 시스템 오류 상태(640)로 천이할 수 있다. 여기서, 시스템 오류는 과전압, 과전류 및 과열뿐만 아니라 미리 정의된 다른 시스템 오류 조건이 포함될 수 있다.
또한, 활성화 상태(630)의 무선 전력 수신기는 VRECT
값이 VRECT
_BOOT 값 이하로 떨어지면, 비활성화 상태(610)로 천이될 수도 있다.
또한, 부트 상태(620) 또는 시스템 오류 상태(640)의 무선 전력 수신기는 VRECT 값이 VRECT
_BOOT 값 이하로 떨어지면, 비활성화 상태(610)로 천이될 수도 있다.
본 발명에 따른 무선 전력 수신기 또는 무선 전력 수신기와 연결된 전자 기기는 활성화 상태(630)에서 수신되는 전력의 변화가 기준치 이하로 안정화된 경우, 부하의 충전이 완료되기까지의 예상 소요 시간을 산출할 수 있다.
일 예로, 무선 전력 수신기는 단위 시간 동안 정류기 후단에서 측정된 전압(VRECT)의 평균 세기가 소정 최적 전압 세기를 중심으로 기준치 이하의 편차를 가지는 경우, 전력 수신이 안정화된 것으로 판단할 수 있다.
이하에서는, 활성화 상태(630)내에서의 무선 전력 수신기의 상태 천이를 후술할 도 7을 참조하여 상세히 설명하기로 한다.
도 7은 본 발명의 일 실시예에 따른 VRECT에 따른 무선 전력 수신기의 동작 영역을 설명하기 위한 도면이다.
도 7을 참조하면, VRECT 값이 소정 VRECT
_
BOOT 보다 작으면, 무선 전력 수신기는 비활성화 상태(610)에 유지된다.
이 후, VRECT 값이 VRECT
_BOOT 이상으로 증가되면, 무선 전력 수신기는 부트 상태(620)로 천이되며, 미리 지정된 시간 이내에 광고 시그널을 브로드캐스팅할 수 있다. 이 후, 광고 시그널이 무선 전력 송신기에 의해 감지되면, 무선 전력 송신기는 대역외 통신 링크 설정을 위한 소정 연결 요청 시그널을 무선 전력 수신기에 전송할 수 있다.
무선 전력 수신기는 대역외 통신 링크가 정상적으로 설정되고, 등록에 성공한 경우, VRECT 값이 정상적인 충전을 위한 정류기에서의 최소 출력 전압-이하, 설명의 편의를 위해 VRECT
_
MIN이라 명함-에 도달할 때까지 대기할 수 있다.
VRECT 값이 VRECT
_MIN을 초과하면, 무선 전력 수신기의 상태는 부트 상태(620)에서 활성화 상태(630)로 천이되며 부하에 충전을 시작할 수 있다.
만약, 활성화 상태(630)에서 VRECT 값이 과전압을 판단하기 위한 소정 기준치인 VRECT
_MAX을 초과하면, 무선 전력 수신기는 활성화 상태(630)에서 시스템 오류 상태(640)로 천이될 수 있다.
도 7를 참조하면, 활성화 상태(630)는 VRECT의 값에 따라 저전압 상태(Low Voltage State, 632), 최적 전압 상태(Optimum Voltage State, 631) 및 고전압 상태(High Voltage State, 633)로 구분될 수 있다.
저전압 상태(632)는 VRECT
_BOOT <= VRECT <= VRECT
_
MIN인 상태를 의미하고, 최적 전압 상태(631)은 VRECT
_MIN < VRECT <=VRECT
_
HIGH인 상태를 의미하고, 고전압 상태(633)는 VRECT_HIGH < VRECT <=VRECT
_
MAX인 상태를 의미할 수 있다.
특히, 고전압 상태(633)로 천이된 무선 전력 수신기는 부하에 공급되는 전력을 차단하는 동작을 미리 지정된 시간-이하 설명의 편의를 위해 고전압 상태 유지 시간이라 명함- 동안 유보시킬 수도 있다. 이때, 고전압 상태 유지 시간은 고전압 상태(633)에서 무선 전력 수신기 및 부하에 피해가 발생되지 않도록 미리 결정될 수 있다.
무선 전력 수신기는 시스템 오류 상태(640)로 천이되면, 과전압 발생을 지시하는 소정 메시지를 미리 지정된 시간 이내에 대역외 통신 링크를 통해 무선 전력 송신기에 전송할 수 있다.
또한, 무선 전력 수신기는 시스템 오류 상태(630)에서 과전압에 따른 부하의 피해를 방지하기 위해 구비된 과전압 차단 수단을 이용하여 부하에 인가되는 전압을 제어할 수도 있다. 여기서, 과전압 차단 수단으로 ON/OFF 스위치 또는/및 제너다이오드 등이 사용될 수 있다.
상기 실시예에서는 무선 전력 수신기에 과전압이 발생되어 시스템 오류 상태(640)로 천이된 경우, 무선 전력 수신기에서의 시스템 오류 대응 방법 및 수단을 설명하고 있으나 이는 하나의 실시예에 불과하며, 본 발명의 다른 실시예는 무선 전력 수신기에 과열, 과전류 등에 의해서도 시스템 오류 상태로 천이될 수도 있다.
일 예로, 과열에 따라 시스템 오류 상태로 천이된 경우, 무선 전력 수신기는 과열 발생을 알리는 소정 메시지를 무선 전력 송신기에 전송할 수 있다. 이때, 무선 전력 수신기는 구비된 냉각팬 등을 구동하여 내부 발생된 열을 감소시킬 수도 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 수신기는 복수의 무선 전력 송신기와 연동하여 무선 전력을 수신할 수도 있다. 이 경우, 무선 전력 수신기는 실제 무선 전력을 수신하기로 결정된 무선 전력 송신기와 실제 대역외 통신 링크가 설정된 무선 전력 송신기가 서로 상이한 것으로 판단되면, 시스템 오류 상태(640)로 천이할 수도 있다.
본 발명의 일 실시예에 따른 무선 전력 수신기는 정류기 후단에서 측정된 전압(VRECT)의 세기가 일정 시간 동안 최적 전압 상태(631)에 유지되는 경우, 전력 수신이 안정화된 것으로 판단할 수 있다. 무선 전력 수신기 또는 무선 전력 수신기와 연결된 전자기기는 전력 수신이 안정화된 것으로 판단되면, 부하의 충전이 완료되기까지의 예상 소요 시간을 산출할 수 있다.
이하에서는 본 발명에 따른 무선 전력 송신기와 무선 전력 수신기 사이의 시그널링 절차를 후술할 도면을 참조하여 상세히 설명하기로 한다.
도 8은 본 발명의 일 실시예에 따른 무선 충전 시스템의 구성도이다.
도 8에 도시된 바와 같이, 무선 충전 시스템은 스타 토폴로지(Star Topology)로 구성될 수 있으나, 이에 한정되지는 않는다.
무선 전력 송신기는 대역외 통신 링크를 통해 무선 전력 수신기로부터 각종 특성 정보 및 상태 정보를 수집하고, 수집된 정보에 기반하여 무선 전력 수신기의 동작 및 송출 전력을 제어할 수 있다.
또한, 무선 전력 송신기는 자신의 특성 정보 및 소정 제어 신호를 대역외 통신 링크를 통해 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 접속된 무선 전력 수신기의 무선 전력 수신기 별 전력 전송 순서를 결정할 수 있으며, 결정된 전력 전송 순서에 따라 무선 전력을 송출할 수도 있다. 일 예로, 무선 전력 송신기는 무선 전력 수신기의 카테고리, 무선 전력 수신기 별 미리 할당된 우선 순위, 무선 전력 수신기의 전력 수신 효율 또는 무선 전력 송신기에서의 전력 전송 효율, 무선 전력 송신기와 무선 전력 수신기 사이의 최소 공진 정합 효율, 부하에서의 충전 효율, 무선 전력 수신기의 충전 상태, 무선 전력 수신기 별 시스템 오류 발생 여부 중 적어도 하나에 기반하여 전력 전송 순서를 결정할 수 있다.
다른 일 예로, 무선 전력 송신기는 복수의 무선 전력 수신기에 동시에 전력을 전송할 수도 있다. 또 다른 일 예로, 무선 전력 송신기는 복수의 무선 전력 수신기가 접속된 경우, 접속된 무선 전력 수신기 별 전송 슬롯을 결정하여 시분할 방식으로 전력을 전송할 수도 있다.
또한, 무선 전력 송신기는 접속된 무선 전력 수신기 별 전송해야 할 전력량을 결정할 수도 있다. 일 예로, 무선 전력 송신기는 현재 가용한 전력량 및 무선 전력 수신기 별 전력 수신 효율 등에 기반하여 무선 전력 수신기 별 전송할 전력량을 산출할 수 있으며, 산출된 전력량에 관한 정보를 소정 제어 메시지를 통해 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 새로운 무선 전력 수신기가 충전 영역에 추가되는 경우, 기존 충전 중인 무선 전력 수신기가 충전 영역에서 제거되는 경우, 기존 충전 중인 무선 전력 수신기의 충전이 완료된 경우, 기존 충전 중인 무선 전력 수신기의 시스템 오류가 감지된 경우 등의 무선 충전 상태의 변화가 감지된 경우, 전력 재분배 절차를 개시할 수도 있다. 이때, 전력 재분배 결과는 소정 제어 메시지를 통해 접속된 무선 전력 수신기에 전송될 수 있다.
또한, 무선 전력 송신기는 네트워크 연결된 무선 전력 수신기(들)과의 시간 동기를 획득하기 위한 시간 동기 신호(Tim Synchronization Signal)를 생성하여 무선 전력 수신기에 제공할 수도 있다. 여기서, 시간 동기 신호는 무선 전력을 전송하기 위한 주파수 대역-즉, 인밴드(In-Bnad)- 또는 대역외 통신을 수행하기 위한 주파수 대역-즉, 아웃오브밴드(Out-Of-Band)-을 통해 전송될 수 있다. 무선 전력 송신기와 무선 전력 수신기는 시간 동기 신호에 기반하여 서로의 통신 타이밍 및 통신 시퀀스를 관리할 수 있다.
