WO2019139326A1 - 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 - Google Patents
무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 Download PDFInfo
- Publication number
- WO2019139326A1 WO2019139326A1 PCT/KR2019/000251 KR2019000251W WO2019139326A1 WO 2019139326 A1 WO2019139326 A1 WO 2019139326A1 KR 2019000251 W KR2019000251 W KR 2019000251W WO 2019139326 A1 WO2019139326 A1 WO 2019139326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- wireless power
- received
- wireless
- packet
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 448
- 238000000034 method Methods 0.000 title claims abstract description 109
- 230000006854 communication Effects 0.000 claims abstract description 141
- 238000004891 communication Methods 0.000 claims abstract description 141
- 238000012546 transfer Methods 0.000 claims abstract description 58
- 230000008878 coupling Effects 0.000 claims abstract description 56
- 238000010168 coupling process Methods 0.000 claims abstract description 56
- 238000005859 coupling reaction Methods 0.000 claims abstract description 56
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 238000012937 correction Methods 0.000 claims description 186
- 230000004044 response Effects 0.000 claims description 40
- 238000001514 detection method Methods 0.000 claims description 25
- 230000000977 initiatory effect Effects 0.000 claims description 13
- 230000008859 change Effects 0.000 description 41
- 230000006870 function Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 10
- 230000006698 induction Effects 0.000 description 10
- 239000003990 capacitor Substances 0.000 description 9
- 230000007704 transition Effects 0.000 description 9
- 238000011088 calibration curve Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 239000003999 initiator Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000009774 resonance method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000008093 supporting effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000009440 infrastructure construction Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001646 magnetic resonance method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002578 polythiourethane polymer Polymers 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/60—Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
Definitions
- the present invention relates to wireless charging, and more particularly, to an apparatus and method for performing power calibration in a wireless power transmission system.
- Wireless power transmission technology is a technology that transmits power wirelessly between a power source and an electronic device.
- wireless power transmission technology can charge a battery of a wireless terminal by simply placing a wireless terminal such as a smart phone or a tablet on a wireless charging pad, It can provide excellent mobility, convenience, and safety.
- wireless power transmission technology can be applied to various fields such as electric vehicles, Bluetooth earphones, 3D glasses, wearable devices, home appliances, furniture, underground facilities, buildings, medical devices, robots, It is attracting attention as a substitute for the existing wired power transmission environment.
- the wireless power transmission scheme may be referred to as a contactless power transmission scheme, a no point of contact power transmission scheme, or a wireless charging scheme.
- a wireless power transmission system includes: a wireless power transmission device for supplying electric energy in a wireless power transmission mode; a wireless power receiving device for receiving electric energy supplied from the wireless power transmission device wirelessly and supplying electric power to a water receiving device such as a battery cell Device.
- Wireless power transmission techniques include a method of transferring power through magnetic coupling, a method of transferring power through radio frequency (RF), a method of transferring power through microwave, And the like.
- the magnetic coupling based method is classified into a magnetic induction method and a magnetic resonance method.
- energy is transmitted using a current induced in a receiving-side coil due to a magnetic field generated in a transmission-side coil battery cell due to electromagnetic coupling between a coil on the transmission side and a coil on the reception side.
- the self-resonance method is similar to the magnetic induction method in that it uses a magnetic field.
- the wireless power transmission apparatus and the wireless power reception apparatus are constituted by various circuit components and constitute mutually independent apparatuses, wireless power transmission is performed by magnetic coupling therebetween, so that the wireless power transmission apparatus and the wireless power reception apparatus
- the device constitutes one wireless power transmission system.
- the magnitude of the magnetic field of the Tx and Rx depends on the actual usage environment of the wireless power transmission system (such as the size, frequency, duty cycle, distance between Tx and Rx, Due to the change in coupling, errors may occur in the transmission power and the reception power. This error may be an obstacle to sophisticated foreign matter detection.
- a power conversion unit configured to transmit wireless power generated based on magnetic coupling to a wireless power receiving device in a power transfer phase, And performing an initial calibration for a power parameter prior to the power transfer phase and for generating a first received power packet indicating received power by the wireless power receiving device during the power transfer phase, a communication / control unit configured to receive a power packet from the wireless power receiving apparatus and to perform foreign object detection using a first power loss determined based on the received power and the initial correction, and a communication / control unit.
- the communication / control unit may be configured to perform a subsequent calibration for the power parameter, and to perform the foreign matter detection using the second power loss determined based on the subsequent correction.
- the communication / control unit receives a second received power packet from the wireless power receiving apparatus during the power transfer phase, the first received power packet including a first received power indicated by the first received power packet
- the second received power packet includes a first mode field indicating that the received power value indicated by the first received power packet is a normal value and the second received power packet indicates that the received power value indicated by the second received power packet is a second received power value in a connected load state And a second mode field for instructing the second mode.
- the power parameter prior to the power transfer phase includes a light load received power value received by the wireless power receiving apparatus under a condition that a load is not connected to the wireless power receiving apparatus
- the wireless power receiving apparatus includes a connected load received power value received by the wireless power receiving apparatus under the condition that the load is connected to the wireless power receiving apparatus
- the power parameter during the power transmitting phase includes the second received power value
- the communication / control unit may perform the subsequent correction based on the light load received power value, the connected load received power value, and the second received power value.
- the communication / control unit determines whether the magnetic coupling is changed to a certain level or more, and if the magnetic coupling is changed to a certain level or higher, the communication / control unit re- To the wireless power receiving apparatus, a bit pattern requesting the start of the wireless power receiving apparatus.
- the communication / control unit may receive a ripping start packet from the wireless power receiving device.
- the Ripping Initiation Packet may comprise an end power transfer (EPT) packet for initiating a Ripping.
- EPT end power transfer
- the communication / control unit may enter a ripping step based on the ripping start packet, and perform the initial correction again in the ripping step.
- a power pickup unit configured to receive wireless power generated from a wireless power transmission device based on magnetic coupling in a power transfer phase, And performing an initial calibration for a power parameter prior to the power transfer phase and for receiving a first received power packet indicative of power received from the wireless power transmission device during the power transfer phase, and a communication / control unit configured to transmit a packet to the wireless power transmission apparatus.
- the communication / control unit may be configured to perform a subsequent calibration for the power parameter.
- the communication / control unit transmits a second received power packet to the wireless power transmission device during the power transfer phase, wherein the first received power packet includes a first received power
- the second received power packet includes a first mode field indicating that the received power value indicated by the first received power packet is a normal value and the second received power packet indicates that the received power value indicated by the second received power packet is a second received power value in a connected load state And a second mode field for instructing the second mode.
- the power parameter prior to the power transfer phase includes a light load received power value received by the wireless power receiving apparatus under a condition that a load is not connected to the wireless power receiving apparatus
- the wireless power receiving apparatus includes a connected load received power value received by the wireless power receiving apparatus under the condition that the load is connected to the wireless power receiving apparatus and the power parameter during the power transmitting phase includes the second received power value .
- the communication / control unit may receive a bit pattern requesting initiation of re-ping from the wireless power transmission device have.
- the communication / control unit may transmit a ripping start packet to the wireless power transmission device.
- the Ripping Initiation Packet may comprise an end power transfer (EPT) packet for initiating a Ripping.
- EPT end power transfer
- the communication / control unit may enter a ripping step based on the ripping start packet, and perform the initial correction again in the ripping step.
- a method of performing an initial calibration on a power parameter prior to a power transfer phase Transmitting a first received power packet indicative of the power received by the wireless power receiving device during the power transfer phase to the wireless power receiving device, The method comprising: receiving from a receiving device, performing a foreign object detection using a first power loss determined based on the received power and the initial correction, a subsequent correction for the power parameter, and performing a foreign matter detection using the second power loss determined based on the subsequent correction
- the method comprising the steps of:
- the method further comprises receiving a second received power packet from the wireless power receiving device during the power transfer phase, wherein the first received power packet includes a first received power packet, wherein the second receive power packet includes a first mode field indicating that the first receive power value is a normal value, and the second receive power packet includes a second receive power value indicating a second receive power value indicated by the second receive power packet in a connected load state And a second mode field indicating the power value.
- the power parameter prior to the power transfer phase includes a light load received power value received by the wireless power receiving apparatus under a condition that a load is not connected to the wireless power receiving apparatus
- the wireless power receiving apparatus includes a connected load received power value received by the wireless power receiving apparatus under the condition that the load is connected to the wireless power receiving apparatus
- the power parameter during the power transmitting phase includes the second received power value
- the subsequent correction may be performed based on the light load received power value, the connected load received power value, and the second received power value.
- the communication / control unit transmits a bit pattern requesting initiation of re-ping to the wireless power receiving apparatus Step < / RTI >
- the transmission power and the reception power are adaptively responded to the newly changed wireless charging environment and the power loss is detected based on the transmission power and the reception power, thereby enabling more precise foreign matter detection.
- FIG. 1 is a block diagram of a wireless power system 10 in accordance with one embodiment.
- FIG. 2 is a block diagram of a wireless power system 10 in accordance with another embodiment.
- FIG 3 shows an embodiment of various electronic devices into which a wireless power transmission system is introduced.
- FIG. 4 is a block diagram of a wireless power transmission system according to another embodiment.
- 5 is a state transition diagram for explaining a wireless power transmission procedure.
- FIG. 6 shows a power control control method according to an embodiment.
- FIG. 7 is a block diagram of a wireless power transmission apparatus according to another embodiment.
- FIG. 8 shows a wireless power receiving apparatus according to another embodiment.
- FIG. 9 shows a communication frame structure according to an embodiment.
- FIG. 10 is a structure of a sync pattern according to an embodiment.
- FIG 11 illustrates an operation state of the wireless power transmission apparatus and the wireless power reception apparatus in the shared mode according to an embodiment.
- FIG. 12 is a flowchart illustrating a method of correcting power and an FOD method according to an embodiment of the present invention.
- FIG. 13 illustrates a received power packet according to an embodiment.
- Figure 14 is a calibration curve shown based on linear interpolation in accordance with one embodiment.
- 15 is a flowchart showing a power correction method according to a load increase event.
- 16 is a flowchart for explaining a subsequent correction method of a wireless power transmission apparatus according to an embodiment.
- Figure 17 is an extended calibration curve based on linear interpolation in accordance with one embodiment.
- FIG. 18 is a flow chart illustrating a power correction method based on a coupling change event in accordance with one embodiment.
- 19 is a schematic diagram showing an EPT packet for starting the ripping according to an embodiment.
- 20 is a flowchart illustrating a power correction method based on a coupling change event according to another embodiment.
- wireless power refers to any form of transmission associated with an electric field, magnetic field, electromagnetic field, etc., transmitted from a wireless power transmitter to a wireless power receiver without the use of physical electromagnetic conductors Is used to mean the energy of
- the wireless power may also be referred to as a wireless power signal and may refer to an oscillating magnetic flux enclosed by the primary and secondary coils.
- a wireless power signal may refer to an oscillating magnetic flux enclosed by the primary and secondary coils.
- power conversion in a system to wirelessly charge devices including mobile phones, cordless phones, iPods, MP3 players, headsets, etc. is described herein.
- the basic principles of wireless power transmission include, for example, the transmission of power through magnetic coupling, the transmission of power through radio frequency (RF), the transmission of microwaves ), And a method of transmitting electric power through an ultrasonic wave.
- RF radio frequency
- FIG. 1 is a block diagram of a wireless power system 10 in accordance with one embodiment.
- a wireless power system 10 includes a wireless power transmitter 100 and a wireless power receiver 200.
- the wireless power transmission apparatus 100 receives a power from an external power source S and generates a magnetic field.
- the wireless power receiving apparatus 200 generates a current using the generated magnetic field and receives power wirelessly.
- the wireless power transmission apparatus 100 and the wireless power reception apparatus 200 can transmit and receive various information required for wireless power transmission.
- the communication between the wireless power transmission apparatus 100 and the wireless power receiving apparatus 200 may be performed using an in-band communication using a magnetic field used for wireless power transmission or an out-band communication using a separate communication carrier or out-band communication.
- the wireless power transmission apparatus 100 may be provided in a fixed or mobile manner.
- the stationary type include a form embedded in a ceiling of a room, a wall surface or a table, an outdoor parking lot, a form installed in an implant type such as a bus stop or a subway station, or a form installed in a vehicle such as a vehicle or a train .
- the mobile wireless power transmission device 100 may be implemented as part of another device, such as a mobile device of movable weight or size, or a cover of a notebook computer.
- the wireless power receiving apparatus 200 should be interpreted as a comprehensive concept including various electronic appliances having a battery and various home appliances that are powered by wireless power instead of a power cable.
- Representative examples of the wireless power receiving apparatus 200 include a portable terminal, a cellular phone, a smart phone, a personal digital assistant (PDA), a portable media player (PMP) Portable electronic devices, portable media players, wibro terminals, tablets, pablets, notebooks, digital cameras, navigation terminals, televisions, and electronic vehicles (EVs).
- wireless power receiving apparatus 200 may be one or more. 1, the wireless power transmission apparatus 100 and the wireless power reception apparatus 200 are shown to transmit and receive power one to one. However, as shown in FIG. 2, one wireless power transmission apparatus 100 includes a plurality of wireless power reception apparatuses 200-1, 200-2, ..., 200-M. Particularly, in the case of performing wireless power transmission by the self-resonance method, one wireless power transmission apparatus 100 may apply a simultaneous transmission scheme or a time division transmission scheme to a plurality of wireless power receiving apparatuses 200-1, 200-2, ..., 200-M.
- FIG. 1 shows a wireless power transmission apparatus 100 directly transmitting power to a wireless power receiving apparatus 200
- a wireless power transmitting apparatus 100 and a wireless power receiving apparatus 200 are provided with wireless
- a separate wireless power transmission / reception device such as a relay or a repeater for increasing the power transmission distance may be provided.
- power is transferred from the wireless power transmission apparatus 100 to the wireless power transmission / reception apparatus, and the wireless power transmission / reception apparatus can transmit the power to the wireless power reception apparatus 200 again.
- the wireless power receiver, the power receiver, and the receiver refer to the wireless power receiving apparatus 200.
- the wireless power transmitters, power transmitters, and transmitters referred to herein also refer to the wireless power receive and transmit device 100.
- FIG 3 shows an embodiment of various electronic devices into which a wireless power transmission system is introduced.
- wearable devices such as a Smart watch, a Smart Glass, a HMD (Head Mounted Display), and a Smart ring and an earphone, a remote controller, a smart phone, a PDA, Small power (less than about 5 W or less than about 20 W) wireless charging scheme can be applied to mobile electronic devices (or portable electronic devices) such as PCs.
- mobile electronic devices or portable electronic devices
- a wireless charging method may be applied to middle / small household appliances such as a notebook, a robot cleaner, a TV, a sound device, a vacuum cleaner, and a monitor to have a medium power (less than about 50 W or about 200 W). (Less than about 2 kW or 22 kW or less) of personal mobile devices (or electronic devices / moving devices) such as electric home appliances, kitchen appliances such as electric home appliances, blender, microwave oven, electric cooker, wheelchair, electric kickboard, electric bicycle, A wireless charging scheme may be applied.
- middle / small household appliances such as a notebook, a robot cleaner, a TV, a sound device, a vacuum cleaner, and a monitor to have a medium power (less than about 50 W or about 200 W). (Less than about 2 kW or 22 kW or less) of personal mobile devices (or electronic devices / moving devices) such as electric home appliances, kitchen appliances such as electric home appliances, blender, microwave oven, electric cooker, wheelchair, electric kickboard, electric bicycle,
- a wireless charging scheme may be applied.
- the electronic devices / mobile means described above may each include a wireless power receiver as described below.
- the above-described electronic devices / moving means can be charged by receiving power wirelessly from the wireless power transmitter.
- Wireless power transmission and reception devices can provide a very convenient user experience and interface (UX / UI). That is, a smart wireless recharging service can be provided.
- the smart wireless recharging service can be implemented based on the UX / UI of a smart phone including a wireless power transmission device.
- the interface between the processor of the smartphone and the wireless charging receiver allows for "drop and play" bidirectional communication between the wireless power transmission device and the receiving device.
- a user may experience a smart wireless charging service at a hotel.
- the wireless charger transmits wireless power to the smartphone and the smartphone receives wireless power.
- the wireless charger transmits information about the smart wireless recharging service to the smartphone.
- the smartphone may inform the user of the acceptance of additional features opt-in).
- the smartphone may display a message on the screen in a manner that includes or does not include an alarm tone.
- An example of a message may include a phrase such as "Welcome to ### hotel.
- the smartphone receives the input of the user selecting Yes or No Thanks and performs the following procedure selected by the user. If Yes is selected, the smartphone transmits the information to the wireless charger. And smart phones and wireless chargers work together with smart charging.
- the smart wireless recharging service may also include receiving wifi credentials auto-filled.
- a wireless charger transmits WiFi credentials to a smartphone, and the smartphone automatically launches the appropriate app to automatically enter the WiFi credentials received from the wireless charger.
- the smart wireless recharging service may also include executing a hotel application that provides hotel promotions, or obtaining remote check-in / check-out and contact information.
- a user may experience a smart wireless charging service in the vehicle.
- the wireless charger transmits wireless power to the smartphone, and the smartphone receives the wireless power.
- the wireless charger transmits information about the smart wireless recharging service to the smartphone.
- the smartphone detects that the smartphone is located on the wireless charger, detects the reception of wireless power, or receives information from the wireless charger about the smart wireless charging service, the smartphone confirms the identity to the user Enter the inquiry state.
- the smartphone is automatically connected to the vehicle via WiFi and / or Bluetooth.
- the smartphone may display messages on the screen in a manner that includes or does not include an alarm sound.
- An example of a message may include phrases such as "Welcome to your car. Select " Yes " to synch device with in-car controls: Yes
- the smartphone receives the input of the user selecting Yes or No Thanks and performs the following procedure selected by the user. If Yes is selected, the smartphone transmits the information to the wireless charger.
- smart phones and wireless chargers can run in-vehicle application / display software to perform smart control functions in-vehicle. The user can enjoy the desired music and check the regular map position.
- the in-vehicle application / display software may include capabilities to provide synchronized access for passers-by.
- a user may experience smart wireless charging at home.
- the wireless charger transmits the wireless power to the smartphone, and the smartphone receives the wireless power.
- the wireless charger transmits information about the smart wireless recharging service to the smartphone. If the smartphone detects that the smartphone is located on the wireless charger, detects the reception of wireless power, or receives information from the wireless charger about the smart wireless charging service, the smartphone may inform the user of the acceptance of additional features opt-in). To this end, the smartphone may display a message on the screen in a manner that includes or does not include an alarm tone.
- An example of a message may include phrases like "Hi xxx, Would you like to activate night mode and secure the building ?: Yes
- the smartphone receives the input of the user selecting Yes or No Thanks and performs the following procedure selected by the user. If Yes is selected, the smartphone transmits the information to the wireless charger.
- the smartphone and wireless charger can at least recognize the pattern of the user and advise the user to lock the doors and windows, turn off the lights, or set alarms.
- the standard for wireless power transmission includes wireless power consortium (WPC), air fuel alliance (AFA), and power matters alliance (PMA).
- WPC wireless power consortium
- AFA air fuel alliance
- PMA power matters alliance
- the WPC standard defines a baseline power profile (BPP) and an extended power profile (EPP).
- BPP relates to a wireless power transmission device and a receiving device supporting 5W of power transmission
- EPP relates to a wireless power transmission device and a receiving device supporting power transmission in a range larger than 5W and smaller than 30W.
- the WPC classifies a wireless power transmission device and a receiving device into a power class (PC) -1, PC0, PC1, and PC2, and provides a standard document for each PC.
- the PC-1 standard relates to a wireless power transmission device and receiver that provide guaranteed power of less than 5W.
- the PC-1 application includes a wearable device such as a smart clock.
- the PC0 standard relates to a wireless power transmission apparatus and a receiving apparatus that provide a guaranteed power of 5W.
- the PC0 standard includes an EPP with guaranteed power up to 30W.
- Out-of-band (OBB) communication in which in-band (IB) communication is used as the mandatory communication protocol of PC0 or as an optional backup channel may also be used.
- the wireless power receiving apparatus can identify whether the OOB is supported by setting the OOB flag in the configuration packet.
- a wireless power transmission apparatus supporting OOB may enter an OOB handover phase by transmitting a bit-pattern for OOB handover as a response to the configuration packet.
- the response to the configuration packet may be NAK, ND, or a newly defined 8-bit pattern.
- the application of PC0 includes a smartphone.
- the PC1 standard relates to a wireless power transmission apparatus and a receiving apparatus that provide a guaranteed power of 30W to 150W.
- OOB is an essential communication channel for PC1
- IB is used as initialization and link establishment to OOB.
- the wireless power transmission apparatus can enter the bit pattern for OOB handover into the OOB handover phase.
- the application of PC1 includes a laptop or a power tool.
- the PC2 standard relates to a wireless power transmission device and a receiving device that provide a guaranteed power of 200 W to 2 kW, the application including kitchen appliances.
- the PCs can be distinguished according to the power level, and whether or not to support compatibility between the same PCs can be optional or required.
- compatibility between the same PC means that power can be transmitted and received between the same PCs.
- the wireless power transmission device of PC x is capable of charging the wireless power reception device having the same PC x, it can be seen that the same inter-PC compatibility is maintained.
- compatibility between different PCs may be possible.
- compatibility between different PCs means that power can be transmitted and received between different PCs. For example, if the wireless power transmission apparatus PC x is capable of charging a wireless power receiving apparatus having PC y, compatibility between different PCs can be maintained.
- inter-PC compatibility for example, a lap-top charging type wireless power receiving device capable of stably charging only when power is continuously transmitted is a wireless power transmitting device of the same PC
- a wireless power transmitting device of the same PC There may be a problem in stably receiving power from a power tool of a power tool type that transmits power discontinuously.
- inter-PC compatibility for example, when a wireless power transmission apparatus with a minimum guaranteed power of 200 W transmits power to a wireless power receiving apparatus with a maximum guaranteed power of 5 W, There is a risk of breakage.
- a 'profile' will be newly defined based on an indicator / criterion that indicates compatibility / indication. That is, it can be interpreted that the wireless power transmission / reception devices having the same 'profile' maintain compatibility and stable power transmission / reception can be performed, and power transmission / reception between wireless power transmission / reception devices having different 'profiles' is impossible.
- the profiles may be defined in terms of compatibility and / or application independent of (or independent of) the power class.
- profiles can be broadly divided into four categories: i) mobile, ii) power tools, iii) kitchen, and iv) wearable.
- the PC may be defined as PC0 and / or PC1
- the communication protocol / method as IB and OOB
- the operating frequency may be defined as 87 to 205 kHz.
- applications include smart phones, .
- the PC may be defined as PC1
- the communication protocol / method as IB the operating frequency may be defined as 87 to 145 kHz.
- an electric tool or the like may exist.
- the PC may be defined as PC2
- the communication protocol / method may be defined as NFC-based
- the operating frequency may be defined as less than 100 kHz. Examples of applications may include kitchen / home appliances.
- the PC may be defined as PC-1
- the communication protocol / method as IB the operating frequency may be defined as 87 to 205 kHz
- an example of an application may be a wearable device worn on the user's body.
- Maintaining compatibility between the same profiles may be mandatory, and maintaining compatibility between different profiles may be optional.
- the above profiles may be generalized to first through nth profiles and new profiles may be added / replaced in accordance with the WPC specification and embodiments.
- the wireless power transmission apparatus selectively transmits power only to the wireless power receiving apparatus having the same profile as itself, thereby enabling more stable power transmission. Further, the burden on the wireless power transmission apparatus is reduced, and the power transmission to the wireless power receiving apparatus that is incompatible with the wireless power transmission apparatus is not attempted, thereby reducing the risk of damage to the wireless power receiving apparatus.
- PC1 in the 'mobile' profile can be defined by borrowing an optional extension, such as OOB, based on PC0, and in the case of the 'power tool' profile, the PC1 'mobile' profile can be defined as simply a modified version. Also, until now, it has been defined for the purpose of maintaining the compatibility between the same profiles, but in the future, technology can be developed in the direction of maintaining compatibility between different profiles.
- the wireless power transmission device or the wireless power receiving device can inform the other party of his profile through various methods.
- the AFA standard defines a wireless power transmission unit as a power transmitting unit (PTU) and a wireless power receiving unit as a power receiving unit (PRU).
- PTU power transmitting unit
- PRU power receiving unit
- the PTUs are classified into a plurality of classes as shown in Table 1, It is classified into multiple categories.
- PRU P RX_OUT_MAX Example Application Category 1 TBD Bluetooth headset Category 2 3.5 W Feature phone Category 3 6.5 W Smartphone Category 4 13W Tablets, Category 5 25W Small Form Factor Laptop Category 6 37.5 W A typical laptop Category 7 50W Home Appliances
- n PTU is equal to or greater than the P TX_IN_MAX value of the class.
- the PRU can not draw more power than the specified power in that category.
- 4 is a block diagram of a wireless power transmission system according to another embodiment.
- the wireless power transmission system 10 includes a mobile device 450 that receives power wirelessly and a base station 400 that wirelessly transmits power.
- the base station 400 is an apparatus that provides inductive or resonant power, and may include at least one power transmitter 100 and a system unit 405.
- the wireless power transmission apparatus 100 can transmit inductive power or resonant power and can control transmission.
- the wireless power transmission apparatus 100 includes a power conversion unit 110 for converting electric energy into a power signal by generating a magnetic field through a primary coil And may include a communications & control unit 120 for controlling communication and power delivery with the wireless power receiving apparatus 200 to transmit and receive data.
- the system unit 405 may perform other operation controls of the base station 100, such as input power provisioning, control of a plurality of wireless power transmission devices, and user interface control.
- the primary coil may generate an electromagnetic field using alternating current power (or voltage or current).
- the primary coil receives the alternating current power (or voltage or current) of a specific frequency output from the power conversion unit 110, thereby generating a magnetic field of a specific frequency.
- the magnetic field may occur non-radically or radially, and the wireless power receiving apparatus 200 receives it and generates a current. In other words, the primary coil is to transmit power wirelessly.
- the primary and secondary coils may have any suitable shape and may be copper wire wound around a high permeability formation, such as, for example, ferrite or amorphous metal.
- the primary coil may be referred to as a primary core, a primary winding, a primary loop antenna, or the like.
- the secondary coil may be referred to as a secondary core, a secondary winding, a secondary loop antenna, a pickup antenna, or the like.
- the primary coil and the secondary coil may be provided in the form of a primary resonant antenna and a secondary resonant antenna, respectively.
- the resonant antenna may have a resonant structure including a coil and a capacitor.
- the resonant frequency of the resonant antenna is determined by the inductance of the coil and the capacitance of the capacitor.
- the coil may be in the form of a loop.
- the core may be disposed inside the loop.
- the core may comprise a physical core such as a ferrite core or an air core.
- the energy transfer between the primary resonant antenna and the secondary resonant antenna can be achieved through the resonance phenomenon of the magnetic field.
- the term 'resonance phenomenon' refers to a phenomenon in which, when a resonant antenna is located around another resonant antenna when a near-field corresponding to a resonant frequency is generated, both resonant antennas are coupled to each other and high-efficiency energy transfer occurs between the resonant antennas .
- a magnetic field corresponding to a resonance frequency occurs between the first resonant antenna and the second resonant antenna, a phenomenon occurs in which the first resonant antenna and the second resonant antenna resonate with each other.
- the magnetic field is focused toward the secondary resonant antenna at a higher efficiency than in the case where the magnetic field is radiated into the free space, so that energy can be transmitted from the primary resonant antenna to the secondary resonant antenna with high efficiency.
- the magnetic induction method can be implemented similarly to the self resonance method, but the frequency of the magnetic field does not need to be the resonance frequency at this time. Instead, in the magnetic induction method, matching between the loops constituting the primary coil and the secondary coil is required, and the spacing between the loops must be very close.
- the wireless power transmission apparatus 1100 may further include a communication antenna.
- the communication antenna can transmit and receive a communication signal using a communication carrier other than the magnetic field communication.
- the communication antenna can transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication / control unit 120 can transmit / receive information to / from the wireless power receiving apparatus 200.
- the communication / control unit 120 may include at least one of an IB communication module or an OOB communication module.
- the IB communication module can transmit and receive information using a magnetic wave having a specific frequency as a center frequency.
- the communication / control unit 120 can perform in-band communication by transmitting information through a primary coil by placing information in a magnetic wave or by receiving magnetic wave containing information through a primary coil.
- a modulation scheme such as binary phase shift keying (BPSK) or amplitude shift keying (ASK) and a Manchester coding or non-return-to-zero (NZR-L) level coding can be used to hold information in magnetic waves or to interpret magnetic waves containing information.
- BPSK binary phase shift keying
- ASK amplitude shift keying
- NZR-L non-return-to-zero
- the communication / control unit 120 can transmit and receive information up to a distance of several meters at a data transmission rate of several kbps.
- the OOB communication module may perform out-band communication through a communication antenna.
- the communication / control unit 120 may be provided as a short-range communication module.
- Examples of short-range communication modules include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication / control unit 120 can control the overall operation of the wireless power transmission apparatus 100.
- the communication / control unit 120 can perform calculation and processing of various information, and can control each component of the wireless power transmission apparatus 100.
- the communication / control unit 120 may be implemented as a computer or similar device using hardware, software, or a combination thereof.
