WO2018203652A1 - 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법 - Google Patents

무선전력 전송시스템에서 인증을 수행하는 장치 및 방법 Download PDF

Info

Publication number
WO2018203652A1
WO2018203652A1 PCT/KR2018/005071 KR2018005071W WO2018203652A1 WO 2018203652 A1 WO2018203652 A1 WO 2018203652A1 KR 2018005071 W KR2018005071 W KR 2018005071W WO 2018203652 A1 WO2018203652 A1 WO 2018203652A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
packet
authentication
adt
certificate
Prior art date
Application number
PCT/KR2018/005071
Other languages
English (en)
French (fr)
Inventor
박용철
김재열
박준호
서정교
육경환
이재성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202310140742.3A priority Critical patent/CN116094116A/zh
Priority to CN201880026272.5A priority patent/CN110537309B/zh
Priority to KR1020237044441A priority patent/KR102678699B1/ko
Priority to US16/494,982 priority patent/US11405873B2/en
Priority to EP21175279.5A priority patent/EP3890160A1/en
Priority to KR1020237002946A priority patent/KR102618635B1/ko
Priority to EP18794508.4A priority patent/EP3576249A4/en
Priority to KR1020197025479A priority patent/KR102367471B1/ko
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2019549520A priority patent/JP6883116B2/ja
Priority to KR1020227005838A priority patent/KR102493515B1/ko
Publication of WO2018203652A1 publication Critical patent/WO2018203652A1/ko
Priority to US16/857,895 priority patent/US10805888B2/en
Priority to US17/853,137 priority patent/US11664852B2/en
Priority to US18/138,443 priority patent/US20230261696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/44Program or device authentication
    • G06F21/445Program or device authentication by mutual authentication, e.g. between devices or programs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0823Network architectures or network communication protocols for network security for authentication of entities using certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/223TPC being performed according to specific parameters taking into account previous information or commands predicting future states of the transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to wireless power transmission, and more particularly, to an apparatus and method for performing authentication in a wireless power transmission system.
  • Wireless power transfer technology is a technology for wirelessly transferring power between a power source and an electronic device.
  • wireless power transfer technology allows a wireless terminal such as a smartphone or a tablet to be charged on a wireless charging pad by simply placing it on a wireless charging pad, and thus compared to a wired charging environment using a conventional wired charging connector. It can provide excellent mobility, convenience and safety.
  • wireless power transfer technology can be applied to various wearable devices such as electric vehicles, Bluetooth earphones, 3D glasses, home appliances, furniture, underground facilities, buildings, medical devices, robots, and leisure. It is drawing attention to replace the existing wired power transmission environment.
  • the wireless power transmission method is also referred to as a contactless power transmission method, a no point of contact power transmission method, or a wireless charging method.
  • the wireless power transmission system includes a wireless power transmission device for supplying electrical energy through a wireless power transmission method, and a wireless power reception device for receiving electric energy supplied wirelessly from the wireless power transmission device and supplying power to a power receiving device such as a battery cell. It can be configured as a device.
  • the wireless power transmission technology transmits power through magnetic coupling, transmits power through radio frequency (RF), transmits power through microwaves, and ultrasonic waves.
  • RF radio frequency
  • Magnetic coupling based methods are further classified into magnetic induction and magnetic resonance.
  • the magnetic induction method is a method of transmitting energy by using a current induced in a receiving coil due to a magnetic field generated by the transmitting coil battery cell according to the electromagnetic coupling between the transmitting coil and the receiving coil.
  • the magnetic resonance method is similar to the magnetic induction method in that it uses a magnetic field.
  • Wireless power systems implemented to comply with certain standard technologies can solve safety problems when overheated with foreign objects.
  • non-certified products that are not certified for technical standards or specifications are being distributed in the market, which may expose users to risks. Therefore, it is necessary to secure stability and reliability by mutual authentication between the wireless power transmitter and the wireless power receiver before and after the wireless charging.
  • An object of the present invention is to provide an apparatus and method for performing authentication in a wireless power transmission system.
  • Another technical problem of the present invention is to provide a wireless power transmitter and method for performing authentication of the wireless power receiver.
  • Another technical problem of the present invention is to provide a wireless power receiver and method for performing authentication of the wireless power transmitter.
  • a method for performing authentication of a target device in a wireless power transmission system may include receiving, from the target device, a first packet including indication information on whether the target device supports an authentication function, and when the target device supports the authentication function, sending an authentication request message to the target device. Transmitting, in response to the authentication request message, receiving an authentication response message including a certificate relating to wireless charging from the target device, and authenticating the target device based on the authentication response message. Confirming.
  • the format of the certificate is a certificate type indicating whether the certificate is a root certificate, an intermediate certificate, or a leaf certificate, and the certificate relates to a wireless power transmitter (PTx). And leaf indicator indicating whether or not the leaf certificate.
  • the target device is a wireless power transmitter
  • the first packet is a capability packet for the wireless power transmitter
  • the indication information is 1 bit to support the authentication function of the wireless power transmitter. Or you can order non-support.
  • the target device is a wireless power receiver
  • the first packet is a configuration packet for the wireless power receiver
  • the indication information is 1 bit to support the authentication function of the wireless power receiver. Or you can order non-support.
  • the first packet may include first information regarding whether the target device may operate as an authentication initiator (AI) and the target device may operate as an authentication responder (AR). It may include at least one of the second information about whether or not.
  • AI authentication initiator
  • AR authentication responder
  • the authentication request message and the authentication response message may be transmitted based on a low level auxiliary data transport (ADT) data exchange protocol.
  • ADT auxiliary data transport
  • the authentication request message or the authentication response message may be sequentially transmitted into a plurality of ADT data packets, respectively, and a header value may be toggled with each new ADT data packet transmission. .
  • the header value may not be toggled upon retransmission of the ADT data packet.
  • wireless charging with power according to a baseline power profile This can be done.
  • the plurality of ADT data packets includes a first ADT data packet indicating a start of data stream (SOD) at the beginning and the end of the plurality of ADT data packets, respectively; And a second ADT data packet indicating an end of data stream (EOD), wherein the first and second ADT data packets may be configured as one byte as an ADT control packet structure.
  • SOD start of data stream
  • EOD end of data stream
  • the method further includes polling whether there is a message to be sent by the wireless power transmitter, wherein the polling is performed by the wireless power receiver to the wireless power transmitter for a 1-byte general request. And setting the request field of the general request packet (GRP) to a specific value and transmitting the same.
  • GRP general request packet
  • the method may include transmitting a request for communication (RFC) bit pattern by the wireless power transmitter in response to a received power packet (RPP) of the wireless power receiver. And transmitting, by the wireless power receiver, a general request packet (GRP) as a response to the RFC bit pattern, to obtain a target power of the wireless power transmitter.
  • RFC request for communication
  • RPP received power packet
  • GRP general request packet
  • another ADT data packet may be used instead of an ACK as a response to successfully receiving the ADT data packet.
  • an apparatus for performing authentication of a target device in a wireless power transmission system receives a first packet including indication information on whether the target device supports an authentication function from the target device, and transmits an authentication request message to the target device when the target device supports the authentication function. And receiving an authentication response message including a certificate relating to wireless charging from the target device in response to the authentication request message, and confirming authentication of the target device based on the authentication response message.
  • the format of the certificate is a certificate type indicating whether the certificate is a root certificate, an intermediate certificate, or a leaf certificate, and the certificate relates to a wireless power transmitter (PTx). And leaf indicator indicating whether or not the leaf certificate.
  • the target device is a wireless power transmitter
  • the first packet is a capability packet for the wireless power transmitter
  • the indication information is 1 bit to support the authentication function of the wireless power transmitter. Or you can order non-support.
  • the target device is a wireless power receiver
  • the first packet is a configuration packet for the wireless power receiver
  • the indication information is 1 bit to support the authentication function of the wireless power receiver. Or you can order non-support.
  • the first packet may include first information regarding whether the target device may operate as an authentication initiator (AI) and the target device may operate as an authentication responder (AR). It may include at least one of the second information about whether or not.
  • AI authentication initiator
  • AR authentication responder
  • the communication unit may transmit the authentication request message and the authentication response message based on a low level auxiliary data transport (ADT) data exchange protocol.
  • ADT auxiliary data transport
  • the communication unit sequentially transmits the authentication request message or the authentication response message into a plurality of ADT data packets each sequentially, and toggles a header value at every new ADT data packet transmission. )can do.
  • the communication unit may not toggle the header value upon retransmission of the ADT data packet.
  • the coil in at least one of receiving the first packet, transmitting the authentication request message, and receiving the authentication response message, the coil is configured to power according to a baseline power profile. Wireless charging can be performed.
  • Elements essential for authentication between the wireless power transmitter and the receiving device such as the format of the wireless charging certificate, indication information on the support of the authentication function, the timing of authentication-related procedures and the wireless charging phase, authentication procedures and authentication messages, authentication procedures
  • the low-level protocol supporting the is clearly provided by the present invention, it is possible to ensure stability and reliability even during high-power wireless charging.
  • FIG. 1 is a block diagram of a wireless power system 10 according to one embodiment.
  • FIG. 2 is a block diagram of a wireless power system 10 according to another embodiment.
  • FIG. 3 illustrates an embodiment of various electronic devices into which a wireless power transmission system is introduced.
  • FIG. 4 is a block diagram of a wireless power transfer system according to another embodiment.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • FIG. 6 illustrates a power control control method according to an embodiment.
  • FIG. 7 is a block diagram of a wireless power transmission apparatus according to another embodiment.
  • FIG 8 illustrates a wireless power receiver according to another embodiment.
  • FIG 9 illustrates a communication frame structure according to an embodiment.
  • FIG. 10 is a structure of a sync pattern according to an embodiment.
  • 11 is a diagram illustrating an operating state of a wireless power transmitter and a wireless power receiver in a shared mode according to an embodiment.
  • FIG. 12 is a block diagram illustrating a wireless charging certificate format according to an embodiment.
  • 13A is a block diagram illustrating a wireless charging certificate format according to another embodiment.
  • 13B is a block diagram illustrating a wireless charging certificate format according to another embodiment.
  • FIG. 14 is a performance packet structure of a wireless power transmitter according to an embodiment.
  • 15 is a performance packet structure of a wireless power transmitter according to another embodiment.
  • 16 is a configuration packet structure of a wireless power receiver according to an embodiment.
  • 17 is a configuration packet structure of a wireless power receiver according to another embodiment.
  • 18 is a flowchart illustrating a sequence of packets transmitted and received when a wireless power receiver performs authentication of PTx by PRx.
  • 19 is an example of a message structure of GET_DIGESTS.
  • 20 is another example of a message structure of GET_DIGESTS.
  • FIG. 21 illustrates a physical packet structure in which DIGESTS is transmitted and a method of transmitting the same.
  • 22 is an example of a message structure of GET_CERTIFICATE.
  • FIG. 23 shows an example of a physical packet structure in which a certificate is transmitted and a method of transmitting the certificate.
  • 24 is an example of a physical packet structure in which an authentication response message of a wireless power transmitter is transmitted and a method of transmitting the same.
  • 26 shows an example of a physical packet structure in which CHALLENGE_AUTH is transmitted and a method of transmitting the same.
  • FIG. 27 is a flowchart illustrating a sequence of packets transmitted and received when the wireless power transmitter performs authentication of PRx by PTx of the wireless power receiver.
  • 29 is an example of a GET_CERTIFICATE message structure transmitted by a wireless power transmitter.
  • 30 is an example of a physical packet structure in which a certificate of a wireless power receiver is transmitted and a method of transmitting the same.
  • 31 is an example of a CHALLENGE message structure transmitted by a wireless power transmitter.
  • 32 is an example of a physical packet structure in which CHALLENGE_AUTH of a wireless power receiver is transmitted and a method of transmitting the same.
  • 33 is an example of a physical packet structure in which an authentication response message of a wireless power receiver is transmitted and a method of transmitting the same.
  • 34 is another example of a physical packet structure in which an authentication response message of a wireless power receiver is transmitted and a method of transmitting the same.
  • 35 is a flowchart illustrating a sequence of packets transmitted and received when a wireless power transmitter performs authentication of PRx by PTx of a wireless power receiver.
  • 36 illustrates a structure of a packet transmitted from a wireless power receiver to a wireless power transmitter in in-band communication.
  • FIG. 37 illustrates a structure of a packet transmitted from a wireless power transmitter to a wireless power receiver in in-band communication.
  • 38 illustrates a transmission and reception sequence of a packet between a wireless power receiver and a transmitter from a lower level perspective according to an embodiment.
  • 39 illustrates a transmission and reception sequence of a packet between a wireless power receiver and a transmitter from a lower level perspective according to another embodiment.
  • 40 is a diagram illustrating an extended control error packet according to an embodiment.
  • EPT 41 illustrates a structure of an end power transfer (EPT) packet according to an embodiment.
  • FIG. 43 illustrates a transmission and reception sequence of a packet between a wireless power receiver and a transmitter from a low level perspective according to an embodiment.
  • ADT_PRx Data Packet ADT_PRx Data Packet
  • FIG. 47 illustrates a structure of an ADT_PRx Response Packet of a wireless power receiver according to an embodiment.
  • FIG. 48 illustrates a structure of an ADT_PRx control packet for a wireless power receiver, according to an embodiment.
  • FIG. 49 illustrates a structure of an ADT_PTx data packet of a wireless power transmitter according to an embodiment.
  • FIG. 50 illustrates a structure of an ADT_PTx Response Packet of a wireless power transmitter according to an embodiment.
  • FIG. 51 illustrates a structure of an ADT_PTx Response / Control Packet for a wireless power transmitter according to an embodiment.
  • FIG. 52 is a structure of an ADT_PTx Control Packet for a wireless power transmitter according to an embodiment.
  • 53 is a diagram illustrating a state mashine for writing ADT data packet, according to one embodiment.
  • 54 is a view illustrating a transmission level of a high level and a high level of a wireless power receiver and a wireless power transmitter when an ADT data packet is exchanged according to an embodiment.
  • 55 is a view illustrating a transmission level of a high level and a high level of a wireless power receiver and a wireless power transmitter during the exchange of ADT data packets according to another embodiment.
  • 56 is a view illustrating a transmission level of a high level and a high level of a wireless power receiver and a wireless power transmitter during the exchange of ADT data packets according to another embodiment.
  • 57 illustrates an exchange sequence of an ADT data packet regarding an authentication request message according to an embodiment.
  • FIG. 58 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication request message according to another embodiment.
  • FIG. 59 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication request message according to another embodiment.
  • 60 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication request message according to another embodiment.
  • 61 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication request message according to another embodiment.
  • FIG. 62 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to an embodiment.
  • FIG. 63 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment.
  • 64 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment.
  • 65 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment.
  • 66 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment.
  • 67 is a view illustrating a high level and high level transmission sequence of a wireless power transmitter and a wireless power receiver when an ADT data packet is exchanged according to an embodiment.
  • 68 is a view illustrating a transmission level of a high level and a high level of a wireless power transmitter and a wireless power receiver when an ADT data packet is exchanged according to another embodiment.
  • FIG. 69 illustrates an exchange sequence of an ADT data packet regarding an authentication request message according to an embodiment.
  • 70 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication request message according to another embodiment.
  • 71 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication request message according to another embodiment.
  • 72 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication request message according to another embodiment.
  • 73 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication request message according to another embodiment.
  • 74 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to an embodiment.
  • 75 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment.
  • 76 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment.
  • 77 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment.
  • GRP 78 is a structure of GRP according to an embodiment.
  • 79 is a transmission sequence related to power management initiated by a wireless power transmitter according to an embodiment.
  • wireless power refers to any form associated with an electric field, magnetic field, electromagnetic field, etc., transferred from a wireless power transmitter to a wireless power receiver without the use of physical electromagnetic conductors. It is used to mean the energy of.
  • Wireless power may be referred to as a wireless power signal, and may mean an oscillating magnetic flux enclosed by the primary coil and the secondary coil.
  • power conversion in a system is described herein to wirelessly charge devices including mobile phones, cordless phones, iPods, MP3 players, headsets, and the like.
  • the basic principles of wireless power transfer include, for example, a method of delivering power through magnetic coupling, a method of delivering power via radio frequency (RF), and a microwave. It includes both the method of delivering power through) and the method of delivering power via ultrasound.
  • RF radio frequency
  • FIG. 1 is a block diagram of a wireless power system 10 according to one embodiment.
  • the wireless power system 10 includes a wireless power transmitter 100 and a wireless power receiver 200.
  • the wireless power transmitter 100 generates a magnetic field by receiving power from an external power source S.
  • the wireless power receiver 200 generates a current by using the generated magnetic field to receive power wirelessly.
  • the wireless power transmitter 100 and the wireless power receiver 200 may transmit and receive various information required for wireless power transmission.
  • the communication between the wireless power transmitter 100 and the wireless power receiver 200 may be performed in-band communication using a magnetic field used for wireless power transmission or out-band communication using a separate communication carrier. may be performed according to any one of out-band communication.
  • the wireless power transmission apparatus 100 may be provided in a fixed or mobile type.
  • the fixed type are embedded in furniture such as ceilings, walls, or tables in the interior, implants in outdoor parking lots, bus stops, subway stations, or in vehicles or trains. There is this.
  • the mobile wireless power transfer device 100 may be implemented as part of another device such as a mobile device of a movable weight or size or a cover of a notebook computer.
  • the wireless power receiver 200 should be interpreted as a comprehensive concept including various electronic devices including batteries and various home appliances which are driven and driven by wireless power instead of a power cable.
  • Representative examples of the wireless power receiver 200 include a mobile terminal, a cellular phone, a smart phone, a personal digital assistant (PDA), and a portable media player (PMP).
  • Portable Media Players Wibro terminals, tablets, tablets, notebooks, digital cameras, navigation terminals, televisions, and electric vehicles (EVs).
  • the wireless power receiver 200 may be one or plural.
  • the wireless power transmitter 100 and the wireless power receiver 200 are represented as one-to-one power, but as shown in FIG. 2, one wireless power transmitter 100 is a plurality of wireless power receivers. It is also possible to deliver power to (200-1, 200-2, ..., 200-M).
  • one wireless power transmitter 100 may simultaneously or simultaneously transmit multiple wireless power receivers 200-1, 200-2, by applying a time division transmission scheme. ... 200-M) can deliver power.
  • FIG. 1 illustrates a state in which the wireless power transmitter 100 directly transfers power to the wireless power receiver 200
  • the wireless power transmitter 100 and the wireless power receiver 200 are wirelessly connected.
  • a separate wireless power transceiver may be provided, such as a relay or repeater, to increase the power transmission distance. In this case, power is transferred from the wireless power transmitter 100 to the wireless power transceiver, and the wireless power transceiver may transmit power to the wireless power receiver 200 again.
  • the wireless power receiver, the power receiver, and the receiver referred to herein refer to the wireless power receiver 200.
  • the wireless power transmitter, power transmitter, and transmitter referred to in the present specification refer to the wireless power reception transmitter 100.
  • FIG. 3 illustrates an embodiment of various electronic devices into which a wireless power transmission system is introduced.
  • FIG. 3 illustrates electronic devices classified according to the amount of power transmitted and received in the wireless power transmission system.
  • wearable devices such as a smart watch, smart glass, head mounted display (HMD), and a smart ring, and earphones, a remote controller, a smartphone, a PDA, and a tablet
  • a small power (about 5W or less or about 20W or less) wireless charging method may be applied to mobile electronic devices (or portable electronic devices) such as a PC.
  • Medium and small household appliances such as laptops, robot cleaners, TVs, acoustic devices, cleaners, and monitors may be applied with a medium power (less than about 50W or less than about 200W) wireless charging scheme.
  • Personal mobile devices or electronic devices / means
  • blenders, microwave ovens, kitchen appliances such as electric cookers, wheelchairs, electric kickboards, electric bicycles, and electric vehicles are powered by high power (about 2 kW or less or 22 kW or less).
  • Wireless charging may be applied.
  • the electronic devices / moving means described above may each include a wireless power receiver described below. Therefore, the above-described electronic devices / moving means can be charged by receiving power wirelessly from the wireless power transmitter.
  • WPC wireless power consortium
  • AFA air fuel alliance
  • PMA power matters alliance
  • the WPC standard defines a baseline power profile (BPP) and an extended power profile (EPP).
  • BPP relates to a wireless power transmitter and receiver supporting 5W power transmission
  • EPP relates to a wireless power transmitter and receiver supporting power transmission in a range larger than 5W and smaller than 30W.
  • the WPC classifies wireless power transmitters and receivers into power class (PC) -1, PC0, PC1, and PC2, and provides standard documents for each PC.
  • PC power class
  • the PC-1 standard relates to wireless power transmitters and receivers that provide less than 5W of guaranteed power.
  • Applications of the PC-1 include wearable devices such as smart watches.
  • the PC0 standard relates to wireless power transmitters and receivers that provide 5W guaranteed power.
  • the PC0 standard includes EPP with guaranteed power up to 30W.
  • In-band (IB) communication is the mandatory communication protocol of PC0, but out-of-band (OBB) communication may also be used, which is used as an optional backup channel.
  • the wireless power receiver can identify whether or not the OOB is supported by setting the OOB flag in a configuration pack.
  • the wireless power transmitter supporting the OOB may enter the OOB handover phase by transmitting a bit pattern for OOB handover as a response to the configuration packet.
  • the response to the configuration packet may be a NAK, ND or newly defined 8 bit pattern.
  • Applications of PC0 include smartphones.
  • the PC1 standard relates to wireless power transmitters and receivers that provide 30W to 150W of guaranteed power.
  • OOB is an essential communication channel for PC1
  • IB is used as initialization and link establishment to OOB.
  • the wireless power transmitter may enter a bit pattern for OOB handover into the OOB handover phase.
  • Applications in PC1 include laptops and power tools.
  • the PC2 standard relates to wireless power transmitters and receivers that provide guaranteed power from 200W to 2kW. Applications include kitchen appliances.
  • PCs may be distinguished according to power levels, and whether to support compatibility between the same PCs may be optional or required.
  • compatibility between the same PCs means power transmission and reception between the same PCs.
  • the wireless power transmitter that is PC x is capable of charging the wireless power receiver having the same PC x
  • the compatibility between the same PCs may be maintained.
  • compatibility between different PCs may also be supported.
  • compatibility between different PCs means power transmission and reception between different PCs.
  • compatibility between different PCs may be maintained.
  • a lap-top charging wireless power receiver that can be reliably charged only when power is continuously transmitted is a wireless power transmitter of the same PC. Even so, there may be a problem in receiving power stably from a wireless power transmitter of an electric tool type that transmits power discontinuously.
  • a wireless power transmitter having a minimum guaranteed power of 200 W may transmit power to a wireless power receiver having a maximum guaranteed power of 5 W. There is a risk of breakage. As a result, PCs are unlikely to be indicators / criteria that represent / indicate compatibility.
  • a 'profile' will be newly defined as an index / standard representing / compatibility.
  • compatibility between wireless power transmitters and receivers having the same 'profile' is maintained to enable stable power transmission and reception, and power transmission and reception between wireless power transceivers having different 'profiles' may be interpreted as impossible.
  • Profiles may be defined depending on the application and / or compatibility, regardless of power class (or independently).
  • the profile can be divided into four categories: i) mobile, ii) power tools, iii) kitchen, and iv) wearable.
  • the PC may be defined as PC0 and / or PC1, the communication protocol / method as IB and OOB, and the operating frequency as 87 to 205 kHz.
  • the application include a smartphone, a laptop-laptop, and the like. Can be.
  • the PC may be defined as PC1
  • the communication protocol / method as IB the operating frequency is 87 to 145 kHz.
  • Examples of the application may include a power tool.
  • the PC may be defined as PC2, the communication protocol / method is NFC-based, and the operating frequency is less than 100 kHz. Examples of the application may include a kitchen / home appliance.
  • the PC may be defined as PC-1, the communication protocol / method as an IB, and an operating frequency of 87 to 205 kHz, and an example of an application may include a wearable device worn on the user's body.
  • Maintaining compatibility between the same profiles may be mandatory, and maintaining compatibility between different profiles may be optional.
  • the above-described profiles may be generalized and expressed as the first to nth profiles, and new profiles may be added / replaced according to the WPC standard and the embodiment.
  • the wireless power transmitter selectively transmits power only to the wireless power receiver having the same profile as that of the wireless power transmitter, thereby enabling more stable power transmission.
  • the burden on the wireless power transmitter is reduced, and the power transmission to the incompatible wireless power receiver is not attempted, thereby reducing the risk of damage to the wireless power receiver.
  • PC1 in the 'mobile' profile can be defined by borrowing an optional extension such as OOB based on PC0, and in the case of the 'power tool' profile, the PC1 'mobile' profile can simply be defined as a modified version.
  • OOB optional extension
  • the purpose of maintaining compatibility between the same profile is defined, but in the future, technology may be developed toward maintaining compatibility between different profiles.
  • the wireless power transmitter or the wireless power receiver may inform its counterpart of its profile through various methods.
  • the AFA standard refers to a wireless power transmitter as a power transmitting unit (PTU), a wireless power receiver as a power receiving unit (PRU), and PTUs are classified into a number of classes as shown in Table 1, and PRUs as shown in Table 2 It is classified into a number of categories.
  • PRU P RX_OUT_MAX Example application Category 1 TBD Bluetooth headset Category 2 3.5 W Feature Phone Category 3 6.5 W Smartphone Category 4 13 W Tablet, leaflet Category 5 25 W Small form factor laptops Category 6 37.5 W Generic laptop Category 7 50 W
  • the maximum output power capability of a class n PTU is greater than or equal to a value of P TX_IN_MAX of that class.
  • the PRU may not draw more power than specified in that category.
  • FIG. 4 is a block diagram of a wireless power transfer system according to another embodiment.
  • the wireless power transmission system 10 includes a mobile device 450 that receives power wirelessly and a base station 400 that transmits power wirelessly.
  • the base station 400 is an apparatus for providing induced power or resonance power, and may include at least one wireless power transmitter 100 and a system unit 405.
  • the wireless power transmitter 100 may transmit induced power or resonant power and control transmission.
  • the wireless power transmitter 100 transmits power to an appropriate level and a power conversion unit 110 that converts electrical energy into a power signal by generating a magnetic field through a primary coil (s).
  • a communication / control unit 120 to control communication and power transfer with the wireless power receiver 200.
  • the system unit 405 may perform other operational control of the base station 100, such as input power provisioning, control of a plurality of wireless power transmitters, and user interface control.
  • the primary coil can generate an electromagnetic field using alternating current power (or voltage or current).
  • the primary coil may receive AC power (or voltage or current) of a specific frequency output from the power conversion unit 110, thereby generating a magnetic field of a specific frequency.
  • the magnetic field may be generated non-radially or radially, and the wireless power receiver 200 receives this to generate a current. In other words, the primary coil transmits power wirelessly.
  • the primary coil and the secondary coil may have any suitable forms, for example, copper wire wound around a high permeability formation such as, for example, ferrite or amorphous metal.
  • the primary coil may be referred to as a primary core, primary winding, primary loop antenna, or the like.
  • the secondary coil may also be referred to as a secondary core (secondary core), secondary winding (secondary winding), secondary loop antenna (secondary loop antenna), pickup antenna (pickup antenna).
  • the primary coil and the secondary coil may be provided in the form of a primary resonance antenna and a secondary resonance antenna, respectively.
  • the resonant antenna may have a resonant structure including a coil and a capacitor.
  • the resonant frequency of the resonant antenna is determined by the inductance of the coil and the capacitance of the capacitor.
  • the coil may be in the form of a loop.
  • a core may be disposed inside the loop.
  • the core may include a physical core such as a ferrite core or an air core.
  • the resonance phenomenon refers to a phenomenon in which a high efficiency energy transfer occurs between two resonant antennas when two resonant antennas are coupled to each other when a near field corresponding to a resonant frequency occurs in one resonant antenna.
  • a magnetic field corresponding to a resonance frequency is generated between the primary resonance antenna and the secondary resonance antenna antenna, a phenomenon occurs in which the primary resonance antenna and the secondary resonance antenna resonate with each other.
  • the magnetic field is focused toward the secondary resonant antenna with higher efficiency than when the magnetic field is radiated into free space, and thus energy can be transferred from the primary resonant antenna to the secondary resonant antenna with high efficiency.
  • the magnetic induction method may be implemented similarly to the magnetic resonance method, but in this case, the frequency of the magnetic field does not need to be the resonance frequency. Instead, magnetic induction requires matching between the loops that make up the primary and secondary coils, and the spacing between the loops must be very close.
  • the wireless power transmitter 1100 may further include a communication antenna.
  • the communication antenna may transmit and receive communication signals using communication carriers other than magnetic field communication.
  • the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication / control unit 120 may transmit / receive information with the wireless power receiver 200.
  • the communication / control unit 120 may include at least one of an IB communication module and an OOB communication module.
  • the IB communication module may transmit and receive information using a magnetic wave having a specific frequency as a center frequency.
  • the communication / control unit 120 may perform in-band communication by loading information on a magnetic wave through a primary coil or receiving a magnetic wave containing information through a primary coil.
  • modulation schemes such as binary phase shift keying (BPSK) or amplitude shift keying (ASK) and Manchester coding or non-return-to-zero (NZR-L)
  • BPSK binary phase shift keying
  • ASK amplitude shift keying
  • NZR-L non-return-to-zero
  • the OOB communication module may perform out-band communication via a communication antenna.
  • the communication / control unit 120 may be provided as a short range communication module.
  • Examples of a short range communication module include a communication module such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, NFC, and the like.
  • the communication / control unit 120 may control the overall operation of the wireless power transmitter 100.
  • the communication / control unit 120 may perform calculation and processing of various types of information and control each component of the wireless power transmission apparatus 100.
  • the communication / control unit 120 may be implemented in a computer or similar device using hardware, software, or a combination thereof.
  • the communication / control unit 120 may be provided in the form of an electronic circuit that processes an electrical signal to perform a control function.
  • the communication / control unit 120 may be configured to drive a hardware communication / control unit 120. Can be provided.
  • the communication / control unit 120 may control the transmit power by controlling the operating point.
  • the controlling operating point may correspond to a combination of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
  • the communication / control unit 120 may control the transmission power by adjusting at least one of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
  • the wireless power transmitter 100 may supply constant power
  • the wireless power receiver 200 may control the reception power by controlling the resonance frequency.
  • the mobile device 450 receives and stores the power received from the wireless power receiver 200 and the wireless power receiver 200 that receive the wireless power through the secondary coil. It includes a load (455) for supplying.
  • the wireless power receiver 200 may include a power pick-up unit 210 and a communication & control unit 220.
  • the power pickup unit 210 may receive wireless power through the secondary coil and convert the wireless power into electrical energy.
  • the power pickup unit 210 rectifies and converts an AC signal obtained through the secondary coil into a DC signal.
  • the communication / control unit 220 may control the transmission and reception (power transmission and reception) of wireless power.
  • the secondary coil may receive wireless power transmitted from the wireless power transmitter 100.
  • the secondary coil may receive power by using a magnetic field generated by the primary coil.
  • a specific frequency is a resonant frequency
  • a magnetic resonance phenomenon may occur between the primary coil and the secondary coil, so that power may be more efficiently transmitted.
  • the communication / control unit 220 may further include a communication antenna.
  • the communication antenna may transmit and receive communication signals using communication carriers other than magnetic field communication.
  • the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication / control unit 220 may transmit / receive information with the wireless power transmitter 100.
  • the communication / control unit 220 may include at least one of an IB communication module or an OOB communication module.
  • the IB communication module may transmit and receive information using a magnetic wave having a specific frequency as a center frequency.
  • the communication / control unit 220 may perform IB communication by loading information on magnetic waves through a secondary coil or receiving magnetic waves containing information through a secondary coil.
  • modulation schemes such as binary phase shift keying (BPSK) or amplitude shift keying (ASK) and Manchester coding or non-return-to-zero (NZR-L)
  • BPSK binary phase shift keying
  • ASK amplitude shift keying
  • NZR-L non-return-to-zero
  • the OOB module may perform out-band communication via a communication antenna.
  • the communication / control unit 220 may be provided as a short range communication module.
  • Examples of a short range communication module include a communication module such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, NFC, and the like.
  • the communication / control unit 220 may control the overall operation of the wireless power receiver 200.
  • the communication / control unit 220 may perform calculation and processing of various types of information, and control each component of the wireless power receiver 200.
  • the communication / control unit 220 may be implemented in a computer or similar device using hardware, software, or a combination thereof.
  • the communication / control unit 220 may be provided in the form of an electronic circuit that processes an electrical signal to perform a control function.
  • the communication / control unit 220 may be configured to drive a hardware communication / control unit 220. Can be provided.
  • the load 455 may be a battery.
  • the battery may store energy using the power output from the power pickup unit 210.
  • the battery does not necessarily need to be included in the mobile device 450.
  • the battery may be provided in an external configuration of a removable form.
  • the wireless power receiver 200 may include driving means for driving various operations of the electronic device instead of a battery.
  • the mobile device 450 is illustrated to include a wireless power receiver 200
  • the base station 400 is illustrated to include a wireless power transmitter 100, but in a broad sense, the wireless power receiver ( 200 may be identified with the mobile device 450 and the wireless power transmitter 100 may be identified with the base station 400.
  • the coil or coil unit may be referred to as a coil assembly, a coil cell, or a cell including the coil and at least one element adjacent to the coil.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • power transmission from a wireless power transmitter to a receiver is largely selected in a selection phase 510, a ping phase 520, an identification and configuration phase. and configuration phase 530, negotiation phase 540, calibration phase 550, power transfer phase 560, and renegotiation phase 570. .
  • the selection step 510 is a step of transitioning when a specific error or a specific event is detected while initiating or maintaining power transmission, for example, including reference numerals S502, S504, S508, S510 and S512. Can be.
  • the wireless power transmitter may monitor whether an object exists on the interface surface. If the wireless power transmitter detects that an object is placed on the interface surface, it may transition to the ping step 520. In the selection step 510, the wireless power transmitter transmits a very short pulse of an analog ping signal, and an active area of the interface surface based on a change in current of a transmitting coil or a primary coil. You can detect the presence of an object in).
  • the wireless power transmitter may measure a quality factor of the wireless power resonant circuit (eg, the power transmission coil and / or the resonant capacitor).
  • a quality factor may be measured to determine whether the wireless power receiver is placed together with a foreign material in the charging area.
  • inductance and / or series resistance components in the coil may be reduced due to environmental changes, thereby reducing the quality factor value.
  • the wireless power transmitter may receive a reference quality factor value measured in advance from the wireless power receiver in a state where no foreign matter is disposed in the charging area.
  • the presence of the foreign matter may be determined by comparing the reference quality factor value received in the negotiation step S540 with the measured quality factor value.
  • a wireless power receiver having a low reference quality factor value for example, a specific wireless power receiver may have a low reference quality factor value depending on the type, use, and characteristics of the wireless power receiver. In this case, there is no big difference between the measured quality factor value and the reference quality factor value, so it may be difficult to determine the presence of foreign substances. Therefore, other judgment factors should be considered or other methods should be used to determine the presence of foreign substances.
  • a quality factor value in a specific frequency range may be measured to determine whether is disposed with a foreign substance in the charging region.
  • the inductance and / or the series resistance component in the coil may be reduced due to environmental changes, and thus the resonance frequency of the coil of the wireless power transmitter may be changed (shifted). That is, the quality factor peak frequency, which is the frequency at which the maximum quality factor value in the operating frequency band is measured, may be shifted.
  • step 520 when the object is detected, the wireless power transmitter wakes up the receiver and transmits a digital ping to identify whether the detected object is a wireless power receiver. If the wireless power transmitter does not receive a response signal (eg, a signal strength packet) for the digital ping from the receiver in the ping step 520, it may transition back to the selection step 510. In addition, in the ping step 520, if the wireless power transmitter receives a signal indicating that the power transmission is completed, that is, a charging completion packet, the wireless power transmitter may transition to the selection step 510.
  • a response signal eg, a signal strength packet
  • the wireless power transmitter may transition to the identification and configuration step 530 for identifying the receiver and collecting receiver configuration and status information.
  • the wireless power transmitter receives an unexpected packet, a desired packet has not been received for a predefined time, a packet transmission error, or a transmission error. If a power transfer contract is not established (no power transfer contract) it may transition to selection step 510.
  • the wireless power transmitter may check whether entry into the negotiation step 540 is necessary based on a negotiation field value of the configuration packet received in the identification and configuration step 530. As a result of the check, if negotiation is necessary, the wireless power transmitter may enter a negotiation step 540 and perform a predetermined FOD detection procedure. On the other hand, if it is determined that negotiation is not necessary, the wireless power transmitter may directly enter the power transmission step 560.
  • the wireless power transmitter may receive a Foreign Object Detection (FOD) status packet including a reference quality factor value.
  • FOD status packet including the reference peak frequency value may be received.
  • a status packet including a reference quality factor value and a reference peak frequency value may be received.
  • the wireless power transmitter may determine a quality factor threshold for FO detection based on a reference quality factor value.
  • the wireless power transmitter may determine a peak frequency threshold for FO detection based on the reference peak frequency value.
  • the wireless power transmitter may detect whether the FO exists in the charging region by using the determined quality factor threshold for detecting the FO and the currently measured quality factor value (the quality factor value measured before the ping step). Accordingly, power transmission can be controlled. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
  • the wireless power transmitter may detect whether the FO exists in the charging region by using the determined peak frequency threshold for detecting the FO and the currently measured peak frequency value (the peak frequency value measured before the ping step). Accordingly, power transmission can be controlled. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
  • the wireless power transmitter may return to selection step 510.
  • the wireless power transmitter may enter the power transmission step 560 through the correction step 550.
  • the wireless power transmitter determines the strength of the power received at the receiver in the correction step 550, and determines the strength of the power transmitted by the transmitter.
  • the power loss at the transmitter can be measured. That is, the wireless power transmitter may predict the power loss based on the difference between the transmit power of the transmitter and the receive power of the receiver in the correction step 550.
  • the wireless power transmitter according to an embodiment may correct the threshold for detecting the FOD by reflecting the predicted power loss.
  • the wireless power transmitter receives an unexpected packet, a desired packet is not received for a predefined time, or a violation of a predetermined power transmission contract occurs. Power transfer contract violation or, if charging is complete, transition to optional step 510.
  • the wireless power transmitter may transition to the renegotiation step 570, if it is necessary to reconfigure the power transmission contract in accordance with the state change of the wireless power transmitter. At this time, if the renegotiation is normally completed, the wireless power transmitter may return to the power transmission step (560).
  • the power transmission contract may be set based on state and characteristic information of the wireless power transmitter and the receiver.
  • the wireless power transmitter state information may include information about the maximum amount of power that can be transmitted, information about the maximum number of receivers that can be accommodated, and the receiver state information may include information about required power.
  • FIG. 6 illustrates a power control control method according to an embodiment.
  • the wireless power transmitter 100 and the wireless power receiver 200 may control the amount of power delivered by performing communication in parallel with power transmission and reception.
  • the wireless power transmitter and the wireless power receiver operate at specific control points.
  • the control point represents the combination of voltage and current provided at the output of the wireless power receiver when power delivery is performed.
  • the wireless power receiver selects the desired control point-the desired output current / voltage, the temperature at a particular location of the mobile device, and additionally the actual control point currently operating. Is determined.
  • the wireless power receiver may calculate a control error value using a desired control point and an actual control point, and transmit the control error value to the wireless power transmitter as a control error packet.
  • the wireless power transmitter may control power delivery by setting / controlling a new operation point—amplitude, frequency, and duty cycle—using the received control error packet. Therefore, the control error packet is transmitted / received at predetermined time intervals in the strategy delivery step.
  • the wireless power receiver attempts to reduce the current of the wireless power transmitter to a negative control error value and to increase the current. The value can be set to a positive number to send.
  • the wireless power receiver may control power transfer by transmitting a control error packet to the wireless power transmitter.
  • the resonance mode may operate in a manner different from that of the induction mode.
  • one wireless power transmitter should be able to simultaneously serve a plurality of wireless power receivers.
  • the wireless power transmitter commonly transmits basic power, and uses a method of controlling the amount of power received by the wireless power receiver by controlling its resonance frequency.
  • the method described with reference to FIG. 6 is not completely excluded even in the operation of the resonance mode, and the additional transmission power may be controlled by the method of FIG. 6.
  • the shared mode may refer to a mode in which one-to-many communication and charging are performed between the wireless power transmitter and the wireless power receiver.
  • the shared mode may be implemented by a magnetic induction method or a resonance method.
  • the wireless power transmitter 700 includes a cover 720 covering a coil assembly, a power adapter 730 for supplying power to the power transmitter 740, a power transmitter 740 for transmitting wireless power, or It may include at least one of the user interface 750 for providing power delivery progress and other related information.
  • the user interface 750 may be optional or may be included as another user interface 750 of the wireless power transmission apparatus 700.
  • the power transmitter 740 may include at least one of the coil assembly 760, the impedance matching circuit 770, the inverter 780, the communication unit 790, or the control unit 710.
  • Coil assembly 760 includes at least one primary coil that generates a magnetic field, which may be referred to as a coil cell.
  • Impedance matching circuit 770 may provide impedance matching between the inverter and the primary coil (s). Impedance matching circuit 770 may generate resonance at a suitable frequency that boosts the primary coil current.
  • the impedance matching circuit in the multi-coil power transmitter 740 may further include a multiplex that routes the signal to a subset of primary coils in the inverter.
  • the impedance matching circuit may be referred to as a tank circuit.
  • the impedance matching circuit 770 may include a capacitor, an inductor, and a switching element for switching their connection.
  • the impedance matching detects the reflected wave of the wireless power transmitted through the coil assembly 760, and switches the switching element based on the detected reflected wave to adjust the connection state of the capacitor or the inductor, adjust the capacitance of the capacitor, or the inductance of the inductor. This can be done by adjusting.
  • the impedance matching circuit 770 may be omitted, and the present specification also includes an embodiment of the wireless power transmitter 700 in which the impedance matching circuit 770 is omitted.
  • Inverter 780 may convert the DC input into an AC signal. Inverter 780 may be driven half-bridge or full-bridge to generate pulse waves and duty cycles of adjustable frequency. The inverter may also include a plurality of stages to adjust the input voltage level.
  • the communication unit 790 can perform communication with the power receiver.
  • the power receiver performs load modulation to communicate requests and information to the power transmitter.
  • the power transmitter 740 may use the communication unit 790 to monitor the amplitude and / or phase of the current and / or voltage of the primary coil to demodulate the data transmitted by the power receiver.
  • the power transmitter 740 may control the output power to transmit data by using a frequency shift keying (FSK) scheme through the communication unit 790.
  • FSK frequency shift keying
  • the control unit 710 may control communication and power delivery of the power transmitter 740.
  • the control unit 710 may control the power transmission by adjusting the operating point described above.
  • the operating point may be determined by at least one of an operating frequency, a duty cycle, and an input voltage, for example.
  • the communication unit 790 and the control unit 710 may be provided as separate units / elements / chipsets or may be provided as one unit / elements / chipsets.
  • FIG. 8 illustrates a wireless power receiver according to another embodiment. It may belong to a wireless power transfer system in a self-resonant or shared mode.
  • the wireless power receiver 800 includes a user interface 820 for providing power delivery progress and other related information, a power receiver 830 for receiving wireless power, a load circuit 840, or a coil assembly. It may include at least one of the base 850 supporting and covering. In particular, the user interface 820 may be optional or may be included as another user interface 82 of the power receiving equipment.
  • the power receiver 830 may include at least one of the power converter 860, the impedance matching circuit 870, the coil assembly 880, the communication unit 890, or the control unit 810.
  • the power converter 860 may convert AC power received from the secondary coil to a voltage and current suitable for the load circuit.
  • the power converter 860 may include a rectifier.
  • the rectifier may rectify the received wireless power and convert it from AC to DC.
  • Rectifiers can convert alternating current into direct current using diodes or transistors, and smooth them using capacitors and resistors.
  • a full-wave rectifier, a half-wave rectifier, a voltage multiplier, or the like implemented by a bridge circuit may be used.
  • the power converter may adapt the reflected impedance of the power receiver.
  • Impedance matching circuit 870 may provide impedance matching between the combination of power converter 860 and load circuit 870 and the secondary coil.
  • the impedance matching circuit can generate a resonance near 100 kHz that can enhance power transfer.
  • the impedance matching circuit 870 may be composed of a switching element for switching a capacitor, an inductor, and a combination thereof. The matching of the impedance may be performed by controlling the switching elements of the circuit constituting the impedance matching circuit 870 based on the voltage value, current value, power value, frequency value, etc. of the received wireless power.
  • the impedance matching circuit 870 may be omitted, and the present specification also includes an embodiment of the wireless power receiver 200 in which the impedance matching circuit 870 is omitted.
  • the coil assembly 880 includes at least one secondary coil and may optionally further include an element that shields a metal part of the receiver from the magnetic field.
  • the communication unit 890 can perform load modulation to communicate requests and other information to the power transmitter.
  • the power receiver 830 may switch a resistor or a capacitor to change the reflection impedance.
  • the control unit 810 may control the received power. To this end, the control unit 810 may determine / calculate a difference between an actual operating point of the power receiver 830 and a desired operating point. The control unit 810 may adjust / reduce the difference between the actual operating point and the desired operating point by performing the adjustment of the reflection impedance of the power transmitter and / or the operation point adjustment request of the power transmitter. Minimizing this difference can achieve optimal power reception.
  • the communication unit 890 and the control unit 810 may be provided as separate devices / chipsets or may be provided as one device / chipset.
  • FIG 9 illustrates a communication frame structure according to an embodiment. This may be a communication frame structure in shared mode.
  • a slotted frame having a plurality of slots such as (A) and a free format frame having no specific form such as (B) may be used.
  • the slot frame is a frame for the transmission of short data packets from the wireless power receiver 200 to the wireless power transmitter 100, and the free form frame does not have a plurality of slots, The frame may be transmitted.
  • the slot frame and the free form frame may be changed to various names by those skilled in the art.
  • the slot frame may be renamed as a channel frame and the free frame may be changed to a message frame.
  • the slot frame may include a sync pattern indicating the start of a slot, a measurement slot, nine slots, and additional sync patterns having the same time interval before each of the nine slots.
  • the additional sync pattern is a sync pattern different from the sync pattern indicating the start of the frame described above. More specifically, the additional sync pattern may indicate information related to adjacent slots (ie, two consecutive slots located next to the sync pattern) without indicating the start of the frame.
  • a sync pattern may be positioned between two consecutive slots of the nine slots.
  • the sync pattern may provide information related to the two consecutive slots.
  • the nine slots and the sync patterns provided in advance of each of the nine slots may have the same time interval.
  • the nine slots may have a time interval of 50 ms.
  • the nine sync patterns may have a time length of 50 ms.
  • the free-form frame as shown in (B) may not have a specific shape other than the sync pattern and the measurement slot indicating the start of the frame. That is, the free-form frame is to play a different role than the slot frame, for example, long data packets (eg, additional owner information packets) between the wireless power transmitter and the wireless power receiver.
  • the coil may be used for selecting any one of a plurality of coils.
  • FIG. 10 is a structure of a sync pattern according to an embodiment.
  • the sync pattern includes a preamble, a start bit, a response field, a type field, an information field, and a parity bit. Can be.
  • the start bit is shown as ZERO.
  • the preamble consists of consecutive bits and may be set to all zeros. That is, the preamble may be bits for adjusting the time length of the sync pattern.
  • the number of bits constituting the preamble may be dependent on the operating frequency such that the length of the sync pattern is closest to 50 ms, but not exceeding 50 ms.
  • the sync pattern may consist of two preamble bits, and when the operating frequency is 105 kHz, the sync pattern may consist of three preamble bits.
  • the start bit is a bit following the preamble and may mean zero.
  • the zero may be a bit indicating the type of sync pattern.
  • the type of sync pattern may include a frame sync including frame related information and a slot sync including slot information. That is, the sync pattern is located between successive frames, and is a frame sync indicating the start of a frame, or is located between successive slots among a plurality of slots constituting a frame, and includes information related to the successive slots. It may be a slot sync.
  • the slot is a slot sync, located between the slot and the slot, and if 1, the sync pattern is a frame sync located between the frame and the frame.
  • the parity bit is the last bit of the sync pattern and may indicate information on the number of bits constituting data fields (ie, response field, type field, and information field) of the sync pattern.
  • the parity bit may be 1 when the number of bits constituting the data fields of the sync pattern is even, and in other cases (ie, odd), 0.
  • the Response field may include response information of the wireless power transmitter for communication with the wireless power receiver in the slot before the sync pattern.
  • the response field may have '00' when the performance of communication with the wireless power receiver is not detected.
  • the response field may have '01' when a communication error is detected during communication with the wireless power receiver.
  • the communication error may be a case where two or more wireless power receivers attempt to access one slot, and thus a collision between two or more wireless power receivers occurs.
  • the response field may include information indicating whether the data packet is correctly received from the wireless power receiver. More specifically, the response field is "10" (10-not acknowledge, NAK) when the wireless power transmitter denies the data packet, and when the wireless power transmitter confirms the data packet. , "11" (11-acknowledge, ACK).
  • the type field may indicate the type of sync pattern. More specifically, the type field may have a '1' indicating that the sync pattern is a frame sync when the sync pattern is the first sync pattern of the frame (ie, the first sync pattern of the frame, located before the measurement slot).
  • the type field may have '0' indicating that the sync is a slot sync when the sync pattern is not the first sync pattern of the frame in the slot frame.
  • the meaning of the value of the information field may be determined according to the type of sink pattern indicated by the type field. For example, when the type field is 1 (that is, indicating a frame sync), the meaning of the information field may indicate the type of the frame. That is, the information field may indicate whether the current frame is a slotted frame or a free-format frame. For example, when the information field is '00', the slot frame may be indicated, and when the information field is '01', the free frame may be indicated.
  • the information field may indicate a state of a next slot located behind the sync pattern. More specifically, the information field is '00' if the next slot is an allocated slot to a specific wireless power receiver, if the slot is locked for temporary use by a specific wireless power receiver, '01', or if any wireless power receiver is a slot freely available, may have a '10'.
  • 11 is a diagram illustrating an operating state of a wireless power transmitter and a wireless power receiver in a shared mode according to an embodiment.
  • the wireless power receiver operating in the shared mode includes a selection phase 1100, an introduction phase 1110, a configuration phase 1120, and a negotiation state. It may operate in any one of a (Negotiation Phase) 1130 and a Power Transfer Phase 1140.
  • the wireless power transmitter may transmit a wireless power signal to detect the wireless power receiver. That is, the process of detecting the wireless power receiver using the wireless power signal may be referred to as analog ping.
  • the wireless power receiver that receives the wireless power signal may enter the selection state 1100.
  • the wireless power receiver entering the selection state 1100 may detect the presence of the FSK signal on the wireless power signal.
  • the wireless power receiver may perform communication in either of the exclusive mode or the shared mode according to the presence of the FSK signal.
  • the wireless power receiver may operate in the shared mode if the FSK signal is included in the wireless power signal, and may operate in the exclusive mode.
  • the wireless power receiver When the wireless power receiver operates in the shared mode, the wireless power receiver may enter the introduction state 1110. In the introductory state 1110, the wireless power receiver may transmit a control information packet to the wireless power transmitter to transmit a control information packet (CI) in a setup state, a negotiation state, and a power transfer state.
  • the control information packet may have information related to a header and control. For example, the control information packet may have a header of 0X53.
  • the wireless power receiver performs an attempt to request a free slot to transmit a control information (CI) packet through the following configuration, negotiation, and power transmission steps.
  • the wireless power receiver selects a free slot and transmits the first CI packet. If the wireless power transmitter responds with an ACK to the corresponding CI packet, the wireless power transmitter enters the configuration step. If the wireless power transmitter responds with a NACK, another wireless power receiver is in the process of configuration and negotiation. In this case, the wireless power receiver retries the request of the free slot.
  • CI control information
  • the wireless power receiver determines the position of the private slot in the frame by counting the remaining slot sinks up to the first frame sink. In all subsequent slot based frames, the wireless power receiver transmits the CI packet through that slot.
  • the wireless power transmitter allows the wireless power receiver to proceed to the configuration step, the wireless power transmitter provides a series of locked slots for exclusive use of the wireless power receiver. This ensures that the wireless power receiver goes through the configuration steps without crashing.
  • the wireless power receiver transmits sequences of data packets, such as two identification data packets IDHI and IDLO, using a lock slot. Upon completion of this step, the wireless power receiver enters the negotiation phase. In the negotiation phase, the wireless power transmitter continues to provide the wireless power receiver with a lock slot for exclusive use. This ensures that the wireless power receiver proceeds to the negotiation phase without collision.
  • the wireless power receiver transmits one or more negotiation data packets using the corresponding lock slot, which may be mixed with private data packets.
  • a specific request (SRQ) packet Upon completion of the sequence, the wireless power receiver enters the power transfer phase and the wireless power transmitter stops providing lock slots.
  • the wireless power receiver performs transmission of the CI packet using the allocated slot and receives power.
  • the wireless power receiver may include a regulator circuit.
  • the regulator circuit may be included in the communication / control unit.
  • the wireless power receiver may self-regulate the reflected impedance of the wireless power receiver via a regulator circuit. In other words, the wireless power receiver may adjust the reflected impedance to transmit the amount of power required by the external load. This can prevent excessive power reception and overheating.
  • the wireless power transmitter may not perform power adjustment as a response to the received CI packet (depending on the operation mode), in this case, control may be required to prevent overvoltage conditions.
  • the wireless power transmitter and the wireless power receiver must be implemented by the same power transfer interface and communication interface that are pre-qualified so that they are compatible with each other and power transfer can proceed normally.
  • the wireless power transmitter and the receiver are not manufactured by the same manufacturer, they are compatible with each other when manufactured according to the same technical standard or standard.
  • the implementation quality is different for each manufacturer, and wireless charging is not smooth if the standards are not faithfully followed.
  • FOD foreign object detection
  • a standardization body that operates technical standards tests with an accredited certification body to ensure that each manufacturer's wireless power transmitter or wireless power receiver conforms to standard technology and that device interoperability is ensured. And to activate the service.
  • wireless power transmitters and wireless power receivers already distributed in the market are mutually genuine in the process of before and after wireless charging.
  • authentication it is necessary to secure stability and reliability.
  • the accredited certification body grants the activation before the product is released, it is the preliminary certification process.
  • the ex post certification process to perform the authentication process between the products during the operation of wireless charging.
  • mutual authentication between products may be via an in-band communication channel and may be compatible with USB-C authentication. If the authentication fails, the wireless power receiver may warn the user and perform charging in the low power mode or remove the power signal.
  • the Qi standard of the WPC may be exemplified as a standard technology
  • the technical idea of the present invention includes not only the Qi standard but also embodiments of certification based on other standards.
  • USB-C may be one model for wireless charging authentication.
  • PRx means a wireless power receiver
  • PTx means a wireless power transmitter.
  • the authentication includes authentication of the wireless power transmitter by the wireless power receiver and authentication of the wireless power receiver by the wireless power transmitter.
  • Authenticating wireless power transmitters using full authentication can take as long as up to about 3 minutes, which is the large size of the USB-C certificate and the low bit rate employed by the wireless power transfer system. bit rate) communication protocol.
  • full authentication occurs every time in a public venue where the user frequently changes the wireless charging spot may be inconvenient for the user. Therefore, there is a need to define a compact or simplified size of the chain or packet involved in authentication.
  • the time required for authentication may be increased due to repetitive transmission of data due to traffic errors.
  • the level of the certificate chain may be limited.
  • the level of certificate chains can be three. Even at the minimum chain level, manufacturers can still issue their certificates to products, reducing the burden on manufacturers and certificate authorities (CAs).
  • a certificate chain is a series of two or more certificates, each of which is signed by a preceding certificate in the chain.
  • two types of certificates may be defined to be transmitted between the wireless power transmitter and the receiver.
  • the two types of certificates may include an intermediate certificate and a leaf certificate.
  • the root certificate is the same between which mutual authentication is supported.
  • the root certificate is self-signed as the first certificate in the certificate chain.
  • the leaf certificate is the last certificate in the certificate chain, and the intermediate certificate is a certificate that is neither a root certificate nor a leaf certificate in the certificate chain.
  • the format of the certificate may be defined in a reduced or simplified format.
  • the "reduced” or “simplified” format may mean a reduced or simplified format for wireless charging compared to the USB-C certificate format (X509v3 format).
  • the simplified certificate format for intermediate and leaf certificates can be less than 100 bytes (eg 80 bytes).
  • the root certificate can still follow the USB-C's certificate format.
  • the simplified certificate format may be referred to as a wireless charging certificate format or a Qi certificate format.
  • a wireless charging certificate according to the USB-C format may be provided.
  • FIG. 12 is a block diagram illustrating a wireless charging certificate format according to an embodiment.
  • the wireless charging certificate format includes a certificate type, a certificate length, an identification ID, a reserved bit, a public key, and a signature. do.
  • the certificate type is, for example, one byte, and may indicate that the corresponding certificate is one of a root certificate, an intermediate certificate, and a leaf certificate, a certificate regarding a wireless power transmitter, or a certificate about a wireless power receiver. It can also indicate all kinds of information. For example, when the bit strings b3 to b0 of the certificate type are '0000'b, it may represent an intermediate certificate, and when it is' 0001'b, it may represent a leaf certificate. When the bit strings b7 to b4 of the certificate type are '0001'b, they may indicate a certificate for the wireless power transmitter, and in the case of' 0000'b, they may indicate a certificate for the wireless power receiver. Therefore, when the bit string of the certificate type is a certain value, the certificate may indicate that the certificate is a leaf certificate as it relates to the wireless power transmission apparatus.
  • the certificate length is 2 bytes, for example, and may indicate the length of the certificate in bytes.
  • the identification information may indicate, for example, 6 bytes of the manufacturer code of the wireless power transmitter or the manufacturer code of the wireless power receiver, or may represent a wireless power ID (WPID).
  • WPID wireless power ID
  • the reserved bit may be, for example, 7 bytes.
  • the public key can be 32 bytes, for example.
  • the signature can be 32 bytes or 64 bytes, for example.
  • Type of certification PTx certification by PRx PRx certification by PTx Full authentication 34,830 msec ( ⁇ 35 sec) 8,002.5 msec ( ⁇ 8 sec) Quick authentication 18,564.5 msec ( ⁇ 18 sec) 5,842.5 msec ( ⁇ 6 sec)
  • 13A is a block diagram illustrating a wireless charging certificate format according to another embodiment.
  • the wireless charging certificate format includes a certificate type, a PTx and a leaf indicator (PTx, Leaf), a certificate length, an identification ID, a reserved bit, and a public key ( It contains a public key and a signature.
  • the PTx and leaf indicators are allocated to different bits from the certificate type in the same byte B0 separately from the certificate type.
  • the certificate type is 6 bits, for example, and may indicate that the certificate is one of a root certificate, an intermediate certificate, and a leaf certificate, and may indicate that the certificate is related to a wireless power transmitter or a wireless power receiver. It can also indicate all kinds of information.
  • the PTx and leaf indicator indicate whether the certificate is related to the wireless power transmitter and whether it is a leaf certificate. That is, the PTx and the leaf indicator may indicate whether the corresponding certificate is a leaf certificate for the wireless power transmitter.
  • the PTx and leaf indicators may be configured as two bits, for example, including one bit of PTx indicator and one bit of leaf indicator.
  • the PTx indicator indicates 1 when the certificate is about a wireless power transmitter and 0 when it is about a wireless power receiver.
  • the leaf indicator may be set to 1 when the corresponding certificate corresponds to the leaf certificate, and may be set to 0 when the leaf certificate does not correspond to the leaf certificate. 13A shows that since each bit is set to 1, the corresponding certificate is a PTx leaf certificate.
  • the PTx and leaf indicators are contained in the same byte B0 as the certificate type and are configured in the bit string next to the certificate type and assigned to bits different from the certificate type.
  • the certificate length is, for example, 1 byte and may indicate the length of the certificate in bytes.
  • the identification information may indicate, for example, 6 bytes of the manufacturer code of the wireless power transmitter or the PRx manufacturer code (PRMC) of the wireless power receiver, or may represent a wireless power ID (WPID).
  • the certificate type intermediate certificate
  • the identification information may indicate a manufacturer code of the wireless power transmitter or the manufacturer code of the wireless power receiver
  • the certificate type leaf certificate
  • the identification information may indicate a WPID.
  • the reserved bit may be 4 bytes, for example.
  • the public key can be 32 bytes, for example.
  • the signature can be for example 64 bytes.
  • FIG. 13a When FIG. 13a performs authentication by in-band communication based on the same wireless charging certificate format, mutual authentication may be completed within 60 seconds as shown in Table 5.
  • 13A illustrates an example in which the size of a certificate format is 108 bytes, but this is only an example, and embodiments in which each field is defined with a different number of bits are obvious to those skilled in the art and correspond to the technical idea of the present invention. .
  • the authentication procedure is preferably completed within 60 seconds of authentication completion by the initiator of the responder in an environment using in-band communication.
  • the authentication procedure preferably provides a mechanism for secure recognition of previously authenticated respondents within 20 seconds in an environment using in-band communication.
  • 13B is a block diagram illustrating a wireless charging certificate format according to another embodiment.
  • the wireless charging certificate format includes a wireless authentication standard certificate structure version (Qi Authentication Certificate Structure Version), reserved bits, PTx and leaf indicator (PTx Leaf), certificate type (significate type), signature offset (signature offset) , Serial number, issuer ID, subject ID, public key, and signature.
  • the PTx and leaf indicators are assigned to different bits from the certificate type in the same byte (B0) separately from the certificate type.
  • the PTx and leaf indicator indicate whether the certificate is related to the wireless power transmitter and whether it is a leaf certificate. That is, the PTx and the leaf indicator may indicate whether the corresponding certificate is a leaf certificate for the wireless power transmitter.
  • the PTx and leaf indicator may be 1 bit unlike in FIG. 13A. If the PTx and leaf indicator is 0, this may indicate that the certificate is not a leaf certificate or may indicate that the certificate is a leaf certificate of the wireless power receiver. On the other hand, if the PTx and leaf indicator is 1, this may indicate that the certificate is a leaf certificate of the wireless power transmitter.
  • the certificate type is, for example, 2 bits, and may indicate that the corresponding certificate is any one of a root certificate, an intermediate certificate, and a leaf certificate, and may represent all of them.
  • the authentication process between them Cannot be performed. That is, in order to perform the authentication procedure, both the wireless power transmitter and the wireless power receiver need to support the authentication function. However, since the authentication function may or may not be supported depending on the manufacturer, depending on the version of the product, a procedure for confirming this and a message used in the procedure are required. Furthermore, when only one device of the wireless power transmitter and the receiver supports the authentication function, and the other device is the legacy product, backward compatibility for the minimum charging function must be satisfied. The system policy requires that 5W (or less power, i.e. 3W) be supported for devices that do not support authentication.
  • the wireless power transmitter may use the capability packet to inform the wireless power receiver whether the authentication function is supported (in the case of authentication of PTx by PRx). . Meanwhile, the wireless power receiver may inform the wireless power transmitter whether the authentication function is supported by using a configuration packet (authentication of PRx by PTx) by the wireless power transmitter. ).
  • a configuration packet authentication of PRx by PTx
  • FIG. 14 is a performance packet structure of a wireless power transmitter according to an embodiment.
  • a performance packet having a corresponding header value of 0X31 includes three bytes, the first byte B 0 including a power class, a guaranteed power value, and a second byte B. 1 ) contains reserved, potential power value, and third byte B 2 includes reserved, Auth, NFCPP, NFCD, WPID, Not Res Sens .
  • Auth is 1 bit. For example, if the value is 0, the corresponding wireless power transmitter does not support the authentication function. If the value is 1, the corresponding wireless power transmitter is configured to provide the authentication function. Can indicate support.
  • 15 is a performance packet structure of a wireless power transmitter according to another embodiment.
  • a performance packet having a corresponding header value of 0X31 includes three bytes, the first byte B 0 including a power class, a guaranteed power value, and a second byte B. 1 ) contains the reserved, potential power value, the third byte (B 2 ) is the Authentication Initiator (AI), Authentication Responder (AR), Reserve, WPID , Not Res Sens.
  • AI Authentication Initiator
  • AR Authentication Responder
  • Reserve WPID
  • Not Res Sens Specifically, when the authentication initiator is 1 bit, for example, a value of '1b' indicates that the wireless power transmitter can operate as the authentication initiator.
  • the authentication responder is 1 bit, for example, a value of '1b' indicates that the wireless power transmitter can operate as an authentication responder.
  • 16 is a configuration packet structure of a wireless power receiver according to an embodiment.
  • a configuration packet having a corresponding header value of 0X51 is 5 bytes, in which the first byte B 0 includes a power class, a maximum power value, and a second byte B 1.
  • ) Contains reserved, and the third byte (B 2 ) contains Prop, reserved, ZERO, Count, and the fourth byte (B 3 ) contains window size, window offset, and fifth Byte B 4 includes Neg, polarity, depth, authentication, and spare.
  • Auth is 1 bit. For example, if the value is 0, the corresponding wireless power receiver does not support the authentication function. If the value is 1, the corresponding wireless power receiver provides the authentication function. Can indicate support.
