WO2021177726A2 - 무선전력 전송장치 및 무선전력 전송장치에 의한 통신 방법 - Google Patents
무선전력 전송장치 및 무선전력 전송장치에 의한 통신 방법 Download PDFInfo
- Publication number
- WO2021177726A2 WO2021177726A2 PCT/KR2021/002639 KR2021002639W WO2021177726A2 WO 2021177726 A2 WO2021177726 A2 WO 2021177726A2 KR 2021002639 W KR2021002639 W KR 2021002639W WO 2021177726 A2 WO2021177726 A2 WO 2021177726A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless power
- communication
- power receiver
- power transmitter
- receiver
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/188—Time-out mechanisms
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/10—Frequency-modulated carrier systems, i.e. using frequency-shift keying
- H04L27/12—Modulator circuits; Transmitter circuits
Definitions
- the present specification relates to a wireless power transmitter for transmitting wireless power to a wireless power receiver, and a communication method with the wireless power receiver by the wireless power transmitter.
- the wireless power transmission technology is a technology for wirelessly transferring power between a power source and an electronic device.
- the wireless power transfer technology enables charging of the battery of a wireless terminal by simply placing a wireless terminal such as a smartphone or tablet on a wireless charging pad, so that it is more efficient than a wired charging environment using a conventional wired charging connector. It can provide excellent mobility, convenience and safety.
- wireless power transmission technology is used in various fields such as electric vehicles, wearable devices such as Bluetooth earphones and 3D glasses, home appliances, furniture, underground facilities, buildings, medical devices, robots, and leisure. It is attracting attention as it will replace the existing wired power transmission environment.
- the wireless power transmission method is also referred to as a contactless power transmission method, a no point of contact power transmission method, or a wireless charging method.
- a wireless power transmission system includes a wireless power transmission device for supplying electrical energy in a wireless power transmission method, and wireless power for receiving electrical energy wirelessly supplied from the wireless power transmission device and supplying power to a power receiving device such as a battery cell. It may be configured as a receiving device.
- Wireless power transmission technology includes a method of transmitting power through magnetic coupling, a method of transmitting power through radio frequency (RF), a method of transmitting power through microwaves, and ultrasound
- the magnetic coupling-based method is again classified into a magnetic induction method and a magnetic resonance method.
- the magnetic induction method is a method of transmitting energy using a current induced in the receiving coil due to the magnetic field generated by the transmitting coil battery cell according to electromagnetic coupling between the transmitting coil and the receiving coil.
- the magnetic resonance method is similar to the magnetic induction method in that it uses a magnetic field. However, in the magnetic resonance method, resonance occurs when a specific resonant frequency is applied to the coil of the transmitting side and the coil of the receiving side. It is different from magnetic induction.
- the technical problem of the present specification is wireless power transmission in which a time limit required for a response and/or data packet transmitted to or received from a counterpart device is changed based on a change in the communication speed between the wireless power transmitter and the wireless power receiver.
- An object of the present invention is to provide an apparatus and a communication method using a wireless power transmitter.
- an object of the present specification is to provide an efficient authentication method between a wireless power transmitter and a wireless power receiver.
- a wireless power transmitter for solving the above problems, a power conversion circuit for transmitting the wireless power to the wireless power receiver, and a communication for communicating with the wireless power receiver and controlling the wireless power a control circuit, wherein the communication/control circuit transmits a response to the received data packet received from the wireless power receiver based on a timeout time or a transmission data packet transmitted to the wireless power receiver, wherein the The timeout time is changed according to a communication speed between the communication/control circuit and the wireless power receiver.
- a response to a received data packet received from the wireless power receiver based on a timeout time a transmission data packet to be transmitted to the wireless power receiver is transmitted, and the timeout time is changed according to a communication speed between the wireless power transmitter and the wireless power receiver.
- FIG. 1 is a block diagram of a wireless power system according to an embodiment.
- FIG. 2 is a block diagram of a wireless power system according to another embodiment.
- 3A illustrates an embodiment of various electronic devices to which a wireless power transmission system is introduced.
- 3B shows an example of WPC NDEF in a wireless power transmission system.
- 4A is a block diagram of a wireless power transmission system according to another embodiment.
- 4B is a diagram illustrating an example of a Bluetooth communication architecture to which an embodiment according to the present specification can be applied.
- 4C is a block diagram illustrating a wireless power transmission system using BLE communication according to an example.
- 4D is a block diagram illustrating a wireless power transmission system using BLE communication according to another example.
- 5 is a state transition diagram for explaining a wireless power transmission procedure.
- FIG. 6 illustrates a power control control method according to an embodiment.
- FIG. 7 is a block diagram of an apparatus for transmitting power wirelessly according to another embodiment.
- FIG 8 shows an apparatus for receiving wireless power according to another embodiment.
- FIG. 9 is a diagram illustrating operating states of a wireless power transmitter and a wireless power receiver in a shared mode according to an embodiment.
- FIG. 10 is a structure of a performance packet of a wireless power transmitter according to an embodiment.
- 11 is a configuration packet structure of a wireless power receiver according to an embodiment.
- FIG. 12 illustrates an application-level data stream between a wireless power transmitter and a receiver according to an example.
- FIG. 13 is a diagram for explaining an FSK encoding method according to the current WPC Qi standard.
- FIG. 14 is a flowchart illustrating a protocol of a negotiation phase or a renegotiation phase according to an embodiment.
- 15 is a diagram illustrating a format of a message field of an SRQ according to an example.
- 16 is a diagram illustrating a format of a parameter field of an SRQ according to an example for requesting a change of characteristic information related to FSK.
- 17 is a diagram for explaining a method of solving a transmission timing of a message to which a new NCYLCES is applied according to an embodiment.
- 18 is a diagram for explaining a method of solving a transmission timing of a message to which a new NCYLCES is applied according to another embodiment.
- 19 and 20 are diagrams for explaining an example of a timeout time required for a wireless power transmitter.
- 21 is a diagram for explaining an example of a power transmission interruption time required for a wireless power transmitter.
- 22 is a diagram for explaining an authentication method between a wireless power receiver and a wireless power transmitter using an external server according to an embodiment.
- 23 is a flowchart illustrating an authentication method between a wireless power receiver and a wireless power transmitter using an external server according to another embodiment.
- step S1205 of FIG. 23 is a flowchart for explaining step S1205 of FIG. 23 in more detail.
- a or B (A or B) may mean “only A”, “only B” or “both A and B”.
- a or B (A or B)” may be interpreted as “A and/or B (A and/or B)”.
- A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
- a slash (/) or a comma (comma) used herein may mean “and/or”.
- A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
- A, B, C may mean “A, B, or C”.
- At least one of A and B may mean “only A”, “only B” or “both A and B”.
- the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “at least one of A and B”.
- At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” Any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means may mean “at least one of A, B and C”.
- parentheses used herein may mean “for example”. Specifically, when displayed as “control information (PDCCH)”, “PDCCH” may be proposed as an example of “control information”. In other words, “control information” of the present specification is not limited to “PDCCH”, and “PDDCH” may be proposed as an example of “control information”. Also, even when displayed as “control information (ie, PDCCH)”, “PDCCH” may be proposed as an example of “control information”.
- wireless power refers to any form of electric field, magnetic field, electromagnetic field, etc. transmitted from a wireless power transmitter to a wireless power receiver without the use of physical electromagnetic conductors. It is used to mean the energy of Wireless power may also be called a wireless power signal, and may refer to an oscillating magnetic flux enclosed by a primary coil and a secondary coil. Power conversion in a system is described herein for wirelessly charging devices including, for example, mobile phones, cordless phones, iPods, MP3 players, headsets, and the like.
- the basic principle of wireless power transmission is, for example, a method of transmitting power through magnetic coupling, a method of transmitting power through a radio frequency (RF), microwave (microwave) ) includes both a method of transmitting power through an ultrasonic wave and a method of transmitting power through an ultrasonic wave.
- RF radio frequency
- microwave microwave
- FIG. 1 is a block diagram of a wireless power system 10 according to an embodiment.
- a wireless power system 10 includes a wireless power transmitter 100 and a wireless power receiver 200 .
- the wireless power transmitter 100 receives power from an external power source S to generate a magnetic field.
- the wireless power receiving apparatus 200 receives power wirelessly by generating a current using the generated magnetic field.
- the wireless power transmitter 100 and the wireless power receiver 200 may transmit/receive various information required for wireless power transmission.
- the communication between the wireless power transmitter 100 and the wireless power receiver 200 is in-band communication using a magnetic field used for wireless power transmission or out-band communication using a separate communication carrier.
- (out-band communication) may be performed according to any one method.
- Out-band communication may be referred to as out-of-band communication.
- the terms are unified and described as out-band communication. Examples of out-band communication may include NFC, Bluetooth (bluetooth), BLE (bluetooth low energy), and the like.
- the wireless power transmitter 100 may be provided as a fixed type or a mobile type.
- the fixed type include embedded in furniture such as ceilings, walls, or tables indoors, implanted in outdoor parking lots, bus stops, subway stations, etc., or installed in vehicles or trains, etc. There is this.
- the portable wireless power transmission device 100 may be implemented as a part of another device, such as a portable device having a movable weight or size, or a cover of a notebook computer.
- the wireless power receiver 200 should be interpreted as a comprehensive concept including various electronic devices including batteries and various home appliances that are driven by receiving power wirelessly instead of a power cable.
- Representative examples of the wireless power receiver 200 include a mobile terminal, a cellular phone, a smart phone, a personal digital assistant (PDA), and a portable media player (PMP: Portable Media Player), Wibro terminals, tablets, phablets, notebooks, digital cameras, navigation terminals, televisions, electric vehicles (EVs), and the like.
- FIG. 2 is a block diagram of a wireless power system 10 according to another embodiment.
- one wireless power transmitter 100 and the wireless power receiver 200 exchange power on a one-to-one basis, but as shown in FIG. 2 , one wireless power transmitter 100 includes a plurality of wireless power receivers. It is also possible to transfer power to (200-1, 200-2,..., 200-M). In particular, in the case of performing wireless power transmission in a magnetic resonance method, one wireless power transmission device 100 applies a simultaneous transmission method or a time division transmission method to a plurality of wireless power reception devices 200-1, 200-2, ...,200-M) can deliver power.
- FIG. 1 shows a state in which the wireless power transmitter 100 directly transmits power to the wireless power receiver 200
- the wireless power transmitter 100 and the wireless power receiver 200 are connected wirelessly.
- a separate wireless power transmission/reception device such as a relay or repeater for increasing the power transmission distance may be provided.
- power may be transferred from the wireless power transmitter 100 to the wireless power transceiver, and the wireless power transceiver may again transmit power to the wireless power receiver 200 .
- the wireless power receiver, the power receiver, and the receiver referred to in this specification refer to the wireless power receiving apparatus 200 .
- the wireless power transmitter, the power transmitter, and the transmitter referred to in this specification refer to the wireless power receiving and transmitting apparatus 100 .
- 3A illustrates an embodiment of various electronic devices to which a wireless power transmission system is introduced.
- FIG. 3A shows electronic devices classified according to the amount of power transmitted and received in the wireless power transmission system.
- wearable devices such as a smart watch, a smart glass, a head mounted display (HMD), and a smart ring and an earphone, a remote control, a smart phone, a PDA, a tablet
- a low-power (about 5W or less or about 20W or less) wireless charging method may be applied to mobile electronic devices (or portable electronic devices) such as a PC.
- Medium/small power (about 50W or less or about 200W or less) wireless charging method may be applied to small and medium-sized home appliances such as laptop computers, robot cleaners, TVs, sound devices, vacuum cleaners, and monitors.
- Kitchen appliances such as blenders, microwave ovens, and electric rice cookers, personal mobility devices (or electronic devices/mobilities) such as wheelchairs, electric kickboards, electric bicycles, and electric vehicles, use high power (about 2 kW or less or 22 kW or less)
- a wireless charging method may be applied.
- the electronic devices/mobile means described above may each include a wireless power receiver to be described later. Accordingly, the above-described electronic devices/mobile means may be charged by wirelessly receiving power from the wireless power transmitter.
- Standards for wireless power transmission include a wireless power consortium (WPC), an air fuel alliance (AFA), and a power matters alliance (PMA).
- WPC wireless power consortium
- AFA air fuel alliance
- PMA power matters alliance
- the WPC standard defines a baseline power profile (BPP) and an extended power profile (EPP).
- BPP relates to a wireless power transmitter and receiver supporting 5W power transmission
- EPP relates to a wireless power transmitter and receiver supporting power transmission in a range greater than 5W and less than 30W.
- the WPC classifies a wireless power transmitter and a receiver into power class (PC) -1, PC0, PC1, and PC2, and provides standard documents for each PC.
- PC power class
- the PC-1 standard relates to a wireless power transmitter and receiver that provide guaranteed power of less than 5W.
- Applications of PC-1 include wearable devices such as smart watches.
- the PC0 standard relates to a wireless power transmitter and receiver that provide a guaranteed power of 5W.
- the PC0 standard includes EPP with guaranteed power up to 30W.
- in-band (IB) communication is a mandatory communication protocol of PC0
- out-band (OB) communication used as an optional backup channel may also be used.
- the wireless power receiver may identify whether OB is supported by setting an OB flag in a configuration packet.
- the wireless power transmitter supporting the OB may enter the OB handover phase by transmitting a bit-pattern for OB handover as a response to the configuration packet.
- the response to the configuration packet may be NAK, ND, or a newly defined 8-bit pattern.
- Applications of PC0 include smartphones.
- the PC1 standard relates to a wireless power transmitter and receiver that provide guaranteed power of 30W to 150W.
- the OB is an essential communication channel for PC1, and the IB is used as initialization and link establishment to the OB.
- the wireless power transmitter may enter the OB handover phase by using a bit pattern for OB handover.
- Applications of PC1 include laptops and power tools.
- the PC2 standard relates to a wireless power transmitter and receiver that provide guaranteed power of 200W to 2kW, and its applications include kitchen appliances.
- PCs may be distinguished according to power levels, and whether to support the same compatibility between PCs may be optional or mandatory.
- compatibility between identical PCs means that power transmission and reception are possible between identical PCs.
- compatibility between different PCs may also be supported.
- compatibility between different PCs means that power transmission/reception is possible even between different PCs.
- the wireless power transmitter having PC x can charge the wireless power receiver having PC y, it can be seen that compatibility between different PCs is maintained.
- a wireless power receiver of the lap-top charging method that can stably charge only when power is continuously transmitted is called a wireless power transmitter of the same PC. Even so, there may be a problem in stably receiving power from the wireless power transmitter of the electric tool type that transmits power discontinuously.
- the wireless power receiver may There is a risk of breakage. As a result, it is difficult for a PC to be an index/standard representing/indicating compatibility.
- Wireless power transmission and reception devices may provide a very convenient user experience and interface (UX/UI). That is, a smart wireless charging service may be provided.
- the smart wireless charging service may be implemented based on the UX/UI of a smartphone including a wireless power transmitter. For these applications, the interface between the smartphone's processor and the wireless charging receiver allows "drop and play" bidirectional communication between the wireless power transmitter and the receiver.
- a 'profile' will be newly defined as an index/standard representing/indicating compatibility. That is, it can be interpreted that compatibility is maintained between wireless power transceivers having the same 'profile' and stable power transmission and reception is possible, and power transmission/reception is impossible between wireless power transceivers having different 'profiles'.
- Profiles may be defined according to application and/or compatibility independent of (or independently of) power class.
- the profile can be broadly divided into three categories: i) mobile and computing, ii) power tools, and iii) kitchen.
- the profile can be largely divided into i) mobile, ii) electric tool, iii) kitchen, and iv) wearable.
- PC may be defined as PC0 and/or PC1
- communication protocol/method is IB and OB
- operating frequency is 87 ⁇ 205kHz
- examples of applications include smartphones, laptops, etc.
- the PC may be defined as PC1
- the communication protocol/method may be IB
- the operating frequency may be defined as 87 to 145 kHz
- an electric tool may exist as an example of the application.
- PC may be defined as PC2
- communication protocol/method is NFC-based
- operating frequency is less than 100 kHz
- examples of applications include kitchen/home appliances.
- NFC communication can be used between the wireless power transmitter and receiver.
- WPC NDEF NFC Data Exchange Profile Format
- the wireless power transmitter and the receiver can confirm that they are NFC devices.
- 3B shows an example of WPC NDEF in a wireless power transmission system.
- the WPC NDEF is, for example, an application profile field (eg 1B), a version field (eg 1B), and profile specific data (eg 1B).
- the application profile field indicates whether the device is i) mobile and computing, ii) powered tools, and iii) kitchen, the upper nibble of the version field indicates the major version and the lower nibble (lower nibble) indicates a minor version.
- Profile-specific data also defines the content for the kitchen.
- the PC may be defined as PC-1
- the communication protocol/method may be IB
- the operating frequency may be defined as 87 to 205 kHz
- examples of the application may include a wearable device worn on the user's body.
- Maintaining compatibility between the same profiles may be essential, and maintaining compatibility between different profiles may be optional.
- profiles may be generalized and expressed as first to nth profiles, and new profiles may be added/replaced according to WPC standards and embodiments.
- the wireless power transmitter selectively transmits power only to the wireless power receiver having the same profile as itself, thereby enabling more stable power transmission.
- the burden on the wireless power transmitter is reduced and power transmission to an incompatible wireless power receiver is not attempted, the risk of damage to the wireless power receiver is reduced.
- PC1 in the 'mobile' profile can be defined by borrowing optional extensions such as OB based on PC0, and in the case of the 'powered tools' profile, the PC1 'mobile' profile can be defined simply as a modified version.
- OB optional extensions
- the wireless power transmitter or the wireless power receiver may inform the other party of its profile through various methods.
- the AFA standard refers to a wireless power transmitter as a power transmitting circuit (PTU), and a wireless power receiver as a power receiving circuit (PRU), and the PTU is classified into a number of classes as shown in Table 1, and the PRU is classified into a number of categories.
- PTU power transmitting circuit
- PRU power receiving circuit
- the maximum output power capability of the class n PTU is greater than or equal to the P TX_IN_MAX value of the corresponding class.
- the PRU cannot draw power greater than the power specified in that category.
- 4A is a block diagram of a wireless power transmission system according to another embodiment.
- the wireless power transmission system 10 includes a mobile device 450 wirelessly receiving power and a base station 400 wirelessly transmitting power.
- the base station 400 is a device that provides inductive power or resonant power, and may include at least one wireless power transmitter 100 and a system circuit 405 .
- the wireless power transmitter 100 may transmit inductive power or resonant power and control the transmission.
- the wireless power transmitter 100 transmits power to an appropriate level and a power conversion circuit 110 that converts electrical energy into a power signal by generating a magnetic field through a primary coil (s)
- a communication/control circuit 120 for controlling communication and power transfer with the wireless power receiver 200 may be included.
- the system circuit 405 may perform input power provisioning, control of a plurality of wireless power transmitters, and other operation control of the base station 400 such as user interface control.
- the primary coil may generate an electromagnetic field using AC power (or voltage or current).
- the primary coil may receive AC power (or voltage or current) of a specific frequency output from the power conversion circuit 110 and may generate a magnetic field of a specific frequency accordingly.
- the magnetic field may be generated non-radiatively or radially, and the wireless power receiving apparatus 200 receives it and generates a current. In other words, the primary coil transmits power wirelessly.
- the primary coil and the secondary coil may have any suitable shape, for example, a copper wire wound around a high permeability formation such as ferrite or amorphous metal.
- the primary coil may be referred to as a transmitting coil, a primary core, a primary winding, a primary loop antenna, or the like.
- the secondary coil may be called a receiving coil, a secondary core, a secondary winding, a secondary loop antenna, a pickup antenna, etc. .
- the primary coil and the secondary coil may be provided in the form of a primary resonance antenna and a secondary resonance antenna, respectively.
- the resonant antenna may have a resonant structure including a coil and a capacitor.
- the resonant frequency of the resonant antenna is determined by the inductance of the coil and the capacitance of the capacitor.
- the coil may be formed in the form of a loop.
- a core may be disposed inside the loop.
- the core may include a physical core such as a ferrite core or an air core.
- the resonance phenomenon refers to a phenomenon in which, when a near field corresponding to a resonant frequency occurs in one resonant antenna, when other resonant antennas are located around, the two resonant antennas are coupled to each other and high efficiency energy transfer occurs between the resonant antennas. .
- a magnetic field corresponding to the resonant frequency is generated between the primary resonant antenna and the secondary resonant antenna, a phenomenon occurs in which the primary resonant antenna and the secondary resonant antenna resonate with each other.
- the magnetic field is focused toward the secondary resonant antenna with higher efficiency compared to the case of radiation into this free space, and thus energy can be transferred from the primary resonant antenna to the secondary resonant antenna with high efficiency.
- the magnetic induction method may be implemented similarly to the magnetic resonance method, but in this case, the frequency of the magnetic field does not need to be the resonant frequency. Instead, in the magnetic induction method, matching between the loops constituting the primary coil and the secondary coil is required, and the distance between the loops must be very close.
- the wireless power transmitter 100 may further include a communication antenna.
- the communication antenna may transmit and receive communication signals using a communication carrier other than magnetic field communication.
- the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication/control circuit 120 may transmit/receive information to and from the wireless power receiver 200 .
- the communication/control circuit 120 may include at least one of an IB communication module and an OB communication module.
- the IB communication module may transmit/receive information using a magnetic wave having a specific frequency as a center frequency.
- the communication/control circuit 120 performs in-band communication by loading communication information on the operating frequency of wireless power transmission and transmitting it through the primary coil or by receiving the operating frequency containing the information through the primary coil. can do.
- modulation schemes such as binary phase shift keying (BPSK), frequency shift keying (FSK) or amplitude shift keying (ASK) and Manchester coding or non-zero return level (NZR) -L: non-return-to-zero level
- BPSK binary phase shift keying
- FSK frequency shift keying
- ASK amplitude shift keying
- NZR non-zero return level
- the communication/control circuit 120 may transmit/receive information up to a distance of several meters at a data rate of several kbps.
- the OB communication module may perform out-band communication through a communication antenna.
- the communication/control circuit 120 may be provided as a short-range communication module.
- Examples of the short-range communication module include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication/control circuit 120 may control the overall operation of the wireless power transmitter 100 .
- the communication/control circuit 120 may perform calculation and processing of various types of information, and may control each component of the wireless power transmitter 100 .
- the communication/control circuit 120 may be implemented in a computer or a similar device using hardware, software, or a combination thereof.
- the communication/control circuit 120 may be provided in the form of an electronic circuit that processes electrical signals to perform a control function, and in software, in the form of a program that drives the communication/control circuit 120 in hardware. may be provided.
- the communication/control circuit 120 may control the transmit power by controlling an operating point.
- the operating point to be controlled may correspond to a combination of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
- the communication/control circuit 120 may control the transmission power by adjusting at least one of a frequency (or phase), a duty cycle, a duty ratio, and a voltage amplitude.
- the wireless power transmitter 100 may supply constant power
- the wireless power receiver 200 may control the received power by controlling the resonance frequency.
- the mobile device 450 receives and stores the power received from the wireless power receiver 200 and the wireless power receiver 200 that receives wireless power through a secondary coil, and supplies it to the device. Including a load (load, 455) to.
- the wireless power receiver 200 may include a power pick-up circuit 210 and a communication/control circuit 220 .
- the power pickup circuit 210 may receive wireless power through the secondary coil and convert it into electrical energy.
- the power pickup circuit 210 rectifies the AC signal obtained through the secondary coil and converts it into a DC signal.
- the communication/control circuit 220 may control transmission and reception of wireless power (transmission and reception of power).
- the secondary coil may receive wireless power transmitted from the wireless power transmitter 100 .
- the secondary coil may receive power using a magnetic field generated in the primary coil.
- the specific frequency is the resonance frequency
- a magnetic resonance phenomenon occurs between the primary coil and the secondary coil, so that power can be more efficiently transmitted.
- the communication/control circuit 220 may further include a communication antenna.
- the communication antenna may transmit and receive communication signals using a communication carrier other than magnetic field communication.
- the communication antenna may transmit/receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication/control circuit 220 may transmit/receive information to and from the wireless power transmitter 100 .
- the communication/control circuit 220 may include at least one of an IB communication module and an OB communication module.
- the IB communication module may transmit/receive information using a magnetic wave having a specific frequency as a center frequency.
- the communication/control circuit 220 may perform IB communication by loading information on a magnetic wave and transmitting it through a secondary coil or by receiving a magnetic wave containing information through a secondary coil.
- modulation schemes such as binary phase shift keying (BPSK), frequency shift keying (FSK) or amplitude shift keying (ASK) and Manchester coding or non-zero return level (NZR) -L: non-return-to-zero level
- BPSK binary phase shift keying
- FSK frequency shift keying
- ASK amplitude shift keying
- NZR non-zero return level
- the communication/control circuit 220 may transmit/receive information up to a distance of several meters at a data rate of several kbps.
- the OB communication module may perform out-band communication through a communication antenna.
- the communication/control circuit 220 may be provided as a short-range communication module.
- Examples of the short-range communication module include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication/control circuit 220 may control the overall operation of the wireless power receiver 200 .
- the communication/control circuit 220 may perform calculation and processing of various types of information, and may control each component of the wireless power receiver 200 .
- the communication/control circuit 220 may be implemented as a computer or a similar device using hardware, software, or a combination thereof.
- the communication/control circuit 220 may be provided in the form of an electronic circuit that processes electrical signals to perform a control function, and in software, in the form of a program for driving the communication/control circuit 220 in hardware. may be provided.
- the communication/control circuit 120 and the communication/control circuit 220 are Bluetooth or Bluetooth LE as an OB communication module or a short-range communication module
- the communication/control circuit 120 and the communication/control circuit 220 are respectively shown in FIG. 4b It can be implemented and operated with the same communication architecture as
- 4B is a diagram illustrating an example of a Bluetooth communication architecture to which an embodiment according to the present specification can be applied.
- FIG. 4b shows an example of a protocol stack of Bluetooth BR (Basic Rate)/EDR (Enhanced Data Rate) supporting GATT, (b) is Bluetooth LE (Low Energy) An example of a protocol stack is shown.
- Bluetooth BR Basic Rate
- EDR Enhanced Data Rate
- GATT GATT
- Bluetooth LE Low Energy
- the Bluetooth BR/EDR protocol stack includes an upper controller stack (Controller stack, 460) and a lower one based on the host controller interface (HCI, 18). It may include a host stack (Host Stack, 470).
- the host stack (or host module) 470 refers to a wireless transceiver module that receives a Bluetooth signal of 2.4 GHz and hardware for transmitting or receiving Bluetooth packets, and the controller stack 460 is connected to the Bluetooth module to configure the Bluetooth module. control and perform actions.
- the host stack 470 may include a BR/EDR PHY layer 12 , a BR/EDR baseband layer 14 , and a link manager layer 16 .
- the BR/EDR PHY layer 12 is a layer that transmits and receives a 2.4 GHz radio signal.
- GFSK Gausian Frequency Shift Keying
- the BR/EDR baseband layer 14 is responsible for transmitting a digital signal, selects a channel sequence hopping 1400 times per second, and transmits a 625us-long time slot for each channel.
- the link manager layer 16 controls the overall operation (link setup, control, security) of the Bluetooth connection by using LMP (Link Manager Protocol).
- LMP Link Manager Protocol
- the link manager layer 16 may perform the following functions.
- the host controller interface layer 18 provides an interface between the host module and the controller module so that the host provides commands and data to the controller, and the controller provides events and data to the host.
- the host stack (or host module, 20) is a logical link control and adaptation protocol (L2CAP, 21), an attribute protocol (Protocol, 22), a generic attribute profile (Generic Attribute Profile, GATT, 23), a generic access profile (Generic Access) Profile, GAP, 24) and BR/EDR profile (25).
- L2CAP logical link control and adaptation protocol
- GATT attribute protocol
- GAP Generic Access Profile
- BR/EDR profile BR/EDR profile
- the logical link control and adaptation protocol may provide one bidirectional channel for data transmission to a specific protocol or profile.
- the L2CAP 21 may multiplex various protocols, profiles, etc. provided by the Bluetooth upper layer.
- L2CAP of Bluetooth BR/EDR uses dynamic channels, supports protocol service multiplexer, retransmission, and streaming mode, and provides segmentation and reassembly, per-channel flow control, and error control.
- the generic attribute profile (GATT) 23 may be operable as a protocol describing how the attribute protocol 22 is used in the configuration of services.
- the generic attribute profile 23 may be operable to define how ATT attributes are grouped together into services, and may be operable to describe characteristics associated with services.
- the generic attribute profile 23 and the attribute protocol (ATT) 22 can use features to describe the state and services of a device, how they relate to each other and how they are used.
- the attribute protocol 22 and the BR/EDR profile 25 define a service (profile) using Bluetooth BR/EDR and an application protocol for sending and receiving these data, and the generic access profile (Generic Access Profile, GAP, 24) defines device discovery, connectivity, and security levels.
- GAP Global System for Mobile communications
- the Bluetooth LE protocol stack includes a controller stack 480 operable to process a timing-critical wireless device interface and a host stack operable to process high level data. (Host stack, 490).
- the controller stack 480 may be implemented using a communication module that may include a Bluetooth radio, for example, a processor module that may include a processing device such as a microprocessor.
- the host stack 490 may be implemented as part of an OS running on a processor module, or as an instantiation of a package on the OS.
- controller stack and host stack may operate or run on the same processing device within a processor module.
- the controller stack 480 includes a physical layer (PHY) 32, a link layer (Link Layer) 34, and a host controller interface (Host Controller Interface, 36).
- PHY physical layer
- Link Layer Link Layer
- Hos Controller Interface 36
- the physical layer (PHY, radio transmit/receive module, 32) is a layer for transmitting and receiving a 2.4 GHz radio signal, and uses Gaussian Frequency Shift Keying (GFSK) modulation and a frequency hopping technique composed of 40 RF channels.
- GFSK Gaussian Frequency Shift Keying
- the link layer 34 which transmits or receives Bluetooth packets, performs advertising and scanning functions using three advertising channels, and then creates a connection between devices, and a maximum of 257 bytes of data packets through 37 data channels. Provides a function to send and receive
- the host stack includes a Generic Access Profile (GAP, 40), a Logical Link Control and Adaptation Protocol (L2CAP, 41), a Security Manager (SM, 42), an Attribute Protocol (ATT, 440), and a Generic Attribute Profile.
- GAP Generic Access Profile
- L2CAP Logical Link Control and Adaptation Protocol
- SM Security Manager
- ATT Attribute Protocol
- GATT Generic Attribute Profile
- GATT Generic Access Profile
- 25 may include the LT profile (46).
- the host stack 490 is not limited thereto and may include various protocols and profiles.
- the host stack uses L2CAP to multiplex various protocols and profiles provided by the Bluetooth upper layer.
- L2CAP Logical Link Control and Adaptation Protocol, 41
- L2CAP may provide one bidirectional channel for data transmission to a specific protocol or profile.
- the L2CAP 41 may be operable to multiplex data between higher layer protocols, segment and reassemble packages, and manage multicast data transmission.
- Bluetooth LE 3 fixed channels (1 for signaling CH, 1 for Security Manager, 1 for Attribute protocol) are basically used. And, if necessary, a dynamic channel may be used.
- BR/EDR Base Rate/Enhanced Data Rate
- a dynamic channel is basically used, and protocol service multiplexer, retransmission, streaming mode, etc. are supported.
- SM Security Manager
- ATT Attribute Protocol, 43
- ATT has the following 6 message types (Request, Response, Command, Notification, Indication, Confirmation).
- the Request message is a message for requesting and delivering specific information from the client device to the server device
- the Response message is a response message to the Request message, which can be used for transmission from the server device to the client device.
- Command message A message transmitted mainly from the client device to the server device to instruct a command for a specific operation.
- the server device does not transmit a response to the command message to the client device.
- Notification message A message sent from the server device to the client device for notification such as an event.
- the client device does not send a confirmation message for the Notification message to the server device.