이상의 도 8에서는 하나의 무선 전력 송신기와 복수의 무선 전력 수신기로 구성된 무선 충전 시스템이 스타 토폴로지로 네트워크 연결된 구성을 설명하고 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 무선 충전 시스템은 복수의 무선 전력 송신기 및 복수의 무선 전력 수신기가 상호 네트워크 연결되어 동적으로 링크를 형성하여 무선 전력을 송수신할 수 있다. 이 경우, 무선 전력 송신기는 별도의 통신 채널을 통해 자신의 상태 정보 또는(및) 자신에 접속된 무선 전력 수신기의 상태 정보를 네트워크 연결된 다른 무선 전력 송신기와 공유할 수 있다. 또한, 무선 전력 수신기가 이동 가능한 장치인 경우, 무선 전력 수신기는 무선 전력 송신기 사이의 핸드오버를 통해 끊김 없는 전력이 수신될 수 있도록 제어할 수도 있다.
만약, 하나의 무선 전력 수신기가 핸드 오버 과정 중 복수의 무선 전력 송신기로부터 동시에 무선 전력을 수신하는 경우, 무선 전력 수신기는 각각의 무선 전력 송신기로부터 수신되는 전력을 합산하고, 그에 기반하여 부하의 충전이 완료되기까지의 예상 소요 시간을 산출할 수도 있다. 즉, 무선 전력 수신기 또는 무선 전력 수신기와 연결된 전자기기는 핸드 오버에 따라 적응적으로 충전 완료 예상 소요 시간을 산출하고 이를 디스플레이 화면에 표시되도록 제어할 수 있다.
또한, 무선 전력 송신기는 네트워크 조정자(Network Coordinator)로서 동작하며 대역외 통신 링크를 통해 무선 전력 수신기와 정보를 교환할 수 있다. 일 예로, 무선 전력 송신기는 무선 전력 수신기의 각종 정보를 수신하여 소정 디바이스 제어 표(Device Control Table)을 생성 및 관리하고, 디바이스 제어 표를 기초하여 네트워크 관리 정보를 해당 무선 전력 수신기에 전송할 수 있다. 이를 통해, 무선 전력 송신기는 무선 충전 시스템 네트워크를 생성하고, 이를 유지할 수 있다.
도 9는 본 발명의 일 실시에에 따른 무선 충전 절차를 설명하기 위한 흐름도이다.
도 9를 참조하면, 무선 전력 송신기는 전원 인가에 따라 무선 전력 송신기 구성, 즉, 부팅이 완료되면, 비콘 시퀀스를 생성하여 송신 공진기를 통해 전송할 수 있다(S901).
무선 전력 수신기는 비콘 시퀀스가 감지되면 자신의 식별 정보 및 특성 정보가 포함된 광고 시그널을 브로드캐스팅할 수 있다(S903). 이때, 광고 시그널은 후술할 연결 요청 신호가 무선 전력 송신기로부터 수신되기 이전까지 소정 주기로 반복 전송될 수 있음을 주의해야 한다.
무선 전력 송신기는 광고 시그널이 수신되면, 대역외 통신 링크를 설정하기 위한 소정 연결 요청 신호를 무선 전력 수신기에 전송할 수 있다(S905).
무선 전력 수신기는 연결 요청 신호가 수신되면, 대역외 통신 링크를 설정하고, 설정된 대역외 통신 링크를 통해 자신의 정적 상태 정보를 전송할 수 있다(S907).
여기서, 무선 전력 수신기의 정적 상태 정보는 카테고리 정보, 하드웨어 및 소프트웨어 버전 정보, 최대 정류기 출력 파워 정보, 전력 제어를 위한 초기 기준 파라메터 정보, 요구 전압 또는 전력에 관한 정보, 전력 조절 기능 탑재 여부를 식별하기 위한 정보, 지원 가능한 대역외 통신 방식에 관한 정보, 지원 가능한 전력 제어 알고리즘에 관한 정보, 무선전력수신기에 초기 설정된 선호 정류기단 전압값 정보 중 적어도 하나를 포함할 수 있다. 또한, 무선 전력 수신기의 정적 상태 정보는 부하의 최대 용량 정보, 부하의 현재 충전량에 관한 정보 등을 더 포함할 수도 있다.
무선 전력 송신기는 무선 전력 수신기의 정적 상태 정보가 수신되면, 무선 전력 송신기의 정적 상태 정보를 대역외 통신 링크를 통해 무선 전력 수신기에 전송할 수 있다(S909).
여기서, 무선 전력 송신기의 정적 상태 정보는 송신기 출력 전력 정보, 등급 정보, 하드웨어 및 소프트웨어 버전 정보, 지원 가능한 무선 전력 수신기의 최대 개수에 관한 정보 및/또는 현재 접속된 무선 전력 수신기의 개수에 관한 정보 중 적어도 하나를 포함하여 구성될 수 있다.
이 후, 무선 전력 수신기는 자신의 실시간 전력 수신 상태 및 충전 상태를 모니터링하며, 주기적 또는 특정 이벤트 발생 시 동적 상태 정보를 무선 전력 송신기에 전송할 수 있다(S911).
여기서, 무선 전력 수신기의 동적 상태 정보는 정류기 출력 전압 및 전류에 관한 정보, 부하에 인가되는 전압 및 전류에 관한 정보, 무선 전력 수신기의 내부 측정 온도에 관한 정보, 전력 제어를 위한 기준 파라메터 변경 정보(정류 전압 최소 값, 정류 전압 최대 값, 초기 설정된 선호 정류기단 전압 변경 값), 충전 상태 정보-예를 들면, 충전 완료 여부에 관한 정보, 부하의 현재 충전량에 관한 정보 등을 포함함-, 시스템 오류 정보, 경보 정보- 예를 들면, 로컬 장애 정보 등을 포함함- 중 적어도 하나를 포함하여 구성될 수 있다. 무선 전력 송신기는 상기 전력 제어를 위한 기준 파라메터 변경 정보 수신 시 기존 정적 상태 정보에 포함된 설정 값을 변경하여 전력 조절을 수행할 수 있다.
또한, 무선 전력 송신기는 무선 전력 수신기를 충전하기 위한 충분한 전력이 준비되면, 대역외 통신 링크를 통해 소정 제어 명령을 송출하여 무선 전력 수신기가 충전을 개시하도록 제어할 수 있다(S913).
이 후, 무선 전력 송신기는 무선 전력 수신기로부터 동적 상태 정보를 수신하여 송출 전력을 동적으로 제어할 수 있다(S915).
또한, 무선 전력 수신기는 내부 시스템 오류가 감지되거나 충전이 완료된 경우, 동적 상태 정보에 해당 시스템 오류를 식별하기 위한 데이터 및/또는 충전이 완료되었음을 지시하는 데이터를 포함하여 무선 전력 송신기에 전송할 수도 있다(S917). 여기서, 시스템 오류는 과전류, 과전압, 과열 등을 포함할 수 있다.
또한, 본 발명의 다른 일 실시예에 따른 무선 전력 송신기는 현재 가용한 전력이 접속된 모든 무선 전력 수신기의 요구 전력을 충족하지 못하는 경우, 각 무선 전력 수신기에 전송할 전력을 재분배하고 이를 소정 제어 명령을 통해 해당 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 무선 충전 중 새로운 무선 전력 수신기가 추가 등록 또는 연결된 경우, 현재 가용한 전력에 기반하여 접속된 무선 전력 수신기 별 수신할 전력을 재분배하고, 이를 소정 제어 명령을 통해 해당 무선 전력 수신기에 전송할 수도 있다
또한, 무선 전력 송신기는 무선 충전 중 기존 접속된 무선 전력 수신기의 충전이 완료되거나 대역외 통신 링크가 해제-예를 들면, 무선 전력 수신기가 충전 영역에서 제거된 경우를 포함함-되는 경우, 남아있는 무선 전력 수신기 별 수신할 전력을 재분배하고 이를 소정 제어 명령을 통해 해당 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 소정 제어 절차를 통해 무선 전력 수신기가 전력 조절 기능이 탑재되었는지 여부를 확인할 수도 있다. 이 경우, 무선 전력 송신기는 전력 재분배 상황이 발생된 경우, 전력 조절 기능이 탑재된 무선 전력 수신기에 대해서만 전력 재분배를 수행할 수도 있다.
일 예로, 전력 재분배 상황은 연결되지 않은 무선 전력 수신기로부터 유효한 광고 시그널을 수신하여 새로운 무선 전력 수신기가 추가되거나 연결된 무선 전력 수신기의 현재 상태 등을 지시하는 동적 파라메터가 수신되거나, 기 연결된 무선 전력 수신기가 더 이상 존재하지 않음이 확인되거나, 기 연결된 무선 전력 수신기의 충전이 완료되거나, 기 연결된 무선 전력 수신기의 시스템 오류 상태를 지시하는 알람(Alert) 메시지가 수신되는 등의 이벤트가 발생된 경우 발생될 수 있다.
여기서, 시스템 오류 상태는 과전압 상태, 과전류 상태, 과열 상태, 네트워크 연결 오류 상태 등을 포함할 수 있다.
일 예로, 무선 전력 송신기는 소정 제어 명령을 통해 전력 재분배 관련 정보를 무선 전력 수신기에 전송할 수 있다.
여기서, 전력 재분배 관련 정보는 무선 전력 수신기 전력 제어를 위한 명령 정보, 전력 전송 요청에 대한 허여(Permission) 또는 거절(deny) 여부를 식별하기 위한 정보, 무선 전력 수신기가 유효한 부하 변화(Valid Load Variation)을 생성하는 시간 정보 등을 포함할 수 있다.
여기서, 무선 전력 수신기 전력 제어를 위한 명령은 무선 전력 수신기가 부하에 수신된 전력을 제공하는 것을 제어하기 위한 제1 명령, 무선 전력 수신기가 충전이 이루어지고 있음을 지시하는 것을 허여하기 위한 제2 명령, 무선 전력 수신기의 최대 정류기 파워 대비 무선 전력 송신기에 의해 제공 가능한 최대 파워의 비율을 지시하는 파워 조절 명령(Adjust Power Command) 등을 포함할 수 있다.