- the communication / control unit 120 may be provided in the form of an electronic circuit that performs a control function by processing an electrical signal.
- the communication / control unit 120 may be implemented as a software Can be provided.
- the communication / control unit 120 can control the transmission power by controlling the operating point.
- the operating point to be controlled may correspond to a combination of a frequency (or phase), a duty cycle, a duty ratio, and a voltage amplitude.
- the communication / control unit 120 can control transmission power by adjusting at least one of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
- the wireless power transmission apparatus 100 may supply a constant power
- the wireless power receiving apparatus 200 may control the received power by controlling the resonant frequency.
- the mobile device 450 receives and stores power received from a wireless power receiving device 200 and a wireless power receiving device 200 that receive wireless power through a secondary coil, And a load (load)
- the wireless power receiving apparatus 200 may include a power pick-up unit 210 and a communications & control unit 220.
- the power pick-up unit 210 can receive wireless power through the secondary coil and convert it into electrical energy.
- the power pick-up unit 210 rectifies the AC signal obtained through the secondary coil and converts it into a DC signal.
- the communication / control unit 220 can control transmission and reception (power transmission and reception) of wireless power.
- the secondary coil may receive the wireless power transmitted from the wireless power transmission device 100.
- the secondary coil can receive power using the magnetic field generated by the primary coil.
- the specific frequency is a resonance frequency
- a self-resonance phenomenon occurs between the primary coil and the secondary coil, so that the power can be more efficiently transmitted.
- the communication / control unit 220 may further include a communication antenna.
- the communication antenna can transmit and receive a communication signal using a communication carrier other than the magnetic field communication.
- the communication antenna can transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication / control unit 220 can exchange information with the wireless power transmission apparatus 100.
- the communication / control unit 220 may include at least one of an IB communication module or an OOB communication module.
- the IB communication module can transmit and receive information using a magnetic wave having a specific frequency as a center frequency.
- the communication / control unit 220 can perform IB communication by transmitting information through a secondary coil by putting information in a magnetic wave, or by receiving a magnetic wave containing information through a secondary coil.
- a modulation scheme such as binary phase shift keying (BPSK) or amplitude shift keying (ASK) and a Manchester coding or non-return-to-zero (NZR-L) level coding can be used to hold information in magnetic waves or to interpret magnetic waves containing information.
- BPSK binary phase shift keying
- ASK amplitude shift keying
- NZR-L non-return-to-zero
- the OOB module may perform out-band communication through a communication antenna.
- the communication / control unit 220 may be provided as a local communication module.
- Examples of short-range communication modules include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication / control unit 220 can control the overall operation of the wireless power receiving apparatus 200.
- the communication / control unit 220 performs arithmetic operation and processing of various information, and can control each component of the wireless power receiving apparatus 200.
- the communication / control unit 220 may be implemented as a computer or similar device using hardware, software, or a combination thereof.
- the communication / control unit 220 may be provided in the form of an electronic circuit that performs a control function by processing an electrical signal.
- the communication / control unit 220 may be a software Can be provided.
- the load 455 may be a battery.
- the battery can store energy using power output from the power pick-up unit 210.
- the battery is not necessarily included in the mobile device 450.
- the battery may be provided in a detachable external configuration.
- the wireless power receiving apparatus 200 may include driving means for driving various operations of the electronic apparatus instead of the battery.
- the mobile device 450 is shown including a wireless power receiving device 200 and the base station 400 is shown as including a wireless power transmitting device 100, 200 may be identified with mobile device 450 and wireless power transmission device 100 may be identified with base station 400.
- the coil or coil portion may hereinafter be referred to as a coil assembly, a coil cell, or a cell, including at least one element adjacent to the coil and coil.
- 5 is a state transition diagram for explaining a wireless power transmission procedure.
- a power transmission from a wireless power transmission apparatus to a receiver is largely divided into a selection phase 510, a ping phase 520, a configuration phase 530, a negotiation phase 540, a calibration phase 550, a power transfer phase 560, and a renegotiation phase 570 .
- the selection step 510 includes the steps of transitioning, e.g., S502, S504, S508, S510 and S512, when a specific error or a specific event is detected while initiating a power transmission or maintaining a power transmission .
- the specific error and the specific event will become clear through the following description.
- the wireless power transmission apparatus may monitor whether an object exists on the interface surface. If the wireless power transmission device detects that an object has been placed on the interface surface, it may transition to a ping step 520. In the selection step 510, the wireless power transmission apparatus transmits an analog ping signal of a very short pulse and changes the active area of the interface surface (the Active Area) based on the current change of the transmission coil or the primary coil ) Of the object.
- the wireless power transmission device may measure the quality factor of the wireless power resonant circuit (e.g., power transmission coil and / or resonant capacitor).
- the quality factor may be measured to determine whether the wireless power receiving device is placed with the foreign object in the charging area.
- the coil included in the wireless power transmission device may be reduced in inductance and / or series resistance component in the coil due to environmental changes, thereby reducing the quality factor value.
- the wireless power transmission apparatus can receive a previously measured reference quality factor value from the wireless power receiving apparatus in a state in which no foreign matter is disposed in the charging region.
- the received reference quality factor value may be compared with the measured quality factor value to determine whether or not the foreign substance is present.
- a wireless power receiving apparatus having a low reference quality factor value for example, a specific wireless power receiving apparatus may have a low reference quality factor value depending on the type, use and characteristics of the wireless power receiving apparatus, There is no large difference between the quality factor value and the reference quality factor value, and thus it is difficult to determine whether or not the foreign substance exists. Therefore, it is necessary to consider other judgment factors or to judge the existence of foreign matter by using another method.
- a quality factor value within a specific frequency range is measured to determine whether a wireless power- can do.
- the coil of the wireless power transmission device can be reduced in inductance and / or series resistance component in the coil due to environmental changes, thereby changing (shifting) the resonant frequency of the coil of the wireless power transmission device. That is, the quality factor peak frequency, which is the frequency at which the maximum quality factor value in the operating frequency band is measured, can be shifted.
- step 520 when the wireless power transmission apparatus senses an object, it activates the receiver and transmits a digital ping to identify the sensed object as a wireless power receiver. If the wireless power transmission apparatus does not receive a response signal to the digital ping (e. G., A signal strength packet) from the receiver in step 520, then the wireless power transmission apparatus can transition back to the selection step 510. [ Also, in step 520, the wireless power transmission apparatus may transition to the selection step 510 upon receiving a signal indicating completion of power transmission from the receiver, i.e., a charge completion packet.
- a response signal to the digital ping e. G., A signal strength packet
- the wireless power transmission device may transition to an identification and configuration step 530 for identifying the receiver and collecting receiver configuration and status information.
- the wireless power transmission apparatus determines whether an unexpected packet is received, a desired packet is received for a predefined period of time (time out), a packet transmission error, If no power transfer contract is established (no power transfer contract), then transition to select step 510 may be made.
- the wireless power transmission apparatus can determine whether an entry to the negotiation step 540 is necessary based on the negotiation field value of the configuration packet that was made in the identification and configuration step 530. [ If it is determined that negotiation is required, the wireless power transmission apparatus may enter negotiation step 540 to perform a predetermined FOD detection procedure. On the other hand, if it is determined that the negotiation is not required, the wireless power transmission apparatus may directly enter the power transmission step 560. [
- the wireless power transmission apparatus may receive a Foreign Object Detection (FOD) status packet including a reference quality factor value. Or a FOD state packet including a reference peak frequency value. Or receive a status packet including a reference quality factor value and a reference peak frequency value.
- FOD Foreign Object Detection
- the wireless power transmission apparatus can determine the quality factor threshold for FO detection based on the reference quality factor value.
- the wireless power transmission apparatus can determine a peak frequency threshold for FO detection based on a reference peak frequency value.
- the wireless power transmission apparatus can detect whether FO exists in the charging area using the quality factor threshold for the determined FO detection and the currently measured quality factor value (the quality factor value measured before the pinging step)
- the power transmission can be controlled. As an example, if FO is detected, power transmission may be interrupted, but is not limited to this.
- the wireless power transmission apparatus can detect whether there is FO in the charging area using the peak frequency threshold for the determined FO detection and the currently measured peak frequency value (peak frequency value measured before the firing step)
- the power transmission can be controlled. As an example, if FO is detected, power transmission may be interrupted, but is not limited to this.
- the wireless power transmission apparatus may return to the selection step 510.
- the wireless power transmission apparatus may enter the power transmission step 560 via the correction step 550.
- the wireless power transmission apparatus determines the strength of the power received at the receiving end in the correcting step 550 and transmits the power to the receiving end The power loss at the transmitting end can be measured. That is, the wireless power transmission apparatus can predict the power loss based on the difference between the transmitting power of the transmitting end and the receiving power of the receiving end in the correcting step 550.
- the wireless power transmission apparatus may compensate the threshold for FOD detection by reflecting the predicted power loss.
- the wireless power transmission device may receive an unexpected packet, a desired packet is not received for a predefined time (time out), a violation of the predetermined power transfer contract occurs (Power transfer contract violation) and, if charging is complete, transition to a selection step 510.
- the wireless power transfer apparatus may transition to the renegotiation step 570 if it is necessary to reconfigure the power transfer contract according to the wireless power transfer apparatus status change or the like. At this time, if the renegotiation is normally completed, the wireless power transmission apparatus may return to the power transmission step 560.
- the power transmission contract may be set based on status and characteristic information of the wireless power transmission device and the receiver.
- the wireless power transmission apparatus status information may include information on the maximum amount of transmittable power, information on the maximum number of receivable receivers, and the receiver status information may include information on the requested power.
- FIG. 6 shows a power control control method according to an embodiment.
- the wireless power transmission apparatus 100 and the wireless power reception apparatus 200 can control the amount of power transmitted by performing communication together with power transmission / reception.
- the wireless power transmission device and wireless power receiving device operate at specific control points.
- the control point represents a combination of voltage and current provided at the output of the wireless power receiving device when power transfer is performed.
- the wireless power receiver selects a desired control point - a desired output current / voltage, a temperature of a specific location of the mobile device, and further controls the actual control point ).
- the wireless power receiving device can calculate the control error value using the desired control point and the actual control point, and transmit it as a control error packet to the wireless power transmission device.
- the wireless power transmission device can then use the received control error packet to set / control a new operating point - amplitude, frequency and duty cycle - to control power delivery. Therefore, the control error packet is transmitted / received at a certain time interval in the strategy delivery step.
- the wireless power reception apparatus may reduce the control error value when the current is to be reduced, The value can be set with a positive number. In this way, in the guidance mode, the wireless power receiving apparatus can control the power transmission by transmitting the control error packet to the wireless power transmission apparatus.
- the resonance mode described below can operate in a different manner from that in the induction mode.
- one wireless power transmission device In the resonant mode, one wireless power transmission device must be able to serve a plurality of wireless power receiving devices at the same time.
- power transmission to additional wireless power receiving devices may be difficult to control since the transmitted power is controlled by communication with one wireless power receiving device. Therefore, in the resonant mode of the present invention, the wireless power transmission apparatus attempts to use a method of controlling the amount of power received by commonly transmitting basic power and controlling the resonance frequency of the wireless power receiving apparatus itself.
- the method described in FIG. 6 is not completely excluded, and additional transmission power control may be performed by the method of FIG.
- the shared mode may refer to a mode of performing one-to-one communication and charging between the wireless power transmission device and the wireless power receiving device.
- the shared mode may be implemented by a magnetic induction method or a resonance method.
- a wireless power transmission apparatus 700 includes a cover 720 that covers a coil assembly, a power adapter 730 that supplies power to a power transmitting unit 740, a power transmitter (S) 740, or a user interface 750 that provides power transfer progress and other pertinent information.
- the user interface 750 may be optionally included or may be included as another user interface 750 of the wireless power transmission device 700.
- the power transmitter 740 may include at least one of a coil assembly 760, an impedance matching circuit 770, an inverter 780, a communication unit 790, or a control unit 710.
- the coil assembly 760 includes at least one primary coil that generates a magnetic field, and may be referred to as a coil cell.
- Impedance matching circuit 770 may provide impedance matching between the inverter and the primary coil (s). Impedance matching circuit 770 may cause resonance at a suitable frequency to boost the primary coil current. In the multi-coil power transmitter 740, the impedance matching circuit may further include a multiplexer that routes the signal from the inverter to a subset of the primary coils. The impedance matching circuit may also be referred to as a tank circuit.
- the impedance matching circuit 770 may include a capacitor, an inductor, and a switching element for switching the connection thereof. Impedance matching is performed by detecting a reflected wave of the wireless power transmitted through the coil assembly 760 and switching the switching element based on the detected reflected wave to adjust the connection state of the capacitor or the inductor or to adjust the capacitance of the capacitor, . ≪ / RTI >
- the impedance matching circuit 770 may be omitted and may be implemented, and this specification also includes embodiments of the wireless power transmission device 700 in which the impedance matching circuit 770 is omitted.
- Inverter 780 may convert the DC input to an AC signal.
- the inverter 780 may be driven as a half-bridge or a full-bridge to produce a pulse wave and a duty cycle of an adjustable frequency.
- the inverter may also include a plurality of stages to adjust the input voltage level.
- the communication unit 790 can perform communication with the power receiver.
- the power receiver performs load modulation to communicate requests and information to the power transmitter.
- the power transmitter 740 may use the communication unit 790 to monitor the amplitude and / or phase of the current and / or voltage of the primary coil to demodulate the data transmitted by the power receiver.
- the power transmitter 740 may control the output power to transmit data using a frequency shift keying (FSK) method or the like through the communication unit 790.
- FSK frequency shift keying
- the control unit 710 may control the communication and power delivery of the power transmitter 740.
- the control unit 710 can control the power transmission by adjusting the above-mentioned operating point.
- the operating point may be determined, for example, by at least one of an operating frequency, a duty cycle and an input voltage.
- the communication unit 790 and the control unit 710 may be provided as separate units / devices / chipsets, or as one unit / device / chipset.
- FIG. 8 shows a wireless power receiving apparatus according to another embodiment. It can belong to a self-resonant or shared mode wireless power transmission system.
- the wireless power receiving apparatus 800 includes a user interface 820 that provides power transfer progress and other related information, a power receiving unit 830 that receives wireless power, a load circuit 840 Or a base 850 that supports and covers the coil assembly.
- the user interface 820 may be optionally included or may be included as another user interface 82 of the power receiving equipment.
- the power receiver 830 may include at least one of a power converter 860, an impedance matching circuit 870, a coil assembly 880, a communication unit 890, or a control unit 810.
- the power converter 860 may convert the AC power received from the secondary coil to a voltage and current suitable for the load circuit.
- the power converter 860 may include a rectifier.
- the rectifier can rectify the received radio power and convert it from ac to dc.
- the rectifier can convert an AC to a DC using a diode or a transistor, and smooth it by using a capacitor and a resistor.
- As the rectifier a full-wave rectifier, a half-wave rectifier, a voltage multiplier, etc. implemented by a bridge circuit or the like can be used. Additionally, the power converter may adapt the reflected impedance of the power receiver.
- Impedance matching circuit 870 may provide impedance matching between the combination of power converter 860 and load circuit 870 and the secondary coil.
- the impedance matching circuit can generate a resonance in the vicinity of 100 kHz which can enhance the power transmission.
- the impedance matching circuit 870 may be composed of a switching element that switches capacitors, inductors, and combinations thereof. The matching of the impedances can be performed by controlling the switching elements of the circuits constituting the impedance matching circuit 870 based on the voltage value or the current value, the power value, the frequency value or the like of the received radio power.
- the impedance matching circuit 870 may be omitted, and this specification also includes embodiments of the wireless power receiving apparatus 200 in which the impedance matching circuit 870 is omitted.
- the coil assembly 880 includes at least one secondary coil, and may optionally further include an element that shields the metal portion of the receiver from the magnetic field.
- Communications unit 890 may perform load modulation to communicate requests and other information to the power transmitter.
- the power receiver 830 may switch the resistors or capacitors to change the reflection impedance.
- the control unit 810 can control the received power. To this end, the control unit 810 may determine / calculate the difference between the actual operating point and the desired operating point of the power receiver 830. And the control unit 810 may adjust / reduce the difference between the actual operating point and the desired operating point by adjusting the reflection impedance of the power transmitter and / or requesting an operating point adjustment of the power transmitter. When this difference is minimized, optimum power reception can be performed.
- the communication unit 890 and the control unit 810 may be provided as separate devices / chipsets or as a single device / chipset.
- FIG. 9 shows a communication frame structure according to an embodiment. This may be a communication frame structure in a shared mode.
- a slotted frame having a plurality of slots as shown in (A) and a free format frame having no specific form such as (B) can be used.
- the slot frame is a frame for transmission of short data packets from the wireless power receiving apparatus 200 to the wireless power transmission apparatus 100, and the free format frame does not have a plurality of slots, It may be a frame that can be transmitted.
- slot frames and free format frames can be changed to various names by those skilled in the art.
- a slot frame may be changed to a channel frame
- a free format frame may be changed to a message frame, or the like.
- the slot frame may include a sync pattern indicating the start of the slot, a measurement slot, nine slots, and an additional sync pattern having the same time interval prior to each of the nine slots.
- the additional sync pattern is a sync pattern different from the sync pattern indicating the start of the frame described above. More specifically, the additional sync pattern may not represent the beginning of a frame, but may represent information related to adjacent slots (i.e., two consecutive slots located on both sides of the sync pattern).
- a sync pattern may be located between two consecutive slots of the nine slots.
- the sync pattern may provide information related to the two consecutive slots.
- the sync patterns provided before each of the 9 slots and the 9 slots may have the same time interval.
- the nine slots may have a time interval of 50 ms.
- the nine sync patterns may have a time length of 50 ms.
- a free format frame such as (B) may not have a concrete form other than a sync pattern and a measurement slot indicating the start of a frame. That is, the free-form frame is for performing a different function from the slot frame, for example, between the wireless power transmission apparatus and the wireless power receiving apparatus, long data packets (for example, additional owner information packets) Or may be used for a role of selecting any one of a plurality of coils in a wireless power transmission apparatus composed of a plurality of coils.
- FIG. 10 is a structure of a sync pattern according to an embodiment.
- a sync pattern includes a preamble, a start bit, a response field, a type field, an info field, and a parity bit.
- the start bit is shown as ZERO.
- the preamble consists of consecutive bits, all of which may be set to zero. That is, the preamble may be bits for matching the time length of the sync pattern.
- the number of bits constituting the preamble may depend on the operating frequency, such that the length of the sync pattern is closest to 50 ms, but not exceeding 50 ms. For example, if the operating frequency is 100 kHz, the sync pattern is composed of two preamble bits, and if the operating frequency is 105 kHz, the sync pattern may be composed of three preamble bits.
- the start bit is a bit following the preamble, which can be zero (ZERO).
- the zero (ZERO) may be a bit indicating the type of the sync pattern.
- the type of the sync pattern may include a frame sync including information related to a frame and a slot sync including information on the slot. That is, the sync pattern is located between consecutive frames, and is a frame sync indicating the start of a frame, or is located between consecutive slots among a plurality of slots constituting a frame, and information relating to the consecutive slots Lt; / RTI >
- the corresponding slot is a slot sync located between the slot and the slot. If the slot sync is 1, the sync pattern is a frame sync located between the frame and the frame.
- the parity bit is the last bit of the sync pattern and may indicate the number of bits constituting the data fields of the sync pattern (i.e., the response field, the type field, and the information field).
- the parity bit may be 1 if the number of bits constituting the data fields of the sync pattern is an even number, and may be 0 otherwise (i.e., if it is an odd number).
- the Response field may contain the response information of the wireless power transmission device, for communication with the wireless power receiving device, in the slot prior to the sync pattern.
- the response field may have a value of '00' if no performance of communication with the wireless power receiving device is detected.
- the response field may have '01' when a communication error is detected in communication with the wireless power receiving apparatus.
- the communication error may be when two or more wireless power receiving devices attempt to access one slot and a collision occurs between two or more wireless power receiving devices.
- the response field may include information indicating whether or not the data packet has been correctly received from the wireless power receiving apparatus. More specifically, the response field is set to "10" (10-not acknowledge (NAK)) when the wireless power transmission apparatus has denied the data packet, and when the wireless power transmission apparatus confirms the data packet , "11" (11-acknowledge, ACK).
- the type field may indicate the type of sync pattern. More specifically, the type field may have a '1' indicating that it is a frame sync if the sync pattern is the first sync pattern of the frame (i.e., the first sync pattern of the frame is located before the measurement slot).
- the type field may have a value of '0' indicating that it is a slot sync when the sync pattern is not the first sync pattern.
- the meaning of the information field can be determined according to the type of the sync pattern indicated by the type field. For example, if the type field is 1 (i.e., indicates a frame sync), the meaning of the information field may indicate the type of frame. That is, the information field may indicate whether the current frame is a slotted frame or a free-format frame. For example, if the information field is '00', a slot frame can be represented, and if the information field is '01', a free format frame can be represented.
- the information field may indicate the state of the next slot after the sync pattern. More specifically, the information field is set to '00' if the next slot is a slot allocated to a specific wireless power receiving device, '00' if the particular wireless power receiving device is a slot locked for temporary use, '01', or '10' if any wireless power receiving device is a freely available slot.
- FIG 11 illustrates an operation state of the wireless power transmission apparatus and the wireless power reception apparatus in the shared mode according to an embodiment.
- the wireless power receiving apparatus operating in the shared mode includes a selection phase 1100, an introduction phase 1110, a configuration phase 1120, (Negotiation Phase) 1130 and a Power Transfer Phase (1140).
- a wireless power transmission apparatus may transmit a wireless power signal to detect a wireless power receiving apparatus. That is, the process of detecting the wireless power receiving apparatus using the wireless power signal can be referred to as an analog ping.
- the wireless power receiving apparatus that has received the wireless power signal can enter the selected state 1100.
- the wireless power receiving apparatus entering the selected state 1100 can detect the presence of the FSK signal on the wireless power signal.
- the wireless power receiving apparatus can perform communication in either of an exclusive mode or a shared mode depending on whether an FSK signal is present or not.
- the wireless power receiving apparatus can operate in the shared mode if the wireless power signal includes the FSK signal, and otherwise operate in the exclusive mode.
- the wireless power receiving apparatus When the wireless power receiving apparatus operates in the shared mode, the wireless power receiving apparatus can enter the entering state 1110.
- the wireless power receiving device can transmit a control information packet to the wireless power transmission device in order to transmit a control information packet (CI) in a set state, a negotiated state, and a power transmission state have.
- the control information packet may have information related to a header and a control.
- the control information packet may have a header of 0x53.
- the wireless power receiving device performs an attempt to request a free slot to transmit a control information (CI) packet over the following configuration, negotiation, and power transmission steps.
- the wireless power receiving apparatus selects a free slot and transmits the first CI packet. If the wireless power transmission device responds with an ACK to the corresponding CI packet, the wireless power transmission device enters the configuration phase. If the wireless power transmission device responds with a NACK, another wireless power receiving device is going through the configuration and negotiation steps. In this case, the wireless power receiving apparatus retries the request of the free slot.
- CI control information
- the wireless power receiving device determines the location of a private slot in the frame by counting the remaining slot sinks until the first frame sync. In all subsequent slot-based frames, the wireless power receiving device transmits the CI packet through the corresponding slot.
- the wireless power transmission device allows the wireless power receiving device to proceed to the configuration step, the wireless power transmission device provides a series of locked slots for exclusive use of the wireless power receiving device. This ensures that the wireless power receiving device proceeds with the configuration step without collision.
- the wireless power receiving device transmits sequences of data packets, such as two identification data packets (IDHI and IDLO), using a lock slot. Upon completing this step, the wireless power receiving apparatus enters the negotiation step. In the negotiation phase, the wireless power transmission device continues to provide the wireless power receiving device with a lock slot for exclusive use. This ensures that the wireless power receiving device proceeds with the negotiation step without collision.
- IDHI and IDLO identification data packets
- the wireless power receiving device transmits one or more negotiated data packets using the corresponding lock slot, which may be mixed with private data packets.
- the sequence ends with a specific request (SRQ) packet.
- SRQ specific request
- the wireless power receiving apparatus enters a power transmission step, and the wireless power transmission apparatus stops providing the lock slot.
- the wireless power receiving apparatus performs transmission of the CI packet using the allocated slot, and receives power.
- the wireless power receiving apparatus may include a regulator circuit.
- the regulator circuit can be included in the communication / control unit.
- the wireless power receiving device may self-regulate the reflection impedance of the wireless power receiving device through the regulator circuit. In other words, the wireless power receiving device can adjust the reflected impedance to transmit the amount of power required by the external load. This can prevent excessive power reception and overheating.
- control may be required to prevent the overvoltage condition.
- a wireless power transmission apparatus transmits wireless power to a wireless power receiving apparatus using a magnetic field
- a part of the magnetic field is absorbed as a foreign matter if a foreign matter exists around the wireless power receiving apparatus. That is, some of the wireless power transmitted by the wireless power transmission apparatus is supplied as foreign matter, and the rest is supplied to the wireless power reception apparatus.
- loss of transmission power occurs as much as power or energy absorbed by the foreign substance. Since a causal relationship can be established between the presence of foreign matter and the power loss (P loss ), the wireless power transmission apparatus can detect foreign matter through how much power loss occurs.
- Such a foreign matter detection method may be called a foreign matter detection method based on power loss.
- the power lost by the foreign object can be defined as a value obtained by subtracting the power (P received ) actually received by the wireless power receiving apparatus from the power (P transmitted ) transmitted by the wireless power transmission apparatus.
- the loss power can be obtained by knowing only the actual received power P received .
- the wireless power receiving apparatus can inform the wireless power transmission apparatus of the received power (P received ) by transmitting a received power packet (RPP) to the wireless power transmission apparatus.
- the wireless power transmission apparatus and the wireless power reception apparatus are composed of various circuit components and constitute independent apparatuses, the wireless power transmission is performed by magnetic coupling therebetween,
- the power receiving apparatus constitutes one wireless power transmission system.
- the magnitude of the magnetic field of the Tx and Rx depends on the actual usage environment of the wireless power transmission system (such as the size, frequency, duty cycle, distance between Tx and Rx, Due to the change in coupling, errors may occur in the transmission power and the reception power. This error may be an obstacle to sophisticated foreign matter detection.
- the power correction method in this embodiment can be performed in the correction step of Fig.
- the FOD performing method in this embodiment can be performed in the power transmitting step of FIG.
- the power correction in this embodiment may include correction of power parameters (transmit power and / or received power).
- a wireless power transmission apparatus or a wireless power receiving apparatus performs a step 1200 of determining transmission power and reception power under two different load conditions.
- the two load conditions include a " light load "condition and a" connected load "condition.
- the load may be a battery included in or connected to the wireless power receiving device.
- the transmission power and / or the received power at the light load condition is set to the minimum expected output power (i.e., the output power is lower than the minimum expected output power) since the light load is not connected to the wireless power receiving device (i.e., the output disconnect switch is open) minimum expected output power).
- the connecting load is connected to the wireless power receiving device (that is, the output opening / closing switch is closed)
- the transmission power and / or the receiving power under the connection load condition is equal to the maximum expected output power Close.
- the wireless power transmission apparatus determines a first transmission power under a light load condition and determines a first reception power from a first received power packet (RPP) received from the wireless power reception apparatus, Determining the second transmit power and determining a second receive power from a second received power packet (RPP) received from the wireless power receiving apparatus under a load condition. That is, the wireless power receiving apparatus determines a first received power under a light load condition, transmits a first received power packet indicating the first received power to the wireless power transmission apparatus, and determines a second received power under a coupled load condition And transmits a second received power packet indicating the second received power to the wireless power transmission apparatus.
- RPP received power packet
- FIG. 13 illustrates a received power packet according to an embodiment.
- the received power packet is composed of 3 bytes (24 bits), and the first byte B 0 includes 5 bits of reserved bits and 3-bit mode fields.
- the second and third bytes (B 1 -B 2) includes a field indicative of the received power value (received power value).
- the mode field indicates the condition under which the received power value included in the received power packet is determined, and can be defined as shown in Table 3, for example.
- the wireless power receiving apparatus when determining the received power under the light load condition, sets a mode field indicating the light load correction value '001' and a first received power packet including the corresponding received power value as the wireless power To the transmitting apparatus. On the other hand, when determining the received power under the connection load condition, the wireless power receiving apparatus transmits a mode field for indicating a connection load correction value '010' and a second received power packet including the received power value to the wireless power transmission apparatus .
- the wireless power transmission apparatus can determine from the mode field of the received power packet whether the received power value is a received power value under a light load condition or a received power value under a connection load condition.
- the wireless power transmission apparatus determines power parameters (transmission power under light load condition, reception power under light load condition, transmission power under connection load condition, reception power under connection load condition) , At least one calibration constant is determined (S1205).
- the wireless power transmission apparatus can apply linear interpolation to the determined power parameters (transmit power and / or receive power) to correct transmit power and / or receive power based on two load conditions.
- Figure 14 is a calibration curve shown based on linear interpolation in accordance with one embodiment.
- a is a first correction constant
- b is a second correction constant.
- the correction constants a and b can be derived by the correction curve of FIG. 14, and the derivation process is expressed by the following equation.
- This embodiment may be referred to as a 2 point calibration since it is a correction using two coordinates according to two load conditions.