- Indication and Confirm message A message transmitted from the server device to the client device for notification such as an event. Unlike the Notification message, the client device transmits a confirmation message for the Indication message to the server device.
- This specification transmits a value for the data length when requesting long data in the GATT profile using the attribute protocol (ATT, 43) so that the client can clearly know the data length, and uses the UUID to obtain a characteristic (Characteristic) from the server value can be sent.
- ATT attribute protocol
- the general access profile (GAP, 45) is a newly implemented layer for Bluetooth LE technology, and is used to control role selection and multi-profile operation for communication between Bluetooth LE devices.
- the general access profile 45 is mainly used for device discovery, connection creation, and security procedures, defines a method for providing information to a user, and defines the following attribute types.
- UUID Universal Unique Identifier, value type
- the LE profile 46 is mainly applied to Bluetooth LE devices as profiles that depend on GATT.
- the LE profile 46 may include, for example, Battery, Time, FindMe, Proximity, and Time, and the specific contents of GATT-based Profiles are as follows.
- the generic attribute profile (GATT) 44 may be operable as a protocol describing how the attribute protocol 43 is used in the configuration of services.
- the generic attribute profile 44 may be operable to define how ATT attributes are grouped together into services, and may be operable to describe characteristics associated with services.
- the generic attribute profile 44 and the attribute protocol (ATT) 43 can use features to describe the state and services of a device, how they relate to each other and how they are used.
- the BLE procedure may be divided into a device filtering procedure, an advertising procedure, a scanning procedure, a discovery procedure, a connecting procedure, and the like.
- the device filtering procedure is a method for reducing the number of devices that respond to requests, instructions, and notifications in the controller stack.
- the controller stack can reduce the number of requests it transmits, so that power consumption can be reduced in the BLE controller stack.
- An advertising device or a scanning device may perform the device filtering procedure to restrict devices receiving an advertisement packet, a scan request, or a connection request.
- the advertisement device refers to a device that transmits an advertisement event, that is, performs advertisement, and is also expressed as an advertiser.
- the scanning device refers to a device that performs scanning and a device that transmits a scan request.
- a scanning device when a scanning device receives some advertisement packets from an advertisement device, the scanning device has to send a scan request to the advertisement device.
- the scanning device may ignore advertisement packets transmitted from the advertisement device.
- a device filtering procedure may also be used in the connection request process. If device filtering is used in the connection request process, it is not necessary to transmit a response to the connection request by ignoring the connection request.
- the advertising device performs an advertising procedure to perform a non-directional broadcast to devices in the area.
- undirected advertising is advertising directed to all (all) devices rather than a broadcast directed to a specific device, and all devices scan advertisements to request additional information or You can make a connection request.
- a device designated as a receiving device scans the advertisement to request additional information or a connection request.
- An advertisement procedure is used to establish a Bluetooth connection with a nearby initiating device.
- the advertisement procedure may be used to provide periodic broadcast of user data to scanning devices that are listening on the advertisement channel.
- Advertising devices may receive a scan request from listening devices that are listening to obtain additional user data from the advertising device.
- the advertisement device transmits a response to the scan request to the device that transmitted the scan request through the same advertisement physical channel as the advertisement physical channel on which the scan request is received.
- Broadcast user data sent as part of advertisement packets is dynamic data, whereas scan response data is generally static data.
- An advertising device may receive a connection request from an initiating device on an advertising (broadcast) physical channel. If the advertising device uses a connectable advertising event and the initiating device is not filtered by the device filtering procedure, the advertising device stops advertising and enters a connected mode. The advertising device may start advertising again after the connected mode.
- a device performing scanning that is, a scanning device, performs a scanning procedure to listen to a non-directional broadcast of user data from advertisement devices using an advertisement physical channel.
- the scanning device sends a scan request to the advertisement device through an advertisement physical channel to request additional data from the advertisement device.
- the advertisement device transmits a scan response that is a response to the scan request including additional data requested by the scanning device through the advertisement physical channel.
- the scanning procedure may be used while being connected to another BLE device in the BLE piconet.
- the scanning device If the scanning device is in an initiator mode that can receive a broadcast advertisement event and initiate a connection request, the scanning device sends a connection request to the advertisement device through an advertisement physical channel. You can start a Bluetooth connection with
- the scanning device When the scanning device sends a connection request to the advertising device, the scanning device stops scanning initiator mode for additional broadcast, and enters the connected mode.
- 'Bluetooth devices' Devices capable of Bluetooth communication (hereinafter, referred to as 'Bluetooth devices') perform advertisement procedures and scanning procedures to discover nearby devices or to be discovered by other devices within a given area.
- the discovery procedure is performed asymmetrically.
- a Bluetooth device that tries to find other nearby devices is called a discovering device and listens to find devices that advertise a scannable advertisement event.
- a Bluetooth device discovered and available from another device is called a discoverable device and actively broadcasts an advertisement event so that other devices can scan it through an advertisement (broadcast) physical channel.
- Both the discovering device and the discoverable device may be already connected to other Bluetooth devices in the piconet.
- connection procedure is asymmetric, and the connection procedure requires a specific Bluetooth device to perform a scanning procedure while another Bluetooth device performs an advertisement procedure.
- an advertisement procedure may be targeted, as a result of which only one device will respond to the advertisement.
- a connection After receiving an accessible advertisement event from an advertisement device, a connection may be initiated by sending a connection request to the advertisement device through an advertisement (broadcast) physical channel.
- the link layer enters the advertisement state by the instruction of the host (stack).
- the link layer sends advertisement packet data circuits (PDUs) in advertisement events.
- PDUs advertisement packet data circuits
- Each advertisement event consists of at least one advertisement PDU, and the advertisement PDUs are transmitted through used advertisement channel indexes.
- the advertisement event may be terminated earlier when the advertisement PDU is transmitted through each of the advertisement channel indexes used, or when the advertisement device needs to secure a space for performing other functions.
- the link layer enters the scanning state under the direction of the host (stack). In the scanning state, the link layer listens for advertisement channel indices.
- each scanning type is determined by a host.
- a separate time or advertisement channel index for performing scanning is not defined.
- the link layer listens for the advertisement channel index during the scanWindow duration.
- the scanInterval is defined as the interval (interval) between the starting points of two consecutive scan windows.
- the link layer must listen for completion of all scan intervals in the scan window as directed by the host, provided there is no scheduling conflict. In each scan window, the link layer must scan a different advertising channel index. The link layer uses all available advertising channel indices.
- the link layer In passive scanning, the link layer only receives packets and transmits no packets.
- the link layer When active scanning, the link layer performs listening depending on the advertisement PDU type, which may request advertisement PDUs and additional information related to the advertisement device from the advertisement device.
- the link layer enters the initiation state by the instruction of the host (stack).
- the link layer When the link layer is in the initiating state, the link layer performs listening for advertisement channel indices.
- the link layer listens for the advertisement channel index during the scan window period.
- the link layer enters the connected state when the device making the connection request, that is, the initiating device sends a CONNECT_REQ PDU to the advertising device, or when the advertising device receives the CONNECT_REQ PDU from the initiating device.
- connection After entering the connected state, a connection is considered to be created. However, the connection need not be considered to be established when it enters the connected state. The only difference between the newly created connection and the established connection is the link layer connection supervision timeout value.
- the link layer performing the master role is called a master, and the link layer performing the slave role is called a slave.
- the master controls the timing of the connection event, and the connection event refers to the synchronization point between the master and the slave.
- BLE devices use packets defined below.
- the Link Layer has only one packet format used for both advertisement channel packets and data channel packets.
- Each packet consists of four fields: a preamble, an access address, a PDU, and a CRC.
- the PDU When one packet is transmitted in the advertisement channel, the PDU will be the advertisement channel PDU, and when one packet is transmitted in the data channel, the PDU will be the data channel PDU.
- the advertisement channel PDU Packet Data Circuit
- PDU Packet Data Circuit
- the PDU type field of the advertisement channel PDU included in the header indicates the PDU type as defined in Table 3 below.
- advertisement channel PDU types are called advertisement PDUs and are used in specific events.
- ADV_IND Linkable non-directional advertising event
- ADV_DIRECT_IND Linkable direct advertising event
- ADV_NONCONN_IND Non-Linkable Non-Directional Advertising Event
- ADV_SCAN_IND Scannable non-directional advertising event
- the PDUs are transmitted in the link layer in the advertisement state and are received by the link layer in the scanning state or initiating state.
- advertisement channel PDU types are called scanning PDUs and are used in the state described below.
- SCAN_REQ Sent by the link layer in the scanning state, and received by the link layer in the advertisement state.
- SCAN_RSP Sent by the link layer in the advertisement state, and received by the link layer in the scanning state.
- initiation PDUs The following advertisement channel PDU types are called initiation PDUs.
- CONNECT_REQ Sent by the link layer in the initiating state, and received by the link layer in the advertising state.
- the data channel PDU has a 16-bit header, payloads of various sizes, and may include a Message Integrity Check (MIC) field.
- MIC Message Integrity Check
- the load 455 may be a battery.
- the battery may store energy using power output from the power pickup circuit 210 .
- the battery is not necessarily included in the mobile device 450 .
- the battery may be provided as a detachable external configuration.
- the wireless power receiving apparatus 200 may include a driving means for driving various operations of the electronic device instead of a battery.
- the mobile device 450 is shown to include the wireless power receiver 200 and the base station 400 is shown to include the wireless power transmitter 100, in a broad sense, the wireless power receiver ( 200 may be identified with the mobile device 450 , and the wireless power transmitter 100 may be identified with the base station 400 .
- wireless power transmission including the communication/control circuit 120 may be represented by a simplified block diagram as shown in FIG. 4C .
- 4C is a block diagram illustrating a wireless power transmission system using BLE communication according to an example.
- the wireless power transmitter 100 includes a power conversion circuit 110 and a communication/control circuit 120 .
- the communication/control circuit 120 includes an in-band communication module 121 and a BLE communication module 122 .
- the wireless power receiver 200 includes a power pickup circuit 210 and a communication/control circuit 220 .
- the communication/control circuit 220 includes an in-band communication module 221 and a BLE communication module 222 .
- the BLE communication modules 122 , 222 perform the architecture and operation according to FIG. 4B .
- the BLE communication modules 122 and 222 may be used to establish a connection between the wireless power transmitter 100 and the wireless power receiver 200, and to exchange control information and packets necessary for wireless power transmission. have.
- the communication/control circuit 120 may be configured to operate a profile for wireless charging.
- the profile for wireless charging may be GATT using BLE transmission.
- 4D is a block diagram illustrating a wireless power transmission system using BLE communication according to another example.
- the communication/control circuits 120 and 220 include only in-band communication modules 121 and 221, respectively, and the BLE communication modules 122 and 222 include the communication/control circuits 120, 220) and a form separately provided is also possible.
- a coil or a coil unit may be referred to as a coil assembly, a coil cell, or a cell including a coil and at least one element adjacent to the coil.
- 5 is a state transition diagram for explaining a wireless power transmission procedure.
- the power transmission from the wireless power transmitter to the receiver is largely a selection phase (selection phase, 510), a ping phase (ping phase, 520), identification and configuration phase (identification) and configuration phase 530), a negotiation phase 540, a calibration phase 550, a power transfer phase 560, and a renegotiation phase 570.
- the selection step 510 transitions when a specific error or a specific event is detected while initiating or maintaining the power transmission - including, for example, reference numerals S502, S504, S508, S510 and S512.
- the wireless power transmitter may monitor whether an object is present on the interface surface. If the wireless power transmitter detects that an object is placed on the interface surface, the process may shift to the ping step 520 .
- the wireless power transmitter transmits an analog ping signal that is a power signal (or pulse) corresponding to a very short duration, and the current of the transmitting coil or the primary coil Based on the change, it is possible to detect whether an object is present in an active area of the interface surface.
- the wireless power transmitter may measure a quality factor of a wireless power resonance circuit (eg, a power transmission coil and/or a resonance capacitor).
- a quality factor may be measured to determine whether the wireless power receiver is placed in the charging area together with the foreign material.
- an inductance and/or a series resistance component in the coil may be reduced due to an environmental change, thereby reducing a quality factor value.
- the wireless power transmitter may receive a pre-measured reference quality factor value from the wireless power receiver in a state where the foreign material is not disposed in the charging area.
- the presence of foreign substances may be determined by comparing the reference quality factor value received in the negotiation step 540 with the measured quality factor value.
- a specific wireless power receiver may have a low reference quality factor value depending on the type, use, and characteristics of the wireless power receiver - and foreign matter is present. In this case, since there is no significant difference between the measured quality factor value and the reference quality factor value, it may be difficult to determine the presence of foreign substances. Therefore, it is necessary to further consider other determining factors or to determine the presence of foreign substances using other methods.
- a quality factor value may be measured in a specific frequency domain (eg operating frequency domain) in order to determine whether the object is disposed with the foreign material in the charging area.
- a specific frequency domain eg operating frequency domain
- the inductance and/or the series resistance component in the coil may be reduced by environmental changes, and thus the resonant frequency of the coil of the wireless power transmitter may be changed (shifted). That is, the quality factor peak frequency, which is the frequency at which the maximum quality factor value within the operating frequency band is measured, may be moved.
- the wireless power transmitter wakes up the receiver and transmits a digital ping for identifying whether the detected object is a wireless power receiver. If the wireless power transmitter does not receive a response signal to the digital ping (eg, a signal strength packet) from the receiver in the ping step 520 , the wireless power transmitter may transition back to the selection step 510 . In addition, when the wireless power transmitter receives a signal indicating that power transmission is completed from the receiver in the ping step 520 , that is, a charging complete packet, it may transition to the selection step 510 .
- a signal indicating that power transmission is completed from the receiver in the ping step 520 that is, a charging complete packet
- the wireless power transmitter may transition to the identification and configuration step 530 for identifying the receiver and collecting receiver configuration and state information.
- the wireless power transmitter receives an undesired packet (unexpected packet), or a desired packet is not received for a predefined time (time out), or there is a packet transmission error (transmission error), If a power transfer contract is not established (no power transfer contract), a transition may be made to the selection step 510 .
- the wireless power transmitter may determine whether it is necessary to enter the negotiation step 540 based on the negotiation field value of the configuration packet received in the identification and configuration step 530 . As a result of the check, if negotiation is necessary, the wireless power transmitter may enter a negotiation step 540 to perform a predetermined FOD detection procedure. On the other hand, as a result of the check, if negotiation is not required, the wireless power transmitter may directly enter the power transmission step 560 .
- the wireless power transmitter may receive a Foreign Object Detection (FOD) status packet including a reference quality factor value.
- FOD status packet including the reference peak frequency value may be received.
- a status packet including a reference quality factor value and a reference peak frequency value may be received.
- the wireless power transmitter may determine a quality factor threshold for FO detection based on the reference quality factor value.
- the wireless power transmitter may determine a peak frequency threshold for FO detection based on a reference peak frequency value.
- the wireless power transmitter can detect whether FO is present in the charging area using the determined quality factor threshold for FO detection and the currently measured quality factor value (quality factor value measured before the ping step), Power transmission can be controlled accordingly. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
- the wireless power transmitter can detect whether FO is present in the charging area using the determined peak frequency threshold for FO detection and the currently measured peak frequency value (the peak frequency value measured before the ping step), and the FO detection result is Power transmission can be controlled accordingly. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
- the wireless power transmitter may return to the selection step 510 .
- the wireless power transmitter may enter the power transfer step 560 through the correction step 550 .
- the wireless power transmitter determines the strength of power received at the receiving end in the correction step 550, and the receiving end and the receiving end to determine the intensity of power transmitted from the transmitting end. Power loss at the transmitter can be measured. That is, the wireless power transmitter may predict power loss based on the difference between the transmit power of the transmitter and the receive power of the receiver in the correction step 550 .
- the wireless power transmitter may correct the threshold for FOD detection by reflecting the predicted power loss.
- the wireless power transmitter receives an unwanted packet (unexpected packet), a desired packet is not received for a predefined time (time out), or a violation of a preset power transmission contract occurs Otherwise (power transfer contract violation) or when charging is completed, the process may shift to the selection step 510 .
- the wireless power transmitter may transition to the renegotiation step 570 when it is necessary to reconfigure the power transmission contract according to a change in the state of the wireless power transmitter. At this time, when the renegotiation is normally completed, the wireless power transmitter may return to the power transmission step 560 .
- the calibration step 550 may be integrated into the power transmission step 560. In this case, in the calibration step 550, Operations may be performed in a power transfer step 560 .
- the power transmission contract may be established based on the state and characteristic information of the wireless power transmitter and the receiver.
- the wireless power transmitter state information may include information on the maximum transmittable power amount, information on the maximum acceptable number of receivers, and the like
- the receiver state information may include information on required power and the like.
- FIG. 6 illustrates a power control control method according to an embodiment.
- the wireless power transmitter 100 and the wireless power receiver 200 may control the amount of transmitted power by performing communication together with power transmission/reception.
- the wireless power transmitter and the wireless power receiver operate at a specific control point.
- the control point represents a combination of voltage and current provided from an output of the wireless power receiver when power transfer is performed.
- the wireless power receiver selects a desired control point - a desired output current/voltage, a temperature at a specific location of the mobile device, and additionally an actual control point currently operating. ) to determine
- the wireless power receiver may calculate a control error value using a desired control point and an actual control point, and transmit it to the wireless power transmitter as a control error packet.
- the wireless power transmitter may control power transfer by setting/controlling a new operating point - amplitude, frequency, and duty cycle - using the received control error packet. Therefore, the control error packet is transmitted/received at regular time intervals in the strategy delivery step, and as an embodiment, the wireless power receiver sets the control error value to a negative number when trying to reduce the current of the wireless power transmitter, and a control error when trying to increase the current. It can be sent by setting the value to a positive number. As described above, in the induction mode, the wireless power receiver can control power transfer by transmitting a control error packet to the wireless power transmitter.
- the resonance mode which will be described below, may operate in a different manner from that in the induction mode.
- one wireless power transmitter In the resonance mode, one wireless power transmitter must be able to simultaneously serve a plurality of wireless power receivers.
- the wireless power transmitter transmits basic power in common, and the wireless power receiver attempts to control the amount of power received by controlling its own resonance frequency.
- the method described with reference to FIG. 6 is not completely excluded even in the resonance mode operation, and additional transmission power control may be performed by the method of FIG. 6 .
- the 7 is a block diagram of an apparatus for transmitting power wirelessly according to another embodiment. This may belong to a wireless power transmission system of a magnetic resonance method or a shared mode.
- the shared mode may refer to a mode in which one-to-many communication and charging are performed between the wireless power transmitter and the wireless power receiver.
- the shared mode may be implemented in a magnetic induction method or a resonance method.
- the wireless power transmitter 700 includes a cover 720 covering the coil assembly, a power adapter 730 for supplying power to the power transmitter 740 , a power transmitter 740 for wirelessly transmitting power, or at least one of a user interface 750 providing power transfer progress and other related information.
- the user interface 750 may be optionally included or may be included as another user interface 750 of the wireless power transmitter 700 .
- the power transmitter 740 may include at least one of a coil assembly 760 , an impedance matching circuit 770 , an inverter 780 , a communication circuit 790 , and a control circuit 710 .
- the coil assembly 760 includes at least one primary coil that generates a magnetic field, and may be referred to as a coil cell.
- the impedance matching circuit 770 may provide impedance matching between the inverter and the primary coil(s).
- the impedance matching circuit 770 may generate a resonance at a suitable frequency to boost the primary coil current.
- the impedance matching circuitry in the multi-coil power transmitter 740 may further include a multiplexer that routes the signal from the inverter to a subset of the primary coils.
- the impedance matching circuit may be referred to as a tank circuit.
- the impedance matching circuit 770 may include a capacitor, an inductor, and a switching element for switching a connection thereof. Impedance matching detects a reflected wave of wireless power transmitted through the coil assembly 760, and switches a switching element based on the detected reflected wave to adjust the connection state of the capacitor or inductor, adjust the capacitance of the capacitor, or adjust the inductance of the inductor This can be done by adjusting.
- the impedance matching circuit 770 may be omitted, and the present specification also includes an embodiment of the wireless power transmitter 700 in which the impedance matching circuit 770 is omitted.
- Inverter 780 may convert a DC input to an AC signal. Inverter 780 may be driven half-bridge or full-bridge to generate pulse waves of adjustable frequency and duty cycle. The inverter may also include a plurality of stages to adjust the input voltage level.
- the communication circuit 790 may communicate with the power receiver.
- the power receiver performs load modulation to communicate requests and information to the power transmitter.
- the power transmitter 740 may monitor the amplitude and/or phase of the current and/or voltage of the primary coil to demodulate the data transmitted by the power receiver using the communication circuit 790 .
- the power transmitter 740 may control the output power to transmit data using a frequency shift keying (FSK) method or the like through the communication circuit 790 .
- FSK frequency shift keying
- the control circuit 710 may control communication and power transmission of the power transmitter 740 .
- the control circuit 710 may control power transmission by adjusting the above-described operating point.
- the operating point may be determined by, for example, at least one of an operating frequency, a duty cycle, and an input voltage.
- the communication circuit 790 and the control circuit 710 may be provided as separate circuits/devices/chipsets or as one circuit/device/chipsets.
- FIG. 8 shows an apparatus for receiving wireless power according to another embodiment. This may belong to a wireless power transmission system of a magnetic resonance method or a shared mode.
- a wireless power receiving device 800 includes a user interface 820 that provides power transfer progress and other related information, a power receiver 830 that receives wireless power, a load circuit 840 or a coil assembly. It may include at least one of the base 850 to support and cover. In particular, the user interface 820 may be optionally included or may be included as another user interface 82 of the power receiving equipment.
- the power receiver 830 may include at least one of a power converter 860 , an impedance matching circuit 870 , a coil assembly 880 , a communication circuit 890 , and a control circuit 810 .
- the power converter 860 may convert AC power received from the secondary coil into a voltage and current suitable for the load circuit.
- the power converter 860 may include a rectifier.
- the rectifier may rectify the received wireless power and convert it from AC to DC.
- a rectifier may convert alternating current to direct current using a diode or a transistor, and smooth it using a capacitor and a resistor.
- As the rectifier a full-wave rectifier, a half-wave rectifier, a voltage multiplier, etc. implemented as a bridge circuit or the like may be used. Additionally, the power converter may adapt the reflected impedance of the power receiver.
- the impedance matching circuit 870 may provide impedance matching between the combination of the power converter 860 and the load circuit 840 and the secondary coil. As an embodiment, the impedance matching circuit may generate a resonance near 100 kHz that may enhance power transfer.
- the impedance matching circuit 870 may include a capacitor, an inductor, and a switching element for switching a combination thereof. Impedance matching may be performed by controlling a switching element of a circuit constituting the impedance matching circuit 870 based on a voltage value, a current value, a power value, a frequency value, etc. of the received wireless power. In some cases, the impedance matching circuit 870 may be omitted, and the present specification also includes an embodiment of the wireless power receiver 200 in which the impedance matching circuit 870 is omitted.
- the coil assembly 880 includes at least one secondary coil, and may optionally further include an element for shielding a metal part of the receiver from a magnetic field.
- Communication circuitry 890 may perform load modulation to communicate requests and other information to the power transmitter.
- the power receiver 830 may switch a resistor or a capacitor to change the reflected impedance.
- the control circuit 810 may control the received power. To this end, the control circuit 810 may determine/calculate a difference between an actual operating point of the power receiver 830 and a desired operating point. In addition, the control circuit 810 may adjust/reduce the difference between the actual operating point and the desired operating point by adjusting the reflected impedance of the power transmitter and/or performing a request for adjusting the operating point of the power transmitter. When this difference is minimized, optimal power reception can be performed.
- the communication circuit 890 and the control circuit 810 may be provided as separate devices/chipsets or as one device/chipset.
- FIG. 9 is a diagram illustrating operating states of a wireless power transmitter and a wireless power receiver in a shared mode according to an embodiment.
- the wireless power receiver operating in the shared mode includes a selection phase 1100 , an introduction phase 1110 , a configuration phase 1120 , and a negotiation state. It may operate in any one of a Negotiation Phase 1130 and a Power Transfer Phase 1140 .
- the wireless power transmitter may transmit a wireless power signal to detect the wireless power receiver. That is, the process of detecting the wireless power receiver using the wireless power signal may be referred to as analog ping.
- the wireless power receiver receiving the wireless power signal may enter the selection state 1100 .
- the wireless power receiver entering the selection state 1100 may detect the presence of an FSK signal on the wireless power signal.
- the wireless power receiver may perform communication in either the exclusive mode or the shared mode according to the presence of the FSK signal.
- the wireless power receiver may operate in the shared mode, otherwise, the wireless power receiver may operate in the exclusive mode.
- the wireless power receiver When the wireless power receiver operates in the shared mode, the wireless power receiver may enter the introduction state 1110 .
- the wireless power receiver may transmit a control information packet to the wireless power transmitter in order to transmit a control information packet (CI) in the setting state, the negotiation state, and the power transmission state.
- the control information packet may have a header and control-related information.
- the control information packet may have a header of 0X53.
- the wireless power receiver attempts to request a free slot to transmit a control information (CI) packet through the following configuration, negotiation, and power transmission steps. At this time, the wireless power receiver selects a free slot and transmits the first CI packet. If the wireless power transmitter responds with ACK to the CI packet, the wireless power transmitter enters the configuration phase. If the wireless power transmitter responds with NAK, another wireless power receiver is in the process of configuring and negotiating. In this case, the wireless power receiver re-attempts the request for a free slot.
- CI control information
- the wireless power receiver determines the position of a private slot in the frame by counting the remaining slot sinks up to the first frame sync. In all subsequent slot-based frames, the wireless power receiver transmits the CI packet through the corresponding slot.
- the wireless power transmitter allows the wireless power receiver to proceed to the configuration step, the wireless power transmitter provides a series of locked slots for exclusive use of the wireless power receiver. This ensures that the wireless power receiver proceeds through the configuration phase without conflicts.
- the wireless power receiver transmits sequences of data packets such as two identification data packets (IDHI and IDLO) using a lock slot. Upon completion of this step, the wireless power receiver enters the negotiation phase. In the negotiation phase, the wireless power transmitter continues to provide a lock slot for exclusive use to the wireless power receiver. This ensures that the wireless power receiver proceeds with the negotiation phase without collision.
- IDHI and IDLO identification data packets
- the wireless power receiver transmits one or more negotiation data packets using the corresponding lock slot, which may be mixed with private data packets.
- the sequence ends with a specific request (SRQ) packet.
- SRQ specific request
- the wireless power receiver enters a power transmission phase, and the wireless power transmitter stops providing the lock slot.
- the wireless power receiver transmits the CI packet using the allocated slot and receives power.
- the wireless power receiver may include a regulator circuit.
- the regulator circuit may be included in the communication/control circuit.
- the wireless power receiver may self-regulate the reflected impedance of the wireless power receiver through a regulator circuit. In other words, the wireless power receiver may adjust the impedance reflected in order to transmit the amount of power required by the external load. This can prevent excessive power reception and overheating.
- the wireless power transmitter may not perform power adjustment in response to the received CI packet (according to the operation mode), in this case, control to prevent an overvoltage state may be required.
- authentication authentication between a wireless power transmitter and a wireless power receiver is disclosed.
- a wireless power transmission system using in-band communication can use USB-C authentication.
- the authentication includes authentication of the wireless power transmitter by the wireless power receiver and authentication of the wireless power receiver by the wireless power transmitter.
- the wireless power transmitter may inform the wireless power receiver whether the authentication function is supported by using a capability packet (in case of authentication of the wireless power receiver by the wireless power receiver (authentication of PTx by PRx)) .
- the wireless power receiver may inform the wireless power transmitter whether the authentication function is supported by using a configuration packet (in the case of authentication of the wireless power receiver by the wireless power transmitter (authentication of PRx by PTx) ).
- a capability packet in case of authentication of the wireless power receiver by the wireless power receiver (authentication of PTx by PRx)
- a configuration packet in the case of authentication of the wireless power receiver by the wireless power transmitter (authentication of PRx by PTx)
- FIG. 10 is a structure of a performance packet of a wireless power transmitter according to an embodiment.
- a performance packet having a corresponding header value of 0X31 is 3 bytes
- the first byte (B 0 ) includes a power class, a guaranteed power value
- the second byte (B 1 ) includes reserved and potential power values
- the third byte (B 2 ) is an Authentication Initiator (AI), Authentication Responder: AR, Reserved, WPID , and Not Res Sens.
- AI Authentication Initiator
- AR Authentication Responder
- Reserved WPID
- Not Res Sens Authentication Initiator
- the authentication initiator is 1 bit, and for example, if the value is '1b', it indicates that the corresponding wireless power transmitter can operate as the authentication initiator.
- the authentication responder is 1 bit, for example, if the value is '1b', it indicates that the corresponding wireless power transmitter can operate as the authentication responder.
- 11 is a configuration packet structure of a wireless power receiver according to an embodiment.
- a configuration packet having a corresponding header value of 0X51 is 5 bytes and the first byte (B 0 ) includes a power class and maximum power value, and the second byte (B 1 ) ) contains AI, AR, and reserve, the third byte (B 2 ) contains Prop, reserve, ZERO, Count, and the fourth byte (B 3 ) contains window size, window offset, five
- the th byte (B 4 ) includes Neg, polarity, depth, authentication (Auth), and reserve.
- the authentication initiator is 1 bit, for example, if the value is '1b', it indicates that the corresponding wireless power receiver can operate as the authentication initiator.
- the authentication responder is 1 bit, for example, if the value is '1b', it indicates that the corresponding wireless power receiver can operate as the authentication responder.
- a message used in an authentication procedure is called an authentication message.
- the authentication message is used to carry information related to authentication.
- the authentication request is sent by the authentication initiator, and the authentication response is sent by the authentication responder.
- the wireless power transmitter and the receiver may be authentication initiators or authentication responders. For example, when the wireless power transmitter is the authentication initiator, the wireless power receiver becomes the authentication responder, and when the wireless power receiver is the authentication initiator, the wireless power transmitter becomes the authentication responder.
- the authentication request message includes GET_DIGESTS (i.e. 4 bytes), GET_CERTIFICATE (i.e. 8 bytes), and CHALLENGE (i.e. 36 bytes).
- the authentication message may be called an authentication packet, authentication data, and authentication control information.
- messages such as GET_DIGEST and DIGESTS may be referred to as GET_DIGEST packets, DIGEST packets, and the like.
- FIG. 12 illustrates an application-level data stream between a wireless power transmitter and a receiver according to an example.
- the data stream may include auxiliary data control (ADC) data packets and/or auxiliary data transport (ADT) data packets.
- ADC auxiliary data control
- ADT auxiliary data transport
- ADC data packets are used to open a data stream.
- the ADC data packet may indicate the type of message included in the stream and the number of data bytes.
- An ADT data packet is a sequence of data containing an actual message.
- ADC/end data packets are used to signal the end of the stream. For example, the maximum number of data bytes in a data transport stream may be limited to 2047.
- ACK or NAC NAC
- CE control error packet
- DSR DSR
- authentication-related information or other application-level information may be transmitted/received between the wireless power transmitter and the receiver.
- the wireless power receiver transmits data to the wireless power transmitter through in-band communication using ASK (amplitude shift keying), and The transmitter transmits data to the wireless power receiver through in-band communication using Frequency-Shift Keying (FSK).
- ASK amplitude shift keying
- FSK Frequency-Shift Keying
- ASK is an amplitude shift keying method, and uses a change in amplitude to express one data bit ('0'b or '1'b), and FSK is a frequency shift keying method, Represents one data bit ('0'b or '1'b) using a change in operating frequency.
- the wireless power transmitter communicates with the wireless power receiver using FSK that modulates the operating frequency of the wireless power signal.
- the wireless power transmitter switches the operating frequency between the operating frequency of the unmodulated state (f op ) and the operating frequency of the modulated state (f mod ).
- f op and The difference in f mod is specified by polarity and depth.
- Polarity is information about FSK polarity, f op and It is an index indicating whether the difference of f mod is positive or negative.