만약, 무선 전력 수신기가 상기 파워 조절 명령을 지원하지 않는 경우, 무선 전력 송신기는 파워 조절 명령을 해당 무선 전력 수신기에 전송하지 않을 수도 있다.
일 예로, 무선 전력 송신기는 새로운 무선 전력 수신기가 등록되면, 자신의 가용한 전력량에 기반하여 무선 전력 수신기에 의해 요구된 전력량을 제공 가능한지 여부를 판단할 수 있다. 판단 결과, 요구된 전력량이 가용한 전력량을 초과하는 경우, 무선 전력 송신기는 해당 무선 전력 수신기에 전력 조절 기능이 탑재되었는지 여부를 확인할 수 있다. 확인 결과, 전력 조절 기능이 탑재된 경우, 무선 전력 수신기는 가용한 전력량 내에서 무선 전력 수신기가 수신할 전력의 양을 결정하고, 결정된 결과를 소정 제어 명령을 통해 무선 전력 수신기에 전송할 수도 있다.
물론, 상기 전력 재분배는 무선 전력 송신기 및 무선 전력 수신기가 정상적으로 동작 가능한 범위 및/또는 정상적인 충전이 가능한 범위 내에서 수행될 수 있다.
또한, 상기 전력 전송 요청에 대한 허여(Permission) 또는 거절(deny) 여부를 식별하기 위한 정보는 허여 조건 및 거절 이유가 포함될 수 있다.
일 예로, 허여 조건은 가용한 파워 부족으로 인한 일정 시간 동안의 대기를 조건으로 한 허여가 포함될 수 있다. 거절 이유는 가용한 파워 부족으로 인한 거절, 수용 가능한 무선 전력 수신기 개수의 초과로 인한 거절, 무선 전력 송신기의 과열로 인한 거절, 무선 전력 송신기의 제한된 등급에 따른 거절 등을 포함할 수 있다.
본 발명의 일 실시예에 따른 무선 전력 송신기는 상기 전력 전송 요청에 따른 허여 및 거절에 대한 상세 정보를 단위 시간 동안 수집하고, 수집된 상세 허여 및 거절 정보를 네트워크 연결된 홈 네트워크 서버 또는(및) 클라우드 서버 등에 전송할 수 있다. 여기서, 수집된 상세 허여 및 거절 정보는 총 전력 전송 요청이 수신된 횟수, 총 허여 회수, 총 거절 회수, 즉시 허여 회수, 대기 허여 회수, 파워 부족으로 인한 거절 회수, 무선 전력 수신기 개수 초과로 인한 거절 회수, 무선 전력 송신기 시스템 오류로 인한 거절 회수, 인증 실패로 인한 거절 회수, 제한된 등급에 따른 거절 회수 중 적어도 하나의 정보를 포함할 수 있다.
홈 네트워크 서버 또는(및) 전력 관리를 위한 클라우드 서버는 무선 전력 송신기 별 상기 수집된 상세 허여 및 거절 정보를 통계 처리하고, 처리된 통계 정보를 자동으로 미리 지정된 사용자 단말 등에 전송하거나 사용자의 조회 요청에 따라 해당 사용자 단말에 전송할 수 있다. 사용자는 수신된 통계 정보를 통해 무선 전력 송신기의 증설/변경/제거 여부를 결정할 수 있다.
다른 일 예로, 홈 네트워크 서버 또는(및) 전력 관리를 위한 클라우드 서버는 무선 전력 송신기 별 상기 수집된 상세 허여 및 거절 정보에 기반하여 무선 전력 송신기의 증설/변경/제거 여부를 결정하고, 결정 결과를 미리 지정된 사용자 단말에 전송할 수도 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 수신기는 복수의 대역외 통신 방식을 지원할 수 있다. 만약, 현재 설정된 대역외 통신 링크를 다른 방식으로 변경하고자 하는 경우, 무선 전력 수신기는 대역외 통신 변경을 요청하는 소정 제어 신호를 무선 전력 송신기에 전송할 수 있다. 무선 전력 송신기는 대역외 통신 변경 요청 신호가 수신되면, 현재 설정된 대역외 통신 링크를 해제하고, 무선 전력 수신기에 의해 요청된 대역외 통신 방식으로 새로운 대역외 통신 링크를 설정할 수 있다.
일 예로, 본 발명에 적용 가능한 대역외 통신 방식에는 NFC(Near Field Communication) 통신, RFID(Radio Frequency Identification) 통신, BLE(Bluetooth Low Energy) 통신, WCDMA(Wideband Code Division Multiple Access) 통신, LTE(Long Term Evolution)/LTE-Advance 통신, Wi-Fi 통신 중 적어도 하나를 포함할 수 있다.
또한, 본 발명에 적용 가능한 무선 전력 송신기와 홈 네트워크 서버 또는(및) 전력 관리를 위한 클라우드 서버와의 통신, 홈 네트워크 서버 또는(및) 전력 관리를 위한 클라우드 서버와 사용자 단말과의 통신, 무선 전력 송신기들 사이의 통신은 유선 또는 무선의 IP망, WCDMA(Wideband Code Division Multiple Access) 통신, LTE(Long Term Evolution)/LTE-Advance 통신, Wi-Fi 통신 중 어느 하나 또는 적어도 하나의 조합을 통해 이루어질 수 있으나, 이에 한정되지는 않는다.
도 10은 종래 기술에 따른 전자기 공진 방식을 지원하는 무선 충전 시스템에서의 문제점을 설명하기 위한 도면이다.
도 10을 참조하면, 종래의 전자기 공진 방식으로 전력을 송출하는 무선 전력 송신 패드(1000)는 무선 전력 수신 장치가 배치되며 평면 형태를 가지는 충전 베드(1001) 및 충전 베드(1001)의 하부에 폐루프 형태로 장착되며, 전자기 신호를 송출하는 송신 코일(1002)을 포함하여 구성될 수 있다.
도 10에 도시된 바와 같이, 송신 코일(1001)이 폐루프 형태로 구성되어 충전 베드(1001) 하단에 장착되는 경우, 송신 코일(1001)의 권선을 중심으로 내/외부 일정 거리 이내에 충전이 불가능한 충전 음영 영역(1003)이 존재한다.
여기서, 폐루프 송신 코일의 내부 자속 방향과 외부의 자속 방향은 서로 반대이며, 송신 코일 권선 위 부분 또는 근처 부분에 놓인 수신 코일에 통과되는 자속은 서로 상쇄되어 자속의 총합이 거의 0에 가까워진다. 이에 따라, 송신 코일 권선을 중심으로 내/외부 일정 거리 이내에는 무선 충전이 불가능한 충전 음영 영역(1003)-즉, Dead Zone-이 존재한다.
일 예로, 충전 음영 영역(1003)의 면적 또는 크기는 송신 코일을 흐르는 전력의 세기에 따라 변할 수 있다.
다른 일 예로, 충전 음영 영역(1003)의 면적 또는 크기는 무선 전력 송신 장치에 탑재되는 송신 코일의 종류에 따라 상이할 수 있다.
또 다른 일 예로, 충전 음영 영역(1003)의 면적 또는 크기는 상기 표 1에 도시된 바와 같이 무선 전력 송신 장치의 등급에 따라 상이하게 결정될 수 있다.
만약, 도면 식별 번호 1011에 도시된 바와 같이, 송신 코일의 대부분이 충전 음영 영역(1003) 내에 위치하는 경우, 정상적인 충전이 이루어지지 않을 수 있다. 반면, 도면 식별 번호 1012에 도시된 바와 같이, 송신 코일이 충전 가능 영역에 위치한 경우, 충전이 정상적으로 이루어질 수 있다.
도 11은 종래 기술에 따른 전자기 공진 방식을 지원하는 무선 충전 시스템에서의 문제점을 설명하기 위한 도면이다.
상세하게 종래의 무선 전력 송신 패드(1100)는 상기 도 10에서 설명된 충전 음영 영역(1003)의 면적 또는 크기를 최소화시키기 위해 충전 베드(1101)의 가장자리 부분-즉, 최외곽 영역-에 폐루프 형태의 송신 코일(1102)이 장착되도록 구성되었었다.
도 11을 참조하면, 도면 식별 번호 1111 및 1112와 같은 수신 코일은 충전 가능 영역에 위치하므로 정상적인 충전이 이루어질 수 있다. 하지만, 송신 코일(1102)이 충전 베드의 최외곽에 장착됨에 따라 충전 베드(1101)의 중앙 부분에는 송신 코일(1102)의 자속이 미치지 못하는 또 다른 충전 음영 영역(1122)에 발생될 수 있다. 이 경우, 도 11에 도시된 바와 같이, 수신 코일(1113)이 충전 베드(1101)의 중앙 부분에 형성된 충전 음영 영역(1122)에 위치하는 경우, 정상적인 충전이 이루어질 수 없다.
또한, 폐루프 형태의 송신 코일(1102)을 충전 베드(1101)의 최외곽에 장착하는 경우, 송신 코일(1102)에 사용되는 권선의 길이-즉, 송신 코일(1102)의 폐루프 면적-가 증가할 뿐만 아니라 송신 코일(1102)에 의해 발생된 전자기 신호가 제어 회로(미도시)에 영향을 미치는 것을 차단하기 위한 차폐재(미도시)의 적용 면적도 증가된 폐루프 면적에 비례하여 증가될 수 있다.
따라서, 폐루프 형태의 송신 코일(1102)을 충전 베드(1101)의 최외곽에 장착하는 방법은 무선 전력 송신 장치의 제조 단가를 상승시킬 뿐만 아니라 충전 베드(1101)이 중앙 부분에 또 다른 충전 음영 영역(1122)를 발생시킬 수 있는 단점이 있다.
도 12는 종래 기술에 따른 무선 전력 송신 패드의 적층 구조를 설명하기 위한 도면이다.