  • 17 is a configuration packet structure of a wireless power receiver according to another embodiment.
  • a configuration packet having a corresponding header value of 0X51 is 5 bytes, in which the first byte B 0 includes a power class, a maximum power value, and a second byte B 1.
  • ) Contains AI, AR, Reserve
  • the third byte (B 2 ) contains Prop, Reserve, ZERO, Count
  • the fourth byte (B 3 ) contains Window size, Window Offset
  • the byte B 4 includes Neg, polarity, depth, authentication, and spare.
  • the authentication initiator is 1 bit, for example, if the value is '1b', it indicates that the corresponding wireless power receiver can operate as the authentication initiator.
  • the authentication responder is 1 bit, for example, a value of '1b' indicates that the wireless power receiver can operate as an authentication responder.
  • Procedures and procedures for verifying support for the authentication feature may be applied to at least one or more of an identification and configuration phase, a negotiation phase, a calibration phase, a power transfer phase, a renegotiation phase, an introduction phase. Can proceed across.
  • the authentication procedure may proceed in the negotiation phase.
  • the process of reading and verifying DIGESTS through in-band communication may take about 4 seconds. Therefore, in terms of user convenience, it may be considered to provide wireless charging with basic power even before authentication, regardless of whether authentication is performed, rather than starting charging after authentication is completed. This is also desirable in terms of backward compatibility for devices without authentication.
  • the authentication procedure may proceed over a negotiation phase and a power transfer phase.
  • the packet sequence is strictly controlled and only one-way communication from the wireless power receiver to the transmitter is allowed, while bi-directional communication is allowed during the negotiation and power transmission phase. Therefore, the authentication procedure may proceed in the negotiation and power transfer phase in which bidirectional communication is allowed.
  • the negotiation phase quick authentication is performed by a wireless power transmitter or receiver that exchanges ⁇ GET_DIGESTS, CHALLENGE ⁇ messages. And a power contract can be concluded based on the established trust.
  • the wireless power transmitter and receiver meet each other for the first time by checking DIGESTS, they establish an initial power contract based on system policy and enter the power transfer phase to provide the default low power to the wireless power receiver as soon as possible. .
  • full authentication is performed by a wireless power transmitter or receiver that exchanges ⁇ GET_CERTIFICATE, CHALLENGE ⁇ messages. If the full authentication is successfully completed, the wireless power transmitter and / or receiver renew the power contract.
  • the wireless power transmitter and the receiver may directly enter the power transfer phase without authentication, and then proceed with the authentication procedure in the power transfer phase. If authentication is successful in the power transfer phase, the power contract can be renewed through the renegotiation phase, or the target power or full power that the wireless power transmitter can support is the level desired by the wireless power transmitter / receiver. Can be supported. Therefore, user convenience can be increased.
  • the procedure for confirming whether the wireless power receiver supports the authentication function of the wireless power transmitter is performed in the negotiation phase.
  • the wireless power receiver may check whether the wireless power transmitter supports the authentication function according to the procedure by transmitting a query packet and confirming the response.
  • the query packet may be a general request packet (0x07), in this case, if the wireless power receiver transmits the general request packet to the wireless power transmitter, the wireless power transmitter is shown in FIG. 14 or FIG. 15.
  • a performance packet including an authentication (auth), such as a response is transmitted to the wireless power receiver.
  • the query packet may be a specific request packet (0x20).
  • the wireless power transmitter provides an ACK (authentication function). If yes) or NACK (if authentication is not supported). If it is confirmed in the negotiation phase that the wireless power transmitter supports the authentication function, the wireless power receiver may establish a power contract of 5W or more with the corresponding wireless power transmitter PC0.
  • an authentication procedure may begin. More specifically, after the wireless power receiver reaches a normal or stable operation point in which a control error packet (CEP) is transmitted at about 250 ms, the wireless power receiver performs an authentication procedure with the wireless power transmitter. Can be done.
  • the authentication procedure can be used to renew an existing power contract. That is, the wireless power receiver may renegotiate the power contract to increase the power level according to the existing power contract according to the result of the authentication procedure. In this case, the wireless power receiver may renew the power contract according to the power management policy by transmitting a renegotiation packet (renegotiation packet (0x09)).
  • the wireless power receiver may renew the power contract with increased power or maintain the current power contract.
  • the wireless power receiver may renew the power contract with the reduced power or remove the power signal.
  • a procedure for checking whether the wireless power transmitter supports the authentication function of the wireless power receiver is an initialization phase. phase).
  • the initialization phase may be any one of a phase before the negotiation phase, for example, a selection phase, a ping phase, an identification and a setup phase.
  • the wireless power transmitter receives a configuration packet including an auth as shown in FIG. 16 or 17 from the wireless power receiver to check whether the wireless power receiver supports an authentication function.
  • an authentication procedure may be started in the negotiation phase.
  • the initial power contract is concluded. More specifically, the wireless power transmitter waits for reception of DIGESTS from the wireless power receiver. If the wireless power transmitter recognizes that the wireless power receiver is already authenticated, the authentication procedure succeeds. If the wireless power transmitter fails to acknowledge DIGESTS, the wireless power transmitter continues the authentication procedure during the power transfer phase. According to the power management policy, the wireless power transmitter establishes a power contract with the wireless power receiver. In this case, the wireless power transmitter may establish a power contract of 5W or more with the corresponding wireless power receiver PC0 that has passed certification as DIGESTS. Once the authentication procedure is completed during the power transfer phase, the wireless power transmitter may renegotiate the power contract to increase the power level.
  • the wireless power transmitter is authenticated with the wireless power receiver. Can be performed.
  • the authentication procedure can be used to renew an existing power contract. That is, the wireless power receiver may renegotiate the power contract to increase the power level according to the existing power contract according to the result of the authentication procedure. In this case, the wireless power receiver may renew the power contract according to the power management policy by transmitting a renegotiation packet (renegotiation packet (0x09)).
  • the wireless power receiver may renew the power contract with increased power or maintain the current power contract.
  • the wireless power receiver may renew the power contract with the reduced power or remove the power signal.
  • the message used in the authentication procedure is called an authentication message.
  • the authentication message is used to carry information related to authentication.
  • the authentication request is sent by the authentication initiator and the authentication response is sent by the authentication responder.
  • Both the wireless power transmitter and the receiver may be an authentication initiator and an authentication responder. For example, when the wireless power transmitter is an authentication initiator, the wireless power receiver becomes an authentication responder, and when the wireless power receiver is an authentication initiator, the wireless power transmitter becomes an authentication responder.
  • the authentication request message includes GET_DIGESTS (i.e. 4 bytes), GET_CERTIFICATE (i.e. 8 bytes), and CHALLENGE (i.e. 36 bytes).
  • the authentication message may be called an authentication packet or may be called authentication data or authentication control information. Also, messages such as GET_DIGEST and DIGESTS may be called GET_DIGEST packets, DIGEST packets, and the like.
  • Table 6 shows an example of the request time of each authentication message when the power contract is based on the result of GET_DIGESTS during the negotiation phase. If the wireless power receiver already knows DIGEST regarding the wireless power transmitter, the transmission / reception steps of GET_CERTIFICATE and CERTIFICATE may be omitted. In addition, the power contract may be renewed in the renegotiation phase depending on the authentication result.
  • Table 7 shows another example of the request time of each authentication message when the power contract is based on the result of GET_DIGESTS during the negotiation phase. If the wireless power receiver already knows DIGEST regarding the wireless power transmitter, the transmission / reception steps of GET_CERTIFICATE and CERTIFICATE may be omitted. In addition, the power contract may be renewed in the renegotiation phase depending on the authentication result. Hereinafter, an authentication procedure for satisfying the request time will be described.
  • 18 is a flowchart illustrating a sequence of packets transmitted and received when a wireless power receiver performs authentication of PTx by PRx.
  • the wireless power receiver transmits GET_DIGESTS to the wireless power transmitter in order to obtain or retrieve the certificate chain DIGESTS of the wireless power transmitter (S1800).
  • REQUEST PTx's DIGEST may be set.
  • the predecessor operation for step S1800 may include checking, by the wireless power receiver, the authentication function support in the performance packet received from the wireless power transmitter.
  • the wireless power receiver may transmit the GET_DIGESTS to the wireless power transmitter using the general request packet during the negotiation phase or the renegotiation phase. That is, GET_DIGESTS may be transmitted in a general request packet.
  • GET_DIGESTS includes, for example, a request field as 1 byte.
  • the request field may indicate, for example, the header of DIGEST of the wireless power transmitter.
  • GET_DIGESTS is, for example, 1 byte and includes a reserved and slot number.
  • the slot number identifies the slot in which the requested certificate chain is stored and may be 3 bits, for example.
  • the wireless power transmitter transmits DIGESTS to the wireless power receiver as a response to GET_DIGESTS (S1805).
  • DIGESTS is used to send a report on which certificate responders contain certificate chain digests and which slots contain valid certificate chain digests.
  • the parameter of DIGESTS may be 32 bytes of a hash value of the certificate chain.
  • a DIGESTS packet includes a 32-byte DIGESTS payload, a 1-byte header indicating that the packet is related to DIGESTS, and a 2-byte header indicating the length of the packet.
  • the wireless power transmitter divides the DIGESTS packet into a plurality of small packets of a specific length (for example, 3 bytes), and adds a checksum to the end of the small packet to add 4 bytes of DIGESTS small packets. Send in a sequence of packets. The size of the last small packet of this sequence may be less than 4 bytes. Small packets can also be called segments. In the example of FIG.
  • the size of a transmission packet of the wireless power transmitter is limited to configure one authentication response up to 4 bytes.
  • This division of a response message into a series of small packets means that the wireless power receiver (extended) control error packet (CEP) and (extended) received power packet (extended) are sent to the transmitter periodically (about 250 ms). RPP) to allow the timing to transmit, thereby operating point and foreign matter detection for power transmission of the wireless power transmitter can be managed efficiently.
  • Steps S1800 and S1805 may be performed in the negotiation or renegotiation phase. Alternatively, steps S1800 and S1805 may be performed in the power transmission phase.
  • the wireless power receiver transmits GET_CERTIFICATE to the wireless power transmitter in order to obtain a certificate chain of the wireless power transmitter (S1810).
  • GET_CERTIFICATE may be set by an offset and a length.
  • GET_CERTIFICATE is used to read a segment of the target certificate chain.
  • GET_CERTIFICATE is, for example, 2 bytes and may include an offset and a length field.
  • the offset is an offset from the start position of the certificate chain to the position at which the read request starts
  • the indication unit is a byte (Offset in bytes from the start of the Certificate Chain to where the read request begins).
  • Length is the length of a read request
  • the wireless power transmitter transmits at least a portion of a certificate chain to the wireless power receiver as a response to GET_CERTIFICATE (S1815).
  • a part of the certificate chain may be started later by an offset from a time starting with a length of a byte unit.
  • the wireless power transmitter in transmitting a 1536-byte certificate packet, extracts a certificate having a length of 4 bytes from an offset point of the certificate packet, adds a header indicating that the front end is a certificate, and the rear end. A checksum is added to generate and send a six-byte long certificate segment.
  • the certificate packet (ie 1543 bytes) may include a certificate chain (ie 1540 bytes), a header indicating that the certificate (ie 1 byte), and a header (ie 2 bytes) indicating the length of the certificate packet.
  • the wireless power transmitter divides the certificate packet into a plurality of small packets of a specific length (for example, 3 bytes), and adds a checksum to the end of the small packet to add a 4-byte certificate packet. Send in a sequence of packets. In this case, a total of 515 chunks of data are each transmitted.
  • the size of the last small packet of the sequence may be less than 4 bytes. Small packets can also be called segments.
  • the example of FIG. 24 limits the size of a transmission packet of the wireless power transmitter so that one authentication response is configured with a maximum of 4 bytes.
  • This division of a response message into a series of small packets means that the wireless power receiver (extended) control error packet (CEP) and (extended) received power packet (extended) are sent to the transmitter periodically (about 250 ms). RPP) to allow the timing to transmit, thereby operating point and foreign matter detection for power transmission of the wireless power transmitter can be managed efficiently.
  • the wireless power receiver may transmit a control error (CE) packet and / or a received power packet (RPP) packet to the wireless power transmitter (S1820).
  • Steps S1810 and S1820 may be performed, for example, in a power transfer phase.
  • the wireless power receiver may repeat steps S1810 to S1820 until all certificate chains are read.
  • the wireless power receiver transmits the CHALLENGE to the wireless power transmitter (S1825).
  • CHALLENGE is used to initiate the certification of a product.
  • CHALLENGE is, for example, 32 bits (4 bytes) and may include four nonnce fields. Nonce is a binary random number selected by the authentication initiator.
  • the wireless power receiver transmits GET_CHALLENGE_AUTH to the wireless power transmitter in order to obtain CHALLENGE_AUTH (S1830).
  • GET_CHALLENGE_AUTH may be set to an offset and a length.
  • the wireless power transmitter transmits a portion of CHALLENGE_AUTH to the wireless power receiver as a response to GET_CHALLENGE_AUTH (S1835).
  • a part of the CHALLENGE_AUTH may be started later by an offset from the starting point of the length of the byte unit.
  • a CHALLENGE_AUTH packet (ie 160 bytes) may contain a certificate chain hash (ie 32 bytes), salt (ie 32 bytes), a context hash (ie 32 bytes) and a signature (ie. 64 bytes).
  • the wireless power transmitter extracts the CHALLENGE_AUTH packet by a specific length (for example, 4 bytes) from the offset based on the offset and the length indicated in the GET_CHALLENGE_AUTH, and adds a header indicating that the CHALLENGE_AUTH packet is the front end. The back end adds a checksum to generate and send a total of six bytes of certificate segments.
  • the wireless power receiver may transmit a control error (CE) packet and / or a received power packet (RPP) packet to the wireless power transmitter (S1840).
  • CE control error
  • RPP received power packet
  • the wireless power receiver may repeat steps S1830 to S1840 until all certificate chains are read.
  • Table 8 shows an example of the request time of each authentication message in the case where the power contract is based on the result of GET_DIGESTS during the negotiation phase. If the wireless power transmitter already knows DIGEST regarding the wireless power receiver, the transmission / reception steps of GET_CERTIFICATE and CERTIFICATE may be omitted. Also, the power contract can be renewed in the renegotiation phase depending on the authentication result.
  • Table 9 shows an example of the request time of each authentication message in the case where the power contract is based on the result of GET_DIGESTS during the negotiation phase. If the wireless power transmitter already knows DIGEST regarding the wireless power receiver, the control error packet transmission step, the communication request step, and the transmission / reception steps of GET_CERTIFICATE and CERTIFICATE may be omitted. Also, the power contract can be renewed in the renegotiation phase depending on the authentication result. Hereinafter, an authentication procedure for satisfying the request time will be described.
  • FIG. 27 is a flowchart illustrating a sequence of packets transmitted and received when the wireless power transmitter performs authentication of PRx by PTx of the wireless power receiver.
  • the wireless power transmitter receives DIGESTS transmitted from the wireless power receiver (S2700). DIGESTS is used to send a report on which certificate responders contain certificate chain digests and which slots contain valid certificate chain digests.
  • the parameter of DIGESTS may be 32 bytes of a hash value of the certificate chain.
  • the predecessor operation for step S2700 is, the wireless power receiver confirms the support of the authentication function in the capability packet (capability packet) received from the wireless power transmitter, the wireless power transmitter transmits GET_DIGESTS to the wireless power receiver. It may include. Step S2700 may be performed in a negotiation or renegotiation phase or a power transfer phase.
  • GET_DIGESTS includes, for example, a request field as 1 byte. It includes reserved and slot numbers. The slot number identifies the slot in which the requested certificate chain is stored and may be 3 bits, for example.
  • the wireless power receiver transmits a control error packet or a received power packet to the wireless power transmitter (S2705).
  • the wireless power transmitter transmits a request for communication as a response to the control error packet or the received power packet (S2710).
  • the request for communication may be a bit pattern response, for example.
  • the wireless power transmitter transmits GET_CERTIFICATE to the wireless power receiver to obtain a certificate chain or CHALLENGE_AUTH response of the wireless power receiver (S2720).
  • GET_CERTIFICATE may be set by an offset and a length.
  • GET_CERTIFICATE is used to read a segment of the target certificate chain.
  • a GET_CERTIFICATE is 2 bytes, for example, and may include an offset and a length field.
  • the offset is an offset from the start position of the certificate chain to the position at which the read request starts
  • the indication unit is a byte (Offset in bytes from the start of the Certificate Chain to where the read request begins).
  • Length is the length of a read request
  • the wireless power receiver transmits at least a portion of a certificate chain to the wireless power transmitter in response to GET_CERTIFICATE (S2725).
  • a part of the certificate chain may be started later by an offset from a time starting with a length of a byte unit.
  • the wireless power receiver in transmitting a 1536-byte certificate packet, extracts a certificate having a length of 40 bytes from an offset point of the certificate packet, and includes a header (ie 1 byte) indicating that the certificate is a certificate.
  • a checksum ie 1 byte is added to the rear end to generate and transmit a 42-byte long certificate segment.
  • the wireless power transmitter may repeat steps S2710 to S2725 until all certificate chains are read.
  • the wireless power receiver may transmit a control error (CE) packet and / or a received power packet (RPP) packet to the wireless power transmitter (S2730).
  • CE control error
  • RPP received power packet
  • the wireless power transmitter transmits a request for communication as a response to the control error packet or the received power packet (S2735).
  • the request for communication may be a bit pattern response, for example.
  • the wireless power transmitter transmits CHALLENGE [n] to the wireless power receiver (S2745).
  • CHALLENGE is used to initiate the certification of a product.
  • CHALLENGE is 32 bits (4 bytes), for example, and may include four nonnce fields. Nonce is a binary random number selected by the authentication initiator.
  • the wireless power transmitter transmits eight CHALLENGE packets to provide a total of 32 bytes of nonce to the wireless power receiver.
  • the wireless power transmitter may repeatedly perform steps S2735 to S2750 until all the CHALLENGEs are transmitted after receiving the ACK from the wireless power receiver.
  • the wireless power receiver may transmit the control error packet and / or the received power packet to the wireless power transmitter (S2755).
  • the wireless power transmitter transmits a request for communication as a response to the control error packet or the received power packet (S2760).
  • the request for communication may be a bit pattern response, for example.
  • the wireless power transmitter transmits GET_CHALLENGE_AUTH to the wireless power receiver to obtain CHALLENGE_AUTH (S2770).
  • GET_CHALLENGE_AUTH may be set to an offset and a length.
  • the wireless power receiver transmits at least a portion of the CHALLENGE_AUTH to the wireless power transmitter as a response to the GET_CHALLENGE_AUTH (S2775). At this time, at least a part of the CHALLENGE_AUTH may be started later by an offset from a starting point of a byte unit length.
  • the CHALLENGE_AUTH packet (ie 160 bytes) may contain a certificate chain hash (ie 32 bytes), salt (ie 32 bytes), context hash (ie 32 bytes) and signature (ie. 64 bytes).
  • the wireless power transmitter extracts the CHALLENGE_AUTH packet by a specific length (for example, 40 bytes) from the offset based on the offset and the length indicated by GET_CHALLENGE_AUTH, and the header (ie 1 byte) indicates that the front end is a CHALLENGE_AUTH packet. ), followeded by a checksum (ie 1 byte) to generate and send a total of 42 bytes of certificate segments.
  • the wireless power transmitter may repeat steps S2760 to S2775 until all CHALLENGE_AUTH is read.
  • a certificate packet (ie N bytes) may include a certificate chain, a header indicating that the certificate is (ie 1 byte), and a header (ie 2 bytes) indicating the length of the certificate packet.
  • the wireless power receiver divides the certificate packet into a plurality of small packets of a specific length (for example, M-1 bytes), and adds a checksum of 1 byte to the end of the small packet. Send in a sequence of M bytes of certificate packets. The size of the last small packet of the sequence may be less than M bytes.
  • Small packets can also be called segments.
  • 33 illustrates the size of a transmission packet of the wireless power receiver so that one authentication response is composed of M bytes.
  • This division of a response message into a series of small packets means that the wireless power receiver (extended) control error packet (CEP) and (extended) received power packet (extended) are sent to the transmitter periodically (about 250 ms). RPP) to allow the timing to transmit, thereby operating point and foreign matter detection for power transmission of the wireless power transmitter can be managed efficiently.
  • CEP control error packet
  • RPP foreign matter detection for power transmission of the wireless power transmitter can be managed efficiently.
  • a certificate packet (ie 1543 bytes) includes a certificate chain (ie 1540 bytes), a header indicating that the certificate is (ie 1 byte), and a header indicating the length of the certificate packet (ie 2 bytes). It may include.
  • the wireless power receiver divides the certificate packet into a plurality of small packets of a specific length (for example, 38 bytes), adds a preamble (ie 1 byte) to the front of the small packet, and Then, it adds a checksum (ie 1 byte) at the back and sends it as a sequence of 40 byte certificate packets.
  • a total of 41 chunks of data are each transmitted.
  • the size of the last small packet of the sequence may be less than 40 bytes. Small packets can also be called segments.
  • the example of FIG. 34 limits the size of a transport packet of the wireless power receiver so that one authentication response consists of 40 bytes.
  • This division of a response message into a series of small packets means that the wireless power receiver (extended) control error packet (CEP) and (extended) received power packet (extended) are sent to the transmitter periodically (about 250 ms). RPP) to allow the timing to transmit, thereby operating point and foreign matter detection for power transmission of the wireless power transmitter can be managed efficiently.
  • CEP control error packet
  • RPP foreign matter detection
  • 35 is a flowchart illustrating a sequence of packets transmitted and received when a wireless power transmitter performs authentication of PRx by PTx of a wireless power receiver.
  • the wireless power transmitter receives DIGESTS transmitted from the wireless power receiver (S3500).
  • the pre-determining operation for step S3500 may include verifying an authentication function support in a capability packet received from the wireless power transmitter, and transmitting, by the wireless power transmitter, GET_DIGESTS to the wireless power receiver. It may include.
  • Step S3500 may be performed in a negotiation phase or a power transfer phase.
  • the wireless power receiver transmits a control error packet or a received power packet to the wireless power transmitter (S3505).
  • the wireless power transmitter transmits a request for multiple communication as a response to the control error packet or the received power packet (S3510).
  • the request for multiple communication may be a bit pattern response, for example.
  • the wireless power transmitter transmits GET_CERTIFICATE to the wireless power receiver to obtain the certificate chain or CHALLENGE_AUTH response of the wireless power receiver (S3520).
  • GET_CERTIFICATE may be set by an offset and a length.
  • GET_CERTIFICATE is used to read a segment of the target certificate chain.
  • the wireless power receiver transmits at least a portion of the certificate chain to the wireless power transmitter in response to the GET_CERTIFICATE (S3525).
  • a part of the certificate chain may be started later by an offset from a time starting with a length of a byte unit.
  • the wireless power transmitter may repeat steps S3520 to S3525 until all certificate chains are read.
  • the wireless power receiver may transmit a control error (CE) packet and / or a received power packet (RPP) packet to the wireless power transmitter (S3530).
  • CE control error
  • RPP received power packet
  • the wireless power transmitter transmits a request for multiple communication as a response to the control error packet or the received power packet (S3535).
  • the request for multiple communication may be a bit pattern response, for example.
  • the wireless power transmitter transmits CHALLENGE [n] to the wireless power receiver (S3545).
  • CHALLENGE is used to initiate the certification of a product.
  • the wireless power transmitter may repeat steps S3545 to S3550 until all the CHALLENGEs are transmitted.
  • the wireless power receiver may transmit the control error packet and / or the received power packet to the wireless power transmitter (S3555).
  • the wireless power transmitter transmits a request for multiple communication as a response to the control error packet or the received power packet (S3560).
  • the request for majority communication may be a bit pattern response, for example.
  • the wireless power transmitter transmits GET_CHALLENGE_AUTH to the wireless power receiver to obtain CHALLENGE_AUTH (S3570).
  • GET_CHALLENGE_AUTH may be set to an offset and a length.
  • the wireless power receiver transmits at least a portion of the CHALLENGE_AUTH to the wireless power transmitter in response to the GET_CHALLENGE_AUTH (S3575). At this time, at least a part of the CHALLENGE_AUTH may be started later by an offset from a starting point of a byte unit length.
  • the wireless power transmitter may repeat steps S3570 to S3575 until all the CHALLENGE_AUTH is read.
  • the low level packet transmission protocol supporting the authentication procedure may be based on in-band communication, it is necessary to configure the packet structure used in the in-band communication to be suitable for the authentication procedure and the authentication message.
  • FIG. 36 illustrates a structure of a packet transmitted from a wireless power receiver to a wireless power transmitter in in-band communication.
  • the packet according to FIG. 36 may be modulated by the ASK scheme.
  • a bit rate is 2 Kbps
  • the packet includes a preamble, a header, a message, and a checksum.
  • the preamble may be set to 11 bits
  • the header is 1B
  • the checksum is 1B (1B-> 11 bits).
  • FIG. 37 illustrates a structure of a packet transmitted from a wireless power transmitter to a wireless power receiver in in-band communication.
  • the packet according to FIG. 37 may be modulated by the FSK scheme.
  • a bit rate at 100 kHz operating frequency is 200 bps
  • a packet includes a header, a message, and a checksum.
  • the header may be set to 1B and the checksum is set to 1B (1B-> 11 bits).
  • the wireless power transmitter When the wireless power receiver is an authentication initiator, the wireless power transmitter becomes an authentication responder.
  • the wireless power transmitter may be represented as a (authentication) target device.
  • the wireless power receiver transmits a message (or packet) requesting the wireless power transmitter for messages (or packets) necessary for authentication of the wireless power transmitter.
  • the wireless power transmitter transmits an authentication response message consisting of a sequence of several packets to the wireless power receiver. The process of transmitting and receiving a series of messages may be defined by a low level packet transfer protocol.
  • FIG. 38 illustrates a transmission and reception sequence of a packet between a wireless power receiver and a transmitter from a lower level perspective according to an embodiment.
  • FIG. 38 illustrates a process in which the wireless power receiver transmits the GET_DIGESTS to the wireless power transmitter, and the wireless power transmitter transmits an authentication response packet (DIGESTS) to the wireless power receiver.
  • DIGESTS authentication response packet
  • the wireless power transmitter transmits every packet of a sequence, and then waits for an ACK / NACK or a continue / stop from the wireless power receiver.
  • the ACK / NACK or continue / stop is included in an extended control error packet (CEP) as shown in FIG. 39 and transmitted.
  • CEP extended control error packet
  • the wireless power transmitter and / or receiver repeat the following procedure until all packets in the sequence have been sent.
  • the wireless power transmitter receives 'ACK and sustain', the wireless power transmitter transmits the next packet.
  • the wireless power transmitter waits until it receives the next extended CEP including 'ACK and Suspend'.
  • the wireless power transmitter receives 'NACK and sustain', the wireless power transmitter retransmits the previous packet.
  • the wireless power transmitter waits until it receives the next extended CEP including 'ACK and Suspend'.
  • FIG. 39 illustrates a transmission and reception sequence of a packet between a wireless power receiver and a transmitter from a lower level perspective according to another embodiment.
  • FIG. 39 illustrates a process in which the wireless power receiver transmits a GET_CERTIFICATE to the wireless power transmitter, and the wireless power transmitter receives an authentication response packet (CERTIFICATE) from the wireless power receiver.
  • CERTIFICATE authentication response packet
  • the wireless power transmitter transmits every packet of a sequence and waits for ACK / NACK or a continue / stop from the wireless power receiver.
  • the ACK / NACK or continue / stop is included in an extended control error packet (CEP) as shown in FIG. 39 and transmitted.
  • CEP extended control error packet
  • the wireless power transmitter and / or receiver repeat the following procedure until all packets in the sequence have been sent.
  • the wireless power transmitter receives 'ACK and sustain', the wireless power transmitter transmits the next packet.
  • the packet 1 receives 'ACK and sustain' through an extended control error packet (CEP), and the packet m receives an extended RPP as shown in FIG. 42.
  • CEP extended control error packet
  • 'ACK and sustain' can be received.
  • the wireless power transmitter waits until it receives the next extended CEP including 'ACK and Suspend'. For example, for packet n, 'ACK and Abort' is received via an extended CEP.
  • the wireless power transmitter receives 'NACK and sustain', the wireless power transmitter retransmits the previous packet.
  • the wireless power transmitter waits until it receives the next extended CEP including 'ACK and Suspend'.
  • 40 is a diagram illustrating an extended control error packet according to an embodiment.
  • the wireless power receiver transmits an extended control error packet as a response to a packet of the wireless power transmitter.
  • the extended control error packet not only includes a control error value for adjusting an operating point of the wireless power transmitter, but also includes at least one of ACK / NACK or continue / stop.
  • interruption is 1 bit. If the value is '1'b, it indicates that the wireless power transmitter stops transmitting the packet. If the value is' 0'b, the wireless power transmitter detects the next packet of the sequence. Indicate the transmission box (ie, the continuation of the transmission).
  • the wireless power receiver stops' Setting it to 1 'may force the wireless power transmitter to suspend sending packets in the next sequence.
  • ACK / NACK is, for example, 4 bits. If the value is' 0000'b, the ACK / NACK may be indicated. The ACK indicates that the wireless power receiver successfully receives the packet without an error condition, and the NACK indicates that the wireless power receiver requests the wireless power transmitter to retransmit the packet due to a packet reception error.
  • EPT 41 illustrates a structure of an end power transfer (EPT) packet according to an embodiment.
  • the power transmission end packet corresponding to the header value 0x02 may indicate a code value required for the authentication procedure.
  • the wireless power receiver may set the EPT code value to indicate a code value different from the existing EPT code, such as 0x0E. By transmitting a new EPT code value, the wireless power receiver can eliminate power transmission.
  • an extended received power packet is 24 bits, and includes a first reserved bit, a mode, a received power value, a second reserved bit, a stop, and an ACK / NACK. can do. That is, the extended received power packet not only includes a received power value related to the FOD of the wireless power transmitter, but also includes at least one of ACK / NACK or continue / stop.
  • the interruption is 1 bit
  • the wireless power transmitter stops transmitting the packet. If the value is' 0'b, the wireless power transmitter transmits the next packet of the sequence (That is, the duration of the transfer.
  • the wireless power receiver stops' Setting it to 1 'may force the wireless power transmitter to suspend sending packets in the next sequence.
  • ACK / NACK is, for example, 4 bits. If the value is' 0000'b, the ACK / NACK may be indicated. The ACK indicates that the wireless power receiver successfully receives the packet without an error condition, and the NACK indicates that the wireless power receiver requests the wireless power transmitter to retransmit the packet due to a packet reception error.
  • the wireless power receiver is an authentication responder.
  • the wireless power receiver may be referred to as an (authentication) target device.
  • the wireless power transmitter transmits a message (or packet) to the wireless power receiver for messages (or packets) required for authentication of the wireless power receiver. Or packet).
  • the wireless power receiver sends an authentication response message consisting of a sequence of packets to the wireless power transmitter.
  • the process of transmitting and receiving a series of messages may be defined by a low level packet transfer protocol.
  • FIG. 43 illustrates a transmission and reception sequence of a packet between a wireless power receiver and a transmitter from a low level perspective according to an embodiment.
  • FIG. 43 illustrates a process in which the wireless power transmitter receives the authentication response packet (CERTIFICATE) from the wireless power transmitter while the wireless power transmitter transmits the GET_CERTIFICATE to the wireless power transmitter.
  • CERTIFICATE authentication response packet
  • the wireless power receiver transmits every packet of a sequence, and then waits for an ACK / NACK (bit-pattern response) to be transmitted from the wireless power transmitter.
  • the bit response time may be 40 ms, for example.
  • the wireless power transmitter and / or the receiver may repeat the following procedure until all packets in the sequence have been sent.
  • the wireless power receiver may transmit CEP and / or RPP.
  • the wireless power receiver receives the 'ACK', the wireless power receiver transmits the next packet. For example, upon receiving an ACK for the packet 1, the wireless power receiver transmits the packet 2 at the next transmission timing.
  • the wireless power receiver If the wireless power receiver receives 'NACK', the wireless power receiver retransmits the previous packet.
  • this embodiment may consider four rules.
  • Rule 1 is that the wireless power receiver operates as a master. When the wireless power receiver operates as a master and the wireless power transmitter operates as a slave, the wireless power receiver determines when communication of the wireless power transmitter is allowed.
  • the wireless power receiver may transmit a start of data stream (SOD) ADT_CTRL packet to query whether there is a data stream to be transmitted by the wireless power transmitter.
  • SOD start of data stream
  • the wireless power receiver polls the wireless power transmitter as to whether there is a packet to be transmitted by the wireless power transmitter, so that a request is set to '0xFF'. GRP) can be sent.
  • Rule 2 is communication error control.
  • the wireless power receiver or the transmitter may rewrite the ADT packet until the ACK is received.
  • an "ACK" ADT_CTRL packet is transmitted, and when a communication error is detected, a "NACK" ADT_CTRL packet is transmitted.
  • Rule 3 is the synchronization of data streams.
  • the header of the ADT data packet can be toggled every time a new ADT data packet is sent.
  • Rule 4 is to mark the end of the data stream, or to mark the end and the start.
  • a start of data stream (SOD) ADT_CTRL packet may be added to a start of the data stream.
  • an end of data stream (EOD) ADT_CTRL packet may be added to an end of the data stream.
  • SOD and EOD may be added when the length of the data stream is larger than 1 packet.
  • the data transport and packet structure may be defined as follows.
  • the following describes in detail the low-level data transport and packet structure for authentication.
  • the general bit pipe scheme provides application-agnostic data transfer and has the advantage that it can be used for other applications in the future in addition to authentication.
  • Design requirements for general bit pipe-based low-level data transport include: i) minimizing interaction between high and low levels, ii) error-recovery, and It is to ensure synchronized low-level data transport.
  • the higher level encodes the data stream and pushes it to the lower level (write) and decodes the data stream provided from the lower level (read).
  • the lower level also writes or reads the data stream using a plurality of auxiliary data transport (ADT) data packets.
  • ADT auxiliary data transport
  • a simple and robust communication-error-recovery mechanism involves re-writing an ADT packet until the wireless power transmitter or receiver receives an ACK, It involves re-reading ADT packets until they are absent.
  • simple synchronization of the data stream between the wireless power transmitter and the receiver includes an operation of toggling the header of the data packet when transporting a new ADT data packet.
  • 44 illustrates a data transport according to an embodiment. 44 is an update data transport (UDT).
  • UDT update data transport
  • an update data transport is used to carry update data.
  • the update data contains several data packets.
  • the update data may include a control error packet (CEP), a receive power packet (RPP) optionally including an ACK or a NACK, an auxiliary data transport (ADT), a charge status packet (CSP), a private packet. (proprietary packet), a renegotiation (RNG) packet optionally including an ACK or a NACK, and a reserve packet (the wireless power transmitter must be resilient to the reserved bits).
  • the ADT is a low level data packet or transport for a high level application, and includes a logical layer packet such as a performance packet of a wireless power transmitter.
  • 45 illustrates a data transport according to another embodiment.
  • 45 is an auxiliary data transport (ADT).
  • ADT auxiliary data transport
  • an ADT includes an ADT (ADT_PRx) for a wireless power receiver and an ADT (ADT_PTx) for a wireless power transmitter.
  • ADT_PRx an ADT
  • ADT_PTx an ADT for a wireless power transmitter.
  • the ADT for the wireless power receiver carries data or response (for example, ACK, NACK, RFA) packets or control packets from the wireless power receiver.
  • data or response for example, ACK, NACK, RFA
  • the ADT for the wireless power transmitter carries a data or response (for example, ACK, NACK, RFA) packet or a control packet or an ACK / NACK / RFA bit pattern response from the wireless power transmitter.
  • a data or response for example, ACK, NACK, RFA
  • the header of the ADT packet may indicate a lower level data packet (eg, a lower level data packet of the wireless power receiver or a lower level data packet of the wireless power transmitter) for the higher level application.
  • Higher level applications may include, for example, authentication procedures, proprietary information exchange, firmware updates, and power capabilities control of wireless power transmitters.
  • the header of the ADT packet may indicate a logical layer data packet (eg, a packet of a wireless power receiver or a packet of a wireless power transmitter).
  • the header of the ADT packet may include a control packet.
  • a header of an ADT packet may indicate an ADT data packet, in which case the header of the ADT data packet includes a plurality of types of headers (eg, two types of headers, such as header A and header B). can do.
  • the data stream synchronization can be achieved by toggling to the header A-> B or B-> A of the ADT data packet.
  • the header of the ADT packet may indicate an ADT control packet, in which case the header of the ADT packet may include a single type of header.
  • the ADT is composed of a pair of an ADT (ADT_PRx) for a wireless power receiver and an ADT (ADT_PTx) for a wireless power transmitter, and first starts with respect to an ADT (ADT_PRx) for a wireless power receiver. do.
  • ADT_PRx Data Packet ADT_PRx Data Packet
  • an ADT data packet includes a payload of (n + 1) bytes, for example, and each payload may correspond to any one of a plurality of header types.
  • header A or header B when a payload of a specific byte is included in an ADT data packet and transmitted, header A or header B may be used.
  • the payload size can be from 1 byte to 16 bytes.
  • the previous header value can be kept as it is.
  • the situation of retransmitting the immediately preceding ADT data packet may be when the wireless power receiver receives a NACK response from the wireless power transmitter or when the wireless power receiver detects a decoding error of the wireless power transmitter.
  • FIG. 47 illustrates a structure of an ADT_PRx Response Packet of a wireless power receiver according to an embodiment.
  • an ADT response packet for a wireless power receiver may be 1 byte, for example, and may indicate ACK, NACK, and RFA.
  • Table 11 shows the correspondence between the payload value of the ADT response packet and the indication.
  • the wireless power transmitter retransmits the immediately preceding ADT data packet in the current ADT, where the header of the ADT data packet has a value corresponding to the retransmission of the previous data packet (for example, 0x1C).
  • the payload value is' 00110011'b, it indicates that the wireless power receiver requests the wireless power transmitter to transmit response data (RFA).
  • RFA response data
  • the payload value and its instructions are only examples, and the payload value corresponding to each instruction may be any number different, and these also correspond to the technical scope of the present invention.
  • the ADT control packet structure of the wireless power receiver may be the same as the ADT packet structure of FIG. 47.
  • FIG. 48 illustrates a structure of an ADT_PRx control packet for a wireless power receiver, according to an embodiment.
  • an ADT control packet for a wireless power receiver may be 1 byte, for example, and may indicate ACK, NACK, SOD, and EOD.
  • Table 12 shows the correspondence between the payload value of the ADT control packet and the indication.
  • the payload value is' 11111111'b, it indicates that the wireless power receiver successfully receives and decodes an ADT data packet transmitted by the wireless power transmitter in the last ADT (ACK). If the payload value is' 00000000'b, it indicates that the wireless power receiver has not successfully received or decrypted the ADT data packet transmitted by the wireless power transmitter in the previous ADT (NACK). In this case, the wireless power transmitter retransmits the immediately preceding ADT data packet in the current ADT, where the header of the ADT data packet has a value corresponding to the retransmission of the previous data packet (for example, 0x1C). If the payload value is' 00110011'b, it indicates that the start of the ADT data stream is requested (SOD). A payload value of '11001100'b indicates the end of the ADT data stream (EOD).
  • the payload value and the instructions thereof are merely examples, and the payload value corresponding to each instruction may be any number different, and these also correspond to the technical scope of the present invention.
  • ADT_PTx relating to a wireless power transmitter
  • FIG. 49 illustrates a structure of an ADT_PTx data packet of a wireless power transmitter according to an embodiment.
  • an ADT data packet includes, for example, a payload of (n + 1) bytes, and each payload may correspond to any one of a plurality of header types.
  • header A or header B when a payload of a specific byte is included in an ADT data packet and transmitted, header A or header B may be used.
  • the payload size can be from 1 byte to 4 bytes.
  • the previous header value can be kept as it is.
  • the situation in which the previous ADT data packet is retransmitted may be when the wireless power transmitter receives a NACK response from the wireless power receiver or when the wireless power transmitter detects a decoding error of the wireless power receiver.
  • FIG. 50 illustrates a structure of an ADT_PTx Response Packet of a wireless power transmitter according to an embodiment.
  • the ADT response packet for the wireless power transmitter is, for example, 1 byte, and its value may indicate ACK, NACK, and RFA.
  • Table 14 shows the correspondence between the payload value of the ADT response packet and the indication.
  • the payload value is' 11111111'b, it indicates that the wireless power transmitter successfully received and decoded an ADT data packet transmitted by the wireless power receiver in the last ADT (ACK). If the payload value is' 00000000'b, it indicates that the wireless power transmitter did not successfully receive or decode the ADT data packet transmitted by the wireless power receiver in the previous ADT (NACK). In this case, the wireless power receiver retransmits the immediately preceding ADT data packet in the current ADT, where the header of the ADT data packet has a value corresponding to the retransmission of the immediately preceding data packet (for example, 0x1C).
  • the payload value is' 00110011'b, it indicates that the wireless power transmitter requests the wireless power receiver to transmit response data (RFA).
  • RFA response data
  • the payload value and the instructions thereof are merely examples, and the payload value corresponding to each instruction may be any number different, and these also correspond to the technical scope of the present invention.
  • FIG. 51 illustrates a structure of an ADT_PTx Response / Control Packet for a wireless power transmitter according to an embodiment.
  • an ADT response packet for a wireless power transmitter may be 1 byte, for example, and may indicate ACK and RFA.
  • Table 15 shows the correspondence between the payload value of the ADT response packet and the indication.
  • the payload value is' 11111111'b, it indicates that the wireless power transmitter successfully received and decoded an ADT data packet transmitted by the wireless power receiver in the last ADT (ACK). If the payload value is' 00110011'b, it indicates that the wireless power transmitter requests the wireless power receiver to transmit response data (RFA). According to the present embodiment, when the wireless power transmitter does not successfully receive or decode an ADT data packet transmitted by the wireless power receiver in the previous ADT, the wireless power transmitter separates a communication error signal (NACK). Do not send.
  • NACK communication error signal
  • the payload value and its instructions are only examples, and the payload value corresponding to each instruction may be any number different, and these also correspond to the technical scope of the present invention.
  • FIG. 52 is a structure of an ADT_PTx Control Packet for a wireless power transmitter according to an embodiment.
  • an ADT control packet for a wireless power transmitter is, for example, 1 byte, and its value may indicate ACK, NACK, SOD, and EOD.
  • Table 16 shows the correspondence between the payload value of the ADT control packet and the indication.
  • the payload value is' 11111111'b, it indicates that the wireless power transmitter successfully received and decoded an ADT data packet transmitted by the wireless power receiver in the last ADT (ACK). If the payload value is' 00000000'b, it indicates that the wireless power transmitter did not successfully receive or decode the ADT data packet transmitted by the wireless power receiver in the previous ADT (NACK). In this case, the wireless power receiver retransmits the immediately preceding ADT data packet in the current ADT, where the header of the ADT data packet has a value corresponding to the retransmission of the immediately preceding data packet (for example, 0x1C). If the payload value is' 00110011'b, it indicates that the start of the ADT data stream is requested (SOD).
  • a payload value of '11001100'b indicates the end of the ADT data stream (EOD).
  • EOD A payload value of '11001100'b indicates the end of the ADT data stream (EOD).
  • the payload value and the instructions thereof are merely examples, and the payload value corresponding to each instruction may be any number different, and these also correspond to the technical scope of the present invention.
  • 53 is a diagram illustrating a state mashine for writing ADT data packet, according to one embodiment.
  • the transmitter and / or receiver perform synchronization of the data stream according to Rule 3 as shown in FIG. 53. That is, each time a new ADT data packet [n] is transmitted for synchronization, the header of the ADT data packet [n] may be toggled.
  • the header of the ADT packet may indicate an ADT data packet.
  • the header of the ADT data packet may include a plurality of types of headers (eg, two types of headers such as header A and header B).
  • ACK a new ADT data packet is sent
  • synchronization of the data stream can be achieved by toggling to the header A-> B or B-> A of the ADT data packet.
  • the wireless power receiver receives a NACK response from the wireless power transmitter, or when the wireless power receiver detects a decoding error of the wireless power transmitter, the previous ADT data packet is retransmitted. In this case, the previous header value may be maintained. have.
  • 54 is a view illustrating a transmission level of a high level and a high level of a wireless power receiver and a wireless power transmitter when an ADT data packet is exchanged according to an embodiment.
  • H_A represents an A type header
  • H_B represents a B type header.
  • the lower level of the wireless power transmitter transmits the first level data to the upper level. If the first data is successfully received, the wireless power transmitter transmits an ACK for the first data to the wireless power receiver.
  • the wireless power receiver transmits new data 2 from the upper level to the lower level and transmits the data to the wireless power transmitter together with the header B. If the wireless power transmitter fails to receive the data 2, the wireless power receiver receives a NACK. To send. Since the wireless power receiver receives the NACK, the wireless power receiver retransmits the number 2 data with the previous header B. In this manner, the wireless power receiver and the wireless power transmitter can secure synchronization and implement a simple and robust error recovery and synchronization mechanism.
  • FIG. 55 is a view illustrating a transmission level of a high level and a high level of a wireless power receiver and a wireless power transmitter during the exchange of ADT data packets according to another embodiment.
  • the wireless power receiver is an authentication initiator
  • the wireless power transmitter is an authentication responder.
  • the exchange of ADT data packets between the wireless power receiver and the transmission device proceeds according to the above-described '(1) low level authentication sequence' and '(2) low level data exchange protocol'.
  • the wireless power receiver generates a M-byte CHALLENGE message at a higher level and delivers the message to a lower level, and the lower level transmits it to the wireless power transmitter by loading it in an ADT data packet (or transport). .
  • the ADT data packet for the CHALLENGE message may be transmitted several times, and according to rule 2, the wireless power transmitter transmits each time at the lower level while the ADT data packet is transmitted several times.
  • the ACK / NACK of the ADT data packet is transmitted to the wireless power receiver and the ADT data packet is transmitted to the upper level.
  • the wireless power receiver queries whether there is a data stream to be transmitted by the wireless power transmitter that is a slave according to rule 1. To this end, the wireless power receiver may transmit the SOD. In this case, the wireless power receiver may repeatedly transmit the SOD until the wireless power transmitter responds with a data packet or until a timeout occurs.
  • the wireless power transmitter receives the SOD, the wireless power transmitter generates N bytes of CHALLENGE_AUTH_RESPONSE at the upper level and transmits it to the lower level, and the lower level loads it in an ADT data packet (or transport) and transmits the wireless power receiver. To send.
  • the ADT data packet for the CHALLENGE_AUTH_RESPONSE message may be sent several times, and the wireless power receiver shall turn each time at a lower level while the ADT data packet is sent several times in accordance with rule 2.
  • the ACK / NACK of the ADT data packet is transmitted to the wireless power transmitter and the ADT data packet is transmitted to the upper level.
  • the transmission of the ADT data packet (lower level view) for the CHALLENGE_AUTH_RESPONSE message (high level view) or the CHALLENGE_AUTH_RESPONSE message is completed.
  • An EOD is added at the end of the ADT data packet to indicate completion of the transmission.
  • 56 is a view illustrating a transmission level of a high level and a high level of a wireless power receiver and a wireless power transmitter during the exchange of ADT data packets according to another embodiment.
  • FIG. 56 strictly enforces the addition of SOD and EOD according to Rule 4 in every ADT data packet transmission, but uses the General Request Packet (GRP) instead of SOD for querying (or polling) according to Rule 1. 55 differs from the embodiment of FIG.
  • GRP General Request Packet
  • 57 illustrates an exchange sequence of an ADT data packet regarding an authentication request message according to an embodiment.
  • the wireless power receiver receives an ADT data packet including a header (ie 1 byte) and a payload (ie 34 bytes) at a lower level. send.
  • the authentication message may be, for example, a CHALLENGE message transmitted from the wireless power receiver to the transmitter.
  • the 35-byte authentication message includes a 16-byte 0th ADT data packet (ADT_PRx (0)), a 16-byte first ADT data packet (ADT_PRx (1)), and 3 bytes.
  • a second ADT data packet of (ADT_PRx (2)) is divided and transmitted.
  • the wireless power receiver receives the ACK after successfully transmitting the 0th ADT data packet (ADT_PRx (0)), but fails to transmit the first ADT data packet (ADT_PRx (1)) and receives a NACK. Receive. Then, in the second line, the wireless power receiver retransmits the first ADT data packet ADT_PRx (1), but fails to receive an acknowledgment (ACK or NACK), and transmits a NACK. In response to this, when the wireless power transmitter responds with an ACK, it is confirmed that retransmission of the first ADT data packet ADT_PRx (1) was successful, and thus the wireless power receiver receives the remaining three bytes of the second ADT data packet ADT_PRx (2). Receive ACK after successfully transmitting). In response to this, the wireless power receiver successfully transmits the EOD and ends the transmission of the authentication message by receiving the ACK.
  • FIG. 58 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication request message according to another embodiment.
  • the wireless power receiver sends a total of 35 bytes of an authentication message to a 16-byte 0th ADT data packet ADT_PRx (0), a 16-byte first ADT data packet ADT_PRx (1), and 3
  • ADT_PRx (2) In transmitting by dividing a byte into a second ADT data packet (ADT_PRx (2)), the header of every ADT data packet is toggled (header A ⁇ -> header B) according to rule 3, and retransmission of the ADT data packet is performed.
  • the previously used header is identically used (Header B in FIG. 58), which is different from the embodiment of FIG. 57 in that it performs simplified synchronization and indicates retransmission.
  • the wireless power receiver receives a total of 35 bytes of authentication messages in 16-byte 0th ADT data packet ADT_PRx (0), 16-byte first ADT data packet ADT_PRx (1), and 3 58 in that the header of every ADT data packet is toggled (header A ⁇ -> header B) according to rule 3 in the transmission of the second ADT data packet (ADT_PRx (2)) of bytes.
  • SOD is added at the start of transmission of the ADT data packet.
  • the wireless power receiver receives a total of 35 bytes of authentication messages in 16-byte 0th ADT data packet ADT_PRx (0), 16-byte first ADT data packet ADT_PRx (1), and 3.
  • the header is not toggled when the transmission of the second ADT data packet (ADT_PRx (2)) fails in the transmission by dividing the byte into the second ADT data packet (ADT_PRx (2))
  • the header is toggled.
  • 58 differs from the embodiment of FIG. 58 in that retransmission of the second ADT data packet ADT_PRx (2) occurs.
  • the bit pattern response may be used instead of the ADT response packet of the wireless power transmitter, thereby reducing the ADT exchange time.
  • the wireless power receiver receives a total of 35 bytes of authentication messages in 16 bytes of 0th ADT data packet ADT_PRx (0), 16 bytes of first ADT data packet ADT_PRx (1), and 3 bytes.
  • the transmission of the 0th ADT data packet ADT_PRx (0) and the first ADT data packet ADT_PRx (1) of 16 bytes are successful.
  • the scenario in which transmission fails because there is no response to the second ADT data packet ADT_PRx (2) is described.
  • FIG. 62 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to an embodiment.
  • the authentication response message may be, for example, a CHALLENGE_AUTH_RESPONSE message transmitted from the wireless power transmitter to the receiver.
  • a 99-byte authentication response message is a 4-byte 0 ADT data packet (ADT_PTx (0)), 4 The first ADT data packet (ADT_PTx (1)) of bytes, ..., the 23rd ADT data packet (ADT_PTx (23)) of 4 bytes, and the 24th ADT data packet (ADT_PTx (24)) of 3 bytes, Is sent.
  • the wireless power transmitter receives the ACK after successfully transmitting the zeroth ADT data packet ADT_PTx (0). However, the wireless power transmitter fails to transmit the first ADT data packet ADT_PTx (1) and receives a NACK. Afterwards, the wireless power transmitter retransmits the first ADT data packet ADT_PTx (1), but fails to receive an ACK, and transmits a NACK. In response to this, when the wireless power receiver responds with an ACK, it is confirmed that retransmission of the first ADT data packet ADT_PTx (1) was successful, and thus the wireless power transmitter transmits the second ADT data packet ADT_PTx (2). .
  • the wireless power transmitter After repeating this ADT packet transmission sequence, the wireless power transmitter receives the ACK after successfully transmitting the last three bytes of the 24 th ADT data packet (ADT_PTx (24)). In response to this, the wireless power transmitter successfully transmits the EOD and ends the transmission of the authentication response message by receiving the ACK.
  • the wireless power transmitter transmits a total of 99 bytes of an authentication response message by using a 4-byte zeroth ADT data packet ADT_PTx (0), a 4-byte first ADT data packet ADT_PTx (1). .., when dividing into 4 bytes of 23rd ADT data packet (ADT_PTx (23)) and 3 bytes of 24th ADT data packet (ADT_PTx (24)), the header of every ADT data packet is transmitted according to the rule 3.
  • Toggle (header A ⁇ -> header B), but when performing retransmission of the first ADT data packet, use the same previously used header (header B in FIG. 62) to perform simplified synchronization and instruct retransmission. This is different from the embodiment of FIG. 62.
  • 64 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment. 64 shows that the wireless power transmitter transmits a total of 99 bytes of an authentication response message by using a 4-byte zeroth ADT data packet ADT_PTx (0), a 4-byte first ADT data packet ADT_PTx (1). .., when dividing into 4 bytes of 23rd ADT data packet (ADT_PTx (23)) and 3 bytes of 24th ADT data packet (ADT_PTx (24)), the header of every ADT data packet is transmitted according to the rule 3. Same as the embodiment of FIG.
  • the wireless power transmitter transmits a total of 99 bytes of an authentication response message by using a 4-byte zeroth ADT data packet ADT_PTx (0), a 4-byte first ADT data packet ADT_PTx (1).
  • the first ADT data packet (ADT_PTx (1)) is divided into four bytes of the 23rd ADT data packet (ADT_PTx (23)) and three bytes of the 24th ADT data packet (ADT_PTx (24)).
  • ADT_PTx (1) is divided into four bytes of the 23rd ADT data packet (ADT_PTx (23)) and three bytes of the 24th ADT data packet (ADT_PTx (24)).
  • the wireless power transmitter transmits a total of 99 bytes of an authentication response message by using a 4-byte 0th ADT data packet (ADT_PTx (0)), a 4-byte first ADT data packet (ADT_PTx (1)),. ..,
  • the fourth ADT data packet (ADT_PTx (0)) is divided into 4 bytes of the 23rd ADT data packet (ADT_PTx (23)) and 3 bytes of the 24th ADT data packet (ADT_PTx (24)).
  • 67 is a view illustrating a high level and high level transmission sequence of a wireless power transmitter and a wireless power receiver when an ADT data packet is exchanged according to an embodiment.
  • the wireless power transmitter is an authentication initiator
  • the wireless power receiver is an authentication responder.
  • the exchange of ADT data packets between the wireless power transmitter and the receiver proceeds according to the above-described (1) low level authentication sequence and (2) low level data exchange protocol.
  • the wireless power transmitter is pulled by the SOD provided by the wireless power receiver, generates a Mbyte CHALLENGE message at a higher level, and delivers the message to a lower level, and the lower level transmits the ADT data packet ( Or transport) to a wireless power receiver.
  • the wireless power receiver may repeatedly transmit the SOD until the wireless power transmission responds with an ADT data packet or until a timeout occurs.
  • the ADT data packet for the CHALLENGE message may be transmitted several times, and according to rule 2, the wireless power receiver receives each turn at the lower level while the ADT data packet is transmitted several times.
  • the ACK / NACK of the ADT data packet is transmitted to the wireless power transmitter and the ADT data packet is transmitted to the upper level.
  • the wireless power transmitter transmits the CHALLENGE message for the CHALLENGE message according to rule 4.
  • An EOD is added at the end of the ADT data packet to indicate completion of the transmission.
  • the wireless power receiver since the wireless power receiver operates as a master according to rule 1, the CHALLENGE_AUTH_RESPONSE message to be sent is generated and transmitted to the lower level by generating N bytes of CHALLENGE messages at higher level without additional pooling.
  • the level loads it in an ADT data packet (or transport) and transmits it to the wireless power transmitter.
  • the ADT data packet for the CHALLENGE_AUTH_RESPONSE message may be sent multiple times, and the wireless power transmitter will cycle each time at the lower level while the ADT data packet is sent multiple times in accordance with rule 2.
  • the ACK / NACK of the ADT data packet is transmitted to the wireless power receiver and the ADT data packet is transmitted to the upper level.
  • 68 is a view illustrating a transmission level of a high level and a high level of a wireless power transmitter and a wireless power receiver when an ADT data packet is exchanged according to another embodiment.
  • FIG. 68 strictly observes the addition of SOD and EOD according to rule 4 in every ADT data packet transmission, but the wireless power receiver receives a general request packet (GRP) instead of SOD for querying (or polling) according to rule 1. ) Is different from the embodiment of FIG.
  • GRP general request packet
  • FIG. 69 illustrates an exchange sequence of an ADT data packet regarding an authentication request message according to an embodiment.
  • the wireless power transmitter when a bitstream (ie 35 bytes) for an authentication request message is prepared, the wireless power transmitter lower-levels an ADT data packet including a header (ie 1 byte) and a payload (ie 34 bytes). Wait for transmission from
  • the authentication request message may be, for example, a CHALLENGE message.
  • the wireless power receiver performs a pulling operation for checking whether there is data to be transmitted from the wireless power transmitter, and as a part of the wireless power receiver until the wireless power transmitter responds or when a timeout occurs. SOD repeatedly transmitted until.
  • the wireless power transmitter If the wireless power transmitter is given an opportunity to transmit the authentication request message by the SOD, the wireless power transmitter starts transmitting the ADT data packet.
  • the 35-byte authentication message is a 4-byte 0th ADT data packet (ADT_PRx (0)), 4 bytes.
  • the first ADT data packet (ADT_PTx (1)), ..., is divided into four bytes of the seventh ADT data packet (ADT_PTx (7)), three bytes of the eighth ADT data packet (ADT_PTx (8)) and transmitted. do.
  • the wireless power transmitter receives the ACK after successfully transmitting the 0th ADT data packet ADT_PTx (0), but fails to transmit the first ADT data packet ADT_PTx (1) and receives the NACK. Thereafter, the wireless power transmitter retransmits the first ADT data packet ADT_PTx (1), but fails to receive an ACK response thereto, and transmits a NACK. In response to this, when the wireless power receiver responds with an ACK, it is confirmed that retransmission of the first ADT data packet ADT_PTx (1) was successful, and thus the wireless power transmitter transmits the next second ADT data packet ADT_PTx (2). send. When the transmission is completed up to the last ADT data packet, the wireless power transmitter completes the transmission of the authentication request message by successfully transmitting the EOD and receiving the ACK.
  • the wireless power transmitter transmits a total of 35 bytes of an authentication request message by using a 4-byte zeroth ADT data packet ADT_PTx (0), a 4-byte first ADT data packet ADT_PTx (1),. .., by dividing into four bytes of seventh ADT data packet (ADT_PTx (7)) and three bytes of eighth ADT data packet (ADT_PTx (8)), according to rule 3, the header of every ADT data packet Toggle (header A ⁇ -> header B), but when performing retransmission of the ADT data packet, use the same previously used header (header B in FIG. 58) to perform simplified synchronization and instruct retransmission. There is a difference from the embodiment of 70.
  • the wireless power transmitter transmits a total of 35 bytes of an authentication request message by using a 4-byte 0th ADT data packet (ADT_PTx (0)), a 4-byte first ADT data packet (ADT_PTx (1)). .., by dividing into four bytes of seventh ADT data packet (ADT_PTx (7)) and three bytes of eighth ADT data packet (ADT_PTx (8)), according to rule 3, the header of every ADT data packet Same as the embodiment of FIG. 70 in the toggle (header A ⁇ -> header B), but the wireless power receiver uses GRP to poll the wireless power transmitter and the wireless power transmitter responds with an SOD. This is different from the embodiment of FIG. 70 in that the transmission of the ADT data packet is started.
  • the wireless power transmitter transmits a total of 35 bytes of an authentication request message by using a 4-byte zeroth ADT data packet ADT_PTx (0), a 4-byte first ADT data packet ADT_PTx (1),. ..,
  • the wireless power transmitter transmits the RPP in mode 0 in the transmission by dividing into four bytes of seventh ADT data packet (ADT_PTx (7)) and three bytes of eighth ADT data packet (ADT_PTx (8)).
  • ADT_PTx seventh ADT data packet
  • ADT_PTx eighth ADT data packet
  • the header should not be toggled when transmission of the first ADT data packet ADT_PTx (1) fails, retransmission of the first ADT data packet ADT_PTx (1) occurs while the header is toggled. This is different from the embodiment of FIG. 71 in that respect.
  • the wireless power transmitter transmits a total of 35 bytes of an authentication request message by using a 4-byte 0th ADT data packet (ADT_PTx (0)), a 4-byte first ADT data packet (ADT_PTx (1)). .., 0th ADT data packet (ADT_PTx (0)) when divided into four bytes of seventh ADT data packet (ADT_PTx (7)) and three bytes of eighth ADT data packet (ADT_PTx (8)).
  • ADT_PTx (0) 4-byte 0th ADT data packet
  • ADT_PTx (1) when divided into four bytes of seventh ADT data packet
  • ADT_PTx (8) three bytes of eighth ADT data packet
  • 74 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to an embodiment.
  • the wireless power receiver when a bitstream (ie 99 bytes) for an authentication response message is prepared, the wireless power receiver lower-levels an ADT data packet including a header (ie 1 byte) and a payload (ie 34 bytes). Transfer from
  • the authentication response message may be, for example, a CHALLENGE_AUTH_RESPONSE message.
  • the wireless power receiver receives the ACK after successfully transmitting the zeroth ADT data packet ADT_PRx (0). However, the wireless power receiver fails to transmit the first ADT data packet ADT_PRx (1) and receives a NACK. Thereafter, the wireless power receiver retransmits the first ADT data packet (ADT_PRx (1)), but fails to receive an ACK, and transmits a NACK. In response to this, when the wireless power transmitter responds with an ACK, it is confirmed that retransmission of the first ADT data packet ADT_PRx (1) is successful, and thus the wireless power reception value transmits the second ADT data packet ADT_PRx (2).
  • the wireless power transmitter After repeating the ADT packet transmission sequence, the wireless power transmitter receives the ACK after successfully transmitting the last remaining ADT data packet ADT_PRx. In response, the wireless power receiver successfully transmits the EOD and terminates the transmission of the authentication response message by receiving the ACK.
  • the wireless power receiver sends a total of 99 bytes of an authentication response message to a 16-byte 0th ADT data packet ADT_PRx (0), a 16-byte first ADT data packet ADT_PRx (1),. .., by dividing the 16-byte fifth ADT data packet (ADT_PRx (5)) and the 3-byte sixth ADT data packet (ADT_PRx (6)) into each other according to rule 3 Toggle (header A ⁇ -> header B), but when performing retransmission of the first ADT data packet, use the same previously used header (header B in FIG. 75) to perform simplified synchronization and instruct retransmission. This is different from the embodiment of FIG.
  • FIG. 75 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment.
  • the wireless power receiver sends a total of 99 bytes of an authentication response message to a 16-byte 0th ADT data packet (ADT_PRx (0)), a 16-byte first ADT data packet (ADT_PRx (1)),. .., when divided into 16-byte fifth ADT data packet (ADT_PRx (5)) and 3-byte sixth ADT data packet (ADT_PRx (6)), the first ADT data packet (ADT_PRx (1))
  • the header should not be toggled when the transmission fails, the embodiment of FIG. 75 differs from the embodiment in that retransmission of the first ADT data packet ADT_PRx (1) occurs while the header is toggled.
  • FIG. 77 is a view illustrating an exchange sequence of an ADT data packet regarding an authentication response message according to another embodiment.
  • the wireless power receiver sends a total of 99 bytes of an authentication response message to a 16-byte 0th ADT data packet (ADT_PRx (0)), a 16-byte first ADT data packet (ADT_PRx (1)),. .., 0th ADT data packet (ADT_PRx (0)) when divided into 16 bytes of 5th ADT data packet (ADT_PRx (5)) and 3 bytes of 6th ADT data packet (ADT_PRx (6)) for transmission.
  • ADT_PRx (0) 16-byte 0th ADT data packet
  • ADT_PRx (0) 16-byte first ADT data packet
  • ADT_PRx (5) 16-byte first ADT data packet
  • ADT_PRx (6) 3 bytes of 6th ADT data packet
  • Both the wireless power transmitter and the wireless power receiver can simultaneously operate as an authentication initiator.
  • the wireless power transmitter may transmit an ADT including an authentication related packet instead of an ADT including an ACK for a packet received from the wireless power receiver.
  • the wireless power receiver may receive the ADT including the authentication related packet, and thus may perform the following operation as it is regarded that the ACK is implicitly received. That is, when the wireless power transmitter transmits an ADT including data (authentication related packet), the wireless power receiver successfully transmits ADT data sent to the wireless power transmitter immediately before receiving the data ADT instead of the ACK. You can judge.
  • the wireless power transmitter may transmit a NACK when a communication error occurs in the ADT data received from the wireless power receiver immediately before.
  • the ADT including the authentication related packet may further include an ACK.
  • the wireless power receiver may transmit an ADT including an authentication related packet instead of an ADT including an ACK for a packet received from the wireless power transmitter.
  • the wireless power transmitter receives the ADT including the authentication related packet, and thus may perform the following operation as it is regarded that the ACK is implicitly received. That is, when the wireless power receiver transmits an ADT including data (authentication related packet), the wireless power transmitter successfully transmits ADT data sent to the wireless power receiver immediately before receiving the data ADT instead of the ACK. You can judge.
  • the ADT including the authentication related packet may further include an ACK.
  • the wireless power receiver may provide an opportunity for PTx initiated communication by performing a regular poll.
  • the communication start of the wireless power transmitter is highly dependent on the wireless power receiver.
  • the wireless power receiver periodically checks whether the wireless power transmitter has a packet to transmit by polling the wireless power transmitter.
  • GRP as shown in FIG. 78 may be used. Referring to FIG. 78, for example, the wireless power receiver may perform polling by setting a general request packet to "0xFF" or "00" or "FF". If the wireless power transmitter receives the GRP set to "0xFF" or "00” or "FF", the wireless power transmitter is in a state capable of transmitting any kind of packet that it wants to send.
  • the wireless power transmitter requests for communication as a response to the RPP (except for the mode '100'b) of the wireless power receiver.
  • for communication (RFC) bit pattern can be transmitted.
  • the wireless power receiver polls the wireless power transmitter using GRP at an appropriate timing for the wireless power receiver.
  • the wireless power receiver cannot exactly know when the value of the target power managed by the wireless power transmitter changes.
  • the RFC response of the wireless power transmitter allows the wireless power transmitter to relatively accurately indicate the start point of communication desired by the wireless power transmitter. I can guarantee it.
  • polling based on the RFC response may be used for PTx-initiated power management initiated by the wireless power transmitter.
  • the wireless power transmitter may change (increase or decrease) the target power in consideration of the current surrounding charging conditions.
  • 79 is a transmission sequence related to power management initiated by a wireless power transmitter according to an embodiment.
  • the wireless power transmitter transmits an alarm including an RFC response (bit pattern) to the wireless power receiver as a response to the RPP (mode 0) of the wireless power receiver.
  • the wireless power receiver transmits the GRP set to the request value "0xFF" to the wireless power transmitter. Thereafter, the wireless power transmitter transmits the target power packet to the wireless power receiver.
  • the wireless power receiver may adjust the operation mode according to the changed target power.
  • the authentication function can be set to On / Off by the user.
  • the smartphone may enable or disable the authentication function by displaying the activation / deactivation of the authentication function to the user through an application and receiving selection information regarding activation (ON) or deactivation (OFF) from the user. have.
  • Wireless transmit and receive devices can provide a very convenient user experience and interface (UX / UI). That is, the smart wireless charging service may be provided.
  • the smart wireless charging service may be implemented based on the UX / UI of the smart phone including the wireless power transmitter.
  • the interface between the smartphone's processor and the wireless charging receiver allows for "drop and play" bidirectional communication between the wireless power transmitter and the receiver.
  • a user may experience a smart wireless charging service at a hotel.
  • the wireless charger transmits the wireless power to the smartphone, and the smartphone receives the wireless power.
  • the wireless charger transmits information about the smart wireless charging service to the smartphone.
  • the smartphone detects that the smartphone is located on the wireless charger, detects the reception of wireless power, or when the smartphone receives information about the smart wireless charging service from the wireless charger, the smartphone receives an agreement as an additional feature to the user. opt-in) is entered.
  • the smartphone may display a message on the screen in a manner with or without an alarm sound.
  • An example of the message may include phrases such as "Welcome to ### hotel.
  • the smartphone receives the user's input of selecting Yes or No Thanks and performs the following procedure selected by the user. If Yes is selected, the smartphone sends the information to the wireless charger. And smartphones and wireless chargers perform a smart charging function.
  • the smart wireless charging service may also include receiving WiFi credentials auto-filled.
  • the wireless charger transmits WiFi credentials to the smartphone, and the smartphone automatically enters the WiFi credentials received from the wireless charger by running the appropriate app.
  • the smart wireless charging service may also include running a hotel application that provides hotel promotions, or obtaining remote check in / check out and contact information.
  • a user may experience a smart wireless charging service in a vehicle.
  • the wireless charger transmits wireless power to the smartphone, and the smartphone receives the wireless power.
  • the wireless charger transmits information about the smart wireless charging service to the smartphone.
  • the smartphone detects that it is located on the wireless charger, detects the reception of wireless power, or when the smartphone receives information about the smart wireless charging service from the wireless charger, the smartphone confirms the identity to the user. Enter the inquiry state.
  • the smartphone is automatically connected to the car via WiFi and / or Bluetooth.
  • the smartphone may display the message on the screen in a manner with or without an alarm sound.
  • An example of the message may include phrases such as "Welcome to your car. Select" Yes "to synch device with in-car controls: Yes
  • the smartphone receives the user's input of selecting Yes or No Thanks and performs the following procedure selected by the user. If Yes is selected, the smartphone sends the information to the wireless charger.
  • the smart phone and the wireless charger can perform in-vehicle smart control functions by driving in-vehicle application / display software. The user can enjoy the desired music and can check the regular map position.
  • In-vehicle application / display software may include the capability to provide a synchronized access for passers-by.
  • a user may experience smart wireless charging at home.
  • the wireless charger transmits the wireless power to the smartphone, and the smartphone receives the wireless power.
  • the wireless charger transmits information about the smart wireless charging service to the smartphone.
  • the smartphone detects that the smartphone is located on the wireless charger, detects the reception of wireless power, or when the smartphone receives information about the smart wireless charging service from the wireless charger, the smartphone receives an agreement as an additional feature to the user. opt-in) is entered.
  • the smartphone may display a message on the screen in a manner with or without an alarm sound.
  • An example of the message may include phrases such as "Hi xxx, Would you like to activate night mode and secure the building ?: Yes
  • the smartphone receives the user's input of selecting Yes or No Thanks and performs the following procedure selected by the user. If Yes is selected, the smartphone sends the information to the wireless charger. Smartphones and wireless chargers can at least recognize the user's pattern and invite the user to lock the doors and windows, turn off the lights, or set an alarm.
  • the wireless power transmission method and apparatus, or the receiving apparatus and method according to the embodiment of the present invention described above are not essential to every component or step, the wireless power transmission apparatus and method, or the receiving apparatus and method described above Or some or all of the steps.
  • the above-described wireless power transmitter and method, or embodiments of the receiver and method may be combined with each other.
  • each component or step described above is not necessarily performed in the order described, it is also possible that the steps described later may be performed before the steps described first.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법에 관한 것이다. 본 명세서는 상기 대상 장치가 인증 기능을 지원하는지에 관한 지시정보를 포함하는 제1 패킷을 상기 대상 장치로부터 수신하는 단계, 상기 대상 장치가 인증 기능을 지원하는 경우, 인증 요청 메시지를 상기 대상 장치로 전송하는 단계, 상기 인증 요청 메시지에 대한 응답으로, 무선충전에 관한 인증서(certificate)를 포함하는 인증 응답 메시지를 상기 대상 장치로부터 수신하는 단계, 및 상기 인증 응답 메시지에 기반하여 상기 대상 장치의 인증을 확인(confirm)하는 단계를 포함하는 무선전력 전송 시스템에서의 인증 방법이 개시된다.