- the calibration curve may also be referred to as a calibration function based on at least one calibration constant. Therefore, the step of determining the correction constant according to step S1205 may be a step of determining the correction function.
- the linear interpolation is used to obtain the correction constant, but the interpolation method is not limited thereto.
- the wireless power transmission apparatus completes the correction step and enters the power transmission step.
- the wireless power transmission apparatus determines the transmission power in the power transmission step and receives the reception power packet from the wireless power reception apparatus.
- the wireless power transmission apparatus determines the corrected transmission power and / or reception power by correcting the power parameters (transmission power and / or reception power) determined in the power transmission step using a correction function (S1210).
- a method of determining a corrected transmit power comprises the steps of: multiplying a transmit power determined in a power transmit phase, P transmitted , by a first correction constant a to determine a scaled transmit power a P transmitted, , And adding a second correction constant (b) to the scaled transmit power to determine a corrected transmit power (P calibrated ).
- the method of calculating the corrected transmission power can be expressed by Equation (3).
- the wireless power transmission apparatus determines the power loss based on the corrected power parameter (transmit power and / or received power), and performs the FOD based on the determined power loss (S1215).
- the wireless power transmission device may perform FOD based on i) calibrated transmit power and uncorrected receive power, ii) perform FOD based on uncorrected transmit power and corrected receive power, iii) ) It is also possible to perform an FOD based on the corrected transmission power and the corrected reception power.
- the wireless power transmission apparatus can determine the power loss as a difference value between the corrected transmission power (P calibrated ) and the uncorrected reception power (P receiveied ) as shown in Equation (4).
- the wireless power transmission apparatus can determine the calibrated received power in addition to the calibrated transmit power.
- the wireless power transmission device may determine that a foreign object is present and stop transmitting power. On the other hand, if the determined power loss does not exceed the threshold, the wireless power transmission apparatus can determine that the foreign object is not present and can continue power transmission.
- Steps S1200 to S1205 correspond to the correction step
- steps S1210 to S1215 correspond to the power transmission step.
- the correction step and the power transmission step are separated into separate steps, but the correction step may be included in the power transmission step, and in this case, the correction may be performed in the power transmission step.
- the wireless power transmission apparatus in the embodiment according to FIG. 12 corresponds to the wireless power transmission apparatus or the wireless power transmitter or the power transmission unit disclosed in FIG. 1 to FIG. Accordingly, the operation of the wireless power transmission apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power transmission apparatus in Figs.
- the corrected transmission power and / or the corrected reception power according to step S1215, and the operation to perform the FOD according to step S1215 may be performed by the communication / control unit 120.
- the wireless power receiving apparatus in the embodiment according to FIG. 12 corresponds to the wireless power receiving apparatus or the wireless power receiving apparatus or the power receiving unit disclosed in FIG. 1 to FIG. Therefore, the operation of the wireless power receiving apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power receiving apparatus in Figs.
- a first received power is determined under a light load condition, and a first received power packet indicating the first received power is generated and transmitted to the wireless power transmission apparatus. 2 transmission power, and generating a second reception power packet indicating the second reception power and transmitting the second reception power packet to the wireless power transmission apparatus may be performed by the communication / control unit 220.
- the correction curve as shown in FIG. 14 can be defined. Once the correction curve (or correction constant) is defined in the correction step, the correction constant and the correction curve are no longer changed in the power transmission step, and the combinations of the transmission power and the reception power in the future power transmission step are all shown in FIG. 14 And the wireless power transmission apparatus performs the FOD uniformly according to the above graph.
- the transmission power and / or the received power do not follow a predetermined correction curve due to various causes during power transmission. For example, if the wireless power receiving device increases the connection load during the power transmission process, or if the magnetic coupling between the wireless power transmission device and the receiving device changes rapidly, then the existing calibration constants and correction curves may change according to the changed environment The new transmit power and receive power are not matched. A poor approximation of the overall relationship between transmit power and receive power may occur. In this case, there is a problem that the reliability of the FOD is extremely degraded if the FOD is determined based on the determined correction constant, the corrected transmission power and the reception power based on the correction graph, and the like.
- the power correction method according to the present embodiment is characterized in that the initial correction (or the initial correction curve or the initial correction constant or the initial correction function) for the power parameter due to power increase or coupling change is no longer valid (or a certain degree of accuracy (Not guaranteed), performing a subsequent calibration to increase the accuracy of the transmission power and / or the reception power that is the basis of the FOD determination.
- subsequent correction may be triggered when a particular event occurs.
- a specific event that triggers a subsequent correction is simply referred to as a trigger event.
- the trigger event may indicate a condition or cause in which the initial calibration is no longer valid.
- Subsequent correction is additionally performed to correct or supplement the previously performed correction, and in this sense it may be replaced by another term having the same meaning and function, but using the term subsequent correction to distinguish it from the initial correction Of course.
- Trigger events can contain several types depending on the cause.
- a trigger event may be an event during which the load of the wireless power receiving apparatus is increased beyond a predetermined level (i.e., a target rectified voltage Vrec) increases or the received power value increases above the received power value at the previous load connection condition).
- a predetermined level i.e., a target rectified voltage Vrec
- These trigger events can be called 'load increasing events'.
- the wireless power transmission device and / or wireless power receiving device may determine if a load increase event has occurred and may enter a subsequent correction phase if a load increase event is detected.
- the trigger event may include an event in which the magnetic coupling between the wireless power transmission device and the wireless power reception device changes by more than a predetermined level (for example, an event in which the position of the wireless power reception device is suddenly changed) can do.
- a trigger event may be referred to as a 'coupling change event'.
- the wireless power transmission device and / or wireless power receiving device may determine if a coupling change event occurs and may enter a subsequent correction phase if a coupling change event is detected.
- the subsequent correction steps may be performed in different ways depending on the type of trigger event.
- the power correction method in this embodiment can be performed in the power transmission step of Fig.
- the power correction in this embodiment may include correction of power parameters (transmit power and / or received power).
- the wireless power transmission apparatus transmits wireless power to a wireless power reception apparatus in a power transmission step (S1500).
- the wireless power receiving apparatus transmits a first received power packet (RPP) of the form shown in FIG. 13 to the wireless power transmitting apparatus (S1505).
- the first received power packet includes a mode field, where the mode field may indicate '000' or '100' indicating that the received power value corresponds to a general value (see Table 3).
- step S1510 may be replaced with the case where the wireless power reception value is not present within the calibration curve (or calibration interval) according to the initial calibration.
- the step S1510 may be a case where the received power value becomes larger than the received power value in the previous connection load condition. This may mean that the received power value is out of the range of the existing calibration curve so that the wireless power transmission device can no longer perform valid calibration.
- the wireless power receiving device under the load connection condition transmits the received power value to the wireless power transmission device so that the wireless power transmission device can perform the subsequent correction.
- the wireless power receiving device determines that the initial correction is no longer valid (or valid calibration can not be performed), and changes the load mode to the connection load mode
- the method comprising the steps of:
- the mode field included in the second received power packet may indicate '010' indicating that the received power value is the received power value under the connection load condition. That is, the wireless power receiving apparatus sets the mode field to '010', generates a second received power packet including the mode field, and transmits the generated second received power packet to the wireless power transmission apparatus.
- the wireless power receiving apparatus may transmit the second received power packet periodically or continuously for a predetermined time interval to the wireless power transmission apparatus until an ACK response is received from the wireless power transmission apparatus.
- the predetermined time interval may be 2 seconds.
- the wireless power transmission apparatus transmits a NAK response until the control of the system is stabilized, and transmits an ACK response to the wireless power receiving apparatus when the control of the system is stabilized.
- the mode field is allowed to indicate '010'. That is, the wireless power transmission apparatus expects that the mode field received in the power transmission step generally indicates '000' or '100', but when receiving a mode field indicating '010' (S1520), and enters a subsequent correction step (S1525).
- the operation of the wireless power transmission apparatus is classified as follows according to the stage in which the received power packet including the mode field indicating '010' is received. That is, in the power transmission step, when the wireless power transmission apparatus receives a reception power packet indicating a new connection load mode from the wireless power reception apparatus, the wireless power transmission apparatus can perform subsequent correction using the value. In this case, the period (or range) of correction may be increased in accordance with the subsequent correction.
- the wireless power transmission apparatus when receiving a received power packet including a mode field indicating '010' in the initial correction step, performs an initial correction based on the received power value under the initial connected load condition .
- the wireless power transmission apparatus transmits the received power under the changed connected load condition Performs subsequent correction based on the value.
- the interpretation and operation of the wireless power transmission apparatus may differ depending on whether it is received in the initial correction step or in the power transmission step.
- a new value for example, any one of 101-111
- the wireless power transmission apparatus senses a load increase event (S1520) and enters a subsequent correction step (S1525) .
- the mode field of the received power packet in the power transmission step is set to a specific value (any one of 010 or 101-111) to indicate that a load increase event occurs or to enter a subsequent correction step Can be interpreted.
- the wireless power transmission apparatus in the embodiment according to FIG. 15 corresponds to the wireless power transmission apparatus or the wireless power transmitter or the power transmission unit disclosed in FIGS. 1-11. Accordingly, the operation of the wireless power transmission apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power transmission apparatus in Figs. For example, in this embodiment, the operation of transmitting the wireless power to the wireless power reception apparatus in the power transmission step according to step S1500 may be performed by the power conversion unit 110.
- the wireless power receiving apparatus in the embodiment according to FIG. 15 corresponds to the wireless power receiving apparatus or the wireless power receiving apparatus or the power receiving unit disclosed in FIG. 1 to FIG. Therefore, the operation of the wireless power receiving apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power receiving apparatus in Figs.
- the operation of receiving wireless power from the wireless power transmission apparatus in the power transmission step according to step S 1500 may be performed by the power pickup unit 210.
- An operation to generate and transmit a first received power packet according to step S1505, an operation to increase and detect a load according to step S1510, and an operation to generate and transmit a second received power packet according to step S1515, May be performed by the unit (220).
- step S1525 will be described in more detail with reference to Fig. Further, although the subsequent correction step according to step S1525 is separated from the power transmission step, it is needless to say that it may be defined as an operation included in the power transmission step without separately separating the subsequent correction step.
- 16 is a flowchart for explaining a subsequent correction method of a wireless power transmission apparatus according to an embodiment.
- the wireless power transmission apparatus determines a power parameter (transmission power and / or reception power) under an additional connection load condition (S1600).
- the additional connection load condition means a load condition in which the connection load of the wireless power receiving apparatus is increased (or the rectified voltage is increased) in the power transmission step.
- the transmit power under the additional connection load condition corresponds to information already known as the power (P transmitted ) transmitted by the wireless power transmission apparatus in the power transmission phase.
- the received power may be determined as the received power value (P received ) included in the second received power packet received in step S1515.
- the wireless power transmission apparatus determines a subsequent correction constant based on the initial correction constant (obtained in step S1205), the transmission power determined under the additional load condition, and the received power (S1605).
- the wireless power transmission apparatus may apply a linear interpolation to the determined transmission power and / or reception power to determine a subsequent correction constant, and to determine a corrected transmission power and / or a reception power.
- the coordinates (x ', y') are obtained when the transmission power and the reception power determined under the additional load condition are x 'and y', respectively.
- the expansion by linear interpolation from the correction function (or correction curve) obtained under the initial load condition to the above coordinates (x ', y') is shown in FIG.
- Figure 17 is an extended calibration curve based on linear interpolation in accordance with one embodiment.
- a second curve consisting of tr_connected (1) and received power (P rec_connected (1) ) is connected by linear interpolation to yield a linear curve with gradient a and y axis offset b.
- a is a first correction constant
- b is a second correction constant. This is the same as the correction curve shown in Fig.
- the present embodiment is a correction using three coordinates according to three load conditions (power at light load under the correction step, power at the connection load condition at the correction step, and power at the connection load condition at the power transmission step) It may also be called a 3 point calibration or a multi-point calibration.
- the linear interpolation is used to obtain the correction constant, but the interpolation method is not limited thereto.
- the wireless power transmission apparatus In order to derive the extended correction function, the wireless power transmission apparatus must store the correction constants according to the initial correction function already obtained in the correction step in the internal memory. The wireless power transmission apparatus updates the previously stored initial correction function with the extended correction function.
- the wireless power transmission apparatus determines the transmission power in the power transmission step and receives the reception power packet from the wireless power reception apparatus. At this time, the wireless power transmission apparatus determines the next corrected transmission power and / or the reception power by performing subsequent correction using the extended correction function (S1610), based on the transmission power and / or the reception power determined in the power transmission step.
- the extended correction function S1610
- the method of determining the corrected transmission power according to the extended correction function can be adaptively determined according to which section the transmission power belongs to. For example, when the transmission power is equal to or less than P tr_connected (1) , the wireless power transmission apparatus determines the corrected transmission power by applying the slope a, and when the transmission power is in the range of P tr_connected (1) The apparatus can determine the corrected transmission power by applying the slope a1.
- the wireless power transmission apparatus determines the power loss based on the subsequently corrected transmission power and / or reception power, and performs the FOD based on the determined power loss (S1615 ).
- the wireless power transmission device may perform FOD based on i) calibrated transmit power and uncorrected receive power, ii) perform FOD based on uncorrected transmit power and corrected receive power, iii) ) It is also possible to perform an FOD based on the corrected transmission power and the corrected reception power.
- the wireless power transmission device may determine that a foreign object is present and stop transmitting power. On the other hand, if the determined power loss does not exceed the threshold value, the wireless power transmission apparatus may determine that the foreign object does not exist and continue power transmission.
- the wireless power transmission apparatus in the embodiment according to Figs. 16 to 17 corresponds to the wireless power transmission apparatus or wireless power transmitter or power transmission unit disclosed in Figs. 1-11. Accordingly, the operation of the wireless power transmission apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power transmission apparatus in Figs.
- the operation to determine the next corrected transmission power and / or the subsequent corrected reception power according to step S1615, and the operation to perform the FOD according to step S1615 may be performed by the communication / control unit 120.
- the wireless power receiving apparatus in the embodiment according to Figs. 16 to 17 corresponds to the wireless power receiving apparatus or the wireless power receiving apparatus or the power receiving unit disclosed in Figs. 1-11. Therefore, the operation of the wireless power receiving apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power receiving apparatus in Figs. For example, in this embodiment, the operation of generating a reception power packet according to step S1610 and transmitting it to the wireless power transmission apparatus may be performed by the communication / control unit 220.
- the subsequent correction in accordance with the load increase event is contrasted with the subsequent correction in accordance with the coupling change event returning to the ping phase in that it is performed in the power transfer phase without returning to the ping phase.
- Step S1525 and subsequent correction according to the embodiment of Fig. 16 may be performed each time a trigger event occurs during the power transmission step. For example, every time the received power value in the power transmitting step becomes larger than the received power value in the existing connected load mode, the wireless power transmitting apparatus and the wireless power receiving apparatus perform step S1525 and subsequent correction according to the embodiment of FIG. 16 Can be performed.
- subsequent correction of the form of redoing of initial calibration may be performed.
- the position of the wireless power receiving device after the correction step may be changed by the user's intention or changed without regard to the user's intention.
- the location change of such a wireless power receiving device eventually results in a coupling change between the wireless power transmitting device and the receiving device.
- the initial calibration function (or initial calibration curve) is no longer valid because the initial calibration function, derived from the power under light load / connection, depends on the particular coupling condition. In other words, the initial correction function derived under a particular coupling condition is no longer valid when the corresponding coupling condition is changed.
- the subsequent correction involves deriving a substantially new initial correction function, since the existing initial correction function can no longer be used.
- the power correction method in this embodiment can be performed in the correction step of Fig.
- the power correction in this embodiment may include correction of power parameters (transmit power and / or received power).
- the wireless power transmission apparatus transmits wireless power to a wireless power reception apparatus in a power transmission step (S1800).
- the wireless power receiving apparatus transmits a reception power packet (RPP) and a control error packet (CEP) of the form shown in FIG. 13 to the wireless power transmission apparatus (S1805).
- RPP reception power packet
- CEP control error packet
- the wireless power transmission apparatus monitors the information about the power transmitted in the power transmission step and / or the information (or packet) received from the wireless power reception apparatus, and detects the occurrence of the coupling change event based on the monitoring result S1810).
- the wireless power transmission apparatus may determine that a coupling change event has occurred, or may determine that a foreign object has been inserted.
- the wireless power transmission apparatus can confirm through the mode field of the received power packet (RPP) whether the change of the CE is due to a change in the intentional load condition of the wireless power receiving apparatus. That is, the wireless power transmission apparatus can determine whether a coupling change event occurs based on CEP and RPP.
- the wireless power transmission apparatus Upon detecting a coupling change event (or foreign object insertion) in step S1810, the wireless power transmission apparatus performs the overall FOD procedure again (Q factor-based FOD and APLD) to detect foreign matter or perform subsequent correction.
- the subsequent correction includes an operation of renewing a correction function (or a correction curve or a correction constant) according to the initial correction.
- the wireless power transmission apparatus can perform an operation of transmitting a specific bit pattern response to the wireless power receiving apparatus in response to the received power packet received in step S1805 to inform the wireless power receiving apparatus that a coupling change event has occurred (S1815).
- FSK modulation may be used for the transmission of the bit pattern response.
- the bit pattern response is 8 bits and may be referred to as ATN (attention) or RFC (reqeust for communication).
- the wireless power transmission apparatus requests the wireless power receiving apparatus to transmit a ripping start packet by setting a bit pattern response to a specific bit value and transmits the bit pattern response to the wireless power receiving apparatus, Or provide a response to a packet received from the wireless power receiving device.
- the ACK response indicating the request acknowledgment is represented by a bit pattern of '11111111'
- the NAK response rejecting the request is represented by a bit pattern of '00000000'
- the ND response indicating unrecognizable or invalid request is' 01010101 'bit pattern.
- the ATN can be defined as a bit pattern of various 8-bit sizes except for the bit pattern defined for the above ACK / NAK / ND response.
- the ATN may be defined as '00001111', '11110000', '10101010', '10110110', '00110011', or '01001001'.
- the wireless power receiving device Since the ATN bit pattern response generally informs the wireless power receiving device that there is a message to be sent by the wireless power transmitting device, the wireless power receiving device receives the ATN bit pattern response and then, for some reason, In order to determine whether a bit pattern response has been sent, a DSR (poll) packet is transmitted to the wireless power transmission apparatus (S1820).
- DSR poly-poll
- the wireless power transmission apparatus requests the wireless power receiving apparatus to transmit a packet for starting re-ping (hereinafter referred to as a ripping start packet) in response to the DSR (poll) packet (S1825).
- Step S1825 corresponds to an operation in which the wireless power transmission apparatus requests the wireless power reception apparatus to start ripping. Since the initiator of ripping is a wireless power receiving apparatus, the wireless power transmission apparatus can not arbitrarily enter the ripping step without permission of the wireless power receiving apparatus. Therefore, ripping to the wireless power receiving apparatus, which is the initiator of ripping, The process of requesting to start is preliminarily performed.
- the wireless power receiving apparatus Upon receiving the request to start ripping, the wireless power receiving apparatus generates a ripping start packet and transmits it to the wireless power transmission apparatus (S1830).
- the ripping start packet may be an end power transfer (EPT) packet for starting the ripping.
- 19 is a schematic diagram showing an EPT packet for starting the ripping according to an embodiment.
- an EPT packet indicates a 1-byte (8-bit) EPT code.
- the EPT code can indicate various contents according to the bit value.
- the bit value is '0x0C'
- the EPT code can indicate the end of the power transmission for starting the ripping. It is to be understood that '0x0C' is only an example, and the bit value indicating the end of the power transmission for starting the ripping may include various embodiments such as '0x0D'.
- the wireless power transmission apparatus receiving the EPT packet for starting the ripping performs ripping (S1835).
- the ripping may be performed after a predetermined specific re-ping delay.
- the ripping delay value may be set by, for example, a ripping time (or delay) packet in the negotiation step. Alternatively, the ripping can be performed immediately in spite of a predetermined specific ripping delay.
- the wireless power receiving apparatus can indicate that the wireless power receiving apparatus is being charged on the user interface even though the wireless power is not supplied to the wireless power receiving apparatus. If the wireless power transmission apparatus fails to receive the ripping start packet within a predetermined time in step S1830, the wireless power transmission apparatus can reset the wireless power reception apparatus and perform the entire FOD procedure again.
- the ripping may include the steps of the wireless power transmission device transmitting an analog ping signal in the selection step, detecting and identifying the wireless power receiving device (a beep signal indicating detection / identification may be output at this time) , And performing FOD based on the Q factor.
- the subsequent correction according to step S1840 may include the initial correction described in the embodiment of Fig. That is, the subsequent correction of the wireless power transmission apparatus according to step S1840 includes the correction operation of the wireless power transmission apparatus according to the embodiment of Fig. 12, and the subsequent correction of the wireless power reception apparatus according to step S1840 is performed in the embodiment of Fig. 12 And a correction operation of the wireless power receiving apparatus according to the present invention. Thereby, the subsequent correction according to the coupling change event is completed, and the transmission power and / or the corrected reception power according to the subsequent correction are determined.
- the wireless power transmission apparatus determines the power loss based on the transmission power and / or the reception power determined by the subsequent correction, and performs the FOD based on the determined power loss (S1845).
- the wireless power transmission apparatus in the embodiment according to FIG. 18 corresponds to the wireless power transmission apparatus or the wireless power transmitter or the power transmission unit disclosed in FIG. 1 to FIG. Accordingly, the operation of the wireless power transmission apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power transmission apparatus in Figs.
- the operation of transmitting the wireless power to the wireless power reception apparatus in the power transmission step according to step S1800 may be performed by the power conversion unit 110.
- step S1805 an operation of detecting a coupling change event according to step S1810, an operation of requesting the start of ripping according to step S1825, an operation of receiving a ripping start packet according to step S1830,
- the operation of performing the ripping in accordance with S1835, the operation of performing the subsequent correction according to the step S1840, and the operation of performing the FOD according to the step S1845 may be performed by the communication / control unit 120.
- the wireless power receiving apparatus in the embodiment according to FIG. 18 corresponds to the wireless power receiving apparatus or the wireless power receiving apparatus or the power receiving unit disclosed in FIG. 1 to FIG. Therefore, the operation of the wireless power receiving apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power receiving apparatus in Figs.
- the operation of receiving wireless power from the wireless power transmission apparatus in the power transmission step according to step S1800 may be performed by the power pickup unit 210.
- an operation of generating and transmitting a packet such as RPP and CEP according to step S1805, an operation of detecting a coupling change event according to step S1810, an operation of receiving a ripping start request according to step S1825, The operation of generating and transmitting the start packet, performing the ripping in accordance with S1835, and performing the subsequent correction according to step S1840 may be performed by the communication / control unit 220.
- the power correction method according to Fig. 18 is an example of a case where the wireless power receiving apparatus is the initiator of ripping.
- the wireless power transmission device may be the initiator of ripping. Therefore, the following describes a power correction method when the initiator of ripping is a wireless power transmission device.
- the power correction method in this embodiment can be performed in the correction step of Fig.
- the power correction in this embodiment may include correction of transmit power and / or correction of received power.
- steps S2000 to S2010 are the same as steps S1800 to S1810, respectively.
- the wireless power transmission apparatus since the wireless power transmission apparatus is the initiator of the ripping, instead of sending a request to start the ripping to the wireless power receiving apparatus as in step S1815, it notifies the start of ripping in a bit pattern (S2015).
- the wireless power transmission apparatus transmits the ripping start packet to the wireless power receiving apparatus (S2020), and can unilaterally enter the ripping step (S2025).
- the ripping start packet in step S2020 includes, for example, a 1-byte (8-bit) packet structure including a 2-bit first field for indicating whether to perform ripping and a 2-bit second field for indicating a ripping delay time Lt; / RTI >
- a 1-byte (8-bit) packet structure including a 2-bit first field for indicating whether to perform ripping and a 2-bit second field for indicating a ripping delay time Lt; / RTI >
- the number of bits included in the first field and the second field can be variously modified.
- Steps S2025 to S2035 are the same as steps S1825 to S1835, respectively.
- the wireless power transmission apparatus in the embodiment according to FIG. 20 corresponds to the wireless power transmission apparatus or the wireless power transmitter or the power transmission unit disclosed in FIG. 1 to FIG. Accordingly, the operation of the wireless power transmission apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power transmission apparatus in Figs.
- the operation of transmitting wireless power to the wireless power reception apparatus in the power transmission step according to step S2000 may be performed by the power conversion unit 110. [ The operation for receiving the RPP, CEP, etc.
- step S2005 the operation for detecting the coupling change event according to step S2015, the operation for generating and transmitting the ripping start instruction according to step S2015, the transmission of the ripping start packet according to step S2020
- the operation to perform the ripping according to S2025, the operation to perform the subsequent correction according to the step S2030, and the operation to perform the FOD according to the step S2035 may be performed by the communication / control unit 120.
- the wireless power receiving apparatus in the embodiment according to FIG. 20 corresponds to the wireless power receiving apparatus or the wireless power receiving apparatus or the power receiving unit disclosed in FIG. 1 to FIG. Therefore, the operation of the wireless power receiving apparatus in this embodiment is implemented by one or a combination of two or more components of the wireless power receiving apparatus in Figs.
- the operation of receiving the wireless power from the wireless power transmission apparatus in the power transmission step according to step S2000 may be performed by the power pickup unit 210.
- an operation of generating and transmitting a packet such as RPP and CEP according to step S2005, an operation of detecting a coupling change event in step S2015, an operation of receiving a ripping start instruction in step S2015, The operation of receiving the start packet, performing the ripping in accordance with S2025, and performing the subsequent correction according to step S2030 may be performed by the communication / control unit 220.
- Subsequent correction according to the embodiment of step S1840 or step S2030 may be performed each time a coupling change event occurs during the power transfer phase. For example, every time a coupling change event occurs, the wireless power transmission device and the wireless power reception device may perform subsequent correction according to the embodiment of step S1840 or step S2030.
- the wireless power transmitting method and apparatus, or receiving apparatus and method according to the above-described embodiments of the present invention are not essential to all the elements or steps, the wireless power transmitting apparatus and method, or the receiving apparatus and method, Or a part or all of the steps. Further, the above-described embodiments of the wireless power transmitting apparatus and method, or the receiving apparatus and method may be performed in combination with each other. It is also possible that each element or step described above does not necessarily have to be performed in the order described, and that the steps described later may be performed prior to the steps previously described.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
본 발명은 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법에 관한 것이다. 이러한 본 명세서는 전력 전송 페이즈에서, 자기 커플링에 기반하여 생성된 무선전력을 무선전력 수신장치로 전송하도록 구성된 전력 변환 유닛, 및 상기 전력 전송 페이즈 이전에 전력 파라미터에 대한 초기 보정을 수행하고, 상기 전력 전송 페이즈 동안에 상기 무선전력 수신장치에 의해 수신된 전력을 지시하는 제1 수신전력패킷을 상기 무선전력 수신장치로부터 수신하며, 상기 수신된 전력과 상기 초기 보정에 기반하여 결정된 제1 전력 손실을 이용하여 이물질 검출을 수행하도록 구성된 통신/컨트롤 유닛을 포함하는 무선전력 전송장치를 제공한다. 새롭게 변화된 무선 충전 환경에 적응적으로 반응하여 전송 전력과 수신 전력을 보정하고, 이에 기반하여 전력 손실을 감지함으로써 보다 정교한 이물질 검출이 가능해진다.
Description
본 발명은 무선충전에 관한 것으로서, 보다 상세하게는 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법에 관한 것이다.
무선 전력 전송 기술은 전원 소스와 전자 기기 사이에 무선으로 전력을 전달하는 기술이다. 일 예로 무선 전력 전송 기술은 스마트폰이나 태블릿 등의 무선 단말기를 단지 무선 충전 패드 상에 올려놓는 것만으로 무선 단말기의 배터리를 충전할 수 있도록 함으로써, 기존의 유선 충전 커넥터를 이용하는 유선 충전 환경에 비해 보다 뛰어난 이동성과 편의성 그리고 안전성을 제공할 수 있다. 무선 전력 전송 기술은 무선 단말기의 무선 충전 이외에도, 전기 자동차, 블루투스 이어폰이나 3D 안경 등 각종 웨어러블 디바이스(wearable device), 가전기기, 가구, 지중시설물, 건물, 의료기기, 로봇, 레저 등의 다양한 분야에서 기존의 유선 전력 전송 환경을 대체할 것으로 주목받고 있다.
무선전력 전송방식을 비접촉(contactless) 전력 전송방식 또는 무접점(no point of contact) 전력 전송방식, 무선충전(wireless charging) 방식이라 하기도 한다. 무선전력 전송 시스템은, 무선전력 전송방식으로 전기에너지를 공급하는 무선전력 전송장치와, 상기 무선전력 전송장치로부터 무선으로 공급되는 전기에너지를 수신하여 배터리셀등 수전장치에 전력을 공급하는 무선전력 수신장치로 구성될 수 있다.