도 12를 참조하면, 종래의 무선 전력 송신 패드(1200)는 충전 베드(1201)의 최외곽(가장자리) 부분에 폐루프 형태의 송신 코일(1202)이 장착되었다.
송신 코일(1202)의 하단에는 송신 코일(1202)에서 발생된 전자기 신호가 제어 회로 기판(1204)으로 전달되는 것을 차단시키기 위한 차폐재(1203)이 장착될 수 있다. 여기서, 차폐재(1203)의 면적은 송신 코일(1202)의 폐루브 면적보다 크게 장착되어야 하는 문제점이 있었다.
이하에서는 상기한 도 10 내지 도 12에서 언급된 종래 기술의 문제점을 해결하기 위해, 본 발명에 따른 무선 충전 시스템의 구성을 후술할 도면 13 내지 16을 참조하여 상세히 설명하기로 한다.
도 13은 본 발명의 일 실시예에 따른 무선 충전 시스템의 구성을 설명하기 위한 도면이다.
도 13을 참조하면, 본 발명에 따른 무선 전력 송신 패드(1300)는 무선 전력 수신 장치가 배치되고 평면 형태를 가지는 충전 베드(1301), 충전 베드(1301)의 최외곽으로부터 내측으로 일정 거리 이격되어 충전 베드(1301)의 하단에 폐루프의 형태로 장착되는 송신 코일(1302) 및 폐루프에 상응하는 면적이 커버되도록 송신 코일(1302)의 하단에 장착되는 차폐재(미도시)를 포함하여 구성될 수 있다. 물론, 본 발명에 따른 무선 전력 송신 장치는 무선 전력 송신 패드(1300)의 동작을 제어하기 위한 제어 회로 기판(미도시)를 더 포함하여 구성될 수 있음을 주의해야 한다.
폐루프 형태의 송신 코일(1302)이 충전 베드(1301)의 가장자리로부터 내측으로 이격되는 거리는 폐루프의 외곽으로 형성되는 충전 가능 영역이 상기 충전 베드에 모두 포함될 수 있는 최소값으로 결정될 수 있다.
여기서, 폐루프의 외곽으로 형성되는 충전 가능 영역은 송신 코일(1302)을 통해 전송 가능한 최대 전력의 세기에 기반하여 결정될 수 있으나 이는 하나의 실시에에 불과하며, 본 발명의 다른 일 실시예에 따른 폐루프의 외곽으로 형성되는 충전 가능 영역은 송신 코일의 두께, 송신 코일의 권선 수, 송신 코일의 재질 등에 더 기반하여 결정될 수도 있다.
특히, 본 발명은 폐루프 형태의 송신 코일(1302)을 충전 베드(1301)의 가장자리로부터 내측으로 일정 거리 이격시켜 배치함으로써, 충전 베드(1301)의 중앙 부분에 또 다른 충전 음영 영역이 발생되는 것을 미연에 방지할 수 있는 장점이 있다.
또한, 본 발명은 폐루프 형태의 송신 코일(1302)을 충전 베드(1301)의 가장자리로부터 내측으로 일정 거리 이격시켜 배치함으로써, 차폐재 및 송신 코일 비용을 절감시킬 수 있는 장점이 있다.
본 발명에 따른 차폐재(미도시)의 적용 면적은 폐루프의 내부 면적보다 크거나 같고, 충전 베드(1301)의 면적보다 작게 결정될 수 있다.
특히, 본 발명에 따른 무선 충전 시스템에 적용되는 무선 전력 수신 장치는 멀티 수신 코일이 탑재될 수 있다.
멀티 수신 코일을 구성함에 있어서, 각각의 수신 코일 간의 자기 결합 계수가 0 또는 가능한 작은 값을 가지도록 수신 코일들의 배치가 결정되어야 한다.
만약, 수신 코일 간의 자속 결합 계수 값이 소정 기준치 이상인 경우, 각각의 수신 코일은 독립적으로 작동하지 못하므로, Dead Zone을 극복하려는 본원 발명의 목적을 달성하기 힘들다.
일 예로, 하나의 수신 코일이 충전 가능 영역에 위치되고, 다른 하나의 수신 코일이 충전 불가능 영역-즉, 충전 음영 영역-에 위치되었다고 가정하자. 만약, 두 수신 코일 사이의 자속 결합 계수가 의미 있는 값인 경우, 충전 가능 영역에 위치한 수신 코일에서 얻어진 기전력이 충전 불가능 영역에 위치한 수신 코일에 전달되어 자속을 발생시킬 수 있다. 일반적으로, 수신 코일 별 독립적으로 전력을 수신하는 것이 수신 코일 간 자속의 영향을 미치는 상태에서 전력을 수신하는 것보다 충전 효율이 높다.
따라서, 수신 코일 간의 자속 결합 계수를 0에 가깝도록 수신 코일들을 배치하는 것은 충전 효율을 극대화시키기 위한 매우 중요한 요소이다. 후술할 도 15에서 본 발명의 일 실시예에 따른 멀티 수신 코일의 구성 방법을 상세히 설명하기로 한다.
수신 코일 간의 자속 결합 계수를 0에 가깝도록 하기 위해 본 발명의 일 실시예에 따른 멀티 수신 코일은 도면 번호 1310에 도시된 바와 같이, 수신 코일들이 서로 일부 중첩되도록 배치하여 구성될 수 있다.
상기한 도 13에는 멀티 수신 코일을 구성하는 각각의 수신 코일의 형태가 원의 형태인 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 수신 코일은 후술할 도 15에 도시된 바와 같이, 부채꼴 형태를 가질 수 있으며, 부채꼴 형태의 수신 코일들이 배치된 최종 형태는 원의 형태를 가질 수 있다.
또한, 멀티 수신 코일은 수신 코일이 상호 고리를 형성하도록 구성될 수 있다.
상기한 도 13에는 멀티 수신 코일이 3개의 수신 코일을 이용하여 구성되는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시에에 따른 멀티 수신 코일은 4개 이상의 수신 코일을 이용하여 구성될 수도 있다. 물론 이 경우에 있어서도, 상기 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이의 결합 계수가 0 또는 소정 기준치 이하인 값을 갖도록 상기 중첩되는 영역의 크기가 결정되어야 한다.
특히, 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이에 중첩되는 영역의 면적이 모두 동일하도록 제1 내지 제N 수신 코일이 배치될 수 있다.
도면 식별 번호 1310의 멀티 수신 코일의 경우, 제1 수신 코일(1311)은 충전 음영 영역에 위치하고, 나머지 제2 내지 제3 수신 코일(1312, 1313)은 충전 가능 영역에 위치함을 알 수 있다.
또한, 도면 식별 번호 1320의 멀티 수신 코일은 모든 수신 코일(1321, 1322, 1323)이 모두 충전 가능 영역에 위치함을 알 수 있다.
또한, 도면 식별 번호 1330의 멀티 수신 코일은 제1 수신 코일(1331)은 충전 음영 영역에 위치하나 나머지 제2 수신 코일(1332) 및 제3 수신 코일(1333)은 충전 가능 영역에 위치함을 알 수 있다. 특히, 제3 수신 코일(1333)의 경우, 폐루프 송신 코일(1302)의 외곽에 형성된 충전 가능 영역을 활용하여 무선 충전이 가능함을 알 수 있다.
따라서, 본원 발명은 적어도 3개 이상의 수신 코일로 구성된 멀티 수신 코일이 충전 베드(1301)에 놓여지는 경우, 적어도 하나의 수신 코일이 충전 가능 영역에 위치되므로, 무선 충전이 중단되거나 실패되는 것을 미연에 방지할 수 있는 장점이 있다.
도 14는 본 발명의 일 실시예에 따른 무선 전력 송신 장치의 적층 구조를 설명하기 위한 도면이다.
도 14를 참조하면, 무선 전력 송신 장치(1400)의 적층 구조는 크게 충전 베드(1401), 충전 베드(1402) 하단 일측에 폐루프 형태로 장착되는 송신 코일(1402), 송신 코일(1402)의 하단에 배치되어 송신 코일(1402)에 의해 발생된 전자기 신호가 제어 회로 기판(1403)으로 전달되는 것을 차단하기 위한 차폐재(1403) 및 차폐재(1430) 하단에 배치되는 제어 회로 기판(1403)을 포함하여 구성될 수 있다. 여기서, 송신 코일(1402)의 양 단자는 제어 회로 기판(1403)에 전기적으로 연결되어야 함은 당연하다.
차폐재(1403)의 예로는 소결 Ni-Zn 페라이트, Half silted Mn-Zn 페라이트, 비정질 FeSiB 리본, Sendust-실리콘 등을 포함할 수 있다.
다른 일 예로, 차폐재(1403)는 Fe, Ni, Co, Mo, Si, Al, B 등의 원소 중 한 가지 혹은 두 가지 이상 원소의 조합으로 이루어지는 금속계 자성 분말과 고분자 복합소재(필름, 코팅 포함)로 이루어질 수도 있다.
또 다른 일 예로, 차폐재(1403)는 Fe, Ni, Mn, Zn, Co, Cu, Ca 등의 두 가지 이상 원소의 조합으로 이루어지는 페라이트계 분말과의 고분자 복합재료(필름, 코팅 포함)일 수 있다.
또 다른 일 예로, 차폐재(1403)는 Fe, Ni, Mn, Zn, Co, Cu, Ca 등의 두 가지 이상 원소의 조합으로 이루어지는 페라이트계 소결체이거나 내충격성 부여를 위하여 half slitting 가공된 것일 수도 있다.
또 다른 일 예로, 차폐재(1403)는 Fe, Co, Ba, Sr, Zn, Ti, Sn 중 두 가지 이상 원소의 조합으로 이루어지는 페라이트계 소결체일 수 있다.
또 다른 일 예로, 차폐재(1403)는 Fe, Ni, Mn, Zn, Co, Cu, Ca, Li, Ba, Sr, Ti, Sn 중 두 가지 이상 원소의 조합으로 이루어지는 페라이트계 분말과의 고분자 복합 재료일 수도 있다.