Description

무선전력 전송시스템에서 인증을 수행하는 장치 및 방법
본 발명은 무선전력 전송에 관한 것으로서, 보다 상세하게는 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법에 관한 것이다.
무선 전력 전송 기술은 전원 소스와 전자 기기 사이에 무선으로 전력을 전달하는 기술이다. 일 예로 무선 전력 전송 기술은 스마트폰이나 태블릿 등의 무선 단말기를 단지 무선 충전 패드 상에 올려놓는 것만으로 무선 단말기의 배터리를 충전할 수 있도록 함으로써, 기존의 유선 충전 커넥터를 이용하는 유선 충전 환경에 비해 보다 뛰어난 이동성과 편의성 그리고 안전성을 제공할 수 있다. 무선 전력 전송 기술은 무선 단말기의 무선 충전 이외에도, 전기 자동차, 블루투스 이어폰이나 3D 안경 등 각종 웨어러블 디바이스(wearable device), 가전기기, 가구, 지중시설물, 건물, 의료기기, 로봇, 레저 등의 다양한 분야에서 기존의 유선 전력 전송 환경을 대체할 것으로 주목받고 있다.
무선전력 전송방식을 비접촉(contactless) 전력 전송방식 또는 무접점(no point of contact) 전력 전송방식, 무선충전(wireless charging) 방식이라 하기도 한다. 무선전력 전송 시스템은, 무선전력 전송방식으로 전기에너지를 공급하는 무선전력 전송장치와, 상기 무선전력 전송장치로부터 무선으로 공급되는 전기에너지를 수신하여 배터리셀등 수전장치에 전력을 공급하는 무선전력 수신장치로 구성될 수 있다.
무선 전력 전송 기술은 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식 등 다양하다. 자기 커플링에 기반한 방식은 다시 자기 유도(magnetic induction) 방식과 자기 공진(magnetic resonance) 방식으로 분류된다. 자기유도 방식은 전송 측의 코일과 수신 측의 코일 간의 전자기결합에 따라 전송 측 코일배터리셀에서 발생시킨 자기장로 인해 수신 측 코일에 유도되는 전류를 이용하여 에너지를 전송하는 방식이다. 자기공진 방식은 자기장을 이용한다는 점에서 자기유도 방식과 유사하다. 하지만, 자기공진 방식은 전송 측의 코일과 수신 측의 코일에 특정 공진 주파수가 인가될 때 공진이 발생하고, 이로 인해 전송 측과 수신 측 양단에 자기장이 집중되는 현상에 의해 에너지가 전달되는 측면에서 자기유도와는 차이가 있다.
특정 표준기술을 따르도록 구현되는 무선전력 시스템은 이물질 등으로 과열될 경우 안전상의 문제를 해결해줄 수 있다. 그런데, 기술표준 또는 규격에 관한 제품 인증을 받지 않은 비인증 제품들이 시장에서 유통되고 있고, 이로 인해 사용자들이 위험에 노출될 우려가 있다. 따라서, 무선전력 전송장치와 무선전력 수신장치들이 무선충전의 전후 과정에서 상호간에 정품임을 인증(mutual authentication)함으로서 안정성과 신뢰성을 확보할 필요가 있다.
본 발명의 기술적 과제는 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법을 제공함에 있다.
본 발명의 다른 기술적 과제는 무선전력 수신장치의 인증을 수행하는 무선전력 전송장치 및 방법을 제공함에 있다.
본 발명의 또 다른 기술적 과제는 무선전력 전송장치의 인증을 수행하는 무선전력 수신장치 및 방법을 제공함에 있다.
본 발명의 일 양태에 따르면, 무선전력 전송시스템에서 대상 장치의 인증(authentication)을 수행하는 방법을 제공한다. 상기 방법은 상기 대상 장치가 인증 기능을 지원하는지에 관한 지시정보를 포함하는 제1 패킷을 상기 대상 장치로부터 수신하는 단계, 상기 대상 장치가 인증 기능을 지원하는 경우, 인증 요청 메시지를 상기 대상 장치로 전송하는 단계, 상기 인증 요청 메시지에 대한 응답으로, 무선충전에 관한 인증서(certificate)를 포함하는 인증 응답 메시지를 상기 대상 장치로부터 수신하는 단계, 및 상기 인증 응답 메시지에 기반하여 상기 대상 장치의 인증을 확인(confirm)하는 단계를 포함한다. 여기서, 상기 인증서의 포맷은 상기 인증서가 루트(root) 인증서, 중간(intermediate) 인증서, 리프(leaf) 인증서 중 어느 타입인지를 지시하는 인증서 타입과, 상기 인증서가 무선전력 전송장치(PTx)에 관한 것인지 및 리프 인증서인지 여부를 지시하는 PTx 및 리프 지시자를 포함할 수 있다.
일 측면에서, 상기 대상 장치는 무선전력 전송장치이고, 상기 제1 패킷은 상기 무선전력 전송장치에 관한 성능 패킷(capability packet)이며, 상기 지시정보는 1비트로서 상기 무선전력 전송장치의 인증 기능 지원 또는 비지원을 지시할 수 있다.
다른 측면에서, 상기 대상 장치는 무선전력 수신장치이고, 상기 제1 패킷은 상기 무선전력 수신장치에 관한 구성 패킷(configuration packet)이며, 상기 지시정보는 1비트로서 상기 무선전력 수신장치의 인증 기능 지원 또는 비지원을 지시할 수 있다.
또 다른 측면에서, 상기 제1 패킷은 상기 대상 장치가 인증 개시자(authentication initiator: AI)로 동작할 수 있는지에 관한 제1 정보와, 상기 대상 장치가 인증 응답자(authentication responder: AR)로 동작할 수 있는지에 관한 제2 정보 중 적어도 하나를 포함할 수 있다.
또 다른 측면에서, 상기 인증 요청 메시지와 상기 인증 응답 메시지는 하위레벨(low level)의 보조 데이터 트랜스포트(auxiliary data transport : ADT) 데이터 교환 프로토콜에 기반하여 전송될 수 있다.
또 다른 측면에서, 상기 인증 요청 메시지 또는 상기 인증 응답 메시지는 각각 순차적으로(sequentially) 다수의 ADT 데이터 패킷들로 분할 전송되고, 매 새로운 ADT 데이터 패킷들의 전송시마다 헤더 값이 토글(toggle)될 수 있다.
또 다른 측면에서, ADT 데이터 패킷의 전송에 실패한 경우, 상기 ADT 데이터 패킷의 재전송시 헤더 값이 토글되지 않을 수 있다.
또 다른 측면에서, 상기 제1 패킷의 수신단계, 상기 인증 요청 메시지의 전송 단계 및 상기 인증 응답 메시지를 수신하는 단계 중 적어도 하나의 단계에서, 기본 전력 프로파일(baseline power profile)에 따른 전력으로 무선 충전이 수행될 수 있다.
또 다른 측면에서, 상기 다수의 ADT 데이터 패킷들은 상기 다수의 ADT 데이터 패킷들의 시작과 끝단에 각각 데이터 스트림의 시작(start of data stream : SOD)을 지시하는 제1 ADT 데이터 패킷과, 상기 데이터 스트림의 종료(end of data stream : EOD)를 지시하는 제2 ADT 데이터 패킷을 포함하고, 상기 제1 및 제2 ADT 데이터 패킷은 ADT 제어 패킷 구조로서 1바이트로 구성될 수 있다.
또 다른 측면에서, 상기 방법은 상기 무선전력 전송장치가 보낼 메시지가 있는지를 폴링(polling)하는 단계를 더 포함하되, 상기 폴링은 상기 무선전력 수신장치가 상기 무선전력 전송장치로 1바이트의 일반 요청 패킷(general request packet :GRP)의 요청필드를 특정 값으로 설정하여 전송하는 단계를 포함할 수 있다.
또 다른 측면에서, 상기 방법은 상기 무선전력 전송장치가 상기 무선전력 수신장치의 수신전력패킷(received power packet: RPP)에 대한 응답으로서, 통신을 위한 요청(request for communication : RFC) 비트 패턴을 전송하는 단계, 및 상기 무선전력 수신장치가 RFC 비트 패턴에 대한 응답으로서 일반 요청 패킷(general request packet :GRP)를 전송하여, 상기 무선전력 전송장치의 타겟 전력을 획득하는 단계를 더 포함할 수 있다.
또 다른 측면에서, 상기 ADT 데이터 패킷을 성공적으로 수신하는데 대한 응답으로서, ACK 대신 다른 ADT 데이터 패킷이 사용될 수 있다.
본 발명의 다른 양태에 따르면, 무선전력 전송시스템에서 대상 장치의 인증(authentication)을 수행하는 장치를 제공한다. 상기 장치는 상기 대상 장치가 인증 기능을 지원하는지에 관한 지시정보를 포함하는 제1 패킷을 상기 대상 장치로부터 수신하고, 상기 대상 장치가 인증 기능을 지원하는 경우 인증 요청 메시지를 상기 대상 장치로 전송하며, 상기 인증 요청 메시지에 대한 응답으로 무선충전에 관한 인증서(certificate)를 포함하는 인증 응답 메시지를 상기 대상 장치로부터 수신하고, 상기 인증 응답 메시지에 기반하여 상기 대상 장치의 인증을 확인(confirm)하는 통신 유닛, 및 상기 대상 장치와 자기 커플링(magnetic coupling)에 기반하여 무선 충전을 수행하는 코일을 포함한다. 여기서, 상기 인증서의 포맷은 상기 인증서가 루트(root) 인증서, 중간(intermediate) 인증서, 리프(leaf) 인증서 중 어느 타입인지를 지시하는 인증서 타입과, 상기 인증서가 무선전력 전송장치(PTx)에 관한 것인지 및 리프 인증서인지 여부를 지시하는 PTx 및 리프 지시자를 포함할 수 있다.
일 측면에서, 상기 대상 장치는 무선전력 전송장치이고, 상기 제1 패킷은 상기 무선전력 전송장치에 관한 성능 패킷(capability packet)이며, 상기 지시정보는 1비트로서 상기 무선전력 전송장치의 인증 기능 지원 또는 비지원을 지시할 수 있다.
다른 측면에서, 상기 대상 장치는 무선전력 수신장치이고, 상기 제1 패킷은 상기 무선전력 수신장치에 관한 구성 패킷(configuration packet)이며, 상기 지시정보는 1비트로서 상기 무선전력 수신장치의 인증 기능 지원 또는 비지원을 지시할 수 있다.
또 다른 측면에서, 상기 제1 패킷은 상기 대상 장치가 인증 개시자(authentication initiator: AI)로 동작할 수 있는지에 관한 제1 정보와, 상기 대상 장치가 인증 응답자(authentication responder: AR)로 동작할 수 있는지에 관한 제2 정보 중 적어도 하나를 포함할 수 있다.
또 다른 측면에서, 상기 통신 유닛은 하위레벨(low level)의 보조 데이터 트랜스포트(auxiliary data transport : ADT) 데이터 교환 프로토콜에 기반하여 상기 인증 요청 메시지와 상기 인증 응답 메시지를 전송할 수 있다.
또 다른 측면에서, 상기 통신 유닛은 상기 인증 요청 메시지 또는 상기 인증 응답 메시지를 각각 순차적으로(sequentially) 다수의 ADT 데이터 패킷들로 분할 전송하고, 매 새로운 ADT 데이터 패킷들의 전송시마다 헤더 값을 토글(toggle)할 수 있다.
또 다른 측면에서, ADT 데이터 패킷의 전송에 실패한 경우, 상기 통신 유닛은 상기 ADT 데이터 패킷의 재전송시 헤더 값을 토글하지 않을 수 있다.
또 다른 측면에서, 상기 제1 패킷의 수신단계, 상기 인증 요청 메시지의 전송 단계 및 상기 인증 응답 메시지를 수신하는 단계 중 적어도 하나의 단계에서, 상기 코일은 기본 전력 프로파일(baseline power profile)에 따른 전력으로 무선 충전을 수행할 수 있다.
무선전력 전송장치와 수신장치 상호간에 인증에 필수적인 요소들, 예를 들어 무선충전 인증서의 포맷, 인증 기능 지원에 관한 지시정보, 인증 관련 절차와 무선충전 페이즈간의 타이밍, 인증절차 및 인증 메시지, 인증절차를 지원하는 하위레벨의 프로토콜이 본원 발명에 의해 명확히 제공되어, 고전력의 무선충전 중에도 안정성과 신뢰성을 확보할 수 있다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 2는 다른 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 3은 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 4는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다.
도 9는 일 실시예에 따른 통신 프레임 구조를 나타낸다.
도 10은 일 실시예에 따른 싱크 패턴의 구조이다.
도 11은 일 실시예에 따른 쉐어드 모드에서 무선 전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시하였다.
도 12는 일 실시예에 따른 무선충전 인증서 포맷을 도시한 블록도이다.
도 13a는 다른 실시예에 따른 무선충전 인증서 포맷을 도시한 블록도이다.
도 13b는 또 다른 실시예에 따른 무선충전 인증서 포맷을 도시한 블록도이다.
도 14는 일 실시예에 따른 무선전력 전송장치의 성능 패킷 구조이다.
도 15는 다른 실시예에 따른 무선전력 전송장치의 성능 패킷 구조이다.
도 16은 일 실시예에 따른 무선전력 수신장치의 구성 패킷 구조이다.
도 17은 다른 실시예에 따른 무선전력 수신장치의 구성 패킷 구조이다.
도 18은 일 실시예에 따른 무선전력 수신장치가 무선전력 전송장치의 인증(authentication of PTx by PRx)을 수행할 때 송수신되는 패킷들의 시퀀스를 나타내는 흐름도이다.
도 19는 GET_DIGESTS의 메시지 구조의 일례이다.
도 20은 GET_DIGESTS의 메시지 구조의 다른 예이다.
도 21은 DIGESTS가 전송되는 물리적 패킷 구조와 이를 전송하는 방법을 도시한다.
도 22는 GET_CERTIFICATE의 메시지 구조의 일례이다.
도 23은 인증서(Certificate)가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 일례이다.
도 24는 무선전력 전송장치의 인증 응답 메시지가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 예이다.
도 25는 CHALLENGE 메시지 구조의 일례이다.
도 26은 CHALLENGE_AUTH가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 일 예이다.
도 27은 일 실시예에 따른 무선전력 전송장치가 무선전력 수신장치의 인증(authentication of PRx by PTx)을 수행할 때 송수신되는 패킷들의 시퀀스를 나타내는 흐름도이다.
도 28은 무선전력 전송장치가 전송하는 GET_DIGESTS의 메시지 구조의 일례이다.
도 29는 무선전력 전송장치가 전송하는 GET_CERTIFICATE 메시지 구조의 일례이다.
도 30은 무선전력 수신장치의 인증서(Certificate)가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 일례이다.
도 31은 무선전력 전송장치가 전송하는 CHALLENGE 메시지 구조의 일례이다.
도 32는 무선전력 수신장치의 CHALLENGE_AUTH가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 일 예이다.
도 33은 무선전력 수신장치의 인증 응답 메시지가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 예이다.
도 34는 무선전력 수신장치의 인증 응답 메시지가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 다른 예이다.
도 35는 다른 실시예에 따른 무선전력 전송장치가 무선전력 수신장치의 인증(authentication of PRx by PTx)을 수행할 때 송수신되는 패킷들의 시퀀스를 나타내는 흐름도이다.
도 36은 인밴드 통신에서 무선전력 수신장치가 무선전력 전송장치로 전송하는 패킷의 구조를 도시한 것이다.
도 37은 인밴드 통신에서 무선전력 전송장치가 무선전력 수신장치로 전송하는 패킷의 구조를 도시한 것이다.
도 38은 일 실시예에 따른 하위레벨 관점에서 무선전력 수신장치와 전송장치간 패킷의 송수신 시퀀스를 도시한 것이다.
도 39는 다른 실시예에 따른 하위레벨 관점에서 무선전력 수신장치와 전송장치간 패킷의 송수신 시퀀스를 도시한 것이다.
도 40은 일 실시예에 따른 확장된 제어오류패킷의 구조이다.
도 41은 일 실시예에 따른 전력전송종료(end power transfer :EPT) 패킷의 구조이다.
도 42는 일 실시예에 따른 확장된 수신전력패킷의 구조이다.
도 43은 일 실시예에 따른 하위레벨 관점에서 무선전력 수신장치와 전송장치간 패킷의 송수신 시퀀스를 도시한 것이다.
도 44는 일 실시예에 따른 데이터 트랜스포트를 도시한 것이다.
도 45는 다른 실시예에 따른 데이터 트랜스포트를 도시한 것이다.
도 46은 일 실시예에 따른 무선전력 수신장치에 관한 ADT 데이터 패킷(ADT_PRx Data Packet)의 구조이다.
도 47은 일 실시예에 따른 무선전력 수신장치에 관한 ADT 응답 패킷(ADT_PRx Response Packet)의 구조이다.
도 48은 일 실시예에 따른 무선전력 수신장치에 관한 ADT 제어 패킷(ADT_PRx Control Packet)의 구조이다.
도 49는 일 실시예에 따른 무선전력 전송장치에 관한 ADT 데이터 패킷(ADT_PTx Data Packet)의 구조이다.
도 50은 일 실시예에 따른 무선전력 전송장치에 관한 ADT 응답 패킷(ADT_PTx Response Packet)의 구조이다.
도 51은 일 실시예에 따른 무선전력 전송장치에 관한 ADT 응답/제어 패킷(ADT_PTx Response/Control Packet)의 구조이다.
도 52는 일 실시예에 따른 무선전력 전송장치에 관한 ADT 제어 패킷(ADT_PTx Control Packet)의 구조이다.
도 53은 일 실시예에 따른 ADT 데이터 패킷 기록(write)에 관한 상태 머신(state mashine)을 도시한 다이어그램이다.
도 54는 일 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 수신장치와 무선전력 전송장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다.
도 55는 다른 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 수신장치와 무선전력 전송장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다.
도 56은 또 다른 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 수신장치와 무선전력 전송장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다.
도 57은 일 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 58은 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 59는 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 60은 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 61은 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 62는 일 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 63은 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 64는 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 65는 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 66은 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 67은 일 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 전송장치와 무선전력 수신장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다.
도 68은 다른 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 전송장치와 무선전력 수신장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다.
도 69는 일 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 70은 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 71은 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 72는 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 73은 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 74는 일 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 75는 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 76은 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 77은 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 78은 일 실시예에 따른 GRP의 구조이다.
도 79는 일 실시예에 따른 무선전력 전송장치에 의해 개시되는 전력 관리에 관한 전송 시퀀스이다.
이하에서 사용되는 "무선 전력" 이라는 용어는, 물리적인 전자기 전도체들의 사용없이 무선전력 전송기(wireless power transmitter)로부터 무선전력 수신장치(wireless power receiver)로 전달되는 전기장, 자기장, 전자기장 등과 관련된 임의의 형태의 에너지를 의미하도록 사용된다. 무선전력은 무선 전력 신호(wireless power signal)이라고 불릴 수도 있으며, 1차 코일과 2차 코일에 의해 둘러싸이는(enclosed) 진동하는 자속(oscillating magnetic flux)을 의미할 수 있다. 예를 들어, 이동 전화기, 코드리스 전화기, iPod, MP3 플레이어, 헤드셋 등을 포함하는 디바이스들을 무선으로 충전하기 위해 시스템에서의 전력 변환이 여기에 설명된다. 일반적으로, 무선 전력 전송의 기본적인 원리는, 예를 들어, 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식을 모두 포함한다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 1을 참조하면, 무선 전력 시스템(10)은 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)를 포함한다.
무선 전력 전송 장치(100)는 외부의 전원 소스(S)로부터 전원을 인가받아 자기장을 발생시킨다. 무선 전력 수신 장치(200)는 발생된 자기장을 이용하여 전류를 발생시켜 무선으로 전력을 수신받는다.
또한, 무선 전력 시스템(10)에서 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)는 무선 전력 전송에 필요한 다양한 정보를 송수신할 수 있다. 여기서, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)간의 통신은 무선 전력 전송에 이용되는 자기장을 이용하는 인-밴드 통신(in-band communication)이나 별도의 통신 캐리어를 이용하는 아웃-밴드 통신(out-band communication) 중 어느 하나의 방식에 따라 수행될 수 있다.
여기서, 무선 전력 전송 장치(100)는 고정형 또는 이동형으로 제공될 수 있다. 고정형의 예로는 실내의 천장이나 벽면 또는 테이블 등의 가구에 임베디드(embedded)되는 형태, 실외의 주차장, 버스 정류장이나 지하철역 등에 임플란트 형식으로 설치되는 형태나 차량이나 기차 등의 운송 수단에 설치되는 형태 등이 있다. 이동형인 무선 전력 전송 장치(100)는 이동 가능한 무게나 크기의 이동형 장치나 노트북 컴퓨터의 덮개 등과 같이 다른 장치의 일부로 구현될 수 있다.
또 무선 전력 수신 장치(200)는 배터리를 구비하는 각종 전자 기기 및 전원 케이블 대신 무선으로 전원을 공급받아 구동되는 각종 가전 기기를 포함하는 포괄적인 개념으로 해석되어야 한다. 무선 전력 수신 장치(200)의 대표적인 예로는, 이동 단말기(portable terminal), 휴대 전화기(cellular phone), 스마트폰(smart phone), 개인 정보 단말기(PDA: Personal Digital Assistant), 휴대 미디어 플레이어(PMP: Portable Media Player), 와이브로 단말기(Wibro terminal), 태블릿(tablet), 패블릿(pablet), 노트북(notebook), 디지털 카메라, 네비게이션 단말기, 텔레비전, 전기차량(EV: Electronic Vehicle) 등이 있다.
무선 전력 시스템(100)에서 무선 전력 수신 장치(200)는 하나 또는 복수일 수 있다. 도 1에서는 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)가 일대일로 전력을 주고 받는 것으로 표현되고 있으나, 도 2와 같이 하나의 무선 전력 전송 장치(100)가 복수의 무선 전력 수신 장치(200-1, 200-2,..., 200-M)로 전력을 전달하는 것도 가능하다. 특히, 자기 공진 방식으로 무선 전력 전송을 수행하는 경우에는 하나의 무선 전력 전송 장치(100)가 동시 전송 방식이나 시분할 전송 방식을 응용하여 동시에 여러 대의 무선 전력 수신 장치(200-1, 200-2,...,200-M)로 전력을 전달할 수 있다.
또한, 도 1에는 무선 전력 전송 장치(100)가 무선 전력 수신 장치(200)에 바로 전력을 전달하는 모습이 도시되어 있으나, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200) 사이에 무선전력 전송 거리를 증대시키기 위한 릴레이(relay) 또는 중계기(repeater)와 같은 별도의 무선 전력 송수신 장치가 구비될 수 있다. 이 경우, 무선 전력 전송 장치(100)로부터 무선 전력 송수신 장치로 전력이 전달되고, 무선 전력 송수신 장치가 다시 무선 전력 수신 장치(200)로 전력을 전달할 수 있다.
이하 본 명세서에서 언급되는 무선전력 수신기, 전력 수신기, 수신기는 무선 전력 수신 장치(200)를 지칭한다. 또한 본 명세서에서 언급되는 무선전력 전송기, 전력 전송기, 전송기는 무선 전력 수신 전송 장치(100)를 지칭한다.
도 3은 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3에는 무선 전력 전송 시스템에서 송신 및 수신하는 전력 양에 따라 전자 기기들을 분류하여 도시하였다. 도 3을 참조하면, 스마트 시계(Smart watch), 스마트 글래스(Smart Glass), HMD(Head Mounted Display), 및 스마트 링(Smart ring)과 같은 웨어러블 기기들 및 이어폰, 리모콘, 스마트폰, PDA, 태블릿 PC 등의 모바일 전자 기기들(또는 포터블 전자 기기들)에는 소전력(약 5W이하 또는 약 20W 이하) 무선 충전 방식이 적용될 수 있다.
노트북, 로봇 청소기, TV, 음향 기기, 청소기, 모니터와 같은 중/소형 가전 기기들에는 중전력(약 50W이하 또는 약 200W)이하) 무선 충전 방식이 적용될 수 있다. 믹서기, 전자 레인지, 전기 밥솥과 같은 주방용 가전 기기, 휠체어, 전기 킥보드, 전기 자전거, 전기 자동차 등의 개인용 이동 기기들(또는, 전자 기기/이동 수단들)은 대전력(약 2kW 이하 또는 22kW이하) 무선 충전 방식이 적용될 수 있다.
상술한(또는 도 1에 도시된) 전자 기기들/이동 수단들은 후술하는 무선 전력 수신기를 각각 포함할 수 있다. 따라서, 상술한 전자 기기들/이동 수단들은 무선 전력 송신기로부터 무선으로 전력을 수신하여 충전될 수 있다.
이하에서는 전력 무선 충전 방식이 적용되는 모바일 기기를 중심으로 설명하나 이는 실시예에 불과하며, 본 발명에 따른 무선 충전 방법은 상술한 다양한 전자 기기에 적용될 수 있다.
무선전력 전송에 관한 표준(standard)은 WPC(wireless power consortium), AFA(air fuel alliance), PMA(power matters alliance)을 포함한다.
WPC 표준은 기본 전력 프로파일(baseline power profile: BPP)과 확장 전력 프로파일(extended power profile: EPP)을 정의한다. BPP는 5W의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이고, EPP는 5W보다 크고 30W보다 작은 범위의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이다.
서로 다른 전력레벨(power level)을 사용하는 다양한 무선전력 전송장치와 수신장치들이 각 표준별로 커버되고, 서로 다른 전력 클래스(power class) 또는 카테고리로 분류될 수 있다.
예를 들어, WPC는 무선전력 전송장치와 수신장치를 전력 클래스(power class :PC) -1, PC0, PC1, PC2로 분류하고, 각 PC에 대한 표준문서를 제공한다. PC-1 표준은 5W 미만의 보장전력(guaranteed power)을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC-1의 어플리케이션은 스마트 시계와 같은 웨어러블 기기를 포함한다.
PC0 표준은 5W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC0 표준은 보장전력이 30W까지인 EPP를 포함한다. 인-밴드(in-band :IB) 통신이 PC0의 필수적인(mandatory) 통신 프로토콜이나, 옵션의 백업 채널로 사용되는 아웃-오브-밴드(out-of-band : OBB) 통신도 사용될 수 있다. 무선전력 수신장치는 OOB의 지원 여부를 구성 패킷(configuration packe)내의 OOB 플래그를 설정함으로써 식별할 수 있다. OOB를 지원하는 무선전력 전송장치는 상기 구성 패킷에 대한 응답으로서, OOB 핸드오버를 위한 비트패턴(bit-pattern)을 전송함으로써 OOB 핸드오버 페이즈(handover phase)로 진입할 수 있다. 상기 구성 패킷에 대한 응답은 NAK, ND 또는 새롭게 정의되는 8비트의 패턴일 수 있다. PC0의 어플리케이션은 스마트폰을 포함한다.
PC1 표준은 30W~150W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. OOB는 PC1을 위한 필수적인 통신 채널이며, IB는 OOB로의 초기화 및 링크 수립(link establishment)로서 사용된다. 무선전력 전송장치는 구성 패킷에 대한 응답으로서, OOB 핸드오버를 위한 비트패턴을 OOB 핸드오버 페이즈로 진입할 수 있다. PC1의 어플리케이션은 랩탑이나 전동 공구(power tool)을 포함한다.
PC2 표준은 200W~2kW의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것으로서, 그 어플리케이션은 주방가전을 포함한다.
이렇듯 전력 레벨에 따라 PC가 구별될 수 있으며, 동일한 PC간 호환성(compatibility)을 지원할지 여부는 선택 또는 필수 사항일 수 있다. 여기서 동일한 PC간 호환성은, 동일한 PC 간에는 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 동일한 PC x를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 동일한 PC간 호환성이 유지되는 것으로 볼 수 있다. 이와 유사하게 서로 다른 PC간의 호환성 역시 지원 가능할 수 있다. 여기서 서로 다른 PC간 호환성은, 서로 다른 PC 간에도 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 PC y를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 서로 다른 PC간 호환성이 유지되는 것으로 볼 수 있다.
PC간 호환성의 지원은 사용자 경험(User Experience) 및 인프라 구축 측면에서 매우 중요한 이슈이다. 다만, PC간 호환성 유지에는 기술적으로 아래와 같은 여러 문제점이 존재한다.
동일한 PC간 호환성의 경우, 예를 들어, 연속적으로 전력이 전송되는 경우에만 안정적으로 충전이 가능한 랩-탑 충전(lap-top charging) 방식의 무선 전력 수신장치는, 동일한 PC의 무선 전력 송신장치라 하더라도, 불연속적으로 전력을 전송하는 전동 툴 방식의 무선 전력 송신장치로부터 전력을 안정적으로 공급받는 데 문제가 있을 수 있다. 또한, 서로 다른 PC간 호환성의 경우, 예를 들어, 최소 보장 전력이 200W인 무선 전력 송신장치는 최대 보장 전력이 5W인 무선 전력 수신장치로 전력을 송신하는 경우, 과전압으로 인해 무선전력 수신장치가 파손될 위험이 있다. 그 결과, PC는 호환성을 대표/지시하는 지표/기준으로 삼기 어렵다.
이하에서는 호환성을 대표/지시하는 지표/기준으로 '프로필(profile)'을 새롭게 정의하기로 한다. 즉, 동일한 '프로필'을 갖는 무선 전력 송수신 장치간에는 호환성이 유지되어 안정적인 전력 송수신이 가능하며, 서로 다른 '프로필'을 갖는 무선 전력 송수신장치간에는 전력 송수신이 불가한 것으로 해석될 수 있다. 프로필은 전력 클래스와 무관하게(또는 독립적으로) 호환 가능 여부 및/또는 어플리케이션에 따라 정의될 수 있다.
예를 들어, 프로필은 크게 i) 모바일, ii) 전동 툴, iii) 주방 및 iv) 웨어러블 이렇게 4가지로 구분될 수 있다.
'모바일' 프로필의 경우, PC는 PC0 및/또는 PC1, 통신 프로토콜/방식은 IB 및 OOB, 동작 주파수는 87~205kHz로 정의될 수 있으며, 어플리케이션의 예시로는 스마트폰, 랩-탑 등이 존재할 수 있다.
'전동 툴' 프로필의 경우, PC는 PC1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~145kHz로 정의될 수 있으며, 어플리케이션의 예시로는 전동 툴 등이 존재할 수 있다.
'주방' 프로필의 경우, PC는 PC2, 통신 프로토콜/방식은 NFC-기반, 동작 주파수는 100kHz 미만으로 정의될 수 있으며, 어플리케이션의 예시로는 주방/가전 기기 등이 존재할 수 있다.
'웨어러블' 프로필의 경우, PC는 PC-1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~205kHz으로 정의될 수 있으며, 어플리케이션의 예시로는 사용자 몸에 착용하는 웨어러블 기기 등이 존재할 수 있다.
동일한 프로필간에는 호환성 유지는 필수 사항일 수 있으며, 다른 프로필간의 호환성 유지는 선택 사항일 수 있다.
상술한 프로필(모바일 프로필, 전동 툴 프로필, 주방 프로필 및 웨어러블 프로필)들은 제1 내지 제n 프로필로 일반화되어 표현될 수 있으며, WPC 규격 및 실시예에 따라 새로운 프로필이 추가/대체될 수 있다.
이와 같이 프로필이 정의되는 경우, 무선 전력 전송장치가 자신과 동일한 프로필의 무선 전력 수신장치에 대해서만 선택적으로 전력 송신을 수행하여 보다 안정적으로 전력 송신이 가능하다. 또한 무선 전력 전송장치의 부담이 줄어들고, 호환이 불가능한 무선 전력 수신장치로의 전력 송신을 시도하지 않게 되므로 무선 전력 수신장치의 파손 위험이 줄어든다는 효과가 발생한다.
'모바일' 프로필 내의 PC1은 PC0를 기반으로 OOB와 같은 선택적 확장을 차용함으로써 정의될 수 있으며, '전동 툴' 프로필의 경우, PC1 '모바일' 프로필이 단순히 변경된 버전으로서 정의될 수 있다. 또한, 현재까지는 동일한 프로필간의 호환성 유지를 목적으로 정의되었으나, 추후에는 서로 다른 프로필간의 호환성 유지 방향으로 기술이 발전될 수 있다. 무선 전력 전송장치 또는 무선 전력 수신장치는 다양한 방식을 통해 자신의 프로필을 상대방에게 알려줄 수 있다.
AFA 표준은 무선 전력 전송장치를 PTU(power transmitting unit)이라 칭하고, 무선 전력 수신장치를 PRU(power receiving unit)이라 칭하며, PTU는 표 1과 같이 다수의 클래스로 분류되고, PRU는 표 2와 같이 다수의 카테고리로 분류된다.
PTX_IN_MAX 최소 카테고리 지원 요구사항 지원되는 최대 기기 개수를 위한 최소값
Class 1 2W 1x 카테고리 1 1x 카테고리 1
Class 2 10W 1x 카테고리 3 2x 카테고리 2
Class 3 16W 1x 카테고리 4 2x 카테고리 3
Class 4 33W 1x 카테고리 5 3x 카테고리 3
Class 5 50W 1x 카테고리 6 4x 카테고리 3
Class 6 70W 1x 카테고리 7 5x 카테고리 3
PRU PRX_OUT_MAX' 예시 어플리케이션
Category 1 TBD 블루투스 헤드셋
Category 2 3.5W 피쳐폰
Category 3 6.5W 스마트폰
Category 4 13W 태블릿, 패플릿
Category 5 25W 작은 폼팩터 랩탑
Category 6 37.5W 일반 랩탑
Category 7 50W
표 1에서와 같이, 클래스 n PTU의 최대 출력 전력 성능(capability)은 해당 클래스의 PTX_IN_MAX 값보다 크거나 같다. PRU는 해당 카테고리에서 명세된(specified) 전력보다 더 큰 전력을 끌어당길(draw) 수는 없다.
도 4는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4를 참조하면, 무선 전력 전송 시스템(10)은 무선으로 전력을 수신하는 모바일 기기(Mobile Device)(450) 및 무선으로 전력을 송신하는 베이스 스테이션(Base Station)(400)을 포함한다.
베이스 스테이션(400)은 유도 전력 또는 공진 전력을 제공하는 장치로서, 적어도 하나의 무선 전력 전송장치(power transmitter, 100) 및 시스템 유닛(405)을 포함할 수 있다. 무선 전력 전송장치(100)는 유도 전력 또는 공진 전력을 전송하고, 전송을 제어할 수 있다. 무선 전력 전송장치(100)는, 1차 코일(primary coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환하는 전력 변환 유닛(power conversion unit, 110) 및 적절한 레벨로 전력을 전달하도록 무선 전력 수신장치(200)와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 유닛(communications & control unit, 120)을 포함할 수 있다. 시스템 유닛(405)은 입력 전력 프로비저닝(provisioning), 복수의 무선전력 전송장치들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션(100)의 기타 동작 제어를 수행할 수 있다.
1차 코일은 교류 전력(또는 전압 또는 전류)을 이용하여 전자기장을 발생시킬 수 있다. 1차 코일은 전력 변환 유닛(110)에서 출력되는 특정 주파수의 교류전력(또는 전압 또는 전류)을 인가받고, 이에 따라 특정 주파수의 자기장을 발생시킬 수 있다. 자기장은 비방사형 또는 방사형으로 발생할 수 있는데, 무선 전력 수신 장치(200)는 이를 수신하여 전류를 생성하게 된다. 다시 말해 1차 코일은 무선으로 전력을 전송하는 것이다.
자기 유도 방식에서, 1차 코일과 2차 코일은 임의의 적합한 형태들을 가질 수 있으며, 예컨대, 페라이트 또는 비정질 금속과 같은 고투자율의 형성물의 주위에 감긴 동선일 수 있다. 1차 코일은 1차 코어(primary core), 1차 와인딩(primary winding), 1차 루프 안테나(primary loop antenna) 등으로 불릴 수도 있다. 한편, 2차 코일은 2차 코어(secondary core), 2차 와인딩(secondary winding), 2차 루프 안테나(secondary loop antenna), 픽업 안테나(pickup antenna) 등으로 불릴 수도 있다.
자기 공진 방식을 이용하는 경우에는 1차 코일과 2차 코일은 각각 1차 공진 안테나와 2차 공진 안테나 형태로 제공될 수 있다. 공진 안테나는 코일과 캐패시터를 포함하는 공진 구조를 가질 수 있다. 이때 공진 안테나의 공진 주파수는 코일의 인덕턴스와 캐패시터의 캐패시턴스에 의해 결정된다. 여기서, 코일은 루프의 형태로 이루어질 수 있다. 또 루프의 내부에는 코어가 배치될 수 있다. 코어는 페라이트 코어(ferrite core)와 같은 물리적인 코어나 공심 코어(air core)를 포함할 수 있다.
1차 공진 안테나와 2차 공진 안테나 간의 에너지 전송은 자기장의 공진 현상을 통해 이루어질 수 있다. 공진 현상이란 하나의 공진 안테나에서 공진 주파수에 해당하는 근접장이 발생할 때 주위에 다른 공진 안테나가 위치하는 경우, 양 공진 안테나가 서로 커플링되어 공진 안테나 사이에서 높은 효율의 에너지 전달이 일어나는 현상을 의미한다. 1차 공진 안테나와 2차 공진 안테나 안테나 사이에서 공진 주파수에 해당하는 자기장이 발생하면, 1차 공진 안테나와 2차 공진 안테나가 서로 공진하는 현상이 발생되고, 이에 따라 일반적인 경우 1차 공진 안테나에서 발생한 자기장이 자유공간으로 방사되는 경우에 비해 보다 높은 효율로 2차 공진 안테나를 향해 자기장이 집속되며, 따라서 1차 공진 안테나로부터 2차 공진 안테나에 높은 효율로 에너지가 전달될 수 있다. 자기 유도 방식은 자기 공진 방식과 유사하게 구현될 수 있으나 이때에는 자기장의 주파수가 공진 주파수일 필요가 없다. 대신 자기 유도 방식에서는 1차 코일과 2차 코일을 구성하는 루프 간의 정합이 필요하며 루프 간의 간격이 매우 근접해야 한다.
도면에 도시되지 않았으나, 무선 전력 전송장치(1100)는 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신 할 수 있다.
통신/컨트롤 유닛(120)은 무선 전력 수신 장치(200)와 정보를 송수신할 수 있다. 통신/컨트롤 유닛(120)은 IB 통신 모듈 또는 OOB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 유닛(120)은 자기파에 정보를 실어 1차 코일을 통해 송신하거나 또는 정보가 담긴 자기파를 1차 코일을 통해 수신함으로써 인-밴드 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 유닛(120)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OOB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 유닛(120)은 근거리 통신 모듈로 제공될 수 있다. 근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 유닛(120)은 무선 전력 전송 장치(100)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 유닛(120)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력전송 장치(100)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 유닛(120)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 유닛(120)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 유닛(120)을 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 유닛(120)은 동작 포인트(operating point)를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트는 주파수(또는 위상), 듀티 사이클(duty cycle), 듀티 비(duty ratio) 및 전압 진폭의 조합에 해당될 수 있다. 통신/컨트롤 유닛(120)은 주파수(또는 위상), 듀티 사이클, 듀티비 및 전압 진폭 중 적어도 하나를 조절하여 송신 전력을 컨트롤할 수 있다. 또한, 무선 전력 전송장치(100)는 일정한 전력을 공급하고, 무선 전력 수신장치(200)가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
모바일 기기(450)는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 무선전력 수신장치(power receiver, 200)와 무선전력 수신장치(200)에서 수신된 전력을 전력을 전달받아 저장하고 기기에 공급하는 부하(load, 455)를 포함한다.
무선전력 수신장치(200)는 전력 픽업 유닛(power pick-up unit, 210) 및 통신/컨트롤 유닛(communications & control unit, 220)을 포함할 수 있다. 전력 픽업 유닛(210)은 2차 코일을 통해 무선 전력을 수신하여 전기 에너지로 변환할 수 있다. 전력 픽업 유닛(210)은 2차 코일을 통해 얻어지는 교류 신호를 정류하여 직류 신호로 변환한다. 통신/컨트롤 유닛(220)은 무선 전력의 송신과 수신(전력 전달 및 수신)을 제어할 수 있다.
2차 코일은 무선 전력 전송 장치(100)에서 전송되는 무선 전력을 수신할 수 있다. 2차 코일은 1차 코일에서 발생하는 자기장을 이용하여 전력을 수신할 수 있다. 여기서, 특정 주파수가 공진 주파수인 경우에는 1차 코일과 2차 코일 간에 자기 공진 현상이 발생하여 보다 효율적으로 전력을 전달받을 수 있다.
도 4에는 도시되지 않았으나 통신/컨트롤 유닛(220)은 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신할 수 있다.
통신/컨트롤 유닛(220)은 무선 전력 전송 장치(100)와 정보를 송수신할 수 있다. 통신/컨트롤 유닛(220)은 IB 통신 모듈 또는 OOB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 유닛(220)은 자기파에 정보를 실어 2차 코일을 통해 송신하거나 또는 정보가 담긴 자기파를 2차 코일을 통해 수신함으로써 IB 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 유닛(220)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OOB 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 유닛(220)은 근거리 통신 모듈로 제공될 수 있다.
근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 유닛(220)은 무선 전력 수신 장치(200)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 유닛(220)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력수신 장치(200)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 유닛(220)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 유닛(220)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 유닛(220)을 구동시키는 프로그램 형태로 제공될 수 있다.
부하(455)는 배터리일 수 있다. 배터리는 전력 픽업 유닛(210)으로부터 출력되는 전력을 이용하여 에너지를 저장할 수 있다. 한편, 모바일 기기(450)에 배터리가 반드시 포함되어야 하는 것은 아니다. 예를 들어, 배터리는 탈부착이 가능한 형태의 외부 구성으로 제공될 수 있다. 다른 예를 들어, 무선 전력 수신 장치(200)에는 전자 기기의 다양한 동작을 구동하는 구동 수단이 배터리 대신 포함될 수도 있다.
모바일 기기(450)는 무선전력 수신장치(200)을 포함하는 것을 도시되어 있고, 베이스 스테이션(400)은 무선전력 전송장치(100)를 포함하는 것으로 도시되어 있으나, 넓은 의미에서는 무선전력 수신장치(200)는 모바일 기기(450)와 동일시될 수 있고 무선전력 전송장치(100)는 베이스 스테이션(400)와 동일시 될 수도 있다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 무선전력 전송장치로부터 수신기로의 파워 전송은 크게 선택 단계(selection phase, 510), 핑 단계(ping phase, 520), 식별 및 구성 단계(identification and configuration phase, 530), 협상 단계(negotiation phase, 540), 보정 단계(calibration phase, 550), 전력 전송 단계(power transfer phase, 560) 단계 및 재협상 단계(renegotiation phase, 570)로 구분될 수 있다.
선택 단계(510)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계-예를 들면, 도면 부호 S502, S504, S508, S510 및 S512를 포함함-일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(510)에서 무선전력 전송장치는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 무선전력 전송장치가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(520)로 천이할 수 있다. 선택 단계(510)에서 무선전력 전송장치는 매우 짧은 펄스의 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
선택 단계(510)에서 물체가 감지되는 경우, 무선전력 전송장치는 무선전력 공진 회로(예를 들어 전력전송 코일 및/또는 공진 캐패시터)의 품질 인자를 측정할 수 있다. 본 발명의 일 실시예에서는 선택단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 무선전력 수신장치가 놓였는지 판단하기 위하여 품질 인자를 측정할 수 있다. 무선전력 전송장치에 구비되는 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬저항 성분이 감소될 수 있고, 이로 인해 품질 인자 값이 감소하게 된다. 측정된 품질 인자 값을 이용하여 이물질의 존재 여부를 판단하기 위해, 무선전력 전송장치는 충전 영역에 이물질이 배치되지 않은 상태에서 미리 측정된 기준 품질 인자 값을 무선전력 수신장치로부터 수신할 수 있다. 협상 단계(S540)에서 수신된 기준 품질 인자 값과 측정된 품질 인자 값을 비교하여 이물질 존재 여부를 판단할 수 있다. 그러나 기준 품질 인자 값이 낮은 무선전력 수신장치의 경우-일 예로, 무선전력 수신장치의 타입, 용도 및 특성 등에 따라 특정 무선전력 수신장치는 낮은 기준 품질 인자 값을 가질 수 있음-, 이물질이 존재하는 경우에 측정되는 품질 인자 값과 기준 품질 인자 값 사이의 큰 차이가 없어 이물질 존재 여부를 판단하기 어려운 문제가 발생할 수 있다. 따라서 다른 판단 요소를 더 고려하거나, 다른 방법을 이용하여 이물질 존재 여부를 판단해야 한다.
본 발명의 또 다른 실시예에서는 선택 단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 가 배치되었는지 판단하기 위하여 특정 주파수 영역 내(ex 동작 주파수 영역) 품질 인자 값을 측정할 수 있다. 무선전력 전송장치의 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬 저항 성분이 감소될 수 있고, 이로 인해 무선전력 전송장치의 코일의 공진 주파수가 변경(시프트)될 수 있다. 즉, 동작 주파수 대역 내 최대 품질 인자 값이 측정되는 주파수인 품질 인자 피크(peak) 주파수가 이동될 수 있다.
단계(520)에서 무선전력 전송장치는 물체가 감지되면, 수신기를 활성화(Wake up)시키고, 감지된 물체가 무선 전력 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(520)에서 무선전력 전송장치는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 패킷-을 수신기로부터 수신하지 못하면, 다시 선택 단계(510)로 천이할 수 있다. 또한, 핑 단계(520)에서 무선전력 전송장치는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(510)로 천이할 수도 있다.
핑 단계(520)가 완료되면, 무선전력 전송장치는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(530)로 천이할 수 있다.
식별 및 구성 단계(530)에서 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(510)로 천이할 수 있다.