무선 전력 전송 기술은 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식 등 다양하다. 자기 커플링에 기반한 방식은 다시 자기 유도(magnetic induction) 방식과 자기 공진(magnetic resonance) 방식으로 분류된다. 자기유도 방식은 전송 측의 코일과 수신 측의 코일 간의 전자기결합에 따라 전송 측 코일배터리셀에서 발생시킨 자기장로 인해 수신 측 코일에 유도되는 전류를 이용하여 에너지를 전송하는 방식이다. 자기공진 방식은 자기장을 이용한다는 점에서 자기유도 방식과 유사하다. 하지만, 자기공진 방식은 전송 측의 코일과 수신 측의 코일에 특정 공진 주파수가 인가될 때 공진이 발생하고, 이로 인해 전송 측과 수신 측 양단에 자기장이 집중되는 현상에 의해 에너지가 전달되는 측면에서 자기유도와는 차이가 있다.
무선전력 전송장치와 무선전력 수신장치는 그 내부에 여러가지 회로 부품들로 구성되어 있고 서로 독립적인 장치를 구성하지만, 이들간에 자기 커플링에 의해 무선전력 전송이 이루어지므로 무선전력 전송장치와 무선전력 수신장치는 하나의 무선전력 전송 시스템을 구성한다. 그런데 무선전력 전송 시스템의 고유한 물리적 특성 뿐만 아니라, Tx와 Rx의 실제 사용 환경(무선전력 전송 시스템에 인가되는 신호의 크기, 주파수, 듀티 사이클, Tx와 Rx간의 거리/위치 정렬 등)에 따른 자기 커플링의 변화로 인해 전송 전력과 수신 전력에 오차가 발생할 수 있다. 이러한 오차는 정교한 이물질 검출에 장해요소가 될 수 있다.
따라서, 무선전력 전송 시스템의 고유한 특성과 실제 사용 환경의 변화를 반영하여 전송 전력과 수신 전력을 보정하고, 이를 토대로 보다 정교한 FOD를 수행하는 방법이 요구된다.
본 발명의 기술적 과제는 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법을 제공함에 있다.
본 발명의 다른 기술적 과제는 부하 변화에 적응적으로 전력을 보정하고, 이물질 검출을 수행하는 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 기술적 과제는 무선전력 전송장치와 무선전력 수신장치 간의 자기 커플링 변화에 적응적으로 전력을 보정하고, 이물질 검출을 수행하는 장치 및 방법을 제공함에 있다.
본 발명의 일 양태에 따르면, 전력 전송 페이즈(power transfer phase)에서, 자기 커플링(magnetic coupling)에 기반하여 생성된 무선전력을 무선전력 수신장치로 전송하도록 구성된 전력 변환 유닛(power conversion unit), 및 상기 전력 전송 페이즈 이전에 전력 파라미터(power parameter)에 대한 초기 보정(initial calibration)을 수행하고, 상기 전력 전송 페이즈 동안에 상기 무선전력 수신장치에 의해 수신된 전력을 지시하는 제1 수신전력패킷(received power packet)을 상기 무선전력 수신장치로부터 수신하며, 상기 수신된 전력과 상기 초기 보정에 기반하여 결정된 제1 전력 손실(power loss)를 이용하여 이물질(foreign object) 검출을 수행하도록 구성된 통신/컨트롤 유닛(communication/control unit)을 포함하는 무선전력 전송장치를 제공한다.
여기서, 상기 통신/컨트롤 유닛은 상기 전력 파라미터에 대한 후속 보정(subsequent calibration)을 수행하고, 상기 후속 보정에 기반하여 결정된 제2 전력 손실을 이용하여 이물질 검출을 수행하도록 구성될 수 있다.
일 측면에서, 상기 통신/컨트롤 유닛은 상기 전력 전송 페이즈 동안에 제2 수신전력패킷을 상기 무선전력 수신장치로부터 수신하되, 상기 제1 수신전력패킷은 상기 제1 수신전력패킷이 지시하는 제1 수신 전력값이 일반 값임을 지시하는 제1 모드 필드를 포함하고, 상기 제2 수신전력패킷은 상기 제2 수신전력패킷이 지시하는 수신 전력값이 연결부하(connected load) 상태에서의 제2 수신 전력값임을 지시하는 제2 모드 필드를 포함할 수 있다.
다른 측면에서, 상기 전력 전송 페이즈 이전의 전력 파라미터는 상기 무선전력 수신장치에 부하가 연결되지 않은 조건하에서 상기 무선전력 수신장치가 수신한 경부하(light load) 수신 전력값(received power value), 상기 무선전력 수신장치에 상기 부하가 연결된 조건하에서 상기 무선전력 수신장치가 수신한 연결부하(connected load) 수신 전력값을 포함하고, 상기 전력 전송 페이즈 동안의 전력 파라미터는 상기 제2 수신 전력값을 포함하며, 상기 통신/컨트롤 유닛은 상기 경부하 수신전력값, 상기 연결부하 수신전력값 및 상기 제2 수신 전력값에 기반하여 상기 후속 보정을 수행할 수 있다.
또 다른 측면에서, 상기 통신/컨트롤 유닛은 상기 자기 커플링이 일정 수준 이상으로 변경되는지 판단하고, 만약 상기 자기 커플링이 일정 수준 이상으로 변경되면, 상기 통신/컨트롤 유닛은 리핑(re-ping)의 개시를 요청하는 비트 패턴(bit pattern)을 상기 무선전력 수신장치로 전송할 수 있다.
또 다른 측면에서, 상기 비트 패턴에 대한 응답으로, 상기 통신/컨트롤 유닛은 리핑 개시 패킷을 상기 무선전력 수신장치로부터 수신할 수 있다.
또 다른 측면에서, 상기 리핑 개시 패킷은 리핑의 개시를 위한 전력 전송 종료(end power transfer: EPT) 패킷을 포함할 수 있다.
또 다른 측면에서, 상기 통신/컨트롤 유닛은 상기 리핑 개시 패킷에 기반하여 리핑 단계로 진입하고, 상기 리핑 단계에서 상기 초기 보정을 다시 수행할 수 있다.
본 발명의 다른 양태에 따르면, 전력 전송 페이즈(power transfer phase)에서, 자기 커플링(magnetic coupling)에 기반하여 생성된 무선전력을 무선전력 전송장치로부터 수신하도록 구성된 전력 픽업 유닛(power pickup unit), 및 상기 전력 전송 페이즈 이전에 전력 파라미터(power parameter)에 대한 초기 보정(initial calibration)을 수행하고, 상기 전력 전송 페이즈 동안에 상기 무선전력 전송장치로부터 수신된 전력을 지시하는 제1 수신전력패킷(received power packet)을 상기 무선전력 전송장치로 전송하도록 구성된 통신/컨트롤 유닛(communication/control unit)을 포함하는 무선전력 수신장치를 제공한다.
여기서, 상기 통신/컨트롤 유닛은 상기 전력 파라미터에 대한 후속 보정(subsequent calibration)을 수행하도록 구성될 수 있다.
일 측면에서, 상기 통신/컨트롤 유닛은 상기 전력 전송 페이즈 동안에 제2 수신전력패킷을 상기 무선전력 전송장치로 전송하되, 상기 제1 수신전력패킷은 상기 제1 수신전력패킷이 지시하는 제1 수신 전력값이 일반 값임을 지시하는 제1 모드 필드를 포함하고, 상기 제2 수신전력패킷은 상기 제2 수신전력패킷이 지시하는 수신 전력값이 연결부하(connected load) 상태에서의 제2 수신 전력값임을 지시하는 제2 모드 필드를 포함할 수 있다.
다른 측면에서, 상기 전력 전송 페이즈 이전의 전력 파라미터는 상기 무선전력 수신장치에 부하가 연결되지 않은 조건하에서 상기 무선전력 수신장치가 수신한 경부하(light load) 수신 전력값(received power value), 상기 무선전력 수신장치에 상기 부하가 연결된 조건하에서 상기 무선전력 수신장치가 수신한 연결부하(connected load) 수신 전력값을 포함하고, 상기 전력 전송 페이즈 동안의 전력 파라미터는 상기 제2 수신 전력값을 포함할 수 있다.
또 다른 측면에서, 상기 자기 커플링이 일정 수준 이상으로 변경되면, 상기 통신/컨트롤 유닛은 리핑(re-ping)의 개시를 요청하는 비트 패턴(bit pattern)을 상기 무선전력 전송장치로부터 수신할 수 있다.
또 다른 측면에서, 상기 비트 패턴에 대한 응답으로, 상기 통신/컨트롤 유닛은 리핑 개시 패킷을 상기 무선전력 전송장치로 전송할 수 있다.
또 다른 측면에서, 상기 리핑 개시 패킷은 리핑의 개시를 위한 전력 전송 종료(end power transfer: EPT) 패킷을 포함할 수 있다.
또 다른 측면에서, 상기 통신/컨트롤 유닛은 상기 리핑 개시 패킷에 기반하여 리핑 단계로 진입하고, 상기 리핑 단계에서 상기 초기 보정을 다시 수행할 수 있다.
본 발명의 또 다른 양태에 따르면, 전력 전송 페이즈(power transfer phase) 이전에 전력 파라미터(power parameter)에 대한 초기 보정(initial calibration)을 수행하는 단계, 상기 전력 전송 페이즈에서, 자기 커플링(magnetic coupling)에 기반하여 생성된 무선전력을 무선전력 수신장치로 전송하는 단계, 상기 전력 전송 페이즈 동안에 상기 무선전력 수신장치에 의해 수신된 전력을 지시하는 제1 수신전력패킷(received power packet)을 상기 무선전력 수신장치로부터 수신하는 단계, 상기 수신된 전력과 상기 초기 보정에 기반하여 결정된 제1 전력 손실(power loss)를 이용하여 이물질(foreign object) 검출을 수행하는 단계, 상기 전력 파라미터에 대한 후속 보정(subsequent calibration)을 수행하는 단계, 및 상기 후속 보정에 기반하여 결정된 제2 전력 손실을 이용하여 이물질 검출을 수행하는 단계를 포함하는 전력 보정 방법을 제공한다.
일 다른 측면에서, 상기 방법은 상기 전력 전송 페이즈 동안에 제2 수신전력패킷을 상기 무선전력 수신장치로부터 수신하는 단계를 더 포함하되, 상기 제1 수신전력패킷은 상기 제1 수신전력패킷이 지시하는 제1 수신 전력값이 일반 값임을 지시하는 제1 모드 필드를 포함하고, 상기 제2 수신전력패킷은 상기 제2 수신전력패킷이 지시하는 수신 전력값이 연결부하(connected load) 상태에서의 제2 수신 전력값임을 지시하는 제2 모드 필드를 포함할 수 있다.
다른 측면에서, 상기 전력 전송 페이즈 이전의 전력 파라미터는 상기 무선전력 수신장치에 부하가 연결되지 않은 조건하에서 상기 무선전력 수신장치가 수신한 경부하(light load) 수신 전력값(received power value), 상기 무선전력 수신장치에 상기 부하가 연결된 조건하에서 상기 무선전력 수신장치가 수신한 연결부하(connected load) 수신 전력값을 포함하고, 상기 전력 전송 페이즈 동안의 전력 파라미터는 상기 제2 수신 전력값을 포함하며, 상기 후속 보정은 상기 경부하 수신전력값, 상기 연결부하 수신전력값 및 상기 제2 수신 전력값에 기반하여 수행될 수 있다.
또 다른 측면에서, 만약 상기 자기 커플링이 일정 수준 이상으로 변경되면, 상기 통신/컨트롤 유닛은 리핑(re-ping)의 개시를 요청하는 비트 패턴(bit pattern)을 상기 무선전력 수신장치로 전송하는 단계를 더 포함할 수 있다.
새롭게 변화된 무선 충전 환경에 적응적으로 반응하여 전송 전력과 수신 전력을 보정하고, 이에 기반하여 전력 손실을 감지함으로써 보다 정교한 이물질 검출이 가능해진다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 2는 다른 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 3은 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 4는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다.
도 9는 일 실시예에 따른 통신 프레임 구조를 나타낸다.
도 10은 일 실시예에 따른 싱크 패턴의 구조이다.
도 11은 일 실시예에 따른 쉐어드 모드에서 무선 전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시하였다.
도 12는 일 실시예에 따른 전력의 보정 방법과 FOD 수행 방법을 도시한 순서도이다.
도 13은 일 실시예에 따른 수신전력패킷을 도시한 것이다.
도 14는 일 실시예에 따라 선형 보간에 기반하여 도시한 보정 커브(calibration curve)이다.
도 15는 부하 증가 이벤트에 따른 전력 보정 방법을 도시한 흐름도이다.
도 16은 일 실시예에 따른 무선전력 전송장치의 후속 보정 방법을 설명하는 순서도이다.
도 17은 일 실시예에 따라 선형 보간에 기반하여 도시한 확장된(extended) 보정 커브(calibration curve)이다.
도 18은 일 실시예에 따른 커플링 변경 이벤트에 기반한 전력 보정 방법을 도시한 흐름도이다.
도 19는 일 실시예에 따른 리핑의 개시를 위한 EPT 패킷을 도시한 구조도이다.
도 20은 다른 실시예에 따른 커플링 변경 이벤트에 기반한 전력 보정 방법을 도시한 흐름도이다.
이하에서 사용되는 "무선 전력" 이라는 용어는, 물리적인 전자기 전도체들의 사용없이 무선전력 전송기(wireless power transmitter)로부터 무선전력 수신장치(wireless power receiver)로 전달되는 전기장, 자기장, 전자기장 등과 관련된 임의의 형태의 에너지를 의미하도록 사용된다. 무선전력은 무선 전력 신호(wireless power signal)이라고 불릴 수도 있으며, 1차 코일과 2차 코일에 의해 둘러싸이는(enclosed) 진동하는 자속(oscillating magnetic flux)을 의미할 수 있다. 예를 들어, 이동 전화기, 코드리스 전화기, iPod, MP3 플레이어, 헤드셋 등을 포함하는 디바이스들을 무선으로 충전하기 위해 시스템에서의 전력 변환이 여기에 설명된다. 일반적으로, 무선 전력 전송의 기본적인 원리는, 예를 들어, 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식을 모두 포함한다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 1을 참조하면, 무선 전력 시스템(10)은 무선 전력 전송 장치(wireless power transmitter, 100)와 무선 전력 수신 장치(wireless power receiver, 200)를 포함한다.
무선 전력 전송 장치(100)는 외부의 전원 소스(S)로부터 전원을 인가받아 자기장을 발생시킨다. 무선 전력 수신 장치(200)는 발생된 자기장을 이용하여 전류를 발생시켜 무선으로 전력을 수신받는다.
또한, 무선 전력 시스템(10)에서 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)는 무선 전력 전송에 필요한 다양한 정보를 송수신할 수 있다. 여기서, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)간의 통신은 무선 전력 전송에 이용되는 자기장을 이용하는 인-밴드 통신(in-band communication)이나 별도의 통신 캐리어를 이용하는 아웃-밴드 통신(out-band communication) 중 어느 하나의 방식에 따라 수행될 수 있다.
여기서, 무선 전력 전송 장치(100)는 고정형 또는 이동형으로 제공될 수 있다. 고정형의 예로는 실내의 천장이나 벽면 또는 테이블 등의 가구에 임베디드(embedded)되는 형태, 실외의 주차장, 버스 정류장이나 지하철역 등에 임플란트 형식으로 설치되는 형태나 차량이나 기차 등의 운송 수단에 설치되는 형태 등이 있다. 이동형인 무선 전력 전송 장치(100)는 이동 가능한 무게나 크기의 이동형 장치나 노트북 컴퓨터의 덮개 등과 같이 다른 장치의 일부로 구현될 수 있다.
또 무선 전력 수신 장치(200)는 배터리를 구비하는 각종 전자 기기 및 전원 케이블 대신 무선으로 전원을 공급받아 구동되는 각종 가전 기기를 포함하는 포괄적인 개념으로 해석되어야 한다. 무선 전력 수신 장치(200)의 대표적인 예로는, 이동 단말기(portable terminal), 휴대 전화기(cellular phone), 스마트폰(smart phone), 개인 정보 단말기(PDA: Personal Digital Assistant), 휴대 미디어 플레이어(PMP: Portable Media Player), 와이브로 단말기(Wibro terminal), 태블릿(tablet), 패블릿(pablet), 노트북(notebook), 디지털 카메라, 네비게이션 단말기, 텔레비전, 전기차량(EV: Electronic Vehicle) 등이 있다.
무선 전력 시스템(100)에서 무선 전력 수신 장치(200)는 하나 또는 복수일 수 있다. 도 1에서는 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)가 일대일로 전력을 주고 받는 것으로 표현되고 있으나, 도 2와 같이 하나의 무선 전력 전송 장치(100)가 복수의 무선 전력 수신 장치(200-1, 200-2,..., 200-M)로 전력을 전달하는 것도 가능하다. 특히, 자기 공진 방식으로 무선 전력 전송을 수행하는 경우에는 하나의 무선 전력 전송 장치(100)가 동시 전송 방식이나 시분할 전송 방식을 응용하여 동시에 여러 대의 무선 전력 수신 장치(200-1, 200-2,...,200-M)로 전력을 전달할 수 있다.
또한, 도 1에는 무선 전력 전송 장치(100)가 무선 전력 수신 장치(200)에 바로 전력을 전달하는 모습이 도시되어 있으나, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200) 사이에 무선전력 전송 거리를 증대시키기 위한 릴레이(relay) 또는 중계기(repeater)와 같은 별도의 무선 전력 송수신 장치가 구비될 수 있다. 이 경우, 무선 전력 전송 장치(100)로부터 무선 전력 송수신 장치로 전력이 전달되고, 무선 전력 송수신 장치가 다시 무선 전력 수신 장치(200)로 전력을 전달할 수 있다.
이하 본 명세서에서 언급되는 무선전력 수신기, 전력 수신기, 수신기는 무선 전력 수신 장치(200)를 지칭한다. 또한 본 명세서에서 언급되는 무선전력 전송기, 전력 전송기, 전송기는 무선 전력 수신 전송 장치(100)를 지칭한다.
도 3은 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3에는 무선 전력 전송 시스템에서 송신 및 수신하는 전력 양에 따라 전자 기기들을 분류하여 도시하였다. 도 3을 참조하면, 스마트 시계(Smart watch), 스마트 글래스(Smart Glass), HMD(Head Mounted Display), 및 스마트 링(Smart ring)과 같은 웨어러블 기기들 및 이어폰, 리모콘, 스마트폰, PDA, 태블릿 PC 등의 모바일 전자 기기들(또는 포터블 전자 기기들)에는 소전력(약 5W이하 또는 약 20W 이하) 무선 충전 방식이 적용될 수 있다.
노트북, 로봇 청소기, TV, 음향 기기, 청소기, 모니터와 같은 중/소형 가전 기기들에는 중전력(약 50W이하 또는 약 200W)이하) 무선 충전 방식이 적용될 수 있다. 믹서기, 전자 레인지, 전기 밥솥과 같은 주방용 가전 기기, 휠체어, 전기 킥보드, 전기 자전거, 전기 자동차 등의 개인용 이동 기기들(또는, 전자 기기/이동 수단들)은 대전력(약 2kW 이하 또는 22kW이하) 무선 충전 방식이 적용될 수 있다.
상술한(또는 도 1에 도시된) 전자 기기들/이동 수단들은 후술하는 무선 전력 수신기를 각각 포함할 수 있다. 따라서, 상술한 전자 기기들/이동 수단들은 무선 전력 송신기로부터 무선으로 전력을 수신하여 충전될 수 있다.
이하에서는 전력 무선 충전 방식이 적용되는 모바일 기기를 중심으로 설명하나 이는 실시예에 불과하며, 본 발명에 따른 무선 충전 방법은 상술한 다양한 전자 기기에 적용될 수 있다.
무선전력 전송장치 및 수신장치들은 매우 편리한 사용자 경험과 인터페이스(UX/UI)를 제공할 수 있다. 즉, 스마트 무선충전 서비스가 제공될 수 있다, 스마트 무선충전 서비스는 무선전력 전송장치를 포함하는 스마트폰의 UX/UI에 기초하여 구현될 수 있다. 이러한 어플리케이션을 위해, 스마트폰의 프로세서와 무선충전 수신장치간의 인터페이스는 무선전력 전송장치와 수신장치간의 "드롭 앤 플레이(drop and play)" 양방향 통신을 허용한다.
일례로서, 사용자는 호텔에서 스마트 무선 충전 서비스를 경험할 수 있다. 사용자가 호텔 방으로 입장하고 방안의 무선충전기 위에 스마트폰을 올려놓으면, 무선충전기는 스마트폰으로 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이 과정에서, 무선충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 부가적 특징으로의 동의(opt-in)를 문의하는 상태로 진입한다. 이를 위해, 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Welcome to ### hotel. Select “Yes” to activate smart charging functions : Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 그리고 스마트폰과 무선충전기는 스마트 충전 기능을 함께 수행한다.
스마트 무선 충전 서비스는 또한 WiFi 자격(wifi credentials) 자동 입력(auto-filled)을 수신하는 것을 포함할 수 있다. 예를 들어, 무선충전기는 WiFi 자격을 스마트폰으로 전송하고, 스마트폰은 적절한 앱을 실행하여 무선충전기로부터 수신된 WiFi 자격을 자동적으로 입력한다.
스마트 무선 충전 서비스는 또한 호텔 프로모션을 제공하는 호텔 어플리케이션을 실행하거나, 원격 체크인/체크아웃 및 컨택 정보들을 획득하는 것을 포함할 수 있다.
다른 예로서, 사용자는 차량 내에서 스마트 무선 충전 서비스를 경험할 수 있다. 사용자가 차량에 탑승하고 스마트폰을 무선충전기 위에 올려놓으면, 무선충전기는 스마트폰에 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이러한 과정에서, 무선 충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 신분(identity)를 확인을 문의하는 상태로 진입한다.
이 상태에서, 스마트폰은 WiFi 및/또는 블루투스를 통해 자동적으로 자동차와 연결된다. 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Welcome to your car. Select “Yes” to synch device with in-car controls : Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 그리고 스마트폰과 무선충전기는 차량내 어플리케이션/디스플레이 소프트웨어를 구동함으로서, 차량 내 스마트 제어 기능을 함께 수행할 수 있다. 사용자는 원하는 음악을 즐길 수 있고, 정규적인 맵 위치를 확인할 수 있다. 차량 내 어플리케이션/디스플레이 소프트웨어는 통행자들을 위한 동기화 접근을 제공하는 성능을 포함할 수 있다.
또 다른 예로서, 사용자는 스마트 무선 충전을 댁내에서 경험할 수 있다. 사용자가 방으로 들어가서 방안의 무선충전기 위에 스마트폰을 올려놓으면, 무선충전기는 스마트폰으로 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이 과정에서, 무선충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 부가적 특징으로의 동의(opt-in)를 문의하는 상태로 진입한다. 이를 위해, 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Hi xxx, Would you like to activate night mode and secure the building?: Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 스마트폰과 무선 충전기는 적어도 사용자의 패턴을 인지하고 사용자에게 문과 창문을 잠그거나 불을 끄거나, 알람을 설정하도록 권유할 수 있다.
무선전력 전송에 관한 표준(standard)은 WPC(wireless power consortium), AFA(air fuel alliance), PMA(power matters alliance)을 포함한다.
WPC 표준은 기본 전력 프로파일(baseline power profile: BPP)과 확장 전력 프로파일(extended power profile: EPP)을 정의한다. BPP는 5W의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이고, EPP는 5W보다 크고 30W보다 작은 범위의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이다.
서로 다른 전력레벨(power level)을 사용하는 다양한 무선전력 전송장치와 수신장치들이 각 표준별로 커버되고, 서로 다른 전력 클래스(power class) 또는 카테고리로 분류될 수 있다.
예를 들어, WPC는 무선전력 전송장치와 수신장치를 전력 클래스(power class :PC) -1, PC0, PC1, PC2로 분류하고, 각 PC에 대한 표준문서를 제공한다. PC-1 표준은 5W 미만의 보장전력(guaranteed power)을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC-1의 어플리케이션은 스마트 시계와 같은 웨어러블 기기를 포함한다.
PC0 표준은 5W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC0 표준은 보장전력이 30W까지인 EPP를 포함한다. 인-밴드(in-band :IB) 통신이 PC0의 필수적인(mandatory) 통신 프로토콜이나, 옵션의 백업 채널로 사용되는 아웃-오브-밴드(out-of-band : OBB) 통신도 사용될 수 있다. 무선전력 수신장치는 OOB의 지원 여부를 구성 패킷(configuration packe)내의 OOB 플래그를 설정함으로써 식별할 수 있다. OOB를 지원하는 무선전력 전송장치는 상기 구성 패킷에 대한 응답으로서, OOB 핸드오버를 위한 비트패턴(bit-pattern)을 전송함으로써 OOB 핸드오버 페이즈(handover phase)로 진입할 수 있다. 상기 구성 패킷에 대한 응답은 NAK, ND 또는 새롭게 정의되는 8비트의 패턴일 수 있다. PC0의 어플리케이션은 스마트폰을 포함한다.
PC1 표준은 30W~150W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. OOB는 PC1을 위한 필수적인 통신 채널이며, IB는 OOB로의 초기화 및 링크 수립(link establishment)로서 사용된다. 무선전력 전송장치는 구성 패킷에 대한 응답으로서, OOB 핸드오버를 위한 비트패턴을 OOB 핸드오버 페이즈로 진입할 수 있다. PC1의 어플리케이션은 랩탑이나 전동 공구(power tool)을 포함한다.
PC2 표준은 200W~2kW의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것으로서, 그 어플리케이션은 주방가전을 포함한다.
이렇듯 전력 레벨에 따라 PC가 구별될 수 있으며, 동일한 PC간 호환성(compatibility)을 지원할지 여부는 선택 또는 필수 사항일 수 있다. 여기서 동일한 PC간 호환성은, 동일한 PC 간에는 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 동일한 PC x를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 동일한 PC간 호환성이 유지되는 것으로 볼 수 있다. 이와 유사하게 서로 다른 PC간의 호환성 역시 지원 가능할 수 있다. 여기서 서로 다른 PC간 호환성은, 서로 다른 PC 간에도 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 PC y를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 서로 다른 PC간 호환성이 유지되는 것으로 볼 수 있다.
PC간 호환성의 지원은 사용자 경험(User Experience) 및 인프라 구축 측면에서 매우 중요한 이슈이다. 다만, PC간 호환성 유지에는 기술적으로 아래와 같은 여러 문제점이 존재한다.
동일한 PC간 호환성의 경우, 예를 들어, 연속적으로 전력이 전송되는 경우에만 안정적으로 충전이 가능한 랩-탑 충전(lap-top charging) 방식의 무선 전력 수신장치는, 동일한 PC의 무선 전력 송신장치라 하더라도, 불연속적으로 전력을 전송하는 전동 툴 방식의 무선 전력 송신장치로부터 전력을 안정적으로 공급받는 데 문제가 있을 수 있다. 또한, 서로 다른 PC간 호환성의 경우, 예를 들어, 최소 보장 전력이 200W인 무선 전력 송신장치는 최대 보장 전력이 5W인 무선 전력 수신장치로 전력을 송신하는 경우, 과전압으로 인해 무선전력 수신장치가 파손될 위험이 있다. 그 결과, PC는 호환성을 대표/지시하는 지표/기준으로 삼기 어렵다.
이하에서는 호환성을 대표/지시하는 지표/기준으로 '프로필(profile)'을 새롭게 정의하기로 한다. 즉, 동일한 '프로필'을 갖는 무선 전력 송수신 장치간에는 호환성이 유지되어 안정적인 전력 송수신이 가능하며, 서로 다른 '프로필'을 갖는 무선 전력 송수신장치간에는 전력 송수신이 불가한 것으로 해석될 수 있다. 프로필은 전력 클래스와 무관하게(또는 독립적으로) 호환 가능 여부 및/또는 어플리케이션에 따라 정의될 수 있다.
예를 들어, 프로필은 크게 i) 모바일, ii) 전동 툴, iii) 주방 및 iv) 웨어러블 이렇게 4가지로 구분될 수 있다.
'모바일' 프로필의 경우, PC는 PC0 및/또는 PC1, 통신 프로토콜/방식은 IB 및 OOB, 동작 주파수는 87~205kHz로 정의될 수 있으며, 어플리케이션의 예시로는 스마트폰, 랩-탑 등이 존재할 수 있다.
'전동 툴' 프로필의 경우, PC는 PC1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~145kHz로 정의될 수 있으며, 어플리케이션의 예시로는 전동 툴 등이 존재할 수 있다.
'주방' 프로필의 경우, PC는 PC2, 통신 프로토콜/방식은 NFC-기반, 동작 주파수는 100kHz 미만으로 정의될 수 있으며, 어플리케이션의 예시로는 주방/가전 기기 등이 존재할 수 있다.
'웨어러블' 프로필의 경우, PC는 PC-1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~205kHz으로 정의될 수 있으며, 어플리케이션의 예시로는 사용자 몸에 착용하는 웨어러블 기기 등이 존재할 수 있다.
동일한 프로필간에는 호환성 유지는 필수 사항일 수 있으며, 다른 프로필간의 호환성 유지는 선택 사항일 수 있다.
상술한 프로필(모바일 프로필, 전동 툴 프로필, 주방 프로필 및 웨어러블 프로필)들은 제1 내지 제n 프로필로 일반화되어 표현될 수 있으며, WPC 규격 및 실시예에 따라 새로운 프로필이 추가/대체될 수 있다.