또 다른 일 예로, 차폐재(1403)는 permalloy 일 수 있다. 예를 들어, FeSi, FeNi, FeCo, Ni 등이 활용될 수도 있다.
또한, 차폐재(1403)는 양면 접착식 시트 형태로 구성되거나 자성을 갖는 금속 분말과 합성 수지를 혼합하여 가공한 샌더스트 블록의 형태로 구성될 수도 있다.
특히, 본 발명에 따른 송신 코일(1402)은 충전 베드(1401)의 가장자리로부터 일정 거리 안쪽으로 이격되도록 배치되며, 차폐재(1403)의 면적은 최소 송신 코일(1402)의 폐루프 면적과 동일하거나 크도록 구성될 수 있다. 즉, 차페재(1403)의 면적은 송신 코일(1402)의 폐루프 면적보다 크거나 같고, 충전 베드(1401)의 면적보다는 작게 구성될 수 있다.
따라서, 본원 발명에 따른 무선 전력 송신 장치(1400)는 충전 베드의 최외곽에 폐루프 형태의 송신 코일을 배치하는 종래의 방법에 비해, 보다 적은 송신 코일과 차폐재가 사용되므로 제조 비용을 절감할 수 있는 장점이 있다. 또한, 본원 발명에 따른 무선 전력 송신 장치(1400)는 상기 도 11에 도시된 바와 같이, 충전 베드의 최외곽에 폐루프 형태의 송신 코일을 배치함에 따라 발생 가능한 충전 베드 중앙 부분의 충전 음영 영역을 효과적으로 방지할 수 있는 장점이 있다.
도 15a 및 도 15b는 본 발명의 일 실시예에 따른 무선 전력 수신 장치에 장착되는 멀티 수신 코일의 구조를 설명하기 위한 도면이다.
이하에서는 멀티 수신 코일(1500)이 독립적인 3개의 수신 코일을 조합하여 구성되는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 2개 또는 4개 이상의 수신 코일을 조합하여 구성될 수도 있음을 주의해야 한다.
도 15a를 참조하면, 멀티 수신 코일(1500)은 크게 코일 배치 영역(1510)과 출력 단자 영역(1520)을 포함하여 구성될 수 있다.
코일 배치 영역(1510)에는 제1 수신 코일(1501), 제2 수신 코일(1502) 및 제3 수신 코일(1503)이 배치될 수 있다. 제1 내지 제3 수신 코일(1501 내지 1503)은 일부 영역이 상호 중첩되도록 배치될 수 있다. 이때, 수신 코일 사이의 자기 결합 계수가 0이거나 수신 코일들이 서로 독립적으로 동작하는 것을 의미할 만큼 자기 결합 계수가 작은 값을 갖도록 수신 코일 간 중첩되는 영역이 결정되어야 한다.
또한, 도 15a에 도시된 바와 같이, 상기 제1 내지 제3 수신 코일(1501 내지 1503)의 권선이 상호 고리를 형성되도록 구성될 수 있다.
또한, 상기 제1 내지 제3 수신 코일(1501 내지 1503)는 부채꼴 형태를 가질 수 있으며, 제1 내지 제3 수신 코일(1501 내지 1503)의 코일 배치 영역(1510)상에서의 전체적인 배치 형태는 원의 형태일 수 있다. 여기서, 부채꼴의 내각은 360을 3으로 나눈 값인 120도일 수 있으나 이에 한정되지는 않는다. 만약, 멀티 수신 코일이 4개의 부채꼴 형태를 갖는 수신 코일로 구성되는 경우, 해당 부채꼴의 내각은 90도일 수 있으나 이에 한정되지는 않는다. 또한, 상기 부채꼴을 이루는 수신 코일들 권선 중 직선 구간의 권선들이 상호 평행하도록 상기 제1 내지 제3 수신 코일이 배치될 수 있다.
또한, 상기 제1 내지 제3 수신 코일(1501 내지 1503) 각각의 권선의 개수는 5일 수 있으나, 이는 하나의 실시예에 불과하며, 해당 멀티 수신 코일이 장착되는 무선 전력 송신 장치의 등급 및 구성 태양에 따라 수신 코일 당 권선의 개수는 서로 상이할 수 있음을 주의해야 한다.
또한, 멀티 수신 코일에 포함된 수신 코일의 개수가 N일 경우, 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이에 중첩되는 영역의 면적이 모두 동일하도록 상기 제1 내지 제N 수신 코일이 배치될 수 있다.
도 15a를 참조하면, 제1 수신 코일 내지 제3 수신 코일(1501 내지 1503) 각각의 양단은 출력 단자 영역(1520)에 구비된 출력 단자에 결속될 수 있다. 여기서, 각각의 수신 코일에 대응되는 출력 단자는 정류기로 연결될 수 있다.
또한, 각각의 수신 코일 내부 일측에는 온도 측정을 위한 온도 센서가 장착될 수 있도록 온도 센싱 홀(1504 내지 1506)이 구비될 수도 있다.
멀티 수신 코일(1500)은 인쇄 회로 기판에 인쇄되어 구성될 수 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 멀티 수신 코일(1500)은 소정 회수 감겨진 구리 코일을 차폐재 또는 금속판상에 접착하여 구성되거나 금속판(예를 들면, 구리판)의 애칭을 통해 만들어진 수신 코일을 차폐재에 부착하여 구성할 수도 있다.
도 15b는 다른 실시예에 따른 멀티 수신 코일(1550)의 구조를 보여준다.
도 15b를 참조하면, 멀티 수신 코일(1550)은 크게 코일 배치 영역(1530)과 출력 단자 영역(1540)을 포함하여 구성될 수 있다.
코일 배치 영역(1530)에는 제1 수신 코일(1531), 제2 수신 코일(1532) 및 제3 수신 코일(1533)이 배치될 수 있다. 제1 내지 제3 수신 코일(1531 내지 1533)은 도 15b에 도시된 바와 같이, 일부 영역이 상호 중첩되도록 배치될 수 있다. 이때, 수신 코일 사이의 자기 결합 계수가 0이거나 수신 코일들이 서로 독립적으로 동작하는 것을 의미할 만큼 자기 결합 계수가 작은 값을 갖도록 수신 코일 간 중첩되는 영역이 결정되어야 한다.
또한, 도 15b에 도시된 바와 같이, 상기 제1 내지 제3 수신 코일(1531 내지 1533)의 권선이 상호 고리를 형성되도록 구성될 수도 있다.
또한, 상기 제1 내지 제3 수신 코일(1531 내지 1533)이 모두 중첩되는 영역은 삼각형의 형태를 가질 수 있으며, 제1 내지 제3 수신 코일(1531 내지 1533)의 코일 배치 영역(1530)상에서의 전체적인 배치 형태는 원형일 수 있다.
이때, 각각의 수신 코일의 면적의 합은 원형 면적을 초과함을 주의해야 한다.
이를 통해, 해당 수신 코일을 통한 전력 수신 가능 영역을 최대화시킬 수 있다. 도 15a의 멀티 수신 코일(1500)과 도 15b의 멀티 수신 코일(1550)의 원형 면적이 동일하다고 가정할 때, 도 15b의 멀티 수신 코일(1550)을 구성하는 수신 코일의 면적이 도 15a의 멀티 수신 코일(1550)을 구성하는 수신 코일의 면적 보다 큰 것을 알 수 있다.
도 15b의 예는 수신 코일의 개수가 3일 때, 멀티 수신 코일(1550)의 배치 구조를 보여준다. 수신 코일의 개수가 3일 때, 서로 다른 2개의 수신 코일 권선이 교차되는 각도-이하, 설명의 편의를 위해, 수신 코일의 교차 각이라 명함-는 60도일 수 있으나, 이에 한정되지는 않는다.
또한, 멀티 수신 코일에 포함된 수신 코일의 개수가 N일 경우, 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이에 중첩되는 영역의 면적이 모두 동일하도록 상기 제1 내지 제N 수신 코일이 배치될 수 있다.
도 15b를 참조하면, 제1 수신 코일 내지 제3 수신 코일(1531 내지 1533) 각각의 양단은 출력 단자 영역(1540)에 구비된 출력 단자에 결속될 수 있다. 여기서, 각각의 수신 코일에 대응되는 출력 단자는 정류기로 연결될 수 있다.
또한, 각각의 수신 코일 내부 일측에는 온도 측정을 위한 온도 센서가 장착될 수 있도록 온도 센싱 홀(미도시)이 추가로 구비될 수도 있다.
멀티 수신 코일(1550)은 인쇄 회로 기판에 인쇄되어 구성될 수 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 멀티 수신 코일(1500)은 소정 회수 감겨진 구리 코일을 차폐재 또는 금속판상에 접착하여 구성되거나 금속판(예를 들면, 구리판)의 애칭을 통해 만들어진 수신 코일을 차폐재에 부착하여 구성할 수도 있다.
도 16은 본 발명의 일 실시예에 따른 무선 전력 수신 장치의 구성을 설명하기 위한 블록도이다.
도 16을 참조하면, 무선 전력 수신 장치(1600)는 수신부(1610), 정류부(1620), DC/DC 컨버터(1630) 및 부하(1640)을 포함하여 구성될 수 있다.
수신부(1610)는 멀티 수신 코일로서, 제1 내지 제N 수신 코일을 포함하여 구성될 수 있다. 여기서, N은 3이상의 값을 가질 수 있다.
수신부(1610)의 출력-즉, AC 전력-은 정류부(1620)에 전달되어 DC 전력으로 변환될 수 있다.
일 실시예에 따른 정류부(1620)는 도 16에 도시된 바와 같이, 수신부(1610)에 포함된 수신 코일의 개수와 동일한 개수의 정류기를 포함하여 구성될 수 있다.
다른 일 예로, 수신부(1610)과 정류부(1620) 사이에 스위치(미도시)가 더 구비될 수도 있다. 이 경우, 수신 코일들을 통해 수신되는 AC 전력의 세기를 측정하여 소정 기준치 이상의 전력 수신이 가능한 수신 코일을 선택하고, 선택된 수신 코일에 상응하는 AC 전력이 정류기에 전달될 수 있도록 구성될 수도 있다. 물론, 이 경우, 수신 코일 별 AC 전력의 세기를 측정하기 위한 전력 센서(들)(미도시) 및 전력 센서의 센싱 값에 기반하여 전력을 수신할 수신 코일을 선택하고, 선택된 수신 코일의 AC 전력이 정류기에 전달되도록 스위치를 제어하는 제어부가 더 포함될 수 있음을 주의해야 한다.