무선전력 전송장치는 식별 및 구성 단계(530)에서 수시된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(540)로의 진입이 필요한지 여부를 확인할 수 있다. 확인 결과, 협상이 필요하면, 무선전력 전송장치는 협상 단계(540)로 진입하여 소정 FOD 검출 절차를 수행할 수 있다. 반면, 확인 결과, 협상이 필요하지 않은 경우, 무선전력 전송장치는 곧바로 전력 전송 단계(560)로 진입할 수도 있다.
협상 단계(540)에서, 무선전력 전송장치는 기준 품질 인자 값이 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신할 수 있다. 또는 기준 피크 주파수 값이 포함된 FOD 상태 패킷을 수신할 수 있다. 또는 기준 품질 인자 값 및 기준 피크 주파수 값이 포함된 상태 패킷을 수신할 수 있다. 이때, 무선전력 전송장치는 기준 품질 인자 값에 기반하여 FO 검출을 위한 품질 계수 임계치를 결정할 수 있다. 무선전력 전송장치는 기준 피크 주파수 값에 기반하여 FO 검출을 위한 피크 주파수 임계치를 결정할 수 있다.
무선전력 전송장치는 결정된 FO 검출을 위한 품질 계수 임계치 및 현재 측정된 품질 인자 값(핑 단계 이전에 측정된 품질인자 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
무선전력 전송장치는 결정된 FO 검출을 위한 피크 주파수 임계치 및 현재 측정된 피크 주파수 값(핑 단계 이전에 측정된 피크 주파수 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
FO가 검출된 경우, 무선전력 전송장치는 선택 단계(510)로 회귀할 수 있다. 반면, FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)를 거쳐 전력 전송 단계(560)로 진입할 수도 있다. 상세하게, 무선전력 전송장치는 FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)에서 수신단에 수신된 전력의 세기를 결정하고, 송신단에서 전송한 전력의 세기를 결정하기 위해 수신단과 송신단에서의 전력 손실을 측정할 수 있다. 즉, 무선전력 전송장치는 보정 단계(550)에서 송신단의 송신 파워와 수신단의 수신 파워 사이의 차이에 기반하여 전력 손실을 예측할 수 있다. 일 실시예에 따른 무선전력 전송장치는 예측된 전력 손실을 반영하여 FOD 검출을 위한 임계치를 보정할 수도 있다.
전력 전송 단계(560)에서, 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(510)로 천이할 수 있다.
또한, 전력 전송 단계(560)에서, 무선전력 전송장치는 무선전력 전송장치 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(570)로 천이할 수 있다. 이때, 재협상이 정상적으로 완료되면, 무선전력 전송장치는 전력 전송 단계(560)로 회귀할 수 있다.
상기한 파워 전송 계약은 무선전력 전송장치와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 무선전력 전송장치 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 6에서 전력 전송 단계(560)에서, 무선전력 전송장치(100) 및 무선전력 수신장치(200)는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다. 무선전력 전송장치 및 무선전력 수신장치는 특정 컨트롤 포인트에서 동작한다. 컨트롤 포인트는 전력 전달이 수행될 때 무선전력 수신장치의 출력단(output)에서 제공되는 전압 및 전류의 조합(combination)을 나타낸다.
더 상세히 설명하면, 무선전력 수신장치는 원하는 컨트롤 포인트(desired Control Point)- 원하는 출력 전류/전압, 모바일 기기의 특정 위치의 온도 등을 선택하고, 추가로 현재 동작하고 있는 실제 컨트롤 포인트(actual control point)를 결정한다. 무선전력 수신장치는 원하는 컨트롤 포인트와 실제 컨트롤 포인트를 사용하여, 컨트롤 에러 값(control error value)을 산출하고, 이를 컨트롤 에러 패킷으로서 무선전력 전송장치로 전송할 수 있다.
그리고 무선전력 전송장치는 수신한 컨트롤 에러 패킷을 사용하여 새로운 동작 포인트- 진폭, 주파수 및 듀티 사이클-를 설정/컨트롤하여 전력 전달을 제어할 수 있다. 따라서 컨트롤 에러 패킷은 전략 전달 단계에서 일정 시간 간격으로 전송/수신되며, 실시예로서 무선전력 수신장치는 무선전력 전송장치의 전류를 저감하려는 경우 컨트롤 에러 값을 음수로, 전류를 증가시키려는 경우 컨트롤 에러 값을 양수로 설정하여 전송할 수 있다. 이와 같이 유도 모드에서는 무선전력 수신장치가 컨트롤 에러 패킷을 무선전력 전송장치로 송신함으로써 전력 전달을 제어할 수 있다.
이하에서 설명할 공진 모드에서는 유도 모드에서와는 다른 방식으로 동작할 수 있다. 공진 모드에서는 하나의 무선전력 전송장치가 복수의 무선전력 수신장치를 동시에 서빙할 수 있어야 한다. 다만 상술한 유도 모드와 같이 전력 전달을 컨트롤하는 경우, 전달되는 전력이 하나의 무선전력 수신장치와의 통신에 의해 컨트롤되므로 추가적인 무선전력 수신장치들에 대한 전력 전달은 컨트롤이 어려울 수 있다. 따라서 본 발명의 공진 모드에서는 무선전력 전송장치는 기본 전력을 공통적으로 전달하고, 무선전력 수신장치가 자체의 공진 주파수를 컨트롤함으로써 수신하는 전력량을 컨트롤하는 방법을 사용하고자 한다. 다만, 이러한 공진 모드의 동작에서도 도 6에서 설명한 방법이 완전히 배제되는 것은 아니며, 추가적인 송신 전력의 제어를 도 6의 방법으로 수행할 수도 있다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다. 쉐어드 모드는 무선전력 전송장치와 무선전력 수신장치간에 1대다 통신 및 충전을 수행하는 모드를 지칭할 수 있다. 쉐어드 모드는 자기 유도 방식 또는 공진 방식으로 구현될 수 있다.
도 7을 참조하면, 무선 전력 전송 장치(700)는 코일 어셈블리를 덮는 커버(720), 전력 송신기(740)로 전력을 공급하는 전력 어답터(730), 무선 전력을 송신하는 전력 송신기(740) 또는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(750) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(750)는 옵셔널하게 포함되거나, 무선 전력 전송 장치(700)의 다른 사용자 인터페이스(750)로서 포함될 수도 있다.
전력 송신기(740)는 코일 어셈블리(760), 임피던스 매칭 회로(770), 인버터(780), 통신 유닛(790) 또는 컨트롤 유닛(710) 중 적어도 하나를 포함할 수 있다.
코일 어셈블리(760)는 자기장을 생성하는 적어도 하나의 1차 코일을 포함하며, 코일 셀로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 인버터와 1차 코일(들) 간의 임피던스 매칭을 제공할 수 있다. 임피던스 매칭 회로(770)는 1차 코일 전류를 부스팅(boost)하는 적합한(suitable) 주파수에서 공진(resonance)을 발생시킬 수 있다. 다중-코일(multi-coil) 전력 송신기(740)에서 임피던스 매칭 회로는 인버터에서 1차 코일들의 서브세트로 신호를 라우팅하는 멀티플렉스를 추가로 포함할 수도 있다. 임피던스 매칭 회로는 탱크 회로(tank circuit)로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 캐패시터, 인덕터 및 이들의 연결을 스위칭하는 스위칭 소자를 포함할 수 있다. 임피던스의 매칭은 코일 어셈블리(760)를 통해 전송되는 무선전력의 반사파를 검출하고, 검출된 반사파에 기초하여 스위칭 소자를 스위칭하여 캐패시터나 인덕터의 연결 상태를 조정하거나 캐패시터의 캐패시턴스를 조정하거나 인덕터의 인덕턴스를 조정함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(770)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(770)가 생략된 무선전력 전송장치(700)의 실시예도 포함한다.
인버터(780)는 DC 인풋을 AC 신호로 전환할 수 있다. 인버터(780)는 가변(adjustable) 주파수의 펄스 웨이브 및 듀티 사이클을 생성하도록 하프-브리지 또는 풀-브리지로 구동될 수 있다. 또한 인버터는 입력 전압 레벨을 조정하도록 복수의 스테이지들을 포함할 수도 있다.
통신 유닛(790)은 전력 수신기와의 통신을 수행할 수 있다. 전력 수신기는 전력 송신기에 대한 요청 및 정보를 통신하기 위해 로드(load) 변조를 수행한다. 따라서 전력 송신기(740)는 통신 유닛(790)을 사용하여 전력 수신기가 전송하는 데이터를 복조하기 위해 1차 코일의 전류 및/또는 전압의 진폭 및/또는 위상을 모니터링할 수 있다.
또한, 전력 송신기(740)는 통신 유닛(790)을 통해 FSK(Frequency Shift Keying) 방식 등을 사용하여 데이터를 전송하도록 출력 전력을 컨트롤할 수도 있다.
컨트롤 유닛(710)은 전력 송신기(740)의 통신 및 전력 전달을 컨트롤할 수 있다. 컨트롤 유닛(710)은 상술한 동작 포인트를 조정하여 전력 전송을 제어할 수 있다. 동작 포인트는, 예를 들면, 동작 주파수, 듀티 사이클 및 입력 전압 중 적어도 하나에 의해 결정될 수 있다.
통신 유닛(790) 및 컨트롤 유닛(710)은 별개의 유닛/소자/칩셋으로 구비되거나, 하나의 유닛/소자/칩셋으로 구비될 수도 있다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다.
도 8에서, 무선전력 수신 장치(800)는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(820), 무선 전력을 수신하는 전력 수신기(830), 로드 회로(load circuit, 840) 또는 코일 어셈블리를 받치며 커버하는 베이스(850) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(820)는 옵셔널하게 포함되거나, 전력 수신 장비의 다른 사용자 인터페이스(82)로서 포함될 수도 있다.
전력 수신기(830)는 전력 컨버터(860), 임피던스 매칭 회로(870), 코일 어셈블리(880), 통신 유닛(890) 또는 컨트롤 유닛(810) 중 적어도 하나를 포함할 수 있다.
전력 컨버터(860)는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 실시예로서, 전력 컨버터(860)는 정류기(rectifier)를 포함할 수 있다. 정류기는 수신된 무선 전력을 정류하여 교류에서 직류로 변환할 수 있다. 정류기는 다이오드나 트랜지스터를 이용하여 교류를 직류로 변환하고, 캐패시터와 저항을 이용하여 이를 평활할 수 있다. 정류기로는 브릿지 회로 등으로 구현되는 전파 정류기, 반파 정류기, 전압 체배기 등이 이용될 수 있다. 추가로, 전력 컨버터는 전력 수신기의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
임피던스 매칭 회로(870)는 전력 컨버터(860) 및 로드 회로(870)의 조합과 2차 코일 간의 임피던스 매칭을 제공할 수 있다. 실시예로서, 임피던스 매칭 회로는 전력 전달을 강화할 수 있는 100kHz 근방의 공진을 발생시킬 수 있다. 임피던스 매칭 회로(870)는 캐패시터, 인덕터 및 이들의 조합을 스위칭하는 스위칭 소자로 구성될 수 있다. 임피던스의 정합은 수신되는 무선 전력의 전압값이나 전류값, 전력값, 주파수값 등에 기초하여 임피던스 매칭 회로(870)를 구성하는 회로의 스위칭 소자를 제어함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(870)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(870)가 생략된 무선전력 수신장치(200)의 실시예도 포함한다.
코일 어셈블리(880)는 적어도 하나의 2차 코일을 포함하며, 옵셔널하게는 자기장으로부터 수신기의 금속 부분을 쉴딩(shield)하는 엘러먼트(element)를 더 포함할 수도 있다.
통신 유닛(890)은 전력 송신기로 요청(request) 및 다른 정보를 통신하기 위해 로드 변조를 수행할 수 있다.
이를 위해 전력 수신기(830)는 반사 임피던스를 변경하도록 저항 또는 커패시터를 스위칭할 수도 있다.
컨트롤 유닛(810)은 수신 전력을 컨트롤할 수 있다. 이를 위해 컨트롤 유닛(810)은 전력 수신기(830)의 실제 동작 포인트와 원하는 동작 포인트의 차이를 결정/산출할 수 있다. 그리고 컨트롤 유닛(810)은 전력 송신기의 반사 임피던스의 조정 및/또는 전력 송신기의 동작 포인트 조정 요청을 수행함으로써 실제 동작 포인트와 원하는 동작 포인트의 차이를 조정/저감할 수 있다. 이 차이를 최소화하는 경우 최적의 전력 수신을 수행할 수 있다.
통신 유닛(890) 및 컨트롤 유닛(810)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다.
도 9는 일 실시예에 따른 통신 프레임 구조를 나타낸다. 이는 쉐어드 모드(shared mode)에서의 통신 프레임 구조일 수 있다.
도 9를 참조하면, 쉐어드 모드에서는, 서로 다른 형태의 프레임이 함께 사용될 수 있다. 예를 들어, 상기 쉐어드 모드에서는, (A)와 같은 복수의 슬롯을 가지는 슬롯 프레임(slotted frame) 및 (B)와 같은 특정 형태가 없는 자유 형식 프레임(free format frame)을 사용할 수 있다. 보다 구체적으로, 슬롯 프레임은 무선 전력 수신장치(200)로부터, 무선 전력 전송장치(100)에게 짧은 데이터 패킷들의 전송을 위한 프레임이고, 자유 형식 프레임은 복수의 슬롯들을 구비하지 않아, 긴 데이터 패킷들의 전송이 가능한 프레임일 수 있다.
한편, 슬롯 프레임 및 자유 형식 프레임은, 당업자에 의하여 다양한 명칭으로 변경될 수 있다. 예를 들어, 슬롯 프레임은, 채널 프레임으로, 자유 형식 프레임은, 메시지 프레임 등으로 변경되어 명명될 수 있다.
보다 구체적으로, 슬롯 프레임은, 슬롯의 시작을 나타내는 싱크 패턴, 측정 슬롯, 9개의 슬롯들 및 상기 9개의 슬롯들 각각에 앞서, 동일한 시간 간격을 갖는 추가적인 싱크 패턴을 포함할 수 있다.
여기에서, 상기 추가적인 싱크 패턴은, 앞서 설명한 프레임의 시작을 나타내는 싱크 패턴과 다른 싱크 패턴이다. 보다 구체적으로, 상기 추가적인 싱크 패턴은, 프레임의 시작을 나타내지 않고, 인접한 슬롯들(즉, 싱크 패턴의 양 옆에 위치한 연속하는 두 개의 슬롯들)과 관련된 정보를 나타낼 수 있다.
상기 9개의 슬롯들 중 연속하는 두 개의 슬롯들 사이에는, 각각 싱크 패턴이 위치할 수 있다. 이 경우, 상기 싱크 패턴은, 상기 연속하는 두 개의 슬롯들과 관련된 정보를 제공할 수 있다.
또한, 상기 9개의 슬롯들 및 상기 9개의 슬롯들 각각에 앞서 제공되는 싱크 패턴들은, 각각 동일한 시간 간격을 가질 수 있다. 예를 들어, 상기 9개의 슬롯들은 50ms의 시간 간격을 가질 수 있다. 또한, 상기 9개의 싱크 패턴들도 50ms의 시간 길이를 가질 수 있다.
한편, (B)와 같은 자유 형식 프레임은, 프레임의 시작을 나타내는 싱크 패턴 및 측정 슬롯 이외에, 구체적인 형태을 가지지 않을 수 있다. 즉, 상기 자유 형식 프레임은, 상기 슬롯 프레임과 다른 역할을 수행하기 위한 것으로, 예를 들어, 상기 무선 전력 전송장치와 무선 전력 수신장치 간에 긴 데이터 패킷들(예를 들어, 추가 소유자 정보 패킷들)의 통신을 수행하거나, 복수의 코일로 구성된 무선 전력 전송장치에 있어서, 복수의 코일 중 어느 하나의 코일을 선택하는 역할을 위하여 사용될 수 있다.
이하에서는, 각 프레임에 포함된 싱크 패턴(sync pattern)에 대하여 도면과 함께 보다 구체적으로 살펴본다.
도 10은 일 실시예에 따른 싱크 패턴의 구조이다.
도 10을 참조하면, 싱크 패턴은 프리앰블(preamble), 시작 비트(start bit), 응답 필드(Resonse field), 타입 필드(type field), 정보 필드(info field) 및 패리티 비트(parity bit)로 구성될 수 있다. 도 10에서는 시작 비트가 ZERO로 도시되어 있다.
보다 구체적으로, 프리앰블은 연속되는 비트들로 이루어져 있으며, 모두 0으로 설정될 수 있다. 즉, 프리앰블은 싱크 패턴의 시간 길이를 맞추기 위한 비트들일 수 있다.
프리앰블을 구성하는 비트들의 개수는 싱크 패턴의 길이가 50ms에 가장 가깝도록, 그러나, 50ms를 초과하지 않는 범위 내에서, 동작 주파수에 종속될 수 있다. 예를 들어, 동작 주파수가 100kHz인 경우, 싱크 패턴은 2개의 프리앰블 비트들로 구성되고, 동작 주파수가 105kHz인 경우, 싱크 패턴은, 3개의 프리앰블 비트들로 구성될 수 있다.
시작 비트는 프리앰블 다음에 따라오는 비트로 제로(ZERO)를 의미할 수 있다. 상기 제로(ZERO)는 싱크 패턴의 종류를 나타내는 비트일 수 있다. 여기에서, 싱크 패턴의 종류는, 프레임과 관련된 정보를 포함하는 프레임 싱크(frame sync)와 슬롯의 정보를 포함하는 슬롯 싱크(slot sync)를 포함할 수 있다. 즉, 상기 싱크 패턴은, 연속하는 프레임들 사이에 위치하며, 프레임의 시작을 나타내는 프레임 싱크이거나, 프레임을 구성하는 복수의 슬롯 중 연속하는 슬롯들 사이에 위치하며, 상기 연속하는 슬롯과 관련된 정보를 포함하는 슬롯 싱크일 수 있다.
예를 들어, 상기 제로가 0인 경우, 해당 슬롯이 슬롯과 슬롯 사이에 위치한, 슬롯 싱크임을 의미하고, 1인 경우, 해당 싱크 패턴이 프레임과 프레임 사이에 위치한 프레임 싱크임을 의미할 수 있다.
패리티 비트는 싱크 패턴의 마지막 비트로, 싱크 패턴의 데이터 필드들(즉, 응답 필드, 타입 필드, 정보 필드)를 구성하는 비트들의 개수 정보를 나타낼 수 있다. 예를 들어, 기 패리티 비트는 싱크 패턴의 데이터 필드들을 구성하는 비트의 개수가 짝수인 경우, 1, 그 밖의 경우(즉, 홀수인 경우), 0이 될 수 있다.
응답(Response) 필드는 싱크 패턴 이전의 슬롯 내에서, 무선 전력 수신장치와의 통신에 대한, 무선 전력 전송장치의 응답 정보를 포함할 수 있다. 예를 들어, 응답 필드는 무선 전력 수신장치와 통신의 수행이 감지되지 않은 경우, '00'을 가질 수 있다. 또한, 상기 응답 필드는 무선 전력 수신장치와의 통신에 통신 에러(communication error)가 감지된 경우, '01'을 가질 수 있다. 통신 에러는, 두 개 또는 그 이상의 무선 전력 수신장치가 하나의 슬롯에 접근을 시도하여, 두 개 또는 그 이상의 무선 전력 수신장치 간의 충돌이 발생한 경우일 수 있다.
또한, 응답 필드는, 무선 전력 수신장치로부터 데이터 패킷을 정확하게 수신하였는지 여부를 나타내는 정보를 포함할 수 있다. 보다 구체적으로, 응답필드는, 무선 전력 전송장치가 데이터 패킷을 거부(deni)한 경우, "10"(10-not acknowledge, NAK), 무선 전력 전송장치가 상기 데이터 패킷을 확인(confirm)한 경우, "11"(11-acknowledge, ACK)이 될 수 있다.
타입 필드는 싱크 패턴의 종류를 나타낼 수 있다. 보다 구체적으로, 타입 필드는 싱크 패턴이 프레임의 첫번째 싱크 패턴인 경우(즉, 프레임의 첫번째 싱크 패턴으로, 측정 슬롯 이전에 위치한 경우), 프레임 싱크임을 나타내는 ‘1’을 가질 수 있다.
또한, 타입 필드는 슬롯 프레임에서, 싱크 패턴이 프렘임의 첫번째 싱크 패턴이 아닌 경우, 슬롯 싱크임을 나타내는 '0'을 가질 수 있다.
또한, 정보 필드는 타입 필드가 나타내는 싱크 패턴의 종류에 따라 그 값의 의미가 결정될 수 있다. 예를 들어, 타입 필드가 1인 경우(즉, 프레임 싱크를 나타내는 경우), 정보 필드의 의미는 프레임의 종류를 나타낼 수 있다. 즉, 정보 필드는 현재 프레임이 슬롯 프레임(slotted frame)인지 또는 자유 형식 프레임(free-format frame)인지 나타낼 수 있다. 예를 들어, 정보 필드가 '00'인 경우, 슬롯 프레임을, 정보 필드가 '01'인 경우, 자유 형식 프레임을 나타낼 수 있다.
이와 달리, 타입 필드가 0인 경우(즉, 슬롯 싱크인 경우), 정보 필드는 싱크 패턴의 뒤에 위치한 다음 슬롯(next slot)의 상태를 나타낼 수 있다. 보다 구체적으로, 정보 필드는 다음 슬롯이 특정(specific) 무선 전력 수신장치에 할당된(allocated) 슬롯인 경우, '00', 특정 무선 전력 수신장치가 일시적으로 사용하기 위하여, 잠겨 있는 슬롯인 경우, '01', 또는 임의의 무선 전력 수신장치가 자유롭게 사용 가능한 슬롯인 경우, '10'을 가질 수 있다.
도 11은 일 실시예에 따른 쉐어드 모드에서 무선 전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시하였다.
도 11을 참조하면, 쉐어드 모드로 동작하는 무선 전력 수신장치는, 선택 상태(Selection Phase) (1100), 도입 상태(Introduction Phase)(1110), 설정 상태(Configuration Phase) (1120), 교섭 상태(Negotiation Phase)(1130) 및 전력 전송 상태(Power Transfer Phase) (1140) 중 어느 하나의 상태로 동작할 수 있다.
우선, 일 실시예에 따른 무선 전력 전송장치는 무선 전력 수신장치를 감지하기 위하여, 무선 전력 신호를 전송할 수 있다. 즉, 무선 전력 신호를 이용하여, 무선 전력 수신장치를 감지하는 과정을 아날로그 핑(Analog ping)이라 할 수 있다.
한편, 무선 전력 신호를 수신한 무선 전력 수신장치는 선택 상태(1100)에 진입할 수 있다. 선택 상태(1100)에 진입한 무선 전력 수신장치는 앞서 설명한 바와 같이, 상기 무선 전력 신호 상에 FSK신호의 존재를 감지할 수 있다.
즉, 무선 전력 수신장치는 FSK 신호의 존재 여부에 따라 익스클루시브 모드 또는 쉐어드 모드 중 어느 하나의 방식으로 통신을 수행할 수 있다.
보다 구체적으로, 무선 전력 수신장치는 무선 전력 신호에 FSK 신호가 포함되어 있으면, 쉐어드 모드로 동작하고, 그렇지 않은 경우, 익스클루시브 모드로 동작할 수 있다.
무선 전력 수신장치가 쉐어드 모드로 동작하는 경우, 상기 무선 전력 수신장치는 도입 상태(1110)에 진입할 수 있다. 도입 상태(1110)에서, 무선 전력 수신장치는, 설정 상태, 교섭 상태 및 전력 전송 상태에서, 제어 정보 패킷(CI, Control Information packet)을 전송하기 위하여, 무선 전력 전송장치에게 제어 정보 패킷을 전송할 수 있다. 제어 정보 패킷은, 헤더(Header) 및 제어와 관련된 정보를 가질 수 있다. 예를 들어, 제어 정보 패킷은, 헤더가 0X53일 수 있다.
도입 상태(1110)에서, 무선전력 수신장치는 제어정보(control information: CI) 패킷을 전송하기 위해 자유슬롯(free slot)을 요청하는 시도를 다음의 구성, 협상, 전력 전송 단계에 걸쳐 수행한다. 이때 무선전력 수신장치는 자유슬롯을 선택하고 최초 CI 패킷을 전송한다. 만약 무선전력 전송장치가 해당 CI 패킷에 ACK으로 응답하면, 무선전력 전송장치는 구성 단계로 진입한다. 만약 무선전력 전송장치가 NACK으로 응답하면, 다른 무선전력 수신장치가 구성 및 협상 단계를 통해 진행되고 있는 것이다. 이 경우, 무선전력 수신장치는 자유슬롯의 요구를 재시도한다.
만약 무선전력 수신장치가 CI 패킷에 대한 응답으로 ACK을 수신하면, 무선전력 수신장치는 최초 프레임 싱크까지 나머지 슬롯 싱크들을 카운팅함으로써 프레임 내의 개인 슬롯(private slot)의 위치를 결정한다. 모든 후속 슬롯 기반 프레임들에서, 무선전력 수신장치는 해당 슬롯을 통해 CI 패킷을 전송한다.
만약 무선전력 전송장치가 무선전력 수신장치에게 구성 단계로 진행함을 허락하면, 무선전력 전송장치는 무선전력 수신장치의 배타적 사용을 위한 잠금 슬롯(locked slot) 시리즈를 제공한다. 이는 무선전력 수신장치가 충돌없이 구성 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 2개의 식별 데이터 패킷들(IDHI와 IDLO)와 같은 데이터 패킷의 시퀀스들을 잠금 슬롯을 사용하여 전송한다. 본 단계를 완료하면, 무선전력 수신장치는 협상 단계로 진입한다. 협상 단계에서, 무선전력 전송장치가 무선전력 수신장치에게 배타적 사용을 위한 잠금 슬롯을 계속 제공한다. 이는 이는 무선전력 수신장치가 충돌없이 협상 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 해당 잠금 슬롯을 사용하여 하나 또는 그 이상의 협상 데이터 패킷들을 전송하며, 이는 사적 데이터 패킷들과 섞일 수도 있다. 결국 해당 시퀀스는 특정 요청 (specific request (SRQ)) 패킷과 함께 종료된다. 해당 시퀀스를 완료하면, 무선전력 수신장치는 전력 전송 단계로 진입하고, 무선전력 전송장치는 잠금 슬롯의 제공을 중단한다.
전력 전송 상태에서, 무선전력 수신장치는 할당된 슬롯을 사용하여 CI 패킷의 전송을 수행하며, 전력을 수신한다. 무선전력 수신장치는 레귤레이터 회로를 포함할 수 있다. 레귤레이터 회로는 통신/제어 유닛에 포함될 수 있다. 무선전력 수신장치는 레귤레이터 회로를 통해 무선전력 수신장치의 반사 임피턴스를 자가-조절(self-regulate)할 수 있다. 다시 말해, 무선전력 수신장치는 외부 부하에 의해 요구되는 양의 파워를 전송하기 위해 반사되는 임피던스를 조정할 수 있다. 이는 과도한 전력의 수신과 과열을 방지할 수 있다.
쉐어드 모드에서, 무선전력 전송장치는 수신되는 CI 패킷에 대한 응답으로서 전력을 조정하는 것을 수행하지 않을 수 있기 때문에(동작 모드에 따라), 이 경우에는 과전압 상태를 막기 위한 제어가 필요할 수 있다.
이하에서는 무선전력 전송장치와 무선전력 수신장치간에 인증(authentication)에 관하여 개시된다. 무선전력 전송장치와 무선전력 수신장치는 미리 규약된 동일한 전력 전송 인터페이스와 통신 인터페이스에 의해 구현되어야 서로 호환 가능하고 전력 전달이 정상적으로 진행될 수 있다. 무선전력 전송장치와 수신장치가 서로 동일한 제조사에 의해 만들어지지 않더라도 동일한 기술표준 또는 규격에 의거하여 제조되는 경우에는 서로 호환이 가능하다. 그러나, 동일한 기술표준을 따른다 하더라도 제조사마다 구현 품질이 다르고, 또한 표준을 성실하고 정확히 따르지 않을 경우 무선 충전이 원활하지 않게 된다. 특히 이물질 검출(foreign object detection :FOD) 및 과열 방지 기능에 문제가 있는 제품의 경우에는 폭발 등 안전사고의 위험이 있다. 따라서, 기술표준을 운영하는 표준화 단체는 공인된 인증기관을 통해서 각 제조사의 무선전력 전송장치 또는 무선전력 수신장치가 표준기술을 정확히 따르는지(compliance)와 기기 상호 운용성(interoperability)이 지켜지는지를 테스트하고 정품 인증하는 서비스를 제공하고 있다.
그럼에도 불구하고, 비인증 제품들이 시장에서 유통되는 것을 원천적으로 차단하는 것은 현실적으로 어렵기 때문에, 이미 시장에 유통된 무선전력 전송장치와 무선전력 수신장치들이 무선충전의 전후 과정에서 상호간에 정품임을 인증(mutual authentication)함으로서 안정성과 신뢰성을 확보할 필요가 있다. 즉, 공인된 인증기관이 제품 출시전에 정품 인증을 부여하는 것이 사전적 인증절차라고 한다면, 제품이 출시된 이후 무선 충전의 동작 과정에서 제품들간에 인증절차를 수행하게 하는 것은 사후적 인증절차라고 할 수 있다. 예를 들어 제품간 상호 인증(mutual authentication)은 인밴드 통신 채널을 통해 진행될 수 있고, USB-C 인증과 호환될 수 있다. 인증에 실패하는 경우, 무선전력 수신장치는 사용자에게 경고하고 저전력 모드(low power mode)로 충전을 수행하거나 전력 신호를 제거할 수 있다.
본 명세서에서는 표준기술로서 WPC의 Qi 표준을 예시로 들 수 있으나, 본 발명의 기술적 사상은 Qi 표준뿐만 아니라 다른 표준을 기반으로 하는 인증의 실시예까지 포함하는 것이다.
인밴드 통신을 사용하는 무선전력 전송 시스템에 USB-C 인증을 도입함에 있어서, 다음 표와 같은 성능 지표가 도출된다. 즉, USB-C는 무선충전 인증을 위한 하나의 모델이 될 수 있다.
인증의 종류 PRx에 의한 PTx 인증 PTx에 의한 PRx 인증
풀(full) 인증 176,607.5 msec (~ 2.9 min) 26,922.5 msec (~ 27 sec)
퀵(quick) 인증 18,564.5 msec (~ 18 sec) 5,842.5 msec (~ 6 sec)
표 3에서, PRx는 무선전력 수신장치를 의미하고, PTx는 무선전력 전송장치를 의미한다. 인증은 무선전력 수신장치에 의한 무선전력 전송장치의 인증과, 무선전력 전송장치에 의한 무선전력 수신장치의 인증을 포함한다.
풀 인증을 사용하여 무선전력 전송장치를 인증하는 경우 최대 약 3분까지의 긴 시간이 소요될 수 있는데, 이는 USB-C 인증서의 큰 크기(large size)와 무선전력 전송 시스템이 채용하는 낮은 비트율(low bit rate)의 통신 프로토콜 때문이다. 특히, 사용자가 무선충전 스팟(spot)을 잦은 빈도로 변경하는 공공 장소(public venue)에서 이러한 풀 인증이 매번 발생하는 상황은 사용자에게 불편함을 줄 수 있다. 따라서, 인증에 관련된 체인(chain) 또는 패킷의 크기를 컴팩트(compact) 또는 단순하게(simplified) 정의할 필요가 있다. 물론, 풀 인증 시간을 합리적인 시간(60초 이내)으로 줄이면서도 USB-C 인증에서의 128비트의 보안수준(security level, ECDSA with SHA256)을 유지함이 바람직하다. 물론, 인증에 요구되는 시간은 트래픽 오류로 인한 데이터의 반복전송으로 인해 증가될 수도 있다.
이하에서는 표준기술의 인증에 사용되는 인증서(certificate), 인증절차, 이증 메시지, 그리고 인증절차를 실행하는 하위레벨의 통신 프로토콜에 관한 구체적인 실시예들이 개시된다. 이하에서 설명되는 모든 인증에 관련된 통신, 프로토콜, 메시지, 패킷 등은 본원 명세서에 기재된 통신 및 제어유닛(220, 120), 통신 유닛(790, 890)에 의해 생성, 처리, 저장, 전송, 가공될 수 있는 것이다.
1. 무선충전 인증서
인증서의 체인 레벨 측면에서, 인증서 체인(certificate chain)의 레벨이 제한될 수 있다. 예를 들어, 인증서 체인의 레벨은 3일 수 있다. 최소한의 체인 레벨을 운용하여도 제조사는 여전히 제품에 자사의 인증서를 발행(issue)할 수 있고, 제조사와 인증서 발행기관(certificate authority: CA)의 부담 또한 줄어들 수 있다. 인증서 체인이란 둘 또는 그 이상의 인증서들의 시리즈로서, 각 인증서는 체인 내에서 이전 인증서(preceding certificate)에 의해 서명된다.
인증서의 종류 측면에서, 2 종류의 인증서가 무선전력 전송장치와 수신장치 간에 전송되는 것으로 규정될 수 있다. 여기서, 2 종류의 인증서는 중간 인증서(intermediate)와 리프(leaf) 인증서를 포함할 수 있다. 루트(root) 인증서는 상호 인증이 지원되는 양자간에 동일하다. 루트 인증서는 인증서 체인 내에서 최초 인증서로서 자기 서명된 것이다(self-signed). 리프 인증서는 인증서 체인에서 마지막 인증서이고, 중간 인증서는 인증서 체인 내에서 루트 인증서도 아니고 리프 인증서도 아닌 인증서이다.
인증서의 포맷 측면에서, 인증서의 포맷이 줄어든(reduced) 또는 단순화(simplified) 포맷으로 규정될 수 있다. 여기서, "줄어든" 또는 "단순화" 포맷은 USB-C의 인증서 포맷(X509v3 포맷) 대비 무선충전용으로 줄어든 또는 단순화된 포맷을 의미할 수 있다. 예를 들어 중간 인증서와 리프 인증서를 위해 단순화된 인증서 포맷은 100 바이트보다 작을 수 있다(예를 들어 80바이트). 이때 루트 인증서는 여전히 USB-C의 인증서 포맷을 따를 수 있다. 이하에서는 단순화된 인증서 포맷을 무선충전 인증서 포맷 또는 Qi 인증서 포맷이라 칭할 수 있다. PC1과 같이 아웃오브밴드(OOB) 통신을 지원하는 무선전력 전송 시스템의 경우에는 더 넓은 대역폭을 사용가능하기 때문에 USB-C 포맷에 따른 무선충전 인증서가 제공될 수 있음은 물론이다.
도 12는 일 실시예에 따른 무선충전 인증서 포맷을 도시한 블록도이다.
도 12를 참조하면, 무선충전 인증서 포맷은 인증서 타입(certificate type), 인증서 길이(certificate length), 식별정보(ID), 예비비트(reserved), 공공키(public key) 및 서명(signature)를 포함한다.
인증서 타입은 예를 들어 1바이트로서, 해당 인증서가 루트 인증서/중간 인증서/리프 인증서 중 어느 하나임을 나타낼 수도 있고, 무선전력 전송장치에 관한 인증서 또는 무선전력 수신장에 관한 인증서임을 나타낼 수도 있으며, 두 가지 정보를 모두 나타낼 수도 있다. 예를 들어, 인증서 타입의 비트열 b3~b0가 '0000'b일 경우 중간 인증서를 나타내고, '0001'b인 경우 리프 인증서를 나타낼 수 있다. 그리고 인증서 타입의 비트열 b7~b4가 '0001'b일 경우 무선전력 전송장치에 관한 인증서를 나타내고, '0000'b인 경우 무선전력 수신장치에 관한 인증서를 나타낼 수 있다. 따라서, 인증서 타입의 비트열이 어느 특정값이 되면, 해당 인증서는 무선전력 전송 장치에 관한 것으로서 리프 인증서임을 나타낼 수 있다.
인증서 길이는 예를 들어 2바이트로서 해당 인증서의 길이를 바이트 단위로 지시할 수 있다.
식별정보는 예를 들어 6바이트로서 무선전력 전송장치의 제조사 코드 또는 무선전력 수신장치의 제조사 코드를 지시하거나, WPID(wireless power ID)를 나타낼 수도 있다.
예비비트는 예를 들어 7바이트일 수 있다. 공공키는 예를 들어 32바이트일 수 있다. 서명은 예를 들어 32바이트 또는 64바이트일 수 있다.
도 12와 같은 무선충전 인증서 포맷에 기반하여 인밴드 통신으로 인증을 수행하는 경우, 표 4와 같이 상호간의 풀 인증은 1분 이내에서 완료될 수 있다.
인증의 종류 PRx에 의한 PTx 인증 PTx에 의한 PRx 인증
풀(full) 인증 34,830 msec (~ 35 sec) 8,002.5 msec (~ 8 sec)
퀵(quick) 인증 18,564.5 msec(~ 18 sec) 5,842.5 msec (~ 6 sec)
도 12는 인증서 포맷의 크기가 80 바이트인 경우를 예시로 들었으나, 이는 예시에 불과할 뿐 각 필드가 상이한 비트수로 정의되는 실시예들도 당업자에게 자명한 사항으로서 본원 발명의 기술적 사상에 해당한다.
도 13a는 다른 실시예에 따른 무선충전 인증서 포맷을 도시한 블록도이다.
도 13a를 참조하면, 무선충전 인증서 포맷은 인증서 타입(certificate type), PTx 및 리프 지시자(PTx, Leaf), 인증서 길이(certificate length), 식별정보(ID), 예비비트(reserved), 공공키(public key) 및 서명(signature)를 포함한다.
도 13a의 무선충전 인증서 포맷 내에서 PTx 및 리프 지시자는 인증서 타입과는 분리되어 동일한 바이트(B0)내에 인증서 타입과 서로 다른 비트에 할당된다.
인증서 타입은 예를 들어 6비트로서, 해당 인증서가 루트 인증서/중간 인증서/리프 인증서 중 어느 하나임을 나타낼 수도 있고, 무선전력 전송장치에 관한 인증서 또는 무선전력 수신장에 관한 인증서임을 나타낼 수도 있으며, 두 가지 정보를 모두 나타낼 수도 있다.
PTx 및 리프 지시자는 해당 인증서가 무선전력 전송장치에 관한 것인지와 함께 리프 인증서인지 여부를 지시한다. 즉, PTx 및 리프 지시자는 해당 인증서가 무선전력 전송장치에 관한 리프 인증서인지 아닌지를 지시할 수 있다.
PTx 및 리프 지시자는 예를 들어 2비트로서, 1비트의 PTx 지시자와 1비트의 리프 지시자를 포함하는 형태로 구성될 수 있다. 이 경우 PTx 지시자는 해당 인증서가 무선전력 전송장치에 관한 것일 때 1을 지시하고, 무선전력 수신장치에 관한 것일 때 0을 지시한다. 또한 리프 지시자는 1비트로서 해당 인증서가 리프 인증서에 해당할 때 그 값이 1로 설정될 수 있고, 리프 인증서에 해당되지 않을 때는 그 값이 0으로 설정될 수 있다. 도 13a는 각 비트가 1로 설정되어 있으므로, 해당 인증서는 PTx 리프 인증서임을 나타낸다.
PTx 및 리프 지시자는 인증서 타입과 동일한 바이트(B0)내에 포함되어 있고, 인증서 타입의 바로 옆 비트열에 구성되며, 인증서 타입과 서로 다른 비트에 할당된다.
인증서 길이는 예를 들어 1바이트로서 해당 인증서의 길이를 바이트 단위로 지시할 수 있다.
식별정보는 예를 들어 6바이트로서 무선전력 전송장치의 제조사 코드 또는 무선전력 수신장치의 제조사 코드(PRx manufacturer code: PRMC)를 지시하거나, WPID(wireless power ID)를 나타낼 수도 있다. 또는, 인증서 타입=중간 인증서일 경우 식별정보는 무선전력 전송장치의 제조사 코드 또는 무선전력 수신장치의 제조사 코드를 나타내고, 인증서 타입=리프 인증서일 경우 식별정보는 WPID를 나타낼 수도 있다.
예비비트는 예를 들어 4바이트일 수 있다. 공공키는 예를 들어 32바이트일 수 있다. 서명은 예를 들어 64바이트일 수 있다.
도 13a가 같은 무선충전 인증서 포맷에 기반하여 인밴드 통신으로 인증을 수행하는 경우, 표 5와 같이 상호간의 풀 인증은 60초 이내에서 완료될 수 있다.
인증의 종류 PRx에 의한 PTx 인증 PTx에 의한 PRx 인증
풀(full) 인증 39,782.5 msec (~ 40 sec) 8,761.5 msec (~ 9 sec)
퀵(quick) 인증 18,564.5 msec(~ 18 sec) 5,842.5 msec (~ 6 sec)
도 13a는 인증서 포맷의 크기가 108 바이트인 경우를 예시로 들었으나, 이는 예시에 불과할 뿐 각 필드가 상이한 비트수로 정의되는 실시예들도 당업자에게 자명한 사항으로서 본원 발명의 기술적 사상에 해당한다.
상업적인 성능 요구사항으로서, 인증절차는 인밴드 통신을 사용하는 환경에서 응답자(responder)의 개시자(initiator)에 의한 인증 완료를 60초 이내에 완료됨이 바람직하다. 또한, 인증절차는 인밴드 통신을 사용하는 환경에서 이전에 인증된 응답자의 보안 인지(secure recognition)를 위한 매카니즘을 20초 이내에 제공함이 바람직하다.
도 13b는 또 다른 실시예에 따른 무선충전 인증서 포맷을 도시한 블록도이다.
도 13b를 참조하면, 무선충전 인증서 포맷은 무선충전 표준 인증서 구조 버전(Qi Authentication Certificate Structure Version), 예비비트, PTx 및 리프 지시자(PTx Leaf), 인증서 타입(certificate type), 서명오프셋(signature offset), 시리얼 번호(serial number), 발행자 ID(issuer ID), 서브젝트 ID(subject ID), 공공키(public key) 및 서명(signature)를 포함한다.
무선충전 인증서 포맷 내에서 PTx 및 리프 지시자는 인증서 타입과는 분리되어 동일한 바이트(B0)내에 인증서 타입과 서로 다른 비트에 할당된다.
PTx 및 리프 지시자는 해당 인증서가 무선전력 전송장치에 관한 것인지와 함께 리프 인증서인지 여부를 지시한다. 즉, PTx 및 리프 지시자는 해당 인증서가 무선전력 전송장치에 관한 리프 인증서인지 아닌지를 지시할 수 있다.
PTx 및 리프 지시자는 도 13a와 달리 1비트일 수 있다. PTx 및 리프 지시자가 0이면, 이는 해당 인증서가 리프 인증서가 아님을 지시하거나, 무선전력 수신장치의 리프 인증서임을 지시할 수 있다. 반면, PTx 및 리프 지시자가 1이면, 이는 해당 인증서가 무선전력 전송장치의 리프 인증서임을 지시할 수 있다.
인증서 타입은 예를 들어 2비트로서, 해당 인증서가 루트 인증서/중간 인증서/리프 인증서 중 어느 하나임을 나타낼 수 있으며, 이들을 모두 나타낼 수도 있다.
2. 인증 기능 지원에 관한 지시정보
무선전력 전송장치와 무선전력 수신장치 중 어느 하나라도 인증 기능을 지원하지 못하는 경우(에컨대 기존에 출시된 레가시(legacy) 제품들은 새로운 인증 기능을 지원하지 않을 수 있음), 결국 이들간에 인증절차는 수행될 수 없다. 즉, 인증절차가 수행되려면 무선전력 전송장치와 무선전력 수신장치가 모두 인증 기능을 지원할 필요가 있다. 그런데, 인증 기능은 제품의 버전에 따라, 제조사에 따라 지원될 수도 있고, 지원되지 않을 수도 있기 때문에, 이를 확인하는 절차 및 이 절차에 사용되는 메시지가 요구된다. 나아가, 무선전력 전송장치와 수신장치 중 어느 한 기기만 인증 기능을 지원하고, 다른 한 기기는 레가시 제품인 경우, 최소 충전 기능을 위한 역호환성(backward compatibility)가 만족되어야 한다. 시스템 정책에 따라 인증을 지원하지 않은 기기에 대해서도 5W(또는 그 이하의 최소 전력, i.e. 3W)를 지원하여야 한다.
무선전력 전송장치는 성능 패킷(capability packet)을 이용하여 무선전력 수신장치에게 인증 기능을 지원하는지를 알려줄 수 있다(무선전력 수신장치에 의한 무선전력 전송장치의 인증(authentication of PTx by PRx)의 경우). 한편 무선전력 수신장치는 구성 패킷(configuration packet)을 이용하여 무선전력 전송장치에게 인증 기능을 지원하는지를 알려줄 수 있다(무선전력 전송장치에 의한 무선전력 수신장치의 인증(authentication of PRx by PTx)의 경우). 이하에서 인증 기능 지원 여부에 관한 지시정보(성능 패킷와 구성 패킷)의 구조에 관하여 보다 상세히 개시된다.
도 14는 일 실시예에 따른 무선전력 전송장치의 성능 패킷 구조이다.
도 14를 참조하면, 대응하는 헤더(header)값이 0X31인 성능 패킷은, 3바이트로서 첫번째 바이트(B0)는 전력 클래스, 보장된 전력값(guaranteed power value)을 포함하고, 두번째 바이트(B1)는 예비(reserved), 잠재적 전력값(potential power value)을 포함하며, 세번재 바이트(B2)는 예비(reserved), 인증(Auth), NFCPP, NFCD, WPID, Not Res Sens를 포함한다. 구체적으로, 인증(Auth)은 1비트로서, 예를 들어 그 값이 0이면 해당 무선전력 전송장치는 인증 기능을 지원하지 않음을 지시하고, 그 값이 1이면 해당 무선전력 전송장치는 인증 기능을 지원함을 지시할 수 있다.
도 15는 다른 실시예에 따른 무선전력 전송장치의 성능 패킷 구조이다.
도 15를 참조하면, 대응하는 헤더(header)값이 0X31인 성능 패킷은, 3바이트로서 첫번째 바이트(B0)는 전력 클래스, 보장된 전력값(guaranteed power value)을 포함하고, 두번째 바이트(B1)는 예비(reserved), 잠재적 전력값(potential power value)을 포함하며, 세번재 바이트(B2)는 인증 개시자(Authentication Initiator: AI), 인증 응답자(Authentication Responder: AR), 예비, WPID, Not Res Sens를 포함한다. 구체적으로, 인증 개시자는 1비트로서, 예를 들어 그 값이 '1b'이면 해당 무선전력 전송장치는 인증 개시자로서 동작할 수 있음을 지시한다. 또한, 인증 응답자는 1비트로서, 예를 들어 그 값이 '1b'이면 해당 무선전력 전송장치는 인증 응답자로서 동작할 수 있음을 지시한다.
도 16은 일 실시예에 따른 무선전력 수신장치의 구성 패킷 구조이다.
도 16을 참조하면, 대응하는 헤더(header)값이 0X51인 구성 패킷은, 5바이트로서 첫번째 바이트(B0)는 전력 클래스, 최대 전력값(maximum power value)을 포함하고, 두번째 바이트(B1)는 예비(reserved)를 포함하며, 세번째 바이트(B2)는 Prop, 예비, ZERO, Count를 포함하고, 네번째 바이트(B3)는 윈도우 크기(Window size), 윈도우 오프셋을 포함하며, 다섯번재 바이트(B4)는 Neg, 극성(polarity), 깊이(Depth), 인증(Auth), 예비를 포함한다. 구체적으로, 인증(Auth)은 1비트로서, 예를 들어 그 값이 0이면 해당 무선전력 수신장치는 인증 기능을 지원하지 않음을 지시하고, 그 값이 1이면 해당 무선전력 수신장치는 인증 기능을 지원함을 지시할 수 있다.
도 17은 다른 실시예에 따른 무선전력 수신장치의 구성 패킷 구조이다.
도 17을 참조하면, 대응하는 헤더(header)값이 0X51인 구성 패킷은, 5바이트로서 첫번째 바이트(B0)는 전력 클래스, 최대 전력값(maximum power value)을 포함하고, 두번째 바이트(B1)는 AI, AR, 예비를 포함하며, 세번째 바이트(B2)는 Prop, 예비, ZERO, Count를 포함하고, 네번째 바이트(B3)는 윈도우 크기(Window size), 윈도우 오프셋을 포함하며, 다섯번재 바이트(B4)는 Neg, 극성(polarity), 깊이(Depth), 인증(Auth), 예비를 포함한다. 구체적으로, 인증 개시자는 1비트로서, 예를 들어 그 값이 '1b'이면 해당 무선전력 수신장치는 인증 개시자로서 동작할 수 있음을 지시한다. 또한, 인증 응답자는 1비트로서, 예를 들어 그 값이 '1b'이면 해당 무선전력 수신장치는 인증 응답자로서 동작할 수 있음을 지시한다.
3. 인증 관련 절차와 무선충전 페이즈간의 타이밍
인증 기능 지원여부를 확인하는 절차와 인증절차는 식별 및 구성 페이지(identification and configuration phase), 협상 페이즈, 보정 페이지(calibration phase), 전력 전송 페이즈, 재협상 페이즈, 도입 페이즈 중 적어도 하나 또는 복수의 페이즈에 걸쳐 진행될 수 있다.
일례로서, 인증 절차는 협상 페이즈에서 진행될 수 있다. 그런데 협상 페이즈에서 퀵 인증을 실시하는 경우, 인밴드 통신으로 DIGESTS를 읽고 확인하는 과정은 약 4초가 소요될 수 있다. 따라서, 사용자 편의성 측면에서는 인증이 완료된 후 충전을 시작하기 보다는 인증 여부와 무관하게 인증 전이라도 기본 전력으로 무선 충전을 제공하는 것이 고려될 수 있다. 이는 인증 기능이 없는 기기에 대한 역호환성 측면에서도 바람직하다.
다른 예로서, 인증 절차는 협상 페이즈와 전력 전송 페이즈에 걸쳐 진행될 수 있다. 식별 및 구성 페이즈 동안에는 패킷 시퀀스(packet sequence)가 엄격하게 제어되고 무선전력 수신장치에서 전송장치로의 단방향 통신만이 허용되는 반면, 협상 및 전력 전송 페이즈 동안에는 양방향 통신이 허용된다. 따라서, 양방향 통신이 허용되는 협상 및 전력 전송 페이즈에서 인증 절차가 진행될 수 있다. 협상 페이즈에서, {GET_DIGESTS, CHALLENGE} 메시지를 교환하는 무선전력 전송장치 또는 수신장치에 의해 퀵 인증이 수행된다. 그리고 수립된 신뢰(trust)를 기반으로 전력 계약이 체결될 수 있다. 무선전력 전송장치와 수신장치가 DIGESTS를 체크함으로써 처음으로 서로 만나게 되면, 시스템 정책에 기반한 초기 전력 계약을 수립하고 가능한 빨리 무선전력 수신장치에게 디폴트(default) 저전력을 제공하기 위해 전력 전송 페이즈로 진입한다. 전력 전송 페이즈 동안, {GET_CERTIFICATE, CHALLENGE} 메시지를 교환하는 무선전력 전송장치 또는 수신장치에 의해 풀 인증이 수행된다. 풀 인증이 성공적으로 완료되면, 무선전력 전송장치 및/또는 수신장치는 전력 계약을 갱신한다.
또 다른 예로서, 무선전력 전송장치와 수신장치는 일단 인증없이 전력 전송 페이즈로 바로 진입한 뒤, 전력 전송 페이즈에서 인증 절차를 진행할 수 있다. 전력 전송 페이즈에서 인증이 성공되면, 재협상 페이즈를 통해 전력 계약을 갱신하거나, 무선전력 전송장치가 지원 가능한 목표 전력(target power) 또는 풀파워(full power)를 무선전력 전송장치/수신장치가 원하는 수준으로 지원할 수 있다. 따라서, 사용자 편의성이 증대될 수 있다.
또 다른 예로서, 무선전력 수신장치에 의한 무선전력 전송장치의 인증(authentication of PTx by PRx)의 경우, 무선전력 수신장치가 무선전력 전송장치의 인증 기능 지원여부를 확인하는 절차는 협상 페이즈에서 수행될 수 있다. 이 경우, 협상 페이즈 이전에 이미 초기 전력 계약(initial power contract)에 의거하여 전력 전송이 진행 중일 수 있다. 협상 페이즈에서, 무선전력 수신장치는 질의 패킷(query packet)을 전송하고 그 응답을 확인함으로써 절차에 따라 무선전력 전송장치의 인증 기능 지원여부를 확인할 수 있다. 일 측면에서, 질의 패킷은 일반 요청 패킷(general request packet(0x07))일 수 있으며, 이 경우 무선전력 수신장치가 일반 요청 패킷을 무선전력 전송장치로 전송하면 무선전력 전송장치는 도 14 또는 도 15와 같은 인증(auth)을 포함하는 성능 패킷을 응답으로서 무선전력 수신장치로 전송한다. 다른 측면에서, 질의 패킷은 특정 요청 패킷(specific request packet(0x20))일 수 있으며, 이 경우 무선전력 수신장치가 특정 요청 패킷을 무선전력 전송장치로 전송하면 무선전력 전송장치는 ACK(인증 기능을 지원하는 경우) 또는 NACK(인증 기능을 지원하지 않는 경우)으로 응답한다. 협상 페이즈에서 무선전력 전송장치가 인증 기능을 지원함이 확인되면, 무선전력 수신장치는 해당 무선전력 전송장치(PC0)와 5W 이상의 전력 계약을 수립할 수 있다.
무선전력 수신장치가 무선전력 전송장치의 인증 기능 지원을 확인하면, 비로소 인증절차(authentication procedure)가 시작될 수 있다. 보다 상세하게는, 무선전력 수신장치는 제어오류패킷(CEP)를 약 250ms 주기로 전송하는 정상 또는 안정 상태(stable operation point)에 도달한 이후에, 무선전력 수신장치는 무선전력 전송장치와 인증 절차를 수행할 수 있다. 전력 전송 페이즈 중에 인증 절차는, 기존의 전력 계약을 갱신(renew)하는데 사용될 수 있다. 즉, 무선전력 수신장치는 인증 절차의 결과에 따라 기존의 전력 계약에 따른 전력 레벨을 증가시키기 위해 전력 계약을 재협상할 수 있다. 이 경우, 무선전력 수신장치는 재협상 패킷(renegotiation packet(0x09))을 전송함으로써 전력 관리 정책에 따라 전력 계약을 갱신할 수 있다. 예를 들어, 인증 절차(DIGEST와 함께)가 성공하면, 무선전력 수신장치는 증가된 전력으로 전력 계약을 갱신하거나, 현재의 전력 계약을 유지할 수 있다. 반면, 인증 절차가 실패하면, 무선전력 수신장치는 감소된 전력으로 전력 계약을 갱신하거나, 전력 신호를 제거할 수 있다.
또 다른 예로서, 무선전력 전송장치에 의한 무선전력 수신장치의 인증(authentication of PRx by PTx)의 경우, 무선전력 전송장치가 무선전력 수신장치의 인증 기능 지원여부를 확인하는 절차는 초기화 페이즈(initialization phase)에서 수행될 수 있다. 여기서, 초기화 페이즈는 협상 페이즈 이전의 페이즈, 예를 들어 선택 페이즈, 핑 페이즈, 식별 및 설정 페이즈 중 어느 하나일 수 있다. 초기화 페이즈에서, 무선전력 전송장치는 무선전력 수신장치가 인증 기능을 지원하는지 여부를 확인하기 위해, 무선전력 수신장치로부터 도 16 또는 도 17과 같은 인증(auth)을 포함하는 구성 패킷을 수신한다.
무선전력 전송장치가 무선전력 수신장치의 인증 기능 지원을 확인하면, 협상 페이즈에서 인증절차(authentication procedure)가 시작될 수 있다. 이때 초기 전력 계약이 체결된다. 보다 상세하게는, 무선전력 전송장치는 무선전력 수신장치로부터 DIGESTS의 수신을 기다린다. 만약, 무선전력 수신장치가 기존에 이미 인증된 것임을 무선전력 전송장치가 인지하면, 인증 절차가 성공한다. 만약, 무선전력 전송장치가 DIGESTS를 인지(acknowledge)하는데 실패하면, 무선전력 전송장치는 전력 전송 페이즈 동안에 인증 절차를 계속한다. 전력 관리 정책에 따라, 무선전력 전송장치는 무선전력 수신장치와 전력 계약을 수립한다. 이때, 무선전력 전송장치는 DIGESTS로서 인증을 통과한 해당 무선전력 수신장치(PC0)와 5W 이상의 전력 계약을 수립할 수 있다. 전력 전송 페이즈 중에 인증 절차가 완료되면, 무선전력 전송장치는 전력 레벨을 증가시키기 위해 전력 계약을 재협상할 수 있다.