- a Pol value of 0 means positive, and 1 means negative. If the polarity is positive, it can mean that f mod is larger than f op , and when it is negative, it can mean that f mod is smaller than f op .
- Depth is an index indicating how much the frequency difference between the operating frequency and the modulation frequency is. A larger Depth value may mean a larger frequency difference, and a smaller Depth value may mean a smaller frequency difference.
- FIG. 13 is a diagram for explaining an FSK encoding method according to an example according to the current WPC Qi standard.
- the wireless power transmitter must align one data bit at 512 cycles of the operating frequency.
- the wireless power transmitter encodes '0'b using one transition and encodes '1'b using two transitions. To encode '1'b, the first transition occurs at the beginning of the corresponding bit, and the second transition occurs at 256 cycles of the corresponding bit.
- FSK according to the current WPC Qi standard has a bandwidth limited to a maximum of 200 bps at an operating frequency of 100 KHz.
- the current FSK speed according to the WPC Qi standard is relatively slow compared to the ASK speed (about 2 kbps).
- the FSK speed according to the WPC Qi standard is too slow.
- the number of cycles of the operating frequency for encoding one bit is reduced to less than 512, the speed of FSK can be improved. Therefore, depending on the encoding capability of the wireless power transmitter and the decoding capability of the wireless power receiver, the number of cycles of the power signal frequency required to encode one bit is 512 to 256, 126, 64, 32 or 16. You can improve and control the speed of FSK by reducing it to dogs, etc.
- the characteristic information of the FSK needs to additionally include a new parameter (Number of Cycles, NCYCLES), which means the number of cycles of an operating frequency required to encode one bit, in addition to the above-described polarity and depth.
- NCYCLES Number of Cycles
- the wireless power receiver may transmit a data packet including information on NCYLCES to the wireless power transmitter to adjust the FSK speed of the wireless power transmitter.
- the wireless power transmitter also transmits a data packet including information on NCYLCES to the wireless power receiver to control the FSK speed and at the same time allow the wireless power receiver to accurately decode the transmitted data using the FSK.
- FIG. 14 is a flowchart illustrating a protocol of a negotiation phase or a renegotiation phase according to an embodiment.
- the wireless power transmitter 1001 and the wireless power receiver 1002 enter a negotiation phase or a re-negotiation phase ( S1001 ).
- the wireless power transmitter 1001 and the wireless power receiver 1002 enter a negotiation phase through a ping phase, a configuration phase, or enter a ping phase. After entering the power transfer phase through the phase, configuration phase, and negotiation phase, it can enter the re-negotiation phase.
- the wireless power transmitter 1001 identifies the wireless power receiver 1002 by transmitting a digital ping.
- the wireless power transmitter 1001 may detect foreign substances before power transmission in order to determine whether foreign substances exist in an operating volume.
- the wireless power receiver 1002 that has received the digital ping transmits a signal strength data packet (SIG) to the wireless power transmitter 1001 , and the wireless power receiver 1002 receives the SIG from the wireless power receiver 1002 .
- the transmitter 1001 may identify that the wireless power receiver 1002 is located in an operating volume.
- the wireless power receiver 1002 transmits its identification information to the wireless power transmitter, and the wireless power receiver 1002 and the wireless power transmitter 1001 establish a baseline power transfer contract. ) can be established.
- the wireless power receiver 1002 may transmit an identification data packet (ID) and an extended identification data packet (XID) to the wireless power transmitter 1001 to identify itself, and a Power Control (PCH) for a power transmission contract. Hold-off data packet) and a configuration data packet (CFG) may be transmitted to the wireless power transmitter 1001 .
- ID identification data packet
- XID extended identification data packet
- PCH Power Control
- Hold-off data packet Hold-off data packet
- CFG configuration data packet
- the reference power (Reference Power), whether data reception/transmission is supported simultaneously (Dup), whether the authentication function is supported (AI), out-band communication Information on whether to support (OB) and whether to support Extended Protocol (Neg) may be included, and in particular, information on polarity (Pol) and depth related to FSK may be included.
- the wireless power transmitter 1001 performs in-band communication with the wireless power receiver 1002 using FSK based on information on polarity and depth included in the CFG received from the wireless power receiver 1002 .
- Polarity and depth are elements of a power transfer contract between the wireless power transmitter 1001 and the wireless power receiver 1002 established in the configuration step, and elements of a power transfer contract that can be negotiated in the negotiation or renegotiation step to be described later. am.
- the power transfer contract related to the reception/transmission of wireless power between the wireless power receiver 1002 and the wireless power transmitter 1001 is extended or changed, or at least among the elements of the power transfer contract Renewal of the power transfer contract may be made to adjust some.
- the wireless power receiver 1002 uses a GRQ (General Request data packet) to provide an identification data packet (ID) and a capabilities data packet (CAP) of the wireless power transmitter 1001 . ) can be received.
- GRQ General Request data packet
- ID identification data packet
- CAP capabilities data packet
- the GRQ packet includes a 1-byte Requested Power Transmitter Data Packet field (a data packet field of the requested wireless power transmitter).
- the Requested Power Transmitter Data Packet field may include a header value of a data packet that the wireless power receiver 1002 requests from the wireless power transmitter 1001 using the GRQ packet. For example, when the wireless power receiver 1002 requests the ID packet of the wireless power transmitter 1001 using the GRQ packet, the wireless power receiver 1002 sets the Requested Power Transmitter Data Packet field to the wireless power transmitter.
- the GRQ packet (GRQ/id) including the header value (0x30) of the ID packet of (1001) is transmitted.
- the wireless power receiver 1002 may transmit a GRQ packet (GRQ/id) requesting the ID packet of the wireless power transmitter 1001 to the wireless power transmitter 1001 (S1002) .
- GRQ/id GRQ/id
- the wireless power transmitter 1001 receiving the GRQ/id may transmit the ID packet to the wireless power receiver 1002 (S1003).
- the ID packet of the wireless power transmitter 1001 includes information on the Manufacturer Code.
- the ID packet including information on the Manufacturer Code allows the manufacturer of the wireless power transmitter 1001 to be identified.
- the wireless power receiver 1002 may transmit a GRQ packet (GRQ/cap) requesting the CAP packet of the wireless power transmitter 1001 to the wireless power transmitter 1001 ( S1004 ).
- the Requested Power Transmitter Data Packet field of the GRQ/cap may include a header value (0x31) of the CAP packet.
- the wireless power transmitter 1001 that has received the GRQ/cap may transmit the CAP packet to the wireless power receiver 1002 (S1005).
- the CAP packet of the wireless power transmitter 1001 includes information related to the performance of the wireless power transmitter 1001 .
- the CAP packet of the wireless power transmitter 1001 includes negotiable load power, potential load power, simultaneous data reception/transmission support (Dup), and authentication function support. (AR), information on whether to support out-of-band communication (OB), etc. may be included.
- the wireless power receiver 1002 may use a Specific Request data packet (SRQ) in the negotiation phase or renegotiation phase to update the elements of the power transfer contract related to the power to be provided in the power transmission phase. and may end the negotiation phase or the renegotiation phase.
- SRQ Specific Request data packet
- the wireless power receiver 1002 may request a change in characteristic information related to FSK using SRQ.
- FIG. 15 is a diagram illustrating a format of a message field of an SRQ according to an example
- FIG. 16 is a diagram illustrating a format of a parameter field of an SRQ according to an example for requesting a change of characteristic information related to FSK.
- the message field of the SRQ may include a byte B0 including a Request field and a byte B1 including a Parameter field.
- the Request field of the SRQ (SRQ/fsk) for requesting a change of characteristic information related to FSK may have a value of 0x03, and the Request field may include information about NCylCLES, Polarity, and Depth related to FSK.
- the NCYCLES field may consist of 2 bits, and the value of the NCYCLES field and the number of cycles of the operating frequency representing one data bit may correspond as follows.
- FIG. 16 shows an example in which the NCYCLES field is composed of 2 bits
- the NCYCLES field may be composed of 3 bits or more according to an embodiment.
- the value of the NCYCLES field and the number of cycles of the operating frequency representing one data bit may correspond as follows.
- the wireless power transmitter 1001 After receiving the SRQ/fsk, the wireless power transmitter 1001 transmits an ACK to the wireless power receiver 1002 in response to the SRQ/fsk, and conforms to the information of NCYLCLES, Polarity, and Depth included in the SRQ/fsk. It transmits subsequent data to which FSK is applied.
- the subsequent data includes a data packet transmitted by the wireless power transmitter 1001 and a response to the data packet received from the wireless power receiver 1002 .
- the timing at which the wireless power transmitter 1001 transmits a message to which the new NCYLCES is applied may be a problem.
- 17 is a diagram for explaining a method of solving a transmission timing of a message to which a new NCYLCES is applied according to an embodiment.
- the wireless power receiver 1002 transmits a request packet 1011 requesting a new number of cycles (NCYCLES) of the FSK to the wireless power transmitter 1001 using, for example, SRQ/fsk. .
- the request packet 1011 may include information on the number of new cycles NCYCLES.
- the wireless power transmitter 1001 receiving the request packet 1011 from the wireless power receiver 1002 transmits a response 1012 to the request packet 1011 to the wireless power receiver 1002, and the request packet ( The subsequent data 1021 is transmitted to the wireless power receiver 1002 using the FSK based on the number of cycles included in 1011).
- the first subsequent data 1021 to which the new cycle number is applied may have to be transmitted or received within a certain time limit (Update Time Offset) from the time the request packet 1011 is transmitted or received.
- a certain time limit Update Time Offset
- the first subsequent data 1021 to which the new cycle number is applied may have to be transmitted or received within a certain time limit (Receive window) from the time when the response 1012 to the request packet 1011 is transmitted or received.
- the first subsequent data 1021 to which the new cycle number is applied may have to be transmitted or received within a time that satisfies both the Update Time Offset and the Receive window.
- the wireless power receiver 1002 if the subsequent data 1021 other than the response 1012 to the request packet 1011 is not received within the Update Time Offset and/or the Receive window, a new number of cycles of FSK (NCYCLES) A request packet 1011 for requesting may be transmitted to the wireless power transmitter 1001 .
- 18 is a diagram for explaining a method of solving a transmission timing of a message to which a new NCYLCES is applied according to another embodiment.
- the wireless power receiver and the wireless power transmitter may communicate using cycle sub-rating.
- the wireless power receiver and the wireless power transmitter operate based on a unit cycle set based on the minimum number of cycles (eg, 64 cycles) of the FSK, and the effective cycle for actually exchanging data packets is the number of cycles of the unit cycle. It can be an integer multiple.
- the wireless power transmitter receives a cycle sub-rate request packet 1031 from the wireless power receiver while transmitting a data packet or response based on 512 cycles.
- the wireless power receiver may request a new cycle number NCYCLES of the FSK by transmitting a cycle sub-rate request packet 1031 .
- the cycle sub-rate request packet 1031 may include information on a new cycle number NCYCLES, a packet exchange interval, a timeout in communication to which the new cycle number NCYCLES is applied, and the like.
- the wireless power transmitter transmits a response 1032 to the received cycle sub-rate request packet 1031 to the wireless power receiver, and a new number of cycles (NCYCLES) included in the cycle sub-rate request packet 1031, a packet Set a reference timing to transmit subsequent data based on information on an exchange interval, a timeout in communication to which a new number of cycles (NCYCLES) is applied, and the like, and based on the set reference timing, a new number of cycles (for example, 256 cycle) encoded subsequent data 1041 may be transmitted to the wireless power receiver.
- NCYCLES new number of cycles
- the wireless power receiver and the wireless power transmitter transmit/receive data by setting a reference timing based on the unit cycle and the effective cycle. There is no need to set a separate anchor point for the reception timing. Therefore, there is no need to set Update Time Offset or Receive window.
- the time required for the wireless power transmitter and/or the wireless power receiver The timeout also needs to be adjusted.
- the current WPC Qi standard stipulates that each data bit is aligned to 512 cycles of the operating frequency, but the FSK communication speed is made so that the number of cycles of the operating frequency representing one data bit is 512 cycles or less. If is faster, the timeout time can also be reduced correspondingly.
- the timeout time may decrease, and when the communication speed of the FSK becomes slow, the timeout time may increase.
- the timeout time may be adjusted to be proportional to the number of cycles of the operating frequency representing one data bit.
- 19 and 20 are diagrams for explaining an example of a timeout time required for a wireless power transmitter.
- the wireless power transmission device is a simple query data packet (simple-query data packet) it in transmitting a response pattern for a simple transmission of the response patterns within a timeout period (t responce) from the end of the query data packet should start
- the wireless power transmission apparatus has data request data packets (data-request data packet) transmission of the response patterns within a timeout period (t responce) from the end of the data request, the data packet I in transmitting a data packet for the should start
- t responce when the number of cycles of the operating frequency representing one data bit is 512 cycles, t responce may be 3 to 10 ms. However, if the number of cycles of the operating frequency representing one data bit is set to be less than 512 cycles, the minimum value of t responce may be adjusted to be less than 3 ms, or the maximum value may be adjusted to be less than 10 ms.
- the timeout time required for the wireless power transmitter and/or the wireless power receiver is reduced, thereby reducing the time required for the wireless charging protocol between the wireless power transmitter and the wireless power receiver.
- the current WPC Qi standard stipulates that each data bit is aligned to 512 cycles of the operating frequency, but the FSK communication speed is made so that the number of cycles of the operating frequency representing one data bit is 512 cycles or less.
- the power transmission interruption time can also be reduced correspondingly.
- the power transmission interruption time is reduced, and when the communication speed of the FSK is slowed, the power transmission interruption time can be increased.
- the power transmission downtime may be adjusted to be proportional to the number of cycles of the operating frequency representing one data bit.
- 21 is a diagram for explaining an example of a power transmission interruption time required for a wireless power transmitter.
- the wireless power transmitter must remove the power signal from the end of the end power transfer data packet (EPT ) within the power transfer stop time t terminate .
- t terminate may be a maximum of 28 ms. However, if the number of cycles of the operating frequency representing one data bit is set to be less than 512 cycles, the maximum value of t terminate can be adjusted to be less than 28 ms.
- t terminate required in connection with the reception of the EPT is taken as an example, but when an illegal data packet or a data packet with an abnormal value is received, illegal data
- the power transmission stop time (t terminate ) required from the termination of the packet or data packet with illegal value to the removal of the power signal may also be adjusted according to the number of cycles of the operating frequency representing one data bit.
- the corresponding power transmission interruption time is based on the number of cycles of the operating frequency representing one data bit. can be adjusted accordingly.
- the wireless power transmitter and the wireless power receiver transmit/receive responses or data packets through out-band communication.
- the required timeout time and/or power transmission interruption time may be set shorter than in the case of transmitting/receiving a response or data packet through in-band communication.
- the wireless power transmitter and wireless power receiver check whether Qi authentication is in place, and only when Qi authentication is confirmed, the profile of transmitted/received wireless power is converted from BPP (Baseline Power Profile) to EPP (Extended Power Profile) can do. If the Qi authentication is not confirmed, the wireless power profile can be maintained as BPP or the wireless power transmission/reception can be stopped.
- BPP Baseline Power Profile
- EPP Extended Power Profile
- One of the wireless power transmitter and the wireless power receiver may operate as an authentication initiator for initiating an authentication protocol, and the other may operate as an authentication responder.
- the authentication initiator requests the authentication responder for certificate chain digests, reads the authentication responder's certificate chain, and performs a challenge to prove the authenticity of the authentication responder.
- the authentication of the authentication responder mainly proceeds with certificate exchange and authentication of the certificate using a key (hereinafter, key authentication). That is, the authentication of the authentication responder is successful only when the authentication responder's certificate exchange and key authentication are both successful.
- the wireless power transmitter and the wireless power receiver may perform an authentication protocol through out-band communication.
- the authentication initiator may store and manage the ID of the authentication responder who successfully acquired the certificate.
- BLE Bluetooth Low Energy
- the authentication initiator may manage the BLE MAC address of the authentication responder as a white list, and may mark and manage whether the authentication responder's authentication is successful or not. Therefore, the authentication initiator can distinguish and manage whether the certificate is exchanged with the authentication responder and whether the key authentication is successful.
- the authentication initiator receives the advertisement packet ( Advertising packet) can be used to check whether the authentication responder has already been authenticated.
- the wireless power transmitter transmits an advertisement packet including its BLE ID to the wireless power receiver, and the wireless power receiver By checking the BLE ID of the wireless power transmitter, the white list it owns, and whether the authentication succeeded, it is possible to determine whether the certificate has been exchanged with the wireless power transmitter in the past and whether the wireless power transmitter has succeeded in authentication.
- the authentication initiator may omit the procedure of obtaining the authentication responder's certificate and perform key authentication based on the previously exchanged certificate. In this case, since the procedure for obtaining a certificate is omitted, the authentication protocol can be completed more quickly.
- the authentication initiator can identify the history of the authentication responder belonging to the white list and successful authentication, and the authentication responder can omit the key authentication process. Accordingly, since the procedure for obtaining a certificate from the authentication responder and the key authentication procedure are omitted, the authentication protocol can be completed more quickly.
- the authentication initiator requests DIGEST information from the authentication responder. to check whether the certificate has been previously exchanged. However, it is not possible to check whether the authentication responder actually succeeded in key authentication using only DIGEST information. However, for the efficiency of the authentication procedure, the authentication initiator may omit the key authentication procedure when the DIGEST information of the authentication responder is verified. However, omitting the key authentication procedure with only DIGEST information may cause a security problem. Therefore, if key authentication fails despite the exchange of the certificate, the certificate exchange is marked as Fail, and the authentication procedure with the same device is repeated next time. You can solve the security problem by implementing the DIGEST information so that it is not valid.
- 22 is a flowchart illustrating an authentication method between a wireless power receiver and a wireless power transmitter using an external server according to an embodiment.
- the wireless power receiver 1002 links accounts through communication with a separate control unit 1003 ( S1101 ).
- the control unit 1003 may be a device that manages the wireless power transmitter 1001 , and may be a device that can communicate with the wireless power receiver 1002 through a separate communication means such as the Internet.
- the control unit 1003 in which the account is linked with the wireless power receiver 1002 updates the certificate chain (S1102).
- the control unit 1003 may update the certificate chain of the wireless power transmitter 1001, and also transmit the certificate chain of the wireless power transmitter 1001 to the wireless power receiver 1002, or a wireless power receiver By allowing the 1002 to receive the certificate chain of the wireless power transmitter 1001 , authentication between the wireless power receiver 1002 and the wireless power transmitter 1001 may be performed in advance.
- step S1103 the authentication in step S1103 may be simplified or omitted.
- the wireless power receiver 1002 since the wireless power receiver 1002 has already checked the certificate chain of the wireless power transmitter 1001, the procedure of requesting and receiving the certificate chain of the wireless power transmitter 1001 in step S1103 is omitted, You can perform the authentication process by checking the DIGEST information
- the wireless power receiver 1002 classifies the wireless power transmitter 1001 that has already received the certificate chain as a white list device and classifies it as a device for which authentication has been successful. It is possible to omit the procedure of obtaining a certificate from
- the wireless power receiver 1002 can simplify or omit an authentication procedure with the wireless power transmitter 1001 and quickly receive wireless power according to the EPP.
- the certificate of the wireless power transmitter 1001 provided by the control unit 1003 may further define the validity period of the certificate. Accordingly, authentication between the wireless power receiver 1002 and the wireless power transmitter 1001 may be valid only within the valid period.
- the wireless power transmitter 1001 transmits the authentication information to the proximity through out-band communication. It can be notified to the wireless power receiver 1002 .
- the wireless power receiver 1002 and the wireless power transmitter 1001 are service-connected Information can be shared (S1104).
- the wireless power transmitter 1001 or the control unit 1003 is a wireless power receiver (1002) can share information necessary for service use.
- the service that the wireless power receiver 1002 wants to use is Wi-Fi connection Internet use
- device ID and channel information required for DPP (Wi-Fi Device Provisioning Protocol) required for Wi-Fi connection are shared.
- channel information channel information to be used in the procedure can be exchanged for the case of exchanging Wi-Fi-based public keys (2.4GHz Channel6: 2.437GHz, 5GHz Channel 44: 5.220GHz, 60GHz Channel2: 60.48GHz, etc.).
- This omits the service authentication procedure for service connection by utilizing Qi authentication, and enables service connection and service use (S1105).
- control unit 1003 performs all account interlocking, certificate chain update, service connection and provision with the wireless power receiver 1002 is illustrated and described based on this, but the control unit 1003 may be composed of a combination of independent devices for each function.
- a device that performs account linkage, certificate chain update, and service connection and provision may be configured separately.
- the embodiment of FIG. 22 may be applied to a service providing a seat equipped with the wireless power transmitter 1001 in a cafe, a movie theater, a bus, an airplane, and the like.
- the wireless power receiver 1002 connects to the control unit 1003 that provides a service through account input, and the wireless power transmitter 1001 before the user of the wireless power receiver 1002 sits in the seat.
- the wireless power receiver 1002 and the wireless power transmitter 1001 actually contact or establish communication, at least a part of the authentication procedure is omitted or the entire authentication procedure is omitted, and wireless power transmission Reception of wireless power from the device 1001 may be permitted, or reception of wireless power according to EPP may be permitted.
- the wireless power receiver 1002 may receive a separate service other than wireless charging.
- 23 is a flowchart illustrating an authentication method between a wireless power receiver and a wireless power transmitter using an external server according to another embodiment.
- the wireless power transmitter 1001 and the wireless power receiver 1002 can perform in-band (IB) communication and out-band (OOB) communication.
- IB in-band
- OOB out-band
- the wireless power transmitter 1001 transmits a certificate uniform resource identifier (URI) to the wireless power receiver 1002 through out-band communication (S1201).
- URI uniform resource identifier
- the wireless power transmitter 1001 includes a certificate URI in an advertisement packet for establishing a BLE channel. can be sent by Alternatively, the wireless power transmitter 1001 may transmit the certificate URI to the wireless power receiver 1002 through in-band communication.
- an in-band communication channel is established between the wireless power receiver 1002 and the wireless power transmitter 1001 (S1202), and the wireless A protocol for power transmission is started.
- an out-band communication channel between the wireless power transmitter 1001 and the wireless power receiver 1002 is also established (S1203).
- step S1202 is performed after step S1201, but the relationship between steps S1201 and S1202 may be changed.
- the wireless power receiver 1002 obtains the certificate of the wireless power transmitter 1001 from the IP server 1004 using the certificate URI of the wireless power transmitter 1001 obtained in step S1201 (S1204).
- the wireless power receiver 1002 may obtain a private key related to the certificate of the wireless power transmitter 1001 from the IP server 1004 , a root CA certificate, an intermediate CA certificate, a device certificate, and the like.
- the wireless power receiver 1002 obtains the certificate of the wireless power transmitter 1001 from the IP server 1004 through out-band communication, but obtains the certificate of the wireless power transmitter 1001
- Out-band communication is not limited to the out-band communication channel established in relation to the wireless power transmitter 1001.
- the wireless power receiver 1002 may access the IP server 1004 through the Internet, or the like, and may access the IP server 1004 through a separate communication intermediary (eg, an IP router, etc.).
- the wireless power receiver 1002 verifies the certificate of the wireless power transmitter 1001 obtained in step S1204 (S1205). Details of the certificate verification procedure will be described later.
- the wireless power receiver 1002 When authentication for the wireless power transmitter 1001 is successful based on the certificate of the wireless power transmitter 1001, the wireless power receiver 1002 receives or receives wireless power from the wireless power transmitter 1001. Wireless power can be extended from BPP to EPP.
- the wireless power receiver 1002 is the wireless power transmitter In the case of moving away from 1001 or moving outside the range where wireless charging is possible, the wireless power receiver 1002 may request to stop wireless power transmission to the wireless power transmitter 1001 or block wireless power reception ( S1206).
- An in-band communication element (eg, a transmission coil, etc.) of the wireless power transmitter 1001 is an out-band communication element of the wireless power transmitter 1001 and informs that an error such as authentication failure or power transmission interruption has occurred (S1207) ), the wireless power transmitter 1001 may notify the occurrence of an error to the wireless power receiver 1002 through out-band communication (S1207).
- the wireless power receiver 1002 that has received the error occurrence from the wireless power transmitter 1001 may notify the user of the error occurrence state through a display, vibration, sound, or the like.
- step S1205 of FIG. 23 is a flowchart for explaining step S1205 of FIG. 23 in more detail.
- the wireless power receiver 1002 obtains a certificate URI of the wireless power transmitter 1001 ( S1201 ).
- the wireless power receiver 1002 checks the certificate based on the URI (S1301).
- the wireless power receiver 1002 may check validity of URI information, possibility of obtaining certificate information through URI, validity of Certificate URI Hash information, and the like.
- step S1201 or step S1301 the wireless power receiver 1002 and/or the wireless power transmitter 1001 performs a firmware update of the device and a communication means (in-band communication or out-band communication) for certificate-based authentication. ) may be checked first.
- a communication means in-band communication or out-band communication for certificate-based authentication.
- step S1301 If the validity of the URI information or the possibility of obtaining certificate information through the URI is not recognized in step S1301, the process proceeds to step S1206.
- step S1301 if the validity of the URI information or the possibility of obtaining the certificate information through the URI is recognized, the wireless power receiver 1002 attempts to access the IP server based on the certificate URI (S1302). In step S1302, when access to the certificate URI is not possible or there is no access right, when an error occurs in downloading a certificate, when the time limit required for obtaining a certificate is exceeded, etc., the process can proceed to step S1206.
- the wireless power receiver 1002 obtains a certificate of the wireless power transmitter 1001 from the IP server (S1303).
- the wireless power receiver 1002 may obtain a private key related to the certificate of the wireless power transmitter 1001 from the IP server 1004 , a root CA certificate, an intermediate CA certificate, a device certificate, and the like.
- the wireless power receiver 1002 checks the validity of the root certificate from the obtained certificate (S1304). If the validity of the root certificate is not verified, the process may proceed to step S1206.
- the wireless power receiver 1002 checks the validity of other certificates included in the obtained certificate (S1305). If the validity of the certificates is not checked in step S1305, the process may proceed to step S1206.
- the wireless power receiver 1002 may start an authentication procedure based on the certificate ( 1306 ), and inform the user that the authentication procedure has been normally performed ( S1307 ).
- the wireless power receiver 1002 may notify the user that the authentication procedure has been normally performed through a display, vibration, sound, or the like.
- step S1206 the wireless power transmitter 1001 notifies the wireless power receiver 1002 and other nearby wireless power receivers through out-band communication that an error such as authentication failure or power transmission interruption has occurred.
- the wireless power receiver 1002 that has received the error occurrence from the wireless power transmitter 1001 may notify the user of the error occurrence state through a display, vibration, sound, etc. (S1308).
- certificate-based authentication it may be added to the standards related to wireless charging as follows.
- Device Capability Additional device capability information for certificate-based authentication, which can be exchanged between a wireless power transmitter (PTx) and a wireless power receiver (PRx).
- PTx wireless power transmitter
- PRx wireless power receiver
- In-band to in-band, Inband to OOB, etc. can be used as communication means for certificate-based authentication.
- Auth Timer (Initiator / Responder): Maximum time allowed for authentication verification when requesting certificate-based authentication
- the wireless power receiver (PRx) may periodically determine whether the wireless power transmitter (PTx) is a previously authenticated device or whether the device has been changed.
- a new device (wireless power receiver and/or wireless power transmitter) on a network including the wireless power receiver 1002 - the wireless power transmitter 1001 - the IP server 1004 ) is added, for security, after verifying the manufacturer and device certificates, a new security key is generated with the verified public key and authentication can be performed.
- a GUEST network may be temporarily configured for the new wireless power receiver 1002 so that the new wireless power receiver 1002 can acquire the certificate of the wireless power transmitter 1001 through the URI. This allows for tighter isolation between unprovisioned devices and devices participating in the subnet.
- Communication between the wireless power transmitter 1001 and the wireless power receiver 1002 may be interrupted while an authentication procedure is in progress. For example, while the authentication procedure is in progress while the wireless power receiver 1002 is placed on the wireless power transmitter 1001, the wireless power receiver 1002 is separated from the wireless power transmitter 1001, This is the case when a foreign material is inserted between the wireless power receiver 1002 and the wireless power transmitter 1001 , or the communication link is broken due to the influence of surrounding interference.
- the wireless power receiver 1002 departs from the wireless power transmitter 1001 .
- the authentication procedure may be continued as long as the out-band communication channel is connected. Therefore, when the wireless power receiver 1002 has a remaining battery capacity so that the out-band communication module can be driven, the connection of the out-band communication channel with the wireless power transmitter 1001 is maintained and the authentication procedure is continued. can do.
- the wireless power transmitter 1001 and/or the wireless power receiver 1002 sets an authentication range smaller than the discovery and/or connection range of out-band communication, and wireless power In-band communication between the wireless power receiver 1002 and the wireless power transmitter 1001 is cut off only when the receiver 1002 is located within the authentication range from the wireless power transmitter 1001, or wireless power is received Even if the device 1002 is separated from the wireless power transmitter 1001 or a foreign object is inserted between the wireless power receiver 1002 and the wireless power transmitter 1001, the authentication procedure can be continued through out-band communication. have.
- the wireless power receiver 1002 when the wireless power receiver 1002 is more than a certain distance away from the wireless power transmitter 1001, there is a high possibility that the user has no intention of wireless charging, so the authentication procedure may be stopped.
- Whether the wireless power receiver 1002 is located within the authentication range from the wireless power transmitter 1001 may be determined based on the signal strength of in-band communication and/or out-band communication.
- the wireless power receiver 1002 and/or the wireless power transmitter 1001 is set for a certain period of time (Authentication time). -out) without terminating the authentication process, the authentication process may be temporarily suspended until a subsequent data packet that is continuous to the previously performed authentication process is received.
- the wireless power receiver 1002 and/or the wireless power transmitter 1001 continuously continues the stopped authentication procedure when a subsequent data packet is detected within a predetermined time (Authentication time-out), and for a predetermined time (Authentication time-out) If a subsequent data packet is not detected within, the authentication process may be initiated and the authentication process restarted, or it may be treated as an authentication failure.
- Authentication time-out a predetermined time
- Authentication time-out Authentication time-out
- the wireless power receiver 1002 and/or the wireless power transmitter 1001 transmits information about the data packet exchanged in the authentication process in progress for a certain period of time (Authentication time-out).
- Authentication time-out information about the data packet exchanged in the authentication process in progress for a certain period of time.
- the stored information may be initialized after a predetermined time (authentication time-out) has elapsed.
- Communication abnormality detection includes transmission/reception of an error packet transmitted by the wireless power receiver 1002 and/or the wireless power transmitter 1001 in the authentication process, detection of a malfunction of the wireless power transmitter 1001, detection of foreign substances, and communication
- the occurrence of an error condition may be a criterion.
- the wireless power transmitter in the embodiment according to the above-described FIGS. 13 to 24 corresponds to the wireless power transmitter or the wireless power transmitter or the power transmitter disclosed in FIGS. 1 to 12 . Accordingly, the operation of the wireless power transmitter in this embodiment is implemented by one or a combination of two or more of each component of the wireless power transmitter in FIGS. 1 to 12 .
- a timeout and/or power transmission required for reception/transmission of data packets according to FIGS. 13 to 24, FSK communication based on NCYCLES, a subsequent response or data packet transmission according to a change in FSK communication speed Adjustment of the interruption time, execution of an authentication procedure, and determination of authentication errors are included in the operation of the communication/control unit 120 , 710 , or 790 .
- the wireless power receiver in the embodiment according to the above-described FIGS. 13 to 24 corresponds to the wireless power receiver or the wireless power receiver or the power receiver disclosed in FIGS. 1 to 12 . Accordingly, the operation of the wireless power receiver in this embodiment is implemented by one or a combination of two or more of each component of the wireless power receiver in FIGS. 1 to 12 .