상기 실시예에 있어서, 멀티 수신 코일 중 충전에 사용할 수신 코일을 선택하기 위한 AC 전력의 세기를 측정하는 것으로 설명되고 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 제어부는 스위치 제어를 통해 획득되는 수신 코일 별 정류기 출력 전력-즉, DC 전력-의 세기에 기반하여 충전을 위한 수신 코일을 선택할 수도 있다.
무선 전력 수신 장치는 멀티 수신 코일에 포함된 수신 코일 중 선택된 하나의 수신 코일을 통해 충전을 수행할 수 있으나 이는 하나의 실시예에 불과하며, 다른 일 예에 따른 무선 전력 수신 장치는 멀티 수신 코일에 포함된 수신 코일 중 선택된 복수의 수신 코일을 이용하여 충전을 수행할 수도 있음을 주의해야 한다.
DC/DC 컨버터(1630)는 정류부(1620)로부터 전달받은 DC 전력을 부하(1640)에 의해 요구되는 특정 DC 전력으로 변환할 수 있다.
도 17 내지 도 19는 실시예에 따른 복수의 송신코일에 전류가 인가되는 경우 생성되는 충전 가능 영역을 나타내는 도면이다.
도 17에 따르면, 제1 송신코일(1710)에 전류(i1)가 인가되는 경우, 제1 영역(1711), 제2 영역(1713), 제3 영역(1715)에 자기장이 형성되어 해당 영역(1711, 1713, 1715)에 무선 전력 수신기가 배치되면 충전이 수행될 수 있다. 제2 영역(1713)은 제1 송신코일의 내부의 영역이고 내부 충전 영역에 해당된다. 제1 영역(1711) 및 제3 영역(1715)는 제1 송신코일(1710)의 외부의 영역에 해당된다.
여기서, 제1 송신코일(1710)이 배치된 영역(충전 음영 영역)에 무선 전력 수신기가 배치되더라도 충전이 수행되지 않는다. 자속이 상쇄되어 자속결합이 0 또는 0의 근사치가 되기 때문이다. 구체적으로, 제1 송신코일(1710) 내부와 외부에 자기장의 방향이 반대로 형성되어, 수신코일이 제1 송신코일(1710) 상에 위치하게 되면, 제1 송신코일(1710)의 외부에 형성된 자기장이 수신코일을 통과하는 자속과 제1 송신코일(1710)의 내부에 형성된 자기장이 수신코일을 통과하는 자속과 상쇄가 이뤄진다. 특히, 수신코일의 중심이 제1 송신코일(1710)의 중심에 위치하게 되면, 자속이 완전히 상쇄되어 자속결합이 0이 된다.
충전 음영 영역은 제1 송신코일(1710)의 내부에 배치된 충전 음영 내부 영역과 제1 송신코일(1710) 외부에 배치된 충전 음영 외부 영역을 포함한다. 도 17에 따르면, 제1 영역(1711)과 제2 영역(1713) 사이에 제2 영역(1713)과 제3 영역(1715) 사이에 충전 음영 영역이 생긴다. 이때, 제2 송신코일(1720)에 전류가 인가된다면, 제2 영역(1713)과 제3 영역(1715) 사이의 충전 음영 영역은 충전 가능 영역으로 전환될 수 있다.
도 18에 따르면, 제2 송신코일(1720)에 전류(i2)가 인가되는 경우, 제4 영역(1721), 제5 영역(1723), 제6 영역(1725)에 자기장이 형성되어 해당 영역(1721, 1723, 1725)에 무선 전력 수신기가 배치되면 충전이 수행될 수 있다. 여기서, 제2 송신코일(1720)이 배치된 영역(제4 영역(1721) 및 제5 영역(1723)의 사이, 제5 영역(1723) 및 제6 영역(1725)의 사이)에 무선 전력 수신기가 배치되더라도 충전이 수행되지 않는다. 자속이 상쇄되어 자속결합이 0 또는 0의 근사치가 되기 때문이다. 도 17에서 구체적인 방법을 설명한 바 여기서는 생략하기로 한다.
도 19에 따르면, 제3 송신코일(1730)에 전류(i3)가 인가되는 경우, 제7 영역(1731), 제8 영역(1733), 제9 영역(1735)에 자기장이 형성되어 해당 영역(1731, 1733, 1735)에 무선 전력 수신기가 배치되면 충전이 수행될 수 있다. 여기서, 제3 송신코일(1730)이 배치된 영역에 무선 전력 수신기가 배치되더라도 충전이 수행되지 않는다. 마찬가지로 자속이 상쇄되어 자속결합이 0 또는 0의 근사치가 되기 때문이다.
도 17 내지 도 19에서 살핀바와 같이, 송신 코일에 필연적으로 발생되는 충전 음영 영역이 인접한 송신 코일의 전력 전송에 의해 충전 가능 영역으로 전환될 수 있다.
도 20은 실시예에 따른 전자기 공진 방식을 통해 감지신호를 송수신하는 과정을 나타내는 도면이다. 도 1e 내지 도 7과 도 20의 도면부호를 참고하여 설명하기로 한다.
도 20에 따르면, 송신기(100)의 주제어부(150)는 무선 전력이 인가되면, 제1 송신코일(1710) 내지 제3 송신코일(1730)에 전압 인가 시퀀스를 제어할 수 있다. 가령, 주제어부(150)는 순서를 정하여 제1 송신코일(1710) 내지 제3 송신코일(1730)에 전압을 인가하거나, 특정 코일에만 전압이 인가되도록 제어할 수 있다.
주제어부(150)는 전력 절약 상태(520)에서 주기적으로 숏 비콘(Beacon) 시퀀스를 제1 송신코일(1710) 내지 제3 송신코일(1730)이 전송하도록 제어할 수 있다. 주제어부(150)는 제1 송신코일(1710) 내지 제3 송신코일(1730)을 통해 수신기(1700)의 임피던스 변화를 감지할 수 있다. 숏(Short) 비콘 시퀀스라 하기로 한다.
그 다음으로, 주제어부(150)는 전력 절약 상태(520)에서 수신기(1700)가 부팅 및 응답에 필요한 충분한 전력을 공급하도록 롱 비콘 시퀀스를 주기적으로 생성하여 수신기(1700)로 전송할 수 있다.
주제어부(150)는 수신기(1700)가 제1 송신코일(1710)에서 감지 및 식별되는 경우, 제1 송신코일(1710)을 통해 수신기(1700)에 무선 전력을 전송할 수 있다.
또한, 주제어부(550)는 수신기(1700)가 제2 송신코일(1720) 또는 제3 송신코일(1730)에서 감지 및 식별되는 경우, 해당 송신코일을 통해 무선 전력을 전송할 수 있다.
특히, 주제어부(550)는 제1 송신코일(1710) 및 제2 송신코일(1720)에 수신기(1700)가 동시에 감지되고, 수신기(1700)가 충전 음영영역(도 18의 1721)에 위치하는 경우, 제2 송신코일(1720)을 통해서 무선 전력이 수신기(1700)로 전송되도록 제어할 수 있다.
도 21은 실시예에 따른 복수의 송신코일에 전류가 인가되는 경우 생성되는 자기장의 방향을 나타내는 도면이다.
도 21에 따르면, 제1 송신코일(1710)에 전류(i1)가 인가되고, 제2 송신 코일(120)에 전류(i2)가 인가되는 경우, 제1 송신코일(1710)에 의한 제1 영역(1711), 제3 영역(1715)은 하에서 상방향으로 자속이 형성될 수 있다. 제2 송신코일(1720)에 의한 제4 영역(1721), 제6 영역(1725)도 아래서 위로 솟는 방향으로 자속이 형성될 수 있다. 또한, 제1 송신코일(1710)에 의한 제2 영역(1713), 제2 송신코일(1720)에 의한 제5 영역(1723)은 상에서 하방향으로 자속이 형성될 수 있다. 도 21의 자속은 수신기(1700)가 배치되지 않았을 때의 하나의 예이고, 자속의 방향이 다르게 형성되는 경우도 본원발명의 권리범위에 속한다.
도 22는 실시예에 따른 무선 전력 수신기의 위치에 따른 결합계수를 나타내는 도면이다.
도 22에 따르면, 무선 전력 수신기가 제4 영역(1721), 제5 영역(1723), 제6 영역(1725)에 배치될 수 있다. 제10 영역(2210)에 무선 전력 수신기가 배치될 수 있으나, 여기서는 자세히 살피지는 않는다. 또한, 무선 전력 수신기의 지름이 제2 송신코일(1720)의 폭(D3)보다 클 수는 있으나 여기서는 수신기의 지름이 제2 송신 코일(1720)의 폭보다 작은 것으로 상정하여 기술하기로 한다. 또한, 결합계수 절대값이 0.03 이하인 경우, 제2 송신코일(1720)은 10% 정도의 전송효율을 갖게 될 수 있다. 본 명세서에서는 결합계수의 절대값이 0.03 이상일 때, 충전이 가능한 것으로 상정하여 기술하기로 한다. 만약 전송효율이 설정된다면 결합계수의 절대값도 변경될 수 있다. 가령, 전송효율을 7%로 설정한다면, 결합계수의 절대값이 0.03보다 큰값에서도 충전이 수행될 수 있다. 다만 결합계수의 절대값은 코일의 굵기, 위치, 수신기 코일의 형상, 굵기, 위치에 따라 다양하게 변경될 수 있다.
결합계수의 절대값은 0.03 보다 큰 영역은 제4 영역(121), 제5 영역(1723), 제6 영역(1726)에 해당된다. 이 영역에서는 충전이 정상적으로 수행될 수 있다. 그러나, 제2 송신코일(1720)이 배치된 영역의 경우 결합계수의 절대값이 0.03 이하여서 충전이 불가하게 된다.