전력 전송 페이즈에서 무선전력 수신장치가 제어오류패킷(CEP, 0x03)를 약 250ms 주기로 전송하는 정상 또는 안정 상태(stable operation point)에 도달한 이후에, 무선전력 전송장치는 무선전력 수신장치와 인증 절차를 수행할 수 있다. 전력 전송 페이즈 중에 인증 절차는, 기존의 전력 계약을 갱신(renew)하는데 사용될 수 있다. 즉, 무선전력 수신장치는 인증 절차의 결과에 따라 기존의 전력 계약에 따른 전력 레벨을 증가시키기 위해 전력 계약을 재협상할 수 있다. 이 경우, 무선전력 수신장치는 재협상 패킷(renegotiation packet(0x09))을 전송함으로써 전력 관리 정책에 따라 전력 계약을 갱신할 수 있다. 예를 들어, 인증 절차(DIGEST와 함께)가 성공하면, 무선전력 수신장치는 증가된 전력으로 전력 계약을 갱신하거나, 현재의 전력 계약을 유지할 수 있다. 반면, 인증 절차가 실패하면, 무선전력 수신장치는 감소된 전력으로 전력 계약을 갱신하거나, 전력 신호를 제거할 수 있다.
4. 인증절차 및 인증 메시지
이하에서는 인증절차(authentication procedure) 및 인증절차에 사용되는 각종 메시지들에 관하여 개시된다.
인증 절차에서 사용되는 메시지를 인증 메시지라 한다. 인증 메시지는 인증에 관련된 정보를 운반하는데 사용된다. 인증 메시지에는 2가지 타입이 존재한다. 하나는 인증 요청(authentication request)이고, 다른 하나는 인증 응답(authentication response)이다. 인증 요청은 인증 개시자에 의해 전송되고, 인증 응답은 인증 응답자에 의해 전송된다. 무선전력 전송장치와 수신장치는 모두 인증 개시자와 인증 응답자가 될 수 있다. 예를 들어, 무선전력 전송장치가 인증 개시자인 경우 무선전력 수신장치는 인증 응답자가 되고, 무선전력 수신장치가 인증 개시자인 경우 무선전력 전송장치가 인증 응답자가 된다.
인증 요청 메시지는 GET_DIGESTS(i.e. 4 바이트), GET_CERTIFICATE(i.e. 8 바이트), CHALLENGE(i.e. 36 바이트)를 포함한다.
인증 응답 메시지는 DIGESTS(i.e. 4+32 바이트), CERTIFICATE(i.e. 4+인증서 체인(3x512바이트)=1540 바이트), CHALLENGE_AUTH(i.e. 168 바이트), ERROR(i.e. 4 바이트)를 포함한다.
인증 메시지는 인증 패킷이라 불릴 수도 있고, 인증 데이터, 인증 제어정보라 불릴 수도 있다. 또한, GET_DIGEST, DIGESTS 등의 메시지는 GET_DIGEST 패킷, DIGEST 패킷등으로 불릴 수도 있다.
이하, 이러한 인증 메시지들에 기반하여 무선전력 수신장치가 무선전력 전송장치의 인증을 수행하는 절차에 관하여 설명된다.
(1) 무선전력 수신장치에 의한 무선전력 전송장치의 인증(Authentication of PTx by PRx)
무선전력 수신장치에 의한 무선전력 전송장치의 인증(authentication of PTx by PRx)이 인밴드 통신에 기반하여 동작하는 경우, 각 단계별 요구 시간은 표 6 또는 표 7과 같다.
인증 개시자 = PRx 인증 응답자 = PTx 페이즈 요구 시간(required time)
GET_DIGESTS 협상 페이즈 (4 + 3) x 11 x 0.5 = 38.5 msec
DIGESTS (36 + 2) x 11 x 5 = 2,090 msec
GET_CERTIFICATE 전력 전송 페이즈 (8 + 3) x 11 x 0.5 = 60.5 msec
CERTIFICATE (1) 515 x 4 x 11 x 5 = 113,300 msec = 1.8 min (for certificate) (2) 515 x ( 2B + 3) x 11 x 0.5 = 14,162.5 msec = 14 sec (for CE/ACK)
CHALLENGE (36 + 3) x 11 x 0.5 = 214.5 msec
CHALLENGE_AUTH (1) 57 x 4 x 11 x 5 = 12,540 msec (for challenge_auth)(2) 57 x (2B+3) x 11 x 0,5 = 1,567.5 msec (for CE/ACK)
표 6은 전력 계약(power contract)이 협상 페이즈 동안의 GET_DIGESTS의 결과에 기반하는 경우에 있어서, 각 인증 메시지의 요구 시간을 일례를 나타낸다. 만약 무선전력 수신장치가 이미 무선전력 전송장치에 관한 DIGEST를 알고 있다면, GET_CERTIFICATE와 CERTIFICATE의 송신/수신 단계는 생략될 수 있다. 또한, 인증 결과에 의존하여 재협상 페이즈에서 전력 계약이 갱신될 수 있다.
인증 개시자 = PRx 인증 응답자 = PTx 페이즈 요구 시간(required time)
GET_DIGESTS 협상(또는 재협상)페이즈 (1 + 3) x 11 x 0.5 = 22 msec
DIGESTS (32 + 2) x 11 x 5 = 1,870 msec
GET_CERTIFICATE[Offset : Length] 전력 전송 페이즈 (2 + 3) x 11 x 0.5 = 27.5 msec
{CE/RPP if necessary}... CERTIFICATE... (4 +2) x 11 x 5 = 330 msec (for 4B reading)(1+3) x 11 x 0.5 = 22 msec + 30 msec= (for CE/ delay/control time) = 55 msec412.msec x (1536/4)= 158, 208 msec = 2.6 min
CHALLENGE (32 + 3) x 11 x 0.5 = 192.5 msec
GET_CHALLENGE_AUTH[Offset : Length]{CE/RPP if necessary} CHALLENGE_AUTH... 27.5 msec (for Get_challenge_auth)330 msec (for 4B reading)55 msec (for CE/delay/control time)412 msec x (160/4) = 16,480 msec
표 7은 전력 계약(power contract)이 협상 페이즈 동안의 GET_DIGESTS의 결과에 기반하는 경우에 있어서, 각 인증 메시지의 요구 시간을 다른 예를 나타낸다. 만약 무선전력 수신장치가 이미 무선전력 전송장치에 관한 DIGEST를 알고 있다면, GET_CERTIFICATE와 CERTIFICATE의 송신/수신 단계는 생략될 수 있다. 또한, 인증 결과에 의존하여 재협상 페이즈에서 전력 계약이 갱신될 수 있다. 이하에서는 상기 요구 시간을 만족시키기 위한 인증 절차에 관하여 개시된다.
도 18은 일 실시예에 따른 무선전력 수신장치가 무선전력 전송장치의 인증(authentication of PTx by PRx)을 수행할 때 송수신되는 패킷들의 시퀀스를 나타내는 흐름도이다.
도 18을 참조하면, 무선전력 수신장치는 무선전력 전송장치의 인증서 체인 DIGESTS를 획득 또는 검색(retrieve)하기 위해, GET_DIGESTS를 무선전력 전송장치로 전송한다(S1800). 여기서, REQUEST=PTx's DIGEST로 설정될 수 있다. 단계 S1800을 위한 선결 동작은, 무선전력 수신장치가 무선전력 전송장치로부터 수신한 성능 패킷에서 인증 기능 지원을 확인하는 동작을 포함할 수 있다. 무선전력 수신장치는 협상 페이즈 또는 재협상 페이즈 동안에 일반 요청 패킷을 사용하여 GET_DIGESTS를 무선전력 전송장치로 전송할 수 있다. 즉, GET_DIGESTS는 일반 요청 패킷에 실려 전송될 수 있다.
도 19는 GET_DIGESTS의 메시지 구조의 일례이다. 도 19를 참조하면, GET_DIGESTS는 예를 들어 1바이트로서, 요청(request) 필드를 포함한다. 요청 필드는 예를 들어 무선전력 전송장치의 DIGEST의 헤더를 지시할 수 있다.
도 20은 GET_DIGESTS의 메시지 구조의 다른 예이다. 도 20을 참조하면, GET_DIGESTS는 예를 들어 1바이트로서, 예비(reserved)와 슬롯 번호(slot number)를 포함한다. 슬롯 번호는 요청된 인증서 체인이 저장되는 슬롯을 식별하며, 예를 들어 3비트일 수 있다.
다시 도 18에서, 무선전력 전송장치는 GET_DIGESTS에 대한 응답으로서, DIGESTS를 무선전력 수신장치에게 전송한다(S1805). DIGESTS는 인증 응답자가 인증서 체인 다이제스츠(digests) 및 어느 스롯이 유효한 인증서 체인 다이제스츠를 포함하는지에 관한 리포트를 전송하는데 사용된다. DIGESTS의 파라미터는 인증서 체인의 해시값(hash value)의 32바이트일 수 있다.
도 21은 DIGESTS가 전송되는 물리적 패킷 구조와 이를 전송하는 방법을 도시한다. 도 21을 참조하면, DIGESTS 패킷은 32바이트의 DIGESTS 페이로드(payload), 해당 패킷이 DIGESTS에 관한 것임을 나타내는 1바이트의 헤더, 해당 패킷의 길이를 나타내는 2바이트의 헤더를 포함한다. 한편, 무선전력 전송장치는 이러한 DIGESTS 패킷을 특정 길이(예를 들어 3바이트)의 다수의 소패킷(small packet)들로 분할하고, 소패킷의 끝에 체크섬을 첨가(add)하여 4바이트의 DIGESTS 소패킷들의 시퀀스로 전송한다. 이러한 시퀀스의 마지막 소패킷의 크기(size)는 4바이트보다 작을 수 있다. 소패킷은 세그먼트로 불릴 수도 있다. 도 21의 예시는 하나의 인증 응답을 최대 4바이트로 구성되도록 무선전력 전송장치의 전송 패킷의 크기를 한정한 것이다. 이와 같이 하나의 응답 메시지를 소패킷들의 시리즈로 분할하는 것은, 무선전력 수신장치가 전송장치로 주기적으로(약 250ms) 보내질 (확장된) 제어오류 패킷(CEP)과 (확장된) 수신전력패킷(RPP)을 전송하는 타이밍을 허용하기 위함이며, 이로써 무선전력 전송장치의 전력 전송을 위한 동작점과 이물질 감지가 효율적으로 관리될 수 있다.
다시 도 18에서, 만약, 무선전력 전송장치가 이미 이전에 인증된 것임이 확인되면(acknowledge), 인증은 성공한다. 만약, 무선전력 수신장치가 DIGESTS를 확인하지 못하면, 무선전력 수신장치는 전력 전송 페이즈 동안에 인증을 계속 수행한다. 단계 S1800과 S1805는 협상 또는 재협상 페이즈에서 수행될 수 있다. 또는, 단계 S1800과 S1805는 전력 전송 페이즈에서 수행될 수 있다.
다음으로, 무선전력 수신장치는 무선전력 전송장치의 인증서 체인을 얻기 위해 GET_CERTIFICATE를 무선전력 전송장치로 전송한다(S1810). 여기서, GET_CERTIFICATE은 오프셋(offset)과 길이(length)에 의해 설정될 수 있다. GET_CERTIFICATE는 대상 인증서 체인의 세그먼트(segment)를 읽는데 사용된다.
도 22는 GET_CERTIFICATE의 메시지 구조의 일례이다. 도 22를 참조하면, GET_CERTIFICATE는 예를 들어 2바이트로서, 오프셋(offset)과 길이(length) 필드를 포함할 수 있다. 여기서, 오프셋은 인증서 체인의 시작위치부터 읽기 요청(read request)가 시작되는 위치까지의 오프셋으로서 그 지시 단위는 바이트이다(Offset in bytes from the start of the Certificate Chain to where the read request begins). 길이(length)는 읽기요청의 길이로서 그 지시 단위는 바이트이다(Length in bytes of the read request). 예를 들어, 인증서 체인의 시작위치로부터 4바이트를 읽기 위해서, GET_CERTIFICATE의 오프셋[11...0]=00b이고, 길이=11b 값을 가질 수 있다.
다시 도 18에서, 무선전력 전송장치는 GET_CERTIFICATE에 대한 응답으로서, 인증서 체인의 적어도 일부를 무선전력 수신장치에게 전송한다(S1815). 이때, 인증서 체인의 일부는 바이트 단위의 길이로 시작되는 시점으로부터 오프셋만큼 이후에 시작되는 것일 수 있다.
도 23은 인증서(Certificate)가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 일례이다. 도 23을 참조하면, 무선전력 전송장치는 1536 바이트의 인증서 패킷을 전송함에 있어서, 인증서 패킷의 오프셋 지점부터 길이 4바이트 만큼의 인증서를 추출하고, 앞단은 인증서임을 지시하는 헤더를 첨가하고, 뒷단에는 체크섬을 첨가하여 총 6바이트 길이의 인증서 세그먼트를 생성하여 전송한다.
도 24는 무선전력 전송장치의 인증 응답 메시지가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 예이다. 도 24를 참조하면, 인증서 패킷(i.e. 1543 바이트)은 인증서 체인(i.e. 1540 바이트), 인증서임을 지시하는 헤더(i.e. 1바이트), 인증서 패킷의 길이를 지시하는 헤더(i.e. 2바이트)를 포함할 수 있다. 한편, 무선전력 전송장치는 이러한 인증서 패킷을 특정 길이(예를 들어 3바이트)의 다수의 소패킷(small packet)들로 분할하고, 소패킷의 끝에 체크섬을 첨가(add)하여 4바이트의 인증서 소패킷들의 시퀀스로 전송한다. 이 경우, 총 515개의 데이터 덩어리(chunk)가 각각 전송된다. 시퀀스의 마지막 소패킷의 크기(size)는 4바이트보다 작을 수 있다. 소패킷은 세그먼트로 불릴 수도 있다. 도 24의 예시는 하나의 인증 응답을 최대 4바이트로 구성되도록 무선전력 전송장치의 전송 패킷의 크기를 한정한 것이다. 이와 같이 하나의 응답 메시지를 소패킷들의 시리즈로 분할하는 것은, 무선전력 수신장치가 전송장치로 주기적으로(약 250ms) 보내질 (확장된) 제어오류 패킷(CEP)과 (확장된) 수신전력패킷(RPP)을 전송하는 타이밍을 허용하기 위함이며, 이로써 무선전력 전송장치의 전력 전송을 위한 동작점과 이물질 감지가 효율적으로 관리될 수 있다.
다시 도 18에서, 필요할 경우, 무선전력 수신장치는 제어 오류(control error: CE) 패킷 및/또는 수신전력(received power packet: RPP) 패킷을 무선전력 전송장치로 전송할 수 있다(S1820). 단계 S1810과 S1820는 예를 들어 전력 전송 페이즈(power transfer phase)에서 수행될 수 있다.
이후, 무선전력 수신장치는 모든 인증서 체인을 읽을 때까지 단계 S1810부터 S1820을 반복 수행할 수 있다.
무선전력 수신장치는 CHALLENGE를 무선전력 전송장치로 전송한다(S1825). CHALLENGE는 제품의 인증을 시작(initiate)하기 위해 사용된다.
도 25는 CHALLENGE 메시지 구조의 일례이다. 도 25를 참조하면, CHALLENGE는 예를 들어 32비트(4바이트)로서, 4개의 Nonce 필드를 포함할 수 있다. Nonce는 인증 개시자에 의해 선택되는 이진 랜덤 번호(binary random number)이다.
다시 도 18에서, 무선전력 수신장치는 CHALLENGE_AUTH를 획득하기 위해 무선전력 전송장치로 GET_CHALLENGE_AUTH를 전송한다(S1830). 여기서, GET_CHALLENGE_AUTH은 오프셋(offset)과 길이(length)로 설정될 수 있다.
무선전력 전송장치는 GET_CHALLENGE_AUTH에 대한 응답으로서, CHALLENGE_AUTH의 일부를 무선전력 수신장치에게 전송한다(S1835). 이때, CHALLENGE_AUTH의 일부는 바이트 단위의 길이로 시작되는 시점으로부터 오프셋만큼 이후에 시작되는 것일 수 있다.
도 26은 CHALLENGE_AUTH가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 일 예이다. 도 26을 참조하면, CHALLENGE_AUTH 패킷(i.e. 160 바이트)은 인증서 체인 해시(certifiate chain hash, i.e. 32바이트), Salt(i.e. 32바이트), 컨텍스트 해시(context hash, i.e. 32바이트) 및 서명(signature, i.e. 64바이트)를 포함할 수 있다. 한편, 무선전력 전송장치는 GET_CHALLENGE_AUTH에서 지시된 오프셋과 길이를 기반으로, 이러한 CHALLENGE_AUTH 패킷을 오프셋으로부터 특정 길이(예를 들어 4바이트)만큼을 추출하고, 앞단은 CHALLENGE_AUTH 패킷임을 지시하는 헤더를 첨가하고, 뒷단에는 체크섬을 첨가하여 총 6바이트 길이의 인증서 세그먼트를 생성하여 전송한다.
다시 도 18에서, 필요할 경우, 무선전력 수신장치는 제어 오류(control error: CE) 패킷 및/또는 수신전력(received power packet: RPP) 패킷을 무선전력 전송장치로 전송할 수 있다(S1840).
이후, 무선전력 수신장치는 모든 인증서 체인을 읽을 때까지 단계 S1830부터 S1840을 반복 수행할 수 있다.
다음으로, 인증 메시지들에 기반하여 무선전력 전송장치가 무선전력 수신장치의 인증을 수행하는 절차에 관하여 설명된다.
(2) 무선전력 전송장치에 의한 무선전력 수신장치의 인증(Authentication of PRx by PTx)
무선전력 전송장치에 의한 무선전력 전송장치의 인증(authentication of PRx by PTx)이 인밴드 통신에 기반하여 동작하는 경우, 각 단계별 요구 시간은 표 8 또는 표 9와 같다.
인증 개시자 = PTx 인증 응답자 = PRx 페이즈 요구 시간(required time)
GET_DIGESTS 협상 페이즈 (4 + 2) x 11 x 5 = 330 msec
DIGESTS (36 + 3) x 11 x 0.5 = 214.5 msec
GET_CERTIFICATE 전력 전송 페이즈 (8 + 2) x 11 x 5 = 550 msec
CERTIFICATE (1) 41 x 40 x 11 x 0.5 = 9020 msec (for certificate) (2) 41 x 40 = 1640 msec = 1.6 sec (for ACK)(assuming no CE packets are sent)
CHALLENGE (36 + 2) x 11 x 5 = 2090 msec
CHALLENGE_AUTH (1) 5 x 40 x 11 x 0.5 = 1100 msec (for challenge_auth)(2) 5 x 40 = 200 msec (for ACK)
표 8은 전력 계약(power contract)이 협상 페이즈 동안의 GET_DIGESTS의 결과에 기반하는 경우에 있어서, 각 인증 메시지의 요구 시간을 일례를 나타낸다. 만약 무선전력 전송장치가 이미 무선전력 수신장치에 관한 DIGEST를 알고 있다면, GET_CERTIFICATE와 CERTIFICATE의 송신/수신 단계는 생략될 수 있다. 또한, 인증 결과에 의존하여 재협상 페이즈에서 전력 계약이 갱신될 수 있다.
인증 개시자 = PTx 인증 응답자 = PRx 페이즈 요구 시간(required time)
DIGESTS 협상 페이즈 (32 + 3) x 11 x 0.5 = 192.5 msec
CE 전력 전송 페이즈 (1 + 3) x 11 x 0.5 = 22 msec
Reqest_COMMGET_CERTIFICATE ACKCertificate (1) 8x5 = 40ms(Request for Comm.) (2) (1+3)x11x0.5 = 22ms (ACK)(3) (2+2)x11x5 = 220ms (Get_Certificate)(3) (40+3)x11x0.5 = 236.5ms (Certificate)(4) 540.5x39 = 21079.5ms = 21s (assuming sending certificate by 40 Bytes)
CE (1 + 3) x 11 x 0.5 = 22 ms
Reqest_COMMCHALLENGE[n], n=0...7 ACKACK (1) 8x5 = 40ms(Request for Comm.) (2) (1+3)x11x 0.5 = 22ms (ACK)(3) (4+2)x11x5 = 330ms (Challenge)(4) (1+3)x11x 0.5 = 22ms (ACK)(5) 436x8 = 3488 ms = 3s (assuming sending Challenge by 4 Bytes)
CE (1 + 3) x 11 x 0.5 = 22 ms
Reqest_COMMGET_CHALLENGE_AUTH ACKCHALLENGE_AUTH[n] (1) 8x5 = 40ms(Request for Comm.) (2) (1+3)x11x 0.5 = 22ms (ACK)(3) (2+2)x11x5 = 220ms (Get_Challenge_Auth)(4) (40+3)x11x0.5 = 236.5ms (Challenge_Auth)(5) 540.5x4 = 2162ms = 2s (assuming sending Challenge_Auth by 40 Bytes)
표 9는 전력 계약(power contract)이 협상 페이즈 동안의 GET_DIGESTS의 결과에 기반하는 경우에 있어서, 각 인증 메시지의 요구 시간을 일례를 나타낸다. 만약 무선전력 전송장치가 이미 무선전력 수신장치에 관한 DIGEST를 알고 있다면, 제어오류패킷 전송 단계, 통신 요청 단계, GET_CERTIFICATE와 CERTIFICATE의 송신/수신 단계는 생략될 수 있다. 또한, 인증 결과에 의존하여 재협상 페이즈에서 전력 계약이 갱신될 수 있다. 이하에서는 상기 요구 시간을 만족시키기 위한 인증 절차에 관하여 개시된다.
도 27은 일 실시예에 따른 무선전력 전송장치가 무선전력 수신장치의 인증(authentication of PRx by PTx)을 수행할 때 송수신되는 패킷들의 시퀀스를 나타내는 흐름도이다.
도 27을 참조하면, 무선전력 전송장치는 무선전력 수신장치로부터 전송되는 DIGESTS를 수신한다(S2700). DIGESTS는 인증 응답자가 인증서 체인 다이제스츠(digests) 및 어느 스롯이 유효한 인증서 체인 다이제스츠를 포함하는지에 관한 리포트를 전송하는데 사용된다. DIGESTS의 파라미터는 인증서 체인의 해시값(hash value)의 32바이트일 수 있다. 단계 S2700을 위한 선결 동작은, 무선전력 수신장치가 무선전력 전송장치로부터 수신한 성능 패킷(capability packet)에서 인증 기능 지원을 확인하는 동작, 무선전력 전송장치가 무선전력 수신장치에게 GET_DIGESTS를 전송하는 동작을 포함할 수 있다. 단계 S2700은 협상 또는 재협상 페이즈 또는 전력 전송 페이즈에서 수행될 수 있다.
도 28은 무선전력 전송장치가 전송하는 GET_DIGESTS의 메시지 구조의 일례이다. 도 28을 참조하면, GET_DIGESTS는 예를 들어 1바이트로서, 요청(request) 필드를 포함한다. 예비(reserved)와 슬롯 번호(slot number)를 포함한다. 슬롯 번호는 요청된 인증서 체인이 저장되는 슬롯을 식별하며, 예를 들어 3비트일 수 있다.
다시 도 27에서, 전력 전송 페이즈 동안 무선전력 수신장치는 제어오류 패킷 또는 수신전력패킷을 무선전력 전송장치로 전송한다(S2705).
무선전력 전송장치는 제어오류패킷 또는 수신전력패킷에 대한 응답으로서, 통신을 위한 요청을 전송한다(S2710). 통신을 위한 요청은 예를들어 비트 패턴 응답일 수 있다.
무선전력 수신장치가 통신을 위한 요청에 대해 ACK으로 응답하면(S2715), 무선전력 전송장치는 무선전력 수신장치의 인증서 체인 또는 CHALLENGE_AUTH 응답을 얻기 위해 GET_CERTIFICATE를 무선전력 수신장치로 전송한다(S2720). 여기서, GET_CERTIFICATE은 오프셋(offset)과 길이(length)에 의해 설정될 수 있다. GET_CERTIFICATE는 대상 인증서 체인의 세그먼트(segment)를 읽는데 사용된다.
도 29는 무선전력 전송장치가 전송하는 GET_CERTIFICATE 메시지 구조의 일례이다. 도 29를 참조하면, GET_CERTIFICATE는 예를 들어 2바이트로서, 오프셋(offset)과 길이(length) 필드를 포함할 수 있다. 여기서, 오프셋은 인증서 체인의 시작위치부터 읽기 요청(read request)가 시작되는 위치까지의 오프셋으로서 그 지시 단위는 바이트이다(Offset in bytes from the start of the Certificate Chain to where the read request begins). 길이(length)는 읽기요청의 길이로서 그 지시 단위는 바이트이다(Length in bytes of the read request). 예를 들어, 인증서 체인의 시작위치로부터 40바이트를 읽기 위해서, GET_CERTIFICATE의 오프셋[7...0]=00b이고, 길이=110000b 값을 가질 수 있다.
다시 도 27에서, 무선전력 수신장치는 GET_CERTIFICATE에 대한 응답으로서, 인증서 체인의 적어도 일부를 무선전력 전송장치에게 전송한다(S2725). 이때, 인증서 체인의 일부는 바이트 단위의 길이로 시작되는 시점으로부터 오프셋만큼 이후에 시작되는 것일 수 있다.
도 30은 무선전력 수신장치의 인증서(Certificate)가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 일례이다. 도 30을 참조하면, 무선전력 수신장치는 1536 바이트의 인증서 패킷을 전송함에 있어서, 인증서 패킷의 오프셋 지점부터 길이 40바이트 만큼의 인증서를 추출하고, 앞단은 인증서임을 지시하는 헤더(i.e. 1바이트)를 첨가하고, 뒷단에는 체크섬(i.e. 1바이트)을 첨가하여 총 42바이트 길이의 인증서 세그먼트를 생성하여 전송한다.
다시 도 27에서, 무선전력 전송장치는 모든 인증서 체인을 읽을 때까지 단계 S2710부터 S2725를 반복 수행할 수 있다.
필요할 경우, 무선전력 수신장치는 제어 오류(control error: CE) 패킷 및/또는 수신전력(received power packet: RPP) 패킷을 무선전력 전송장치로 전송할 수 있다(S2730).
무선전력 전송장치는 제어오류패킷 또는 수신전력패킷에 대한 응답으로서, 통신을 위한 요청을 전송한다(S2735). 통신을 위한 요청은 예를들어 비트 패턴 응답일 수 있다.
무선전력 수신장치가 통신을 위한 요청에 대해 ACK으로 응답하면(S2740), 무선전력 전송장치는 CHALLENGE[n]를 무선전력 수신장치로 전송한다(S2745). CHALLENGE는 제품의 인증을 시작(initiate)하기 위해 사용된다.
도 31은 무선전력 전송장치가 전송하는 CHALLENGE 메시지 구조의 일례이다. 도 31을 참조하면, CHALLENGE는 예를 들어 32비트(4바이트)로서, 4개의 Nonce 필드를 포함할 수 있다. Nonce는 인증 개시자에 의해 선택되는 이진 랜덤 번호(binary random number)이다. 무선전력 전송장치는 8개의 CHALLENGE 패킷을 전송함으로써, 총 32바이트의 Nonce를 무선전력 수신 장치에게 제공할 수 있다.
다시 도 27에서, 무선전력 전송장치는 무선전력 수신장치로부터 ACK을 수신한 뒤, CHALLENGE를 모두 전송할 때까지 단계 S2735부터 S2750을 반복 수행할 수 있다.
무선전력 수신장치는 제어오류패킷 및/또는 수신전력패킷을 무선전력 전송장치로 전송할 수 있다(S2755). 무선전력 전송장치는 제어오류패킷 또는 수신전력패킷에 대한 응답으로서, 통신을 위한 요청을 전송한다(S2760). 통신을 위한 요청은 예를들어 비트 패턴 응답일 수 있다.
무선전력 수신장치가 통신을 위한 요청에 대해 ACK으로 응답하면(S2765), 무선전력 전송장치는 CHALLENGE_AUTH를 획득하기 위해 무선전력 수신장치로 GET_CHALLENGE_AUTH를 전송한다(S2770). 여기서, GET_CHALLENGE_AUTH은 오프셋(offset)과 길이(length)로 설정될 수 있다.
무선전력 수신장치는 GET_CHALLENGE_AUTH에 대한 응답으로서, CHALLENGE_AUTH의 적어도 일부를 무선전력 전송장치에게 전송한다(S2775). 이때, CHALLENGE_AUTH의 적어도 일부는 바이트 단위의 길이로 시작되는 시점으로부터 오프셋만큼 이후에 시작되는 것일 수 있다.
도 32는 무선전력 수신장치의 CHALLENGE_AUTH가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 일 예이다. 도 32를 참조하면, CHALLENGE_AUTH 패킷(i.e. 160 바이트)은 인증서 체인 해시(certifiate chain hash, i.e. 32바이트), Salt(i.e. 32바이트), 컨텍스트 해시(context hash, i.e. 32바이트) 및 서명(signature, i.e. 64바이트)를 포함할 수 있다. 한편, 무선전력 전송장치는 GET_CHALLENGE_AUTH에서 지시된 오프셋과 길이를 기반으로, 이러한 CHALLENGE_AUTH 패킷을 오프셋으로부터 특정 길이(예를 들어 40바이트)만큼을 추출하고, 앞단은 CHALLENGE_AUTH 패킷임을 지시하는 헤더(i.e. 1바이트)를 첨가하고, 뒷단에는 체크섬(i.e. 1바이트)을 첨가하여 총 42바이트 길이의 인증서 세그먼트를 생성하여 전송한다.
이후, 무선전력 전송장치는 모든 CHALLENGE_AUTH를 읽을 때까지 단계 S2760부터 S2775를 반복 수행할 수 있다.
도 33은 무선전력 수신장치의 인증 응답 메시지가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 예이다. 도 33을 참조하면, 예를 들어, 인증서 패킷(i.e. N 바이트)은 인증서 체인, 인증서임을 지시하는 헤더(i.e. 1바이트), 인증서 패킷의 길이를 지시하는 헤더(i.e. 2바이트)를 포함할 수 있다. 한편, 무선전력 수신장치는 이러한 인증서 패킷을 특정 길이(예를 들어 M-1바이트)의 다수의 소패킷(small packet)들로 분할하고, 소패킷의 끝에 1바이트의 체크섬을 첨가(add)하여 M바이트의 인증서 소패킷들의 시퀀스로 전송한다. 시퀀스의 마지막 소패킷의 크기(size)는 M바이트보다 작을 수 있다. 소패킷은 세그먼트로 불릴 수도 있다. 도 33의 예시는 하나의 인증 응답이 M바이트로 구성되도록 무선전력 수신장치의 전송 패킷의 크기를 한정한 것이다. 이와 같이 하나의 응답 메시지를 소패킷들의 시리즈로 분할하는 것은, 무선전력 수신장치가 전송장치로 주기적으로(약 250ms) 보내질 (확장된) 제어오류 패킷(CEP)과 (확장된) 수신전력패킷(RPP)을 전송하는 타이밍을 허용하기 위함이며, 이로써 무선전력 전송장치의 전력 전송을 위한 동작점과 이물질 감지가 효율적으로 관리될 수 있다.
도 34는 무선전력 수신장치의 인증 응답 메시지가 전송되는 물리적 패킷 구조와 이를 전송하는 방법의 다른 예이다. 도 34를 참조하면, 예를 들어, 인증서 패킷(i.e. 1543 바이트)은 인증서 체인(i.e. 1540 바이트), 인증서임을 지시하는 헤더(i.e. 1바이트), 인증서 패킷의 길이를 지시하는 헤더(i.e. 2바이트)를 포함할 수 있다. 한편, 무선전력 수신장치는 이러한 인증서 패킷을 특정 길이(예를 들어 38바이트)의 다수의 소패킷(small packet)들로 분할하고, 소패킷의 앞단에 프리앰블(preamble, i.e. 1바이트)를 첨가하고, 뒷단에 체크섬(i.e. 1바이트)을 첨가(add)하여 40바이트의 인증서 소패킷들의 시퀀스로 전송한다. 이 경우, 총 41개의 데이터 덩어리(chunk)가 각각 전송된다. 시퀀스의 마지막 소패킷의 크기(size)는 40바이트보다 작을 수 있다. 소패킷은 세그먼트로 불릴 수도 있다. 도 34의 예시는 하나의 인증 응답이 40바이트로 구성되도록 무선전력 수신장치의 전송 패킷의 크기를 한정한 것이다. 이와 같이 하나의 응답 메시지를 소패킷들의 시리즈로 분할하는 것은, 무선전력 수신장치가 전송장치로 주기적으로(약 250ms) 보내질 (확장된) 제어오류 패킷(CEP)과 (확장된) 수신전력패킷(RPP)을 전송하는 타이밍을 허용하기 위함이며, 이로써 무선전력 전송장치의 전력 전송을 위한 동작점과 이물질 감지가 효율적으로 관리될 수 있다.
도 35는 다른 실시예에 따른 무선전력 전송장치가 무선전력 수신장치의 인증(authentication of PRx by PTx)을 수행할 때 송수신되는 패킷들의 시퀀스를 나타내는 흐름도이다.
도 35를 참조하면, 무선전력 전송장치는 무선전력 수신장치로부터 전송되는 DIGESTS를 수신한다(S3500). 단계 S3500을 위한 선결 동작은, 무선전력 수신장치가 무선전력 전송장치로부터 수신한 성능 패킷(capability packet)에서 인증 기능 지원을 확인하는 동작, 무선전력 전송장치가 무선전력 수신장치에게 GET_DIGESTS를 전송하는 동작을 포함할 수 있다. 단계 S3500은 협상 페이즈 또는 전력 전송 페이즈에서 수행될 수 있다.
전력 전송 페이즈 동안 무선전력 수신장치는 제어오류 패킷 또는 수신전력패킷을 무선전력 전송장치로 전송한다(S3505).
무선전력 전송장치는 제어오류패킷 또는 수신전력패킷에 대한 응답으로서, 다수 통신(multiple communication)을 위한 요청을 전송한다(S3510). 다수 통신을 위한 요청은 예를들어 비트 패턴 응답일 수 있다.
무선전력 수신장치가 다수 통신을 위한 요청에 대해 ACK으로 응답하면(S3515), 무선전력 전송장치는 무선전력 수신장치의 인증서 체인 또는 CHALLENGE_AUTH 응답을 얻기 위해 GET_CERTIFICATE를 무선전력 수신장치로 전송한다(S3520). 여기서, GET_CERTIFICATE은 오프셋(offset)과 길이(length)에 의해 설정될 수 있다. GET_CERTIFICATE는 대상 인증서 체인의 세그먼트(segment)를 읽는데 사용된다.
무선전력 수신장치는 GET_CERTIFICATE에 대한 응답으로서, 인증서 체인의 적어도 일부를 무선전력 전송장치에게 전송한다(S3525). 이때, 인증서 체인의 일부는 바이트 단위의 길이로 시작되는 시점으로부터 오프셋만큼 이후에 시작되는 것일 수 있다.
무선전력 전송장치는 모든 인증서 체인을 읽을 때까지 단계 S3520부터 S3525를 반복 수행할 수 있다.
필요할 경우, 무선전력 수신장치는 제어 오류(control error: CE) 패킷 및/또는 수신전력(received power packet: RPP) 패킷을 무선전력 전송장치로 전송할 수 있다(S3530).
무선전력 전송장치는 제어오류패킷 또는 수신전력패킷에 대한 응답으로서, 다수 통신을 위한 요청을 전송한다(S3535). 다수 통신을 위한 요청은 예를들어 비트 패턴 응답일 수 있다.
무선전력 수신장치가 다수 통신을 위한 요청에 대해 ACK으로 응답하면(S3540), 무선전력 전송장치는 CHALLENGE[n]를 무선전력 수신장치로 전송한다(S3545). CHALLENGE는 제품의 인증을 시작(initiate)하기 위해 사용된다.
무선전력 전송장치는 무선전력 수신장치로부터 ACK을 수신한 뒤(S3550), CHALLENGE를 모두 전송할 때까지 단계 S3545부터 S3550을 반복 수행할 수 있다.
무선전력 수신장치는 제어오류패킷 및/또는 수신전력패킷을 무선전력 전송장치로 전송할 수 있다(S3555). 무선전력 전송장치는 제어오류패킷 또는 수신전력패킷에 대한 응답으로서, 다수 통신을 위한 요청을 전송한다(S3560). 다수 통신을 위한 요청은 예를 들어 비트 패턴 응답일 수 있다.
무선전력 수신장치가 다수 통신을 위한 요청에 대해 ACK으로 응답하면(S3565), 무선전력 전송장치는 CHALLENGE_AUTH를 획득하기 위해 무선전력 수신장치로 GET_CHALLENGE_AUTH를 전송한다(S3570). 여기서, GET_CHALLENGE_AUTH은 오프셋(offset)과 길이(length)로 설정될 수 있다.
무선전력 수신장치는 GET_CHALLENGE_AUTH에 대한 응답으로서, CHALLENGE_AUTH의 적어도 일부를 무선전력 전송장치에게 전송한다(S3575). 이때, CHALLENGE_AUTH의 적어도 일부는 바이트 단위의 길이로 시작되는 시점으로부터 오프셋만큼 이후에 시작되는 것일 수 있다.
이후, 무선전력 전송장치는 모든 CHALLENGE_AUTH를 읽을 때까지 단계 S3570부터 S3575를 반복 수행할 수 있다.
5. 인증절차를 지원하는 하위레벨의 프로토콜
인증절차를 지원하는 하위레벨(low level)의 패킷 전송 프로토콜은 인밴드 통신에 기초할 수 있으므로, 인밴드 통신에서 사용되는 패킷 구조를 인증 절차와 인증 메시지에 적합하게 구성할 필요가 있다.
도 36은 인밴드 통신에서 무선전력 수신장치가 무선전력 전송장치로 전송하는 패킷의 구조를 도시한 것이다. 도 36에 따른 패킷은 ASK 방식으로 변조될 수 있다.
도 36을 참조하면, 비트율(bit rate)은 2Kbps이고, 패킷은 프리앰블, 헤더, 메시지, 체크섬을 포함한다. 예를 들어, 프리앰블은 11비트, 헤더는 1B, 체크섬은 1B로 설정될 수 있다(1B -> 11bits).
도 37은 인밴드 통신에서 무선전력 전송장치가 무선전력 수신장치로 전송하는 패킷의 구조를 도시한 것이다. 도 37에 따른 패킷은 FSK 방식으로 변조될 수 있다.
도 37을 참조하면, 100kHz 동작 주파수에서의 비트율(bit rate)은 200bps이고, 패킷은 헤더, 메시지, 체크섬을 포함한다. 예를 들어, 헤더는 1B, 체크섬은 1B로 설정될 수 있다(1B -> 11bits).
(1) 하위레벨 인증 시퀀스
1) 무선전력 수신장치에 의한 무선전력 전송장치의 인증(Authentication of PTx by PRx )
무선전력 수신장치가 인증 개시자인 경우, 무선전력 전송장치는 인증 응답자가 된다. 또는 무선전력 전송장치는 (인증) 대상 장치로 표현될 수도 있다. 인증 개시자로서, 무선전력 수신장치는 무선전력 전송장치의 인증에 필요한 메시지(또는 패킷)들을 무선전력 전송장치에게 요청하는 메시지(또는 패킷)를 전송한다. 인증 응답자로서, 무선전력 전송장치는 여러 패킷들의 시퀀스로 구성되는 인증 응답 메시지를 무선전력 수신장치로 전송한다. 이러한 일련의 메시지의 송수신과정은 하위레벨의 패킷 전송 프로토콜에 의해 규정될 수 있다.
도 38은 일 실시예에 따른 하위레벨 관점에서 무선전력 수신장치와 전송장치간 패킷의 송수신 시퀀스를 도시한 것이다. 도 38은 무선전력 수신장치가 무선전력 전송장치에게 GET_DIGESTS를 전송한 데 대해, 무선전력 전송장치가 무선전력 수신장치에게 인증 응답 패킷(DIGESTS)을 전송하는 과정을 도시한 것이다.
도 38을 참조하면, 무선전력 전송장치는 시퀀스의 매 패킷(packet)을 전송한 뒤, 무선전력 수신장치로부터 ACK/NACK 또는 지속(continue)/중단(stop)이 전송되길 기다린다. ACK/NACK 또는 지속(continue)/중단(stop)은 도 39와 같은 확장된(extended) 제어오류패킷(CEP)에 포함되어 전송된다. 무선전력 전송장치 및/또는 수신장치는 시퀀스의 모든 패킷들을 다 보낼때까지 하기의 절차를 반복한다.
> 만약, 무선전력 전송장치가 'ACK과 지속'을 수신하면, 무선전력 전송장치는 다음 패킷을 전송한다.
> 만약, 무선전력 전송장치가 'ACK과 중단'을 수신하면, 무선전력 전송장치는 'ACK과 지속'을 포함하는 다음(next) 확장된 CEP를 수신할 때까지 대기한다.
> 만약, 무선전력 전송장치가 'NACK과 지속'을 수신하면, 무선전력 전송장치는 이전 패킷을 재전송한다.
> 만약, 무선전력 전송장치가 'NACK과 중단'을 수신하면, 무선전력 전송장치는 'ACK과 지속'을 포함하는 다음(next) 확장된 CEP를 수신할 때까지 대기한다.
도 39는 다른 실시예에 따른 하위레벨 관점에서 무선전력 수신장치와 전송장치간 패킷의 송수신 시퀀스를 도시한 것이다. 도 39는 무선전력 수신장치가 무선전력 전송장치에게 GET_CERTIFICATE를 전송한 데 대해, 무선전력 전송장치가 무선전력 수신장치에게 인증 응답 패킷(CERTIFICATE)을 수신하는 과정을 도시한 것이다.
도 39를 참조하면, 무선전력 전송장치는 시퀀스의 매 패킷(packet)을 전송한 뒤, 무선전력 수신장치로부터 ACK/NACK 또는 지속(continue)/중단(stop)이 전송되길 기다린다. ACK/NACK 또는 지속(continue)/중단(stop)은 도 39와 같은 확장된(extended) 제어오류패킷(CEP)에 포함되어 전송된다. 무선전력 전송장치 및/또는 수신장치는 시퀀스의 모든 패킷들을 다 보낼때까지 하기의 절차를 반복한다.
> 만약, 무선전력 전송장치가 'ACK과 지속'을 수신하면, 무선전력 전송장치는 다음 패킷을 전송한다. 예를 들어, 패킷(1)에 대해서는 확장된 제어오류패킷(CEP)를 통해 'ACK과 지속'을 수신하고, 패킷(m)에 대해서는 도 42와 같은 확장된 수신전력패킷(Extended RPP)을 통해 'ACK과 지속'을 수신할 수 있다.
> 만약, 무선전력 전송장치가 'ACK과 중단'을 수신하면, 무선전력 전송장치는 'ACK과 지속'을 포함하는 다음(next) 확장된 CEP를 수신할 때까지 대기한다. 예를 들어, 패킷(n)에 대해, 확장된 CEP를 통해 'ACK과 중단'을 수신한다.
> 만약, 무선전력 전송장치가 'NACK과 지속'을 수신하면, 무선전력 전송장치는 이전 패킷을 재전송한다.
> 만약, 무선전력 전송장치가 'NACK과 중단'을 수신하면, 무선전력 전송장치는 'ACK과 지속'을 포함하는 다음(next) 확장된 CEP를 수신할 때까지 대기한다.
도 40은 일 실시예에 따른 확장된 제어오류패킷의 구조이다.
도 40을 참조하면, 무선전력 수신장치는 무선전력 전송장치의 패킷에 대한 응답으로서, 확장된 제어오류패킷을 전송한다. 이때 확장된 제어오류패킷은 무선전력 전송장치의 동작점을 조정하는 제어오류값을 포함할 뿐만 아니라, ACK/NACK 또는 지속(continue)/중단(stop) 중 적어도 하나를 포함한다.
예를 들어, 중단은 1비트로서 그 값이 '1'b이면 무선전력 전송장치가 패킷의 전송을 중단함을 지시하고, 그 값이 '0'b이면 무선전력 전송장치가 시퀀스의 다음 패킷을 전송함(즉, 전송의 지속(continue))을 지시한다. 여기서, 무선전력 수신장치가 무선전력 전송장치의 동작점을 빠르게 조정하기 위해 단주기(short period)로 CEP를 전송할 필요가 있을 때 또는 모든 응답 패킷들을 수신한 때, 무선전력 수신장치는 중단을 '1'로 설정함으로서 무선전력 전송장치가 다음 시퀀스에서 패킷을 전송하는 것을 보류(suspend)하도록 강제할 수 있다(enforce).
ACK/NACK은 예를 들어 4비트로서, 그 값이 '0000'b이면 ACK 을 지시하고 그 값이 '1111'b이면 NACK을 지시할 수 있다. ACK은 무선전력 수신장치가 오류 조건없이 패킷을 성공적으로 수신함을 나타내고, NACK은 무선전력 수신장치가 패킷 수신 오류의 발생으로 인해 패킷의 재전송을 무선전력 전송장치에게 요청함을 나타낸다.
도 41은 일 실시예에 따른 전력전송종료(end power transfer :EPT) 패킷의 구조이다.
도 41을 참조하면, 헤더값 0x02에 대응하는 전력전송종료 패킷은 인증 절차에 필요한 코드값을 지시할 수 있다. 예를 들어, 무선전력 전송장치의 인증에 실패하는 경우, 무선전력 수신장치는 EPT 코드값을 0x0E와 같이 기존 EPT 코드와는 다른 코드값을 지시하도록 설정할 수 있다. 새로운 EPT 코드값을 전송함으로써, 무선전력 수신장치는 전력 전송을 제거할 수 있다.
도 42는 일 실시예에 따른 확장된 수신전력패킷의 구조이다.
도 42를 참조하면, 확장된 수신전력패킷은 24비트로서, 제1 예비비트, 모드(mode), 수신전력값(received power value), 제2 예비비트, 중단(stop), ACK/NACK을 포함할 수 있다. 즉, 확장된 수신전력패킷은 무선전력 전송장치의 FOD에 관련된 수신전력값을 포함할 뿐만 아니라, ACK/NACK 또는 지속(continue)/중단(stop) 중 적어도 하나를 포함한다.
예를 들어, 중단은 1비트로서 그 값이 '1'b이면 무선전력 전송장치는 패킷의 전송을 중단하고, 그 값이 '0'b이면 무선전력 전송장치는 시퀀스의 다음 패킷을 전송한다(즉, 전송의 지속(continue)). 여기서, 무선전력 수신장치가 무선전력 전송장치의 동작점을 빠르게 조정하기 위해 단주기(short period)로 CEP를 전송할 필요가 있을 때 또는 모든 응답 패킷들을 수신한 때, 무선전력 수신장치는 중단을 '1'로 설정함으로서 무선전력 전송장치가 다음 시퀀스에서 패킷을 전송하는 것을 보류(suspend)하도록 강제할 수 있다(enforce).
ACK/NACK은 예를 들어 4비트로서, 그 값이 '0000'b이면 ACK 을 지시하고 그 값이 '1111'b이면 NACK을 지시할 수 있다. ACK은 무선전력 수신장치가 오류 조건없이 패킷을 성공적으로 수신함을 나타내고, NACK은 무선전력 수신장치가 패킷 수신 오류의 발생으로 인해 패킷의 재전송을 무선전력 전송장치에게 요청함을 나타낸다.
2) 무선전력 전송장치에 의한 무선전력 수신장치의 인증(Authentication of PRx by PTx )
무선전력 전송장치가 인증 개시자인 경우, 무선전력 수신장치는 인증 응답자가 된다. 또는 무선전력 수신장치는 (인증) 대상 장치로 표현될 수도 있다.인증 개시자로서, 무선전력 전송장치는 무선전력 수신장치의 인증에 필요한 메시지(또는 패킷)들을 무선전력 수신장치에게 요청하는 메시지(또는 패킷)를 전송한다. 인증 응답자로서, 무선전력 수신장치는 여러 패킷들의 시퀀스로 구성되는 인증 응답 메시지를 무선전력 전송장치로 전송한다. 이러한 일련의 메시지의 송수신과정은 하위레벨의 패킷 전송 프로토콜에 의해 규정될 수 있다.
도 43은 일 실시예에 따른 하위레벨 관점에서 무선전력 수신장치와 전송장치간 패킷의 송수신 시퀀스를 도시한 것이다. 도 43은 무선전력 전송장치가 무선전력 전송장치에게 GET_CERTIFICATE를 전송한 데 대해, 무선전력 수신장치가 무선전력 전송장치에게 인증 응답 패킷(CERTIFICATE)을 수신하는 과정을 도시한 것이다.
도 43을 참조하면, 무선전력 수신장치는 시퀀스의 매 패킷(packet)을 전송한 뒤, 무선전력 전송장치로부터 ACK/NACK(비트-패턴 응답)이 전송되길 기다린다. 비트 응답 시간은 예를 들어 40ms일 수 있다. 무선전력 전송장치 및/또는 수신장치는 시퀀스의 모든 패킷들을 다 보낼때까지 하기의 절차를 반복할 수 있다. 인증 응답 패킷들의 사이에서(in between), 무선전력 수신장치는 CEP 및/또는 RPP를 전송할 수도 있다.
> 만약, 무선전력 수신장치가 'ACK'을 수신하면, 무선전력 수신장치는 다음 패킷을 전송한다. 예를 들어, 패킷(1)에 대해서는 ACK을 수신하면, 무선전력 수신장치는 다음 전송 타이밍에 패킷(2)를 전송한다.
> 만약, 무선전력 수신장치가 'NACK'을 수신하면, 무선전력 수신장치는 이전 패킷을 재전송한다.
(2) 하위레벨의 데이터 교환 프로토콜(protocol for data transaction)
이하에서는 데이터 교환 프로토콜(data transaction protocol)에 관하여 개시된다. 하위레벨의 데이터 교환을 위해 본 실시예는 4가지 규칙을 고려할 수 있다.
규칙 1은 무선전력 수신장치가 마스터(master)로 동작하는 것이다. 무선전력 수신장치가 마스터(master)로 동작하고, 무선전력 전송장치가 슬레이브(slave)로 동작할 때, 무선전력 수신장치는 무선전력 전송장치의 통신이 언제 허용될지를 결정한다.
무선전력 수신장치는 무선전력 전송장치가 보낼 데이터 스트림이 있는지를 질의하기 위해 데이터 스트림 시작(start of data stream : SOD) ADT_CTRL 패킷을 전송할 수 있다. 또는, 무선전력 수신장치는 무선전력 전송장치가 보낼 패킷이 있는지 여부에 관해 무선전력 전송장치에게 폴링(pool)을 하기 위해, 요청(request)이 '0xFF'으로 설정된 일반 요청 패킷(general request packet: GRP)를 전송할 수 있다.
규칙 2는 통신 오류 제어(communication error control)이다. 무선전력 수신장치 또는 전송장치는 ACK을 수신할 때까지 ADT 패킷을 재기록(re-write)할 수 있다. 또한, 통신 오류가 발생하지 않을 때 "ACK" ADT_CTRL 패킷이 전송되고, 통신 오류가 검출(detected)되었을 때 "NACK" ADT_CTRL 패킷이 전송된다.
규칙 3은 데이터 스트림의 동기화이다. 동기화를 위해, 새로운 ADT 데이터 패킷이 전송될 때마다 ADT 데이터 패킷의 헤더가 토글될 수 있다.
규칙 4는 데이터 스트림의 끝단(end)을 마킹(mark)하거나, 끝단과 시작단(start)을 마킹하는 것이다. 구체적으로, 데이터 스트림의 시작단(start)에 데이터 스트림의 시작(start of data stream : SOD) ADT_CTRL 패킷이 부가(add)될 수 있다. 또는, 데이터 스트림의 끝단(end)에 데이터 스트림의 종료(end of data stream : EOD) ADT_CTRL 패킷이 부가될 수 있다. 여기서, SOD와 EOD는 데이터 스트림의 길이가 1 패킷보다 더 클 때 부가될 수 있다.
상기와 같은 규칙들에 의거하여, 데이터 트랜스포트 및 패킷 구조는 다음과 같이 정의될 수 있다.
1) 인증을 위한 하위레벨의 데이터 트랜스포트(transport) 및 패킷 구조
이하에서는 인증을 위한 하위레벨 데이터 트랜스포트(data transport) 및 패킷 구조에 관하여 상세히 설명된다. 하위레벨 데이터 트랜스포트의 설계 방식은 크게 2가지가 하나는 전용의 매핑(dedicated mapping) 방식이고, 다른 하나는 일반 비트 파이프(generic bit pipe) 방식이다. 일반 비트 파이프 방식은 어플리케이션 애그노스틱(application-agnostic) 데이터 전송을 제공하고, 인증 이외에도 향후 다른 어플리케이션을 위해서도 사용될 수 있는 장점이 있다.
일반 비트 파이프 기반 하위레벨 데이터 트랜스포트를 위한 설계 요건은, i) 상위레벨(high level)과 하위레벨 사이에서의 상호작용(interaction)을 최소화하는 것과, ii) 오류-회복(error-recovery) 및 동기화된(synchronized) 하위레벨 데이터 트랜스포트를 보장하는 것이다. i)과 관련하여, 상위레벨은 데이터 스트림을 부호화(encode)하여 하위레벨로 밀어내고(push) (쓰기: write), 하위레벨로부터 제공되는 데이터 스트림을 복호화(decode)한다(읽기 : read). 또한 하위레벨은 다수의 보조 데이터 트랜스포트(auxiliary data transport : ADT) 데이터 패킷을 이용하여 데이터 스트림을 기록하거나 읽는다(write/read). ii)와 관련하여, 단순하고 강인한(robust) 통신-오류-회복 메카니즘은 무선전력 전송장치 또는 수신장치가 ACK을 수신할 때까지 ADT 패킷을 다시 쓰기하는 동작(re-write)과, 통신 오류가 없을 때까지 ADT 패킷을 다시 읽어들이는 동작(re-read)를 포함한다. 또한, 무선전력 전송장치와 수신장치간의 데이터 스트림의 단순한 동기화(synchronization)는 새로운 ADT 데이터 패킷을 트랜스포트할 때 데이터 패킷의 헤더를 토글(toggle)하는 동작을 포함한다.
도 44는 일 실시예에 따른 데이터 트랜스포트를 도시한 것이다. 도 44는 업데이트 데이터 트랜스포트(update data transport: UDT)이다.
도 44를 참조하면, 업데이트 데이터 트랜스포트는 업데이트 데이터를 나르는데 사용된다. 업데이트 데이터에는 몇 가지 데이터 패킷들이 포함된다. 예를 들어, 업데이트 데이터는 제어 오류 패킷(CEP), ACK 또는 NACK을 선택적으로 포함하는 수신전력패킷(RPP), 보조 데이터 트랜스포트(ADT), 충전 상태 패킷(charge status packet: CSP), 사설 패킷(proprietary packet), ACK 또는 NACK을 선택적으로 포함하는 재협상(renegotiation: RNG) 패킷, 예비 패킷(무선전력 전송장치는 예비비트들에 탄력적(resilient)이어야 함)를 포함할 수 있다.
ADT는 상위레벨 어플리케이션을 위한 하위레벨 데이터 패킷 또는 트랜스포트이며, 무선전력 전송장치의 성능 패킷과 같은 논리계층 패킷을 포함한다.
도 45는 다른 실시예에 따른 데이터 트랜스포트를 도시한 것이다. 도 45는 보조 데이터 트랜스포트(ADT)이다.
도 45를 참조하면, ADT는 무선전력 수신장치에 관한 ADT(ADT_PRx)와, 무선전력 전송장치에 관한 ADT(ADT_PTx)를 포함한다.
무선전력 수신장치에 관한 ADT는 무선전력 수신장치부터의 데이터 또는 응답(예를 들어 ACK, NACK, RFA) 패킷 또는 제어 패킷을 실어 나른다.
무선전력 전송장치에 관한 ADT는 무선전력 전송장치부터의 데이터 또는 응답(예를 들어 ACK, NACK, RFA) 패킷 또는 제어 패킷 또는 ACK/NACK/RFA 비트 패턴 응답을 실어 나른다.