- the timeout and/or power transmission interruption time required for the reception/transmission of the data packet according to FIGS. 13 to 24, the subsequent response according to the change of the FSK communication speed based on NCYCLES, or the transmission of the data packet. Adjustment, performing an authentication procedure, and determining an authentication error, etc. may be included in the operation of the communication/control unit 220 , 810 or 890 .
- the wireless power transmission apparatus and method, or the reception apparatus and method includes the above-described components. or some or all of the steps.
- the above-described wireless power transmission apparatus and method, or the embodiment of the reception apparatus and method may be performed in combination with each other.
- each of the above-described components or steps is not necessarily performed in the order described, and it is also possible that the steps described later are performed before the steps described earlier.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Transmitters (AREA)
Abstract
본 명세서의 일 실시예에 따른 무선전력 전송장치는, 무선전력 수신장치로 상기 무선전력을 전송하는 전력 변환 회로 및 상기 무선전력 수신장치와 통신하고 상기 무선전력을 제어하는 통신/컨트롤 회로를 포함하고, 상기 통신/컨트롤 회로는 타임아웃시간을 기초로 상기 무선전력 수신장치로부터 수신된 수신 데이터 패킷에 대한 응답 또는 상기 무선전력 수신장치로 전송하는 전송 데이터 패킷을 전송하되, 상기 타임아웃시간은 상기 통신/컨트롤 회로와 상기 무선전력 수신장치 사이의 통신 속도에 따라 변경된다.
Description
본 명세서는 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치와, 무선전력 전송장치에 의한 상기 무선전력 수신장치와의 통신 방법에 관한 것이다.
무선 전력 전송 기술은 전원 소스와 전자 기기 사이에 무선으로 전력을 전달하는 기술이다. 일 예로 무선 전력 전송 기술은 스마트폰이나 태블릿 등의 무선 단말기를 단지 무선 충전 패드 상에 올려놓는 것만으로 무선 단말기의 배터리를 충전할 수 있도록 함으로써, 기존의 유선 충전 커넥터를 이용하는 유선 충전 환경에 비해 보다 뛰어난 이동성과 편의성 그리고 안전성을 제공할 수 있다. 무선 전력 전송 기술은 무선 단말기의 무선 충전 이외에도, 전기 자동차, 블루투스 이어폰이나 3D 안경 등 각종 웨어러블 디바이스(wearable device), 가전기기, 가구, 지중 시설물, 건물, 의료기기, 로봇, 레저 등의 다양한 분야에서 기존의 유선 전력 전송 환경을 대체할 것으로 주목받고 있다.
무선전력 전송방식을 비접촉(contactless) 전력 전송방식 또는 무접점(no point of contact) 전력 전송방식, 무선충전(wireless charging) 방식이라 하기도 한다. 무선전력 전송 시스템은, 무선전력 전송방식으로 전기에너지를 공급하는 무선전력 전송장치와, 상기 무선전력 전송장치로부터 무선으로 공급되는 전기에너지를 수신하여 배터리셀 등의 수전장치에 전력을 공급하는 무선전력 수신장치로 구성될 수 있다.
무선 전력 전송 기술은 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식 등 다양하다. 자기 커플링에 기반한 방식은 다시 자기 유도(magnetic induction) 방식과 자기 공진(magnetic resonance) 방식으로 분류된다. 자기유도 방식은 전송 측의 코일과 수신 측의 코일 간의 전자기결합에 따라 전송 측 코일배터리셀에서 발생시킨 자기장로 인해 수신 측 코일에 유도되는 전류를 이용하여 에너지를 전송하는 방식이다. 자기공진 방식은 자기장을 이용한다는 점에서 자기유도 방식과 유사하다. 하지만, 자기공진 방식은 전송 측의 코일과 수신 측의 코일에 특정 공진 주파수가 인가될 때 공진이 발생하고, 이로 인해 전송 측과 수신 측 양단에 자기장이 집중되는 현상에 의해 에너지가 전달되는 측면에서 자기유도와는 차이가 있다.
본 명세서의 기술적 과제는 무선전력 전송장치와 무선전력 수신장치 사이의 통신 속도 변경에 기초하여 상대 장치로 전송하거나 상대 장치로부터 수신하는 응답 및/또는 데이터 패킷에 요구되는 제한 시간이 변경되는 무선전력 전송장치와, 무선전력 전송장치에 의한 통신 방법을 제공함에 있다.
또는, 본 명세서의 기술적 과제는 무선전력 전송장치와 무선전력 수신장치 사이의 효율적인 인증 방법을 제공함에 있다.
본 명세서의 기술적 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 전송장치는, 무선전력 수신장치로 상기 무선전력을 전송하는 전력 변환 회로 및 상기 무선전력 수신장치와 통신하고 상기 무선전력을 제어하는 통신/컨트롤 회로를 포함하고, 상기 통신/컨트롤 회로는 타임아웃시간을 기초로 상기 무선전력 수신장치로부터 수신된 수신 데이터 패킷에 대한 응답 또는 상기 무선전력 수신장치로 전송하는 전송 데이터 패킷을 전송하되, 상기 타임아웃시간은 상기 통신/컨트롤 회로와 상기 무선전력 수신장치 사이의 통신 속도에 따라 변경된다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 전송장치에 의한 무선전력 수신장치와의 통신 방법은, 타임아웃시간을 기초로 상기 무선전력 수신장치로부터 수신된 수신 데이터 패킷에 대한 응답 또는 상기 무선전력 수신장치로 전송하는 전송 데이터 패킷을 전송하되, 상기 타임아웃시간은 상기 무선전력 전송장치와 상기 무선전력 수신장치 사이의 통신 속도에 따라 변경된다.
본 명세서의 구체적인 특징은 이하에서 설명된다.
무선전력 전송장치와 무선전력 수신장치 사이의 통신 속도 변경에 기초하여 상대 장치로 전송하거나 상대 장치로부터 수신하는 응답 및/또는 데이터 패킷에 요구되는 제한 시간을 변경하여, 무선 충전과 관련된 프로토콜의 효율적 운용이 가능한다.
또는, 무선전력 전송장치와 무선전력 수신장치 사이의 효율적인 인증이 가능하다.
본 명세서에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 일 실시예에 따른 무선 전력 시스템의 블록도이다.
도 2는 다른 실시예에 따른 무선 전력 시스템의 블록도이다.
도 3a는 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3b는 무선 전력 전송 시스템에서 WPC NDEF의 일례를 나타낸다.
도 4a는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4b는 본 명세서에 따른 일 실시예가 적용될 수 있는 블루투스 통신 아키텍처(Architecture)의 일 예를 나타낸 도이다.
도 4c는 일례에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4d는 다른 예에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다.
도 9는 일 실시예에 따른 쉐어드 모드에서 무선 전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시하였다.
도 10은 일 실시예에 따른 무선전력 전송장치의 성능 패킷 구조이다.
도 11은 일 실시예에 따른 무선전력 수신장치의 구성 패킷 구조이다.
도 12는 일례에 따른 무선전력 전송장치와 수신장치간에 어플리케이션 레벨의 데이터 스트림을 도시한 것이다.
도 13은 현재의 WPC Qi 규격에 따른 FSK 엔코딩 방법을 설명하기 위한 도면이다.
도 14는 일 실시예에 따른 협상 단계 또는 재협상 단계의 프로토콜을 도시한 흐름도이다.
도 15는 일 예에 따른 SRQ의 메시지 필드의 포맷을 도시한 도면이다.
도 16은 FSK와 관련된 특성 정보의 변경을 요청하기 위한 일 예에 따른 SRQ의 파라미터 필드의 포맷을 도시한 도면이다.
도 17은 일 실시예에 따른 새로운 NCYLCES이 적용된 메시지의 전송 타이밍 해결 방법을 설명하기 위한 도면이다.
도 18은 다른 실시예에 따른 새로운 NCYLCES이 적용된 메시지의 전송 타이밍 해결 방법을 설명하기 위한 도면이다.
도 19 및 도 20은 무선전력 전송장치에게 요구되는 타임아웃시간의 예를 설명하기 위한 도면이다.
도 21은 무선전력 전송장치에게 요구되는 전력전송중단시간의 예를 설명하기 위한 도면이다.
도 22는 일 실시예에 따른 외부 서버를 이용한 무선전력 수신장치와 무선전력 전송장치 사이의 인증 방법을 설명하기 위한 도면이다.
도 23은 다른 실시예에 따른 외부 서버를 이용한 무선전력 수신장치와 무선전력 전송장치 사이의 인증 방법을 설명하기 위한 흐름도이다.
도 24는 도 23의 S1205 단계 등을 보다 구체적으로 설명하기 위한 흐름도이다.
본 명세서에서 “A 또는 B(A or B)”는 “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 달리 표현하면, 본 명세서에서 “A 또는 B(A or B)”는 “A 및/또는 B(A and/or B)”으로 해석될 수 있다. 예를 들어, 본 명세서에서 “A, B 또는 C(A, B or C)”는 “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 “및/또는(and/or)”을 의미할 수 있다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 이에 따라 “A/B”는 “오직 A”, “오직 B”, 또는 “A와 B 모두”를 의미할 수 있다. 예를 들어, “A, B, C”는 “A, B 또는 C”를 의미할 수 있다.
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 “예를 들어(for example)”를 의미할 수 있다. 구체적으로, “제어 정보(PDCCH)”로 표시된 경우, “제어 정보”의 일례로 “PDCCH”가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 “제어 정보”는 “PDCCH”로 제한(limit)되지 않고, “PDDCH”가 “제어 정보”의 일례로 제안될 것일 수 있다. 또한, “제어 정보(즉, PDCCH)”로 표시된 경우에도, “제어 정보”의 일례로 “PDCCH”가 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다. 이하에서 사용되는 "무선 전력" 이라는 용어는, 물리적인 전자기 전도체들의 사용없이 무선전력 전송기(wireless power transmitter)로부터 무선전력 수신장치(wireless power receiver)로 전달되는 전기장, 자기장, 전자기장 등과 관련된 임의의 형태의 에너지를 의미하도록 사용된다. 무선전력은 무선 전력 신호(wireless power signal)이라고 불릴 수도 있으며, 1차 코일과 2차 코일에 의해 둘러싸이는(enclosed) 진동하는 자속(oscillating magnetic flux)을 의미할 수 있다. 예를 들어, 이동 전화기, 코드리스 전화기, iPod, MP3 플레이어, 헤드셋 등을 포함하는 디바이스들을 무선으로 충전하기 위해 시스템에서의 전력 변환이 여기에 설명된다. 일반적으로, 무선 전력 전송의 기본적인 원리는, 예를 들어, 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식을 모두 포함한다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 1을 참조하면, 무선 전력 시스템(10)은 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)를 포함한다.
무선 전력 전송 장치(100)는 외부의 전원 소스(S)로부터 전원을 인가받아 자기장을 발생시킨다. 무선 전력 수신 장치(200)는 발생된 자기장을 이용하여 전류를 발생시켜 무선으로 전력을 수신받는다.
또한, 무선 전력 시스템(10)에서 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)는 무선 전력 전송에 필요한 다양한 정보를 송수신할 수 있다. 여기서, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)간의 통신은 무선 전력 전송에 이용되는 자기장을 이용하는 인-밴드 통신(in-band communication)이나 별도의 통신 캐리어를 이용하는 아웃-밴드 통신(out-band communication) 중 어느 하나의 방식에 따라 수행될 수 있다. 아웃-밴드 통신은 아웃-오브-밴드(out-of-band) 통신이라 불릴 수도 있다. 이하에서는 아웃-밴드 통신으로 용어를 통일하여 기술한다. 아웃-밴드 통신의 예로서 NFC, 블루투스(bluetooth), BLE(bluetooth low energy) 등을 포함할 수 있다.
여기서, 무선 전력 전송 장치(100)는 고정형 또는 이동형으로 제공될 수 있다. 고정형의 예로는 실내의 천장이나 벽면 또는 테이블 등의 가구에 임베디드(embedded)되는 형태, 실외의 주차장, 버스 정류장이나 지하철역 등에 임플란트 형식으로 설치되는 형태나 차량이나 기차 등의 운송 수단에 설치되는 형태 등이 있다. 이동형인 무선 전력 전송 장치(100)는 이동 가능한 무게나 크기의 이동형 장치나 노트북 컴퓨터의 덮개 등과 같이 다른 장치의 일부로 구현될 수 있다.
또 무선 전력 수신 장치(200)는 배터리를 구비하는 각종 전자 기기 및 전원 케이블 대신 무선으로 전원을 공급받아 구동되는 각종 가전 기기를 포함하는 포괄적인 개념으로 해석되어야 한다. 무선 전력 수신 장치(200)의 대표적인 예로는, 이동 단말기(portable terminal), 휴대 전화기(cellular phone), 스마트폰(smart phone), 개인 정보 단말기(PDA: Personal Digital Assistant), 휴대 미디어 플레이어(PMP: Portable Media Player), 와이브로 단말기(Wibro terminal), 태블릿(tablet), 패블릿(phablet), 노트북(notebook), 디지털 카메라, 네비게이션 단말기, 텔레비전, 전기차량(EV: Electronic Vehicle) 등이 있다.
도 2는 다른 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 2를 참조하면, 무선 전력 시스템(10)에서 무선 전력 수신 장치(200)는 하나 또는 복수일 수 있다. 도 1에서는 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)가 일대일로 전력을 주고 받는 것으로 표현되고 있으나, 도 2와 같이 하나의 무선 전력 전송 장치(100)가 복수의 무선 전력 수신 장치(200-1, 200-2,..., 200-M)로 전력을 전달하는 것도 가능하다. 특히, 자기 공진 방식으로 무선 전력 전송을 수행하는 경우에는 하나의 무선 전력 전송 장치(100)가 동시 전송 방식이나 시분할 전송 방식을 응용하여 동시에 여러 대의 무선 전력 수신 장치(200-1, 200-2,...,200-M)로 전력을 전달할 수 있다.
또한, 도 1에는 무선 전력 전송 장치(100)가 무선 전력 수신 장치(200)에 바로 전력을 전달하는 모습이 도시되어 있으나, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200) 사이에 무선전력 전송 거리를 증대시키기 위한 릴레이(relay) 또는 중계기(repeater)와 같은 별도의 무선 전력 송수신 장치가 구비될 수 있다. 이 경우, 무선 전력 전송 장치(100)로부터 무선 전력 송수신 장치로 전력이 전달되고, 무선 전력 송수신 장치가 다시 무선 전력 수신 장치(200)로 전력을 전달할 수 있다.
이하 본 명세서에서 언급되는 무선전력 수신기, 전력 수신기, 수신기는 무선 전력 수신 장치(200)를 지칭한다. 또한 본 명세서에서 언급되는 무선전력 전송기, 전력 전송기, 전송기는 무선 전력 수신 전송 장치(100)를 지칭한다.
도 3a은 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3a에는 무선 전력 전송 시스템에서 송신 및 수신하는 전력 양에 따라 전자 기기들을 분류하여 도시하였다. 도 3a을 참조하면, 스마트 시계(Smart watch), 스마트 글래스(Smart Glass), HMD(Head Mounted Display), 및 스마트 링(Smart ring)과 같은 웨어러블 기기들 및 이어폰, 리모콘, 스마트폰, PDA, 태블릿 PC 등의 모바일 전자 기기들(또는 포터블 전자 기기들)에는 소전력(약 5W이하 또는 약 20W 이하) 무선 충전 방식이 적용될 수 있다.
노트북, 로봇 청소기, TV, 음향 기기, 청소기, 모니터와 같은 중/소형 가전 기기들에는 중전력(약 50W이하 또는 약 200W)이하) 무선 충전 방식이 적용될 수 있다. 믹서기, 전자 레인지, 전기 밥솥과 같은 주방용 가전 기기, 휠체어, 전기 킥보드, 전기 자전거, 전기 자동차 등의 개인용 이동 기기들(또는, 전자 기기/이동 수단들)은 대전력(약 2kW 이하 또는 22kW이하) 무선 충전 방식이 적용될 수 있다.
상술한(또는 도 1에 도시된) 전자 기기들/이동 수단들은 후술하는 무선 전력 수신기를 각각 포함할 수 있다. 따라서, 상술한 전자 기기들/이동 수단들은 무선 전력 송신기로부터 무선으로 전력을 수신하여 충전될 수 있다.
이하에서는 전력 무선 충전 방식이 적용되는 모바일 기기를 중심으로 설명하나 이는 실시예에 불과하며, 본 명세서에 따른 무선 충전 방법은 상술한 다양한 전자 기기에 적용될 수 있다.
무선전력 전송에 관한 표준(standard)은 WPC(wireless power consortium), AFA(air fuel alliance), PMA(power matters alliance)을 포함한다.
WPC 표준은 기본 전력 프로파일(baseline power profile: BPP)과 확장 전력 프로파일(extended power profile: EPP)을 정의한다. BPP는 5W의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이고, EPP는 5W보다 크고 30W보다 작은 범위의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이다.
서로 다른 전력레벨(power level)을 사용하는 다양한 무선전력 전송장치와 수신장치들이 각 표준별로 커버되고, 서로 다른 전력 클래스(power class) 또는 카테고리로 분류될 수 있다.
예를 들어, WPC는 무선전력 전송장치와 수신장치를 전력 클래스(power class :PC) -1, PC0, PC1, PC2로 분류하고, 각 PC에 대한 표준문서를 제공한다. PC-1 표준은 5W 미만의 보장전력(guaranteed power)을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC-1의 어플리케이션은 스마트 시계와 같은 웨어러블 기기를 포함한다.
PC0 표준은 5W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC0 표준은 보장전력이 30W까지인 EPP를 포함한다. 인-밴드(in-band :IB) 통신이 PC0의 필수적인(mandatory) 통신 프로토콜이나, 옵션의 백업 채널로 사용되는 아웃-밴드(out-band : OB) 통신도 사용될 수 있다. 무선전력 수신장치는 OB의 지원 여부를 구성 패킷(configuration packet)내의 OB 플래그를 설정함으로써 식별할 수 있다. OB를 지원하는 무선전력 전송장치는 상기 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴(bit-pattern)을 전송함으로써 OB 핸드오버 페이즈(handover phase)로 진입할 수 있다. 상기 구성 패킷에 대한 응답은 NAK, ND 또는 새롭게 정의되는 8비트의 패턴일 수 있다. PC0의 어플리케이션은 스마트폰을 포함한다.
PC1 표준은 30W~150W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. OB는 PC1을 위한 필수적인 통신 채널이며, IB는 OB로의 초기화 및 링크 수립(link establishment)로서 사용된다. 무선전력 전송장치는 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴을 이용하여 OB 핸드오버 페이즈로 진입할 수 있다. PC1의 어플리케이션은 랩탑이나 전동 공구(power tool)을 포함한다.
PC2 표준은 200W~2kW의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것으로서, 그 어플리케이션은 주방가전을 포함한다.
이렇듯 전력 레벨에 따라 PC가 구별될 수 있으며, 동일한 PC간 호환성(compatibility)을 지원할지 여부는 선택 또는 필수 사항일 수 있다. 여기서 동일한 PC간 호환성은, 동일한 PC 간에는 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 동일한 PC x를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 동일한 PC간 호환성이 유지되는 것으로 볼 수 있다. 이와 유사하게 서로 다른 PC간의 호환성 역시 지원 가능할 수 있다. 여기서 서로 다른 PC간 호환성은, 서로 다른 PC 간에도 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 PC y를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 서로 다른 PC간 호환성이 유지되는 것으로 볼 수 있다.
PC간 호환성의 지원은 사용자 경험(User Experience) 및 인프라 구축 측면에서 매우 중요한 이슈이다. 다만, PC간 호환성 유지에는 기술적으로 아래와 같은 여러 문제점이 존재한다.
동일한 PC간 호환성의 경우, 예를 들어, 연속적으로 전력이 전송되는 경우에만 안정적으로 충전이 가능한 랩-탑 충전(lap-top charging) 방식의 무선 전력 수신장치는, 동일한 PC의 무선 전력 송신장치라 하더라도, 불연속적으로 전력을 전송하는 전동 툴 방식의 무선 전력 송신장치로부터 전력을 안정적으로 공급받는 데 문제가 있을 수 있다. 또한, 서로 다른 PC간 호환성의 경우, 예를 들어, 최소 보장 전력이 200W인 무선 전력 송신장치는 최대 보장 전력이 5W인 무선 전력 수신장치로 전력을 송신하는 경우, 과전압으로 인해 무선전력 수신장치가 파손될 위험이 있다. 그 결과, PC는 호환성을 대표/지시하는 지표/기준으로 삼기 어렵다.
무선전력 전송 및 수신장치들은 매우 편리한 사용자 경험과 인터페이스(UX/UI)를 제공할 수 있다. 즉, 스마트 무선충전 서비스가 제공될 수 있다, 스마트 무선충전 서비스는 무선전력 전송장치를 포함하는 스마트폰의 UX/UI에 기초하여 구현될 수 있다. 이러한 어플리케이션을 위해, 스마트폰의 프로세서와 무선충전 수신장치간의 인터페이스는 무선전력 전송장치와 수신장치간의 "드롭 앤 플레이(drop and play)" 양방향 통신을 허용한다.
이하에서는 호환성을 대표/지시하는 지표/기준으로 '프로필(profile)'을 새롭게 정의하기로 한다. 즉, 동일한 '프로필'을 갖는 무선 전력 송수신 장치간에는 호환성이 유지되어 안정적인 전력 송수신이 가능하며, 서로 다른 '프로필'을 갖는 무선 전력 송수신장치간에는 전력 송수신이 불가한 것으로 해석될 수 있다. 프로필은 전력 클래스와 무관하게(또는 독립적으로) 호환 가능 여부 및/또는 어플리케이션에 따라 정의될 수 있다.
프로필은 크게 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 이렇게 3가지로 구분될 수 있다.
또는, 프로필은 크게 i) 모바일, ii) 전동 툴, iii) 주방 및 iv) 웨어러블 이렇게 4가지로 구분될 수 있다.
'모바일' 프로필의 경우, PC는 PC0 및/또는 PC1, 통신 프로토콜/방식은 IB 및 OB, 동작 주파수는 87~205kHz로 정의될 수 있으며, 어플리케이션의 예시로는 스마트폰, 랩-탑 등이 존재할 수 있다.
'전동 툴' 프로필의 경우, PC는 PC1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~145kHz로 정의될 수 있으며, 어플리케이션의 예시로는 전동 툴 등이 존재할 수 있다.
'주방' 프로필의 경우, PC는 PC2, 통신 프로토콜/방식은 NFC-기반, 동작 주파수는 100kHz 미만으로 정의될 수 있으며, 어플리케이션의 예시로는 주방/가전 기기 등이 존재할 수 있다.
전동 툴과 주방 프로필의 경우, 무선전력 전송장치와 수신장치 간에 NFC 통신이 사용될 수 있다. 무선전력 전송장치와 수신장치는 WPC NDEF(NFC Data Exchange Profile Format)을 교환함으로써 상호간에 NFC 기기임을 확인할 수 있다.
도 3b는 무선 전력 전송 시스템에서 WPC NDEF의 일례를 나타낸다.
도 3b를 참조하면, WPC NDEF는 예를 들어, 어플리케이션 프로파일(application profile) 필드(예를 들어 1B), 버전 필드(예를 들어 1B), 및 프로파일 특정 데이터(profile specific data, 예를 들어 1B)를 포함할 수 있다. 어플리케이션 프로파일 필드는 해당 장치가 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 중 어느 것인지를 지시하고, 버전 필드의 상위 니블(upper nibble)은 메이저 버전(major version)을 지시하고 하위 니블(lower nibble)은 마이너 버전(minor version)을 지시한다. 또한 프로파일 특정 데이터는 주방을 위한 컨텐츠를 정의한다.
'웨어러블' 프로필의 경우, PC는 PC-1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~205kHz으로 정의될 수 있으며, 어플리케이션의 예시로는 사용자 몸에 착용하는 웨어러블 기기 등이 존재할 수 있다.
동일한 프로필간에는 호환성 유지는 필수 사항일 수 있으며, 다른 프로필간의 호환성 유지는 선택 사항일 수 있다.
상술한 프로필(모바일 프로필, 전동 툴 프로필, 주방 프로필 및 웨어러블 프로필)들은 제1 내지 제n 프로필로 일반화되어 표현될 수 있으며, WPC 규격 및 실시예에 따라 새로운 프로필이 추가/대체될 수 있다.
이와 같이 프로필이 정의되는 경우, 무선 전력 전송장치가 자신과 동일한 프로필의 무선 전력 수신장치에 대해서만 선택적으로 전력 송신을 수행하여 보다 안정적으로 전력 송신이 가능하다. 또한 무선 전력 전송장치의 부담이 줄어들고, 호환이 불가능한 무선 전력 수신장치로의 전력 송신을 시도하지 않게 되므로 무선 전력 수신장치의 파손 위험이 줄어든다는 효과가 발생한다.
'모바일' 프로필 내의 PC1은 PC0를 기반으로 OB와 같은 선택적 확장을 차용함으로써 정의될 수 있으며, '전동 툴' 프로필의 경우, PC1 '모바일' 프로필이 단순히 변경된 버전으로서 정의될 수 있다. 또한, 현재까지는 동일한 프로필간의 호환성 유지를 목적으로 정의되었으나, 추후에는 서로 다른 프로필간의 호환성 유지 방향으로 기술이 발전될 수 있다. 무선 전력 전송장치 또는 무선 전력 수신장치는 다양한 방식을 통해 자신의 프로필을 상대방에게 알려줄 수 있다.
AFA 표준은 무선 전력 전송장치를 PTU(power transmitting circuit)이라 칭하고, 무선 전력 수신장치를 PRU(power receiving circuit)이라 칭하며, PTU는 표 1과 같이 다수의 클래스로 분류되고, PRU는 표 2와 같이 다수의 카테고리로 분류된다.
PTU | PTX_IN_MAX | 최소 카테고리 지원 요구사항 | 지원되는 최대 기기 개수를 위한 최소값 |
Class 1 | 2W | 1x 카테고리 1 | 1x 카테고리 1 |
Class 2 | 10W | 1x 카테고리 3 | 2x 카테고리 2 |
Class 3 | 16W | 1x 카테고리 4 | 2x 카테고리 3 |
Class 4 | 33W | 1x 카테고리 5 | 3x 카테고리 3 |
Class 5 | 50W | 1x 카테고리 6 | 4x 카테고리 3 |
Class 6 | 70W | 1x 카테고리 7 | 5x 카테고리 3 |
PRU | PRX_OUT_MAX' | 예시 어플리케이션 |
Category 1 | TBD | 블루투스 헤드셋 |
Category 2 | 3.5W | 피쳐폰 |
Category 3 | 6.5W | 스마트폰 |
Category 4 | 13W | 태블릿, 패플릿 |
Category 5 | 25W | 작은 폼팩터 랩탑 |
Category 6 | 37.5W | 일반 랩탑 |
Category 7 | 50W | 가전 |
표 1에서와 같이, 클래스 n PTU의 최대 출력 전력 성능(capability)은 해당 클래스의 PTX_IN_MAX 값보다 크거나 같다. PRU는 해당 카테고리에서 명세된(specified) 전력보다 더 큰 전력을 끌어당길(draw) 수는 없다.
도 4a는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4a를 참조하면, 무선 전력 전송 시스템(10)은 무선으로 전력을 수신하는 모바일 기기(Mobile Device)(450) 및 무선으로 전력을 송신하는 베이스 스테이션(Base Station)(400)을 포함한다.
베이스 스테이션(400)은 유도 전력 또는 공진 전력을 제공하는 장치로서, 적어도 하나의 무선 전력 전송장치(power transmitter, 100) 및 시스템 회로(405)을 포함할 수 있다. 무선 전력 전송장치(100)는 유도 전력 또는 공진 전력을 전송하고, 전송을 제어할 수 있다. 무선 전력 전송장치(100)는, 1차 코일(primary coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환하는 전력 변환 회로(power conversion circuit, 110) 및 적절한 레벨로 전력을 전달하도록 무선 전력 수신장치(200)와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 회로(communications & control circuit, 120)을 포함할 수 있다. 시스템 회로(405)은 입력 전력 프로비저닝(provisioning), 복수의 무선전력 전송장치들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션(400)의 기타 동작 제어를 수행할 수 있다.
1차 코일은 교류 전력(또는 전압 또는 전류)을 이용하여 전자기장을 발생시킬 수 있다. 1차 코일은 전력 변환 회로(110)에서 출력되는 특정 주파수의 교류전력(또는 전압 또는 전류)을 인가받고, 이에 따라 특정 주파수의 자기장을 발생시킬 수 있다. 자기장은 비방사형 또는 방사형으로 발생할 수 있는데, 무선 전력 수신 장치(200)는 이를 수신하여 전류를 생성하게 된다. 다시 말해 1차 코일은 무선으로 전력을 전송하는 것이다.
자기 유도 방식에서, 1차 코일과 2차 코일은 임의의 적합한 형태들을 가질 수 있으며, 예컨대, 페라이트 또는 비정질 금속과 같은 고투자율의 형성물의 주위에 감긴 동선일 수 있다. 1차 코일은 전송 코일(transmitting coil), 1차 코어(primary core), 1차 와인딩(primary winding), 1차 루프 안테나(primary loop antenna) 등으로 불릴 수도 있다. 한편, 2차 코일은 수신 코일(receiving coil), 2차 코어(secondary core), 2차 와인딩(secondary winding), 2차 루프 안테나(secondary loop antenna), 픽업 안테나(pickup antenna) 등으로 불릴 수도 있다.
자기 공진 방식을 이용하는 경우에는 1차 코일과 2차 코일은 각각 1차 공진 안테나와 2차 공진 안테나 형태로 제공될 수 있다. 공진 안테나는 코일과 캐패시터를 포함하는 공진 구조를 가질 수 있다. 이때 공진 안테나의 공진 주파수는 코일의 인덕턴스와 캐패시터의 캐패시턴스에 의해 결정된다. 여기서, 코일은 루프의 형태로 이루어질 수 있다. 또 루프의 내부에는 코어가 배치될 수 있다. 코어는 페라이트 코어(ferrite core)와 같은 물리적인 코어나 공심 코어(air core)를 포함할 수 있다.
1차 공진 안테나와 2차 공진 안테나 간의 에너지 전송은 자기장의 공진 현상을 통해 이루어질 수 있다. 공진 현상이란 하나의 공진 안테나에서 공진 주파수에 해당하는 근접장이 발생할 때 주위에 다른 공진 안테나가 위치하는 경우, 양 공진 안테나가 서로 커플링되어 공진 안테나 사이에서 높은 효율의 에너지 전달이 일어나는 현상을 의미한다. 1차 공진 안테나와 2차 공진 안테나 사이에서 공진 주파수에 해당하는 자기장이 발생하면, 1차 공진 안테나와 2차 공진 안테나가 서로 공진하는 현상이 발생되고, 이에 따라 일반적인 경우 1차 공진 안테나에서 발생한 자기장이 자유공간으로 방사되는 경우에 비해 보다 높은 효율로 2차 공진 안테나를 향해 자기장이 집속되며, 따라서 1차 공진 안테나로부터 2차 공진 안테나에 높은 효율로 에너지가 전달될 수 있다. 자기 유도 방식은 자기 공진 방식과 유사하게 구현될 수 있으나 이때에는 자기장의 주파수가 공진 주파수일 필요가 없다. 대신 자기 유도 방식에서는 1차 코일과 2차 코일을 구성하는 루프 간의 정합이 필요하며 루프 간의 간격이 매우 근접해야 한다.
도면에 도시되지 않았으나, 무선 전력 전송장치(100)는 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신 할 수 있다.