도 23은 실시예에 따른 복수의 송신 코일의 간격을 나타내는 도면이다.
수신기(1700)는 D1의 지름을 갖고, 제1 내지 제3 송신 코일(1710, 1720, 1730)은 D3의 폭을 갖고 송신 코일 간에 D2의 간격을 갖는 것으로 상정하기로 한다. 또한, D2는 (1/2)*D1으로 가정하기로 한다. 또한, 제1 송신코일(1710)의 코일이 위치한 상부(제1 영역과 제2 영역의 중간지점, 제1 송신 코일 외부는 외부, 제1 송신 코일 내부는 내부), 제3 송신코일(1730)의 코일이 위치한 하부(제8 영역과 제9 영역의 중간지점)의 폭은 (1/3)*D1으로 가정하기로 한다.
여기서, 제2 송신 코일(1720)을 예로 제4 영역과 제5 영역 중간의 코일에 의해 결합계수가 가장 큰 지점은 제4 영역과 제5 영역 중간의 코일로부터 (1/2)*D1 지점(송신 코일의 내부)이고 제5 영역과 제6 영역 중간의 코일에 결합계수가 가장 큰 지점은 제5 영역과 제6 영역 중간의 코일로부터 (1/2)*D1((송신 코일의 내부)) 지점이 될 수 있으나, 평균으로 계산하면 D3의 중심 지점이 가장 결합계수가 높을 수 있다.
결국 충전 가능 폭은 3*D3 + 2*D2 -(1/3)*2*D1으로 될 수 있다. D2 의 길이는 복수의 송신 코일(1710~1730) 간의 자속 결합이 가장 우수한 지점을 찾아 변동될 수 있고, 송신 코일의 굵기, 수신기(1700)의 크기에 따라 다르게 구성될 수 있다.
이하에서는 수신기가 송신기 상에서 이동되는 실시예를 도 24 내지 도 26을 통해 기술하기로 한다.
수신기(1700)는 무선 마우스로 상정하고, 송신기는 무선 마우스 패드로 상정하여 기술하기로 한다.
일단, 도 14의 경우, 제1 송신코일(1710)이 수신기(1700)를 감지 및 식별한 경우이다. 이때 주제어부(150)는 제1 송신코일(1710)을 통해 무선 전력을 수신기(1700)로 전송할 수 있다.
그 다음으로, 수신기(1700)가 제2 송신코일(1720) 내부로 이동하는 경우, 주제어부(150)는 제2 송신코일(1720)로 수신기(1700)를 감지 및 식별하는 경우, 제1 송신코일(1710)의 전원을 차단할 수 있다. 즉, 수신기(1700)가 제2 송신코일(1720)의 일정 영역에 진입하면 제1 송신코일(1710)의 전원을 차단하고, 제2 송신코일(1720)을 통해 무선전력을 수신기(1700)로 전송할 수 있다.
만약, 수신기(1700)가 제2 송신코일(1720)의 영역에 있다가 제3 송신코일(1730)의 영역으로 진입하는 경우, 제2 송신코일(1720)의 전원을 차단하고, 제3 송신코일(1730)에 전원을 공급할 수 있다.
도 25와 같이 수신기(1700)가 배치되는 경우, 주제어부(150)는 제1 송신코일(1710) 및 제2 송신코일(1720)을 통해 수신기(1700)를 감지 및 식별할 수 있다. 수신기(1700)가 배치된 영역은 제1 송신코일(1710)의 음영영역이므로, 주제어부(150)는 제1 송신코일(1710)의 전원을 차단하고, 제2 송신코일(1720)을 통해 무선 전력을 수신기(1700)로 전송할 수 있다. 결국, 본 발명에 따르면, 수신기(1700)가 송신기 상에서 움직이더라도 심리스(Seamless)한 무선 전력 송수신이 가능하게 된다. 가령, 도 17 내지 19를 참고하면, 제2 영역(1713)에서 제1 송신코일(1710)로 무선 전력을 수신기(1700)로 전송하다가, 수신기(1700)가 제4 영역(1721)으로 이동되면, 제어부(150)는 제1 송신코일(1710)의 전원을 차단하고, 제2 송신코일(1720)을 통해 무선전력을 전송하거나, 제1 송신코일(1710)과 제2 송신코일(1720)이 함께 무선전력을 전송할 수 있다. 그 다음에 제3 영역(1715)으로 수신기(1700)가 이동되면, 제1 송신코일(1710)로 무선 전력을 전송하거나, 제1 송신코일(1710)과 제2 송신코일(1720)로 동시에 무선전력을 전송할 수 있다. 그 다음, 제5 영역(1723)에서, 주제어부(150)는 제2 송신코일(1720)로만 무선 전력을 수신기(1700)로 전송할 수 있다.
또한, 도 26과 같이, 수신기(1700)가 제1 송신코일(1710) 및 제2 송신코일(1720)로부터 모두 감지 및 식별된 경우, 주제어부(150)는 제1 송신코일(1710) 및 제2 송신코일(1720) 모두를 통해 무선전력을 수신기(1700)로 전송할 수 있다.
한편, 송신코일을 통해 수신기가 감지 및 식별되기만 하면 자동적으로 무선 전력을 전송하도록 구현되는 경우도 본원 발명의 권리범위에 속한다.
한편 본 명세서에서는 전자기 공진 방식을 상정하여 기술하나, 자기 유도 방식을 통해서도 본 발명이 구현될 수 있다.
상술한 실시예에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상술한 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 충전 분야에 이용될 수 있으며, 특히, 무선 전력 수신 장치 및 무선 전력 송신 장치에 적용될 수 있다.
Claims (15)
- 무선 전력 신호를 수신하기 위해 동일 평면에 일부 중첩되도록 배치되는 제1 내지 제N 수신 코일;상기 제1 내지 제N 수신 코일 중 적어도 어느 하나에 의해 유도된 교류 전력을 전달하기 위해 상기 제1 내지 제N 수신 코일 각각의 양 종단이 연결되도록 형성된 제1 내지 제N 출력 단자; 및상기 제1 내 제N 출력 단자로부터 입력되는 상기 교류 전력을 직류 전력으로 변환하는 정류기를 포함하는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이의 결합 계수가 0 또는 소정 기준치 이하인 값을 갖도록 상기 중첩되는 영역의 크기가 결정되는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 제1 내지 제N 수신 코일의 권선이 상호 고리가 형성되도록 상기 제1 내지 제N 수신 코일이 배치되는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 제1 내지 제N 수신 코일 각각은 부채꼴의 형태를 가지는, 무선 전력 수신 장치.
- 제4항에 있어서,상기 일부 중첩되도록 배치된 상기 제1 내지 제N 수신 코일의 전체적인 외형이 원의 형태인, 무선 전력 수신 장치.
- 제4항에 있어서,상기 부채꼴의 내각은 360을 상기 N으로 나눈 값인, 무선 전력 수신 장치.
- 제4항에 있어서,상기 부채꼴을 이루는 수신 코일의 권선 중 직선 구간의 권선이 상호 평행하도록 상기 제1 내지 제N 수신 코일이 배치되는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 N은 3이상인 것을 특징으로 하는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이에 중첩되는 영역의 면적이 모두 동일하도록 상기 제1 내지 제N 수신 코일이 배치되는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 출력 단자 별 상기 정류기가 구비되는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 무선 전력 신호는 소정 공진 주파수로 변조되어 무선으로 수신되는 교류 전력 신호인 것을 특징으로 하는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 제1 내지 제N 수신 코일 중 적어도 하나의 권선 내부 일측에 온도 측정을 위한 온도 센서가 더 구비되는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 제1 내지 제N 수신 코일 중 임의의 2개의 수신 코일 사이의 교차 각은 60도이고, 여기서, 상기 N은 3인 것을 특징으로 하는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 제1 내지 제N 수신 코일의 일부가 상호 중첩되게 배치되며, 상기 제1 내지 제N 수신 코일이 모두 중첩되는 영역은 삼각형의 형태를 가지는, 무선 전력 수신 장치.