이와 같이 프로필이 정의되는 경우, 무선 전력 전송장치가 자신과 동일한 프로필의 무선 전력 수신장치에 대해서만 선택적으로 전력 송신을 수행하여 보다 안정적으로 전력 송신이 가능하다. 또한 무선 전력 전송장치의 부담이 줄어들고, 호환이 불가능한 무선 전력 수신장치로의 전력 송신을 시도하지 않게 되므로 무선 전력 수신장치의 파손 위험이 줄어든다는 효과가 발생한다.
'모바일' 프로필 내의 PC1은 PC0를 기반으로 OOB와 같은 선택적 확장을 차용함으로써 정의될 수 있으며, '전동 툴' 프로필의 경우, PC1 '모바일' 프로필이 단순히 변경된 버전으로서 정의될 수 있다. 또한, 현재까지는 동일한 프로필간의 호환성 유지를 목적으로 정의되었으나, 추후에는 서로 다른 프로필간의 호환성 유지 방향으로 기술이 발전될 수 있다. 무선 전력 전송장치 또는 무선 전력 수신장치는 다양한 방식을 통해 자신의 프로필을 상대방에게 알려줄 수 있다.
AFA 표준은 무선 전력 전송장치를 PTU(power transmitting unit)이라 칭하고, 무선 전력 수신장치를 PRU(power receiving unit)이라 칭하며, PTU는 표 1과 같이 다수의 클래스로 분류되고, PRU는 표 2와 같이 다수의 카테고리로 분류된다.
PTX_IN_MAX | 최소 카테고리 지원 요구사항 | 지원되는 최대 기기 개수를 위한 최소값 | |
Class 1 | 2W | 1x 카테고리 1 | 1x 카테고리 1 |
Class 2 | 10W | 1x 카테고리 3 | 2x 카테고리 2 |
Class 3 | 16W | 1x 카테고리 4 | 2x 카테고리 3 |
Class 4 | 33W | 1x 카테고리 5 | 3x 카테고리 3 |
Class 5 | 50W | 1x 카테고리 6 | 4x 카테고리 3 |
Class 6 | 70W | 1x 카테고리 7 | 5x 카테고리 3 |
PRU | PRX_OUT_MAX' | 예시 어플리케이션 |
Category 1 | TBD | 블루투스 헤드셋 |
Category 2 | 3.5W | 피쳐폰 |
Category 3 | 6.5W | 스마트폰 |
Category 4 | 13W | 태블릿, 패플릿 |
Category 5 | 25W | 작은 폼팩터 랩탑 |
Category 6 | 37.5W | 일반 랩탑 |
Category 7 | 50W | 가전 |
표 1에서와 같이, 클래스 n PTU의 최대 출력 전력 성능(capability)은 해당 클래스의 PTX_IN_MAX 값보다 크거나 같다. PRU는 해당 카테고리에서 명세된(specified) 전력보다 더 큰 전력을 끌어당길(draw) 수는 없다. 도 4는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4를 참조하면, 무선 전력 전송 시스템(10)은 무선으로 전력을 수신하는 모바일 기기(Mobile Device)(450) 및 무선으로 전력을 송신하는 베이스 스테이션(Base Station)(400)을 포함한다.
베이스 스테이션(400)은 유도 전력 또는 공진 전력을 제공하는 장치로서, 적어도 하나의 무선 전력 전송장치(power transmitter, 100) 및 시스템 유닛(405)을 포함할 수 있다. 무선 전력 전송장치(100)는 유도 전력 또는 공진 전력을 전송하고, 전송을 제어할 수 있다. 무선 전력 전송장치(100)는, 1차 코일(primary coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환하는 전력 변환 유닛(power conversion unit, 110) 및 적절한 레벨로 전력을 전달하도록 무선 전력 수신장치(200)와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 유닛(communications & control unit, 120)을 포함할 수 있다. 시스템 유닛(405)은 입력 전력 프로비저닝(provisioning), 복수의 무선전력 전송장치들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션(100)의 기타 동작 제어를 수행할 수 있다.
1차 코일은 교류 전력(또는 전압 또는 전류)을 이용하여 전자기장을 발생시킬 수 있다. 1차 코일은 전력 변환 유닛(110)에서 출력되는 특정 주파수의 교류전력(또는 전압 또는 전류)을 인가받고, 이에 따라 특정 주파수의 자기장을 발생시킬 수 있다. 자기장은 비방사형 또는 방사형으로 발생할 수 있는데, 무선 전력 수신 장치(200)는 이를 수신하여 전류를 생성하게 된다. 다시 말해 1차 코일은 무선으로 전력을 전송하는 것이다.
자기 유도 방식에서, 1차 코일과 2차 코일은 임의의 적합한 형태들을 가질 수 있으며, 예컨대, 페라이트 또는 비정질 금속과 같은 고투자율의 형성물의 주위에 감긴 동선일 수 있다. 1차 코일은 1차 코어(primary core), 1차 와인딩(primary winding), 1차 루프 안테나(primary loop antenna) 등으로 불릴 수도 있다. 한편, 2차 코일은 2차 코어(secondary core), 2차 와인딩(secondary winding), 2차 루프 안테나(secondary loop antenna), 픽업 안테나(pickup antenna) 등으로 불릴 수도 있다.
자기 공진 방식을 이용하는 경우에는 1차 코일과 2차 코일은 각각 1차 공진 안테나와 2차 공진 안테나 형태로 제공될 수 있다. 공진 안테나는 코일과 캐패시터를 포함하는 공진 구조를 가질 수 있다. 이때 공진 안테나의 공진 주파수는 코일의 인덕턴스와 캐패시터의 캐패시턴스에 의해 결정된다. 여기서, 코일은 루프의 형태로 이루어질 수 있다. 또 루프의 내부에는 코어가 배치될 수 있다. 코어는 페라이트 코어(ferrite core)와 같은 물리적인 코어나 공심 코어(air core)를 포함할 수 있다.
1차 공진 안테나와 2차 공진 안테나 간의 에너지 전송은 자기장의 공진 현상을 통해 이루어질 수 있다. 공진 현상이란 하나의 공진 안테나에서 공진 주파수에 해당하는 근접장이 발생할 때 주위에 다른 공진 안테나가 위치하는 경우, 양 공진 안테나가 서로 커플링되어 공진 안테나 사이에서 높은 효율의 에너지 전달이 일어나는 현상을 의미한다. 1차 공진 안테나와 2차 공진 안테나 안테나 사이에서 공진 주파수에 해당하는 자기장이 발생하면, 1차 공진 안테나와 2차 공진 안테나가 서로 공진하는 현상이 발생되고, 이에 따라 일반적인 경우 1차 공진 안테나에서 발생한 자기장이 자유공간으로 방사되는 경우에 비해 보다 높은 효율로 2차 공진 안테나를 향해 자기장이 집속되며, 따라서 1차 공진 안테나로부터 2차 공진 안테나에 높은 효율로 에너지가 전달될 수 있다. 자기 유도 방식은 자기 공진 방식과 유사하게 구현될 수 있으나 이때에는 자기장의 주파수가 공진 주파수일 필요가 없다. 대신 자기 유도 방식에서는 1차 코일과 2차 코일을 구성하는 루프 간의 정합이 필요하며 루프 간의 간격이 매우 근접해야 한다.
도면에 도시되지 않았으나, 무선 전력 전송장치(1100)는 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신 할 수 있다.
통신/컨트롤 유닛(120)은 무선 전력 수신 장치(200)와 정보를 송수신할 수 있다. 통신/컨트롤 유닛(120)은 IB 통신 모듈 또는 OOB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 유닛(120)은 자기파에 정보를 실어 1차 코일을 통해 송신하거나 또는 정보가 담긴 자기파를 1차 코일을 통해 수신함으로써 인-밴드 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 유닛(120)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OOB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 유닛(120)은 근거리 통신 모듈로 제공될 수 있다. 근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 유닛(120)은 무선 전력 전송 장치(100)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 유닛(120)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력전송 장치(100)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 유닛(120)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 유닛(120)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 유닛(120)을 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 유닛(120)은 동작 포인트(operating point)를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트는 주파수(또는 위상), 듀티 사이클(duty cycle), 듀티 비(duty ratio) 및 전압 진폭의 조합에 해당될 수 있다. 통신/컨트롤 유닛(120)은 주파수(또는 위상), 듀티 사이클, 듀티비 및 전압 진폭 중 적어도 하나를 조절하여 송신 전력을 컨트롤할 수 있다. 또한, 무선 전력 전송장치(100)는 일정한 전력을 공급하고, 무선 전력 수신장치(200)가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
모바일 기기(450)는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 무선전력 수신장치(power receiver, 200)와 무선전력 수신장치(200)에서 수신된 전력을 전력을 전달받아 저장하고 기기에 공급하는 부하(load, 455)를 포함한다.
무선전력 수신장치(200)는 전력 픽업 유닛(power pick-up unit, 210) 및 통신/컨트롤 유닛(communications & control unit, 220)을 포함할 수 있다. 전력 픽업 유닛(210)은 2차 코일을 통해 무선 전력을 수신하여 전기 에너지로 변환할 수 있다. 전력 픽업 유닛(210)은 2차 코일을 통해 얻어지는 교류 신호를 정류하여 직류 신호로 변환한다. 통신/컨트롤 유닛(220)은 무선 전력의 송신과 수신(전력 전달 및 수신)을 제어할 수 있다.
2차 코일은 무선 전력 전송 장치(100)에서 전송되는 무선 전력을 수신할 수 있다. 2차 코일은 1차 코일에서 발생하는 자기장을 이용하여 전력을 수신할 수 있다. 여기서, 특정 주파수가 공진 주파수인 경우에는 1차 코일과 2차 코일 간에 자기 공진 현상이 발생하여 보다 효율적으로 전력을 전달받을 수 있다.
도 4에는 도시되지 않았으나 통신/컨트롤 유닛(220)은 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신할 수 있다.
통신/컨트롤 유닛(220)은 무선 전력 전송 장치(100)와 정보를 송수신할 수 있다. 통신/컨트롤 유닛(220)은 IB 통신 모듈 또는 OOB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 유닛(220)은 자기파에 정보를 실어 2차 코일을 통해 송신하거나 또는 정보가 담긴 자기파를 2차 코일을 통해 수신함으로써 IB 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 유닛(220)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OOB 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 유닛(220)은 근거리 통신 모듈로 제공될 수 있다.
근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 유닛(220)은 무선 전력 수신 장치(200)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 유닛(220)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력수신 장치(200)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 유닛(220)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 유닛(220)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 유닛(220)을 구동시키는 프로그램 형태로 제공될 수 있다.
부하(455)는 배터리일 수 있다. 배터리는 전력 픽업 유닛(210)으로부터 출력되는 전력을 이용하여 에너지를 저장할 수 있다. 한편, 모바일 기기(450)에 배터리가 반드시 포함되어야 하는 것은 아니다. 예를 들어, 배터리는 탈부착이 가능한 형태의 외부 구성으로 제공될 수 있다. 다른 예를 들어, 무선 전력 수신 장치(200)에는 전자 기기의 다양한 동작을 구동하는 구동 수단이 배터리 대신 포함될 수도 있다.
모바일 기기(450)는 무선전력 수신장치(200)을 포함하는 것을 도시되어 있고, 베이스 스테이션(400)은 무선전력 전송장치(100)를 포함하는 것으로 도시되어 있으나, 넓은 의미에서는 무선전력 수신장치(200)는 모바일 기기(450)와 동일시될 수 있고 무선전력 전송장치(100)는 베이스 스테이션(400)와 동일시 될 수도 있다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 무선전력 전송장치로부터 수신기로의 파워 전송은 크게 선택 단계(selection phase, 510), 핑 단계(ping phase, 520), 식별 및 구성 단계(identification and configuration phase, 530), 협상 단계(negotiation phase, 540), 보정 단계(calibration phase, 550), 전력 전송 단계(power transfer phase, 560) 단계 및 재협상 단계(renegotiation phase, 570)로 구분될 수 있다.
선택 단계(510)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계-예를 들면, 도면 부호 S502, S504, S508, S510 및 S512를 포함함-일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(510)에서 무선전력 전송장치는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 무선전력 전송장치가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(520)로 천이할 수 있다. 선택 단계(510)에서 무선전력 전송장치는 매우 짧은 펄스의 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
선택 단계(510)에서 물체가 감지되는 경우, 무선전력 전송장치는 무선전력 공진 회로(예를 들어 전력전송 코일 및/또는 공진 캐패시터)의 품질 인자를 측정할 수 있다. 본 발명의 일 실시예에서는 선택단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 무선전력 수신장치가 놓였는지 판단하기 위하여 품질 인자를 측정할 수 있다. 무선전력 전송장치에 구비되는 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬저항 성분이 감소될 수 있고, 이로 인해 품질 인자 값이 감소하게 된다. 측정된 품질 인자 값을 이용하여 이물질의 존재 여부를 판단하기 위해, 무선전력 전송장치는 충전 영역에 이물질이 배치되지 않은 상태에서 미리 측정된 기준 품질 인자 값을 무선전력 수신장치로부터 수신할 수 있다. 협상 단계(S540)에서 수신된 기준 품질 인자 값과 측정된 품질 인자 값을 비교하여 이물질 존재 여부를 판단할 수 있다. 그러나 기준 품질 인자 값이 낮은 무선전력 수신장치의 경우-일 예로, 무선전력 수신장치의 타입, 용도 및 특성 등에 따라 특정 무선전력 수신장치는 낮은 기준 품질 인자 값을 가질 수 있음-, 이물질이 존재하는 경우에 측정되는 품질 인자 값과 기준 품질 인자 값 사이의 큰 차이가 없어 이물질 존재 여부를 판단하기 어려운 문제가 발생할 수 있다. 따라서 다른 판단 요소를 더 고려하거나, 다른 방법을 이용하여 이물질 존재 여부를 판단해야 한다.
본 발명의 또 다른 실시예에서는 선택 단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 무선전력 수신장치가 배치되었는지 판단하기 위하여 특정 주파수 영역 내(ex 동작 주파수 영역) 품질 인자 값을 측정할 수 있다. 무선전력 전송장치의 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬 저항 성분이 감소될 수 있고, 이로 인해 무선전력 전송장치의 코일의 공진 주파수가 변경(시프트)될 수 있다. 즉, 동작 주파수 대역 내 최대 품질 인자 값이 측정되는 주파수인 품질 인자 피크(peak) 주파수가 이동될 수 있다.
단계(520)에서 무선전력 전송장치는 물체가 감지되면, 수신기를 활성화(Wake up)시키고, 감지된 물체가 무선 전력 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(520)에서 무선전력 전송장치는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 패킷-을 수신기로부터 수신하지 못하면, 다시 선택 단계(510)로 천이할 수 있다. 또한, 핑 단계(520)에서 무선전력 전송장치는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(510)로 천이할 수도 있다.
핑 단계(520)가 완료되면, 무선전력 전송장치는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(530)로 천이할 수 있다.
식별 및 구성 단계(530)에서 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(510)로 천이할 수 있다.
무선전력 전송장치는 식별 및 구성 단계(530)에서 수시된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(540)로의 진입이 필요한지 여부를 확인할 수 있다. 확인 결과, 협상이 필요하면, 무선전력 전송장치는 협상 단계(540)로 진입하여 소정 FOD 검출 절차를 수행할 수 있다. 반면, 확인 결과, 협상이 필요하지 않은 경우, 무선전력 전송장치는 곧바로 전력 전송 단계(560)로 진입할 수도 있다.
협상 단계(540)에서, 무선전력 전송장치는 기준 품질 인자 값이 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신할 수 있다. 또는 기준 피크 주파수 값이 포함된 FOD 상태 패킷을 수신할 수 있다. 또는 기준 품질 인자 값 및 기준 피크 주파수 값이 포함된 상태 패킷을 수신할 수 있다. 이때, 무선전력 전송장치는 기준 품질 인자 값에 기반하여 FO 검출을 위한 품질 계수 임계치를 결정할 수 있다. 무선전력 전송장치는 기준 피크 주파수 값에 기반하여 FO 검출을 위한 피크 주파수 임계치를 결정할 수 있다.
무선전력 전송장치는 결정된 FO 검출을 위한 품질 계수 임계치 및 현재 측정된 품질 인자 값(핑 단계 이전에 측정된 품질인자 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
무선전력 전송장치는 결정된 FO 검출을 위한 피크 주파수 임계치 및 현재 측정된 피크 주파수 값(핑 단계 이전에 측정된 피크 주파수 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
FO가 검출된 경우, 무선전력 전송장치는 선택 단계(510)로 회귀할 수 있다. 반면, FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)를 거쳐 전력 전송 단계(560)로 진입할 수도 있다. 상세하게, 무선전력 전송장치는 FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)에서 수신단에 수신된 전력의 세기를 결정하고, 송신단에서 전송한 전력의 세기를 결정하기 위해 수신단과 송신단에서의 전력 손실을 측정할 수 있다. 즉, 무선전력 전송장치는 보정 단계(550)에서 송신단의 송신 파워와 수신단의 수신 파워 사이의 차이에 기반하여 전력 손실을 예측할 수 있다. 일 실시예에 따른 무선전력 전송장치는 예측된 전력 손실을 반영하여 FOD 검출을 위한 임계치를 보정할 수도 있다.
전력 전송 단계(560)에서, 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(510)로 천이할 수 있다.
또한, 전력 전송 단계(560)에서, 무선전력 전송장치는 무선전력 전송장치 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(570)로 천이할 수 있다. 이때, 재협상이 정상적으로 완료되면, 무선전력 전송장치는 전력 전송 단계(560)로 회귀할 수 있다.
상기한 파워 전송 계약은 무선전력 전송장치와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 무선전력 전송장치 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 6에서 전력 전송 단계(560)에서, 무선전력 전송장치(100) 및 무선전력 수신장치(200)는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다. 무선전력 전송장치 및 무선전력 수신장치는 특정 컨트롤 포인트에서 동작한다. 컨트롤 포인트는 전력 전달이 수행될 때 무선전력 수신장치의 출력단(output)에서 제공되는 전압 및 전류의 조합(combination)을 나타낸다.
더 상세히 설명하면, 무선전력 수신장치는 원하는 컨트롤 포인트(desired Control Point)- 원하는 출력 전류/전압, 모바일 기기의 특정 위치의 온도 등을 선택하고, 추가로 현재 동작하고 있는 실제 컨트롤 포인트(actual control point)를 결정한다. 무선전력 수신장치는 원하는 컨트롤 포인트와 실제 컨트롤 포인트를 사용하여, 컨트롤 에러 값(control error value)을 산출하고, 이를 컨트롤 에러 패킷으로서 무선전력 전송장치로 전송할 수 있다.
그리고 무선전력 전송장치는 수신한 컨트롤 에러 패킷을 사용하여 새로운 동작 포인트- 진폭, 주파수 및 듀티 사이클-를 설정/컨트롤하여 전력 전달을 제어할 수 있다. 따라서 컨트롤 에러 패킷은 전략 전달 단계에서 일정 시간 간격으로 전송/수신되며, 실시예로서 무선전력 수신장치는 무선전력 전송장치의 전류를 저감하려는 경우 컨트롤 에러 값을 음수로, 전류를 증가시키려는 경우 컨트롤 에러 값을 양수로 설정하여 전송할 수 있다. 이와 같이 유도 모드에서는 무선전력 수신장치가 컨트롤 에러 패킷을 무선전력 전송장치로 송신함으로써 전력 전달을 제어할 수 있다.
이하에서 설명할 공진 모드에서는 유도 모드에서와는 다른 방식으로 동작할 수 있다. 공진 모드에서는 하나의 무선전력 전송장치가 복수의 무선전력 수신장치를 동시에 서빙할 수 있어야 한다. 다만 상술한 유도 모드와 같이 전력 전달을 컨트롤하는 경우, 전달되는 전력이 하나의 무선전력 수신장치와의 통신에 의해 컨트롤되므로 추가적인 무선전력 수신장치들에 대한 전력 전달은 컨트롤이 어려울 수 있다. 따라서 본 발명의 공진 모드에서는 무선전력 전송장치는 기본 전력을 공통적으로 전달하고, 무선전력 수신장치가 자체의 공진 주파수를 컨트롤함으로써 수신하는 전력량을 컨트롤하는 방법을 사용하고자 한다. 다만, 이러한 공진 모드의 동작에서도 도 6에서 설명한 방법이 완전히 배제되는 것은 아니며, 추가적인 송신 전력의 제어를 도 6의 방법으로 수행할 수도 있다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다. 쉐어드 모드는 무선전력 전송장치와 무선전력 수신장치간에 1대다 통신 및 충전을 수행하는 모드를 지칭할 수 있다. 쉐어드 모드는 자기 유도 방식 또는 공진 방식으로 구현될 수 있다.
도 7을 참조하면, 무선 전력 전송 장치(700)는 코일 어셈블리를 덮는 커버(720), 전력 송신기(power transmitting unit, 740)로 전력을 공급하는 전력 어답터(730), 무선 전력을 송신하는 전력 송신기(740) 또는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(750) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(750)는 옵셔널하게 포함되거나, 무선 전력 전송 장치(700)의 다른 사용자 인터페이스(750)로서 포함될 수도 있다.
전력 송신기(740)는 코일 어셈블리(760), 임피던스 매칭 회로(770), 인버터(780), 통신 유닛(790) 또는 컨트롤 유닛(710) 중 적어도 하나를 포함할 수 있다.
코일 어셈블리(760)는 자기장을 생성하는 적어도 하나의 1차 코일을 포함하며, 코일 셀로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 인버터와 1차 코일(들) 간의 임피던스 매칭을 제공할 수 있다. 임피던스 매칭 회로(770)는 1차 코일 전류를 부스팅(boost)하는 적합한(suitable) 주파수에서 공진(resonance)을 발생시킬 수 있다. 다중-코일(multi-coil) 전력 송신기(740)에서 임피던스 매칭 회로는 인버터에서 1차 코일들의 서브세트로 신호를 라우팅하는 멀티플렉스를 추가로 포함할 수도 있다. 임피던스 매칭 회로는 탱크 회로(tank circuit)로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 캐패시터, 인덕터 및 이들의 연결을 스위칭하는 스위칭 소자를 포함할 수 있다. 임피던스의 매칭은 코일 어셈블리(760)를 통해 전송되는 무선전력의 반사파를 검출하고, 검출된 반사파에 기초하여 스위칭 소자를 스위칭하여 캐패시터나 인덕터의 연결 상태를 조정하거나 캐패시터의 캐패시턴스를 조정하거나 인덕터의 인덕턴스를 조정함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(770)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(770)가 생략된 무선전력 전송장치(700)의 실시예도 포함한다.
인버터(780)는 DC 인풋을 AC 신호로 전환할 수 있다. 인버터(780)는 가변(adjustable) 주파수의 펄스 웨이브 및 듀티 사이클을 생성하도록 하프-브리지 또는 풀-브리지로 구동될 수 있다. 또한 인버터는 입력 전압 레벨을 조정하도록 복수의 스테이지들을 포함할 수도 있다.
통신 유닛(790)은 전력 수신기와의 통신을 수행할 수 있다. 전력 수신기는 전력 송신기에 대한 요청 및 정보를 통신하기 위해 로드(load) 변조를 수행한다. 따라서 전력 송신기(740)는 통신 유닛(790)을 사용하여 전력 수신기가 전송하는 데이터를 복조하기 위해 1차 코일의 전류 및/또는 전압의 진폭 및/또는 위상을 모니터링할 수 있다.
또한, 전력 송신기(740)는 통신 유닛(790)을 통해 FSK(Frequency Shift Keying) 방식 등을 사용하여 데이터를 전송하도록 출력 전력을 컨트롤할 수도 있다.
컨트롤 유닛(710)은 전력 송신기(740)의 통신 및 전력 전달을 컨트롤할 수 있다. 컨트롤 유닛(710)은 상술한 동작 포인트를 조정하여 전력 전송을 제어할 수 있다. 동작 포인트는, 예를 들면, 동작 주파수, 듀티 사이클 및 입력 전압 중 적어도 하나에 의해 결정될 수 있다.
통신 유닛(790) 및 컨트롤 유닛(710)은 별개의 유닛/소자/칩셋으로 구비되거나, 하나의 유닛/소자/칩셋으로 구비될 수도 있다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다.
도 8에서, 무선전력 수신 장치(800)는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(820), 무선 전력을 수신하는 전력 수신기(power receiving unit, 830), 로드 회로(load circuit, 840) 또는 코일 어셈블리를 받치며 커버하는 베이스(850) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(820)는 옵셔널하게 포함되거나, 전력 수신 장비의 다른 사용자 인터페이스(82)로서 포함될 수도 있다.
전력 수신기(830)는 전력 컨버터(860), 임피던스 매칭 회로(870), 코일 어셈블리(880), 통신 유닛(890) 또는 컨트롤 유닛(810) 중 적어도 하나를 포함할 수 있다.
전력 컨버터(860)는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 실시예로서, 전력 컨버터(860)는 정류기(rectifier)를 포함할 수 있다. 정류기는 수신된 무선 전력을 정류하여 교류에서 직류로 변환할 수 있다. 정류기는 다이오드나 트랜지스터를 이용하여 교류를 직류로 변환하고, 캐패시터와 저항을 이용하여 이를 평활할 수 있다. 정류기로는 브릿지 회로 등으로 구현되는 전파 정류기, 반파 정류기, 전압 체배기 등이 이용될 수 있다. 추가로, 전력 컨버터는 전력 수신기의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
임피던스 매칭 회로(870)는 전력 컨버터(860) 및 로드 회로(870)의 조합과 2차 코일 간의 임피던스 매칭을 제공할 수 있다. 실시예로서, 임피던스 매칭 회로는 전력 전달을 강화할 수 있는 100kHz 근방의 공진을 발생시킬 수 있다. 임피던스 매칭 회로(870)는 캐패시터, 인덕터 및 이들의 조합을 스위칭하는 스위칭 소자로 구성될 수 있다. 임피던스의 정합은 수신되는 무선 전력의 전압값이나 전류값, 전력값, 주파수값 등에 기초하여 임피던스 매칭 회로(870)를 구성하는 회로의 스위칭 소자를 제어함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(870)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(870)가 생략된 무선전력 수신장치(200)의 실시예도 포함한다.
코일 어셈블리(880)는 적어도 하나의 2차 코일을 포함하며, 옵셔널하게는 자기장으로부터 수신기의 금속 부분을 쉴딩(shield)하는 엘러먼트(element)를 더 포함할 수도 있다.
통신 유닛(890)은 전력 송신기로 요청(request) 및 다른 정보를 통신하기 위해 로드 변조를 수행할 수 있다.
이를 위해 전력 수신기(830)는 반사 임피던스를 변경하도록 저항 또는 커패시터를 스위칭할 수도 있다.
컨트롤 유닛(810)은 수신 전력을 컨트롤할 수 있다. 이를 위해 컨트롤 유닛(810)은 전력 수신기(830)의 실제 동작 포인트와 원하는 동작 포인트의 차이를 결정/산출할 수 있다. 그리고 컨트롤 유닛(810)은 전력 송신기의 반사 임피던스의 조정 및/또는 전력 송신기의 동작 포인트 조정 요청을 수행함으로써 실제 동작 포인트와 원하는 동작 포인트의 차이를 조정/저감할 수 있다. 이 차이를 최소화하는 경우 최적의 전력 수신을 수행할 수 있다.
통신 유닛(890) 및 컨트롤 유닛(810)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다.
도 9는 일 실시예에 따른 통신 프레임 구조를 나타낸다. 이는 쉐어드 모드(shared mode)에서의 통신 프레임 구조일 수 있다.
도 9를 참조하면, 쉐어드 모드에서는, 서로 다른 형태의 프레임이 함께 사용될 수 있다. 예를 들어, 상기 쉐어드 모드에서는, (A)와 같은 복수의 슬롯을 가지는 슬롯 프레임(slotted frame) 및 (B)와 같은 특정 형태가 없는 자유 형식 프레임(free format frame)을 사용할 수 있다. 보다 구체적으로, 슬롯 프레임은 무선 전력 수신장치(200)로부터, 무선 전력 전송장치(100)에게 짧은 데이터 패킷들의 전송을 위한 프레임이고, 자유 형식 프레임은 복수의 슬롯들을 구비하지 않아, 긴 데이터 패킷들의 전송이 가능한 프레임일 수 있다.
한편, 슬롯 프레임 및 자유 형식 프레임은, 당업자에 의하여 다양한 명칭으로 변경될 수 있다. 예를 들어, 슬롯 프레임은, 채널 프레임으로, 자유 형식 프레임은, 메시지 프레임 등으로 변경되어 명명될 수 있다.
보다 구체적으로, 슬롯 프레임은, 슬롯의 시작을 나타내는 싱크 패턴, 측정 슬롯, 9개의 슬롯들 및 상기 9개의 슬롯들 각각에 앞서, 동일한 시간 간격을 갖는 추가적인 싱크 패턴을 포함할 수 있다.
여기에서, 상기 추가적인 싱크 패턴은, 앞서 설명한 프레임의 시작을 나타내는 싱크 패턴과 다른 싱크 패턴이다. 보다 구체적으로, 상기 추가적인 싱크 패턴은, 프레임의 시작을 나타내지 않고, 인접한 슬롯들(즉, 싱크 패턴의 양 옆에 위치한 연속하는 두 개의 슬롯들)과 관련된 정보를 나타낼 수 있다.