통신/컨트롤 회로(120)은 무선 전력 수신 장치(200)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(120)은 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(120)은 무선전력 전송의 동작 주파수에 통신 정보를 실어 1차 코일을 통해 전송하거나 또는 정보가 담긴 동작 주파수를 1차 코일을 통해 수신함으로써 인-밴드 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying), 주파수 편이(FSK: Frequency Shift Keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(120)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(120)은 근거리 통신 모듈로 제공될 수 있다. 근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(120)은 무선 전력 전송 장치(100)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(120)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력 전송 장치(100)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(120)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(120)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(120)을 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 회로(120)은 동작 포인트(operating point)를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트는 주파수(또는 위상), 듀티 사이클(duty cycle), 듀티 비(duty ratio) 및 전압 진폭의 조합에 해당될 수 있다. 통신/컨트롤 회로(120)은 주파수(또는 위상), 듀티 사이클, 듀티비 및 전압 진폭 중 적어도 하나를 조절하여 송신 전력을 컨트롤할 수 있다. 또한, 무선 전력 전송장치(100)는 일정한 전력을 공급하고, 무선 전력 수신장치(200)가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
모바일 기기(450)는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 무선전력 수신장치(power receiver, 200)와 무선전력 수신장치(200)에서 수신된 전력을 전달받아 저장하고 기기에 공급하는 부하(load, 455)를 포함한다.
무선전력 수신장치(200)는 전력 픽업 회로(power pick-up circuit, 210) 및 통신/컨트롤 회로(communications & control circuit, 220)을 포함할 수 있다. 전력 픽업 회로(210)은 2차 코일을 통해 무선 전력을 수신하여 전기 에너지로 변환할 수 있다. 전력 픽업 회로(210)은 2차 코일을 통해 얻어지는 교류 신호를 정류하여 직류 신호로 변환한다. 통신/컨트롤 회로(220)은 무선 전력의 송신과 수신(전력 전달 및 수신)을 제어할 수 있다.
2차 코일은 무선 전력 전송 장치(100)에서 전송되는 무선 전력을 수신할 수 있다. 2차 코일은 1차 코일에서 발생하는 자기장을 이용하여 전력을 수신할 수 있다. 여기서, 특정 주파수가 공진 주파수인 경우에는 1차 코일과 2차 코일 간에 자기 공진 현상이 발생하여 보다 효율적으로 전력을 전달받을 수 있다.
도 4a에는 도시되지 않았으나 통신/컨트롤 회로(220)은 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신할 수 있다.
통신/컨트롤 회로(220)은 무선 전력 전송 장치(100)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(220)은 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(220)은 자기파에 정보를 실어 2차 코일을 통해 송신하거나 또는 정보가 담긴 자기파를 2차 코일을 통해 수신함으로써 IB 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying), 주파수 편이(FSK: Frequency Shift Keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(220)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(220)은 근거리 통신 모듈로 제공될 수 있다.
근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(220)은 무선 전력 수신 장치(200)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(220)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력 수신 장치(200)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(220)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(220)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(220)을 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)이 OB 통신 모듈 또는 근거리 통신 모듈로서 블루투스 또는 블루투스 LE일 경우, 통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)은 각각 도 4b와 같은 통신 아키텍처로 구현되어 동작할 수 있다.
도 4b는 본 명세서에 따른 일 실시예가 적용될 수 있는 블루투스 통신 아키텍처(Architecture)의 일 예를 나타낸 도이다.
도 4b를 참고하면, 도 4b의 (a)는 GATT를 지원하는 블루투스 BR(Basic Rate)/EDR(Enhanced Data Rate)의 프로토콜 스택의 일 예를 나타내며, (b)는 블루투스 LE(Low Energy)의 프로토콜 스택의 일 예를 나타낸다.
구체적으로, 도 4b의 (a)에 도시된 바와 같이, 블루투스 BR/EDR 프로토콜 스택은 호스트 컨트롤러 인터페이스(Host Controller Interface, HCI, 18)를 기준으로 상부의 컨트롤러 스택(Controller stack, 460)과 하부의 호스트 스택(Host Stack, 470)을 포함할 수 있다.
상기 호스트 스택(또는 호스트 모듈)(470)은 2.4GHz의 블루투스 신호를 받는 무선 송수신 모듈과 블루투스 패킷을 전송하거나 수신하기 위한 하드웨어를 말하며, 상기 컨트롤러 스택(460)은 블루투스 모듈과 연결되어 블루투스 모듈을 제어하고 동작을 수행한다.
상기 호스트 스택(470)은 BR/EDR PHY 계층(12), BR/EDR Baseband 계층(14), 링크 매니저 계층(Link Manager, 16)을 포함할 수 있다.
상기 BR/EDR PHY 계층(12)은 2.4GHz 무선 신호를 송수신하는 계층으로, GFSK (Gaussian Frequency Shift Keying) modulation을 사용하는 경우 79 개의 RF 채널을 hopping 하여 데이터를 전송할 수 있다.
상기 BR/EDR Baseband 계층(14)은 Digital Signal을 전송하는 역할을 담당하며, 초당 1400번 hopping 하는 채널 시퀀스를 선택하며, 각 채널 별 625us 길이의 time slot을 전송한다.
상기 링크 매니저 계층(16)은 LMP(Link Manager Protocol)을 활용하여 Bluetooth Connection의 전반적인 동작(link setup, control, security)을 제어한다.
상기 링크 매니저 계층(16)은 아래와 같은 기능을 수행할 수 있다.
- ACL/SCO logical transport, logical link setup 및 control을 한다.
- Detach: connection을 중단하고, 중단 이유를 상대 디바이스에게 알려준다.
- Power control 및 Role switch를 한다.
- Security(authentication, pairing, encryption) 기능을 수행한다.
상기 호스트 컨트롤러 인터페이스 계층(18)은 Host 모듈과 Controller 모듈 사이의 인터페이스 제공하여 Host 가 command와 Data를 Controller에게 제공하게 하며, Controller가 event와 Data를 Host에게 제공할 수 있도록 해준다.
상기 호스트 스택(또는 호스트 모듈, 20)은 논리적 링크 제어 및 적응 프로토콜(L2CAP, 21), 속성 프로토콜(Protocol, 22), 일반 속성 프로파일(Generic Attribute Profile, GATT, 23), 일반 접근 프로파일(Generic Access Profile, GAP, 24), BR/EDR 프로파일(25)을 포함한다.
상기 논리적 링크 제어 및 적응 프로토콜(L2CAP, 21)은 특정 프로토콜 또는 프로파일에게 데이터를 전송하기 위한 하나의 양방향 채널을 제공할 수 있다.
상기 L2CAP(21)은 블루투스 상위에서 제공하는 다양한 프로토콜, 프로파일 등을 멀티플렉싱(multiplexing)할 수 있다.
블루투스 BR/EDR의 L2CAP에서는 dynamic 채널 사용하며, protocol service multiplexer, retransmission, streaming mode를 지원하고, Segmentation 및 reassembly, per-channel flow control, error control을 제공한다.
상기 일반 속성 프로파일(GATT, 23)은 서비스들의 구성 시에 상기 속성 프로토콜(22)이 어떻게 이용되는지를 설명하는 프로토콜로서 동작 가능할 수 있다. 예를 들어, 상기 일반 속성 프로파일(23)은 ATT 속성들이 어떻게 서비스들로 함께 그룹화되는지를 규정하도록 동작 가능할 수 있고, 서비스들과 연계된 특징들을 설명하도록 동작 가능할 수 있다.
따라서, 상기 일반 속성 프로파일(23) 및 상기 속성 프로토콜(ATT, 22)은 디바이스의 상태와 서비스들을 설명하고, 특징들이 서로 어떻게 관련되며 이들이 어떻게 이용되는지를 설명하기 위하여, 특징들을 사용할 수 있다.
상기 속성 프로토콜(22) 및 상기 BR/EDR 프로파일(25)은 블루투스 BR/EDR를 이용하는 서비스(profile)의 정의 및 이들 데이터를 주고 받기 위한 application 프로토콜을 정의하며, 상기 일반 접근 프로파일(Generic Access Profile, GAP, 24)은 디바이스 발견, 연결, 및 보안 수준을 정의한다.
도 4b의 (b)에 도시된 바와 같이, 블루투스 LE 프로토콜 스택은 타이밍이 중요한 무선장치 인터페이스를 처리하도록 동작 가능한 컨트롤러 스택(Controller stack, 480)과 고레벨(high level) 데이터를 처리하도록 동작 가능한 호스트 스택(Host stack, 490)을 포함한다.
먼저, 컨트롤러 스택(480)은 블루투스 무선장치를 포함할 수 있는 통신 모듈, 예를 들어, 마이크로프로세서와 같은 프로세싱 디바이스를 포함할 수 있는 프로세서 모듈을 이용하여 구현될 수 있다.
호스트 스택(490)은 프로세서 모듈 상에서 작동되는 OS의 일부로서, 또는 OS 위의 패키지(package)의 인스턴스 생성(instantiation)으로서 구현될 수 있다.
일부 사례들에서, 컨트롤러 스택 및 호스트 스택은 프로세서 모듈 내의 동일한 프로세싱 디바이스 상에서 작동 또는 실행될 수 있다.
상기 컨트롤러 스택(480)은 물리 계층(Physical Layer, PHY, 32), 링크 레이어(Link Layer, 34) 및 호스트 컨트롤러 인터페이스(Host Controller Interface, 36)를 포함한다.
상기 물리 계층(PHY, 무선 송수신 모듈, 32)은 2.4 GHz 무선 신호를 송수신하는 계층으로 GFSK (Gaussian Frequency Shift Keying) modulation과 40 개의 RF 채널로 구성된 frequency hopping 기법을 사용한다.
블루투스 패킷을 전송하거나 수신하는 역할을 하는 상기 링크 레이어(34)는 3개의 Advertising 채널을 이용하여 Advertising, Scanning 기능을 수행한 후에 디바이스 간 연결을 생성하고, 37개 Data 채널을 통해 최대 257bytes 의 데이터 패킷을 주고 받는 기능을 제공한다.
상기 호스트 스택은 GAP(Generic Access Profile, 40), 논리적 링크 제어 및 적응 프로토콜(L2CAP, 41), 보안 매니저(Security Manager, SM, 42), 속성 프로토콜(Attribute Protocol, ATT, 440), 일반 속성 프로파일(Generic Attribute Profile, GATT, 44), 일반 접근 프로파일(Generic Access Profile, 25), LT 프로파일(46)을 포함할 수 있다. 다만, 상기 호스트 스택(490)은 이것으로 한정되지는 않고 다양한 프로토콜들 및 프로파일들을 포함할 수 있다.
호스트 스택은 L2CAP을 사용하여 블루투스 상위에서 제공하는 다양한 프로토콜, 프로파일 등을 다중화(multiplexing)한다.
먼저, L2CAP(Logical Link Control and Adaptation Protocol, 41)은 특정 프로토콜 또는 프로파일에게 데이터를 전송하기 위한 하나의 양방향 채널을 제공할 수 있다.
상기 L2CAP(41)은 상위 계층 프로토콜들 사이에서 데이터를 다중화(multiplex)하고, 패키지(package)들을 분할(segment) 및 재조립(reassemble)하고, 멀티캐스트 데이터 송신을 관리하도록 동작 가능할 수 있다.
블루투스 LE 에서는 3개의 고정 채널(signaling CH을 위해 1개, Security Manager를 위해 1개, Attribute protocol을 위해 1개)을 기본적으로 사용한다. 그리고, 필요에 따라 동적 채널을 사용할 수도 있다.
반면, BR/EDR(Basic Rate/Enhanced Data Rate)에서는 동적인 채널을 기본적으로 사용하며, protocol service multiplexer, retransmission, streaming mode 등을 지원한다.
SM(Security Manager, 42)은 디바이스를 인증하며, 키 분배(key distribution)를 제공하기 위한 프로토콜이다.
ATT(Attribute Protocol, 43)는 서버-클라이언트(Server-Client) 구조로 상대 디바이스의 데이터를 접근하기 위한 규칙을 정의한다. ATT에는 아래의 6가지의 메시지 유형(Request, Response, Command, Notification, Indication, Confirmation)이 있다.
① Request 및 Response 메시지: Request 메시지는 클라이언트 디바이스에서 서버 디바이스로 특정 정보 요청 및 전달 하기 위한 메시지이며, Response 메시지는 Request 메시지에 대한 응답 메시지로서, 서버 디바이스에서 클라이언트 디바이스로 전송하는 용도로 사용할 수 있는 메시지를 말한다.
② Command 메시지: 클라이언트 디바이스에서 서버 디바이스로 주로 특정 동작의 명령을 지시하기 위해 전송하는 메시지로, 서버 디바이스는 Command 메시지에 대한 응답을 클라이언트 디바이스로 전송하지 않는다.
③ Notification 메시지: 서버 디바이스에서 클라이언트 디바이스로 이벤트 등과 같은 통지를 위해 전송하는 메시지로, 클라이언트 디바이스는 Notification 메시지에 대한 확인 메시지를 서버 디바이스로 전송하지 않는다.
④ Indication 및 Confirm 메시지: 서버 디바이스에서 클라이언트 디바이스로 이벤트 등과 같은 통지를 위해 전송하는 메시지로, Notification 메시지와는 달리, 클라이언트 디바이스는 Indication 메시지에 대한 확인 메시지(Confirm message)를 서버 디바이스로 전송한다.
본 명세서는 상기 속성 프로토콜(ATT, 43)을 사용하는 GATT 프로파일에서 긴 데이터 요청 시 데이터 길이에 대한 값을 전송하여 클라이언트가 데이터 길이를 명확히 알 수 있게 하며, UUID를 이용하여 서버로부터 특성(Characteristic) 값을 전송 받을 수 있다.
상기 일반 접근 프로파일(GAP, 45)은 블루투스 LE 기술을 위해 새롭게 구현된 계층으로, 블루투스 LE 디바이스들 간의 통신을 위한 역할 선택, 멀티 프로파일 작동이 어떻게 일어나는지를 제어하는데 사용된다.
또한, 상기 일반 접근 프로파일(45)은 디바이스 발견, 연결 생성 및 보안 절차 부분에 주로 사용되며, 사용자에게 정보를 제공하는 방안을 정의하며, 하기와 같은 attribute의 type을 정의한다.
① Service: 데이터와 관련된 behavior의 조합으로 디바이스의 기본적인 동작을 정의
② Include: 서비스 사이의 관계를 정의
③ Characteristics: 서비스에서 사용되는 data 값
④ Behavior: UUID(Universal Unique Identifier, value type)로 정의된 컴퓨터가 읽을 수 있는 포맷
상기 LE 프로파일(46)은 GATT에 의존성을 가지는 profile 들로 주로 블루투스 LE 디바이스에 적용된다. LE 프로파일(46)은 예를 들면, Battery, Time, FindMe, Proximity, Time 등이 있을 수 있으며, GATT-based Profiles의 구체적인 내용은 하기와 같다.
① Battery: 배터리 정보 교환 방법
② Time: 시간 정보 교환 방법
③ FindMe: 거리에 따른 알람 서비스 제공
④ Proximity: 배터리 정보 교환 방법
⑤ Time: 시간 정보 교환 방법
상기 일반 속성 프로파일(GATT, 44)은 서비스들의 구성 시에 상기 속성 프로토콜(43)이 어떻게 이용되는지를 설명하는 프로토콜로서 동작 가능할 수 있다. 예를 들어, 상기 일반 속성 프로파일(44)은 ATT 속성들이 어떻게 서비스들로 함께 그룹화되는지를 규정하도록 동작 가능할 수 있고, 서비스들과 연계된 특징들을 설명하도록 동작 가능할 수 있다.
따라서, 상기 일반 속성 프로파일(44) 및 상기 속성 프로토콜(ATT, 43)은 디바이스의 상태와 서비스들을 설명하고, 특징들이 서로 어떻게 관련되며 이들이 어떻게 이용되는지를 설명하기 위하여, 특징들을 사용할 수 있다.
이하에서, 블루투스 저전력 에너지(Bluetooth Low Energy:BLE) 기술의 절차(Procedure)들에 대해 간략히 살펴보기로 한다.
BLE 절차는 디바이스 필터링 절차(Device Filtering Procedure), 광고 절차(Advertising Procedure), 스캐닝 절차(Scanning Procedure), 디스커버링 절차(Discovering Procedure), 연결 절차(Connecting Procedure) 등으로 구분될 수 있다.
디바이스 필터링 절차(Device Filtering Procedure)
디바이스 필터링 절차는 컨트롤러 스택에서 요청, 지시, 알림 등에 대한 응답을 수행하는 디바이스들의 수를 줄이기 위한 방법이다.
모든 디바이스에서 요청 수신 시, 이에 대해 응답하는 것이 불필요하기 때문에, 컨트롤러 스택은 요청을 전송하는 개수를 줄여서, BLE 컨트롤러 스택에서 전력 소비가 줄 수 있도록 제어할 수 있다.
광고 디바이스 또는 스캐닝 디바이스는 광고 패킷, 스캔 요청 또는 연결 요청을 수신하는 디바이스를 제한하기 위해 상기 디바이스 필터링 절차를 수행할 수 있다.
여기서, 광고 디바이스는 광고 이벤트를 전송하는 즉, 광고를 수행하는 디바이스를 말하며, 광고자(Advertiser)라고도 표현된다.
스캐닝 디바이스는 스캐닝을 수행하는 디바이스, 스캔 요청을 전송하는 디바이스를 말한다.
BLE에서는, 스캐닝 디바이스가 일부 광고 패킷들을 광고 디바이스로부터 수신하는 경우, 상기 스캐닝 디바이스는 상기 광고 디바이스로 스캔 요청을 전송해야 한다.
하지만, 디바이스 필터링 절차가 사용되어 스캔 요청 전송이 불필요한 경우, 상기 스캐닝 디바이스는 광고 디바이스로부터 전송되는 광고 패킷들을 무시할 수 있다.
연결 요청 과정에서도 디바이스 필터링 절차가 사용될 수 있다. 만약, 연결 요청 과정에서 디바이스 필터링이 사용되는 경우, 연결 요청을 무시함으로써 상기 연결 요청에 대한 응답을 전송할 필요가 없게 된다.
광고 절차(Advertising Procedure)
광고 디바이스는 영역 내 디바이스들로 비지향성의 브로드캐스트를 수행하기 위해 광고 절차를 수행한다.
여기서, 비지향성의 브로드캐스트(Undirected Advertising)는 특정 디바이스를 향한 브로드캐스트가 아닌 전(모든) 디바이스를 향한 광고(Advertising)이며, 모든 디바이스가 광고(Advertising)을 스캔(Scan)하여 추가 정보 요청이나 연결 요청을 할 수 있다.
이와 달리, 지향성 브로드캐스트(Directed advertising)는 수신 디바이스로 지정된 디바이스만 광고(Advertising)을 스캔(Scan)하여 추가 정보 요청이나 연결 요청을 할 수 있다.
광고 절차는 근처의 개시 디바이스와 블루투스 연결을 확립하기 위해 사용된다.
또는, 광고 절차는 광고 채널에서 리스닝을 수행하고 있는 스캐닝 디바이스들에게 사용자 데이터의 주기적인 브로드캐스트를 제공하기 위해 사용될 수 있다.
광고 절차에서 모든 광고(또는 광고 이벤트)는 광고 물리 채널을 통해 브로드캐스트된다.
광고 디바이스들은 광고 디바이스로부터 추가적인 사용자 데이터를 얻기 위해 리스닝을 수행하고 있는 리스닝 디바이스들로부터 스캔 요청을 수신할 수 있다. 광고 디바이스는 스캔 요청을 수신한 광고 물리 채널과 동일한 광고 물리 채널을 통해, 스캔 요청을 전송한 디바이스로 스캔 요청에 대한 응답을 전송한다.
광고 패킷들의 일 부분으로서 보내지는 브로드캐스트 사용자 데이터는 동적인 데이터인 반면에, 스캔 응답 데이터는 일반적으로 정적인 데이터이다.
광고 디바이스는 광고 (브로드캐스트) 물리 채널 상에서 개시 디바이스로부터 연결 요청을 수신할 수 있다. 만약, 광고 디바이스가 연결 가능한 광고 이벤트를 사용하였고, 개시 디바이스가 디바이스 필터링 절차에 의해 필터링 되지 않았다면, 광고 디바이스는 광고를 멈추고 연결 모드(connected mode)로 진입한다. 광고 디바이스는 연결 모드 이후에 다시 광고를 시작할 수 있다.
스캐닝 절차(Scanning Procedure)
스캐닝을 수행하는 디바이스 즉, 스캐닝 디바이스는 광고 물리 채널을 사용하는 광고 디바이스들로부터 사용자 데이터의 비지향성 브로드캐스트를 청취하기 위해 스캐닝 절차를 수행한다.
스캐닝 디바이스는 광고 디바이스로부터 추가적인 데이터를 요청 하기 위해, 광고 물리 채널을 통해 스캔 요청을 광고 디바이스로 전송한다. 광고 디바이스는 광고 물리 채널을 통해 스캐닝 디바이스에서 요청한 추가적인 데이터를 포함하여 상기 스캔 요청에 대한 응답인 스캔 응답을 전송한다.
상기 스캐닝 절차는 BLE 피코넷에서 다른 BLE 디바이스와 연결되는 동안 사용될 수 있다.
만약, 스캐닝 디바이스가 브로드캐스트되는 광고 이벤트를 수신하고, 연결 요청을 개시할 수 있는 개시자 모드(initiator mode)에 있는 경우, 스캐닝 디바이스는 광고 물리 채널을 통해 광고 디바이스로 연결 요청을 전송함으로써 광고 디바이스와 블루투스 연결을 시작할 수 있다.
스캐닝 디바이스가 광고 디바이스로 연결 요청을 전송하는 경우, 스캐닝 디바이스는 추가적인 브로드캐스트를 위한 개시자 모드 스캐닝을 중지하고, 연결 모드로 진입한다.
디스커버링 절차(Discovering Procedure)
블루투스 통신이 가능한 디바이스(이하, '블루투스 디바이스'라 한다.)들은 근처에 존재하는 디바이스들을 발견하기 위해 또는 주어진 영역 내에서 다른 디바이스들에 의해 발견되기 위해 광고 절차와 스캐닝 절차를 수행한다.
디스커버링 절차는 비대칭적으로 수행된다. 주위의 다른 디바이스를 찾으려고 하는 블루투스 디바이스를 디스커버링 디바이스(discovering device)라 하며, 스캔 가능한 광고 이벤트를 광고하는 디바이스들을 찾기 위해 리스닝한다. 다른 디바이스로부터 발견되어 이용 가능한 블루투스 디바이스를 디스커버러블 디바이스(discoverable device)라 하며, 적극적으로 광고 (브로드캐스트) 물리 채널을 통해 다른 디바이스가 스캔 가능하도록 광고 이벤트를 브로드캐스트한다.
디스커버링 디바이스와 디스커버러블 디바이스 모두 피코넷에서 다른 블루투스 디바이스들과 이미 연결되어 있을 수 있다.
연결 절차(Connecting Procedure)
연결 절차는 비대칭적이며, 연결 절차는 특정 블루투스 디바이스가 광고 절차를 수행하는 동안 다른 블루투스 디바이스는 스캐닝 절차를 수행할 것을 요구한다.
즉, 광고 절차가 목적이 될 수 있으며, 그 결과 단지 하나의 디바이스만 광고에 응답할 것이다. 광고 디바이스로부터 접속 가능한 광고 이벤트를 수신한 이후, 광고 (브로드캐스트) 물리 채널을 통해 광고 디바이스로 연결 요청을 전송함으로써 연결을 개시할 수 있다.
다음으로, BLE 기술에서의 동작 상태 즉, 광고 상태(Advertising State), 스캐닝 상태(Scanning State), 개시 상태(Initiating State), 연결 상태(connection state)에 대해 간략히 살펴보기로 한다.
광고 상태(Advertising State)
링크 계층(LL)은 호스트 (스택)의 지시에 의해, 광고 상태로 들어간다. 링크 계층이 광고 상태에 있을 경우, 링크 계층은 광고 이벤트들에서 광고 PDU(Packet Data Circuit)들을 전송한다.
각각의 광고 이벤트는 적어도 하나의 광고 PDU들로 구성되며, 광고 PDU들은 사용되는 광고 채널 인덱스들을 통해 전송된다. 광고 이벤트는 광고 PDU가 사용되는 광고 채널 인덱스들을 통해 각각 전송되었을 경우, 종료되거나 광고 디바이스가 다른 기능 수행을 위해 공간을 확보할 필요가 있을 경우 좀 더 일찍 광고 이벤트를 종료할 수 있다.
스캐닝 상태(Scanning State)
링크 계층은 호스트 (스택)의 지시에 의해 스캐닝 상태로 들어간다. 스캐닝 상태에서, 링크 계층은 광고 채널 인덱스들을 리스닝한다.
스캐닝 상태에는 수동적 스캐닝(passive scanning), 적극적 스캐닝(active scanning)의 두 타입이 있으며, 각 스캐닝 타입은 호스트에 의해 결정된다.
스캐닝을 수행하기 위한 별도의 시간이나 광고 채널 인덱스가 정의되지는 않는다.
스캐닝 상태 동안, 링크 계층은 스캔윈도우(scanWindow) 구간(duration) 동안 광고 채널 인덱스를 리스닝한다. 스캔인터벌(scanInterval)은 두 개의 연속적인 스캔 윈도우의 시작점 사이의 간격(인터벌)으로서 정의된다.
링크 계층은 스케쥴링의 충돌이 없는 경우, 호스트에 의해 지시되는 바와 같이 스캔윈도우의 모든 스캔인터벌 완성을 위해 리스닝해야한다. 각 스캔윈도우에서, 링크 계층은 다른 광고 채널 인덱스를 스캔해야한다. 링크 계층은 사용 가능한 모든 광고 채널 인덱스들을 사용한다.
수동적인 스캐닝일 때, 링크 계층은 단지 패킷들만 수신하고, 어떤 패킷들도 전송하지 못한다.
능동적인 스캐닝일 때, 링크 계층은 광고 디바이스로 광고 PDU들과 광고 디바이스 관련 추가적인 정보를 요청할 수 있는 광고 PDU 타입에 의존하기 위해 리스닝을 수행한다.
개시 상태(Initiating State)
링크 계층은 호스트 (스택)의 지시에 의해 개시 상태로 들어간다.
링크 계층이 개시 상태에 있을 때, 링크 계층은 광고 채널 인덱스들에 대한 리스닝을 수행한다.
개시 상태 동안, 링크 계층은 스캔윈도우 구간 동안 광고 채널 인덱스를 리스닝한다.
연결 상태(connection state)
링크 계층은 연결 요청을 수행하는 디바이스 즉, 개시 디바이스가 CONNECT_REQ PDU를 광고 디바이스로 전송할 때 또는 광고 디바이스가 개시 디바이스로부터 CONNECT_REQ PDU를 수신할 때 연결 상태로 들어간다.
연결 상태로 들어간 이후, 연결이 생성되는 것으로 고려된다. 다만, 연결이 연결 상태로 들어간 시점에서 확립되도록 고려될 필요는 없다. 새로 생성된 연결과 기 확립된 연결 간의 유일한 차이는 링크 계층 연결 감독 타임아웃(supervision timeout) 값뿐이다.
두 디바이스가 연결되어 있을 때, 두 디바이스들은 다른 역할로 활동한다.
마스터 역할을 수행하는 링크 계층은 마스터로 불리며, 슬레이브 역할을 수행하는 링크 계층은 슬레이브로 불린다. 마스터는 연결 이벤트의 타이밍을 조절하고, 연결 이벤트는 마스터와 슬레이브 간 동기화되는 시점을 말한다.
이하에서, 블루투스 인터페이스에서 정의되는 패킷에 대해 간략히 살펴보기로 한다. BLE 디바이스들은 하기에서 정의되는 패킷들을 사용한다.
패킷 포맷(Packet Format)
링크 계층(Link Layer)은 광고 채널 패킷과 데이터 채널 패킷 둘 다를 위해 사용되는 단지 하나의 패킷 포맷만을 가진다.
각 패킷은 프리앰블(Preamble), 접속 주소(Access Address), PDU 및 CRC 4개의 필드로 구성된다.
하나의 패킷이 광고 채널에서 송신될 때, PDU는 광고 채널 PDU가 될 것이며, 하나의 패킷이 데이터 채널에서 전송될 때, PDU는 데이터 채널 PDU가 될 것이다.
광고 채널 PDU(Advertising Channel PDU)
광고 채널 PDU(Packet Data Circuit)는 16비트 헤더와 다양한 크기의 페이로드를 가진다.
헤더에 포함되는 광고 채널 PDU의 PDU 타입 필드는 하기 표 3에서 정의된 바와 같은 PDU 타입을 나타낸다.
PDU Type | Packet Name |
0000 | ADV_IND |
0001 | ADV_DIRECT_IND |
0010 | ADV_NONCONN_IND |
0011 | SCAN_REQ |
0100 | SCAN_RSP |
0101 | CONNECT_REQ |
0110 | ADV_SCAN_IND |
0111-1111 | Reserved |
광고 PDU(Advertising PDU)
아래 광고 채널 PDU 타입들은 광고 PDU로 불리고 구체적인 이벤트에서 사용된다.
ADV_IND: 연결 가능한 비지향성 광고 이벤트
ADV_DIRECT_IND: 연결 가능한 지향성 광고 이벤트
ADV_NONCONN_IND: 연결 가능하지 않은 비지향성 광고 이벤트
ADV_SCAN_IND: 스캔 가능한 비지향성 광고 이벤트
상기 PDU들은 광고 상태에서 링크 계층(Link Layer)에서 전송되고, 스캐닝 상태 또는 개시 상태(Initiating State)에서 링크 계층에 의해 수신된다.
스캐닝 PDU(Scanning PDU)
아래 광고 채널 PDU 타입은 스캐닝 PDU로 불리며, 하기에서 설명되는 상태에서 사용된다.
SCAN_REQ: 스캐닝 상태에서 링크 계층에 의해 전송되며, 광고 상태에서 링크 계층에 의해 수신된다.
SCAN_RSP: 광고 상태에서 링크 계층에 의해 전송되며, 스캐닝 상태에서 링크 계층에 의해 수신된다.
개시 PDU(Initiating PDU)
아래 광고 채널 PDU 타입은 개시 PDU로 불린다.
CONNECT_REQ: 개시 상태에서 링크 계층에 의해 전송되며, 광고 상태에서 링크 계층에 의해 수신된다.
데이터 채널 PDU(Data Channel PDU)
데이터 채널 PDU는 16 비트 헤더, 다양한 크기의 페이로드를 가지고, 메시지 무결점 체크(Message Integrity Check:MIC) 필드를 포함할 수 있다.
앞에서 살펴본, BLE 기술에서의 절차, 상태, 패킷 포맷 등은 본 명세서에서 제안하는 방법들을 수행하기 위해 적용될 수 있다.
다시 도 4a를 참조하면, 부하(455)는 배터리일 수 있다. 배터리는 전력 픽업 회로(210)으로부터 출력되는 전력을 이용하여 에너지를 저장할 수 있다. 한편, 모바일 기기(450)에 배터리가 반드시 포함되어야 하는 것은 아니다. 예를 들어, 배터리는 탈부착이 가능한 형태의 외부 구성으로 제공될 수 있다. 다른 예를 들어, 무선 전력 수신 장치(200)에는 전자 기기의 다양한 동작을 구동하는 구동 수단이 배터리 대신 포함될 수도 있다.
모바일 기기(450)는 무선전력 수신장치(200)을 포함하는 것을 도시되어 있고, 베이스 스테이션(400)은 무선전력 전송장치(100)를 포함하는 것으로 도시되어 있으나, 넓은 의미에서는 무선전력 수신장치(200)는 모바일 기기(450)와 동일시될 수 있고 무선전력 전송장치(100)는 베이스 스테이션(400)와 동일시 될 수도 있다.
통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)이 IB 통신 모듈 이외에 OB 통신 모듈 또는 근거리 통신 모듈로서 블루투스 또는 블루투스 LE을 포함하는 경우, 통신/컨트롤 회로(120)을 포함하는 무선전력 전송장치(100)와 통신/컨트롤 회로(220)을 포함하는 무선전력 수신장치(200)은 도 4c와 같은 단순화된 블록도로 표현될 수 있다.
도 4c는 일례에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4c를 참조하면, 무선전력 전송장치(100)는 전력 변환 회로(110)과 통신/컨트롤 회로(120)을 포함한다. 통신/컨트롤 회로(120)은 인밴드 통신 모듈(121) 및 BLE 통신 모듈(122)를 포함한다.
한편 무선전력 수신장치(200)는 전력 픽업 회로(210)과 통신/컨트롤 회로(220)을 포함한다. 통신/컨트롤 회로(220)은 인밴드 통신 모듈(221) 및 BLE 통신 모듈(222)를 포함한다.
일 측면에서, BLE 통신 모듈들(122, 222)은 도 4b에 따른 아키텍처 및 동작을 수행한다. 예를 들어, BLE 통신 모듈들(122, 222)은 무선전력 전송장치(100)와 무선전력 수신장치(200) 사이의 접속을 수립하고, 무선전력 전송에 필요한 제어 정보와 패킷들을 교환하는데 사용될 수도 있다.
다른 측면에서, 통신/컨트롤 회로(120)은 무선충전을 위한 프로파일을 동작시키도록 구성될 수 있다. 여기서, 무선충전을 위한 프로파일은 BLE 전송을 사용하는 GATT일 수 있다.
도 4d는 다른 예에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4d를 참조하면, 통신/컨트롤 회로들(120, 220)은 각각 인밴드 통신 모듈들(121, 221)만을 포함하고, BLE 통신 모듈들(122, 222)은 통신/컨트롤 회로들(120, 220)과 분리되어 구비되는 형태도 가능하다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 본 명세서의 일 실시예에 따른 무선전력 전송장치로부터 수신기로의 파워 전송은 크게 선택 단계(selection phase, 510), 핑 단계(ping phase, 520), 식별 및 구성 단계(identification and configuration phase, 530), 협상 단계(negotiation phase, 540), 보정 단계(calibration phase, 550), 전력 전송 단계(power transfer phase, 560) 단계 및 재협상 단계(renegotiation phase, 570)로 구분될 수 있다.
선택 단계(510)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계-예를 들면, 도면 부호 S502, S504, S508, S510 및 S512를 포함함-일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(510)에서 무선전력 전송장치는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 무선전력 전송장치가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(520)로 천이할 수 있다. 선택 단계(510)에서 무선전력 전송장치는 매우 짧은 구간(duration)에 해당하는 전력 신호(또는 펄스)인 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
선택 단계(510)에서 물체가 감지되는 경우, 무선전력 전송장치는 무선전력 공진 회로(예를 들어 전력전송 코일 및/또는 공진 캐패시터)의 품질 인자를 측정할 수 있다. 본 명세서의 일 실시예에서는 선택단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 무선전력 수신장치가 놓였는지 판단하기 위하여 품질 인자를 측정할 수 있다. 무선전력 전송장치에 구비되는 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬저항 성분이 감소될 수 있고, 이로 인해 품질 인자 값이 감소하게 된다. 측정된 품질 인자 값을 이용하여 이물질의 존재 여부를 판단하기 위해, 무선전력 전송장치는 충전 영역에 이물질이 배치되지 않은 상태에서 미리 측정된 기준 품질 인자 값을 무선전력 수신장치로부터 수신할 수 있다. 협상 단계(540)에서 수신된 기준 품질 인자 값과 측정된 품질 인자 값을 비교하여 이물질 존재 여부를 판단할 수 있다. 그러나 기준 품질 인자 값이 낮은 무선전력 수신장치의 경우-일 예로, 무선전력 수신장치의 타입, 용도 및 특성 등에 따라 특정 무선전력 수신장치는 낮은 기준 품질 인자 값을 가질 수 있음-, 이물질이 존재하는 경우에 측정되는 품질 인자 값과 기준 품질 인자 값 사이의 큰 차이가 없어 이물질 존재 여부를 판단하기 어려운 문제가 발생할 수 있다. 따라서 다른 판단 요소를 더 고려하거나, 다른 방법을 이용하여 이물질 존재 여부를 판단해야 한다.
본 명세서의 또 다른 실시예에서는 선택 단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 배치되었는지 판단하기 위하여 특정 주파수 영역 내(ex 동작 주파수 영역) 품질 인자 값을 측정할 수 있다. 무선전력 전송장치의 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬 저항 성분이 감소될 수 있고, 이로 인해 무선전력 전송장치의 코일의 공진 주파수가 변경(시프트)될 수 있다. 즉, 동작 주파수 대역 내 최대 품질 인자 값이 측정되는 주파수인 품질 인자 피크(peak) 주파수가 이동될 수 있다.
핑 단계(520)에서 무선전력 전송장치는 물체가 감지되면, 수신기를 활성화(Wake up)시키고, 감지된 물체가 무선 전력 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(520)에서 무선전력 전송장치는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 패킷-을 수신기로부터 수신하지 못하면, 다시 선택 단계(510)로 천이할 수 있다. 또한, 핑 단계(520)에서 무선전력 전송장치는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(510)로 천이할 수도 있다.
핑 단계(520)가 완료되면, 무선전력 전송장치는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(530)로 천이할 수 있다.
식별 및 구성 단계(530)에서 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(510)로 천이할 수 있다.
무선전력 전송장치는 식별 및 구성 단계(530)에서 수신된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(540)로의 진입이 필요한지 여부를 확인할 수 있다. 확인 결과, 협상이 필요하면, 무선전력 전송장치는 협상 단계(540)로 진입하여 소정 FOD 검출 절차를 수행할 수 있다. 반면, 확인 결과, 협상이 필요하지 않은 경우, 무선전력 전송장치는 곧바로 전력 전송 단계(560)로 진입할 수도 있다.
협상 단계(540)에서, 무선전력 전송장치는 기준 품질 인자 값이 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신할 수 있다. 또는 기준 피크 주파수 값이 포함된 FOD 상태 패킷을 수신할 수 있다. 또는 기준 품질 인자 값 및 기준 피크 주파수 값이 포함된 상태 패킷을 수신할 수 있다. 이때, 무선전력 전송장치는 기준 품질 인자 값에 기반하여 FO 검출을 위한 품질 계수 임계치를 결정할 수 있다. 무선전력 전송장치는 기준 피크 주파수 값에 기반하여 FO 검출을 위한 피크 주파수 임계치를 결정할 수 있다.
무선전력 전송장치는 결정된 FO 검출을 위한 품질 계수 임계치 및 현재 측정된 품질 인자 값(핑 단계 이전에 측정된 품질인자 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
무선전력 전송장치는 결정된 FO 검출을 위한 피크 주파수 임계치 및 현재 측정된 피크 주파수 값(핑 단계 이전에 측정된 피크 주파수 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
FO가 검출된 경우, 무선전력 전송장치는 선택 단계(510)로 회귀할 수 있다. 반면, FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)를 거쳐 전력 전송 단계(560)로 진입할 수도 있다. 상세하게, 무선전력 전송장치는 FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)에서 수신단에 수신된 전력의 세기를 결정하고, 송신단에서 전송한 전력의 세기를 결정하기 위해 수신단과 송신단에서의 전력 손실을 측정할 수 있다. 즉, 무선전력 전송장치는 보정 단계(550)에서 송신단의 송신 파워와 수신단의 수신 파워 사이의 차이에 기반하여 전력 손실을 예측할 수 있다. 일 실시예에 따른 무선전력 전송장치는 예측된 전력 손실을 반영하여 FOD 검출을 위한 임계치를 보정할 수도 있다.
전력 전송 단계(560)에서, 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(510)로 천이할 수 있다.
또한, 전력 전송 단계(560)에서, 무선전력 전송장치는 무선전력 전송장치 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(570)로 천이할 수 있다. 이때, 재협상이 정상적으로 완료되면, 무선전력 전송장치는 전력 전송 단계(560)로 회귀할 수 있다.
본 실시예에서는 보정 단계(550과 전력 전송 단계(560)를 별개의 단계로 구분하였지만, 보정 단계(550)는 전력 전송 단계(560)에 통합될 수 있다. 이 경우 보정 단계(550)에서의 동작들은 전력 전송 단계(560)에서 수행될 수 있다.
상기한 파워 전송 계약은 무선전력 전송장치와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 무선전력 전송장치 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 6에서 전력 전송 단계(560)에서, 무선전력 전송장치(100) 및 무선전력 수신장치(200)는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다. 무선전력 전송장치 및 무선전력 수신장치는 특정 컨트롤 포인트에서 동작한다. 컨트롤 포인트는 전력 전달이 수행될 때 무선전력 수신장치의 출력단(output)에서 제공되는 전압 및 전류의 조합(combination)을 나타낸다.
더 상세히 설명하면, 무선전력 수신장치는 원하는 컨트롤 포인트(desired Control Point)- 원하는 출력 전류/전압, 모바일 기기의 특정 위치의 온도 등을 선택하고, 추가로 현재 동작하고 있는 실제 컨트롤 포인트(actual control point)를 결정한다. 무선전력 수신장치는 원하는 컨트롤 포인트와 실제 컨트롤 포인트를 사용하여, 컨트롤 에러 값(control error value)을 산출하고, 이를 컨트롤 에러 패킷으로서 무선전력 전송장치로 전송할 수 있다.
그리고 무선전력 전송장치는 수신한 컨트롤 에러 패킷을 사용하여 새로운 동작 포인트- 진폭, 주파수 및 듀티 사이클-를 설정/컨트롤하여 전력 전달을 제어할 수 있다. 따라서 컨트롤 에러 패킷은 전략 전달 단계에서 일정 시간 간격으로 전송/수신되며, 실시예로서 무선전력 수신장치는 무선전력 전송장치의 전류를 저감하려는 경우 컨트롤 에러 값을 음수로, 전류를 증가시키려는 경우 컨트롤 에러 값을 양수로 설정하여 전송할 수 있다. 이와 같이 유도 모드에서는 무선전력 수신장치가 컨트롤 에러 패킷을 무선전력 전송장치로 송신함으로써 전력 전달을 제어할 수 있다.
이하에서 설명할 공진 모드에서는 유도 모드에서와는 다른 방식으로 동작할 수 있다. 공진 모드에서는 하나의 무선전력 전송장치가 복수의 무선전력 수신장치를 동시에 서빙할 수 있어야 한다. 다만 상술한 유도 모드와 같이 전력 전달을 컨트롤하는 경우, 전달되는 전력이 하나의 무선전력 수신장치와의 통신에 의해 컨트롤되므로 추가적인 무선전력 수신장치들에 대한 전력 전달은 컨트롤이 어려울 수 있다. 따라서 본 명세서의 공진 모드에서는 무선전력 전송장치는 기본 전력을 공통적으로 전달하고, 무선전력 수신장치가 자체의 공진 주파수를 컨트롤함으로써 수신하는 전력량을 컨트롤하는 방법을 사용하고자 한다. 다만, 이러한 공진 모드의 동작에서도 도 6에서 설명한 방법이 완전히 배제되는 것은 아니며, 추가적인 송신 전력의 제어를 도 6의 방법으로 수행할 수도 있다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다. 쉐어드 모드는 무선전력 전송장치와 무선전력 수신장치간에 1대다 통신 및 충전을 수행하는 모드를 지칭할 수 있다. 쉐어드 모드는 자기 유도 방식 또는 공진 방식으로 구현될 수 있다.
도 7을 참조하면, 무선 전력 전송 장치(700)는 코일 어셈블리를 덮는 커버(720), 전력 송신기(740)로 전력을 공급하는 전력 어답터(730), 무선 전력을 송신하는 전력 송신기(740) 또는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(750) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(750)는 옵셔널하게 포함되거나, 무선 전력 전송 장치(700)의 다른 사용자 인터페이스(750)로서 포함될 수도 있다.
전력 송신기(740)는 코일 어셈블리(760), 임피던스 매칭 회로(770), 인버터(780), 통신 회로(790) 또는 컨트롤 회로(710) 중 적어도 하나를 포함할 수 있다.
코일 어셈블리(760)는 자기장을 생성하는 적어도 하나의 1차 코일을 포함하며, 코일 셀로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 인버터와 1차 코일(들) 간의 임피던스 매칭을 제공할 수 있다. 임피던스 매칭 회로(770)는 1차 코일 전류를 부스팅(boost)하는 적합한(suitable) 주파수에서 공진(resonance)을 발생시킬 수 있다. 다중-코일(multi-coil) 전력 송신기(740)에서 임피던스 매칭 회로는 인버터에서 1차 코일들의 서브세트로 신호를 라우팅하는 멀티플렉스를 추가로 포함할 수도 있다. 임피던스 매칭 회로는 탱크 회로(tank circuit)로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 캐패시터, 인덕터 및 이들의 연결을 스위칭하는 스위칭 소자를 포함할 수 있다. 임피던스의 매칭은 코일 어셈블리(760)를 통해 전송되는 무선전력의 반사파를 검출하고, 검출된 반사파에 기초하여 스위칭 소자를 스위칭하여 캐패시터나 인덕터의 연결 상태를 조정하거나 캐패시터의 캐패시턴스를 조정하거나 인덕터의 인덕턴스를 조정함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(770)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(770)가 생략된 무선전력 전송장치(700)의 실시예도 포함한다.
인버터(780)는 DC 인풋을 AC 신호로 전환할 수 있다. 인버터(780)는 가변(adjustable) 주파수의 펄스 웨이브 및 듀티 사이클을 생성하도록 하프-브리지 또는 풀-브리지로 구동될 수 있다. 또한 인버터는 입력 전압 레벨을 조정하도록 복수의 스테이지들을 포함할 수도 있다.
통신 회로(790)은 전력 수신기와의 통신을 수행할 수 있다. 전력 수신기는 전력 송신기에 대한 요청 및 정보를 통신하기 위해 로드(load) 변조를 수행한다. 따라서 전력 송신기(740)는 통신 회로(790)을 사용하여 전력 수신기가 전송하는 데이터를 복조하기 위해 1차 코일의 전류 및/또는 전압의 진폭 및/또는 위상을 모니터링할 수 있다.
또한, 전력 송신기(740)는 통신 회로(790)을 통해 FSK(Frequency Shift Keying) 방식 등을 사용하여 데이터를 전송하도록 출력 전력을 컨트롤할 수도 있다.
컨트롤 회로(710)은 전력 송신기(740)의 통신 및 전력 전달을 컨트롤할 수 있다. 컨트롤 회로(710)은 상술한 동작 포인트를 조정하여 전력 전송을 제어할 수 있다. 동작 포인트는, 예를 들면, 동작 주파수, 듀티 사이클 및 입력 전압 중 적어도 하나에 의해 결정될 수 있다.
통신 회로(790) 및 컨트롤 회로(710)은 별개의 회로/소자/칩셋으로 구비되거나, 하나의 회로/소자/칩셋으로 구비될 수도 있다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다.
도 8에서, 무선전력 수신 장치(800)는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(820), 무선 전력을 수신하는 전력 수신기(830), 로드 회로(load circuit, 840) 또는 코일 어셈블리를 받치며 커버하는 베이스(850) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(820)는 옵셔널하게 포함되거나, 전력 수신 장비의 다른 사용자 인터페이스(82)로서 포함될 수도 있다.
전력 수신기(830)는 전력 컨버터(860), 임피던스 매칭 회로(870), 코일 어셈블리(880), 통신 회로(890) 또는 컨트롤 회로(810) 중 적어도 하나를 포함할 수 있다.
전력 컨버터(860)는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 실시예로서, 전력 컨버터(860)는 정류기(rectifier)를 포함할 수 있다. 정류기는 수신된 무선 전력을 정류하여 교류에서 직류로 변환할 수 있다. 정류기는 다이오드나 트랜지스터를 이용하여 교류를 직류로 변환하고, 캐패시터와 저항을 이용하여 이를 평활할 수 있다. 정류기로는 브릿지 회로 등으로 구현되는 전파 정류기, 반파 정류기, 전압 체배기 등이 이용될 수 있다. 추가로, 전력 컨버터는 전력 수신기의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
임피던스 매칭 회로(870)는 전력 컨버터(860) 및 로드 회로(840)의 조합과 2차 코일 간의 임피던스 매칭을 제공할 수 있다. 실시예로서, 임피던스 매칭 회로는 전력 전달을 강화할 수 있는 100kHz 근방의 공진을 발생시킬 수 있다. 임피던스 매칭 회로(870)는 캐패시터, 인덕터 및 이들의 조합을 스위칭하는 스위칭 소자로 구성될 수 있다. 임피던스의 정합은 수신되는 무선 전력의 전압값이나 전류값, 전력값, 주파수값 등에 기초하여 임피던스 매칭 회로(870)를 구성하는 회로의 스위칭 소자를 제어함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(870)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(870)가 생략된 무선전력 수신장치(200)의 실시예도 포함한다.
코일 어셈블리(880)는 적어도 하나의 2차 코일을 포함하며, 옵셔널하게는 자기장으로부터 수신기의 금속 부분을 쉴딩(shield)하는 엘러먼트(element)를 더 포함할 수도 있다.
통신 회로(890)은 전력 송신기로 요청(request) 및 다른 정보를 통신하기 위해 로드 변조를 수행할 수 있다.
이를 위해 전력 수신기(830)는 반사 임피던스를 변경하도록 저항 또는 커패시터를 스위칭할 수도 있다.
컨트롤 회로(810)은 수신 전력을 컨트롤할 수 있다. 이를 위해 컨트롤 회로(810)은 전력 수신기(830)의 실제 동작 포인트와 원하는 동작 포인트의 차이를 결정/산출할 수 있다. 그리고 컨트롤 회로(810)은 전력 송신기의 반사 임피던스의 조정 및/또는 전력 송신기의 동작 포인트 조정 요청을 수행함으로써 실제 동작 포인트와 원하는 동작 포인트의 차이를 조정/저감할 수 있다. 이 차이를 최소화하는 경우 최적의 전력 수신을 수행할 수 있다.
통신 회로(890) 및 컨트롤 회로(810)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다.
도 9는 일 실시예에 따른 쉐어드 모드에서 무선 전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시하였다.
도 9를 참조하면, 쉐어드 모드로 동작하는 무선 전력 수신장치는, 선택 상태(Selection Phase) (1100), 도입 상태(Introduction Phase)(1110), 설정 상태(Configuration Phase) (1120), 교섭 상태(Negotiation Phase)(1130) 및 전력 전송 상태(Power Transfer Phase) (1140) 중 어느 하나의 상태로 동작할 수 있다.
우선, 일 실시예에 따른 무선 전력 전송장치는 무선 전력 수신장치를 감지하기 위하여, 무선 전력 신호를 전송할 수 있다. 즉, 무선 전력 신호를 이용하여, 무선 전력 수신장치를 감지하는 과정을 아날로그 핑(Analog ping)이라 할 수 있다.
한편, 무선 전력 신호를 수신한 무선 전력 수신장치는 선택 상태(1100)에 진입할 수 있다. 선택 상태(1100)에 진입한 무선 전력 수신장치는 앞서 설명한 바와 같이, 상기 무선 전력 신호 상에 FSK 신호의 존재를 감지할 수 있다.
즉, 무선 전력 수신장치는 FSK 신호의 존재 여부에 따라 익스클루시브 모드 또는 쉐어드 모드 중 어느 하나의 방식으로 통신을 수행할 수 있다.
보다 구체적으로, 무선 전력 수신장치는 무선 전력 신호에 FSK 신호가 포함되어 있으면, 쉐어드 모드로 동작하고, 그렇지 않은 경우, 익스클루시브 모드로 동작할 수 있다.
무선 전력 수신장치가 쉐어드 모드로 동작하는 경우, 상기 무선 전력 수신장치는 도입 상태(1110)에 진입할 수 있다. 도입 상태(1110)에서, 무선 전력 수신장치는, 설정 상태, 교섭 상태 및 전력 전송 상태에서, 제어 정보 패킷(CI, Control Information packet)을 전송하기 위하여, 무선 전력 전송장치에게 제어 정보 패킷을 전송할 수 있다. 제어 정보 패킷은, 헤더(Header) 및 제어와 관련된 정보를 가질 수 있다. 예를 들어, 제어 정보 패킷은, 헤더가 0X53일 수 있다.
도입 상태(1110)에서, 무선전력 수신장치는 제어정보(control information: CI) 패킷을 전송하기 위해 자유슬롯(free slot)을 요청하는 시도를 다음의 구성, 협상, 전력 전송 단계에 걸쳐 수행한다. 이때 무선전력 수신장치는 자유슬롯을 선택하고 최초 CI 패킷을 전송한다. 만약 무선전력 전송장치가 해당 CI 패킷에 ACK으로 응답하면, 무선전력 전송장치는 구성 단계로 진입한다. 만약 무선전력 전송장치가 NAK으로 응답하면, 다른 무선전력 수신장치가 구성 및 협상 단계를 통해 진행되고 있는 것이다. 이 경우, 무선전력 수신장치는 자유슬롯의 요구를 재시도한다.
만약 무선전력 수신장치가 CI 패킷에 대한 응답으로 ACK을 수신하면, 무선전력 수신장치는 최초 프레임 싱크까지 나머지 슬롯 싱크들을 카운팅함으로써 프레임 내의 개인 슬롯(private slot)의 위치를 결정한다. 모든 후속 슬롯 기반 프레임들에서, 무선전력 수신장치는 해당 슬롯을 통해 CI 패킷을 전송한다.
만약 무선전력 전송장치가 무선전력 수신장치에게 구성 단계로 진행함을 허락하면, 무선전력 전송장치는 무선전력 수신장치의 배타적 사용을 위한 잠금 슬롯(locked slot) 시리즈를 제공한다. 이는 무선전력 수신장치가 충돌없이 구성 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 2개의 식별 데이터 패킷들(IDHI와 IDLO)와 같은 데이터 패킷의 시퀀스들을 잠금 슬롯을 사용하여 전송한다. 본 단계를 완료하면, 무선전력 수신장치는 협상 단계로 진입한다. 협상 단계에서, 무선전력 전송장치가 무선전력 수신장치에게 배타적 사용을 위한 잠금 슬롯을 계속 제공한다. 이는 무선전력 수신장치가 충돌없이 협상 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 해당 잠금 슬롯을 사용하여 하나 또는 그 이상의 협상 데이터 패킷들을 전송하며, 이는 사적 데이터 패킷들과 섞일 수도 있다. 결국 해당 시퀀스는 특정 요청 (specific request (SRQ)) 패킷과 함께 종료된다. 해당 시퀀스를 완료하면, 무선전력 수신장치는 전력 전송 단계로 진입하고, 무선전력 전송장치는 잠금 슬롯의 제공을 중단한다.
전력 전송 상태에서, 무선전력 수신장치는 할당된 슬롯을 사용하여 CI 패킷의 전송을 수행하며, 전력을 수신한다. 무선전력 수신장치는 레귤레이터 회로를 포함할 수 있다. 레귤레이터 회로는 통신/제어 회로에 포함될 수 있다. 무선전력 수신장치는 레귤레이터 회로를 통해 무선전력 수신장치의 반사 임피턴스를 자가-조절(self-regulate)할 수 있다. 다시 말해, 무선전력 수신장치는 외부 부하에 의해 요구되는 양의 파워를 전송하기 위해 반사되는 임피던스를 조정할 수 있다. 이는 과도한 전력의 수신과 과열을 방지할 수 있다.
쉐어드 모드에서, 무선전력 전송장치는 수신되는 CI 패킷에 대한 응답으로서 전력을 조정하는 것을 수행하지 않을 수 있기 때문에(동작 모드에 따라), 이 경우에는 과전압 상태를 막기 위한 제어가 필요할 수 있다.
이하에서는 무선전력 전송장치와 무선전력 수신장치간에 인증(authentication)에 관하여 개시된다.
인밴드 통신을 사용하는 무선전력 전송 시스템은 USB-C 인증을 사용할 수 있다. 인증은 무선전력 수신장치에 의한 무선전력 전송장치의 인증과, 무선전력 전송장치에 의한 무선전력 수신장치의 인증을 포함한다.
무선전력 전송장치는 성능 패킷(capability packet)을 이용하여 무선전력 수신장치에게 인증 기능을 지원하는지를 알려줄 수 있다(무선전력 수신장치에 의한 무선전력 전송장치의 인증(authentication of PTx by PRx)의 경우). 한편 무선전력 수신장치는 구성 패킷(configuration packet)을 이용하여 무선전력 전송장치에게 인증 기능을 지원하는지를 알려줄 수 있다(무선전력 전송장치에 의한 무선전력 수신장치의 인증(authentication of PRx by PTx)의 경우). 이하에서 인증 기능 지원 여부에 관한 지시정보(성능 패킷과 구성 패킷)의 구조에 관하여 보다 상세히 개시된다.
도 10은 일 실시예에 따른 무선전력 전송장치의 성능 패킷 구조이다.
도 10을 참조하면, 대응하는 헤더(header)값이 0X31인 성능 패킷은, 3바이트로서 첫번째 바이트(B0)는 전력 클래스, 보장된 전력값(guaranteed power value)을 포함하고, 두번째 바이트(B1)는 예비(reserved), 잠재적 전력값(potential power value)을 포함하며, 세번재 바이트(B2)는 인증 개시자(Authentication Initiator: AI), 인증 응답자(Authentication Responder: AR), 예비, WPID, Not Res Sens를 포함한다. 구체적으로, 인증 개시자는 1비트로서, 예를 들어 그 값이 '1b'이면 해당 무선전력 전송장치는 인증 개시자로서 동작할 수 있음을 지시한다. 또한, 인증 응답자는 1비트로서, 예를 들어 그 값이 '1b'이면 해당 무선전력 전송장치는 인증 응답자로서 동작할 수 있음을 지시한다.
도 11은 일 실시예에 따른 무선전력 수신장치의 구성 패킷 구조이다.
도 11을 참조하면, 대응하는 헤더(header)값이 0X51인 구성 패킷은, 5바이트로서 첫번째 바이트(B0)는 전력 클래스, 최대 전력값(maximum power value)을 포함하고, 두번째 바이트(B1)는 AI, AR, 예비를 포함하며, 세번째 바이트(B2)는 Prop, 예비, ZERO, Count를 포함하고, 네번째 바이트(B3)는 윈도우 크기(Window size), 윈도우 오프셋을 포함하며, 다섯번째 바이트(B4)는 Neg, 극성(polarity), 깊이(Depth), 인증(Auth), 예비를 포함한다. 구체적으로, 인증 개시자는 1비트로서, 예를 들어 그 값이 '1b'이면 해당 무선전력 수신장치는 인증 개시자로서 동작할 수 있음을 지시한다. 또한, 인증 응답자는 1비트로서, 예를 들어 그 값이 '1b'이면 해당 무선전력 수신장치는 인증 응답자로서 동작할 수 있음을 지시한다.
인증 절차(authentication procedure)에서 사용되는 메시지를 인증 메시지라 한다. 인증 메시지는 인증에 관련된 정보를 운반하는데 사용된다. 인증 메시지에는 2가지 타입이 존재한다. 하나는 인증 요청(authentication request)이고, 다른 하나는 인증 응답(authentication response)이다. 인증 요청은 인증 개시자에 의해 전송되고, 인증 응답은 인증 응답자에 의해 전송된다. 무선전력 전송장치와 수신장치는 인증 개시자 또는 인증 응답자가 될 수 있다. 예를 들어, 무선전력 전송장치가 인증 개시자인 경우 무선전력 수신장치는 인증 응답자가 되고, 무선전력 수신장치가 인증 개시자인 경우 무선전력 전송장치가 인증 응답자가 된다.
인증 요청 메시지는 GET_DIGESTS(i.e. 4 바이트), GET_CERTIFICATE(i.e. 8 바이트), CHALLENGE(i.e. 36 바이트)를 포함한다.
인증 응답 메시지는 DIGESTS(i.e. 4+32 바이트), CERTIFICATE(i.e. 4+인증서 체인(3x512바이트)=1540 바이트), CHALLENGE_AUTH(i.e. 168 바이트), ERROR(i.e. 4 바이트)를 포함한다.
인증 메시지는 인증 패킷이라 불릴 수도 있고, 인증 데이터, 인증 제어정보라 불릴 수도 있다. 또한, GET_DIGEST, DIGESTS 등의 메시지는 GET_DIGEST 패킷, DIGEST 패킷 등으로 불릴 수도 있다.
도 12는 일례에 따른 무선전력 전송장치와 수신장치간에 어플리이션 레벨의 데이터 스트림을 도시한 것이다.
도 12를 참조하면, 데이터 스트림은 보조 데이터 제어(auxiliary data control: ADC) 데이터 패킷 및/또는 보조 데이터 전송(auxiliary data transport: ADT) 데이터 패킷을 포함할 수 있다.
ADC 데이터 패킷은 데이터 스트림을 시작(opening)하는데 사용된다. ADC 데이터 패킷은 스트림에 포함된 메시지의 타입과, 데이터 바이트의 개수를 지시할 수 있다. 반면 ADT 데이터 패킷은 실제 메시지를 포함하는 데이터의 시퀀스들이다. 스트림의 종료를 알릴 때에는 ADC/end 데이터 패킷이 사용된다. 예를 들어, 데이터 전송 스트림 내의 데이터 바이트의 최대 개수는 2047로 제한될 수 있다.
ADC 데이터 패킷과 ADT 데이터 패킷의 정상적인 수신 여부를 알리기 위해, ACK 또는 NAC(NACK)이 사용된다. ADC 데이터 패킷과 ADT 데이터 패킷의 전송 타이밍 사이에, 제어 오류 패킷(CE) 또는 DSR 등 무선충전에 필요한 제어 정보들이 전송될 수 있다.
이러한 데이터 스트림 구조를 이용하여, 인증 관련 정보 또는 기타 어플리케이션 레벨의 정보들이 무선전력 전송장치와 수신장치 간에 송수신될 수 있다.
이하에서는, 무선전력 전송장치와 무선전력 수신장치 사이의 인밴드 통신 속도 향상 방법에 대해 설명한다.
WPC(Wireless Power Consortium)에서 규정하고 있는 무선충전 관련 규격(Qi)에 따르면, 무선전력 수신장치는 ASK(amplitude shift keying)를 이용하는 인밴드 통신을 통해 무선전력 전송장치로 데이터를 전송하고, 무선전력 전송장치는 FSK(Frequency-Shift Keying)를 이용하는 인밴드 통신을 통해 무선전력 수신장치로 데이터를 전송한다.
ASK는 진폭 편이 변조(amplitude shift keying) 방식으로서, 진폭의 변화를 이용해 하나의 데이터 비트('0'b 또는 '1'b)를 표현하고, FSK는 주파수 편이 변조(Frequency shift keying) 방식으로서, 동작 주파수의 변화를 이용해 하나의 데이터 비트('0'b 또는 '1'b)를 표현한다.
현재의 WPC Qi 규격에 따르면, 무선전력 전송장치는 무선 전력 신호의 동작 주파수를 변조하는 FSK를 이용해 무선전력 수신장치와 통신한다. 무선전력 전송장치는 동작 주파수를 비변조 상태의 동작 주파수(fop)와 변조 상태의 동작 주파수(fmod) 사이에서 스위치한다.
현재의 WPC Qi 규격에 따르면, fop와 fmod의 차이는 polarity와 depth로 특정된다.
Polarity는 FSK polarity에 대한 정보이며, fop와 fmod의 차이가 Positive인지 Negative인지를 나타내는 지표이다. Pol값이 0이면 Positive를 의미하고, 1이면 Negative를 의미한다. Polarity가 Positive이면 fop보다 fmod가 크고, Negative이면 fop보다 fmod가 작다는 것의 의미할 수 있다.
Depth는 동작 주파수와 변조 주파수의 주파수 차이가 얼마인지를 나타내는 지표이며, Depth값이 클수록 주파수 차이가 크고, 작을수록 주파수 차이가 작다는 것을 의미할 수 있다.
도 13은 현재의 WPC Qi 규격에 따른 일 예에 따른 FSK 엔코딩 방법을 설명하기 위한 도면이다.
도 13을 참고하면, 무선전력 전송장치는 동작 주파수의 512 싸이클에 각각 하나의 데이터 비트를 정렬해야 한다. 무선전력 전송장치는 하나의 트랜지션(transition)을 이용해 '0'b를 인코딩하고, 2개의 트랜지션을 이용해 '1'b를 인코딩한다. '1'b 를 인코딩하기 위해, 첫번째 트랜지션은 해당 비트의 시작에서 발생하고, 두번째 트랜지션은 해당 비트의 256 사이클에서 발생하게 된다.
현재 WPC Qi 규격에 따른 FSK는 100KHz의 동작 주파수에서 최대 200bps로 제한되는 Bandwidth를 갖게 된다. 그러나, 현재 WPC Qi 규격에 따른 FSK 속도는 ASK 속도(약 2kbps)에 비해 상대적으로 느리며, 무선전력 수신장치와 무선전력 전송장치 사이의 인증(Authentication)이 요구되는 경우, 인증에 필요한 데이터를 처리하기에 현재 WPC Qi 규격에 따른 FSK 속도는 너무 느리다.
상술한 바와 같이, 현재의 WPC Qi 규격에 따른 FSK는 512 싸이클에 하나의 비트가 인코딩된다. 따라서, 하나의 비트를 인코딩하기 위한 동작 주파수의 싸이클의 수를 512보다 줄이면 FSK의 속도를 향상시킬 수 있다. 따라서, 무선전력 전송장치의 인코딩 능력과 무선전력 수신장치의 디코딩 능력에 따라 하나의 비트를 인코딩하는데 요구되는 전력 시그널 주파수의 싸이클 수를 512개에서 256개, 126개, 64개, 32개 또는 16개 등으로 줄여 FSK의 속도를 향상 및 조절할 수 있다.
이를 위해, FSK의 특성 정보는 상술한 polarity와 depth 이외에도, 하나의 비트를 인코딩하는데 요구되는 동작 주파수의 싸이클 수를 의미하는 새로운 파라미터(Number of Cycles, NCYCLES)를 추가로 포함할 필요가 있다.
무선전력 수신장치는 NCYLCES에 대한 정보를 포함하는 데이터 패킷을 무선전력 전송장치로 전송하여, 무선전력 전송장치의 FSK 속도를 조절할 수 있다. 무선전력 전송장치 역시 NCYLCES에 대한 정보를 포함하는 데이터 패킷을 무선전력 수신장치로 전송하여, FSK 속도를 조절함과 동시에 무선전력 수신장치가 FSK를 이용해 전송되는 데이터를 정확하게 디코딩하도록 할 수 있다.
도 14는 일 실시예에 따른 협상 단계 또는 재협상 단계의 프로토콜을 도시한 흐름도이다.
도 14를 참조하면, 무선전력 전송장치(1001)와 무선전력 수신장치(1002)는 협상 단계(Negotiation Phase) 또는 재협상 단계(Re-negotiation Phase)에 진입한다(S1001).
도 14에 도시되지는 않았지만, 무선전력 전송장치(1001)와 무선전력 수신장치(1002)는 핑 단계(Ping Phase), 구성 단계(Configuration Phase)를 거쳐 협상 단계(Negotiation Phase)로 진입하거나, 핑 단계, 구성 단계, 협상 단계를 거쳐 전력 전송 단계(Power Transfer Phase)에 진입하였다가 재협상 단계(Re-negotiation Phase)로 진입할 수 있다.
핑 단계에서, 무선전력 전송장치(1001)는 디지털 핑을 전송하여 무선전력 수신장치(1002)를 식별한다. 또한, 무선전력 전송장치(1001)는 작동 공간(operating volume) 내에 이물질이 존재하는지 여부를 확인하기 위해 전력 전송 전 이물질 검출을 수행할 수 있다. 디지털 핑을 수신한 무선전력 수신장치(1002)는 신호 세기 패킷(SIG, Signal Strength data packet)을 무선전력 전송장치(1001)로 전송하고, 무선전력 수신장치(1002)로부터 SIG를 수신한 무선전력 전송장치(1001)는 무선전력 수신장치(1002)가 작동 공간(operating volume) 내에 위치하였음을 식별할 수 있다.
구성 단계에서, 무선전력 수신장치(1002)는 자신의 식별 정보를 무선전력 전송장치로 전송하고, 무선전력 수신장치(1002)와 무선전력 전송장치(1001)는 기본 전력 전송 계약(baseline Power Transfer Contract)을 수립할 수 있다. 무선전력 수신장치(1002)는, 자신을 식별시키기 위해 ID(identification data packet), XID(Extended Identification data packet)을 무선전력 전송장치(1001)로 전송할 수 있으며, 전력 전송 계약을 위해 PCH(Power Control Hold-off data packet), CFG(Configuration data packet)을 무선전력 전송장치(1001)로 전송할 수 있다.
무선전력 전송장치(1001)로 전송하는 무선전력 수신장치(1002)의 CFG에는 기준 전력(Reference Power), 데이터의 수신/전송 동시 지원여부(Dup), 인증 기능 지원 여부(AI), 아웃밴드통신의 지원여부(OB), Extended Protocol의 지원여부(Neg)에 대한 정보 등이 포함될 수 있으며, 특히, FSK와 관련한 polarity(Pol)와 depth에 대한 정보가 포함될 수 있다. 무선전력 전송장치(1001)는 무선전력 수신장치(1002)로부터 수신한 CFG에 포함된 polarity와 depth에 대한 정보를 기초로 한 FSK를 이용해 무선전력 수신장치(1002)와 인밴드 통신을 수행한다.
polarity와 depth는 구성 단계에서 수립되는 무선전력 전송장치(1001)와 무선전력 수신장치(1002) 사이의 전력 전송 계약의 요소이며, 후술하는 협상 단계 또는 재협상 단계에서 협상할 수 있는 전력 전송 계약의 요소이다.
협상 단계에서, 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이의 무선전력의 수신/전송과 관련한 전력 전송 계약(Power Transfer Contract)을 확장 또는 변경하거나, 전력 전송 계약의 요소 중 적어도 일부를 조정하는 전력 전송 계약의 갱신이 이루어질 수 있다.
핑 단계, 구성 단계 및 협상 단계에 대한 기타 자세한 내용은 도 5 등에서 설명하였으므로, 이에 대한 추가적인 설명은 생략한다.
도 14를 참조하면, 협상 단계 또는 재협상 단계에서, 무선전력 수신장치(1002)는 GRQ(General Request data packet)을 이용해 무선전력 전송장치(1001)의 ID(Identification data packet) 및 CAP(Capabilities data packet)을 수신할 수 있다.
GRQ 패킷은 1바이트의 Requested Power Transmitter Data Packet 필드(요청된 무선전력 전송장치의 데이터 패킷 필드)를 포함한다. Requested Power Transmitter Data Packet 필드에는 무선전력 수신장치(1002)가 GRQ 패킷을 이용해 무선전력 전송장치(1001)에게 요청하는 데이터 패킷의 헤더값이 포함될 수 있다. 예를 들어, 무선전력 수신장치(1002)가 GRQ 패킷을 이용해 무선전력 전송장치(1001)의 ID 패킷을 요청하는 경우, 무선전력 수신장치(1002)는 Requested Power Transmitter Data Packet 필드에 무선전력 전송장치(1001)의 ID 패킷의 헤더값(0x30)이 포함된 GRQ 패킷(GRQ/id)을 전송한다.
협상 단계 또는 재협상 단계에서, 무선전력 수신장치(1002)는 무선전력 전송장치(1001)의 ID 패킷을 요청하는 GRQ 패킷(GRQ/id)을 무선전력 전송장치(1001)로 전송할 수 있다(S1002).
GRQ/id를 수신한 무선전력 전송장치(1001)는 ID 패킷을 무선전력 수신장치(1002)로 전송할 수 있다(S1003). 무선전력 전송장치(1001)의 ID 패킷에는 Manufacturer Code에 대한 정보가 포함된다. Manufacturer Code에 대한 정보가 포함된 ID 패킷은 무선전력 전송장치(1001)의 제조자(manufacturer)를 식별할 수 있도록 한다.
무선전력 수신장치(1002)는 무선전력 전송장치(1001)의 CAP 패킷을 요청하는 GRQ 패킷(GRQ/cap)을 무선전력 전송장치(1001)로 전송할 수 있다(S1004). GRQ/cap의 Requested Power Transmitter Data Packet 필드에는 CAP 패킷의 헤더값(0x31)이 포함될 수 있다.
GRQ/cap를 수신한 무선전력 전송장치(1001)는 CAP 패킷을 무선전력 수신장치(1002)로 전송할 수 있다(S1005). 무선전력 전송장치(1001)의 CAP 패킷에는 무선전력 전송장치(1001)의 성능과 관련된 정보들이 포함된다. 예를 들어, 무선전력 전송장치(1001)의 CAP 패킷에는 협상 가능 로드 전력(Negotiable Load Power), 잠재적 로드 전력(Potential Load Power), 데이터의 수신/전송 동시 지원여부(Dup), 인증 기능 지원 여부(AR), 아웃밴드통신의 지원여부(OB) 등에 대한 정보가 포함될 수 있다.
무선전력 수신장치(1002)는 협상 단계 또는 재협상 단계에서 특별 요청 패킷(SRQ, Specific Request data packet)을 이용해 전력 전송 단계에서 제공받을 전력과 관련한 전력 전송 계약(Power Transfer Contract)의 요소들을 갱신할 수 있고, 협상 단계 또는 재협상 단계를 종료할 수 있다.
특히, 무선전력 수신장치(1002)는 SRQ를 이용해 FSK와 관련된 특성 정보에 대한 변경을 요청할 수 있다.
도 15는 일 예에 따른 SRQ의 메시지 필드의 포맷을 도시한 도면이고, 도 16은 FSK와 관련된 특성 정보의 변경을 요청하기 위한 일 예에 따른 SRQ의 파라미터 필드의 포맷을 도시한 도면이다.
도 15를 참조하면, SRQ의 메시지 필드는 Request 필드를 포함하는 바이트(B0)와 Parameter 필드를 포함하는 바이트(B1)를 포함할 수 있다.
FSK와 관련된 특성 정보의 변경을 요청하기 위한 SRQ(SRQ/fsk)의 Request 필드는 0x03의 값을 가질 수 있고, Request 필드에는 FSK와 관련한 NCYLCLES, Polarity, Depth에 대한 정보를 포함할 수 있다.
NCYCLES 필드는 2비트로 구성될 수 있으며, NCYCLES 필드의 값과 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수는 아래와 같이 대응될 수 있다.
'00'b= 512 (default), '01'b = 256, '10'b = 128, '11'b = 64
도 16에는 NCYCLES 필드가 2비트로 구성되는 예를 도시하였지만, 실시예에 따라 NCYCLES 필드는 3비트 이상으로 구성될 수도 있다. 예를 들어, NCYCLES 필드가 3비트로 구성되면, NCYCLES 필드의 값과 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수는 아래와 같이 대응될 수 있다.
'000'b= 512 (default), '001'b = 256, '010'b = 128, '011'b = 64, '100'b = 32, '101'b = 16, '110'b = 8, '111'b = 4
SRQ/fsk를 수신한 무선전력 전송장치(1001)는 SRQ/fsk에 대한 응답으로 ACK를 무선전력 수신장치(1002)로 전송한 이후, SRQ/fsk에 포함된 NCYLCLES, Polarity, Depth의 정보에 부합하는 FSK가 적용된 후속 데이터를 전송한다. 여기서 후속 데이터는 무선전력 전송장치(1001)가 전송하는 데이터 패킷 및 무선전력 수신장치(1002)로부터 수신한 데이터 패킷에 대한 응답을 포함한다.
한편, SRQ/fsk를 이용해 FSK의 새로운 NCYLCES이 설정된 경우, 무선전력 전송장치(1001)가 새로운 NCYLCES이 적용된 메시지를 전송하는 타이밍이 문제될 수 있다.
도 17은 일 실시예에 따른 새로운 NCYLCES이 적용된 메시지의 전송 타이밍 해결 방법을 설명하기 위한 도면이다.
도 17을 참고하면, 무선전력 수신장치(1002)는 예를 들어 SRQ/fsk를 이용해, FSK의 새로운 사이클 수(NCYCLES)를 요청하는 요청 패킷(1011)을 무선전력 전송장치(1001)에게 전송한다. 요청 패킷(1011)에는 새로운 사이클 수(NCYCLES)에 대한 정보가 포함될 수 있다.
무선전력 수신장치(1002)로부터 요청 패킷(1011)을 수신한 무선전력 전송장치(1001)는 요청 패킷(1011)에 대한 응답(1012)를 무선전력 수신장치(1002)로 전송하고, 요청 패킷(1011)에 포함된 사이클 수에 기반한 FSK를 이용해 후속 데이터(1021)를 무선전력 수신장치(1002)로 전송한다.
도 17을 참고하면, 새로운 사이클 수가 적용된 처음 후속 데이터(1021)는 요청 패킷(1011)이 전송 또는 수신된 시간으로부터 일정한 제한 시간(Update Time Offset) 이내에 전송 또는 수신되어야 할 수 있다.
또는, 새로운 사이클 수가 적용된 처음 후속 데이터(1021)는 요청 패킷(1011)에 대한 응답(1012)이 전송 또는 수신된 시간으로부터 일정한 제한 시간(Receive window) 이내에 전송 또는 수신되어야 할 수 있다.
새로운 사이클 수가 적용된 처음 후속 데이터(1021)는 Update Time Offset과 Receive window를 모두 만족시키는 시간 내에 전송 또는 수신되어야 할 수 있다.
무선전력 수신장치(1002)는, Update Time Offset 및/또는 Receive window 이내에 요청 패킷(1011)에 대한 응답(1012) 이외의 후속 데이터(1021)가 수신되지 않으면, 다시 FSK의 새로운 사이클 수(NCYCLES)를 요청하는 요청 패킷(1011)을 무선전력 전송장치(1001)에게 전송할 수 있다.
도 18은 다른 실시예에 따른 새로운 NCYLCES이 적용된 메시지의 전송 타이밍 해결 방법을 설명하기 위한 도면이다.
도 18을 참고하면, 무선전력 수신장치와 무선전력 전송장치는 사이클 서브-레이팅(Cycle sub-rating)을 이용하여 통신할 수 있다.
이 경우, 무선전력 수신장치와 무선전력 전송장치는 FSK의 최소 사이클 수(예를 들어, 64 cycle)를 기초로 설정된 단위 사이클을 기준으로 동작하고, 데이터 패킷을 실제로 교환하는 유효 사이클은 단위 사이클의 정수 배가 될 수 있다.
도 18을 참조하면, 무선전력 전송장치는 512 사이클 기반으로 데이터 패킷 또는 응답을 전송하던 중에, 무선전력 수신장치로부터 사이클 서브-레이트 요청 패킷(1031)을 수신한다. 무선전력 수신장치는 사이클 서브-레이트 요청 패킷(1031)을 전송하여, FSK의 새로운 사이클 수(NCYCLES)를 요청할 수 있다. 사이클 서브 레이트 요청 패킷(1031)에는 새로운 사이클 수(NCYCLES), 패킷 교환 간격, 새로운 사이클 수(NCYCLES)를 적용한 통신에서의 타임아웃(timeout) 등에 대한 정보가 포함될 수 있다.
무선전력 전송장치는 수신한 사이클 서브-레이트 요청 패킷(1031)에 대한 응답(1032)을 무선전력 수신장치로 전송하고, 사이클 서브 레이트 요청 패킷(1031)에 포함된 새로운 사이클 수(NCYCLES), 패킷 교환 간격, 새로운 사이클 수(NCYCLES)를 적용한 통신에서의 타임아웃(timeout) 등에 대한 정보를 기초로 후속 데이터를 전송할 기준 타이밍을 설정하고, 설정된 기준 타이밍에 기초하여 새로운 사이클 수(예를 들어, 256 사이클)에 따라 인코딩한 후속 데이터(1041)를 무선전력 수신장치로 전송할 수 있다.
사이클 서브-레이트를 이용하는 경우, 무선전력 수신장치와 무선전력 전송장치는 단위 사이클 및 유효 사이클을 기반으로 기준 타이밍을 설정하여 데이터를 전송/수신하므로, 새로운 사이클 수(NCYCLES)가 적용된 데이터의 전송/수신 타이밍을 위해 별도의 앵커 포인트(anchor point)를 설정할 필요가 없다. 따라서, Update Time Offset이나 Receive window 등을 설정할 필요가 없다.
한편, 상술한 바와 같이, FSK를 이용한 통신에서 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수를 조정하여 FSK 통신 속도를 조절하는 경우, 무선전력 전송장치 및/또는 무선전력 수신장치에게 요구되는 타임아웃시간(timeout) 역시 조절될 필요가 있다.
예를 들어, 현재의 WPC Qi 규격에서는 동작 주파수의 512 싸이클에 각각 하나의 데이터 비트를 정렬하도록 규정하고 있지만, 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수를 512 사이클 이하가 되도록 하여 FSK 통신 속도가 빨라지는 경우, 타임아웃시간 역시 그에 상응하여 줄어들 수 있다.
즉, 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수를 조절하여, FSK의 통신 속도가 빨라지면 타임아웃시간은 줄어들고, FSK의 통신 속도가 느려지면 타임아웃시간은 늘어날 수 있다. 예를 들어, 타임아웃시간은 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수에 비례하도록 조절될 수 있다.
도 19 및 도 20은 무선전력 전송장치에게 요구되는 타임아웃시간의 예를 설명하기 위한 도면이다.
도 19을 참조하면, 무선전력 전송장치는 단순 질의 데이터 패킷(simple-query data packet)에 대한 응답 패턴을 전송함에 있어, 단순 질의 데이터 패킷의 종단으로부터 타임아웃시간(tresponce) 이내에 응답 패턴의 전송을 시작하여야 한다.
도 20을 참조하면, 무선전력 전송장치는 데이터 요청 데이터 패킷(data-request data packet)에 대한 데이터 패킷을 전송함에 있어, 데이터 요청 데이터 패킷의 종단으로부터 타임아웃시간(tresponce) 이내에 응답 패턴의 전송을 시작하여야 한다.
예를 들어, 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수가 512 사이클인 경우의 tresponce는 3 ~ 10ms일 수 있다. 그러나, 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수가 512 사이클보다 작게 설정되면, tresponce의 최소값이 3ms 보다 작게 조절되거나, 최대값이 10ms보다 작게 조절될 수 있다.
FSK의 속도가 향상됨에 따라 무선전력 전송장치 및/또는 무선전력 수신장치에게 요구되는 타임아웃시간을 줄여, 무선전력 전송장치와 무선전력 수신장치 사이의 무선 충전을 위한 프로토콜 진행에 소요되는 시간을 단축시킬 수 있다.
한편, 상술한 바와 같이, FSK를 이용한 통신에서 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수를 조정하여 FSK 통신 속도를 조절하는 경우, 무선전력 전송장치에게 요구되는 전력전송중단시간(power signal termination time) 역시 조절될 필요가 있다.
예를 들어, 현재의 WPC Qi 규격에서는 동작 주파수의 512 싸이클에 각각 하나의 데이터 비트를 정렬하도록 규정하고 있지만, 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수를 512 사이클 이하가 되도록 하여 FSK 통신 속도가 빨라지는 경우, 전력전송중단시간 역시 그에 상응하여 줄어들 수 있다.
즉, 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수를 조절하여, FSK의 통신 속도가 빨라지면 전력전송중단시간은 줄어들고, FSK의 통신 속도가 느려지면 전력전송중단시간은 늘어날 수 있다. 예를 들어, 전력전송중단시간은 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수에 비례하도록 조절될 수 있다.
도 21은 무선전력 전송장치에게 요구되는 전력전송중단시간의 예를 설명하기 위한 도면이다.
도 21을 참조하면, 무선전력 전송장치는 EPT(End Power Transfer data packet)의 종단으로부터 전력전송중단시간(tterminate) 이내에 전력 신호를 제거하여야 한다.
예를 들어, 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수가 512 사이클인 경우의 tterminate는 최대 28ms일 수 있다. 그러나, 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수가 512 사이클보다 작게 설정되면, tterminate의 최대값은 28ms보다 작게 조절될 수 있다.
도 21에서는 EPT의 수신과 관련되어 요구되는 tterminate을 예로 들었으나, 허용되지 않는 데이터 패킷(illegal data packet) 또는 비정상적인 값을 포함하는 데이터 패킷(Data packet with illegal value)을 수신하는 경우, illegal data packet 또는 Data packet with illegal value의 종단으로부터 전력 신호 제거까지 요구되는 전력전송중단시간(tterminate) 역시 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수에 따라 조절될 수 있다.
또한, 그 밖에 여러 상황에 따라 무선전력 전송장치에게 전력 신호를 제거할 때까지 소요되는 전력전송중단시간이 요구되는 경우, 해당 전력전송중단시간은 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수에 따라 조절될 수 있다.
한편, 하나의 데이터 비트를 표현하는 동작 주파수의 사이클 수를 조절하여 FSK 통신의 속도가 향상되는 경우 이외에도, 무선전력 전송장치와 무선전력 수신장치가 아웃밴드 통신을 통해 응답이나 데이터 패킷을 전송/수신하는 경우에는 인밴드 통신을 통해 응답이나 데이터 패킷을 전송/수신하는 경우에 비해 요구되는 타임아웃시간 및/또는 전력전송중단시간이 짧게 설정될 수도 있다.
이하에서는, 무선전력 전송장치와 무선전력 수신장치 사이의 빠른 인증 방법에 대해 설명한다.
무선전력 전송장치와 무선전력 수신장치는 Qi 인증 여부를 확인하고, Qi 인증이 확인된 경우에 한하여, 전송/수신되는 무선전력의 프로파일을 BPP(Baseline Power Profile)에서 EPP(Extended Power Profile)로 전환할 수 있다. Qi 인증이 확인되지 않으면, 무선전력의 프로파일을 BPP로 유지하거나, 무선전력의 전송/수신을 중단할 수 있다.
무선전력 전송장치와 무선전력 수신장치 중 어느 하나는 인증 프로토콜을 개시하는 인증 개시자로서 동작하고, 다른 하나는 인증 응답자로 동작할 수 있다.
인증 프로토콜을 통해 인증 개시자는 인증 응답자에게 인증서 체인 다이제스트(Certificate Chain digests)를 요청하고, 인증 응답자의 인증서 체인을 읽고, 인증 응답자의 신뢰성을 증명하기 위한 챌린지를 수행한다.
인증 응답자의 인증은 크게 인증서 교환과, key를 이용한 인증서의 인증(이하, key 인증)으로 진행된다. 즉, 인증 응답자의 인증서 교환과 key 인증이 모두 성공되어야 인증 응답자의 인증이 성공하게 된다.
무선전력 전송장치와 무선전력 수신장치는 아웃밴드 통신을 통해 인증 프로토콜을 진행할 수 있다. 인증 개시자는 인증서를 정상적으로 획득한 인증 응답자의 ID를 저장하여 관리할 수 있다. 아웃밴드 통신으로 저전력 블루투스(BLE)가 사용되는 경우, 인증 개시자는 인증 응답자의 BLE MAC Adress를 white list로 관리하고, 인증 응답자의 인증 성공 여부를 함께 표기하여 관리할 수 있다. 따라서, 인증 개시자는 인증 응답자와의 인증서 교환 여부와 key 인증 성공 여부를 구별하여 관리할 수 있다.
과거에 이미 한번 이상 인증에 성공하였던 무선전력 수신장치와 무선전력 전송장치 사이에 다시 인증이 진행되는 경우, BLE를 이용한 아웃밴드 통신을 통해 인증 절차가 진행되면, 인증 개시자는 인증 응답자의 광고 패킷(Advertising packet)을 이용해 인증 응답자의 기 인증 여부를 확인할 수 있다.
예를 들어, 무선전력 수신장치가 인증 개시자이고 무선전력 전송장치가 인증 응답자인 경우, 무선전력 전송장치는 자신의 BLE ID를 포함하는 광고 패킷을 무선전력 수신장치로 전송하고, 무선전력 수신장치는 무선전력 전송장치의 BLE ID와 자신이 보유한 white list 및 인증 성공 여부를 확인하여, 과거에 무선전력 전송장치와 인증서 교환을 하였는지, 그리고 무선전력 전송장치가 인증에 성공하였는지 여부를 파악할 수 있다.
인증 응답자가 과거 인증서 교환을 수행했던 기기인 경우, 인증 개시자는 인증 응답자의 인증서를 획득하는 절차를 생략하고, 이전에 교환했던 인증서를 기반으로 key 인증을 수행할 수 있다. 이 경우, 인증서를 획득하는 절차가 생략되므로 인증 프로토콜을 보다 빠르게 완료할 수 있다.
또한, 아웃밴드를 이용해 인증 절차가 진행되는 경우, 인증 개시자는 인증 응답자가 white list에 속하고 인증에 성공했었던 이력을 파악하고, 이러한 인증 응답자는 key 인증 절차를 생략할 수 있다. 따라서, 인증 응답자로부터 인증서를 획득하는 절차 및 key 인증 절차가 생략되므로, 인증 프로토콜을 보다 빠르게 완료할 수 있다.
한편, 과거에 이미 한번 이상 인증에 성공하였던 무선전력 수신장치와 무선전력 전송장치 사이에 다시 인증이 진행되는 경우, 인밴드 통신을 통해 인증 절차가 진행되면, 인증 개시자는 인증 응답자에게 DIGEST 정보를 요청하여 이전에 인증서를 교환했는지 여부를 확인할 수 있다. 그러나, DIGEST 정보만으로는 인증 응답자가 실제로 key 인증까지 성공하였는지 여부를 확인할 수는 없다. 하지만, 인증 절차의 효율성을 위해 인증 개시자는 인증 응답자의 DIGEST 정보가 확인되면 key 인증 절차를 생략할 수도 있다. 다만, DIGEST 정보만으로 key 인증 절차를 생략하는 것은 보안 상의 문제가 발생할 가능성이 있으므로, 인증서를 교환하였음에도 불구하고 key 인증에 실패한 경우에는 인증서 교환 여부를 Fail로 표기하여, 다음에 다시 동일한 기기와 인증 절차를 진행할 때에는 DIGEST 정보가 유효하지 않도록 구현하여 보안 상의 문제를 해결할 수 있다.
이하에서는, 외부 서버를 이용한 무선전력 수신장치와 무선전력 전송장치 사이의 인증에 대해 설명한다.
도 22는 일 실시예에 따른 외부 서버를 이용한 무선전력 수신장치와 무선전력 전송장치 사이의 인증 방법을 설명하기 위한 흐름도이다.
도 22를 참조하면, 무선전력 수신장치(1002)는 별도의 컨트롤 유닛(1003)과의 통신을 통해 계정을 연동한다(S1101). 컨트롤 유닛(1003)은 무선전력 전송장치(1001)을 관리하는 기기일 수 있으며, 무선전력 수신장치(1002)와 인터넷 등의 별도의 통신 수단을 통해 통신 연결이 가능한 기기일 수 있다.
무선전력 수신장치(1002)와의 계정 연동이 이루어진 컨트롤 유닛(1003)은 인증서 체인을 업데이트 한다(S1102). 컨트롤 유닛(1003)은 무선전력 전송장치(1001)의 인증서 체인을 업데이트할 수 있고, 또한, 무선전력 전송장치(1001)의 인증서 체인을 무선전력 수신장치(1002)로 전송하거나, 무선전력 수신장치(1002)가 무선전력 전송장치(1001)의 인증서 체인을 수신할 수 있도록 하여, 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이의 인증이 미리 이루어질 수 있도록 할 수 있다.
이후, 무선전력 수신장치(1002)가 무선전력 전송장치(1001) 상에 안착되어 무선전력 전송장치(1001)로부터 무선전력을 수신할 때에, 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이에 인증 절차가 진행될 수 있다(S1103). 그러나, S1102 단계에서 무선전력 수신장치(1002)는 무선전력 전송장치(1001)의 인증서 체인을 이미 확인하였으므로, S1103 단계에서의 인증은 간략하게 진행되거나, 생략될 수도 있다.
예를 들어, 무선전력 수신장치(1002)는 무선전력 전송장치(1001)의 인증서 체인을 이미 확인하였으므로, S1103 단계에서 무선전력 전송장치(1001)의 인증서 체인을 요청하고 수신하는 절차를 생략하고, DIGEST 정보를 확인하여 인증 절차를 수행할 수 있다
또는, 전술한 바와 같이, 무선전력 수신장치(1002)는 이미 인증서 체인을 수시한 무선전력 전송장치(1001)를 white list 기기로 분류하고 인증이 성공했던 기기로 분류하여 무선전력 전송장치(1001)로부터 인증서를 획득하는 절차 및 key 인증 절차를 생략할 수 있다.
즉, 무선전력 수신장치(1002)는 무선전력 전송장치(1001)와의 인증 절차를 간략화하거나 생략하고, 빠르게 EPP에 따른 무선전력을 수신할 수 있다.
S1102 단계에서 컨트롤 유닛(1003)이 제공하는 무선전력 전송장치(1001)의 인증서에는 인증서의 유효기간이 추가로 정의될 수 있다. 따라서, 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이의 인증은 유효기간 내에서만 유효한 상태가 될 수 있다.
무선전력 수신장치(1002)와 무선전력 전송장치(1001)가 아웃밴드 통신(예를 들어, BLE)이 가능한 경우, 무선전력 전송장치(1001)는 기 인증 여부 확인 정보를 아웃밴드 통신을 통해 근접한 무선전력 수신장치(1002)로 알릴 수 있다.
한편, S1103 단계 등을 통해 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이의 인증이 성공적으로 완료된 이후, 무선전력 수신장치(1002)와 무선전력 전송장치(1001)는 서비스 연결 관련 정보를 공유할 수 있다(S1104).
무선전력 수신장치(1002)가 무선 충전 이외의 서비스(예를 들어, Wi-fi, 오디오, 비디오 미러링 등)을 이용하는 경우, 무선전력 전송장치(1001) 또는 컨트롤 유닛(1003)은 무선전력 수신장치(1002)로 서비스 이용에 필요한 정보를 공유할 수 있다.
예를 들어, 무선전력 수신장치(1002)가 이용하고자 하는 서비스가 Wi-Fi 연결 인터넷 이용일 경우, Wi-Fi 연결에 필요한 DPP(Wi-Fi Device Provisioning Protocol)에 필요한 기기 ID 및 Channel 정보 등이 공유될 수 있다. Channel 정보의 경우 Wi-Fi 기반 Public Key 교환할 경우를 위하여 절차에 사용될 Channel 정보를 교환할 수 있다(2.4GHz Channel6: 2.437GHz, 5GHz Channel 44: 5.220GHz, 60GHz Channel2: 60.48GHz 등). 이는 Qi 인증 여부를 활용하여 서비스 연결을 위한 서비스 인증 절차를 생략하고 서비스 연결 및 서비스 이용을 가능하게 한다(S1105).
설명의 편의를 위해, 컨트롤 유닛(1003)이 무선전력 수신장치(1002)와의 계정 연동, 인증서 체인 업데이트, 서비스 연결 및 제공을 모두 수행하는 예를 도시하고 이를 기준으로 설명하였으나, 컨트롤 유닛(1003)은 각 기능 별로 독립적인 기기들의 조합으로 구성될 수 있다. 예를 들어, 계정 연동, 인증서 체인 업데이트, 서비스 연결 및 제공을 수행하는 기기가 별도로 구성되어 있을 수 있다.
도 22의 실시예는 까페, 영화관, 버스, 비행기 등에서 무선전력 전송장치(1001)가 구비된 좌석을 제공하는 서비스에 적용될 수 있다. 이 경우, 무선전력 수신장치(1002)는 계정 입력을 통해 서비스를 제공하는 컨트롤 유닛(1003)과 접속하여 무선전력 수신장치(1002)의 사용자가 좌석에 착석하기 이전에 무선전력 전송장치(1001)과의 인증을 완료하고, 무선전력 수신장치(1002)와 무선전력 전송장치(1001)가 실제로 접촉하거나 통신을 수립한 상태에서는 인증 절차의 적어도 일부가 생략되거나 인증 절차 전체가 생략되고, 무선전력 전송장치(1001)로부터 무선전력을 수신이 허용되거나, EPP에 따른 무선전력의 수신이 허용될 수 있다..
또한, 무선전력 전송장치(1001)와 무선전력 수신장치(1002) 사이의 인증 성공을 전제로, 무선전력 수신장치(1002)는 무선충전 이외의 별도의 서비스를 제공받을 수도 있다.
도 23은 다른 실시예에 따른 외부 서버를 이용한 무선전력 수신장치와 무선전력 전송장치 사이의 인증 방법을 설명하기 위한 흐름도이다.
도 23을 참조하면, 무선전력 전송장치(1001)와 무선전력 수신장치(1002)는 인밴드(IB) 통신 및 아웃밴드(OOB) 통신이 가능하다.
무선전력 전송장치(1001)는 아웃밴드 통신을 통해 인증서 URI(uniform resource identifier)를 무선전력 수신장치(1002)로 전송한다(S1201). 무선전력 전송장치(1001)와 무선전력 수신장치(1002)가 아웃밴드 통신으로 BLE를 사용하는 경우, 무선전력 전송장치(1001)는 BLE 채널 수립을 위한 광고 패킷(advertising packet)에 인증서 URI를 포함시켜 전송할 수 있다. 또는, 무선전력 전송장치(1001)는 인밴드 통신을 통해 인증서 URI를 무선전력 수신장치(1002)로 전송할 수도 있다.
한편, 무선전력 수신장치(1002)가 무선전력 전송장치(1001) 상에 안착되면 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이에는 인밴드 통신 채널이 수립되고(S1202), 무선전력전송을 위한 프로토콜이 시작된다. 또한, 무선전력 전송장치(1001)와 무선전력 수신장치(1002) 사이의 아웃밴드 통신 채널 역시 수립된다(S1203).
도 23에는 S1201 단계 이후에 S1202 단계가 이루어지는 것처럼 도시되었으나, S1201 단계와 S1202 단계의 선후 관계는 바뀔 수 있다.
무선전력 수신장치(1002)는 S1201 단계에서 획득한 무선전력 전송장치(1001)의 인증서 URI를 이용해 IP 서버(1004)로부터 무선전력 전송장치(1001)의 인증서를 획득한다(S1204). 무선전력 수신장치(1002)는 IP 서버(1004)로부터 무선전력 전송장치(1001)의 인증서와 관련한 private key, root CA certificate, intermediate CA certificate, Device Certificate 등을 획득할 수 있다.
도 23에는 무선전력 수신장치(1002)가 아웃밴드 통신을 통해 IP 서버(1004)로부터 무선전력 전송장치(1001)의 인증서를 획득하는 것으로 도시되어 있으나, 무선전력 전송장치(1001)의 인증서를 획득하는 아웃밴드 통신은 무선전력 전송장치(1001)와의 관계에서 수립된 아웃밴드 통신 채널에 국한되지 않는다. 또한, 무선전력 수신장치(1002)는 인터넷 등을 통해 IP 서버(1004)에 접속할 수 있으며, 별도의 통신 중개기(예를 들어, IP 라우터 등)을 통해 IP 서버(1004)에 접속할 수도 있다.
무선전력 수신장치(1002)는 S1204 단계에서 획득한 무선전력 전송장치(1001)의 인증서를 검증한다(S1205). 인증서 검증 절차에 대한 구체적인 내용은 후술한다.
무선전력 전송장치(1001)의 인증서를 기반으로 무선전력 전송장치(1001)에 대한 인증이 성공한 경우, 무선전력 수신장치(1002)는 무선전력 전송장치(1001)로부터 무선전력을 수신하거나, 수신되는 무선전력을 BPP에서 EPP로 확장할 수 있다.
그러나 무선전력 전송장치(1001)의 인증서가 유효하지 않거나, S1204 단계에서 인증서의 획득이 불가한 경우, 인증서 획득에 요구되는 제한 시간을 초과한 경우, 무선전력 수신장치(1002)가 무선전력 전송장치(1001)로부터 멀어지거나 무선 충전이 가능한 범위 밖으로 이동된 경우 등에, 무선전력 수신장치(1002)는 무선전력 전송장치(1001)로 무선전력 전송의 중단을 요청하거나, 무선전력 수신을 차단할 수 있다(S1206).
무선전력 전송장치(1001)의 인밴드 통신 요소(예를 들어, 전송 코일 등)은 무선전력 전송장치(1001)의 아웃밴드 통신 요소로 인증 실패 또는 전력 전송 중단 등의 오류가 발생하였음를 알리고(S1207), 무선전력 전송장치(1001)는 아웃밴드 통신을 통해 무선전력 수신장치(1002)로 오류 발생을 알릴 수 있다(S1207). 무선전력 전송장치(1001)로부터 오류 발생을 수신한 무선전력 수신장치(1002)는 오류 발생 상태를 디스플레이, 진동, 소리 등을 통해 사용자에게 알릴 수 있다.
도 24는 도 23의 S1205 단계 등을 보다 구체적으로 설명하기 위한 흐름도이다.
도 24를 참조하면, 전술한 바와 같이, 무선전력 수신장치(1002)는 무선전력 전송장치(1001)의 인증서 URI를 획득한다(S1201).
무선전력 전송장치(1001)의 인증서를 검증하는 단계(S1205)에서, 무선전력 수신장치(1002)는 URI에 의한 인증서를 체크한다(S1301). S1301 단계에서, 무선전력 수신장치(1002)는 URI 정보의 유효성, URI를 통한 인증서 정보 획득 가능성, Certificate URI Hash 정보의 유효성 등을 체크할 수 있다.
S1201 단계 또는 S1301 단계의 선행 조건으로서, 무선전력 수신장치(1002) 및/또는 무선전력 전송장치(1001)는 기기의 펌웨어 업데이트와, 인증서 기반의 인증을 위한 통신 수단(인밴드 통신 또는 아웃밴드 통신)에 대한 확인이 선행될 수 있다.
S1301 단계에서, URI 정보의 유효성이나 URI를 통한 인증서 정보 획득 가능성 등이 인정되지 않는 경우에는 S1206 단계로 진행하게 된다.
S1301 단계에서, URI 정보의 유효성이나 URI를 통한 인증서 정보 획득 가능성 등이 인정된 경우, 무선전력 수신장치(1002)는 인증서 URI를 기반으로 IP 서버에 접속을 시도한다(S1302). S1302 단계에서, 인증서 URI로 접속이 불가능하거나 접속 권한이 없는 경우, 인증서 다운로드에 오류가 발생한 경우, 인증서 획득에 요구되는 제한 시간이 초과한 경우 등에는 S1206 단계로 진행할 수 있다.
인증서 URI를 기반으로 IP 서버에 접속이 성공한 경우, 무선전력 수신장치(1002)는 IP 서버로부터 무선전력 전송장치(1001)의 인증서를 획득한다(S1303). 무선전력 수신장치(1002)는 IP 서버(1004)로부터 무선전력 전송장치(1001)의 인증서와 관련한 private key, root CA certificate, intermediate CA certificate, Device Certificate 등을 획득할 수 있다.
무선전력 수신장치(1002)는 획득한 인증서로부터 루트 인증서(Root Certificate)의 유효성을 확인한다(S1304). 루트 인증서의 유효성이 확인되지 않으면, S1206 단계로 진행할 수 있다.
루트 인증서에 대한 유효성이 확인되면, 무선전력 수신장치(1002)는 획득한 인증서에 포함된 다른 인증서들의 유효성을 확인한다(S1305). S1305 단계에서 인증서들의 유효성이 확인되지 않으면, S1206 단계로 진행할 수 있다.
모든 인증서에 대한 유효성이 확인되면, 무선전력 수신장치(1002)는 인증서를 기반으로 한 인증 절차를 시작하고(1306), 사용자에게 인증 절차가 정상적으로 동작하였음을 알릴 수 있다(S1307). 무선전력 수신장치(1002)는 디스플레이, 진동, 소리 등을 통해 인증 절차가 정상적으로 동작하였음을 사용자에게 알릴 수 있다.
한편, S1206 단계가 진행되면, 무선전력 전송장치(1001)는 아웃밴드 통신을 통해 무선전력 수신장치(1002) 및 주변의 다른 무선전력 수신장치에게 인증 실패 또는 전력 전송 중단 등의 오류가 발생하였음를 알리고(S1208), 무선전력 전송장치(1001)로부터 오류 발생을 수신한 무선전력 수신장치(1002)는 오류 발생 상태를 디스플레이, 진동, 소리 등을 통해 사용자에게 알릴 수 있다(S1308).
상술한 인증서 기반의 인증을 위해 아래와 같은 무선충전과 관련한 표준에 추가될 수 있다.
1) Device Capability: 인증서 기반 인증을 위한 추가적인 기기 기능 정보로서, 무선전력 전송장치(PTx)와 무선전력 수신장치(PRx) 사이에 교환 될 수 있다.
2) Device firmware update capability: 인증서 기반 인증을 위해 Firmware Update 가 요청 될 수 있고, 이에 대한 지원 여부가 무선전력 전송장치(PTx)와 무선전력 수신장치(PRx) 사이에 교환될 수 있다.
3) Authentication Interface 변경 : 인증서 기반 인증을 위한 통신 수단으로 in-band to in-band , Inband to OOB 등이 사용될 수 있다.
4) Auth Timer (Initiator / Responder) : 인증서 기반 인증 요청 시 최대 인증 검증 허용 시간
5) Re-Authentication 지원 여부 및 방법: optionally, 무선전력 수신장치(PRx)는 주기적으로 무선전력 전송장치(PTx)가 이전에 인증된 기기인지 혹은 기기가 변경되었는지 파악할 수 있다.
6) 인증서 획득 Timer: 인증서 획득 Timer (TcertRetrieveTimer= expired)가 초과되면 인증서 기반 인증 과정이 중단될 수 있다.
상술한 인증서 기반의 인증 방법은, 무선전력 수신장치(1002)-무선전력 전송장치(1001)-IP 서버(1004)를 포함하는 네트워크 상에 신규 기기(무선전력 수신장치 및/또는 무선전력 전송장치)가 추가되는 경우, 보안을 위해, Manufacturer, Device 인증서를 검증 후 검증된 Public Key로 신규 보안키 생성하여 인증을 진행할 수 있다.
또한, 새로운 무선전력 수신장치(1002)가 URI를 통해 무선전력 전송장치(1001)의 인증서를 획득할 수 있도록, 새로운 무선전력 수신장치(1002)를 위해 임시로 GUEST 네트워크를 구성할 수 있다. 이는 외부 기기(unprovisioned device)와 서브넷에 참여한 기기 사이의 보다 확실한 격리를 가능하게 한다.
이하에서는, 인증 절차의 중단에 효과적으로 대응하는 방법에 대해 설명한다.
무선전력 전송장치(1001)와 무선전력 수신장치(1002)는 인증 절차가 진행되는 중에 통신이 중단될 수 있다. 예를 들어, 무선전력 수신장치(1002)가 무선전력 전송장치(1001) 상에 놓여진 상태에서 인증 절차가 진행되던 중에, 무선전력 수신장치(1002)가 무선전력 전송장치(1001)로부터 이탈되거나, 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이에 이물질이 삽입되거나, 주변 간섭의 영향으로 통신 링크가 끊어지는 경우 등이다.
무선전력 전송장치(1001)와 무선전력 수신장치(1002)가 아웃밴드(OOB) 통신을 통해 인증 절차를 진행 중이었을 경우에는, 무선전력 수신장치(1002)가 무선전력 전송장치(1001)로부터 이탈되거나, 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이에 이물질이 삽입되더라도 아웃밴드 통신 채널이 연결되어 있는 이상 인증 절차를 계속 진행할 수 있다. 따라서, 무선전력 수신장치(1002)에 잔여 배터리 용량이 있어서 아웃밴드 통신 모듈의 구동이 가능한 상태인 경우에는 무선전력 전송장치(1001)와의 아웃밴드 통신 채널의 연결을 유지하고 인증 절차가 계속 진행되도록 할 수 있다.
무선전력 전송장치(1001) 및/또는 무선전력 수신장치(1002)는 아웃밴드 통신의 탐색(discovery) 및/또는 연결(connection) 범위 보다 작은 범위의 인증 범위(Authentication Range)를 설정하고, 무선전력 수신장치(1002)가 무선전력 전송장치(1001)로부터 인증 범위 내에 위치하는 경우에 한하여, 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이의 인밴드 통신이 끊기거나, 무선전력 수신장치(1002)가 무선전력 전송장치(1001)로부터 이탈하거나, 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이에 이물질이 삽입되더라도, 아웃밴드 통신을 통해 인증 절차를 계속 수행할 수 있다.
다만, 무선전력 수신장치(1002)가 무선전력 전송장치(1001)로부터 일정 거리 이상 멀어진 경우에는, 사용자가 무선충전의 의사가 없을 가능성이 높으므로, 인증 절차의 진행을 중단할 수 있다.
무선전력 수신장치(1002)가 무선전력 전송장치(1001)로부터 인증 범위 내에 위치하는지 여부는 인밴드 통신 및/또는 아웃밴드 통신의 신호세기를 기초로 판단할 수 있다.
한편, 인밴드 통신으로 인증 절차를 진행 중이었을 경우 무선전력 수신장치(1002)를 무선전력 전송장치(1001)로부터 제거하거나, 두 기기 사이에 이물질이 삽입되면 통신이 불가능하다
따라서, 무선전력 수신장치(1002)와 무선전력 전송장치(1001) 사이의 통신 이상을 감지한 순간으로부터, 무선전력 수신장치(1002) 및/또는 무선전력 전송장치(1001)는 일정 시간(Authentication time-out) 동안은 인증 절차를 종료하지 않고 기존에 진행되었던 인증 절차에 연속하는 후속 데이터 패킷이 수신될 때까지 인증 절차를 잠시 중지할 수 있다.
무선전력 수신장치(1002) 및/또는 무선전력 전송장치(1001)는 일정 시간(Authentication time-out) 내에 후속 데이터 패킷이 감지되면 중지되었던 인증 절차를 연속적으로 이어가고, 일정 시간(Authentication time-out) 내에 후속 데이터 패킷이 감지되지 않으면, 인증 절차를 초기화하고 인증 절차를 다시 시작하거나, 인증 실패로 처리할 수 있다.
이를 위해, 무선전력 수신장치(1002) 및/또는 무선전력 전송장치(1001)는 인증 절차가 중지된 경우, 진행 중이던 인증 절차에서 교환한 데이터 패킷에 대한 정보를 일정 시간(Authentication time-out) 동안 저장할 수 있다. 저장된 정보는 일정 시간(Authentication time-out)이 경과한 이후에는 초기화 될 수 있다.
통신 이상의 감지는 인증 과정에서 무선전력 수신장치(1002) 및/또는 무선전력 전송장치(1001)가 전송하는 에러 패킷의 전송/수신, 무선전력 전송장치(1001)의 기능 이상 감지, 이물질 검출, 통신 에러 상황 발생 등이 기준이 될 수 있다.
상술한 도 13 내지 도 24에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 12에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 12에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 도 13 내지 도 24에 따른 데이터 패킷의 수신/전송, NCYCLES에 기반한 FSK 통신, FSK 통신 속도 변경에 따른 후속 응답 또는 데이터 패킷 전송에 요구되는 타임아웃시간(timeout) 및/또는 전력전송중단시간의 조절, 인증 절차의 수행 및 인증 오류 판단 등은 통신/컨트롤 유닛(120, 710 또는 790)의 동작에 포함된다.
상술한 도 13 내지 도 24에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 12에서 개시된 무선전력 수신 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 12에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 도 13 내지 도 24에 따른 데이터 패킷의 수신/전송, NCYCLES에 기반한 FSK 통신 속도 변경에 따른 후속 응답 또는 데이터 패킷 전송에 요구되는 타임아웃시간(timeout) 및/또는 전력전송중단시간의 조절, 인증 절차의 수행 및 인증 오류 판단 등은 등은 통신/컨트롤 유닛(220, 810 또는 890)의 동작에 포함될 수 있다.
상술한 본 발명의 실시예에 따른 무선 전력 송신 방법 및 장치, 또는 수신 장치 및 방법은 모든 구성요소 또는 단계가 필수적인 것은 아니므로, 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법은 상술한 구성요소 또는 단계의 일부 또는 전부를 포함하여 수행될 수 있다. 또 상술한 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법의 실시예들은 서로 조합되어 수행될 수도 있다. 또 상술한 각 구성요소 또는 단계들은 반드시 설명한 순서대로 수행되어야 하는 것은 아니며, 나중에 설명된 단계가 먼저 설명된 단계에 앞서 수행되는 것도 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 발명의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (16)
- 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치에 있어서,상기 무선전력 수신장치로 상기 무선전력을 전송하는 전력 변환 회로; 및상기 무선전력 수신장치와 통신하고 상기 무선전력을 제어하는 통신/컨트롤 회로;를 포함하고,상기 통신/컨트롤 회로는 타임아웃시간을 기초로 상기 무선전력 수신장치로부터 수신된 수신 데이터 패킷에 대한 응답 또는 상기 무선전력 수신장치로 전송하는 전송 데이터 패킷을 전송하되,상기 타임아웃시간은 상기 통신/컨트롤 회로와 상기 무선전력 수신장치 사이의 통신 속도에 따라 변경되는, 무선전력 전송장치.
- 제1항에 있어서,상기 통신/컨트롤 회로는, 동작 주파수의 변조(modulation)를 이용한 주파수 편이 변조(Frequency Shift Keying: FSK)를 이용해 상기 무선전력 수신장치와 통신하고,하나의 데이터 비트를 표현하는 상기 동작 주파수의 사이클 수에 따라 상기 통신 속도가 결정되며,상기 타임아웃시간은, 상기 통신 속도가 빨라짐에 따라 줄어들고, 상기 통신 속도가 느려짐에 따라 늘어나는, 무선전력 전송장치.
- 제2항에 있어서,상기 타임아웃시간은 상기 사이클 수에 비례하여 변경되는, 무선전력 전송장치.
- 제2항에 있어서,상기 통신/컨트롤 회로는,상기 사이클 수에 대한 정보를 포함하는 요청 패킷을 상기 무선전력 수신장치로부터 수신하고,상기 요청 패킷을 수신한 시간으로부터 제한 시간 내에 상기 요청 패킷에 포함된 상기 사이클 수에 기반한 상기 FSK를 이용해 후속 데이터를 전송하는, 무선전력 전송장치.
- 제2항에 있어서,상기 통신/컨트롤 회로는,상기 하나의 데이터 비트를 표현하는 상기 사이클 수에 대한 정보를 포함하는 요청 패킷을 상기 무선전력 수신장치로부터 수신하고,상기 요청 패킷에 대한 응답을 상기 무선전력 수신장치로 전송하고,상기 요청 패킷에 대한 응답의 전송한 시간으로부터 제한 시간 내에 상기 요청 패킷에 포함된 상기 사이클 수에 기반한 상기 FSK를 이용해 후속 데이터를 전송하는, 무선전력 전송장치.
- 제2항에 있어서,상기 통신/컨트롤 회로는,상기 사이클 수를 기초로 설정된 단위 사이클과 적어도 하나의 단위 사이클로 구성된 유효 사이클을 이용한 사이클 서브-레이트를 기반으로 상기 무선전력 수신장치와 통신하고,상기 무선전력 수신장치로부터, 상기 사이클 수에 대한 정보와 데이터가 교환되는 상기 유효 사이클의 간격에 대한 정보를 포함하는 사이클 서브-레이트 요청 패킷을 수신하고,상기 사이클 서브-레이트 요청 패킷에 포함된 상기 정보들을 기초로 설정된 기준 타이밍에 기초하여 후속 데이터를 전송하는, 무선전력 전송장치.
- 제1항에 있어서,상기 통신/컨트롤 회로는 상기 무선전력을 전송하는 동작 주파수를 이용하는 인밴드 통신과 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드(out-band) 통신 중 적어도 하나를 이용하여 상기 무선전력 수신장치와 통신하며,상기 타임아웃시간은, 상기 인밴드 통신을 통해 상기 응답 또는 상기 전송 데이터 패킷을 전송하는 경우에 비해, 상기 아웃밴드 통신을 통해 상기 응답 또는 상기 전송 데이터 패킷을 전송하는 경우에 더 짧게 설정되는, 무선전력 전송장치.
- 제1항에 있어서,상기 통신/컨트롤 회로는, 상기 무선전력 수신장치로부터 수신한 특정 수신 데이터 패킷을 수신하거나 상기 무선전력 수신장치로 특정 전송 데이터 패킷을 전송한 이후로 전력전송중단시간이 경과함을 기초로 상기 무선전력의 전송을 중단하되,상기 전력전송중단시간은 상기 통신/컨트롤 회로와 상기 무선전력 수신장치 사이의 통신 속도에 따라 변경되는, 무선전력 전송장치.
- 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치에 의한 상기 무선전력 수신장치와의 통신 방법에 있어서,타임아웃시간을 기초로 상기 무선전력 수신장치로부터 수신된 수신 데이터 패킷에 대한 응답 또는 상기 무선전력 수신장치로 전송하는 전송 데이터 패킷을 전송하되,상기 타임아웃시간은 상기 무선전력 전송장치와 상기 무선전력 수신장치 사이의 통신 속도에 따라 변경되는, 방법.
- 제9항에 있어서,상기 무선전력 전송장치는, 동작 주파수의 변조(modulation)를 이용한 주파수 편이 변조(Frequency Shift Keying: FSK)를 이용해 상기 무선전력 수신장치와 통신하고,하나의 데이터 비트를 표현하는 상기 동작 주파수의 사이클 수에 따라 상기 통신 속도가 결정되며,상기 타임아웃시간은, 상기 통신 속도가 빨라짐에 따라 줄어들고, 상기 통신 속도가 느려짐에 따라 늘어나는, 방법.
- 제10항에 있어서,상기 타임아웃시간은 상기 사이클 수에 비례하여 변경되는, 방법.
- 제10항에 있어서,상기 사이클 수에 대한 정보를 포함하는 요청 패킷을 상기 무선전력 수신장치로부터 수신하고,상기 요청 패킷을 수신한 시간으로부터 제한 시간 내에 상기 요청 패킷에 포함된 상기 사이클 수에 기반한 상기 FSK를 이용해 후속 데이터를 전송하는, 방법.
- 제10항에 있어서,상기 하나의 데이터 비트를 표현하는 상기 사이클 수에 대한 정보를 포함하는 요청 패킷을 상기 무선전력 수신장치로부터 수신하고,상기 요청 패킷에 대한 응답을 상기 무선전력 수신장치로 전송하고,상기 요청 패킷에 대한 응답의 전송한 시간으로부터 제한 시간 내에 상기 요청 패킷에 포함된 상기 사이클 수에 기반한 상기 FSK를 이용해 후속 데이터를 전송하는, 방법.
- 제10항에 있어서,상기 사이클 수를 기초로 설정된 단위 사이클과 적어도 하나의 단위 사이클로 구성된 유효 사이클을 이용한 사이클 서브-레이트를 기반으로 상기 무선전력 수신장치와 통신하고,상기 무선전력 수신장치로부터, 상기 사이클 수에 대한 정보와 데이터가 교환되는 상기 유효 사이클의 간격에 대한 정보를 포함하는 사이클 서브-레이트 요청 패킷을 수신하고,상기 사이클 서브-레이트 요청 패킷에 포함된 상기 정보들을 기초로 설정된 기준 타이밍에 기초하여 후속 데이터를 전송하는, 방법.
- 제9항에 있어서,상기 무선전력 전송장치는, 상기 무선전력을 전송하는 동작 주파수를 이용하는 인밴드 통신과 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드(out-band) 통신 중 적어도 하나를 이용하여 상기 무선전력 수신장치와 통신하며,상기 타임아웃시간은, 상기 인밴드 통신을 통해 상기 응답 또는 상기 전송 데이터 패킷을 전송하는 경우에 비해, 상기 아웃밴드 통신을 통해 상기 응답 또는 상기 전송 데이터 패킷을 전송하는 경우에 더 짧게 설정되는, 방법.
- 제9항에 있어서,상기 무선전력 전송장치는, 상기 무선전력 수신장치로부터 수신한 특정 수신 데이터 패킷을 수신하거나 상기 무선전력 수신장치로 특정 전송 데이터 패킷을 전송한 이후로 전력전송중단시간이 경과함을 기초로 상기 무선전력의 전송을 중단하되,상기 전력전송중단시간은 상기 무선전력 전송장치와 상기 무선전력 수신장치 사이의 통신 속도에 따라 변경되는, 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227030788A KR20220148831A (ko) | 2020-03-04 | 2021-03-04 | 무선전력 전송장치 및 무선전력 전송장치에 의한 통신 방법 |
US17/908,463 US12046927B2 (en) | 2020-03-04 | 2021-03-04 | Wireless power transmitting device and communication method by wireless power transmitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200027028 | 2020-03-04 | ||
KR10-2020-0027028 | 2020-03-04 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/908,463 A-371-Of-International US12046927B2 (en) | 2020-03-04 | 2021-03-04 | Wireless power transmitting device and communication method by wireless power transmitting device |
US18/761,129 Continuation US20240356386A1 (en) | 2020-03-04 | 2024-07-01 | Wireless power transmitting device and communication method by wireless power transmitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2021177726A2 true WO2021177726A2 (ko) | 2021-09-10 |
WO2021177726A3 WO2021177726A3 (ko) | 2021-10-28 |
Family
ID=77612766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/002639 WO2021177726A2 (ko) | 2020-03-04 | 2021-03-04 | 무선전력 전송장치 및 무선전력 전송장치에 의한 통신 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12046927B2 (ko) |
KR (1) | KR20220148831A (ko) |
WO (1) | WO2021177726A2 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023136636A1 (ko) * | 2022-01-12 | 2023-07-20 | 엘지전자 주식회사 | 무선 전력 전송 시스템에서 빠른 fsk 통신에 대한 방법 및 장치 |
WO2023158291A1 (ko) * | 2022-02-21 | 2023-08-24 | 엘지전자 주식회사 | 무선 전력 전송 시스템에서 빠른 fsk 통신에 대한 방법 및 장치 |
WO2023204633A1 (ko) * | 2022-04-20 | 2023-10-26 | 엘지전자 주식회사 | 무선 전력 전송 시스템에서 어플리케이션 메시지에 대한 시간 요구 사항에 관한 방법 및 장치 |
EP4319106A4 (en) * | 2021-04-26 | 2024-10-02 | Lg Electronics Inc | DATA TRANSMISSION METHOD AND DEVICE IN A WIRELESS POWER TRANSMISSION SYSTEM |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110103297A (ko) | 2010-03-12 | 2011-09-20 | 삼성전자주식회사 | 무선 전력 충전 방법 및 장치 |
KR101634889B1 (ko) * | 2011-11-22 | 2016-06-29 | 도요타지도샤가부시키가이샤 | 차량용 수전 장치 및 그것을 구비하는 차량, 급전 설비 및 전력 전송 시스템 |
KR102534961B1 (ko) | 2016-05-04 | 2023-05-23 | 삼성전자주식회사 | 무선 전력 송신기 및 무선 전력 수신기와 그 동작 방법 |
KR101989611B1 (ko) | 2017-09-20 | 2019-06-17 | 성균관대학교산학협력단 | 듀얼 모드를 이용한 무선 전력전송장치, 무선 전력수신장치, 무선 전력송신방법, 무선 전력수신방법 및 무선 전력전송시스템과 그 기록 매체 |
WO2019177306A1 (ko) * | 2018-03-12 | 2019-09-19 | 엘지전자 주식회사 | 무선전력 전송 시스템에서 향상된 통신 속도를 지원하는 장치 및 방법 |
KR102607364B1 (ko) | 2018-04-27 | 2023-11-29 | 삼성전자주식회사 | 무선 전력 송신 장치 및 전력을 무선으로 수신하는 전자 장치와 그 동작 방법 |
US11637648B2 (en) * | 2018-09-06 | 2023-04-25 | Lg Electronics Inc. | Apparatus and method for supporting changeable communication speed in wireless power transmission system |
-
2021
- 2021-03-04 KR KR1020227030788A patent/KR20220148831A/ko active Search and Examination
- 2021-03-04 WO PCT/KR2021/002639 patent/WO2021177726A2/ko active Application Filing
- 2021-03-04 US US17/908,463 patent/US12046927B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4319106A4 (en) * | 2021-04-26 | 2024-10-02 | Lg Electronics Inc | DATA TRANSMISSION METHOD AND DEVICE IN A WIRELESS POWER TRANSMISSION SYSTEM |
WO2023136636A1 (ko) * | 2022-01-12 | 2023-07-20 | 엘지전자 주식회사 | 무선 전력 전송 시스템에서 빠른 fsk 통신에 대한 방법 및 장치 |
WO2023158291A1 (ko) * | 2022-02-21 | 2023-08-24 | 엘지전자 주식회사 | 무선 전력 전송 시스템에서 빠른 fsk 통신에 대한 방법 및 장치 |
WO2023204633A1 (ko) * | 2022-04-20 | 2023-10-26 | 엘지전자 주식회사 | 무선 전력 전송 시스템에서 어플리케이션 메시지에 대한 시간 요구 사항에 관한 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
KR20220148831A (ko) | 2022-11-07 |
WO2021177726A3 (ko) | 2021-10-28 |
US20230108910A1 (en) | 2023-04-06 |
US12046927B2 (en) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019208960A1 (ko) | 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 | |
WO2020222528A1 (ko) | 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법 | |
WO2021177726A2 (ko) | 무선전력 전송장치 및 무선전력 전송장치에 의한 통신 방법 | |
WO2020149492A1 (ko) | 멀티 코일을 이용하여 다수의 기기에 무선전력을 전송하는 장치 및 방법 | |
WO2020004940A1 (ko) | 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법 | |
WO2020222415A1 (ko) | 근거리 무선통신을 이용하여 전력 클래스를 협상하는 무선충전 장치, 방법 및 시스템 | |
WO2020085614A1 (ko) | 무선전력 전송 시스템에서 데이터를 전송하는 방법 및 장치 | |
WO2020213958A1 (ko) | 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법 | |
WO2020130265A1 (ko) | 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법 | |
WO2020153586A1 (ko) | 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 | |
WO2021006475A1 (ko) | 무선전력 전송장치 | |
WO2020190109A1 (ko) | 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법 | |
WO2021153815A1 (ko) | 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법 | |
WO2020185051A1 (ko) | 저전력 및 중전력 호환 무선충전 수신 장치 및 방법 | |
WO2021215793A1 (ko) | 무선전력 수신장치 및 무선전력 전송장치 | |
WO2021235909A1 (ko) | 무선전력 전송장치, 무선전력 전송장치에 의한 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신장치에 의한 무선전력 수신방법 | |
WO2021230703A1 (ko) | 무선전력 수신장치 및 무선전력 수신장치에 의한 통신 방법 | |
WO2021010696A1 (ko) | 무선전력 전송장치와 무선전력 수신장치 사이의 상호 인증 및 재인증 방법 및 이를 이용한 무선전력 전송장치와 무선전력 수신장치 | |
WO2020218800A1 (ko) | 펌웨어를 업데이트하는 무선충전 장치, 방법 및 시스템 | |
WO2022164271A1 (ko) | 무선 전력 전송 시스템에서 블루투스 및 인-밴드 통신을 통한 장치 연결 방법 및 장치 | |
WO2022050732A1 (ko) | 무선전력 전송장치, 무선전력 수신장치, 무선전력 전송장치에 의한 통신 방법 및 무선전력 수신장치에 의한 통신 방법 | |
WO2022098156A1 (ko) | Ble를 이용한 무선 충전 시스템에서 사용자 프라이버시 보호 방법 및 장치 | |
WO2022203343A1 (ko) | 무선 전력 전송 시스템에서 pwm에 기반한 통신 품질 향상 방법 및 장치 | |
WO2022045863A1 (ko) | 무선전력 전송장치 및 무선전력 수신장치 | |
WO2021215832A1 (ko) | 무선전력 수신장치 및 무선전력 전송장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21764046 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21764046 Country of ref document: EP Kind code of ref document: A2 |