- 제1항에 있어서,상기 제1 내지 제N 수신 코일은 일부 중첩되고 외형이 원형을 이루도록 배치되며, 상기 제1 내지 제N 수신 코일 각각의 면적은 상기 원형 면적의 1/3을 초과하는, 무선 전력 수신 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780017635.4A CN109104885B (zh) | 2016-03-22 | 2017-02-23 | 无线充电系统及其设备 |
US16/079,460 US10763686B2 (en) | 2016-03-22 | 2017-02-23 | Wireless charging system and device therefor |
EP17770496.2A EP3435518B1 (en) | 2016-03-22 | 2017-02-23 | Wireless charging system and device therefor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0034251 | 2016-03-22 | ||
KR1020160034251A KR102536829B1 (ko) | 2016-03-22 | 2016-03-22 | 복수의 송신 코일이 구비된 무선 전력 기기 및 그 구동 방법 |
KR10-2016-0041355 | 2016-04-05 | ||
KR1020160041355A KR102564898B1 (ko) | 2016-04-05 | 2016-04-05 | 무선 충전 시스템 및 그를 위한 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017164525A1 true WO2017164525A1 (ko) | 2017-09-28 |
Family
ID=59899680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/001968 WO2017164525A1 (ko) | 2016-03-22 | 2017-02-23 | 무선 충전 시스템 및 그를 위한 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10763686B2 (ko) |
EP (1) | EP3435518B1 (ko) |
CN (1) | CN109104885B (ko) |
WO (1) | WO2017164525A1 (ko) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10879704B2 (en) | 2016-08-26 | 2020-12-29 | Nucurrent, Inc. | Wireless connector receiver module |
EP3346581B1 (en) * | 2017-01-04 | 2023-06-14 | LG Electronics Inc. | Wireless charger for mobile terminal in vehicle |
CN110707828A (zh) * | 2018-07-09 | 2020-01-17 | 中兴通讯股份有限公司 | 无线充电接收装置、无线充电的实现方法和移动终端 |
US11177678B2 (en) * | 2018-11-16 | 2021-11-16 | Korea Advanced Institute Of Science And Technology | Wireless power transmission method and device in which rectifier performance of IOT sensor is taken into consideration |
KR20200121639A (ko) * | 2019-04-16 | 2020-10-26 | 삼성전자주식회사 | 무선전력 송신 장치 및 이의 무선전력 공급 방법 |
CN112054601B (zh) * | 2020-08-12 | 2022-09-27 | 哈尔滨工程大学 | 一种水下弱通讯环境下无线电能传输系统控制方法 |
TWI759972B (zh) * | 2020-11-25 | 2022-04-01 | 偉詮電子股份有限公司 | 無線功率傳輸系統之快速異物檢測方法與相關之無線功率發送模組 |
US11862984B2 (en) | 2021-11-03 | 2024-01-02 | Nucurrent, Inc. | Wireless power receiver with repeater for enhanced power harvesting |
US11824371B2 (en) | 2021-11-03 | 2023-11-21 | Nucurrent, Inc. | Wireless power transmission antenna with internal repeater and repeater filter |
US11848566B2 (en) | 2021-11-03 | 2023-12-19 | Nucurrent, Inc. | Dual communications demodulation of a wireless power transmission system having an internal repeater |
US11824372B2 (en) | 2021-11-03 | 2023-11-21 | Nucurrent, Inc. | Wireless power transmission antenna with puzzled antenna molecules |
US20230134897A1 (en) * | 2021-11-03 | 2023-05-04 | Nucurrent, Inc. | Wireless Power Receiver with Rectifier for Multi-Coil Receiver Antenna |
US11831175B2 (en) | 2021-11-03 | 2023-11-28 | Nucurrent, Inc. | Wireless power transmission antenna with antenna molecules |
US11824373B2 (en) | 2021-11-03 | 2023-11-21 | Nucurrent, Inc. | Wireless power transmission antenna with parallel coil molecule configuration |
US11962337B2 (en) | 2021-11-03 | 2024-04-16 | Nucurrent, Inc. | Communications demodulation in wireless power transmission system having an internal repeater |
US11831177B2 (en) | 2021-11-03 | 2023-11-28 | Nucurrent, Inc. | Wireless power transmitter with internal repeater and enhanced uniformity |
US11862991B2 (en) | 2021-11-03 | 2024-01-02 | Nucurrent, Inc. | Wireless power transmission antenna with internal repeater and in-coil tuning |
US12027880B2 (en) | 2021-11-03 | 2024-07-02 | Nucurrent, Inc. | Wireless power transfer from mouse pad to mouse |
US20230134561A1 (en) * | 2021-11-03 | 2023-05-04 | Nucurrent, Inc. | Multi-Coil Polygonal Wireless Power Receiver Antenna |
US11831173B2 (en) | 2021-11-03 | 2023-11-28 | Nucurrent, Inc. | Wireless power transmission antenna with series coil molecule configuration |
US11831176B2 (en) | 2021-11-03 | 2023-11-28 | Nucurrent, Inc. | Wireless power transfer systems with substantial uniformity over a large area |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140129172A (ko) * | 2012-02-16 | 2014-11-06 | 오클랜드 유니서비시즈 리미티드 | 다중 코일 플럭스 패드 |
US20150188354A1 (en) * | 2013-12-26 | 2015-07-02 | Biwin Storage Technology Limited | Intergrally encapsulated wireless charging device |
JP2015128142A (ja) * | 2013-11-28 | 2015-07-09 | Tdk株式会社 | コイルユニット |
WO2015137431A1 (ja) * | 2014-03-14 | 2015-09-17 | 株式会社村田製作所 | 受電用コイル構造体およびワイヤレス給電システム |
WO2015153293A1 (en) * | 2014-03-31 | 2015-10-08 | Qualcomm Incorporated | Systems, apparatus, and methods for wireless power receiver coil configuration |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5121307B2 (ja) * | 2007-05-28 | 2013-01-16 | ソニーモバイルコミュニケーションズ株式会社 | 無接点電力伝送コイルユニット、携帯端末、送電装置、及び、無接点電力伝送システム |
KR101593250B1 (ko) * | 2008-03-13 | 2016-02-18 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | 복수 코일 프라이머리를 갖는 유도 전력 공급 시스템 |
NZ607488A (en) * | 2010-11-16 | 2014-08-29 | Powerbyproxi Ltd | A wirelessly rechargeable battery and power transmitter |
US9953761B2 (en) * | 2011-05-03 | 2018-04-24 | Phoenix Contact Gmbh & Co. Kg | Arrangement and method for contactless energy transmission with a coupling-minimized matrix of planar transmission coils |
CN103733460B (zh) * | 2011-07-08 | 2019-07-23 | 奥克兰联合服务有限公司 | 用于感应功率传输系统的磁结构的互操作性 |
US10523276B2 (en) | 2011-08-16 | 2019-12-31 | Qualcomm Incorporated | Wireless power receiver with multiple receiver coils |
US20130049674A1 (en) * | 2011-08-24 | 2013-02-28 | Qualcomm Incorporated | Integrated photo voltaic solar plant and electric vehicle charging station and method of operation |
JP5997554B2 (ja) * | 2012-02-10 | 2016-09-28 | 東光株式会社 | ワイヤレス電力伝送装置 |
KR20130119585A (ko) | 2012-04-24 | 2013-11-01 | 삼성전자주식회사 | 무선 전력 송수신 코일 장치 |
WO2014069239A1 (ja) * | 2012-10-30 | 2014-05-08 | シャープ株式会社 | 給電装置およびワイヤレス給電システム |
JP6281963B2 (ja) * | 2014-02-24 | 2018-02-21 | 光電子株式会社 | 非接触電力伝送装置および非接触電力伝送方法 |
KR102187437B1 (ko) * | 2014-03-11 | 2020-12-08 | 엘지이노텍 주식회사 | 무선전력 전송 장치를 구비한 무선전력전송 시스템 |
-
2017
- 2017-02-23 US US16/079,460 patent/US10763686B2/en active Active
- 2017-02-23 CN CN201780017635.4A patent/CN109104885B/zh active Active
- 2017-02-23 EP EP17770496.2A patent/EP3435518B1/en active Active
- 2017-02-23 WO PCT/KR2017/001968 patent/WO2017164525A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140129172A (ko) * | 2012-02-16 | 2014-11-06 | 오클랜드 유니서비시즈 리미티드 | 다중 코일 플럭스 패드 |
JP2015128142A (ja) * | 2013-11-28 | 2015-07-09 | Tdk株式会社 | コイルユニット |
US20150188354A1 (en) * | 2013-12-26 | 2015-07-02 | Biwin Storage Technology Limited | Intergrally encapsulated wireless charging device |
WO2015137431A1 (ja) * | 2014-03-14 | 2015-09-17 | 株式会社村田製作所 | 受電用コイル構造体およびワイヤレス給電システム |
WO2015153293A1 (en) * | 2014-03-31 | 2015-10-08 | Qualcomm Incorporated | Systems, apparatus, and methods for wireless power receiver coil configuration |
Also Published As
Publication number | Publication date |
---|---|
EP3435518A1 (en) | 2019-01-30 |
EP3435518A4 (en) | 2019-10-16 |
CN109104885A (zh) | 2018-12-28 |
US20190052116A1 (en) | 2019-02-14 |
CN109104885B (zh) | 2022-04-26 |
US10763686B2 (en) | 2020-09-01 |
EP3435518B1 (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017164525A1 (ko) | 무선 충전 시스템 및 그를 위한 장치 | |
WO2016200028A1 (ko) | 무선 충전 시스템을 이용한 전력 관리 방법 및 그를 위한 장치 및 시스템 | |
WO2018093041A1 (ko) | 멀티 모드 안테나 및 그것을 이용한 무선 전력 수신 장치 | |
WO2020197267A1 (ko) | 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 | |
WO2017003117A1 (ko) | 다중 모드 무선 전력 송신 방법 및 그를 위한 장치 | |
WO2017111369A1 (ko) | 다중 모드를 지원하는 무선 전력 송신기 | |
WO2016182208A1 (ko) | 무선 전력 송신 방법, 무선 전력 수신 방법 및 이를 위한 장치 | |
WO2017030354A1 (ko) | 무선 전력 송신기 및 이와 연결되는 차량 제어 유닛 | |
WO2017209390A1 (ko) | 무선 전력 전송 방식 스위칭 방법 및 장치 | |
WO2017018668A1 (ko) | 무선 전력 수신기 식별 방법 및 장치 | |
WO2020017859A1 (ko) | 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 | |
WO2018004116A1 (ko) | 무선 충전 시스템에서의 무선 전력 송신 방법 및 장치 | |
WO2019208960A1 (ko) | 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 | |
WO2016080594A1 (ko) | 무선 전력 전송장치, 무선 전력 수신장치 및 무선 충전 시스템 | |
WO2020222528A1 (ko) | 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법 | |
WO2019194524A1 (ko) | 무선전력 전송 시스템에서 전력 전송을 제어하는 장치 및 방법 | |
WO2019050157A1 (ko) | 무선충전 코일 및 nfc 안테나를 포함하는 무선 충전 장치 | |
WO2019199029A1 (ko) | 무선전력 전송 및 수신 시스템, 그리고 장치 | |
WO2020004940A1 (ko) | 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법 | |
WO2020149492A1 (ko) | 멀티 코일을 이용하여 다수의 기기에 무선전력을 전송하는 장치 및 방법 | |
WO2020222415A1 (ko) | 근거리 무선통신을 이용하여 전력 클래스를 협상하는 무선충전 장치, 방법 및 시스템 | |
WO2020036357A1 (ko) | 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법 | |
WO2017131345A1 (ko) | 무선 전력 공급 방법 및 그를 위한 장치 | |
WO2020027521A1 (ko) | 이물질 검출에 기반하여 무선전력 전송을 수행하는 장치 및 방법 | |
WO2020085614A1 (ko) | 무선전력 전송 시스템에서 데이터를 전송하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017770496 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17770496 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017770496 Country of ref document: EP Effective date: 20181022 |