상기 9개의 슬롯들 중 연속하는 두 개의 슬롯들 사이에는, 각각 싱크 패턴이 위치할 수 있다. 이 경우, 상기 싱크 패턴은, 상기 연속하는 두 개의 슬롯들과 관련된 정보를 제공할 수 있다.
또한, 상기 9개의 슬롯들 및 상기 9개의 슬롯들 각각에 앞서 제공되는 싱크 패턴들은, 각각 동일한 시간 간격을 가질 수 있다. 예를 들어, 상기 9개의 슬롯들은 50ms의 시간 간격을 가질 수 있다. 또한, 상기 9개의 싱크 패턴들도 50ms의 시간 길이를 가질 수 있다.
한편, (B)와 같은 자유 형식 프레임은, 프레임의 시작을 나타내는 싱크 패턴 및 측정 슬롯 이외에, 구체적인 형태을 가지지 않을 수 있다. 즉, 상기 자유 형식 프레임은, 상기 슬롯 프레임과 다른 역할을 수행하기 위한 것으로, 예를 들어, 상기 무선 전력 전송장치와 무선 전력 수신장치 간에 긴 데이터 패킷들(예를 들어, 추가 소유자 정보 패킷들)의 통신을 수행하거나, 복수의 코일로 구성된 무선 전력 전송장치에 있어서, 복수의 코일 중 어느 하나의 코일을 선택하는 역할을 위하여 사용될 수 있다.
이하에서는, 각 프레임에 포함된 싱크 패턴(sync pattern)에 대하여 도면과 함께 보다 구체적으로 살펴본다.
도 10은 일 실시예에 따른 싱크 패턴의 구조이다.
도 10을 참조하면, 싱크 패턴은 프리앰블(preamble), 시작 비트(start bit), 응답 필드(Resonse field), 타입 필드(type field), 정보 필드(info field) 및 패리티 비트(parity bit)로 구성될 수 있다. 도 10에서는 시작 비트가 ZERO로 도시되어 있다.
보다 구체적으로, 프리앰블은 연속되는 비트들로 이루어져 있으며, 모두 0으로 설정될 수 있다. 즉, 프리앰블은 싱크 패턴의 시간 길이를 맞추기 위한 비트들일 수 있다.
프리앰블을 구성하는 비트들의 개수는 싱크 패턴의 길이가 50ms에 가장 가깝도록, 그러나, 50ms를 초과하지 않는 범위 내에서, 동작 주파수에 종속될 수 있다. 예를 들어, 동작 주파수가 100kHz인 경우, 싱크 패턴은 2개의 프리앰블 비트들로 구성되고, 동작 주파수가 105kHz인 경우, 싱크 패턴은, 3개의 프리앰블 비트들로 구성될 수 있다.
시작 비트는 프리앰블 다음에 따라오는 비트로 제로(ZERO)를 의미할 수 있다. 상기 제로(ZERO)는 싱크 패턴의 종류를 나타내는 비트일 수 있다. 여기에서, 싱크 패턴의 종류는, 프레임과 관련된 정보를 포함하는 프레임 싱크(frame sync)와 슬롯의 정보를 포함하는 슬롯 싱크(slot sync)를 포함할 수 있다. 즉, 상기 싱크 패턴은, 연속하는 프레임들 사이에 위치하며, 프레임의 시작을 나타내는 프레임 싱크이거나, 프레임을 구성하는 복수의 슬롯 중 연속하는 슬롯들 사이에 위치하며, 상기 연속하는 슬롯과 관련된 정보를 포함하는 슬롯 싱크일 수 있다.
예를 들어, 상기 제로가 0인 경우, 해당 슬롯이 슬롯과 슬롯 사이에 위치한, 슬롯 싱크임을 의미하고, 1인 경우, 해당 싱크 패턴이 프레임과 프레임 사이에 위치한 프레임 싱크임을 의미할 수 있다.
패리티 비트는 싱크 패턴의 마지막 비트로, 싱크 패턴의 데이터 필드들(즉, 응답 필드, 타입 필드, 정보 필드)를 구성하는 비트들의 개수 정보를 나타낼 수 있다. 예를 들어, 기 패리티 비트는 싱크 패턴의 데이터 필드들을 구성하는 비트의 개수가 짝수인 경우, 1, 그 밖의 경우(즉, 홀수인 경우), 0이 될 수 있다.
응답(Response) 필드는 싱크 패턴 이전의 슬롯 내에서, 무선 전력 수신장치와의 통신에 대한, 무선 전력 전송장치의 응답 정보를 포함할 수 있다. 예를 들어, 응답 필드는 무선 전력 수신장치와 통신의 수행이 감지되지 않은 경우, '00'을 가질 수 있다. 또한, 상기 응답 필드는 무선 전력 수신장치와의 통신에 통신 에러(communication error)가 감지된 경우, '01'을 가질 수 있다. 통신 에러는, 두 개 또는 그 이상의 무선 전력 수신장치가 하나의 슬롯에 접근을 시도하여, 두 개 또는 그 이상의 무선 전력 수신장치 간의 충돌이 발생한 경우일 수 있다.
또한, 응답 필드는, 무선 전력 수신장치로부터 데이터 패킷을 정확하게 수신하였는지 여부를 나타내는 정보를 포함할 수 있다. 보다 구체적으로, 응답필드는, 무선 전력 전송장치가 데이터 패킷을 거부(deni)한 경우, "10"(10-not acknowledge, NAK), 무선 전력 전송장치가 상기 데이터 패킷을 확인(confirm)한 경우, "11"(11-acknowledge, ACK)이 될 수 있다.
타입 필드는 싱크 패턴의 종류를 나타낼 수 있다. 보다 구체적으로, 타입 필드는 싱크 패턴이 프레임의 첫번째 싱크 패턴인 경우(즉, 프레임의 첫번째 싱크 패턴으로, 측정 슬롯 이전에 위치한 경우), 프레임 싱크임을 나타내는 ‘1’을 가질 수 있다.
또한, 타입 필드는 슬롯 프레임에서, 싱크 패턴이 프렘임의 첫번째 싱크 패턴이 아닌 경우, 슬롯 싱크임을 나타내는 '0'을 가질 수 있다.
또한, 정보 필드는 타입 필드가 나타내는 싱크 패턴의 종류에 따라 그 값의 의미가 결정될 수 있다. 예를 들어, 타입 필드가 1인 경우(즉, 프레임 싱크를 나타내는 경우), 정보 필드의 의미는 프레임의 종류를 나타낼 수 있다. 즉, 정보 필드는 현재 프레임이 슬롯 프레임(slotted frame)인지 또는 자유 형식 프레임(free-format frame)인지 나타낼 수 있다. 예를 들어, 정보 필드가 '00'인 경우, 슬롯 프레임을, 정보 필드가 '01'인 경우, 자유 형식 프레임을 나타낼 수 있다.
이와 달리, 타입 필드가 0인 경우(즉, 슬롯 싱크인 경우), 정보 필드는 싱크 패턴의 뒤에 위치한 다음 슬롯(next slot)의 상태를 나타낼 수 있다. 보다 구체적으로, 정보 필드는 다음 슬롯이 특정(specific) 무선 전력 수신장치에 할당된(allocated) 슬롯인 경우, '00', 특정 무선 전력 수신장치가 일시적으로 사용하기 위하여, 잠겨 있는 슬롯인 경우, '01', 또는 임의의 무선 전력 수신장치가 자유롭게 사용 가능한 슬롯인 경우, '10'을 가질 수 있다.
도 11은 일 실시예에 따른 쉐어드 모드에서 무선 전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시하였다.
도 11을 참조하면, 쉐어드 모드로 동작하는 무선 전력 수신장치는, 선택 상태(Selection Phase) (1100), 도입 상태(Introduction Phase)(1110), 설정 상태(Configuration Phase) (1120), 교섭 상태(Negotiation Phase)(1130) 및 전력 전송 상태(Power Transfer Phase) (1140) 중 어느 하나의 상태로 동작할 수 있다.
우선, 일 실시예에 따른 무선 전력 전송장치는 무선 전력 수신장치를 감지하기 위하여, 무선 전력 신호를 전송할 수 있다. 즉, 무선 전력 신호를 이용하여, 무선 전력 수신장치를 감지하는 과정을 아날로그 핑(Analog ping)이라 할 수 있다.
한편, 무선 전력 신호를 수신한 무선 전력 수신장치는 선택 상태(1100)에 진입할 수 있다. 선택 상태(1100)에 진입한 무선 전력 수신장치는 앞서 설명한 바와 같이, 상기 무선 전력 신호 상에 FSK신호의 존재를 감지할 수 있다.
즉, 무선 전력 수신장치는 FSK 신호의 존재 여부에 따라 익스클루시브 모드 또는 쉐어드 모드 중 어느 하나의 방식으로 통신을 수행할 수 있다.
보다 구체적으로, 무선 전력 수신장치는 무선 전력 신호에 FSK 신호가 포함되어 있으면, 쉐어드 모드로 동작하고, 그렇지 않은 경우, 익스클루시브 모드로 동작할 수 있다.
무선 전력 수신장치가 쉐어드 모드로 동작하는 경우, 상기 무선 전력 수신장치는 도입 상태(1110)에 진입할 수 있다. 도입 상태(1110)에서, 무선 전력 수신장치는, 설정 상태, 교섭 상태 및 전력 전송 상태에서, 제어 정보 패킷(CI, Control Information packet)을 전송하기 위하여, 무선 전력 전송장치에게 제어 정보 패킷을 전송할 수 있다. 제어 정보 패킷은, 헤더(Header) 및 제어와 관련된 정보를 가질 수 있다. 예를 들어, 제어 정보 패킷은, 헤더가 0X53일 수 있다.
도입 상태(1110)에서, 무선전력 수신장치는 제어정보(control information: CI) 패킷을 전송하기 위해 자유슬롯(free slot)을 요청하는 시도를 다음의 구성, 협상, 전력 전송 단계에 걸쳐 수행한다. 이때 무선전력 수신장치는 자유슬롯을 선택하고 최초 CI 패킷을 전송한다. 만약 무선전력 전송장치가 해당 CI 패킷에 ACK으로 응답하면, 무선전력 전송장치는 구성 단계로 진입한다. 만약 무선전력 전송장치가 NACK으로 응답하면, 다른 무선전력 수신장치가 구성 및 협상 단계를 통해 진행되고 있는 것이다. 이 경우, 무선전력 수신장치는 자유슬롯의 요구를 재시도한다.
만약 무선전력 수신장치가 CI 패킷에 대한 응답으로 ACK을 수신하면, 무선전력 수신장치는 최초 프레임 싱크까지 나머지 슬롯 싱크들을 카운팅함으로써 프레임 내의 개인 슬롯(private slot)의 위치를 결정한다. 모든 후속 슬롯 기반 프레임들에서, 무선전력 수신장치는 해당 슬롯을 통해 CI 패킷을 전송한다.
만약 무선전력 전송장치가 무선전력 수신장치에게 구성 단계로 진행함을 허락하면, 무선전력 전송장치는 무선전력 수신장치의 배타적 사용을 위한 잠금 슬롯(locked slot) 시리즈를 제공한다. 이는 무선전력 수신장치가 충돌없이 구성 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 2개의 식별 데이터 패킷들(IDHI와 IDLO)와 같은 데이터 패킷의 시퀀스들을 잠금 슬롯을 사용하여 전송한다. 본 단계를 완료하면, 무선전력 수신장치는 협상 단계로 진입한다. 협상 단계에서, 무선전력 전송장치가 무선전력 수신장치에게 배타적 사용을 위한 잠금 슬롯을 계속 제공한다. 이는 이는 무선전력 수신장치가 충돌없이 협상 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 해당 잠금 슬롯을 사용하여 하나 또는 그 이상의 협상 데이터 패킷들을 전송하며, 이는 사적 데이터 패킷들과 섞일 수도 있다. 결국 해당 시퀀스는 특정 요청 (specific request (SRQ)) 패킷과 함께 종료된다. 해당 시퀀스를 완료하면, 무선전력 수신장치는 전력 전송 단계로 진입하고, 무선전력 전송장치는 잠금 슬롯의 제공을 중단한다.
전력 전송 상태에서, 무선전력 수신장치는 할당된 슬롯을 사용하여 CI 패킷의 전송을 수행하며, 전력을 수신한다. 무선전력 수신장치는 레귤레이터 회로를 포함할 수 있다. 레귤레이터 회로는 통신/컨트롤 유닛에 포함될 수 있다. 무선전력 수신장치는 레귤레이터 회로를 통해 무선전력 수신장치의 반사 임피던스를 자가-조절(self-regulate)할 수 있다. 다시 말해, 무선전력 수신장치는 외부 부하에 의해 요구되는 양의 파워를 전송하기 위해 반사되는 임피던스를 조정할 수 있다. 이는 과도한 전력의 수신과 과열을 방지할 수 있다.
쉐어드 모드에서, 무선전력 전송장치는 수신되는 CI 패킷에 대한 응답으로서 전력을 조정하는 것을 수행하지 않을 수 있기 때문에(동작 모드에 따라), 이 경우에는 과전압 상태를 막기 위한 제어가 필요할 수 있다.
이하에서 이물질 검출과 전력의 보정 방법에 관하여 설명된다.
무선전력 전송장치가 자기장을 이용하여 무선전력 수신장치로 무선전력을 송출할 때 이물질이 그 주변에 존재하면 일부의 자기장이 이물질로 흡수된다. 즉, 무선전력 전송장치가 전송한 무선전력 중 일부가 이물질로 공급되고, 나머지가 무선전력 수신장치로 공급된다. 전력 전송의 효율 관점에서 보면, 이물질이 흡수한 전력 또는 에너지만큼 전송 전력의 손실이 발생한다. 이와 같이 이물질의 존재와 전력 손실(Ploss)간에는 인과관계가 성립할 수 있으므로, 무선전력 전송장치는 전력 손실이 얼만큼 발생하는지를 통해 이물질을 검출할 수 있다. 이러한 이물질 검출 방법을 전력 손실에 기반한 이물질 검출 방법이라 부를 수 있다.
이물질에 의해 손실된 전력은, 무선전력 전송장치에 의해 전송된 전력(Ptransmitted)에서 무선전력 수신장치가 실제 수신한 전력(Preceived)을 차감한 값으로 정의될 수 있다. 무선전력 전송장치의 입장에서, 자신이 전송한 전력(Ptransmitted)은 알고 있으므로, 무선전력 수신장치가 실제 수신한 전력(Preceived)만 알면 손실 전력을 구할 수 있다. 이를 위해 무선전력 수신장치는 무선전력 전송장치로 수신 전력 패킷(received power packet: RPP)을 전송함으로써 무선전력 전송장치에게 수신 전력(Preceived)을 알려줄 수 있다.
한편, 무선전력 전송장치와 무선전력 수신장치는 그 내부에 여러가지 회로 부품들로 구성되어 있고 서로 독립적인 장치를 구성하지만, 이들간에 자기 커플링에 의해 무선전력 전송이 이루어지므로 무선전력 전송장치와 무선전력 수신장치는 하나의 무선전력 전송 시스템을 구성한다. 그런데 무선전력 전송 시스템의 고유한 물리적 특성 뿐만 아니라, Tx와 Rx의 실제 사용 환경(무선전력 전송 시스템에 인가되는 신호의 크기, 주파수, 듀티 사이클, Tx와 Rx간의 거리/위치 정렬 등)에 따른 자기 커플링의 변화로 인해 전송 전력과 수신 전력에 오차가 발생할 수 있다. 이러한 오차는 정교한 이물질 검출에 장해요소가 될 수 있다.
따라서, 무선전력 전송 시스템의 고유한 특성과 실제 사용 환경의 변화를 반영하여 보정된 전송 전력과 수신 전력을 도출하고, 이를 토대로 보다 정교한 FOD를 수행하는 방법이 요구된다.
도 12는 일 실시예에 따른 전력의 보정 방법과 FOD 수행 방법을 도시한 순서도이다. 본 실시예에서의 전력 보정 방법은 도 5의 보정 단계에서 수행될 수 있다. 본 실시예에서의 FOD 수행 방법은 도 5의 전력 전송 단계에서 수행될 수 있다. 본 실시예에서의 전력 보정은 전력 파라미터(전송 전력 및/또는 수신 전력)의 보정을 포함할 수 있다.
도 12를 참조하면, 무선전력 전송장치 또는 무선전력 수신장치는 서로 다른 2가지 부하 조건(two load conditions) 하에서 전송 전력과 수신 전력을 결정하는 단계(1200)를 수행한다.
여기서, 2가지 부하 조건은 "경부하(light load)" 조건과 "연결부하(connected load)" 조건을 포함한다. 예를 들어 부하는 무선전력 수신장치에 포함되거나 연결된 배터리일 수 있다. 경부하는 부하가 무선전력 수신장치에 연결되지 않은 상태(즉, 출력 개폐 스위치(output disconnect switch)가 열린(open) 상태)이므로, 경부하 조건에서 전송 전력 및/또는 수신 전력은 최소 예상 출력전력(minimum expected output power)에 근접한다. 반면 연결부하는 부하가 무선전력 수신장치에 연결된 상태(즉, 출력 개폐 스위치가 닫힌(closed) 상태)이므로, 연결부하 조건에서 전송 전력 및/또는 수신 전력은 최대 예상 출력전력(maximmum expected output power)에 근접한다.
단계 S1200은 경부하 조건 하에서 무선전력 전송장치가 제1 전송 전력을 결정하고 무선전력 수신장치로부터 수신된 제1 수신전력패킷(received power packet: RPP)로부터 제1 수신 전력을 결정하는 단계와, 연결부하 조건 하에서 무선전력 전송장치가 제2 전송 전력을 결정하고 무선전력 수신장치로부터 수신된 제2 수신전력패킷(received power packet: RPP)로부터 제2 수신 전력을 결정하는 단계를 포함할 수 있다. 즉, 무선전력 수신장치는 경부하 조건 하에서 제1 수신 전력을 결정하고 상기 제1 수신 전력을 지시하는 제1 수신전력패킷을 무선전력 전송장치로 전송하고, 연결부하 조건 하에서 제2 수신 전력을 결정하고 상기 제2 수신 전력을 지시하는 제2 수신전력패킷을 무선전력 전송장치로 전송한다.
도 13은 일 실시예에 따른 수신전력패킷을 도시한 것이다.
도 13을 참조하면, 수신전력패킷은 3바이트(24비트)로 구성되며, 첫번째 바이트(B0)는 5비트의 예비비트(reserved)와 3비트의 모드 필드(mode field)를 포함한다. 두번째와 세번째 바이트(B1-B2)는 수신전력값(received power value)를 지시하는 필드를 포함한다. 모드 필드는 해당 수신전력패킷에 포함되는 수신전력값이 어느 조건 하에서 결정된 것인지를 지시하며, 예를 들어 표 3과 같이 정의될 수 있다.
모드 | 설명 |
'000' | 일반 값(normal value); 응답 요구됨(response requested) |
'001' | 경부하 보정 값; 응답 요구됨 |
'010' | 연결부하 보정 값; 응답 요구됨 |
'011' | 예비 |
'100' | 일반 값; 응답 예상되지 않음(no response expected) |
표 3을 참조하면, 경부하 조건 하에서 수신 전력을 결정하는 경우 무선전력 수신장치는 경부하 보정 값 '001'을 지시하는 모드 필드와, 해당 수신전력값을 포함하는 제1 수신전력패킷을 무선전력 전송장치로 전송한다. 한편 연결부하 조건 하에서 수신 전력을 결정하는 경우 무선전력 수신장치는 연결부하 보정 값 '010'을 지시하는 모드 필드와, 해당 수신전력값을 포함하는 제2 수신전력패킷을 무선전력 전송장치로 전송한다.
무선전력 전송장치는 수신된 수신전력패킷의 모드 필드로부터, 해당 수신전력값이 경부하 조건 하에서의 수신전력값인지, 연결부하 조건 하에서의 수신전력값인지를 판단할 수 있다.
다시 도 12를 참조하면, 무선전력 전송장치는 2가지 부하 조건 하에서 결정된 전력 변수들(경부하 조건하에서의 전송 전력, 경부하 조건하에서의 수신 전력, 연결부하 조건하에서의 전송 전력, 연결부하 조건하에서의 수신 전력)을 기반으로, 적어도 하나의 보정 상수(calibration constant)를 결정한다(S1205).
무선전력 전송장치는 2가지 부하 조건에 기반하여, 결정된 전력 파라미터(전송 전력 및/또는 수신 전력)에 선형 보간(linear interpolation)을 적용하여 전송 전력 및/또는 수신 전력을 보정할 수 있다.
각 부하 조건하에서 결정된 전송 전력과 수신 전력을 각각 x, y라 할 때, 2개의 좌표 (x, y)가 얻어진다. 하나는 경부하 조건 하에서의 제1 좌표(x1, y1)이고, 다른 하나는 연결부하 조건 하에서의 제2 좌표(x2, y2)이다. 이 2개의 좌표를 그래프로 표시하면 도 14와 같다.
도 14는 일 실시예에 따라 선형 보간에 기반하여 도시한 보정 커브(calibration curve)이다.
도 14를 참조하면, 경부하 조건 하에서의 전송 전력 (Ptr_(light))과 수신 전력(Prec_(light))으로 구성된 제1 좌표와, 연결부하 조건 하에서의 전송 전력 (Ptr_(connected))과 수신 전력(Prec_(connected))으로 구성된 제2 좌표를 선형 보간에 의해 연결하면 기울기(gradient)는 a이고 y축 오프셋(offset)이 b인 선형 커브가 도출된다. 여기서, a는 제1 보정 상수이고, b는 제2 보정 상수라 불릴 수 있다.
보정 상수 a, b는 도 14의 보정 커브에 의해 도출될 수 있으며, 도출 과정을 수학식으로 나타내면 다음과 같다.
본 실시예는 2가지 부하 조건에 따른 2개의 좌표를 이용한 보정이므로 2 포인트 보정(2 point calibration)이라 불릴 수도 있다. 또한 보정 커브는 적어도 하나의 보정 상수에 기반한 보정 함수(calibration function)라 불릴 수도 있다. 따라서, 단계 S1205에 따른 보정 상수를 결정하는 단계는 보정 함수를 결정하는 단계라 할 수도 있다. 또한 본 실시예는 보정 상수를 구함에 있어서 선형 보간을 이용하였으나, 보간 방법은 이에 제한되는 것은 아니다.
다시 도 12를 참조하면, 위와 같이 보정 상수들이 결정되면, 무선전력 전송장치는 보정 단계를 완료하고 전력 전송 단계로 진입한다. 무선전력 전송장치는 전력 전송 단계에서 전송 전력을 결정하고 무선전력 수신장치로부터 수신전력패킷을 수신한다. 이때 무선전력 전송장치는 전력 전송 단계에서 결정된 전력 파라미터(전송 전력 및/또는 수신 전력)를 보정 함수를 이용하여 보정함으로써 보정된 전송 전력 및/또는 수신 전력을 결정한다(S1210).
일 측면에서, 보정된 전송 전력을 결정하는 방법은, 전력 전송 단계에서 결정된 전송 전력(Ptransmitted)에 제1 보정 상수(a)를 곱하여 스케일된 전송 전력(a·Ptransmitted)을 결정하는 단계와, 스케일된 전송 전력에 제2 보정 상수(b)를 더하여 보정된 전송 전력(Pcalibrated)을 결정하는 단계를 포함한다. 이러한 보정된 전송 전력을 계산하는 방법은 수학식 3과 같이 표현될 수 있다.
무선전력 전송장치는 보정된 전력 파라미터(전송 전력 및/또는 수신 전력)를 기반으로 전력 손실을 결정하고, 결정된 전력 손실을 기반으로 FOD를 수행한다(S1215). 무선전력 전송장치는 i) 보정된 전송 전력과 보정되지 않은 수신전력을 기반으로 FOD를 수행할 수도 있고, ii) 보정되지 않은 전송 전력과 보정된 수신전력을 기반으로 FOD를 수행할 수도 있으며, iii) 보정된 전송 전력과 보정된 수신전력을 기반으로 FOD를 수행할 수도 있다. 예시 i)의 경우, 무선전력 전송장치는 수학식 4와 같이 보정된 전송 전력(Pcalibrated)와 보정되지 않은 수신전력(Precevied)간의 차이값으로 전력 손실을 결정할 수 있다.
예시 ii), iii)의 경우 무선전력 전송장치는 보정된 전송 전력 이외에 보정된 수신 전력도 결정할 수 있다.
만약 결정된 전력 손실이 임계값을 초과하면, 무선전력 전송장치는 이물질이 존재하는 것으로 판단하고 전력 전송을 중단할 수 있다. 반면 만약 결정된 전력 손실이 임계값을 초과하지 않으면, 무선전력 전송장치는 이물질이 존재하지 않는 것으로 판단하고 전력 전송을 지속할 수 있다.
단계 S1200 부터 단계 S1205까지는 보정 단계에 해당하고, 단계 S1210부터 단계 S1215까지는 전력 전송 단계에 해당한다. 본 실시예에서는 보정 단계와 전력 전송 단계를 별도의 단계로 구분하였지만, 보정 단계는 전력 전송 단계에 포함될 수 있고, 이 경우 전력 전송 단계에서 보정이 수행될 수 있다.
이러한 도 12에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 11에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 11에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 단계 S1200에 따른 2가지 부하 조건 하에서의 전송 전력 및/또는 수신 전력을 결정하는 동작, 단계 S1205에 따른 보정 상수(또는 보정 커브 또는 보정 함수)를 결정하는 동작, 단계 S1210에 따른 보정된 전송 전력 및/또는 보정된 수신 전력을 결정하는 동작, 단계 S1215에 따른 FOD를 수행하는 동작은 통신/컨트롤 유닛(120)에 의해 수행될 수 있다.
또한 도 12에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 11에서 개시된 무선전력 수신장치 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 11에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 경부하 조건 하에서 제1 수신 전력을 결정하고 상기 제1 수신 전력을 지시하는 제1 수신전력패킷을 생성하여 무선전력 전송장치로 전송하는 동작과, 연결부하 조건 하에서 제2 수신 전력을 결정하고 상기 제2 수신 전력을 지시하는 제2 수신전력패킷을 생성하여 무선전력 전송장치로 전송하는 동작은 통신/컨트롤 유닛(220)에 의해 수행될 수 있다.
상기 2 포인트 보정의 경우 전력 전송 단계 이전인 보정 단계에서 1회의 전력 보정이 수행되고, 그 결과 도 14와 같은 보정 커브가 정의될 수 있다. 보정 단계에서 보정 커브(또는 보정 상수)가 한 번 정의되고 나면, 전력 전송 단계에서는 더 이상 보정 상수와 보정 커브가 변경되지 않으며, 향후 전력 전송 단계에서의 전송 전력과 수신 전력의 조합은 모두 도 14에 따른 보정 커브 상의 일 좌표에 해당되는 것으로 추정되고, 무선전력 전송장치는 위 그래프에 따라 FOD를 일률적으로 수행하게 된다.
그런데, 전력 전송시 여러가지 원인에 의해 전송 전력 및/또는 수신 전력이 미리 정해진 보정 커브를 따르지 않는 경우가 생길 수 있다. 예를 들어, 무선전력 수신장치가 전력 전송 과정에서 연결부하를 증가시키거나, 무선전력 전송장치와 수신장치간의 자기 커플링이 급격히 변화하는 경우, 기존의 보정 상수와 보정 커브는 더이상 변화된 환경에 따른 새로운 전송 전력과 수신 전력과 맞지 않게 된다. 즉 전송 전력과 수신 전력 간의 전체적인 관계의 빈약한 예측(poor approximation)이 발생할 수 있다. 이 경우, 유효하지 않은 보정 상수와 보정 그래프에 기반하여 보정된 전송 전력과 수신전력을 결정하고, 이를 기반으로 FOD를 수행하면 FOD의 신뢰성이 매우 저하되는 문제가 있다. 특히 전력 전송 도중에 삽입되는 이물질을 검출하기가 매우 어려워진다. 그렇다고 보정 커브(또는 보정 상수)의 변경을 위해 무선전력 전송장치 및/또는 무선전력 수신장치가 다시 핑 단계로 되돌아간 뒤 보정 단계로 진입하는 것은 무선충전이 중도에 중단되는 등의 문제가 있다.
따라서, 새롭게 변화된 무선 충전 환경에 적응적으로 반응하여 전력 손실을 감지하고 FOD의 신뢰성을 유지할 수 있는 방법이 요구된다. 즉, 적응적 전력 손실 감지(adaptive power loss detection: APLD)에 기반한 전력 파라미터의 보정 방법이 요구된다.
본 실시예에 따른 전력 보정 방법은 전력 증가 또는 커플링 변화 등으로 인해 전력 파라미터에 대한 초기 보정(또는 초기 보정 커브 또는 초기 보정 상수 또는 초기 보정 함수)이 더이상 유효하지 않은(또는 일정 수준의 정확도를 보장하지 않는) 상태에서, FOD 판단의 기준이 되는 전송 전력 및/또는 수신 전력의 정확성을 높이기 위해 후속 보정(subsequent calibration)을 수행하는 단계를 포함할 수 있다.