일례로서, ADT 패킷의 헤더는 상위레벨 어플리케이션을 위한 하위레벨 데이터 패킷(예를 들어 무선전력 수신장치의 하위레벨 데이터 패킷 또는 무선전력 전송장치의 하위레벨 데이터 패킷)을 지시할 수 있다. 상위레벨 어플리케이션은 예를 들어 인증 절차, 사적 정보의 교환(proprietary information exchange), 펌웨어 업데이트, 무선전력 전송장치의 전력 성능 제어(capabilities control)을 포함할 수 있다.
다른 예로서, ADT 패킷의 헤더는 논리계층 데이터 패킷(예를 들어 무선전력 수신장치의 패킷 또는 무선전력 전송장치의 패킷)을 지시할 수 있다. 또 다른 예로서, ADT 패킷의 헤더는 제어 패킷을 포함할 수 있다.
또 다른 예로서, ADT 패킷의 헤더는 ADT 데이터 패킷을 지시할 수 있는데, 이 경우 ADT 데이터 패킷의 헤더는 복수 타입의 헤더(예를 들어, 헤더 A와 헤더 B 이렇게 2가지 타입의 헤더)를 포함할 수 있다. 새로운 ADT 데이터 패킷이 전송될 때마다 ADT 데이터 패킷의 헤더 A->B 또는 B->A로 토글됨으로써, 데이터 스트림의 동기화가 달성될 수 있다.
또 다른 예로서, ADT 패킷의 헤더는 ADT 제어 패킷을 지시할 수 있는데, 이 경우 ADT 패킷의 헤더는 단일 타입의 헤더를 포함할 수 있다.
이하에서는 하위레벨 데이터 트랜스포트로서의 ADT 패킷 구조에 관하여 개시된다. 전술된 바와 같이 ADT는 무선전력 수신장치에 관한 ADT(ADT_PRx)와 무선전력 전송장치에 관한 ADT(ADT_PTx)의 쌍(pair)으로 구성되며, 먼저 무선전력 수신장치에 관한 ADT(ADT_PRx)에 관하여 개시된다.
도 46은 일 실시예에 따른 무선전력 수신장치에 관한 ADT 데이터 패킷(ADT_PRx Data Packet)의 구조이다.
도 46을 참조하면, ADT 데이터 패킷은 예를 들어 (n+1) 바이트의 페이로드(payload)를 포함하며, 각 페이로드는 복수 헤더 타입 중 어느 하나에 대응할 수 있다. 표 10은 ADT 데이터 패킷의 페이로드 사이즈(n=15인 경우, 최대 16바이트)와 헤더의 대응관계를 나타낸다.
페이로드 크기(바이트) 헤더 A 헤더 B
1 0x1C 0x1D
2 0x2C 0x2D
3 0x3C 0x3D
4 0x4C 0x4D
... ... ...
13 0xAC 0xAD
14 0xB4 0xB5
15 0xBC 0xBD
16 0xC4 0xC5
표 10을 참조하면, 특정 바이트의 페이로드가 ADT 데이터 패킷에 포함되어 전송될 경우, 헤더 A 또는 헤더 B가 사용될 수 있다. 페이로드 크기는 1바이트에서 16바이트가 될 수 있다. 무선전력 수신장치와 무선전력 전송장치는 새로운 ADT 데이터 패킷을 전송할 때와, 직전 ADT 데이터 패킷을 재전송할 때의 헤더 값의 패턴을 특정하게 약속함으로서 서로 간의 동기화를 도모할 수 있다. 예를 들어, 무선전력 수신장치가 1바이트 페이로드를 ADT 데이터 패킷으로 전송하는 상황에서, 무선전력 수신장치는 새로운 ADT 데이터 패킷을 전송할 때에는 헤더 값을 헤더 A(=0x1C)에서 B(=0x1D)로, 또는 B(=0x1D)에서 A(=0x1C)로 토글시키고, 직전 ADT 데이터 패킷을 재전송할 때에는 직전 헤더 값을 그대로 유지할 수 있다. 직전 ADT 데이터 패킷을 재전송하는 상황은, 무선전력 수신장치가 무선전력 전송장치로부터 NACK 응답을 수신하거나, 무선전력 수신장치가 무선전력 전송장치의 복호 오류를 발견한 때일 수 있다.
도 47은 일 실시예에 따른 무선전력 수신장치에 관한 ADT 응답 패킷(ADT_PRx Response Packet)의 구조이다.
도 47을 참조하면, 무선전력 수신장치에 관한 ADT 응답 패킷은 예를 들어 1 바이트로서, 그 값은 ACK, NACK, RFA를 지시할 수 있다. 표 11은 ADT 응답 패킷의 페이로드 값과 그 지시내용의 대응관계를 나타낸다.
페이로드 값 지시내용
'11111111'b ACK
'00000000'b NACK
'00110011'b RFA
표 11에서, 페이로드 값이 '11111111'b이면 직전 ADT에서 무선전력 전송장치가 전송한 ADT 데이터 패킷을 무선전력 수신장치가 성공적으로 수신하고 복호화했음을 나타낸다(ACK). 페이로드 값이 '00000000'b이면 직전 ADT에서 무선전력 전송장치가 전송한 ADT 데이터 패킷을 무선전력 수신장치가 성공적으로 수신하지 못하거나 복호화하지 못하였음을 나타낸다(NACK). 이 경우, 무선전력 전송장치는 현재 ADT에서 직전 ADT 데이터 패킷을 재전송하며, 이때 ADT 데이터 패킷의 헤더는 직전 데이터 패킷의 재전송에 대응하는 값을 가진다(예를 들어 0x1C). 페이로드 값이 '00110011'b이면 무선전력 수신장치가 무선전력 전송장치에게 응답 데이터를 전송하도록 요청함을 나타낸다(RFA). 표 11에서 페이로드 값과 그 지시내용은 예시일 뿐, 각 지시내용에 대응하는 페이로드 값은 얼마든지 다른 값이 사용될 수 있으며 이들 또한 본 발명의 기술적 범위에 해당한다.
한편, 무선전력 수신장치에 관한 ADT 제어 패킷 구조는 도 47에 따른 ADT 패킷 구조와 동일할 수 있다.
도 48은 일 실시예에 따른 무선전력 수신장치에 관한 ADT 제어 패킷(ADT_PRx Control Packet)의 구조이다.
도 48을 참조하면, 무선전력 수신장치에 관한 ADT 제어 패킷은 예를 들어 1 바이트로서, 그 값은 ACK, NACK, SOD, EOD를 지시할 수 있다. 표 12는 ADT 제어 패킷의 페이로드 값과 그 지시내용의 대응관계를 나타낸다.
페이로드 값 지시내용
'11111111'b ACK
'00000000'b NACK
'00110011'b SOD
'11001100'b EOD
표 12에서, 페이로드 값이 '11111111'b이면 직전 ADT에서 무선전력 전송장치가 전송한 ADT 데이터 패킷을 무선전력 수신장치가 성공적으로 수신하고 복호화했음을 나타낸다(ACK). 페이로드 값이 '00000000'b이면 직전 ADT에서 무선전력 전송장치가 전송한 ADT 데이터 패킷을 무선전력 수신장치가 성공적으로 수신하지 못하거나 복호화하지 못하였음을 나타낸다(NACK). 이 경우, 무선전력 전송장치는 현재 ADT에서 직전 ADT 데이터 패킷을 재전송하며, 이때 ADT 데이터 패킷의 헤더는 직전 데이터 패킷의 재전송에 대응하는 값을 가진다(예를 들어 0x1C). 페이로드 값이 '00110011'b이면 ADT 데이터 스트림의 시작을 요청함을 나타낸다(SOD). 페이로드 값이 '11001100'b이면 ADT 데이터 스트림의 종료를 나타낸다(EOD).
표 12에서 페이로드 값과 그 지시내용은 예시일 뿐, 각 지시내용에 대응하는 페이로드 값은 얼마든지 다른 값이 사용될 수 있으며 이들 또한 본 발명의 기술적 범위에 해당한다.
이하에서는 무선전력 전송장치에 관한 ADT(ADT_PTx)에 관하여 개시된다.
도 49는 일 실시예에 따른 무선전력 전송장치에 관한 ADT 데이터 패킷(ADT_PTx Data Packet)의 구조이다.
도 49를 참조하면, ADT 데이터 패킷은 예를 들어 (n+1) 바이트의 페이로드를포함하며, 각 페이로드는 복수 헤더 타입 중 어느 하나에 대응할 수 있다. 표 13은 ADT 데이터 패킷의 페이로드 사이즈(n=3인 경우, 최대 4바이트)와 헤더의 대응관계를 나타낸다.
페이로드 크기(바이트) 헤더 A 헤더 B
1 0x1C 0x1D
2 0x2C 0x2D
3 0x3C 0x3D
4 0x4C 0x4D
표 13을 참조하면, 특정 바이트의 페이로드가 ADT 데이터 패킷에 포함되어 전송될 경우, 헤더 A 또는 헤더 B가 사용될 수 있다. 페이로드 크기는 1바이트에서 4바이트가 될 수 있다. 무선전력 전송장치와 무선전력 수신장치는 새로운 ADT 데이터 패킷을 전송할 때와, 직전 ADT 데이터 패킷을 재전송할 때의 헤더 값의 패턴을 특정하게 약속함으로서 서로 간의 동기화를 도모할 수 있다. 예를 들어, 무선전력 전송장치가 1바이트 페이로드를 ADT 데이터 패킷으로 전송하는 상황에서, 무선전력 전송장치는 새로운 ADT 데이터 패킷을 전송할 때에는 헤더 값을 헤더 A(=0x1C)에서 B(=0x1D)로, 또는 B(=0x1D)에서 A(=0x1C)로 토글시키고, 직전 ADT 데이터 패킷을 재전송할 때에는 직전 헤더 값을 그대로 유지할 수 있다. 직전 ADT 데이터 패킷을 재전송하는 상황은, 무선전력 전송장치가 무선전력 수신장치로부터 NACK 응답을 수신하거나, 무선전력 전송장치가 무선전력 수신장치의 복호 오류를 발견한 때일 수 있다.
도 50은 일 실시예에 따른 무선전력 전송장치에 관한 ADT 응답 패킷(ADT_PTx Response Packet)의 구조이다.
도 50을 참조하면, 무선전력 전송장치에 관한 ADT 응답 패킷은 예를 들어 1 바이트로서, 그 값은 ACK, NACK, RFA를 지시할 수 있다. 표 14는 ADT 응답 패킷의 페이로드 값과 그 지시내용의 대응관계를 나타낸다.
페이로드 값 지시내용
'11111111'b ACK
'00000000'b NACK
'00110011'b RFA
표 14에서, 페이로드 값이 '11111111'b이면 직전 ADT에서 무선전력 수신장치가 전송한 ADT 데이터 패킷을 무선전력 전송장치가 성공적으로 수신하고 복호화했음을 나타낸다(ACK). 페이로드 값이 '00000000'b이면 직전 ADT에서 무선전력 수신장치가 전송한 ADT 데이터 패킷을 무선전력 전송장치가 성공적으로 수신하지 못하거나 복호화하지 못하였음을 나타낸다(NACK). 이 경우, 무선전력 수신장치는 현재 ADT에서 직전 ADT 데이터 패킷을 재전송하며, 이때 ADT 데이터 패킷의 헤더는 직전 데이터 패킷의 재전송에 대응하는 값을 가진다(예를 들어 0x1C). 페이로드 값이 '00110011'b이면 무선전력 전송장치가 무선전력 수신장치에게 응답 데이터를 전송하도록 요청함을 나타낸다(RFA). 표 14에서 페이로드 값과 그 지시내용은 예시일 뿐, 각 지시내용에 대응하는 페이로드 값은 얼마든지 다른 값이 사용될 수 있으며 이들 또한 본 발명의 기술적 범위에 해당한다.
도 51은 일 실시예에 따른 무선전력 전송장치에 관한 ADT 응답/제어 패킷(ADT_PTx Response/Control Packet)의 구조이다.
도 51을 참조하면, 무선전력 전송장치에 관한 ADT 응답 패킷은 예를 들어 1 바이트로서, 그 값은 ACK, RFA를 지시할 수 있다. 표 15는 ADT 응답 패킷의 페이로드 값과 그 지시내용의 대응관계를 나타낸다.
페이로드 값 지시내용
'11111111'b ACK
'00110011'b RFA
표 15에서, 페이로드 값이 '11111111'b이면 직전 ADT에서 무선전력 수신장치가 전송한 ADT 데이터 패킷을 무선전력 전송장치가 성공적으로 수신하고 복호화했음을 나타낸다(ACK). 페이로드 값이 '00110011'b이면 무선전력 전송장치가 무선전력 수신장치에게 응답 데이터를 전송하도록 요청함을 나타낸다(RFA). 본 실시예에 따르면, 직전 ADT에서 무선전력 수신장치가 전송한 ADT 데이터 패킷을 무선전력 전송장치가 성공적으로 수신하지 못하거나 복호화하지 못한 경우에, 무선전력 전송장치가 별도의 통신 오류 신호(NACK)을 전송하지 않는다. 표 15에서 페이로드 값과 그 지시내용은 예시일 뿐, 각 지시내용에 대응하는 페이로드 값은 얼마든지 다른 값이 사용될 수 있으며 이들 또한 본 발명의 기술적 범위에 해당한다.
도 52는 일 실시예에 따른 무선전력 전송장치에 관한 ADT 제어 패킷(ADT_PTx Control Packet)의 구조이다.
도 52를 참조하면, 무선전력 전송장치에 관한 ADT 제어 패킷은 예를 들어 1 바이트로서, 그 값은 ACK, NACK, SOD, EOD를 지시할 수 있다. 표 16은 ADT 제어 패킷의 페이로드 값과 그 지시내용의 대응관계를 나타낸다.
페이로드 값 지시내용
'11111111'b ACK
'00000000'b NACK
'00110011'b SOD
'11001100'b EOD
표 16에서, 페이로드 값이 '11111111'b이면 직전 ADT에서 무선전력 수신장치가 전송한 ADT 데이터 패킷을 무선전력 전송장치가 성공적으로 수신하고 복호화했음을 나타낸다(ACK). 페이로드 값이 '00000000'b이면 직전 ADT에서 무선전력 수신장치가 전송한 ADT 데이터 패킷을 무선전력 전송장치가 성공적으로 수신하지 못하거나 복호화하지 못하였음을 나타낸다(NACK). 이 경우, 무선전력 수신장치는 현재 ADT에서 직전 ADT 데이터 패킷을 재전송하며, 이때 ADT 데이터 패킷의 헤더는 직전 데이터 패킷의 재전송에 대응하는 값을 가진다(예를 들어 0x1C). 페이로드 값이 '00110011'b이면 ADT 데이터 스트림의 시작을 요청함을 나타낸다(SOD). 페이로드 값이 '11001100'b이면 ADT 데이터 스트림의 종료를 나타낸다(EOD). 표 16에서 페이로드 값과 그 지시내용은 예시일 뿐, 각 지시내용에 대응하는 페이로드 값은 얼마든지 다른 값이 사용될 수 있으며 이들 또한 본 발명의 기술적 범위에 해당한다.
이하에서는 앞서 설명된 ADT와 같은 하위레벨의 데이터 트랜스포트 및 패킷 구조에 기반하여 인증 시퀀스를 구현하는 실시예들을 개시한다.
2) 인증을 위한 하위레벨의 데이터 교환 시퀀스 (ADT 기반)
도 53은 일 실시예에 따른 ADT 데이터 패킷 기록(write)에 관한 상태 머신(state mashine)을 도시한 다이어그램이다.
도 53을 참조하면, 송신측 및/또는 수신측은 규칙 3에 따른 데이터 스트림의 동기화를 도 53과 같이 수행한다. 즉, 동기화를 위해 새로운 ADT 데이터 패킷[n]이 전송될 때마다 ADT 데이터 패킷[n]의 헤더가 토글될 수 있다. ADT 패킷의 헤더는 ADT 데이터 패킷을 지시할 수 있는데, 이 경우 ADT 데이터 패킷의 헤더는 복수 타입의 헤더(예를 들어, 헤더 A와 헤더 B 이렇게 2가지 타입의 헤더)를 포함할 수 있다. 새로운 ADT 데이터 패킷이 성공적으로(ACK) 전송될 때마다 ADT 데이터 패킷의 헤더 A->B 또는 B->A로 토글됨으로써, 데이터 스트림의 동기화가 달성될 수 있다. 무선전력 수신장치가 무선전력 전송장치로부터 NACK 응답을 수신하거나, 무선전력 수신장치가 무선전력 전송장치의 복호 오류를 발견한 때는, 직전 ADT 데이터 패킷을 재전송하며 이 경우 직전 헤더 값이 그대로 유지될 수 있다.
2-1) 무선전력 수신장치에 의한 무선전력 전송장치의 인증(Authentication of PTx by PRx)
ADT 기반의 하위레벨 인증 시퀀스로서, 먼저 무선전력 수신장치에 의한 무선전력 전송장치의 인증에 관하여 설명된다(PRx = Initiator / PTx = Responder)
도 54는 일 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 수신장치와 무선전력 전송장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다.
도 54를 참조하면, H_A는 A 타입 헤더를 나타내고, H_B는 B 타입 헤더를 나타낸다. 무선전력 수신장치(sender)에서 상위레벨의 1번 데이터가 하위레벨로 전달되어 헤더 A와 함께 무선전력 전송장치로 전송되면, 무선전력 전송장치의 하위레벨은 1번 데이터를 상위레벨로 전달한다. 1번 데이터의 수신에 성공하면, 무선전력 전송장치는 1번 데이터에 대한 ACK을 무선전력 수신장치로 전송한다. 무선전력 수신장치는 새로운 2번 데이터를 상위레벨에서 하위레벨로 전달한 뒤 헤더 B와 함께 무선전력 전송장치로 전송하는데, 이때 무선전력 전송장치가 2번 데이터의 수신에 실패하면 NACK을 무선전력 수신장치로 전송한다. 무선전력 수신장치는 NACK을 수신하였으므로, 이에 대해 2번 데이터를 직전의 헤더 B와 함께 재전송한다. 이와 같은 방식으로 무선전력 수신장치와 무선전력 전송장치는 동기를 확보할 수 있고, 단순하고 강인한 오류 복구 및 동기화 매커니즘을 구현할 수 있다.
도 55는 다른 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 수신장치와 무선전력 전송장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다. 여기서, 무선전력 수신장치는 인증 개시자이고, 무선전력 전송장치는 인증 응답자이다. 무선전력 수신장치와 전송장치 간의 ADT 데이터 패킷 교환은 전술된 '(1) 하위레벨 인증 시퀀스'와 '(2) 하위레벨의 데이터 교환 프로토콜'에 따라 진행된다.
도 55를 참조하면, 무선전력 수신장치는 상위레벨에서 M바이트의 CHALLENGE 메시지를 생성하여 하위레벨로 전달하고, 하위레벨은 이를 ADT 데이터 패킷(또는 트랜스포트)에 실어서 무선전력 전송장치로 전송한다.
하위레벨 인증 시퀀스에 따라 CHALLENGE 메시지에 관한 ADT 데이터 패킷은 수회에 걸쳐서 전송될 수 있으며, 규칙 2(rule 2)에 따라 ADT 데이터 패킷이 수회에 걸쳐서 전송되는 동안 무선전력 전송장치는 하위레벨에서 각 회차의 ADT 데이터 패킷에 관한 ACK/NACK을 무선전력 수신장치로 전송하며 ADT 데이터 패킷을 상위레벨로 전달한다. 이러한 일련의 과정을 거쳐 CHALLENGE 메시지(상위레벨 관점) 또는 CHALLENGE 메시지에 관한 ADT 데이터 패킷(하위레벨 관점)의 전송이 완료되면, 무선전력 수신장치는 규칙 4(rule 4)에 따라, CHALLENGE 메시지에 관한 ADT 데이터 패킷의 끝단에 EOD를 부가하여 전송의 완료를 알려준다.
한편, 무선전력 수신장치는 규칙 1(rule 1)에 따라 슬레이브인 무선전력 전송장치가 보낼 데이터 스트림이 있는지를 질의한다. 이를 위해, 무선전력 수신장치는 SOD를 전송할 수 있다. 이 경우, 무선전력 수신장치는 무선전력 전송장치가 데이터 패킷으로 응답할 때까지 또는 타임아웃이 발생할 때까지 SOD를 반복하여 전송할 수 있다. 무선전력 전송장치가 SOD를 수신하면, 무선전력 전송장치는 상위레벨에서 N 바이트의 CHALLENGE_AUTH_RESPONSE를 생성하여 하위레벨로 전달하고, 하위레벨은 이를 ADT 데이터 패킷(또는 트랜스포트)에 실어서 무선전력 수신장치로 전송한다.
하위레벨 인증 시퀀스에 따라 CHALLENGE_AUTH_RESPONSE 메시지에 관한 ADT 데이터 패킷은 수회에 걸쳐서 전송될 수 있으며, 규칙 2(rule 2)에 따라 ADT 데이터 패킷이 수회에 걸쳐서 전송되는 동안 무선전력 수신장치는 하위레벨에서 각 회차의 ADT 데이터 패킷에 관한 ACK/NACK을 무선전력 전송장치로 전송하며 ADT 데이터 패킷을 상위레벨로 전달한다. 이러한 일련의 과정을 거쳐 CHALLENGE_AUTH_RESPONSE 메시지(상위레벨 관점) 또는 CHALLENGE_AUTH_RESPONSE 메시지에 관한 ADT 데이터 패킷(하위레벨 관점)의 전송이 완료되면, 무선전력 전송장치는 규칙 4(rule 4)에 따라, CHALLENGE_AUTH_RESPONSE 메시지에 관한 ADT 데이터 패킷의 끝단에 EOD를 부가하여 전송의 완료를 알려준다.
도 56은 또 다른 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 수신장치와 무선전력 전송장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다.
도 56의 실시예는 매 ADT 데이터 패킷 전송시 규칙 4에 따른 SOD와 EOD의 부가를 엄격하게 지키되, 규칙 1에 따른 질의(또는 폴링)를 위해 SOD 대신 일반 요청 패킷(GRP)을 사용하는 점에서 도 55의 실시예와 차이가 있다.
도 57은 일 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 57을 참조하면, 인증 메시지를 위한 비트스트림(i.e. 35바이트)이 준비되면, 무선전력 수신장치는 헤더(i.e. 1바이트)와 페이로드(i.e. 34바이트)로 구성되는 ADT 데이터 패킷을 하위레벨에서 전송한다. 여기서, 인증 메시지는 예를 들어 무선전력 수신장치로부터 전송장치로 전송되는 CHALLENGE 메시지일 수 있다.
ADT 데이터 패킷은 16바이트까지 전송 가능하므로, 35바이트의 인증 메시지는 16바이트의 제0 ADT 데이터 패킷(ADT_PRx(0)), 16바이트의 제1 ADT 데이터 패킷(ADT_PRx(1)), 그리고 3바이트의 제2 ADT 데이터 패킷(ADT_PRx(2))으로 분할되어 전송된다.
먼저 첫번째 라인에서, 무선전력 수신장치는 제0 ADT 데이터 패킷(ADT_PRx(0))을 성공적으로 전송한 후 ACK을 수신하지만, 제1 ADT 데이터 패킷(ADT_PRx(1))의 전송에는 실패하여 NACK을 수신한다. 이후 두번째 라인에서, 무선전력 수신장치는 제1 ADT 데이터 패킷(ADT_PRx(1))을 재전송하지만, 이에 대한 응답(ACK or NACK)의 수신에 실패하여, NACK을 전송한다. 이에 대해 무선전력 전송장치가 ACK으로 응답하면 제1 ADT 데이터 패킷(ADT_PRx(1))의 재전송이 성공하였음이 확인되므로, 무선전력 수신장치는 남은 3바이트의 제2 ADT 데이터 패킷(ADT_PRx(2))을 성공적으로 전송한 후 ACK을 수신한다. 이에 대해 무선전력 수신장치는 EOD를 성공적으로 전송하고 ACK을 수신함으로써 인증 메시지의 전송을 종료한다.
도 58은 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 58의 실시예는 무선전력 수신장치가 총 35바이트의 인증 메시지를 16바이트의 제0 ADT 데이터 패킷(ADT_PRx(0)), 16바이트의 제1 ADT 데이터 패킷(ADT_PRx(1)), 그리고 3바이트의 제2 ADT 데이터 패킷(ADT_PRx(2))으로 분할하여 전송함에 있어서, 매 ADT 데이터 패킷의 헤더를 규칙 3에 따라 토글(헤더 A <-> 헤더 B)하되, ADT 데이터 패킷의 재전송을 수행할 때에는 이전에 사용한 헤더를 동일하게 사용(도 58에서는 헤더 B)함으로서 단순화된 동기화를 수행하고 재전송을 지시하는 점에서 도 57의 실시예와 차이가 있다.
도 59는 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 59의 실시예는 무선전력 수신장치가 총 35바이트의 인증 메시지를 16바이트의 제0 ADT 데이터 패킷(ADT_PRx(0)), 16바이트의 제1 ADT 데이터 패킷(ADT_PRx(1)), 그리고 3바이트의 제2 ADT 데이터 패킷(ADT_PRx(2))으로 분할하여 전송함에 있어서, 매 ADT 데이터 패킷의 헤더를 규칙 3에 따라 토글(헤더 A <-> 헤더 B)하는 점에서 도 58의 실시예와는 동일하나, ADT 데이터 패킷의 전송 시작시에 SOD를 부가하는 점에서 도 58의 실시예와 차이가 있다.
도 60은 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 60의 실시예는 무선전력 수신장치가 총 35바이트의 인증 메시지를 16바이트의 제0 ADT 데이터 패킷(ADT_PRx(0)), 16바이트의 제1 ADT 데이터 패킷(ADT_PRx(1)), 그리고 3바이트의 제2 ADT 데이터 패킷(ADT_PRx(2))으로 분할하여 전송함에 있어서, 제2 ADT 데이터 패킷(ADT_PRx(2))의 전송에 실패하였을 시 헤더가 토글되지 않아야 함에도 불구하고, 헤더가 토글된 상태에서 제2 ADT 데이터 패킷(ADT_PRx(2))의 재전송이 발생하는 점에서 도 58의 실시예와 차이가 있다. 여기서, 무선전력 전송장치의 ADT 응답 패킷 대신 비트 패턴 응답이 사용될 수 있으며, 이로서 ADT 교환 시간이 줄어들 수 있다.
도 61은 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 61의 실시예는 무선전력 수신장치가 총 35바이트의 인증 메시지를 16바이트의 제0 ADT 데이터 패킷(ADT_PRx(0)), 16바이트의 제1 ADT 데이터 패킷(ADT_PRx(1)), 그리고 3바이트의 제2 ADT 데이터 패킷(ADT_PRx(2))으로 분할하여 전송함에 있어서, 제0 ADT 데이터 패킷(ADT_PRx(0)), 16바이트의 제1 ADT 데이터 패킷(ADT_PRx(1))의 전송은 성공하나, 제2 ADT 데이터 패킷(ADT_PRx(2))에 대해 아무런 응답이 없어 전송에 실패하는 시나리오를 설명하고 있다.
도 62는 일 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 62를 참조하면, 인증 응답 메시지를 위한 비트스트림(i.e. 99바이트)이 준비된다. 인증 응답 메시지는 예를 들어 무선전력 전송장치로부터 수신장치로 전송되는 CHALLENGE_AUTH_RESPONSE 메시지일 수 있다.
PTx -> PRx 방향의 통신 프로토콜(i.e. FSK)을 사용할 경우, ADT 데이터 패킷은 4바이트까지 전송 가능하므로, 99바이트의 인증 응답 메시지는 4바이트의 제0 ADT 데이터 패킷(ADT_PTx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제23 ADT 데이터 패킷(ADT_PTx(23)), 3바이트의 제24 ADT 데이터 패킷(ADT_PTx(24))으로 분할되어 전송된다.
먼저 무선전력 수신장치가 폴링을 위해 SOD를 무선전력 전송장치로 전송하면, 무선전력 전송장치는 제0 ADT 데이터 패킷(ADT_PTx(0))을 성공적으로 전송한 후 ACK을 수신한다. 그러나 무선전력 전송장치는 제1 ADT 데이터 패킷(ADT_PTx(1))의 전송에는 실패하여 NACK을 수신한다. 이후 무선전력 전송장치는 제1 ADT 데이터 패킷(ADT_PTx(1))을 재전송하지만, 이에 대한 ACK의 수신에 실패하여 NACK을 전송한다. 이에 대해 무선전력 수신장치가 ACK으로 응답하면 제1 ADT 데이터 패킷(ADT_PTx(1))의 재전송이 성공하였음이 확인되므로, 무선전력 전송장치는 제2 ADT 데이터 패킷(ADT_PTx(2))를 전송한다. 이러한 ADT 패킷 전송 시퀀스를 반복한 뒤, 무선전력 전송장치는 마지막으로 남은 3바이트의 제24 ADT 데이터 패킷(ADT_PTx(24))을 성공적으로 전송한 후 ACK을 수신한다. 이에 대해 무선전력 전송장치는 EOD를 성공적으로 전송하고 ACK을 수신함으로써 인증 응답 메시지의 전송을 종료한다.
도 63은 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 63의 실시예는 무선전력 전송장치가 총 99바이트의 인증 응답 메시지를 4바이트의 제0 ADT 데이터 패킷(ADT_PTx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제23 ADT 데이터 패킷(ADT_PTx(23)), 3바이트의 제24 ADT 데이터 패킷(ADT_PTx(24))으로 분할하여 전송함에 있어서, 매 ADT 데이터 패킷의 헤더를 규칙 3에 따라 토글(헤더 A <-> 헤더 B)하되, 제1 ADT 데이터 패킷의 재전송을 수행할 때에는 이전에 사용한 헤더를 동일하게 사용(도 62에서는 헤더 B)함으로서 단순화된 동기화를 수행하고 재전송을 지시하는 점에서 도 62의 실시예와 차이가 있다.
도 64는 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 64의 실시예는 무선전력 전송장치가 총 99바이트의 인증 응답 메시지를 4바이트의 제0 ADT 데이터 패킷(ADT_PTx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제23 ADT 데이터 패킷(ADT_PTx(23)), 3바이트의 제24 ADT 데이터 패킷(ADT_PTx(24))으로 분할하여 전송함에 있어서, 매 ADT 데이터 패킷의 헤더를 규칙 3에 따라 토글(헤더 A <-> 헤더 B)하는 점에서 도 63의 실시예와는 동일하나, 무선전력 수신장치가 무선전력 전송장치를 폴링하는데 GRP를 사용하고, 이에 대해 무선전력 전송장치가 SOD로 응답함으로서 ADT 데이터 패킷의 전송이 시작되는 점에서 도 63의 실시예와 차이가 있다.
도 65는 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 65의 실시예는 무선전력 전송장치가 총 99바이트의 인증 응답 메시지를 4바이트의 제0 ADT 데이터 패킷(ADT_PTx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제23 ADT 데이터 패킷(ADT_PTx(23)), 3바이트의 제24 ADT 데이터 패킷(ADT_PTx(24))으로 분할하여 전송함에 있어서, 제1 ADT 데이터 패킷(ADT_PTx(1))의 전송에 실패하였을 시 헤더가 토글되지 않아야 함에도 불구하고, 헤더가 토글된 상태에서 제1 ADT 데이터 패킷(ADT_PTx(1))의 재전송이 발생하는 점에서 도 64의 실시예와 차이가 있다.
도 66은 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 66의 실시예는 무선전력 전송장치가 총 99바이트의 인증 응답 메시지를 4바이트의 제0 ADT 데이터 패킷(ADT_PTx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제23 ADT 데이터 패킷(ADT_PTx(23)), 3바이트의 제24 ADT 데이터 패킷(ADT_PTx(24))으로 분할하여 전송함에 있어서, 제0 ADT 데이터 패킷(ADT_PTx(0))의 전송은 성공하나, 제1 ADT 데이터 패킷(ADT_PTx(1))에 대해 아무런 응답이 없어 전송에 실패하는 시나리오를 설명하고 있다.
2-2) 무선전력 전송장치에 의한 무선전력 수신장치의 인증(Authentication of PRx by PTx)
ADT 기반의 하위레벨 인증 시퀀스로서, 무선전력 전송장치에 의한 무선전력 수신장치의 인증에 관하여 설명된다(PTx = Initiator / PRx = Responder). 규칙 1에 따를 때 무선전력 전송장치는 슬레이브이므로, 무선전력 수신장치는 무선전력 전송장치의 성능 패킷 내의 AI 비트를 기반으로 무선전력 전송장치가 인증 개시자로서 동작하는 것이 확인되면, 무선전력 전송장치로 ADT를 제공해야 한다.
도 67은 일 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 전송장치와 무선전력 수신장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다. 여기서, 무선전력 전송장치는 인증 개시자이고, 무선전력 수신장치는 인증 응답자이다. 무선전력 전송장치와 수신장치 간의 ADT 데이터 패킷 교환은 전술된 '(1) 하위레벨 인증 시퀀스'와 '(2) 하위레벨의 데이터 교환 프로토콜'에 따라 진행된다.
도 67을 참조하면, 무선전력 전송장치는 무선전력 수신장치에 의해 제공되는 SOD에 의해 풀링되어, 상위레벨에서 M바이트의 CHALLENGE 메시지를 생성하여 하위레벨로 전달하고, 하위레벨은 이를 ADT 데이터 패킷(또는 트랜스포트)에 실어서 무선전력 수신장치로 전송한다. 이 경우, 무선전력 수신장치는 무선전력 전송가 ADT 데이터 패킷으로 응답할 때까지 또는 타임아웃이 발생할 때까지 SOD를 반복하여 전송할 수 있다.
하위레벨 인증 시퀀스에 따라 CHALLENGE 메시지에 관한 ADT 데이터 패킷은 수회에 걸쳐서 전송될 수 있으며, 규칙 2(rule 2)에 따라 ADT 데이터 패킷이 수회에 걸쳐서 전송되는 동안 무선전력 수신장치는 하위레벨에서 각 회차의 ADT 데이터 패킷에 관한 ACK/NACK을 무선전력 전송장치로 전송하며 ADT 데이터 패킷을 상위레벨로 전달한다. 이러한 일련의 과정을 거쳐 CHALLENGE 메시지(상위레벨 관점) 또는 CHALLENGE 메시지에 관한 ADT 데이터 패킷(하위레벨 관점)의 전송이 완료되면, 무선전력 전송장치는 규칙 4(rule 4)에 따라, CHALLENGE 메시지에 관한 ADT 데이터 패킷의 끝단에 EOD를 부가하여 전송의 완료를 알려준다.
한편, 무선전력 수신장치는 규칙 1(rule 1)에 따라 마스터로 동작하기 때문에, 자신이 보낼 CHALLENGE_AUTH_RESPONSE 메시지에 대해서는 별도의 풀링없이 상위레벨에서 N 바이트의 CHALLENGE 메시지를 생성하여 하위레벨로 전달하고, 하위레벨은 이를 ADT 데이터 패킷(또는 트랜스포트)에 실어서 무선전력 전송장치로 전송한다.
하위레벨 인증 시퀀스에 따라 CHALLENGE_AUTH_RESPONSE 메시지에 관한 ADT 데이터 패킷은 수회에 걸쳐서 전송될 수 있으며, 규칙 2(rule 2)에 따라 ADT 데이터 패킷이 수회에 걸쳐서 전송되는 동안 무선전력 전송장치는 하위레벨에서 각 회차의 ADT 데이터 패킷에 관한 ACK/NACK을 무선전력 수신장치로 전송하며 ADT 데이터 패킷을 상위레벨로 전달한다. 이러한 일련의 과정을 거쳐 CHALLENGE_AUTH_RESPONSE 메시지(상위레벨 관점) 또는 CHALLENGE_AUTH_RESPONSE 메시지에 관한 ADT 데이터 패킷(하위레벨 관점)의 전송이 완료되면, 무선전력 수신장치는 규칙 4(rule 4)에 따라, CHALLENGE_AUTH_RESPONSE 메시지에 관한 ADT 데이터 패킷의 끝단에 EOD를 부가하여 전송의 완료를 알려준다.
도 68은 다른 실시예에 따른 ADT 데이터 패킷의 교환시 무선전력 전송장치와 무선전력 수신장치의 상위레벨과 하이레벨의 전송 시퀀스를 설명하는 것이다.
도 68의 실시예는 매 ADT 데이터 패킷 전송시 규칙 4에 따른 SOD와 EOD의 부가를 엄격하게 지키되, 규칙 1에 따른 질의(또는 폴링)를 위해 무선전력 수신장치가 SOD 대신 일반 요청 패킷(GRP)을 사용하는 점에서 도 67의 실시예와 차이가 있다.
도 69는 일 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 69를 참조하면, 인증 요청 메시지를 위한 비트스트림(i.e. 35바이트)이 준비되면, 무선전력 전송장치는 헤더(i.e. 1바이트)와 페이로드(i.e. 34바이트)로 구성되는 ADT 데이터 패킷을 하위레벨에서 전송하기 위해 대기한다. 여기서, 인증 요청 메시지는 예를 들어 CHALLENGE 메시지일 수 있다.
이때, 무선전력 수신장치는 무선전력 전송장치로부터 전송될 데이터가 있는지를 확인하기 위한 풀링 작업을 실시하며, 그 일환으로 무선전력 수신장치는 무선전력 전송장치가 응답할 때까지 또는 타임아웃이 발생할 때까지 반복적으로 SOD를 전송한다.
SOD에 의해 무선전력 전송장치가 인증 요청 메시지를 전송할 기회를 부여받으면, 무선전력 전송장치는 ADT 데이터 패킷의 전송을 시작한다. PTx -> PRx 방향으로의 통신 프로토콜(FSK)을 사용할 때, ADT 데이터 패킷은 4바이트까지 전송 가능하므로, 35바이트의 인증 메시지는 4바이트의 제0 ADT 데이터 패킷(ADT_PRx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제7 ADT 데이터 패킷(ADT_PTx(7)), 3바이트의 제8 ADT 데이터 패킷(ADT_PTx(8))으로 분할되어 전송된다.
먼저 무선전력 전송장치는 제0 ADT 데이터 패킷(ADT_PTx(0))을 성공적으로 전송한 후 ACK을 수신하지만, 제1 ADT 데이터 패킷(ADT_PTx(1))의 전송에는 실패하여 NACK을 수신한다. 이후 무선전력 전송장치는 제1 ADT 데이터 패킷(ADT_PTx(1))을 재전송하지만, 이에 대한 ACK 응답의 수신에 실패하여, NACK을 전송한다. 이에 대해 무선전력 수신장치가 ACK으로 응답하면 제1 ADT 데이터 패킷(ADT_PTx(1))의 재전송이 성공하였음이 확인되므로, 무선전력 전송장치는 다음의 제2 ADT 데이터 패킷(ADT_PTx(2))을 전송한다. 마지막 ADT 데이터 패킷까지 모두 전송이 완료되면, 이에 대해 무선전력 전송장치는 EOD를 성공적으로 전송하고 ACK을 수신함으로써 인증 요청 메시지의 전송을 종료한다.
도 70은 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 70의 실시예는 무선전력 전송장치가 총 35바이트의 인증 요청 메시지를 4바이트의 제0 ADT 데이터 패킷(ADT_PTx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제7 ADT 데이터 패킷(ADT_PTx(7)), 3바이트의 제8 ADT 데이터 패킷(ADT_PTx(8))으로 분할하여 전송함에 있어서, 매 ADT 데이터 패킷의 헤더를 규칙 3에 따라 토글(헤더 A <-> 헤더 B)하되, ADT 데이터 패킷의 재전송을 수행할 때에는 이전에 사용한 헤더를 동일하게 사용(도 58에서는 헤더 B)함으로서 단순화된 동기화를 수행하고 재전송을 지시하는 점에서 도70의 실시예와 차이가 있다.
도 71은 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 71의 실시예는 무선전력 전송장치가 총 35바이트의 인증 요청 메시지를 4바이트의 제0 ADT 데이터 패킷(ADT_PTx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제7 ADT 데이터 패킷(ADT_PTx(7)), 3바이트의 제8 ADT 데이터 패킷(ADT_PTx(8))으로 분할하여 전송함에 있어서, 매 ADT 데이터 패킷의 헤더를 규칙 3에 따라 토글(헤더 A <-> 헤더 B)하는 점에서 도 70의 실시예와는 동일하나, 무선전력 수신장치가 무선전력 전송장치를 폴링하는데 GRP를 사용하고, 이에 대해 무선전력 전송장치가 SOD로 응답함으로서 ADT 데이터 패킷의 전송이 시작되는 점에서 도 70의 실시예와 차이가 있다.
도 72는 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 72의 실시예는 무선전력 전송장치가 총 35바이트의 인증 요청 메시지를 4바이트의 제0 ADT 데이터 패킷(ADT_PTx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제7 ADT 데이터 패킷(ADT_PTx(7)), 3바이트의 제8 ADT 데이터 패킷(ADT_PTx(8))으로 분할하여 전송함에 있어서, 무선전력 전송장치가 모드 0에서 RPP를 전송하고, RFA 비트 패턴을 전송함으로서 ADT 데이터 패킷의 전송 기회를 획득하는 점에서 도 71의 실시예와 차이가 있다. 또한, 제1 ADT 데이터 패킷(ADT_PTx(1))의 전송에 실패하였을 시 헤더가 토글되지 않아야 함에도 불구하고, 헤더가 토글된 상태에서 제1 ADT 데이터 패킷(ADT_PTx(1))의 재전송이 발생하는 점에서도 도 71의 실시예와 차이가 있다.
도 73은 또 다른 실시예에 따른 인증 요청 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 73의 실시예는 무선전력 전송장치가 총 35바이트의 인증 요청 메시지를 4바이트의 제0 ADT 데이터 패킷(ADT_PTx(0)), 4바이트의 제1 ADT 데이터 패킷(ADT_PTx(1)), ..., 4바이트의 제7 ADT 데이터 패킷(ADT_PTx(7)), 3바이트의 제8 ADT 데이터 패킷(ADT_PTx(8))으로 분할하여 전송함에 있어서, 제0 ADT 데이터 패킷(ADT_PTx(0))의 전송은 성공하나, 제1 ADT 데이터 패킷(ADT_PTx(1))에 대해 아무런 응답이 없어 전송에 실패하는 시나리오를 설명하고 있다.
도 74는 일 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다.
도 74를 참조하면, 인증 응답 메시지를 위한 비트스트림(i.e. 99바이트)이 준비되면, 무선전력 수신장치는 헤더(i.e. 1바이트)와 페이로드(i.e. 34바이트)로 구성되는 ADT 데이터 패킷을 하위레벨에서 전송한다. 여기서, 인증 응답 메시지는 예를 들어 CHALLENGE_AUTH_RESPONSE 메시지일 수 있다.
무선전력 수신장치는 제0 ADT 데이터 패킷(ADT_PRx(0))을 성공적으로 전송한 후 ACK을 수신한다. 그러나 무선전력 수신장치는 제1 ADT 데이터 패킷(ADT_PRx(1))의 전송에는 실패하여 NACK을 수신한다. 이후 무선전력 수신장치는 제1 ADT 데이터 패킷(ADT_PRx(1))을 재전송하지만, 이에 대한 ACK의 수신에 실패하여 NACK을 전송한다. 이에 대해 무선전력 전송장치가 ACK으로 응답하면 제1 ADT 데이터 패킷(ADT_PRx(1))의 재전송이 성공하였음이 확인되므로, 무선전력 수신치는 제2 ADT 데이터 패킷(ADT_PRx(2))를 전송한다. 이러한 ADT 패킷 전송 시퀀스를 반복한 뒤, 무선전력 전송장치는 마지막으로 남은 ADT 데이터 패킷(ADT_PRx)을 성공적으로 전송한 후 ACK을 수신한다. 이에 대해 무선전력 수신장치는 EOD를 성공적으로 전송하고 ACK을 수신함으로써 인증 응답 메시지의 전송을 종료한다.
도 75는 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 75의 실시예는 무선전력 수신장치가 총 99바이트의 인증 응답 메시지를 16바이트의 제0 ADT 데이터 패킷(ADT_PRx(0)), 16바이트의 제1 ADT 데이터 패킷(ADT_PRx(1)), ..., 16바이트의 제5 ADT 데이터 패킷(ADT_PRx(5)), 3바이트의 제6 ADT 데이터 패킷(ADT_PRx(6))으로 분할하여 전송함에 있어서, 매 ADT 데이터 패킷의 헤더를 규칙 3에 따라 토글(헤더 A <-> 헤더 B)하되, 제1 ADT 데이터 패킷의 재전송을 수행할 때에는 이전에 사용한 헤더를 동일하게 사용(도 75에서는 헤더 B)함으로서 단순화된 동기화를 수행하고 재전송을 지시하는 점에서 도 75의 실시예와 차이가 있다.
도 76은 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 76의 실시예는 무선전력 수신장치가 총 99바이트의 인증 응답 메시지를 16바이트의 제0 ADT 데이터 패킷(ADT_PRx(0)), 16바이트의 제1 ADT 데이터 패킷(ADT_PRx(1)), ..., 16바이트의 제5 ADT 데이터 패킷(ADT_PRx(5)), 3바이트의 제6 ADT 데이터 패킷(ADT_PRx(6))으로 분할하여 전송함에 있어서, 제1 ADT 데이터 패킷(ADT_PRx(1))의 전송에 실패하였을 시 헤더가 토글되지 않아야 함에도 불구하고, 헤더가 토글된 상태에서 제1 ADT 데이터 패킷(ADT_PRx(1))의 재전송이 발생하는 점에서 도 75의 실시예와 차이가 있다.
도 77은 또 다른 실시예에 따른 인증 응답 메시지에 관한 ADT 데이터 패킷의 교환 시퀀스를 설명하는 것이다. 도 77의 실시예는 무선전력 수신장치가 총 99바이트의 인증 응답 메시지를 16바이트의 제0 ADT 데이터 패킷(ADT_PRx(0)), 16바이트의 제1 ADT 데이터 패킷(ADT_PRx(1)), ..., 16바이트의 제5 ADT 데이터 패킷(ADT_PRx(5)), 3바이트의 제6 ADT 데이터 패킷(ADT_PRx(6))으로 분할하여 전송함에 있어서, 제0 ADT 데이터 패킷(ADT_PRx(0))의 전송은 성공하나, 제1 ADT 데이터 패킷(ADT_PRx(1))에 대해 아무런 응답이 없어 전송에 실패하는 시나리오를 설명하고 있다.
2-3) 무선전력 전송장치와 무선전력 수신장치 간의 상호 동시 인증(Concurrent Authentication between PRx and PTx)
무선전력 전송장치와 무선전력 수신장치가 모두 인증 개시자로서 동작을 동시에 수행할 수 있다.
일례로서, 무선전력 전송장치는 무선전력 수신장치로부터 수신하는 패킷에 대해 ACK을 포함하는 ADT 대신에 인증 관련 패킷을 포함하는 ADT를 전송할 수 있다. 이 경우, 무선전력 수신장치는 인증 관련 패킷을 포함하는 ADT을 수신함으로서, 묵시적으로 ACK을 받은 것으로 보아 다음 동작을 수행할 수 있다. 즉, 무선전력 전송장치가 데이터(인증 관련 패킷)를 포함하는 ADT를 전송하면, 무선전력 수신장치는 ACK 대신 데이터 ADT를 받더라도 직전에 자신이 무선전력 전송장치에게 보낸 ADT 데이터가 성공적으로 전송된 것으로 판단할 수 있다. 다만, 무선전력 전송장치는 직전에 무선전력 수신장치로부터 받은 ADT 데이터에 통신 오류가 발생하는 경우 NACK을 전송할 수 있다. 물론, 상기 인증 관련 패킷을 포함하는 ADT는 ACK을 더 포함할 수도 있다.
다른 예로서, 무선전력 수신장치는 무선전력 전송장치로부터 수신하는 패킷에 대해 ACK을 포함하는 ADT 대신에 인증 관련 패킷을 포함하는 ADT를 전송할 수 있다. 이 경우, 무선전력 전송장치는 인증 관련 패킷을 포함하는 ADT을 수신함으로서, 묵시적으로 ACK을 받은 것으로 보아 다음 동작을 수행할 수 있다. 즉, 무선전력 수신장치가 데이터(인증 관련 패킷)를 포함하는 ADT를 전송하면, 무선전력 전송장치는 ACK 대신 데이터 ADT를 받더라도 직전에 자신이 무선전력 수신장치에게 보낸 ADT 데이터가 성공적으로 전송된 것으로 판단할 수 있다. 물론, 상기 인증 관련 패킷을 포함하는 ADT는 ACK을 더 포함할 수도 있다.
2-4) 무선전력 전송장치에 의한 통신 개시 프로토콜
규칙 1에 의거하여 무선전력 전송장치가 슬레이브로 동작하는 중에, 무선전력 수신장치는 규칙적인 폴링을 수행함으로써 무선전력 전송장치에 의해 개시되는 통신(PTx initiated communication)의 기회를 제공할 수 있다. 이 경우 무선전력 전송장치의 통신 개시는 무선전력 수신장치에 의존도가 높다. 무선전력 수신장치는 규칙적으로 무선전력 전송장치를 폴(poll)함으로써 무선전력 전송장치가 전송할 패킷을 가지고 있는지를 확인할 수 있다. 이 경우, 도 78과 같은 GRP가 사용될 수 있다. 도 78을 참조하면, 예를 들어 무선전력 수신장치는 일반 요청 패킷을 "0xFF" 또는 "00" 또는 "FF"로 설정함으로서, 폴링을 수행할 수 있다. 만약 무선전력 전송장치가 "0xFF" 또는 "00" 또는 "FF"로 설정된 GRP를 수신하면, 무선전력 전송장치는 자신이 보내고자 하는 어떠한 종류의 패킷도 전송할 수 있는 상태가 된다.
한편, 무선전력 전송장치에 의해 개시되는 통신의 기회을 좀더 보장하기 위한 다른 방안으로서, 무선전력 전송장치는 무선전력 수신장치의 RPP(모드 '100'b 제외)에 대한 응답으로서 통신을 위한 요청(request for communication: RFC) 비트 패턴을 전송할 수 있다. 무선전력 수신장치가 RFC 응답을 수신하면, 무선전력 수신장치는 자신에게 적당한 타이밍에 GRP를 이용하여 무선전력 전송장치를 폴링한다. 무선전력 수신장치는 무선전력 전송장치가 관리하는 타겟 전력(target power)의 값이 변하는 시점을 정확히 알 수 없는데, 무선전력 전송장치의 RFC 응답을 통해 무선전력 전송장치가 원하는 통신 개시 시점을 비교적 잘 보장해 줄 수 있다.
특히, RFC 응답에 기한 폴링은 무선전력 전송장치에 의해 개시되는 전력 관리(PTx-initiated power management)에 사용될 수 있다. 무선전력 전송장치에 의해 개시되는 전력 관리에 의해, 무선전력 전송장치는 현재 주변의 충전 조건들을 고려하여 타겟 전력을 변경(증가 또는 감소)할 수 있다.
도 79는 일 실시예에 따른 무선전력 전송장치에 의해 개시되는 전력 관리에 관한 전송 시퀀스이다.
도 79를 참조하면, 무선전력 전송장치는 무선전력 수신장치의 RPP(mode 0)에 대한 응답으로서 RFC 응답(비트 패턴)을 포함한 알람(alert)을 무선전력 수신장치로 전송한다. 무선전력 수신장치는 요청 값이 "0xFF"로 설정된 GRP를 무선전력 전송장치로 전송한다. 이후, 무선전력 전송장치는 타겟 전력 패킷을 무선전력 수신장치로 전송한다. 무선전력 수신장치는 변경된 타겟 전력에 따라 동작 모드를 조정할 수 있다.
6. 인증절차에 관련된 어플리케이션
인증 기능은 사용자에 의해 On/Off로 설정될 수 있다. 예를 들어, 스마트폰은 어플리케이션을 통해 인증 기능의 활성화/비활성화를 사용자에게 표시하고, 사용자로부터 활성화(ON) 또는 비활성화(OFF)에 관한 선택정보를 입력받음으로서, 인증 기능을 활성화 또는 비활성화할 수 있다.
무선전력 전송 및 수신장치들은 매우 편리한 사용자 경험과 인터페이스(UX/UI)를 제공할 수 있다. 즉, 스마트 무선충전 서비스가 제공될 수 있다, 스마트 무선충전 서비스는 무선전력 전송장치를 포함하는 스마트폰의 UX/UI에 기초하여 구현될 수 있다. 이러한 어플리케이션을 위해, 스마트폰의 프로세서와 무선충전 수신장치간의 인터페이스는 무선전력 전송장치와 수신장치간의 "드롭 앤 플레이(drop and play)" 양방향 통신을 허용한다.
일례로서, 사용자는 호텔에서 스마트 무선 충전 서비스를 경험할 수 있다. 사용자가 호텔 방으로 입장하고 방안의 무선충전기 위에 스마트폰을 올려놓으면, 무선충전기는 스마트폰으로 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이 과정에서, 무선충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 부가적 특징으로의 동의(opt-in)를 문의하는 상태로 진입한다. 이를 위해, 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Welcome to ### hotel. Select “Yes” to activate smart charging functions : Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 그리고 스마트폰과 무선충전기는 스마트 충전 기능을 함께 수행한다.
스마트 무선 충전 서비스는 또한 WiFi 자격(wifi credentials) 자동 입력(auto-filled)을 수신하는 것을 포함할 수 있다. 예를 들어, 무선충전기는 WiFi 자격을 스마트폰으로 전송하고, 스마트폰은 적절한 앱을 실행하여 무선충전기로부터 수신된 WiFi 자격을 자동적으로 입력한다.
스마트 무선 충전 서비스는 또한 호텔 프로모션을 제공하는 호텔 어플리케이션을 실행하거나, 원격 체크인/체크아웃 및 컨택 정보들을 획득하는 것을 포함할 수 있다.
다른 예로서, 사용자는 차량 내에서 스마트 무선 충전 서비스를 경험할 수 있다. 사용자가 차량에 탑승하고 스마트폰을 무선충전기 위에 올려놓으면, 무선충전기는 스마트폰에 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이러한 과정에서, 무선 충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 신분(identity)를 확인을 문의하는 상태로 진입한다.
이 상태에서, 스마트폰은 WiFi 및/또는 블루투스를 통해 자동적으로 자동차와 연결된다. 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Welcome to your car. Select “Yes” to synch device with in-car controls : Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 그리고 스마트폰과 무선충전기는 차량내 어플리케이션/디스플레이 소프트웨어를 구동함으로서, 차량 내 스마트 제어 기능을 함께 수행할 수 있다. 사용자는 원하는 음악을 즐길 수 있고, 정규적인 맵 위치를 확인할 수 있다. 차량 내 어플리케이션/디스플레이 소프트웨어는 통행자들을 위한 동기화 접근을 제공하는 성능을 포함할 수 있다.
또 다른 예로서, 사용자는 스마트 무선 충전을 댁내에서 경험할 수 있다. 사용자가 방으로 들어가서 방안의 무선충전기 위에 스마트폰을 올려놓으면, 무선충전기는 스마트폰으로 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이 과정에서, 무선충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 부가적 특징으로의 동의(opt-in)를 문의하는 상태로 진입한다. 이를 위해, 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Hi xxx, Would you like to activate night mode and secure the building?: Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 스마트폰과 무선 충전기는 적어도 사용자의 패턴을 인지하고 사용자에게 문과 창문을 잠그거나 불을 끄거나, 알람을 설정하도록 권유할 수 있다.
상술한 본 발명의 실시예에 따른 무선 전력 송신 방법 및 장치, 또는 수신 장치 및 방법은 모든 구성요소 또는 단계가 필수적인 것은 아니므로, 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법은 상술한 구성요소 또는 단계의 일부 또는 전부를 포함하여 수행될 수 있다. 또 상술한 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법의 실시예들은 서로 조합되어 수행될 수도 있다. 또 상술한 각 구성요소 또는 단계들은 반드시 설명한 순서대로 수행되어야 하는 것은 아니며, 나중에 설명된 단계가 먼저 설명된 단계에 앞서 수행되는 것도 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 발명의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (19)

  1. 무선전력 전송시스템에서 대상 장치의 인증(authentication)을 수행하는 방법으로서,
    상기 대상 장치가 인증 기능을 지원하는지에 관한 지시정보를 포함하는 제1 패킷을 상기 대상 장치로부터 수신하는 단계;
    상기 대상 장치가 인증 기능을 지원하는 경우, 인증 요청 메시지를 상기 대상 장치로 전송하는 단계;
    상기 인증 요청 메시지에 대한 응답으로, 무선충전에 관한 인증서(certificate)를 포함하는 인증 응답 메시지를 상기 대상 장치로부터 수신하는 단계; 및
    상기 인증 응답 메시지에 기반하여 상기 대상 장치의 인증을 확인(confirm)하는 단계를 포함하되,
    상기 인증서의 포맷은 상기 인증서가 루트(root) 인증서, 중간(intermediate) 인증서, 리프(leaf) 인증서 중 어느 타입인지를 지시하는 인증서 타입과, 상기 인증서가 무선전력 전송장치(PTx)에 관한 것인지 및 리프 인증서인지 여부를 지시하는 PTx 및 리프 지시자를 포함함을 특징으로 하는, 방법.
  2. 제 1 항에 있어서,
    상기 대상 장치는 무선전력 전송장치이고, 상기 방법은 무선전력 수신장치에 의해 수행되며,
    상기 제1 패킷은 상기 무선전력 전송장치에 관한 성능 패킷(capability packet)이며,
    상기 지시정보는 1비트로서 상기 무선전력 전송장치의 인증 기능 지원 또는 비지원을 지시함을 특징으로 하는, 방법.
  3. 제 1 항에 있어서,
    상기 대상 장치는 무선전력 수신장치이고, 상기 방법은 무선전력 전송장치에 의해 수행되며,
    상기 제1 패킷은 상기 무선전력 수신장치에 관한 구성 패킷(configuration packet)이며,
    상기 지시정보는 1비트로서 상기 무선전력 수신장치의 인증 기능 지원 또는 비지원을 지시함을 특징으로 하는, 방법.
  4. 제 1 항에 있어서,
    상기 제1 패킷은 상기 대상 장치가 인증 개시자(authentication initiator: AI)로 동작할 수 있는지에 관한 제1 정보와, 상기 대상 장치가 인증 응답자(authentication responder: AR)로 동작할 수 있는지에 관한 제2 정보 중 적어도 하나를 포함함을 특징으로 하는, 방법.
  5. 제 1 항에 있어서,
    상기 인증 요청 메시지와 상기 인증 응답 메시지는 하위레벨(low level)의 보조 데이터 트랜스포트(auxiliary data transport : ADT) 데이터 교환 프로토콜에 기반하여 전송됨을 특징으로 하는, 방법.
  6. 제 5 항에 있어서,
    상기 인증 요청 메시지 또는 상기 인증 응답 메시지는 각각 순차적으로(sequentially) 다수의 ADT 데이터 패킷들로 분할 전송되고,
    매 새로운 ADT 데이터 패킷들의 전송시마다 헤더 값이 토글(toggle)되며, ADT 데이터 패킷의 전송에 실패한 경우, 상기 ADT 데이터 패킷의 재전송시 헤더 값이 토글되지 않음을 특징으로 하는, 방법.
  7. 제 5 항에 있어서,
    상기 다수의 ADT 데이터 패킷들은 상기 다수의 ADT 데이터 패킷들의 시작과 끝단에 각각 데이터 스트림의 시작(start of data stream : SOD)을 지시하는 제1 ADT 데이터 패킷과, 상기 데이터 스트림의 종료(end of data stream : EOD)를 지시하는 제2 ADT 데이터 패킷을 포함하고,
    상기 제1 및 제2 ADT 데이터 패킷은 ADT 제어 패킷 구조로서 1바이트로 구성됨을 특징으로 하는, 방법.
  8. 제 1 항에 있어서,
    상기 제1 패킷의 수신단계, 상기 인증 요청 메시지의 전송 단계 및 상기 인증 응답 메시지를 수신하는 단계 중 적어도 하나의 단계에서, 기본 전력 프로파일(baseline power profile)에 따른 전력으로 무선 충전이 수행되는 것을 특징으로 하는, 방법.
  9. 제 2 항 또는 제 3 항에 있어서,
    상기 무선전력 전송장치가 보낼 메시지가 있는지를 폴링(polling)하는 단계를 더 포함하되,
    상기 폴링은 상기 무선전력 수신장치가 상기 무선전력 전송장치로 1바이트의 일반 요청 패킷(general request packet :GRP)의 요청필드를 특정 값으로 설정하여 전송하는 단계를 포함함을 특징으로 하는, 방법.
  10. 제 2 항 또는 제 3 항에 있어서,
    상기 무선전력 전송장치가 상기 무선전력 수신장치의 수신전력패킷(received power packet: RPP)에 대한 응답으로서, 통신을 위한 요청(request for communication : RFC) 비트 패턴을 전송하는 단계; 및
    상기 무선전력 수신장치가 RFC 비트 패턴에 대한 응답으로서 일반 요청 패킷(general request packet :GRP)를 전송하여, 상기 무선전력 전송장치의 타겟 전력을 획득하는 단계를 더 포함함을 특징으로 하는, 방법.
  11. 제 5 항에 있어서,
    상기 ADT 데이터 패킷을 성공적으로 수신하는데 대한 응답으로서, ACK 대신 다른 ADT 데이터 패킷이 사용됨을 특징으로 하는, 방법.
  12. 무선전력 전송시스템에서 대상 장치의 인증(authentication)을 수행하는 장치로서,
    상기 대상 장치가 인증 기능을 지원하는지에 관한 지시정보를 포함하는 제1 패킷을 상기 대상 장치로부터 수신하고, 상기 대상 장치가 인증 기능을 지원하는 경우 인증 요청 메시지를 상기 대상 장치로 전송하며, 상기 인증 요청 메시지에 대한 응답으로 무선충전에 관한 인증서(certificate)를 포함하는 인증 응답 메시지를 상기 대상 장치로부터 수신하고, 상기 인증 응답 메시지에 기반하여 상기 대상 장치의 인증을 확인(confirm)하는 통신 유닛; 및
    상기 대상 장치와 자기 커플링(magnetic coupling)에 기반하여 무선 충전을 수행하는 코일을 포함하되,
    상기 인증서의 포맷은 상기 인증서가 루트(root) 인증서, 중간(intermediate) 인증서, 리프(leaf) 인증서 중 어느 타입인지를 지시하는 인증서 타입과, 상기 인증서가 무선전력 전송장치(PTx)에 관한 것인지 및 리프 인증서인지 여부를 지시하는 PTx 및 리프 지시자를 포함함을 특징으로 하는, 장치.
  13. 제 12 항에 있어서,
    상기 대상 장치는 무선전력 전송장치이고,
    상기 제1 패킷은 상기 무선전력 전송장치에 관한 성능 패킷(capability packet)이며,
    상기 지시정보는 1비트로서 상기 무선전력 전송장치의 인증 기능 지원 또는 비지원을 지시함을 특징으로 하는, 장치.
  14. 제 12 항에 있어서,
    상기 대상 장치는 무선전력 수신장치이고,
    상기 제1 패킷은 상기 무선전력 수신장치에 관한 구성 패킷(configuration packet)이며,
    상기 지시정보는 1비트로서 상기 무선전력 수신장치의 인증 기능 지원 또는 비지원을 지시함을 특징으로 하는, 장치.
  15. 제 12 항에 있어서,
    상기 제1 패킷은 상기 대상 장치가 인증 개시자(authentication initiator: AI)로 동작할 수 있는지에 관한 제1 정보와, 상기 대상 장치가 인증 응답자(authentication responder: AR)로 동작할 수 있는지에 관한 제2 정보 중 적어도 하나를 포함함을 특징으로 하는, 장치.
  16. 제 12 항에 있어서,
    상기 통신 유닛은 하위레벨(low level)의 보조 데이터 트랜스포트(auxiliary data transport : ADT) 데이터 교환 프로토콜에 기반하여 상기 인증 요청 메시지와 상기 인증 응답 메시지를 전송함을 특징으로 하는, 장치.
  17. 제 16 항에 있어서,
    상기 통신 유닛은 상기 인증 요청 메시지 또는 상기 인증 응답 메시지를 각각 순차적으로(sequentially) 다수의 ADT 데이터 패킷들로 분할 전송하고,
    매 새로운 ADT 데이터 패킷들의 전송시마다 헤더 값을 토글(toggle)함을 특징으로 하는, 장치.
  18. 제 17 항에 있어서,
    ADT 데이터 패킷의 전송에 실패한 경우, 상기 통신 유닛은 상기 ADT 데이터 패킷의 재전송시 헤더 값을 토글하지 않음을 특징으로 하는, 장치.
  19. 제 12 항에 있어서,
    상기 제1 패킷의 수신단계, 상기 인증 요청 메시지의 전송 단계 및 상기 인증 응답 메시지를 수신하는 단계 중 적어도 하나의 단계에서, 상기 코일은 기본 전력 프로파일(baseline power profile)에 따른 전력으로 무선 충전을 수행하는 것을 특징으로 하는, 장치.
PCT/KR2018/005071 2017-05-01 2018-05-02 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법 WO2018203652A1 (ko)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP18794508.4A EP3576249A4 (en) 2017-05-01 2018-05-02 DEVICE AND METHOD FOR PERFORMING AUTHENTICATION IN A WIRELESS POWER TRANSMISSION SYSTEM
KR1020237044441A KR102678699B1 (ko) 2017-05-01 2018-05-02 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법
US16/494,982 US11405873B2 (en) 2017-05-01 2018-05-02 Device and method for performing authentication in wireless power transmission system
EP21175279.5A EP3890160A1 (en) 2017-05-01 2018-05-02 Device and method for performing authentication in wireless power transmission system
KR1020237002946A KR102618635B1 (ko) 2017-05-01 2018-05-02 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법
CN202310140742.3A CN116094116A (zh) 2017-05-01 2018-05-02 无线功率传输系统中执行认证的设备和方法
KR1020197025479A KR102367471B1 (ko) 2017-05-01 2018-05-02 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법
CN201880026272.5A CN110537309B (zh) 2017-05-01 2018-05-02 无线功率传输系统中执行认证的设备和方法
JP2019549520A JP6883116B2 (ja) 2017-05-01 2018-05-02 無線電力送信システムにおいて認証を行う装置及び方法
KR1020227005838A KR102493515B1 (ko) 2017-05-01 2018-05-02 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법
US16/857,895 US10805888B2 (en) 2017-05-01 2020-04-24 Device and method for performing authentication in wireless power transmission system
US17/853,137 US11664852B2 (en) 2017-05-01 2022-06-29 Device and method for performing authentication in wireless power transmission system
US18/138,443 US20230261696A1 (en) 2017-05-01 2023-04-24 Device and method for performing authentication in wireless power transmission system