여기서 후속 보정은 특정 이벤트(event)가 발생할 때 트리거(trigger)될 수 있다. 이하 후속 보정을 트리거하는 특정 이벤트를 간단히 트리거 이벤트라 부른다. 트리거 이벤트는 초기 보정이 더이상 유효하지 않게 되는 상태 또는 원인을 의미할 수 있다. 후속 보정은 이전에 수행된 보정을 수정 또는 보충하기 위해 추가적으로 수행되는 것이며, 이러한 의미에서 초기 보정과 구분하기 위해 후속 보정이라는 용어를 사용하였을 뿐 동일한 의미와 기능을 가지는 다른 용어로 대체될 수 있음은 물론이다. 트리거 이벤트는 그 원인에 따라 여러가지 종류를 포함할 수 있다.
일례로서, 트리거 이벤트는 기존에 연결된 부하상에서의 전력 전송 도중에(during power transfer phase over the previous connected load), 무선전력 수신장치의 부하가 일정 수준 이상으로 증가한 이벤트(즉, 목표(target) 정류전압(Vrec)이 증가하는 이벤트 또는 수신 전력 값이 이전 부하 연결 조건 에서의 수신 전력 값보다 증가하는 이벤트)를 포함할 수 있다. 이러한 트리거 이벤트를 '부하 증가 이벤트'라 부를 수 있다. 무선전력 전송장치 및/또는 무선전력 수신장치는 부하 증가 이벤트가 발생하는지 판단하고, 부하 증가 이벤트가 감지되면 후속 보정 단계로 진입할 수 있다.
다른 예로서, 트리거 이벤트는 무선전력 전송장치와 무선전력 수신장치 간에 자기 커플링(magnetic coupling)이 일정 수준 이상으로 변경되는 이벤트(예를 들어 무선전력 수신장치의 위치가 급격히 변경되는 이벤트)를 포함할 수 있다. 이러한 트리거 이벤트를 '커플링 변경 이벤트'라 부를 수 있다. 무선전력 전송장치 및/또는 무선전력 수신장치는 커플링 변경 이벤트가 발생하는지 판단하고, 커플링 변경 이벤트가 감지되면 후속 보정 단계로 진입할 수 있다.
후속 보정 단계는 트리거 이벤트의 종류에 따라 각기 다른 방식으로 수행될 수 있다.
부하 증가에 따른 후속 보정
일례로서, 부하 증가 이벤트가 발생하면, 초기 보정을 확장(extension of initial calibration)하는 형태의 후속 보정이 수행될 수 있다. 이러한 본 실시예에 따른 전력 보정 방법을 순서도로 나타내면 도 15와 같다.
도 15는 부하 증가 이벤트에 따른 전력 보정 방법을 도시한 흐름도이다. 본 실시예에서의 전력 보정 방법은 도 5의 전력 전송 단계에서 수행될 수 있다. 본 실시예에서의 전력 보정은 전력 파라미터(전송 전력 및/또는 수신 전력)의 보정을 포함할 수 있다.
도 15를 참조하면, 무선전력 전송장치는 전력 전송 단계에서 무선전력을 무선전력 수신장치로 전송한다(S1500). 전력 전송 단계에서, 무선전력 수신장치는 도 13과 같은 형태의 제1 수신전력패킷(RPP)을 무선전력 전송장치로 전송한다(S1505). 제1 수신전력패킷은 모드 필드를 포함하며, 이때 모드 필드는 수신전력값이 일반 값에 해당함을 나타내는 '000' 또는 '100'를 지시할 수 있다(표 3 참조).
기존에 연결된 부하상에서의 전력 전송 도중에(during power transfer phase over the previous connected load), 무선전력 수신장치의 부하가 일정 수준 이상으로 증가하면(S1510), 무선전력 수신장치는 제2 수신전력패킷을 생성하여 무선전력 전송장치로 전송한다(S1515). 부하가 일정 수준 이상으로 증가하는 것은, 무선전력 수신장치의 목표 정류전압(target Vrec)이 일정 수준 이상으로 증가하는 것을 의미할 수 있다. 또는, 부하가 일정 수준 이상으로 증가하는 것은, 현재의 수신 전력이 초기 보정 단계에서 결정된 수신 전력 대비 증가하는 것을 의미할 수도 있다. 또는, 단계 S1510은 무선 전력 수신 값이 초기 보정에 따른 보정 커브(또는 보정 구간) 안에 존재하지 않는 경우로 대체될 수 있다. 즉, 단계 S1510은 수신된 전력 값이 이전 연결 부하 조건에서의 수신 전력 값보다 크게 되는 경우일 수 있다. 이는 수신 전력 값이 기존 보정 커브의 구간을 벗어나므로 무선전력 전송장치가 더 이상 유효한 보정을 수행할 수 없음을 의미할 수 있다. 따라서 후속 보정에서 부하 연결 조건하에서의 무선전력 수신장치가 수신 전력 값을 무선전력 전송장치로 전송하여 무선전력 전송장치로 하여금 후속 보정을 수행할 수 있도록 한다.
단계 S1515는, 전력 수신 값이 초기 보정의 구간을 벗어나는 경우, 무선전력 수신장치가 초기 보정이 더 이상 유효하지 않음(또는 유효한 보정이 수행될 수 없음)을 판단하고 부하 모드를 연결 부하 모드로 변경하는 단계를 더 포함할 수 있다.
이때, 제2 수신전력패킷에 포함되는 모드 필드는, 해당 수신전력값이 연결부하 조건 하에서의 수신전력값임을 나타내는 '010'을 지시할 수 있다. 즉, 무선전력 수신장치는 모드 필드를 '010'으로 설정하고, 상기 모드 필드를 포함하는 제2 수신전력패킷을 생성하여 무선전력 전송장치로 전송한다.
단계 S1515에서 무선전력 수신장치는 무선전력 전송장치로부터 ACK 응답을 수신할 때까지 제2 수신전력패킷을 주기적 또는 매 일정 시간 구간동안 연속하여 무선전력 전송장치로 전송할 수 있다. 예를 들어 상기 매 일정 시간 구간은 2초일 수 있다. 한편, 무선전력 전송장치는 제2 수신전력패킷을 수신할 경우, 시스템의 제어가 안정화될 때까지 NAK 응답을 전송하다가, 시스템의 제어가 안정화되면 ACK 응답을 무선전력 수신장치로 전송할 수 있다.
본 실시예에 따르면, 전력 전송 단계 이전인 초기 보정 단계에서 뿐만 아니라, 전력 전송 단계에서도 모드 필드가 '010'을 지시함이 허용된다. 즉, 무선전력 전송장치는 전력 전송 단계에서 수신하는 모드 필드가 일반적으로 '000' 또는 '100'을 지시할 것을 예상하나, 예외적으로 '010'을 지시하는 모드 필드를 수신하는 경우 이를 부하 증가 이벤트가 발생한 것으로 감지하고(S1520), 후속 보정 단계로 진입한다(S1525). 구체적으로 '010'을 지시하는 모드 필드를 포함하는 수신전력패킷이 어느 단계에서 수신되는지에 따라 무선전력 전송장치의 동작이 다음과 같이 구분된다. 즉, 전력 전송 단계에서 무선전력 전송장치가 새로운 연결 부하 모드를 지시하는 수신 전력 패킷을 무선전력 수신장치로부터 수신하면, 무선전력 전송장치는 그 값을 이용해 후속 보정을 수행할 수 있다. 이 경우, 후속 보정에 따라 보정의 구간(또는 범위)가 증가될 수 있다.
일례로서, 초기 보정 단계에서 '010'을 지시하는 모드 필드를 포함하는 수신전력패킷을 수신하는 경우, 무선전력 전송장치는 초기 연결부하(initial connected load) 조건 하에서의 수신전력값을 기반으로 초기 보정을 수행한다.
다른 예로서, 전력 전송 단계에서 '010'을 지시하는 모드 필드를 포함하는 수신전력패킷을 수신하는 경우, 무선전력 전송장치는 부하 증가 이벤트가 발생한 것으로 변경된 연결부하(changed connected load) 조건 하에서의 수신전력값을 기반으로 후속 보정을 수행한다.
이와 같이 동일한 값을 지시하는 모드 필드라 하더라도, 그것이 초기 보정 단계에서 수신되는지 전력 전송 단계에서 수신되는지에 따라 무선전력 전송장치의 해석과 동작이 다를 수 있다. 물론, 전력 전송 단계에서 굳이 초기 보정 단계에서 사용되는 모드 필드 값 '010'을 재사용하지 않고, 새로운 값(예를 들어 101-111 중 어느 한 값)을 사용하도록 구성할 수도 있다. 이 경우, 전력 전송 단계에서 상기 새로운 값을 지시하는 모드 필드를 포함하는 수신전력패킷을 수신하는 경우, 무선전력 전송장치는 부하 증가 이벤트를 감지하고(S1520), 후속 보정 단계로 진입한다(S1525).
이와 같이 전력 전송 단계에서 수신전력패킷의 모드 필드가 특정 값(010 또는 101-111 중 어느 하나의 값)으로 설정됨은, 부하 증가 이벤트가 발생함을 지시하거나 후속 보정 단계로의 진입을 지시하는 것으로 해석될 수 있다.
이러한 도 15에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 11에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 11에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 단계 S1500에 따른 전력 전송 단계에서 무선전력을 무선전력 수신장치로 전송하는 동작은 전력 변환 유닛(110)에 의해 수행될 수 있다. 또한 단계 S1505에 따른 제1 수신전력패킷을 수신하는 동작, 단계 S1515에 따른 제2 수신전력패킷을 수신하는 동작, 단계 S1520에 따른 부하 증가 이벤트를 감지하는 동작, 단계 S1525에 따른 후속 보정 단계로 진입하는 동작은 통신/컨트롤 유닛(120)에 의해 수행될 수 있다.
또한 도 15에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 11에서 개시된 무선전력 수신장치 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 11에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 단계 S1500에 따른 전력 전송 단계에서 무선전력을 무선전력 전송신장치로부터 수신하는 동작은 전력 픽업 유닛(210)에 의해 수행될 수 있다. 또한 단계 S1505에 따른 제1 수신전력패킷을 생성하고 전송하는 동작, 단계 S1510에 따른 부하를 증가시키고 이를 검출하는 동작과, 단계 S1515에 따른 제2 수신전력패킷을 생성하고 전송하는 동작은 통신/컨트롤 유닛(220)에 의해 수행될 수 있다.
한편, 단계 S1525에 따른 후속 보정 단계는, 도 16을 참조하여 보다 상세히 설명된다. 또한, 단계 S1525에 따른 후속 보정 단계를 전력 전송 단계와 별도로 구분하였지만, 후속 보정 단계를 별도로 떼어서 구분하지 않고 전력 전송 단계에 포함되는 동작으로 정의될 수도 있음은 물론이다.
도 16은 일 실시예에 따른 무선전력 전송장치의 후속 보정 방법을 설명하는 순서도이다.
도 16을 참조하면, 무선전력 전송장치는 추가 연결부하 조건 하에서 전력 파리미터(전송 전력 및/또는 수신 전력)를 결정한다(S1600). 추가 연결부하 조건이란, 전력 전송 단계에서 무선전력수신장치의 연결 부하가 증가된 상태(또는 정류전압이 증가된 상태)에서의 부하 조건을 의미한다. 추가 연결부하 조건 하에서 전송 전력은, 전력 전송 단계에서 무선전력 전송장치가 전송한 전력(Ptransmitted)으로서 이미 알고 있는 정보에 해당한다. 추가 연결부하 조건 하에서 수신 전력은 단계 S1515에서 수신된 제2 수신전력패킷에 포함된 수신전력값(Preceived)으로 결정될 수 있다.
무선전력 전송장치는 초기의 보정 상수(단계 S1205에 의해 구해짐), 추가 부하 조건 하에서 결정된 전송 전력, 수신전력을 기반으로, 후속 보정 상수를 결정한다(S1605).
구체적으로, 무선전력 전송장치는 상기 결정된 전송 전력 및/또는 수신 전력에 선형 보간(linear interpolation)을 적용하여 후속 보정 상수를 결정하고, 보정된 전송 전력 및/또는 수신 전력을 결정할 수 있다.
추가 부하 조건하에서 결정된 전송 전력과 수신 전력을 각각 x', y'라 할 때, 좌표 (x', y')가 얻어진다. 초기 부하 조건 하에서 구해진 보정 함수(또는 보정 커브)에서 상기 좌표 (x', y')까지 선형 보간에 의해 확장하면, 도 17과 같다.
도 17은 일 실시예에 따라 선형 보간에 기반하여 도시한 확장된(extended) 보정 커브(calibration curve)이다.
도 17을 참조하면, 보정 단계에서 경부하 조건 하에서의 전송 전력 (Ptr_(light))과 수신 전력(Prec_(light))으로 구성된 제1 좌표와, 보정 단계에서 연결부하 조건 하에서의 전송 전력 (Ptr_connected(1))과 수신 전력(Prec_connected(1))으로 구성된 제2 좌표를 선형 보간에 의해 연결하면 기울기(gradient)는 a이고 y축 오프셋(offset)이 b인 선형 커브가 도출된다. 여기서, a는 제1 보정 상수이고, b는 제2 보정 상수라 불릴 수 있다. 이는 도 14에 도시된 보정 커브와 동일하다.
한편, 도 14에서의 보정 커브의 제2 좌표와, 전력 전송 단계에서 추가 연결부하 조건 하에서의 전송 전력(Ptr_connected(2))과 수신 전력(Prec_connected(2))으로 구성된 제3 좌표를 선형 보간에 의해 연결하면 도 14의 보정 커브가 확장되며, 기울기가 a1인 확장된 보정 함수가 얻어진다.
부하증가로 인해 전송 전력 및/또는 수신 전력이 증가하더라도 보정 커브 또한 이에 적응적으로 Ptr_connected(1)에서 Ptr_connected(2) 구간만큼 확장되기 때문에, 전송 전력 및/또는 수신 전력에 대한 보정 가능한 범위가 증가하며 결과적으로 정교한 FOD가 가능해질 수 있다.
본 실시예는 3가지 부하 조건(보정 단계에서 경부하 조건에서의 전력, 보정 단계에서 연결부하 조건에서의 전력, 전력 전송 단계에서 연결부하 조건에서의 전력)에 따른 3개의 좌표를 이용한 보정이므로 3 포인트 보정(3 point calibration) 또는 다중 포인트 보정(multi-point calibration)이라 불릴 수도 있다. 또한 본 실시예는 보정 상수를 구함에 있어서 선형 보간을 이용하였으나, 보간 방법은 이에 제한되는 것은 아니다.
이와 같이 확장된 보정 함수를 도출하기 위해서는, 무선전력 전송장치는 보정 단계에서 이미 도출한 초기 보정 함수에 따른 보정 상수들을 내부 메모리에 저장하고 있어야 한다. 그리고 무선전력 전송장치는 기존에 저장된 초기 보정 함수를 확장된 보정 함수로 업데이트한다.
다시 도 16을 참조하면, 위와 같이 추가 보정 상수들까지 결정되면, 무선전력 전송장치는 전력 전송 단계에서 전송 전력을 결정하고 무선전력 수신장치로부터 수신전력패킷을 수신한다. 이때 무선전력 전송장치는 전력 전송 단계에서 결정된 전송 전력 및/또는 수신 전력을 확장된 보정 함수를 이용하여 후속 보정함으로써 후속 보정된 전송 전력 및/또는 수신 전력을 결정한다(S1610).
확장된 보정 함수에 따라 보정된 전송 전력을 결정하는 방법은, 전송 전력이 어느 구간에 속하는지에 따라 적응적으로 결정될 수 있다. 예를 들어 전송 전력이 Ptr_connected(1) 이하의 구간일 경우 무선전력 전송장치는 기울기 a를 적용하여 보정된 전송 전력을 결정하고, 전송 전력이 Ptr_connected(1) 이상의 구간일 경우, 무선전력 전송장치는 기울기 a1을 적용하여 보정된 전송 전력을 결정할 수 있다.
후속 보정된 전송 전력 및/또는 수신 전력이 결정되면, 무선전력 전송장치는 후속 보정된 전송 전력 및/또는 수신 전력을 기반으로 전력 손실을 결정하고, 결정된 전력 손실을 기반으로 FOD를 수행한다(S1615). 무선전력 전송장치는 i) 보정된 전송 전력과 보정되지 않은 수신전력을 기반으로 FOD를 수행할 수도 있고, ii) 보정되지 않은 전송 전력과 보정된 수신전력을 기반으로 FOD를 수행할 수도 있으며, iii) 보정된 전송 전력과 보정된 수신전력을 기반으로 FOD를 수행할 수도 있다.
만약 결정된 전력 손실이 임계값을 초과하면, 무선전력 전송장치는 이물일이 존재하는 것으로 판단하고 전력 전송을 중단할 수 있다. 반면 만약 결정된 전력 손실이 임계값을 초과하지 않으면, 무선전력 전송장치는 이물일이 존재하지 않는 것으로 판단하고 전력 전송을 지속할 수 있다.
이러한 도 16 내지 도 17에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 11에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 11에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 단계 S1600에 따른 추가 부하 조건 하에서의 전송 전력 및/또는 수신 전력을 결정하는 동작, 단계 S1605에 따른 추가 보정 상수(또는 보정 커브 또는 보정 함수)를 결정하는 동작, 단계 S1610에 따른 후속 보정된 전송 전력 및/또는 후속 보정된 수신 전력을 결정하는 동작, 단계 S1615에 따른 FOD를 수행하는 동작은 통신/컨트롤 유닛(120)에 의해 수행될 수 있다.
또한 도 16 내지 도 17에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 11에서 개시된 무선전력 수신장치 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 11에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 단계 S1610에 따른 수신전력패킷을 생성하여 무선전력 전송장치로 전송하는 동작은 통신/컨트롤 유닛(220)에 의해 수행될 수 있다.
부하 증가 이벤트에 따른 후속 보정은 핑 단계로 돌아가지 않고 전력 전송 단계에서 수행되는 점에서, 핑 단계로 되돌아 가는 커플링 변경 이벤트에 따른 후속 보정과는 대조된다.
단계 S1525 및 도 16의 실시예에 따른 후속 보정은, 전력 전송 단계 중 트리거 이벤트가 발생할 때마다 수행될 수 있다. 예를 들어, 전력 전송 단계에서 수신 전력 값이 기존 연결 부하 모드에서의 수신 전력 값보다 커지는 매 경우마다, 무선전력 전송장치와 무선전력 수신장치는 단계 S1525 및 도 16의 실시예에 따른 후속 보정을 수행할 수 있다.
커플링 변경에 따른 후속 보정
다른 예로서, 커플링 변경 이벤트가 발생하면, 초기 보정을 다시 수행 (redoing of initial calibration)하는 형태의 후속 보정이 수행될 수 있다. 예를 들어, 보정 단계 이후에 무선전력 수신장치의 위치가 사용자의 의사에 의해 변경되거나, 사용자의 의사와 무관하게 변경될 수도 있다. 그리고 이러한 무선전력 수신장치의 위치 변경은 결국 무선전력 전송장치와 수신장치 간의 커플링 변경을 야기한다. 커플링이 변경되면 초기 보정 함수(또는 초기 보정 커브)는 더이상 유효하지 않게 되는데, 이는 경부하/연결부하에서의 전력으로 도출되는 초기 보정 함수가 특정한 커플링 조건에 의존하기 때문이다. 다시 말해, 특정한 커플링 조건 하에서 도출되는 초기 보정 함수는, 해당 커플링 조건이 변경되면 더 이상 유효하지 않게 된다.
따라서, 커플링 변경 이벤트가 발생하면, 기존 초기 보정 함수가 더이상 사용될 수 없기 때문에 후속 보정은 실질적으로 새로운 초기 보정 함수를 도출하는 과정을 포함한다.
이하에서는 커플링 변경 이벤트의 발생을 감지하는 방법과, 커플링 변경 이벤트에 따라 전력 보정을 수행하는 방법에 관하여 보다 상세히 설명된다. 이러한 본 실시예에 따른 전력 보정 방법을 순서도로 나타내면 도 15와 같다.
도 18은 일 실시예에 따른 커플링 변경 이벤트에 기반한 전력 보정 방법을 도시한 흐름도이다. 본 실시예에서의 전력 보정 방법은 도 5의 보정 단계에서 수행될 수 있다. 본 실시예에서의 전력 보정은 전력 파라미터(전송 전력 및/또는 수신 전력)의 보정을 포함할 수 있다.
도 18을 참조하면, 무선전력 전송장치는 전력 전송 단계에서 무선전력을 무선전력 수신장치로 전송한다(S1800). 전력 전송 단계에서, 무선전력 수신장치는 도 13과 같은 형태의 수신전력패킷(RPP)과 제어오류패킷(control error packet: CEP) 등을 무선전력 전송장치로 전송한다(S1805).
무선전력 전송장치는 전력 전송 단계에서 전송된 전력에 관한 정보 및/또는 무선전력 수신장치로부터 수신된 정보(또는 패킷)을 모니터링하고, 상기 모니터링 결과에 기반하여 커플링 변경 이벤트의 발생을 감지한다(S1810).
일례로서, 수신 전력의 증가가 없음에도 불구하고 전송된 전력(Ptransmitted)이 증가하는 경우, 무선전력 전송장치는 커플링 변경 이벤트가 발생한 것으로 판단하거나, 이물질이 삽입된 것으로 판단할 수 있다.
다른 예로서, 제어 오류(control error: CE)가 거의 0에 수렴한 이후, 무선전력 수신장치에서의 의도적인 부하 변경이 없음에도 불구하고 CE가 급격히 변화된 경우, 무선전력 전송장치는 커플링 변경 이벤트가 발생한 것으로 판단하거나, 이물질이 삽입된 것으로 판단할 수 있다. 이때 무선전력 전송장치는 CE의 변화가 무선전력 수신장치의 의도적인 부하 조건의 변화에 의한 것인지 여부를 수신전력패킷(RPP)의 모드 필드를 통해 확인할 수 있다. 즉, 무선전력 전송장치는 CEP와 RPP를 기반으로 커플링 변경 이벤트의 발생 여부를 판단할 수 있다.
단계 S1810에서 커플링 변경 이벤트(또는 이물질 삽입)를 감지하면, 무선전력 전송장치는 전체적인 FOD 절차를 다시 수행하여(Q 팩터 기반의 FOD 및 APLD) 이물질을 검출하거나, 후속 보정을 수행한다. 여기서, 후속 보정은 초기 보정에 따른 보정 함수(또는 보정 커브 또는 보정 상수)를 다시 새롭게(renew)하는 동작을 포함한다.
무선전력 전송장치는 커플링 변경 이벤트가 발생하였음을 무선전력 수신장치에게 알려주기 위해 단계 S1805에서 수신된 수신전력패킷에 대한 응답으로 특정한 비트 패턴 응답을 무선전력 수신장치에게 전송하는 동작을 수행할 수 있다(S1815). 비트 패턴 응답의 전송을 위해 FSK 변조가 사용될 수 있다. 예를 들어 비트 패턴 응답은 8비트로서 ATN(attention) 또는 RFC(reqeust for communication)이라 불릴 수 있다. 무선전력 전송장치는 비트 패턴 응답을 특정 비트값으로 설정하여 무선전력 수신장치로 전송함으로써 무선전력 수신장치가 리핑 개시 패킷을 전송하도록 요청하거나, 무선전력 수신장치의 주의를 끌거나, 특정 패킷의 전송을 요청하거나, 무선전력 수신장치로부터 수신된 패킷에 대한 응답을 제공할 수 있다.
일례로서, 요청 승인을 지시하는 ACK 응답은 '11111111'의 비트 패턴으로 나타내고, 요청을 거절하는 NAK 응답은 '00000000'의 비트 패턴으로 나타내며, 인식 불가능한 또는 유효하지 않은 요청임을 지시하는 ND 응답은 '01010101' 비트 패턴으로 나타낼 수 있다. 또한, ATN은 위 ACK/NAK/ND 응답을 위해 정의된 비트 패턴을 제외한 다양한 8-bit 사이즈의 비트 패턴으로 정의될 수 있다. 예를 들어, ATN는 '00001111', '11110000', '10101010', '10110110', '00110011' 또는 '01001001'으로 정의될 수 있다. 그러나, 이는 실시예에 불과하며 다양한 비트 패턴으로 ATN을 구성할 수 있음은 물론이다.
ATN 비트 패턴 응답은 일반적으로 무선전력 전송장치가 보낼 메시지가 있다는 것을 무선전력 수신장치에게 알려 주기 때문에, 무선전력 수신장치는 ATN 비트 패턴 응답을 수신한 뒤 구체적으로 어떤 이유에서 무선전력 전송장치가 ATN 비트 패턴 응답을 보냈는지 파악하기 위해, DSR (poll) 패킷을 무선전력 전송장치로 전송한다(S1820).
이때, 무선전력 전송장치는 DSR(poll) 패킷에 대한 응답으로 무선전력 수신장치에게 리핑(re-ping) 개시를 위한 패킷(이하 리핑 개시 패킷)을 전송하도록 요청한다(S1825). 단계 S1825는 무선전력 수신장치가 리핑을 개시하도록 무선전력 전송장치가 무선전력 수신장치에게 요청하는 동작에 해당한다. 리핑의 개시자(initiator)는 무선전력 수신장치이므로 무선전력 전송장치가 무선전력 수신장치의 허락없이 임의로 리핑 단계로 진입할 수는 없으므로, 단계 S1825과 같이 리핑의 개시자인 무선전력 수신장치에게 리핑을 개시하도록 요청하는 과정이 선결적으로 수행된다.
리핑 개시의 요청을 받은 무선전력 수신장치는 리핑 개시 패킷을 생성하여 무선전력 전송장치로 전송한다(S1830). 여기서, 리핑 개시 패킷은 리핑의 개시를 위한 전력 전송 종료(end power transfer : EPT) 패킷일 수 있다.
도 19는 일 실시예에 따른 리핑의 개시를 위한 EPT 패킷을 도시한 구조도이다.
도 19를 참조하면, EPT 패킷은 1바이트(8비트)의 EPT 코드를 지시한다. EPT 코드는 비트 값에 따라 여러가지 내용을 지시할 수 있는데, 특히 비트 값이 '0x0C'인 경우 리핑의 개시를 위한 전력 전송의 종료를 지시할 수 있다. '0x0C'는 예시에 불과할 뿐, 리핑의 개시를 위한 전력 전송의 종료를 지시하는 비트 값은 '0x0D' 등 다양한 실시예를 포함할 수 있음은 물론이다.
다시 도 18을 참조하면, 리핑의 개시를 위한 EPT 패킷을 수신한 무선전력 전송장치는 리핑을 수행한다(S1835). 리핑은 미리 정해진 특정한 리핑 지연(re-ping delay) 이후에 수행될 수 있다. 이때, 리핑 지연값은 예를 들어 협상 단계에서 리핑 시간(또는 지연) 패킷에 의해 설정될 수 있다. 또는, 리핑은 미리 정해진 특정한 리핑 지연에도 불구하고 즉각적으로 수행될 수 있다. 한편, 리핑이 수행되는 과정 중에는 무선전력이 무선전력 수신장치로 공급되지 않더라도 무선전력 수신장치는 사용자 인터페이스 상에 충전 중임을 표시할 수 있다. 만약 단계 S1830에서 무선전력 전송장치가 일정 시간 이내에 리핑 개시 패킷의 수신에 실패하면, 무선전력 전송장치는 무선전력 수신장치를 리셋하고 전체적인 FOD 절차를 다시 수행할 수 있다.
리핑은, 선택 단계에서 무선전력 전송장치가 아날로그 핑 신호를 전송하는 단계와, 무선전력 수신장치를 검출하고 식별하는 단계(이 때 검출/식별을 나타내는 빕(beep) 신호가 출력될 수 있음)와, Q 팩터에 기반한 FOD를 수행하는 단계를 포함할 수 있다.
이후 무선전력 전송장치와 수신장치는 후속 보정(subsequent calibration)을 수행한다(S1840). 단계 S1840에 따른 후속 보정은, 도 12의 실시예에서 설명된 초기 보정을 포함할 수 있다. 즉, 단계 S1840에 따른 무선전력 전송장치의 후속 보정은 도 12의 실시예에 따른 무선전력 전송장치의 보정 동작을 포함하고, 단계 S1840에 따른 무선전력 수신장치의 후속 보정은 도 12의 실시예에 따른 무선전력 수신장치의 보정 동작을 포함할 수 있다. 그에 따라, 커플링 변경 이벤트에 따른 후속 보정이 완료되고, 후속 보정에 따른 전송 전력 및/또는 보정된 수신 전력이 결정된다.
무선전력 전송장치는 후속 보정에 의해 결정된 전송 전력 및/또는 수신 전력을 기반으로 전력 손실을 결정하고, 결정된 전력 손실에 기반하여 FOD를 수행한다(S1845).
이러한 도 18에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 11에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 11에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 단계 S1800에 따른 전력 전송 단계에서 무선전력을 무선전력 수신장치로 전송하는 동작은 전력 변환 유닛(110)에 의해 수행될 수 있다. 또한 단계 S1805에 따른 RPP, CEP 등을 수신하는 동작, 단계 S1810에 따른 커플링 변경 이벤트를 감지하는 동작, 단계 S1825에 따른 리핑 개시를 요청하는 동작, 단계 S1830에 따른 리핑 개시 패킷을 수신하는 동작, S1835에 따른 리핑을 수행하는 동작, 단계 S1840에 따른 후속 보정을 수행하는 동작, 단계 S1845에 따른 FOD를 수행하는 동작은 통신/컨트롤 유닛(120)에 의해 수행될 수 있다.
또한 도 18에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 11에서 개시된 무선전력 수신장치 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 11에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 단계 S1800에 따른 전력 전송 단계에서 무선전력을 무선전력 전송신장치로부터 수신하는 동작은 전력 픽업 유닛(210)에 의해 수행될 수 있다. 또한 단계 S1805에 따른 RPP, CEP 등의 패킷을 제1 생성하고 전송하는 동작, 단계 S1810에 따른 커플링 변경 이벤트를 감지하는 동작, 단계 S1825에 따른 리핑 개시요청을 수신하는 동작, 단계 S1830에 따른 리핑 개시 패킷을 생성하고 전송하는 동작, S1835에 따른 리핑을 수행하는 동작, 단계 S1840에 따른 후속 보정을 수행하는 동작은 통신/컨트롤 유닛(220)에 의해 수행될 수 있다.
도 18에 따른 전력 보정 방법은 무선전력 수신장치가 리핑의 개시자인 경우의 예시이다. 그러나, 즉각적인 리핑을 위해서는 무선전력 전송장치가 리핑의 개시자가 될 수도 있다. 따라서, 이하에서는 리핑의 개시자가 무선전력 전송장치일 경우의 전력 보정 방법에 관하여 개시된다.
도 20은 다른 실시예에 따른 커플링 변경 이벤트에 기반한 전력 보정 방법을 도시한 흐름도이다. 본 실시예에서의 전력 보정 방법은 도 5의 보정 단계에서 수행될 수 있다. 본 실시예에서의 전력 보정은 전송 전력의 보정 및/또는 수신 전력의 보정을 포함할 수 있다.
도 20을 참조하면, 단계 S2000 내지 단계 S2010은 각각 단계 S1800 내지 단계 S1810과 동일하다. 그러나, 도 20의 실시예에서는 무선전력 전송장치가 리핑의 개시자이므로, 단계 S1815와 같이 무선전력 수신장치에게 리핑 개시 요청을 보내지 않는 대신, 리핑 개시를 비트 패턴으로 알려준다(S2015). 아울러, 무선전력 전송장치는 리핑 개시 패킷을 무선전력 수신장치로 전송하여(S2020), 일방적으로 리핑 단계로 진입할 수 있다(S2025). 이때 단계 S2020에서의 리핑 개시 패킷은 예를 들어 1바이트(8비트)로서, 리핑 여부를 지시하는 2비트의 제1 필드와, 리핑 지연 시간을 지시하는 2비트의 제2 필드를 포함하는 패킷 구조일 수 있다. 물론, 제1 필드와 제2 필드에 포함되는 비트의 개수는 다양하게 변형될 수 있다.
이후 단계 S2025 내지 단계 S2035는 각각 단계 S1825 내지 단계 S1835와 동일하다.
이러한 도 20에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 11에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 11에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 단계 S2000에 따른 전력 전송 단계에서 무선전력을 무선전력 수신장치로 전송하는 동작은 전력 변환 유닛(110)에 의해 수행될 수 있다. 또한 단계 S2005에 따른 RPP, CEP 등을 수신하는 동작, 단계 S2015에 따른 커플링 변경 이벤트를 감지하는 동작, 단계 S2015에 따른 리핑 개시 지시를 생성하고 전송하는 동작, 단계 S2020에 따른 리핑 개시 패킷을 전송하는 동작, S2025에 따른 리핑을 수행하는 동작, 단계 S2030에 따른 후속 보정을 수행하는 동작, 단계 S2035에 따른 FOD를 수행하는 동작은 통신/컨트롤 유닛(120)에 의해 수행될 수 있다.
또한 도 20에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 11에서 개시된 무선전력 수신장치 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 11에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 단계 S2000에 따른 전력 전송 단계에서 무선전력을 무선전력 전송신장치로부터 수신하는 동작은 전력 픽업 유닛(210)에 의해 수행될 수 있다. 또한 단계 S2005에 따른 RPP, CEP 등의 패킷을 제1 생성하고 전송하는 동작, 단계 S2015에 따른 커플링 변경 이벤트를 감지하는 동작, 단계 S2015에 따른 리핑 개시지시를 수신하는 동작, 단계 S2020에 따른 리핑 개시 패킷을 수신하는 동작, S2025에 따른 리핑을 수행하는 동작, 단계 S2030에 따른 후속 보정을 수행하는 동작은 통신/컨트롤 유닛(220)에 의해 수행될 수 있다.
단계 S1840 또는 단계 S2030의 실시예에 따른 후속 보정은, 전력 전송 단계 중 커플링 변경 이벤트가 발생할 때마다 수행될 수 있다. 예를 들어, 커플링 변경 이벤트가 발생하는 매 경우마다, 무선전력 전송장치와 무선전력 수신장치는 단계 S1840 또는 단계 S2030의 실시예에 따른 후속 보정을 수행할 수 있다.
상술한 본 발명의 실시예에 따른 무선 전력 송신 방법 및 장치, 또는 수신 장치 및 방법은 모든 구성요소 또는 단계가 필수적인 것은 아니므로, 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법은 상술한 구성요소 또는 단계의 일부 또는 전부를 포함하여 수행될 수 있다. 또 상술한 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법의 실시예들은 서로 조합되어 수행될 수도 있다. 또 상술한 각 구성요소 또는 단계들은 반드시 설명한 순서대로 수행되어야 하는 것은 아니며, 나중에 설명된 단계가 먼저 설명된 단계에 앞서 수행되는 것도 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 발명의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (18)
- 전력 전송 페이즈(power transfer phase)에서, 자기 커플링(magnetic coupling)에 기반하여 생성된 무선전력을 무선전력 수신장치로 전송하도록 구성된 전력 변환 유닛(power conversion unit); 및상기 전력 전송 페이즈 이전에 전력 파라미터(power parameter)에 대한 초기 보정(initial calibration)을 수행하고, 상기 전력 전송 페이즈 동안에 상기 무선전력 수신장치에 의해 수신된 전력을 지시하는 제1 수신전력패킷(received power packet)을 상기 무선전력 수신장치로부터 수신하며, 상기 수신된 전력과 상기 초기 보정에 기반하여 결정된 제1 전력 손실(power loss)를 이용하여 이물질(foreign object) 검출을 수행하도록 구성된 통신/컨트롤 유닛(communication/control unit)을 포함하되,상기 통신/컨트롤 유닛은 상기 전력 파라미터에 대한 후속 보정(subsequent calibration)을 수행하고, 상기 후속 보정에 기반하여 결정된 제2 전력 손실을 이용하여 이물질 검출을 수행하도록 구성된 것을 특징으로 하는, 무선전력 전송장치.
- 제 1 항에 있어서,상기 통신/컨트롤 유닛은 상기 전력 전송 페이즈 동안에 제2 수신전력패킷을 상기 무선전력 수신장치로부터 수신하되,상기 제1 수신전력패킷은 상기 제1 수신전력패킷이 지시하는 제1 수신 전력값이 일반 값임을 지시하는 제1 모드 필드를 포함하고,상기 제2 수신전력패킷은 상기 제2 수신전력패킷이 지시하는 수신 전력값이 연결부하(connected load) 상태에서의 제2 수신 전력값임을 지시하는 제2 모드 필드를 포함함을 특징으로 하는, 무선전력 전송장치.
- 제 2 항에 있어서,상기 전력 전송 페이즈 이전의 전력 파라미터는 상기 무선전력 수신장치에 부하가 연결되지 않은 조건하에서 상기 무선전력 수신장치가 수신한 경부하(light load) 수신 전력값(received power value), 상기 무선전력 수신장치에 상기 부하가 연결된 조건하에서 상기 무선전력 수신장치가 수신한 연결부하(connected load) 수신 전력값을 포함하고,상기 전력 전송 페이즈 동안의 전력 파라미터는 상기 제2 수신 전력값을 포함하며,상기 통신/컨트롤 유닛은 상기 경부하 수신전력값, 상기 연결부하 수신전력값 및 상기 제2 수신 전력값에 기반하여 상기 후속 보정을 수행함을 특징으로 하는, 무선전력 전송장치.
- 제 1 항에 있어서,상기 통신/컨트롤 유닛은 상기 자기 커플링이 일정 수준 이상으로 변경되는지 판단하고,만약 상기 자기 커플링이 일정 수준 이상으로 변경되면, 상기 통신/컨트롤 유닛은 리핑(re-ping)의 개시를 요청하는 비트 패턴(bit pattern)을 상기 무선전력 수신장치로 전송함을 특징으로 하는, 무선전력 전송장치.
- 제 4 항에 있어서,상기 비트 패턴에 대한 응답으로, 상기 통신/컨트롤 유닛은 리핑 개시 패킷을 상기 무선전력 수신장치로부터 수신함을 특징으로 하는 무선전력 전송장치.
- 제 5 항에 있어서,상기 리핑 개시 패킷은 리핑의 개시를 위한 전력 전송 종료(end power transfer: EPT) 패킷을 포함함을 특징으로 하는, 무선전력 전송장치.
- 제 6 항에 있어서,상기 통신/컨트롤 유닛은 상기 리핑 개시 패킷에 기반하여 리핑 단계로 진입하고,상기 리핑 단계에서 상기 초기 보정을 다시 수행함을 특징으로 하는 무선전력 전송장치.
- 전력 전송 페이즈(power transfer phase)에서, 자기 커플링(magnetic coupling)에 기반하여 생성된 무선전력을 무선전력 전송장치로부터 수신하도록 구성된 전력 픽업 유닛(power pickup unit); 및상기 전력 전송 페이즈 이전에 전력 파라미터(power parameter)에 대한 초기 보정(initial calibration)을 수행하고, 상기 전력 전송 페이즈 동안에 상기 무선전력 전송장치로부터 수신된 전력을 지시하는 제1 수신전력패킷(received power packet)을 상기 무선전력 전송장치로 전송하도록 구성된 통신/컨트롤 유닛(communication/control unit)을 포함하되,상기 통신/컨트롤 유닛은 상기 전력 파라미터에 대한 후속 보정(subsequent calibration)을 수행하도록 구성된 것을 특징으로 하는, 무선전력 수신장치.
- 제 8 항에 있어서,상기 통신/컨트롤 유닛은 상기 전력 전송 페이즈 동안에 제2 수신전력패킷을 상기 무선전력 전송장치로 전송하되,상기 제1 수신전력패킷은 상기 제1 수신전력패킷이 지시하는 제1 수신 전력값이 일반 값임을 지시하는 제1 모드 필드를 포함하고,상기 제2 수신전력패킷은 상기 제2 수신전력패킷이 지시하는 수신 전력값이 연결부하(connected load) 상태에서의 제2 수신 전력값임을 지시하는 제2 모드 필드를 포함함을 특징으로 하는, 무선전력 수신장치.
- 제 9 항에 있어서,상기 전력 전송 페이즈 이전의 전력 파라미터는 상기 무선전력 수신장치에 부하가 연결되지 않은 조건하에서 상기 무선전력 수신장치가 수신한 경부하(light load) 수신 전력값(received power value), 상기 무선전력 수신장치에 상기 부하가 연결된 조건하에서 상기 무선전력 수신장치가 수신한 연결부하(connected load) 수신 전력값을 포함하고,상기 전력 전송 페이즈 동안의 전력 파라미터는 상기 제2 수신 전력값을 포함함을 특징으로 하는, 무선전력 수신장치.
- 제 8 항에 있어서,상기 자기 커플링이 일정 수준 이상으로 변경되면, 상기 통신/컨트롤 유닛은 리핑(re-ping)의 개시를 요청하는 비트 패턴(bit pattern)을 상기 무선전력 전송장치로부터 수신함을 특징으로 하는, 무선전력 수신장치.
- 제 11 항에 있어서,상기 비트 패턴에 대한 응답으로, 상기 통신/컨트롤 유닛은 리핑 개시 패킷을 상기 무선전력 전송장치로 전송함을 특징으로 하는 무선전력 수신장치.
- 제 12 항에 있어서,상기 리핑 개시 패킷은 리핑의 개시를 위한 전력 전송 종료(end power transfer: EPT) 패킷을 포함함을 특징으로 하는, 무선전력 수신장치.
- 제 13 항에 있어서,상기 통신/컨트롤 유닛은 상기 리핑 개시 패킷에 기반하여 리핑 단계로 진입하고,상기 리핑 단계에서 상기 초기 보정을 다시 수행함을 특징으로 하는 무선전력 수신장치.
- 전력 전송 페이즈(power transfer phase) 이전에 전력 파라미터(power parameter)에 대한 초기 보정(initial calibration)을 수행하는 단계;상기 전력 전송 페이즈에서, 자기 커플링(magnetic coupling)에 기반하여 생성된 무선전력을 무선전력 수신장치로 전송하는 단계;상기 전력 전송 페이즈 동안에 상기 무선전력 수신장치에 의해 수신된 전력을 지시하는 제1 수신전력패킷(received power packet)을 상기 무선전력 수신장치로부터 수신하는 단계;상기 수신된 전력과 상기 초기 보정에 기반하여 결정된 제1 전력 손실(power loss)를 이용하여 이물질(foreign object) 검출을 수행하는 단계;상기 전력 파라미터에 대한 후속 보정(subsequent calibration)을 수행하는 단계; 및상기 후속 보정에 기반하여 결정된 제2 전력 손실을 이용하여 이물질 검출을 수행하는 단계를 포함하는 전력 보정 방법.
- 제 15 항에 있어서,상기 전력 전송 페이즈 동안에 제2 수신전력패킷을 상기 무선전력 수신장치로부터 수신하는 단계를 더 포함하되,상기 제1 수신전력패킷은 상기 제1 수신전력패킷이 지시하는 제1 수신 전력값이 일반 값임을 지시하는 제1 모드 필드를 포함하고,상기 제2 수신전력패킷은 상기 제2 수신전력패킷이 지시하는 수신 전력값이 연결부하(connected load) 상태에서의 제2 수신 전력값임을 지시하는 제2 모드 필드를 포함함을 특징으로 하는, 전력 보정 방법.
- 제 16 항에 있어서,상기 전력 전송 페이즈 이전의 전력 파라미터는 상기 무선전력 수신장치에 부하가 연결되지 않은 조건하에서 상기 무선전력 수신장치가 수신한 경부하(light load) 수신 전력값(received power value), 상기 무선전력 수신장치에 상기 부하가 연결된 조건하에서 상기 무선전력 수신장치가 수신한 연결부하(connected load) 수신 전력값을 포함하고,상기 전력 전송 페이즈 동안의 전력 파라미터는 상기 제2 수신 전력값을 포함하며,상기 후속 보정은 상기 경부하 수신전력값, 상기 연결부하 수신전력값 및 상기 제2 수신 전력값에 기반하여 수행됨을 특징으로 하는, 전력 보정 방법.
- 제 15 항에 있어서,만약 상기 자기 커플링이 일정 수준 이상으로 변경되면, 상기 통신/컨트롤 유닛은 리핑(re-ping)의 개시를 요청하는 비트 패턴(bit pattern)을 상기 무선전력 수신장치로 전송하는 단계를 더 포함함을 특징으로 하는, 전력 보정 방법.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310302928.4A CN116317212A (zh) | 2018-01-10 | 2019-01-08 | 无线功率发送器、功率校准方法和检测异物的方法 |
EP22151372.4A EP4007122A1 (en) | 2018-01-10 | 2019-01-08 | Apparatus and method for performing power calibration in wireless power transmission system |
US16/961,554 US11139702B2 (en) | 2018-01-10 | 2019-01-08 | Apparatus and method for performing power calibration in wireless power transmission system |
CN201980012518.8A CN111712989B (zh) | 2018-01-10 | 2019-01-08 | 在无线功率发送系统中执行功率校准的设备和方法 |
EP19738512.3A EP3734795B1 (en) | 2018-01-10 | 2019-01-08 | Apparatus and method for performing power calibration in wireless power transmission system |
US17/449,884 US11664688B2 (en) | 2018-01-10 | 2021-10-04 | Apparatus and method for performing power calibration in wireless power transmission system |
US18/302,938 US12021397B2 (en) | 2018-01-10 | 2023-04-19 | Apparatus and method for performing power calibration in wireless power transmission system |
US18/677,490 US20240322613A1 (en) | 2018-01-10 | 2024-05-29 | Apparatus and method for performing power calibration in wireless power transmission system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862615445P | 2018-01-10 | 2018-01-10 | |
US62/615,445 | 2018-01-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/961,554 A-371-Of-International US11139702B2 (en) | 2018-01-10 | 2019-01-08 | Apparatus and method for performing power calibration in wireless power transmission system |
US17/449,884 Continuation US11664688B2 (en) | 2018-01-10 | 2021-10-04 | Apparatus and method for performing power calibration in wireless power transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019139326A1 true WO2019139326A1 (ko) | 2019-07-18 |
Family
ID=67219816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/000251 WO2019139326A1 (ko) | 2018-01-10 | 2019-01-08 | 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 |
Country Status (4)
Country | Link |
---|---|
US (4) | US11139702B2 (ko) |
EP (2) | EP4007122A1 (ko) |
CN (2) | CN116317212A (ko) |
WO (1) | WO2019139326A1 (ko) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113098153A (zh) * | 2021-04-13 | 2021-07-09 | 浙江泰米电子科技有限公司 | Lclp无线充电系统的异物检测方法 |
KR20220032580A (ko) * | 2019-10-02 | 2022-03-15 | 엘지전자 주식회사 | 무선전력 수신장치, 무선전력 전송장치 및 이들을 이용한 전력 보정 방법 |
CN115356561A (zh) * | 2022-08-12 | 2022-11-18 | 上海移柯通信技术股份有限公司 | 线损校准方法、系统、电子设备和计算机可读存储介质 |
EP4254736A3 (en) * | 2020-02-13 | 2024-01-03 | Canon Kabushiki Kaisha | Power transmission device and power receiving device, and control method and program therefor |
EP4024661A4 (en) * | 2019-08-29 | 2024-05-22 | Canon Kabushiki Kaisha | POWER RECEIVING DEVICE, POWER TRANSMITTING DEVICE, CONTROL METHOD AND PROGRAM |
EP4362492A3 (en) * | 2020-08-31 | 2024-09-04 | Sonos, Inc. | Wireless power transfer for audio playback devices |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4007122A1 (en) * | 2018-01-10 | 2022-06-01 | Lg Electronics Inc. | Apparatus and method for performing power calibration in wireless power transmission system |
WO2019208960A1 (ko) | 2018-04-25 | 2019-10-31 | 엘지전자 주식회사 | 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 |
WO2020206614A1 (zh) * | 2019-04-09 | 2020-10-15 | 北京小米移动软件有限公司 | 信息发送方法、装置及存储介质 |
WO2022086488A1 (en) * | 2020-10-19 | 2022-04-28 | Hewlett-Packard Development Company, L.P. | Transmission power reduction |
US20220320911A1 (en) * | 2021-03-30 | 2022-10-06 | Apple Inc. | Wireless Power Systems With Shared Inductive-Loss Scaling Factors |
CN114084029A (zh) * | 2021-11-29 | 2022-02-25 | 中汽研新能源汽车检验中心(天津)有限公司 | 一种电动汽车无线充电准备阶段通信方法 |
CN114598401B (zh) * | 2022-05-09 | 2022-09-27 | 荣耀终端有限公司 | 射频测试方法、蓝牙设备、电子设备及射频测试系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101213649B1 (ko) * | 2011-12-16 | 2012-12-18 | 전자부품연구원 | 이물질 및 무선 충전기기의 이동을 감지할 수 있는 자기공진유도 방식을 이용한 무선 전력전송 장치 및 방법 |
KR20150059069A (ko) * | 2013-11-21 | 2015-05-29 | 엘지전자 주식회사 | 무선 전력 전송 장치 및 그 제어 방법 |
JP2015165761A (ja) * | 2014-02-10 | 2015-09-17 | ローム株式会社 | ワイヤレス受電装置およびその制御回路、それを用いた電子機器、異常検出方法 |
KR20170118571A (ko) * | 2016-04-15 | 2017-10-25 | 엘지이노텍 주식회사 | Fo 검출 방법 및 그를 위한 장치 및 시스템 |
KR20170140685A (ko) * | 2016-06-13 | 2017-12-21 | 엘지이노텍 주식회사 | 이물질 검출 방법 및 그를 위한 장치 및 시스템 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9536656B2 (en) * | 2012-05-21 | 2017-01-03 | Texas Instruments Incorporated | Systems and methods of reduction of parasitic losses in a wireless power system |
EP2909917B1 (en) | 2012-10-16 | 2020-11-11 | Koninklijke Philips N.V. | Wireless inductive power transfer |
WO2015007696A1 (en) * | 2013-07-17 | 2015-01-22 | Koninklijke Philips N.V. | Wireless inductive power transfer |
CN106464036B (zh) * | 2014-06-24 | 2019-05-17 | 三星电子株式会社 | 用于通过无线充电系统中的无线功率发射器发送信号的方法、无线功率发射器以及无线功率接收器 |
JP6632299B2 (ja) * | 2015-09-29 | 2020-01-22 | ローム株式会社 | ワイヤレス送電装置、その制御回路、充電器、およびパワーロスメソッドによる異物検出のキャリブレーション方法 |
US10530196B2 (en) * | 2016-02-05 | 2020-01-07 | Texas Instruments Incorporated | Methods and apparatus for power loss calibration in a wireless power system |
WO2017179826A1 (ko) * | 2016-04-15 | 2017-10-19 | 엘지이노텍(주) | Fo 검출 방법 및 그를 위한 장치 및 시스템 |
HUE064897T2 (hu) * | 2016-06-08 | 2024-04-28 | Lg Electronics Inc | Vezeték nélküli energiaátviteli eljárás és ehhez való eszköz |
EP4007122A1 (en) * | 2018-01-10 | 2022-06-01 | Lg Electronics Inc. | Apparatus and method for performing power calibration in wireless power transmission system |
US11258307B2 (en) * | 2019-08-14 | 2022-02-22 | Apple Inc. | Wireless power system with foreign object detection |
-
2019
- 2019-01-08 EP EP22151372.4A patent/EP4007122A1/en active Pending
- 2019-01-08 CN CN202310302928.4A patent/CN116317212A/zh active Pending
- 2019-01-08 WO PCT/KR2019/000251 patent/WO2019139326A1/ko unknown
- 2019-01-08 EP EP19738512.3A patent/EP3734795B1/en active Active
- 2019-01-08 US US16/961,554 patent/US11139702B2/en active Active
- 2019-01-08 CN CN201980012518.8A patent/CN111712989B/zh active Active
-
2021
- 2021-10-04 US US17/449,884 patent/US11664688B2/en active Active
-
2023
- 2023-04-19 US US18/302,938 patent/US12021397B2/en active Active
-
2024
- 2024-05-29 US US18/677,490 patent/US20240322613A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101213649B1 (ko) * | 2011-12-16 | 2012-12-18 | 전자부품연구원 | 이물질 및 무선 충전기기의 이동을 감지할 수 있는 자기공진유도 방식을 이용한 무선 전력전송 장치 및 방법 |
KR20150059069A (ko) * | 2013-11-21 | 2015-05-29 | 엘지전자 주식회사 | 무선 전력 전송 장치 및 그 제어 방법 |
JP2015165761A (ja) * | 2014-02-10 | 2015-09-17 | ローム株式会社 | ワイヤレス受電装置およびその制御回路、それを用いた電子機器、異常検出方法 |
KR20170118571A (ko) * | 2016-04-15 | 2017-10-25 | 엘지이노텍 주식회사 | Fo 검출 방법 및 그를 위한 장치 및 시스템 |
KR20170140685A (ko) * | 2016-06-13 | 2017-12-21 | 엘지이노텍 주식회사 | 이물질 검출 방법 및 그를 위한 장치 및 시스템 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4024661A4 (en) * | 2019-08-29 | 2024-05-22 | Canon Kabushiki Kaisha | POWER RECEIVING DEVICE, POWER TRANSMITTING DEVICE, CONTROL METHOD AND PROGRAM |
US11728694B2 (en) | 2019-10-02 | 2023-08-15 | Lg Electronics Inc. | Wireless power receiving device, wireless power transmitting device, and method for calibrating power using the same |
EP4009489A1 (en) * | 2019-10-02 | 2022-06-08 | LG Electronics Inc. | Wireless power reception apparatus, wireless power transmission apparatus, and power calibration method using same |
EP4009489A4 (en) * | 2019-10-02 | 2022-09-14 | LG Electronics Inc. | WIRELESS POWER RECEIVER, WIRELESS POWER TRANSMITTER AND POWER CALIBRATION METHOD THEREOF |
US11539249B2 (en) | 2019-10-02 | 2022-12-27 | Lg Electronics Inc. | Wireless power receiving device, wireless power transmitting device, and method for calibrating power using the same |
KR20220032580A (ko) * | 2019-10-02 | 2022-03-15 | 엘지전자 주식회사 | 무선전력 수신장치, 무선전력 전송장치 및 이들을 이용한 전력 보정 방법 |
KR102704434B1 (ko) * | 2019-10-02 | 2024-09-09 | 엘지전자 주식회사 | 무선전력 수신장치, 무선전력 전송장치 및 이들을 이용한 전력 보정 방법 |
EP4254736A3 (en) * | 2020-02-13 | 2024-01-03 | Canon Kabushiki Kaisha | Power transmission device and power receiving device, and control method and program therefor |
EP4106147A4 (en) * | 2020-02-13 | 2024-02-28 | Canon Kabushiki Kaisha | POWER TRANSMISSION DEVICE AND POWER RECEIVING DEVICE AND CONTROL METHOD AND PROGRAM THEREOF |
US11962167B2 (en) | 2020-02-13 | 2024-04-16 | Canon Kabushiki Kaisha | Power receiving apparatus, power transmitting apparatus, control methods thereof, and a non-transitory computer-readable storage medium |
EP4362492A3 (en) * | 2020-08-31 | 2024-09-04 | Sonos, Inc. | Wireless power transfer for audio playback devices |
CN113098153A (zh) * | 2021-04-13 | 2021-07-09 | 浙江泰米电子科技有限公司 | Lclp无线充电系统的异物检测方法 |
CN115356561A (zh) * | 2022-08-12 | 2022-11-18 | 上海移柯通信技术股份有限公司 | 线损校准方法、系统、电子设备和计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
US20230253837A1 (en) | 2023-08-10 |
EP3734795A4 (en) | 2021-02-24 |
US20210066973A1 (en) | 2021-03-04 |
US11664688B2 (en) | 2023-05-30 |
US20220029475A1 (en) | 2022-01-27 |
EP3734795B1 (en) | 2022-03-02 |
US20240322613A1 (en) | 2024-09-26 |
CN111712989A (zh) | 2020-09-25 |
EP4007122A1 (en) | 2022-06-01 |
CN111712989B (zh) | 2023-04-11 |
EP3734795A1 (en) | 2020-11-04 |
CN116317212A (zh) | 2023-06-23 |
US11139702B2 (en) | 2021-10-05 |
US12021397B2 (en) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019139326A1 (ko) | 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 | |
WO2019160351A1 (ko) | 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 | |
WO2019203420A1 (ko) | 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법 | |
WO2019039898A1 (ko) | 무선전력 전송시스템에서 통신을 수행하는 장치 및 방법 | |
WO2019004753A1 (ko) | 멀티 코일 기반의 무선전력 전송장치 및 방법 | |
WO2019203537A1 (ko) | 무선전력 전송시스템에서 데이터 스트림의 전송을 수행하는 장치 및 방법 | |
WO2018203652A1 (ko) | 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법 | |
WO2020017859A1 (ko) | 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 | |
WO2019208960A1 (ko) | 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 | |
WO2021020833A1 (ko) | 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 이물질 검출 방법 | |
WO2020222528A1 (ko) | 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법 | |
WO2020050592A1 (ko) | 무선전력 전송 시스템에서 가변 통신 속도를 지원하는 장치 및 방법 | |
WO2021066611A1 (ko) | 무선전력 수신장치, 무선전력 전송장치 및 이들을 이용한 전력 보정 방법 | |
WO2020027521A1 (ko) | 이물질 검출에 기반하여 무선전력 전송을 수행하는 장치 및 방법 | |
WO2020149492A1 (ko) | 멀티 코일을 이용하여 다수의 기기에 무선전력을 전송하는 장치 및 방법 | |
WO2020036357A1 (ko) | 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법 | |
WO2019203539A1 (ko) | 무선전력 전송시스템에서 전력 제어를 수행하는 장치 및 방법 | |
WO2019177306A1 (ko) | 무선전력 전송 시스템에서 향상된 통신 속도를 지원하는 장치 및 방법 | |
WO2020004940A1 (ko) | 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법 | |
WO2020085614A1 (ko) | 무선전력 전송 시스템에서 데이터를 전송하는 방법 및 장치 | |
WO2020222415A1 (ko) | 근거리 무선통신을 이용하여 전력 클래스를 협상하는 무선충전 장치, 방법 및 시스템 | |
WO2019240565A1 (ko) | 타 통신카드의 검출을 수행하는 무선전력 전송장치 및 방법 | |
WO2020085828A1 (ko) | 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법 | |
WO2020130265A1 (ko) | 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법 | |
WO2017200193A1 (ko) | 무선 전력 제어 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19738512 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019738512 Country of ref document: EP Effective date: 20200728 |