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
US201762492927P 2017-05-01 2017-05-01
US62/492,927 2017-05-01
US201762509724P 2017-05-22 2017-05-22
US62/509,724 2017-05-22
US201762530856P 2017-07-11 2017-07-11
US62/530,856 2017-07-11
US201762538780P 2017-07-30 2017-07-30
US62/538,780 2017-07-30
US201762564219P 2017-09-27 2017-09-27
US201762563648P 2017-09-27 2017-09-27
US62/563,648 2017-09-27
US62/564,219 2017-09-27
US201862617277P 2018-01-14 2018-01-14
US62/617,277 2018-01-14
KR10-2018-0034154 2018-03-23
KR20180034154 2018-03-23
KR10-2018-0033872 2018-03-23
KR20180033872 2018-03-23
KR20180035076 2018-03-27
KR10-2018-0035076 2018-03-27
KR20180037730 2018-03-30
KR10-2018-0037730 2018-03-30
KR20180038351 2018-04-02
KR10-2018-0038351 2018-04-02
KR10-2018-0043939 2018-04-16
KR20180043939 2018-04-16

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/494,982 A-371-Of-International US11405873B2 (en) 2017-05-01 2018-05-02 Device and method for performing authentication in wireless power transmission system
US16/857,895 Continuation US10805888B2 (en) 2017-05-01 2020-04-24 Device and method for performing authentication in wireless power transmission system
US17/853,137 Continuation US11664852B2 (en) 2017-05-01 2022-06-29 Device and method for performing authentication in wireless power transmission system

Publications (1)

Publication Number Publication Date
WO2018203652A1 true WO2018203652A1 (ko) 2018-11-08

Family

ID=68342292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005071 WO2018203652A1 (ko) 2017-05-01 2018-05-02 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법

Country Status (6)

Country Link
US (2) US11664852B2 (ko)
EP (2) EP3576249A4 (ko)
JP (2) JP6883116B2 (ko)
KR (4) KR102493515B1 (ko)
CN (2) CN116094116A (ko)
WO (1) WO2018203652A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137411A (ja) * 2019-02-19 2020-08-31 エルジー エレクトロニクス インコーポレイティド 無線電力伝送装置及びその制御方法
CN112134364A (zh) * 2019-06-24 2020-12-25 苹果公司 具有同时活动的数据流的无线功率系统
WO2021006487A1 (ko) * 2019-07-09 2021-01-14 엘지전자 주식회사 무선전력 수신장치 및 무선전력 전송장치
JP2021093892A (ja) * 2019-12-12 2021-06-17 キヤノン株式会社 受電装置、送電装置およびそれらの制御方法、プログラム
CN114342212A (zh) * 2019-09-04 2022-04-12 佳能株式会社 输电设备、控制方法和程序
US11552504B2 (en) 2019-04-29 2023-01-10 Lg Electronics Inc. Wireless power receiver, wireless power transmitter, and wireless power transfer method using same
US11641220B2 (en) * 2018-04-16 2023-05-02 Lg Electronics Inc. Apparatus and method for performing data stream transmission in wireless power transfer system
US11722014B2 (en) 2017-08-28 2023-08-08 Canon Kabushiki Kaisha Power transmission apparatus, power receiving apparatus, wireless power transmission system, and control methods thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE064897T2 (hu) 2016-06-08 2024-04-28 Lg Electronics Inc Vezeték nélküli energiaátviteli eljárás és ehhez való eszköz
WO2018203652A1 (ko) * 2017-05-01 2018-11-08 엘지전자 주식회사 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법
US11973542B2 (en) * 2019-04-17 2024-04-30 Lg Electronics Inc. Method for controlling communication connection in wireless power transmission system, and apparatus therefor
CN111246412B (zh) * 2020-01-08 2021-02-05 北京爱笔科技有限公司 定位信息的发送、定位信息的发送方的验证方法及装置
EP4109793A4 (en) 2020-02-17 2024-06-19 LG Electronics Inc. WIRELESS POWER RECEIVING DEVICE, WIRELESS POWER TRANSMISSION DEVICE AND METHOD FOR SENDING/RECEIVING MESSAGES BETWEEN A WIRELESS POWER RECEIVING DEVICE AND A WIRELESS POWER TRANSMISSION DEVICE USING A DATA TRANSMISSION STREAM
WO2021206186A1 (ko) * 2020-04-06 2021-10-14 엘지전자 주식회사 무선전력 수신장치 및 무선전력 전송장치
KR20220036291A (ko) * 2020-09-15 2022-03-22 삼성전자주식회사 전자 장치 및 전자 장치에서 전력 수신 장치 확인 방법
WO2022086090A1 (ko) * 2020-10-19 2022-04-28 엘지전자 주식회사 무선 전력 전송 시스템에서 데이터 무결성 지원을 위한 동작과 자동 연결 설정 방법
EP4447266A1 (en) * 2021-12-07 2024-10-16 LG Electronics Inc. Method and device related to time requirement for application message in wireless power transmission system
KR20240099453A (ko) * 2021-12-07 2024-06-28 엘지전자 주식회사 무선 전력 전송 시스템에서 어플리케이션 메시지에 대한 시간 요구 사항에 관한 방법 및 장치
WO2024075967A1 (ko) * 2022-10-06 2024-04-11 엘지전자 주식회사 무선 전력 전송 시스템에서 빠른 인증을 통해 고전력 모드에서 무선 재충전을 수행하는 방법 및 장치
WO2024176871A1 (ja) * 2023-02-24 2024-08-29 キヤノン株式会社 送電装置、送電装置が行う方法及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060248208A1 (en) * 1998-01-22 2006-11-02 Walbeck Alan K Method and apparatus for universal data exchange gateway
US20110154024A1 (en) * 2009-12-22 2011-06-23 Motorola, Inc. Method and apparatus for selecting a certificate authority
KR20120120692A (ko) * 2011-04-25 2012-11-02 엘지전자 주식회사 무선 충전 서비스 제공 장치 및 시스템
KR20160012889A (ko) * 2014-07-24 2016-02-03 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20170013305A (ko) * 2014-07-24 2017-02-06 인텔 코포레이션 보안 무선 충전

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314181A (ja) * 2005-05-09 2006-11-16 Sony Corp 非接触充電装置及び非接触充電システム並びに非接触充電方法
JP4600470B2 (ja) 2007-02-20 2010-12-15 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
JP5110966B2 (ja) * 2007-05-24 2012-12-26 ソニーモバイルコミュニケーションズ株式会社 無接点充電装置及び無接点電力伝送システム
WO2009022860A1 (en) * 2007-08-13 2009-02-19 Lg Electronics Inc. Method for performing handover in wireless communication system
US8943552B2 (en) * 2009-04-24 2015-01-27 Blackberry Limited Methods and apparatus to discover authentication information in a wireless networking environment
JP5788636B2 (ja) * 2009-12-16 2015-10-07 ソニー株式会社 電動移動体、管理装置、駆動管理方法、及び充電装置
JP5446922B2 (ja) * 2010-01-25 2014-03-19 ソニー株式会社 電力管理装置、電子機器及び電子機器登録方法
JP5526833B2 (ja) 2010-02-05 2014-06-18 ソニー株式会社 無線電力伝送装置
EP2560266B1 (en) * 2010-04-13 2018-12-05 Fujitsu Limited Power supply system, power transmitter, and power receiver
JP5523272B2 (ja) * 2010-10-06 2014-06-18 シャープ株式会社 通信装置、テレビ受信装置、通信システム、テレビ受信システム及び登録方法
KR101753032B1 (ko) * 2010-11-16 2017-06-30 엘지전자 주식회사 무선전력전송방법, 무선전력수신방법, 무선전력전송장치 및 무선전력수신장치
KR101688948B1 (ko) 2011-05-27 2016-12-22 엘지전자 주식회사 무선 전력 전송을 이용한 데이터 통신 연결 수립
CN103650554B (zh) * 2011-07-11 2018-02-23 黑莓有限公司 用于移动设备之间的可信通信的方法、移动设备和计算机可读介质
US9407106B2 (en) 2012-04-03 2016-08-02 Qualcomm Incorporated System and method for wireless power control communication using bluetooth low energy
KR101809295B1 (ko) 2013-01-15 2018-01-18 삼성전자주식회사 무선 전력 송신기 및 무선 전력 수신기와 각각의 제어 방법
US10270748B2 (en) * 2013-03-22 2019-04-23 Nok Nok Labs, Inc. Advanced authentication techniques and applications
US20140325218A1 (en) 2013-04-26 2014-10-30 Toyota Jidosha Kabushiki Kaisha Wireless Charging System Using Secure Wireless Charging Protocols
US20160085955A1 (en) * 2013-06-10 2016-03-24 Doosra, Inc. Secure Storing and Offline Transferring of Digitally Transferable Assets
EP2822142B1 (en) 2013-07-01 2017-12-06 HTC Corporation Method for wireless charging authentication and related wireless charging system
US20150031334A1 (en) * 2013-07-25 2015-01-29 Htc Corporation Method of Handling Authentication for Wireless Charging
JP6276532B2 (ja) 2013-07-29 2018-02-07 キヤノン株式会社 受電装置、送電装置およびそれらの制御方法並びにプログラム
JP6182010B2 (ja) * 2013-07-31 2017-08-16 キヤノン株式会社 制御装置、制御方法、及びプログラム
US9385787B2 (en) * 2014-01-29 2016-07-05 Nokia Technologies Oy Communications via wireless charging
US9615254B2 (en) * 2014-03-21 2017-04-04 Intel Corporation Wireless power transmitting devices, methods for signaling access information for a wireless communication network and method for authorizing a wireless power receiving device
US10362010B2 (en) * 2014-05-29 2019-07-23 Apple Inc. Management of credentials on an electronic device using an online resource
KR102022707B1 (ko) * 2014-11-03 2019-09-19 주식회사 위츠 비접촉 방식 전력 송전 장치, 모바일 단말기, 서버 및 이를 이용한 위치 기반 서비스 시스템
KR102391190B1 (ko) * 2015-03-13 2022-04-28 삼성전자주식회사 무선 충전 시스템에서 무선 전력 수신기의 로드 생성 방법 및 무선 전력 수신기
KR20160143044A (ko) * 2015-06-04 2016-12-14 엘지이노텍 주식회사 무전전력전송 시스템 및 이의 구동 방법.
US9693196B2 (en) 2015-09-22 2017-06-27 Intel IP Corporation Detection of wireless power transmitters
US11405873B2 (en) * 2017-05-01 2022-08-02 Lg Electronics Inc. Device and method for performing authentication in wireless power transmission system
WO2018203652A1 (ko) * 2017-05-01 2018-11-08 엘지전자 주식회사 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법
JP6890504B2 (ja) * 2017-08-28 2021-06-18 キヤノン株式会社 送電装置、受電装置、無線電力伝送システムおよびそれらの制御方法
JP7121521B2 (ja) * 2018-04-06 2022-08-18 キヤノン株式会社 受電装置、送電装置、無線電力伝送システムおよびそれらの制御方法
JP7005423B2 (ja) * 2018-04-27 2022-02-04 キヤノン株式会社 受電装置、送電装置、無線で送電するシステム、受電装置の制御方法、送電装置の制御方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060248208A1 (en) * 1998-01-22 2006-11-02 Walbeck Alan K Method and apparatus for universal data exchange gateway
US20110154024A1 (en) * 2009-12-22 2011-06-23 Motorola, Inc. Method and apparatus for selecting a certificate authority
KR20120120692A (ko) * 2011-04-25 2012-11-02 엘지전자 주식회사 무선 충전 서비스 제공 장치 및 시스템
KR20160012889A (ko) * 2014-07-24 2016-02-03 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20170013305A (ko) * 2014-07-24 2017-02-06 인텔 코포레이션 보안 무선 충전

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11722014B2 (en) 2017-08-28 2023-08-08 Canon Kabushiki Kaisha Power transmission apparatus, power receiving apparatus, wireless power transmission system, and control methods thereof
US11641220B2 (en) * 2018-04-16 2023-05-02 Lg Electronics Inc. Apparatus and method for performing data stream transmission in wireless power transfer system
JP2020137411A (ja) * 2019-02-19 2020-08-31 エルジー エレクトロニクス インコーポレイティド 無線電力伝送装置及びその制御方法
JP7129438B2 (ja) 2019-02-19 2022-09-01 エルジー エレクトロニクス インコーポレイティド 無線電力伝送装置及びその制御方法
US11552504B2 (en) 2019-04-29 2023-01-10 Lg Electronics Inc. Wireless power receiver, wireless power transmitter, and wireless power transfer method using same
GB2587051A (en) * 2019-06-24 2021-03-17 Apple Inc Wireless power systems with concurrently active data streams
JP2021002995A (ja) * 2019-06-24 2021-01-07 アップル インコーポレイテッドApple Inc. 同時にアクティブなデータストリームを用いる無線電力システム
US11114903B2 (en) 2019-06-24 2021-09-07 Apple Inc. Wireless power systems with concurrently active data streams
GB2587051B (en) * 2019-06-24 2021-11-10 Apple Inc Wireless power systems with concurrently active data streams
KR102364236B1 (ko) * 2019-06-24 2022-02-16 애플 인크. 동시 활성 데이터 스트림들을 갖는 무선 전력 시스템들
CN112134364B (zh) * 2019-06-24 2024-07-23 苹果公司 具有同时活动的数据流的无线功率系统
CN112134364A (zh) * 2019-06-24 2020-12-25 苹果公司 具有同时活动的数据流的无线功率系统
KR20210000265A (ko) * 2019-06-24 2021-01-04 애플 인크. 동시 활성 데이터 스트림들을 갖는 무선 전력 시스템들
JP7228543B2 (ja) 2019-06-24 2023-02-24 アップル インコーポレイテッド 同時にアクティブなデータストリームを用いる無線電力システム
WO2021006487A1 (ko) * 2019-07-09 2021-01-14 엘지전자 주식회사 무선전력 수신장치 및 무선전력 전송장치
EP4027487A4 (en) * 2019-09-04 2023-10-04 Canon Kabushiki Kaisha POWER TRANSMISSION DEVICE, CONTROL METHOD AND PROGRAM
US12021396B2 (en) 2019-09-04 2024-06-25 Canon Kabushiki Kaisha Power transmission apparatus, control method, and computer-readable storage medium
CN114342212A (zh) * 2019-09-04 2022-04-12 佳能株式会社 输电设备、控制方法和程序
JP2021093892A (ja) * 2019-12-12 2021-06-17 キヤノン株式会社 受電装置、送電装置およびそれらの制御方法、プログラム
JP7425590B2 (ja) 2019-12-12 2024-01-31 キヤノン株式会社 受電装置およびその制御方法、プログラム

Also Published As

Publication number Publication date
EP3890160A1 (en) 2021-10-06
KR102618635B1 (ko) 2023-12-29
CN116094116A (zh) 2023-05-09
KR20190138631A (ko) 2019-12-13
US20220346032A1 (en) 2022-10-27
CN110537309B (zh) 2023-03-07
KR102493515B1 (ko) 2023-02-01
JP2020515224A (ja) 2020-05-21
CN110537309A (zh) 2019-12-03
KR102678699B1 (ko) 2024-07-01
EP3576249A1 (en) 2019-12-04
JP2021141810A (ja) 2021-09-16
US20230261696A1 (en) 2023-08-17
KR20240005982A (ko) 2024-01-12
JP6883116B2 (ja) 2021-06-09
EP3576249A4 (en) 2020-02-12
US11664852B2 (en) 2023-05-30
KR102367471B1 (ko) 2022-02-25
KR20220030311A (ko) 2022-03-10
JP7227301B2 (ja) 2023-02-21
KR20230021158A (ko) 2023-02-13

Similar Documents

Publication Publication Date Title
WO2019203537A1 (ko) 무선전력 전송시스템에서 데이터 스트림의 전송을 수행하는 장치 및 방법
WO2018203652A1 (ko) 무선전력 전송시스템에서 인증을 수행하는 장치 및 방법
WO2020197267A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
WO2019203539A1 (ko) 무선전력 전송시스템에서 전력 제어를 수행하는 장치 및 방법
WO2020017859A1 (ko) 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법
WO2019208960A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
WO2020222528A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법
WO2019194524A1 (ko) 무선전력 전송 시스템에서 전력 전송을 제어하는 장치 및 방법
WO2020149492A1 (ko) 멀티 코일을 이용하여 다수의 기기에 무선전력을 전송하는 장치 및 방법
WO2020085614A1 (ko) 무선전력 전송 시스템에서 데이터를 전송하는 방법 및 장치
WO2020004940A1 (ko) 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법
WO2020222415A1 (ko) 근거리 무선통신을 이용하여 전력 클래스를 협상하는 무선충전 장치, 방법 및 시스템
WO2020027521A1 (ko) 이물질 검출에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2020036357A1 (ko) 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법
WO2021177726A2 (ko) 무선전력 전송장치 및 무선전력 전송장치에 의한 통신 방법
WO2020213958A1 (ko) 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법
WO2020130265A1 (ko) 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2019240565A1 (ko) 타 통신카드의 검출을 수행하는 무선전력 전송장치 및 방법
WO2020085828A1 (ko) 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법
WO2020153586A1 (ko) 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법
WO2021006475A1 (ko) 무선전력 전송장치
WO2020226384A1 (ko) 무선 전력 링크 제어 방법 및 그를 위한 장치
WO2020185051A1 (ko) 저전력 및 중전력 호환 무선충전 수신 장치 및 방법
WO2020190109A1 (ko) 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법
WO2020246685A1 (ko) 무선전력 전송 시스템에서 접속 제어 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197025479

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018794508

Country of ref document: EP

Effective date: 20190827

ENP Entry into the national phase

Ref document number: 2019549520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE