WO2020153586A1 - 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 - Google Patents
무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 Download PDFInfo
- Publication number
- WO2020153586A1 WO2020153586A1 PCT/KR2019/015332 KR2019015332W WO2020153586A1 WO 2020153586 A1 WO2020153586 A1 WO 2020153586A1 KR 2019015332 W KR2019015332 W KR 2019015332W WO 2020153586 A1 WO2020153586 A1 WO 2020153586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless power
- address
- communication
- random address
- packet
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 338
- 238000000034 method Methods 0.000 title claims abstract description 217
- 238000012546 transfer Methods 0.000 title claims abstract description 38
- 230000008878 coupling Effects 0.000 claims abstract description 15
- 238000010168 coupling process Methods 0.000 claims abstract description 15
- 238000005859 coupling reaction Methods 0.000 claims abstract description 15
- 230000005540 biological transmission Effects 0.000 claims description 222
- 230000008569 process Effects 0.000 claims description 49
- 230000004044 response Effects 0.000 claims description 44
- 230000000977 initiatory effect Effects 0.000 claims description 29
- 238000001914 filtration Methods 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 claims description 5
- 125000004122 cyclic group Chemical group 0.000 claims description 2
- 108091006146 Channels Proteins 0.000 description 50
- 238000010586 diagram Methods 0.000 description 22
- 230000006870 function Effects 0.000 description 13
- 230000006698 induction Effects 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 230000003068 static effect Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 230000007704 transition Effects 0.000 description 10
- 239000003990 capacitor Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000012937 correction Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 239000003999 initiator Substances 0.000 description 5
- 238000009774 resonance method Methods 0.000 description 5
- 230000006978 adaptation Effects 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000001646 magnetic resonance method Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009440 infrastructure construction Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00034—Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00045—Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
Definitions
- the present invention relates to a wireless power transmission system, and more particularly, to an apparatus and method for supporting heterogeneous communication in a wireless power transmission system.
- Wireless power transmission technology is a technology that wirelessly transfers power between a power source and an electronic device.
- the wireless power transmission technology allows a battery of a wireless terminal to be charged simply by placing a wireless terminal such as a smartphone or tablet on a wireless charging pad, and thus, compared to a wired charging environment using a conventional wired charging connector. It can provide excellent mobility, convenience and safety.
- wireless power transmission technology is used in various fields such as electric vehicles, Bluetooth earphones or 3D glasses, wearable devices, household appliances, furniture, underground facilities, buildings, medical devices, robots, and leisure. It is attracting attention to replace the existing wired power transmission environment.
- the wireless power transmission method is also referred to as a contactless power transmission method, a no point of contact power transmission method, or a wireless charging method.
- the wireless power transmission system includes a wireless power transmission device that supplies electrical energy through a wireless power transmission method, and a wireless power reception device that receives electrical energy supplied wirelessly from the wireless power transmission device and supplies power to a power receiving device such as a battery cell. It can be configured as a device.
- Wireless power transmission technology is a method of transmitting power through magnetic coupling, a method of transmitting power through radio frequency (RF), a method of transferring power through microwaves, and ultrasonic waves.
- the method based on magnetic coupling is further classified into a magnetic induction method and a magnetic resonance method.
- the magnetic induction method is a method of transmitting energy using a current induced in the coil of the receiving side due to the magnetic field generated by the coil battery cell of the transmitting side according to electromagnetic coupling between the coil of the transmitting side and the coil of the receiving side.
- the magnetic resonance method is similar to the magnetic induction method in that it uses a magnetic field.
- communication between a wireless power transmitter and a receiver generally uses an amplitude shift keying (ASK) using a magnetic field change or a frequency shift keying (FSK) using a frequency change.
- ASK amplitude shift keying
- FSK frequency shift keying
- the technical problem of the present invention is to provide an apparatus and method for supporting heterogeneous communication in a wireless power transmission system.
- Another technical problem of the present invention is to provide an apparatus and method for performing handover between heterogeneous communication methods in a wireless power transmission system.
- Another technical problem of the present invention is to provide an advertising device and method for switching a communication method in a wireless charging system.
- Another technical problem of the present invention is to provide a packet structure and a procedure for supporting heterogeneous communication methods in a wireless power transmission system.
- a wireless power receiving apparatus supporting heterogeneous communication for achieving the above object, the wireless by magnetic coupling (magnetic coupling) with a wireless power transmitter at an operating frequency (operating frequency)
- a power pick-up circuit configured to receive wireless power from a power transmission device and convert an AC signal generated by the wireless power into a DC signal, receives the DC signal from the power pickup circuit
- a communication/control circuit configured to perform communication with a wireless power transmission device and a load configured to receive the DC signal from the power pickup circuit, wherein the communication/control circuit uses an in-band using the operating frequency (in -band) and at least one of out-band communication using a frequency other than the operating frequency communicates with the wireless power transmission device, and the communication/control circuit communicates with the wireless through the in-band communication.
- a first random address packet including a random address of the power receiving device is transmitted to the wireless power transmitter, or a second random address packet including a random address of the wireless power transmitter is transmitted from the wireless power transmitter.
- the random address of the wireless power receiver or the wireless power transmitter may be updated for every out-band connection.
- the procedure of transmitting the first random address packet is performed by transmitting the first random address packet to the wireless power transmission device and receiving a response packet corresponding to the reception of the first random address packet from the wireless power transmission device. However, if the response packet is not received for a critical time after transmitting the first random address packet, the first random address packet may be retransmitted to the wireless power transmitter without performing the handover procedure. .
- the first random address packet or the second random address packet may have a structure including a 6-byte random address field.
- the communication/control circuit includes an in-band communication module and an out-band communication module, but when the handover procedure is completed, the out-band communication module includes an arbitrary address of the wireless power receiving device and any of the wireless power transmitting device.
- a pairing procedure for out-band connection with a wireless power transmission device may be performed using at least one of the addresses.
- an advertising packet including an address of an advertiser is transmitted to or received from the wireless power transmitter, but the advertiser is the The wireless power transmission device or the wireless power reception device, and the address of the advertiser may include an arbitrary address.
- the out-band communication module After receiving the advertising packet, the out-band communication module performs an initiating connection, but in the connection initiation process, receives the advertising packet and communicates with the wireless power transmitter. Requesting a connection, wherein, when requesting a connection with the wireless power transmitter, a frequency hopping channel map so that the wireless power transmitter is synchronized to a frequency hopping sequence of the wireless power receiver Information can be included and transmitted.
- the advertising procedure and the connection initiation procedure may be performed through a link layer.
- the advertising packet consists of a preamble, an access address field, a packet data unit (PDU) field, and a cyclic redundancy check (CRC), and the PDU field includes a header and a payload ( payload), the header includes advertising type information, and the payload may include the address of the advertiser.
- PDU packet data unit
- CRC cyclic redundancy check
- the advertising type information is set as a connectable non-directional advertisement event (ADV_DIRECT_IND), and the pay The load includes the address of the advertiser and the target device, and (ii) when the address between the wireless power receiver and the wireless power transmitter is not known through the in-band communication, the ad Vertizing type information is set as a connectable non-directional advertisement event (ADV_IND), and the payload may include the address of the advertiser.
- device fitting is performed based on a white list, but the white list may be a certain set of devices.
- the white list may be updated based on an arbitrary address.
- the device filtering may be performed in at least one of an advertising procedure, a scanning procedure, and a connection initiation procedure.
- the link layer of the wireless power receiving device processes scan and connection requests, but (i) processes only scan and connection requests from devices included in the white list, or (ii) all devices. Process scan requests from, but for connection requests, process only connection requests from devices included in the white list, or (iii) process connection requests from all devices, but for scan requests, the white list Only scan requests from the devices included in can be processed.
- the link layer of the wireless power receiver may process only advertising packets from devices included in the white list.
- the communication/control circuit includes an in-band communication module and an out-band communication module.
- the in-band communication module receives the second random address packet, the in-band communication module is configured to transmit the wireless power transmission device.
- An arbitrary address may be transmitted to the out-band communication module, and the out-band communication module may update the white list using an arbitrary address of the wireless power transmitter.
- the out-band communication module may transmit a response packet to the wireless power transmission device only when the wireless power transmission device is included in the white list using an arbitrary address of the wireless power transmission device.
- a method of performing heterogeneous communication by a power receiving device includes, in an identification and setting phase, a first random address packet including a random address of the wireless power receiving device through in-band communication using the operating frequency. Receiving a second random address packet from the wireless power transmission device to transmit to the wireless power transmission device or including a random address of the wireless power transmission device, before entering the power transfer phase (power transfer phase), the wireless Performing a handover procedure to an outband using a frequency other than the operating frequency by using at least one of a random address of the power receiver and a random address of the wireless power transmitter and in the power transfer phase. And, it may include the step of receiving the wireless power.
- a wireless power transmission device supporting heterogeneous communication, the wireless by magnetic coupling (magnetic coupling) with a wireless power receiving device at an operating frequency (operating frequency)
- a power conversion circuit that transmits wireless power to a power receiving device and an in-band communication using the operating frequency and an out-band communication using a frequency other than the operating frequency
- the communication/control circuit is configured to transmit a first random address packet including a random address of the wireless power transmitter through the in-band communication to the wireless power receiver.
- a second random address packet including a random address of the wireless power receiving device from the wireless power receiving device wherein the communication/control circuit comprises: a power transmission phase in which the power converting circuit transmits the wireless power. Before entering the (power transfer phase), it is configured to perform a handover (handover) procedure to the out-band, using at least one of the random address of the wireless power transmitter and the random address of the wireless power receiver. Can be.
- the method of performing the heterogeneous communication by the power transmission device includes, in an identification and setting phase, a first random address packet including a random address of the wireless power transmission device through in-band communication using the operating frequency.
- the wireless Receiving a second random address packet from the wireless power receiving device to the wireless power receiving device or including a random address of the wireless power receiving device, before entering the power transfer phase (power transfer phase), the wireless Performing a handover procedure to an outband using a frequency other than the operating frequency using at least one of a random address of the power transmission device and a random address of the wireless power receiving device, and in the power transmission phase And, it may include the step of transmitting the wireless power.
- the wireless charging system by performing a handover using a random address (Random Address), there is an effect of preventing cross reference and enhancing security. Accordingly, the wireless charging system has the effect of performing the BLE connection more safely.
- Random Address Random Address
- FIG. 1 is a block diagram of a wireless power system according to an embodiment.
- FIG. 2 is a block diagram of a wireless power system according to another embodiment.
- 3A shows an embodiment of various electronic devices in which a wireless power transmission system is introduced.
- 3B shows an example of a WPC NDEF in a wireless power transmission system.
- 4A is a block diagram of a wireless power transmission system according to another embodiment.
- 4B is a conceptual diagram illustrating an example of a Bluetooth communication architecture to which the present invention can be applied.
- 4C is a block diagram illustrating a wireless power transmission system using BLE communication according to an example.
- 4D is a block diagram illustrating a wireless power transmission system using BLE communication according to another example.
- 5 is a state transition diagram for explaining a wireless power transmission procedure.
- FIG. 6 illustrates a power control control method according to an embodiment.
- FIG. 7 is a block diagram of a wireless power transmission apparatus according to another embodiment.
- FIG. 8 shows a wireless power receiving apparatus according to another embodiment.
- FIG. 9 shows a communication frame structure according to an embodiment.
- FIG. 10 is a structure of a sink pattern according to an embodiment.
- 11 is a diagram illustrating an operation state of a wireless power transmitter and a wireless power receiver in a shared mode according to an embodiment.
- FIG. 12 is a flowchart illustrating a BLE connection procedure between a wireless power transmitter and a wireless power receiver according to an embodiment.
- FIGS. 13A and 13B are flowcharts illustrating a BLE connection procedure through transmission and reception of a random address of a wireless power receiver and a wireless power transmitter according to an embodiment.
- FIG. 14 is a conceptual diagram showing a communication packet structure including a random address according to the present embodiment.
- 15 is a flowchart illustrating a BLE pairing process between a wireless power transmitter and a wireless power receiver according to this embodiment.
- 16 is a conceptual diagram illustrating a packet structure exchanged in the BLE pairing process according to the present embodiment.
- 17 is a conceptual diagram illustrating a structure of a PDU portion of a packet exchanged in the BLE pairing process according to the present embodiment.
- FIG. 18 is an operation flowchart of performing a BLE connection based on a white list between a wireless power transmitter and a receiver according to an example.
- 19 is a flowchart illustrating an operation of performing a BLE connection based on a white list between a wireless power transmitter and a receiver according to another example.
- 20 is an operation flowchart of performing a BLE connection based on a white list between a wireless power transmitter and a receiver according to another example.
- wireless power used hereinafter is any form related to an electric field, a magnetic field, an electromagnetic field, etc. transmitted from a wireless power transmitter to a wireless power receiver without the use of physical electromagnetic conductors. It is used to mean the energy of. Wireless power may be called a wireless power signal, and may mean an oscillating magnetic flux enclosed by the primary coil and the secondary coil. Power conversion in the system is described herein to wirelessly charge devices including, for example, mobile phones, cordless phones, iPods, MP3 players, headsets, and the like. In general, the basic principles of wireless power transmission include, for example, a method of delivering power through magnetic coupling, a method of delivering power through radio frequency (RF), and microwaves. ), and a method of transmitting power through ultrasonic waves.
- RF radio frequency
- FIG. 1 is a block diagram of a wireless power system according to an embodiment.
- the wireless power system 10 includes a wireless power transmission device 100 and a wireless power reception device 200.
- the wireless power transmission apparatus 100 receives power from an external power source S to generate a magnetic field.
- the wireless power receiving apparatus 200 receives electric power wirelessly by generating a current using the generated magnetic field.
- the wireless power transmission device 100 and the wireless power reception device 200 may transmit and receive various information necessary for wireless power transmission.
- the communication between the wireless power transmission device 100 and the wireless power reception device 200 is in-band communication using a magnetic field used for wireless power transmission or out-band communication using a separate communication carrier. It can be performed according to any one of (out-band communication).
- Out-band communication may also be referred to as out-of-band communication.
- terms are uniformly described through out-band communication. Examples of the out-band communication may include NFC, Bluetooth (Bluetooth), Bluetooth low energy (BLE), and the like.
- the wireless power transmission apparatus 100 may be provided as a fixed or mobile type.
- the fixed type include a type embedded in furniture such as an indoor ceiling or a wall or a table, an outdoor parking lot, a type installed in an implantation form at a bus stop or subway station, or a type installed in a vehicle or train. There is this.
- the portable wireless power transmission device 100 may be implemented as a part of another device, such as a portable device having a movable weight or size or a cover of a notebook computer.
- the wireless power receiving device 200 should be interpreted as a comprehensive concept including various electronic devices having a battery and various household appliances that are powered by wireless power instead of power cables.
- Representative examples of the wireless power receiving device 200 include a portable terminal, a cellular phone, a smart phone, a personal digital assistant (PDA), and a portable media player (PMP).
- Portable Media Player Portable Media Player
- Wibro terminal a tablet, a phablet, a notebook, a digital camera, a navigation terminal, a television, and an electronic vehicle (EV).
- the wireless power receiving apparatus 200 may be one or more.
- the wireless power transmission device 100 and the wireless power reception device 200 are represented as exchanging power one-to-one, but as illustrated in FIG. 2, one wireless power transmission device 100 includes a plurality of wireless power reception devices It is also possible to transfer power to (200-1, 200-2,..., 200-M).
- one wireless power transmission device 100 applies a simultaneous transmission method or a time division transmission method to simultaneously apply multiple wireless power reception devices 200-1, 200-2, ...,200-M).
- FIG. 1 shows a state in which the wireless power transmission device 100 directly transmits power to the wireless power reception device 200
- wireless communication between the wireless power transmission device 100 and the wireless power reception device 200 is shown.
- a separate wireless power transmission/reception device such as a relay or repeater for increasing the power transmission distance may be provided. In this case, power is transmitted from the wireless power transmission device 100 to the wireless power transmission/reception device, and the wireless power transmission/reception device may transmit power to the wireless power reception device 200 again.
- the wireless power receiver, the power receiver, and the receiver referred to in this specification refer to the wireless power receiving device 200.
- the wireless power transmitter, the power transmitter, and the transmitter referred to herein refer to the wireless power receiving and transmitting device 100.
- 3A shows an embodiment of various electronic devices in which a wireless power transmission system is introduced.
- 3A shows electronic devices classified according to the amount of power transmitted and received in the wireless power transmission system.
- wearable devices such as a smart watch, a smart glass, a head mounted display (HMD), and a smart ring and earphones, a remote control, a smartphone, a PDA, and a tablet
- a small power (about 5 W or less or about 20 W or less) wireless charging method may be applied to mobile electronic devices such as PCs (or portable electronic devices).
- Medium/small-sized household appliances such as laptops, robot cleaners, TVs, sound equipment, vacuum cleaners, and monitors may be applied with a medium power (about 50W or less or about 200W) wireless charging method.
- Personal mobile devices such as blenders, microwave ovens, kitchen appliances such as electric rice cookers, wheelchairs, electric kickboards, electric bicycles, and electric vehicles have high power (approximately 2 kW or less or 22 kW or less).
- Wireless charging may be applied.
- the above-described (or shown in FIG. 1) electronic devices/mobile means may each include a wireless power receiver described later. Accordingly, the above-mentioned electronic devices/mobile means can be charged by receiving power wirelessly from the wireless power transmitter.
- WPC wireless power consortium
- AFA air fuel alliance
- PMA power matters alliance
- the WPC standard defines a baseline power profile (BPP) and an extended power profile (EPP).
- BPP relates to a wireless power transmitter and receiver supporting 5W power transmission
- EPP relates to a wireless power transmitter and receiver supporting power transmission in a range greater than 5W and smaller than 30W.
- WPC classifies wireless power transmitters and receivers into power class (PC) -1, PC0, PC1, and PC2, and provides standard documents for each PC.
- PC power class
- the PC-1 standard relates to wireless power transmitters and receivers that provide less than 5W of guaranteed power.
- the application of PC-1 includes a wearable device such as a smart watch.
- the PC0 standard relates to a wireless power transmitter and receiver that provide 5W guaranteed power.
- the PC0 standard includes EPP with guaranteed power up to 30W.
- In-band (IB) communication is a mandatory communication protocol of PC0, but out-band (OB) communication used as an optional backup channel can also be used.
- the wireless power receiver can identify whether OB is supported by setting the OB flag in a configuration packet.
- a wireless power transmitter supporting OB may enter the OB handover phase by transmitting a bit-pattern for OB handover in response to the configuration packet.
- the response to the configuration packet may be NAK, ND, or a newly defined 8-bit pattern.
- the application of PC0 includes a smartphone.
- the PC1 standard relates to wireless power transmitters and receivers that provide guaranteed power from 30W to 150W.
- OB is an essential communication channel for PC1
- IB is used as initialization and link establishment to OB.
- the wireless power transmitter may enter the OB handover phase using a bit pattern for OB handover in response to the configuration packet.
- Applications for PC1 include laptops or power tools.
- the PC2 standard relates to a wireless power transmission and reception device that provides a guaranteed power of 200W to 2kW, and its application includes kitchen appliances.
- PCs may be distinguished according to power levels, and whether to support the same compatibility between PCs may be optional or mandatory.
- compatibility between the same PCs means that power transmission and reception between the same PCs is possible.
- a wireless power transmitter that is PC x can charge a wireless power receiver having the same PC x
- compatibility between different PCs may also be supported.
- the compatibility between different PCs means that power transmission and reception between different PCs is possible.
- a wireless power transmitter that is PC x can charge a wireless power receiver having PC y, it can be considered that compatibility between different PCs is maintained.
- a lap-top charging wireless power receiver capable of stably charging only when power is continuously transmitted is a wireless power transmitter of the same PC.
- a wireless power transmitter of the same PC for example, a wireless power transmitter with a minimum guaranteed power of 200W transmits power to a wireless power receiver with a maximum guaranteed power of 5W, and the wireless power receiver There is a risk of damage.
- Wireless power transmission and reception devices can provide a very convenient user experience and interface (UX/UI). That is, a smart wireless charging service may be provided, and the smart wireless charging service may be implemented based on a UX/UI of a smart phone including a wireless power transmission device. For this application, the interface between the smartphone's processor and the wireless charging receiver allows for "drop and play" two-way communication between the wireless power transmitter and receiver.
- UX/UI user experience and interface
- a user may experience a smart wireless charging service at a hotel.
- the wireless charger transmits wireless power to the smartphone, and the smartphone receives wireless power.
- the wireless charger transmits information about the smart wireless charging service to the smartphone.
- the smartphone agrees to the user as an additional feature ( opt-in).
- the smartphone can display a message on the screen in a manner with or without an alarm sound.
- An example of the message may include the phrase "Welcome to ### hotel.Select "Yes” to activate smart charging functions: Yes
- the smartphone receives input from a user who selects Yes or No Thanks, and performs the next procedure selected by the user. If Yes is selected, the smartphone transmits the information to the wireless charger. And the smart phone and wireless charger perform the smart charging function together.
- the smart wireless charging service may also include receiving WiFi credentials auto-filled.
- the wireless charger transmits the WiFi qualification to the smartphone, and the smartphone automatically enters the WiFi qualification received from the wireless charger by running the appropriate app.
- the smart wireless charging service may also include executing a hotel application that provides hotel promotions, or obtaining remote check-in/check-out and contact information.
- a user may experience a smart wireless charging service in a vehicle.
- the wireless charger transmits wireless power to the smartphone, and the smartphone receives wireless power.
- the wireless charger transmits information about the smart wireless charging service to the smartphone.
- the smart phone detects that it is located on the wireless charger, detects the reception of wireless power, or the smart phone receives information about the smart wireless charging service from the wireless charger, the smartphone prompts the user to confirm identity. Enter the inquiry state.
- the smartphone is automatically connected to the vehicle via WiFi and/or Bluetooth.
- the smartphone may display a message on the screen in a manner with or without an alarm sound.
- An example of a message may include the phrase "Welcome to your car. Select "Yes" to synch device with in-car controls: Yes
- the smartphone receives input from a user who selects Yes or No Thanks, and performs the next procedure selected by the user. If Yes is selected, the smartphone transmits the information to the wireless charger.
- the smart phone and the wireless charger run the in-vehicle application/display software, so that the in-vehicle smart control function can be performed together. The user can enjoy the desired music and check the regular map location.
- In-vehicle application/display software may include the ability to provide synchronous access for passers-by.
- a user may experience smart wireless charging at home.
- the wireless charger transmits wireless power to the smartphone, and the smartphone receives wireless power.
- the wireless charger transmits information about the smart wireless charging service to the smartphone.
- the smartphone agrees to the user as an additional feature ( opt-in).
- the smartphone can display a message on the screen in a manner with or without an alarm sound.
- An example of the message may include the phrase "Hi xxx, Would you like to activate night mode and secure the building?: Yes
- the smartphone receives input from a user who selects Yes or No Thanks, and performs the next procedure selected by the user. If Yes is selected, the smartphone transmits the information to the wireless charger. Smartphones and wireless chargers can at least recognize the user's pattern and invite the user to lock doors and windows, turn off lights, or set alarms.
- a'profile' will be newly defined as an index/reference that represents/indicates compatibility. That is, it can be interpreted that power transmission/reception is not possible between wireless power transmission/reception devices having the same “profile,” since compatibility is maintained, and stable power transmission/reception is possible.
- the profile may be defined depending on whether the power class is compatible (or independently) and/or application.
- the profiles can be broadly divided into i) mobile and computing, ii) power tools, and iii) kitchens.
- the profile can be largely divided into four types: i) mobile, ii) electric tool, iii) kitchen and iv) wearable.
- the PC can be defined as PC0 and/or PC1
- the communication protocol/method is IB and OB
- the operating frequency is 87 to 205 kHz.
- Examples of the application include a smartphone, a laptop, and a laptop. Can.
- the PC can be defined as PC1
- the communication protocol/method is IB
- the operating frequency can be defined as 87 to 145 kHz.
- An example of the application may include a power tool.
- the PC may be defined as PC2
- the communication protocol/method is NFC-based
- the operating frequency may be defined as less than 100kHz
- examples of the application may include a kitchen/home appliance.
- NFC communication may be used between the wireless power transmitter and receiver.
- the wireless power transmitter and receiver can confirm that they are NFC devices with each other by exchanging WPC NDEF (NFC Data Exchange Profile Format).
- WPC NDEF NFC Data Exchange Profile Format
- the WPC NDEF may include an application profile field (eg 1B), a version field (eg 1B), and profile specific data (eg 1B) as shown in FIG. 3B.
- the application profile field indicates whether the device is i) mobile and computing, ii) a power tool, and iii) a kitchen, and an upper nibble in the version field indicates a major version and a lower nibble. (lower nibble) indicates a minor version.
- the profile-specific data defines the content for the kitchen.
- the PC may be defined as PC-1
- the communication protocol/method as IB the operating frequency may be defined as 87 to 205 kHz.
- Examples of the application may include wearable devices worn on the user's body.
- Maintaining compatibility between the same profiles may be mandatory, and maintaining compatibility between different profiles may be optional.
- profiles may be generalized and expressed as first to nth profiles, and new profiles may be added/replaced according to WPC standards and embodiments.
- the wireless power transmission device selectively transmits power only to the wireless power receiving device of the same profile as itself, thereby enabling more stable power transmission.
- the burden on the wireless power transmitter is reduced and power transmission to the incompatible wireless power receiver is not attempted, the risk of damage to the wireless power receiver is reduced.
- PC1 in the'mobile' profile can be defined by borrowing an optional extension such as OB based on PC0, and in the case of the'powered tools' profile, the PC1'mobile' profile can be defined simply as a modified version.
- OB optional extension
- the technology may be developed in the direction of maintaining compatibility between different profiles.
- the wireless power transmitter or the wireless power receiver may inform the other party of his/her profile through various methods.
- a wireless power transmitting device is called a power transmitting circuit (PTU)
- a wireless power receiving device is called a power receiving circuit (PRU)
- the PTU is classified into a number of classes as shown in Table 1, and the PRU is as shown in Table 2. It is classified into multiple categories.
- P TX_IN_MAX Minimum category support requirements Minimum value for the maximum number of devices supported Class 1 2W 1x Category 1 1x Category 1 Class 2 10W 1x Category 3 2x Category 2 Class 3 16W 1x Category 4 2x Category 3 Class 4 33W 1x Category 5 3x Category 3 Class 5 50 W 1x Category 6 4x Category 3 Class 6 70 W 1x Category 7 5x Category 3
- the maximum output power capability (capability) of the class n PTU is greater than or equal to the value of P TX_IN_MAX of the corresponding class.
- the PRU cannot draw more power than is specified in that category.
- 4A is a block diagram of a wireless power transmission system according to another embodiment.
- the wireless power transmission system 10 includes a mobile device 450 that receives power wirelessly and a base station 400 that wirelessly transmits power.
- the base station 400 is a device that provides induction power or resonant power, and may include at least one wireless power transmitter (100) and a system circuit (405).
- the wireless power transmitter 100 may transmit induction power or resonant power, and control transmission.
- the wireless power transmitter 100 transmits power to a power conversion circuit 110 that converts electrical energy into a power signal by generating a magnetic field through a primary coil(s) and an appropriate level.
- a communication / control circuit (communications & control circuit, 120) for controlling the communication and power transmission with the wireless power receiver 200.
- the system circuit 405 may perform other operation control of the base station 400 such as input power provisioning, control of a plurality of wireless power transmitters, and user interface control.
- the primary coil may generate an electromagnetic field using alternating current power (or voltage or current).
- the primary coil may receive AC power (or voltage or current) of a specific frequency output from the power conversion circuit 110, thereby generating a magnetic field of a specific frequency.
- the magnetic field may be generated in a non-radiation type or a radiation type, and the wireless power receiving device 200 receives this to generate a current. In other words, the primary coil is to transmit power wirelessly.
- the primary coil and the secondary coil may have any suitable shapes, and may be copper wire wound around high permeability formations, such as ferrite or amorphous metal.
- the primary coil may also be called a transmitting coil, a primary core, a primary winding, a primary loop antenna, and the like.
- the secondary coil may be called a receiving coil, a secondary core, a secondary winding, a secondary loop antenna, or a pickup antenna. .
- the primary coil and the secondary coil may be provided in the form of a primary resonant antenna and a secondary resonant antenna, respectively.
- the resonant antenna may have a resonant structure including a coil and a capacitor.
- the resonance frequency of the resonant antenna is determined by the inductance of the coil and the capacitance of the capacitor.
- the coil may be formed in the form of a loop.
- a core may be disposed inside the roof.
- the core may include a physical core such as a ferrite core or an air core.
- Energy transmission between the primary resonant antenna and the secondary resonant antenna may be achieved through a resonance phenomenon of a magnetic field.
- Resonant phenomenon refers to a phenomenon in which high-efficiency energy transfer occurs between two resonant antennas when two resonant antennas are coupled to each other when adjacent resonant antennas are located when a near field corresponding to the resonant frequency occurs in one resonant antenna .
- the primary and secondary resonant antennas When a magnetic field corresponding to a resonance frequency occurs between the primary and secondary resonant antenna antennas, a phenomenon occurs in which the primary and secondary resonant antennas resonate with each other, and accordingly, in the general case, the primary resonant antenna The magnetic field is focused toward the secondary resonant antenna with higher efficiency than when the magnetic field is radiated into the free space, and thus energy can be transferred from the primary resonant antenna to the secondary resonant antenna with high efficiency.
- the magnetic induction method may be implemented similarly to the magnetic resonance method, but at this time, the frequency of the magnetic field need not be the resonance frequency. Instead, in the magnetic induction method, matching between the loops constituting the primary coil and the secondary coil is required, and the gap between the loops must be very close.
- the wireless power transmitter 100 may further include a communication antenna.
- the communication antenna may transmit and receive communication signals using communication carriers other than magnetic field communication.
- the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication/control circuit 120 may transmit and receive information with the wireless power receiving device 200.
- the communication/control circuit 120 may include at least one of an IB communication module or an OB communication module.
- the IB communication module can transmit and receive information using a magnetic wave having a specific frequency as a center frequency.
- the communication/control circuit 120 performs in-band communication by transmitting communication information on the operating frequency of wireless power transmission through the primary coil or receiving the operating frequency containing the information through the primary coil. can do.
- modulation methods such as binary phase shift keying (BPSK) or amplitude shift keying (BPK) and Manchester coding or non-return-to-zero (NZR-L) level
- Coding methods such as coding can be used to store information on magnetic waves or to interpret magnetic waves containing information.
- BPSK binary phase shift keying
- BPK amplitude shift keying
- NZR-L non-return-to-zero
- Coding methods such as coding can be used to store information on magnetic waves or to interpret magnetic waves containing information.
- the communication/control circuit 120 can transmit and receive information up to a distance of several meters at a data rate of several kbps.
- the OB communication module may perform out-band communication through a communication antenna.
- the communication/control circuit 120 may be provided as a short-range communication module.
- Examples of the short-range communication module include a communication module such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, NFC.
- the communication/control circuit 120 may control the overall operation of the wireless power transmission device 100.
- the communication/control circuit 120 may perform various information calculation and processing, and control each component of the wireless power transmission apparatus 100.
- the communication/control circuit 120 may be implemented as a computer or similar device using hardware, software, or a combination thereof.
- the communication/control circuit 120 may be provided in the form of an electronic circuit that processes an electrical signal and performs a control function.
- software in the form of a program that drives the hardware communication/control circuit 120. Can be provided.
- the communication/control circuit 120 may control transmission power by controlling an operating point.
- the controlling operation point may correspond to a combination of frequency (or phase), duty cycle, duty ratio and voltage amplitude.
- the communication/control circuit 120 may control transmission power by adjusting at least one of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
- the wireless power transmitter 100 supplies constant power
- the wireless power receiver 200 may control the received power by controlling the resonance frequency.
- the mobile device 450 receives and stores the power received from the wireless power receiving device (power receiver, 200) and the wireless power receiving device 200 that receives wireless power through a secondary coil (Secondary Coil) and stores the device It includes the load (load, 455) supplied to the.
- the wireless power receiving device power receiver, 200
- the wireless power receiving device 200 that receives wireless power through a secondary coil (Secondary Coil) and stores the device It includes the load (load, 455) supplied to the.
- the wireless power receiver 200 may include a power pick-up circuit (210) and a communication/control circuit (communications & control circuit) 220.
- the power pickup circuit 210 may receive wireless power through the secondary coil and convert it into electrical energy.
- the power pickup circuit 210 rectifies the AC signal obtained through the secondary coil and converts it into a DC signal.
- the communication/control circuit 220 may control transmission and reception of wireless power (power transmission and reception).
- the secondary coil may receive wireless power transmitted from the wireless power transmission device 100.
- the secondary coil may receive power using a magnetic field generated by the primary coil.
- a specific frequency is a resonance frequency
- a self-resonance phenomenon occurs between the primary coil and the secondary coil, so that power can be efficiently transmitted.
- the communication/control circuit 220 may further include a communication antenna.
- the communication antenna may transmit and receive communication signals using communication carriers other than magnetic field communication.
- the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
- the communication/control circuit 220 may transmit and receive information with the wireless power transmission device 100.
- the communication/control circuit 220 may include at least one of an IB communication module or an OB communication module.
- the IB communication module can transmit and receive information using a magnetic wave having a specific frequency as a center frequency.
- the communication/control circuit 220 may perform IB communication by loading information on a magnetic wave through a secondary coil or receiving a magnetic wave containing information through a secondary coil.
- modulation methods such as binary phase shift keying (BPSK) or amplitude shift keying (BPK) and Manchester coding or non-return-to-zero (NZR-L) level
- Coding methods such as coding can be used to store information on magnetic waves or to interpret magnetic waves containing information.
- BPSK binary phase shift keying
- BPK amplitude shift keying
- NZR-L non-return-to-zero
- the OB communication module may perform out-band communication through a communication antenna.
- the communication/control circuit 220 may be provided as a short-range communication module.
- Examples of the short-range communication module include a communication module such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, NFC.
- the communication/control circuit 220 may control the overall operation of the wireless power receiving device 200.
- the communication/control circuit 220 may perform various information calculation and processing, and control each component of the wireless power receiving device 200.
- the communication/control circuit 220 may be implemented as a computer or similar device using hardware, software, or a combination thereof.
- the communication/control circuit 220 may be provided in the form of an electronic circuit that processes an electrical signal and performs a control function.
- the communication/control circuit 220 in the form of a program that drives the hardware communication/control circuit 220. Can be provided.
- the communication/control circuit 120 and the communication/control circuit 220 are Bluetooth or Bluetooth LE as an OB communication module or a short-range communication module
- the communication/control circuit 120 and the communication/control circuit 220 are respectively shown in FIG. 4B. It can be implemented and operated with the same communication architecture.
- 4B is a diagram illustrating an example of a Bluetooth communication architecture to which the present invention can be applied.
- FIG. 4B (a) shows an example of a protocol stack of Bluetooth Basic Rate (BR)/Enhanced Data Rate (EDR) supporting GATT, and (b) of Bluetooth Low Energy (LE).
- BR Basic Rate
- EDR Enhanced Data Rate
- LE Bluetooth Low Energy
- the Bluetooth BR/EDR protocol stack is based on the host controller interface (Host Controller Interface, HCI, 18), the upper controller stack (Controller stack, 460) and the lower It may include a host stack (Host Stack, 470).
- the host stack (or host module) 470 refers to a wireless transmission/reception module receiving a Bluetooth signal of 2.4 GHz and hardware for transmitting or receiving Bluetooth packets, and the controller stack 460 is connected to the Bluetooth module to connect the Bluetooth module. Control and perform actions.
- the host stack 470 may include a BR/EDR PHY layer 12, a BR/EDR baseband layer 14, and a link manager layer (Link Manager 16).
- the BR/EDR PHY layer 12 is a layer that transmits and receives a 2.4 GHz radio signal.
- GFSK Global System for Mobile Communications
- 79 RF channels can be hopping to transmit data.
- the BR/EDR baseband layer 14 is responsible for transmitting a digital signal, selects a channel sequence hopping 1400 times per second, and transmits a time slot of 625us long for each channel.
- the link manager layer 16 controls the overall operation (link setup, control, security) of the Bluetooth connection by utilizing the Link Manager Protocol (LMP).
- LMP Link Manager Protocol
- the link manager layer 16 may perform the following functions.
- the host controller interface layer 18 provides an interface between the host module and the controller module, so that the host provides commands and data to the controller, and the controller can provide events and data to the host.
- the host stack (or host module, 20) is a logical link control and adaptation protocol (L2CAP, 21), attribute protocol (Protocol, 22), Generic Attribute Profile (Generic Attribute Profile, GATT, 23), Generic Access Profile (Generic Access) Profile, GAP, 24), BR/EDR profile 25.
- L2CAP logical link control and adaptation protocol
- attribute protocol Protocol, 22
- Generic Attribute Profile Generic Attribute Profile
- GATT Generic Attribute Profile
- GAP Generic Access Profile
- BR/EDR profile 25 Generic Access Profile
- the logical link control and adaptation protocol may provide one bidirectional channel for transmitting data to a specific protocol or captive file.
- the L2CAP 21 may multiplex various protocols, profiles, and the like provided by the upper Bluetooth.
- L2CAP of Bluetooth BR/EDR uses dynamic channel, supports protocol service multiplexer, retransmission, streaming mode, and provides segmentation and reassembly, per-channel flow control, and error control.
- the general attribute profile may be operable as a protocol that describes how the attribute protocol 22 is used when configuring services.
- the general attribute profile 23 may be operable to specify how ATT attributes are grouped together into services, and may be operable to describe features associated with services.
- the general attribute profile 23 and the attribute protocols ATT, 22 can use features to describe the device's state and services, and how features are related to each other and how they are used.
- the attribute protocol 22 and the BR/EDR profile 25 define a service profile using Blues BR/EDR and an application protocol for exchanging and receiving these data, and the Generic Access Profile , GAP, 24) define device discovery, connectivity, and security levels.
- the Bluetooth LE protocol stack includes a controller stack 480 operable to process a timing-critical wireless device interface and a host stack operable to process high level data. (Host stack, 490).
- the controller stack 480 may be implemented using a communication module that may include a Bluetooth wireless device, for example, a processor module that may include a processing device such as a microprocessor.
- the host stack 490 can be implemented as part of an OS running on a processor module, or as an instantiation of a package on top of the OS.
- controller stack and host stack can be run or executed on the same processing device in the processor module.
- the controller stack 480 includes a physical layer (PHY, 32), a link layer (Link Layer, 34) and a host controller interface (Host Controller Interface, 36).
- PHY physical layer
- Link Layer Link Layer
- Hos Controller Interface 36
- the physical layer (PHY, wireless transmit/receive module, 32) is a layer that transmits and receives a 2.4 GHz wireless signal and uses GFSK (Gaussian Frequency Shift Keying) modulation and a frequency hopping scheme consisting of 40 RF channels.
- GFSK Gausian Frequency Shift Keying
- the link layer 34 which serves to transmit or receive Bluetooth packets, creates an inter-device connection after performing Advertising and Scanning functions using 3 Advertising channels, and up to 257 bytes of data packets through 37 Data channels. It provides the function to send and receive.
- the host stack includes a Generic Access Profile (GAP) 40, a logical link control and adaptation protocol (L2CAP, 41), a security manager (Security Manager, SM, 42), an attribute protocol (ATT, 440), and a general attribute profile.
- GAP Generic Access Profile
- L2CAP logical link control and adaptation protocol
- SM Security Manager
- ATT attribute protocol
- 440 attribute protocol
- general attribute profile GATT, 44
- Generic Access Profile Generic Access Profile
- 25 Generic Access Profile
- LT profile 46 may be included.
- the host stack 490 is not limited thereto, and may include various protocols and profiles.
- the host stack uses L2CAP to multiplex various protocols, profiles, etc. provided by Bluetooth.
- Logical Link Control and Adaptation Protocol (L2CAP) 41 may provide one bidirectional channel for transmitting data to a specific protocol or profile.
- the L2CAP 41 may be operable to multiplex data between upper layer protocols, segment and reassemble packages, and manage multicast data transmission.
- Bluetooth LE three fixed channels (one for signaling CH, one for Security Manager, and one for Attribute protocol) are basically used. And, if necessary, a dynamic channel may be used.
- SM Security Manager
- ATT Attribute Protocol
- ATT is a server-client (Server-Client) structure defines the rules for accessing the data of the other device.
- ATT has the following 6 message types (Request, Response, Command, Notification, Indication, Confirmation).
- the Request message is a message for requesting and forwarding specific information from the client device to the server device
- the Response message is a response message to the Request message, which can be used for transmission from the server device to the client device
- Command message This is a message that is mainly sent from a client device to a server device to indicate a command for a specific operation.
- the server device does not send a response to a command message to the client device.
- Notification message This is a message sent for notification, such as an event, from the server device to the client device.
- the client device does not send a confirmation message for the notification message to the server device.
- Indication and Confirm message This is a message sent for notification, such as an event, from the server device to the client device. Unlike the Notification message, the client device sends a confirmation message for the Indication message to the server device.
- the present invention enables a client to clearly know the data length by transmitting a value for the data length when requesting long data in a GATT profile using the attribute protocol (ATT, 43), and is characterized from the server using a UUID.
- the value can be sent.
- the general access profile (GAP, 45) is a newly implemented layer for Bluetooth LE technology, and is used to control how role selection and multi-profile operation occur for communication between Bluetooth LE devices.
- the general access profile 45 is mainly used for device discovery, connection creation, and security procedures, and defines a method for providing information to a user, and defines the following attribute types.
- the LE profile 46 is a profile having a dependency on GATT and is mainly applied to a Bluetooth LE device.
- the LE profile 46 may be, for example, Battery, Time, FindMe, Proximity, Time, and the like, and details of GATT-based Profiles are as follows.
- the general attribute profile may be operable as a protocol that describes how the attribute protocol 43 is used when configuring services.
- the general attribute profile 44 can be operable to specify how ATT attributes are grouped together into services, and can be operable to describe features associated with services.
- the general attribute profile 44 and the attribute protocols ATT, 43 can use features to describe the device's state and services, and how features are related to each other and how they are used.
- the BLE procedure may be divided into a device filtering procedure, an advertising procedure, a scanning procedure, a discovery procedure, and a connecting procedure.
- the device filtering procedure is a method for reducing the number of devices that respond to requests, instructions, and notifications from the controller stack.
- the controller stack can control the BLE controller stack to reduce power consumption by reducing the number of sending requests.
- the advertising device or scanning device may perform the device filtering procedure to limit devices that receive advertising packets, scan requests, or connection requests.
- the advertisement device refers to a device that transmits an advertisement event, that is, performs an advertisement, and is also expressed as an advertiser.
- the scanning device refers to a device that performs scanning and a device that transmits a scan request.
- a scanning device when a scanning device receives some advertisement packets from an advertisement device, the scanning device must send a scan request to the advertisement device.
- the scanning device may ignore advertisement packets transmitted from the advertisement device.
- the device filtering procedure may also be used in the connection request process. If device filtering is used in the connection request process, it is not necessary to transmit a response to the connection request by ignoring the connection request.
- the advertising device performs an advertising procedure to perform non-directional broadcasting to devices in the area.
- the non-directed broadcast (Undirected Advertising) is not a broadcast to a specific device, but to all (all) devices advertising (Advertising), all devices are scanning the advertisement (Advertising) to request additional information or You can make a connection request.
- a device designated as a receiving device may scan an advertisement and request additional information or a connection.
- the advertising procedure is used to establish a Bluetooth connection with a nearby initiating device.
- the advertising procedure may be used to provide periodic broadcast of user data to scanning devices that are listening on the advertising channel.
- all advertisements are broadcast through the advertisement physical channel.
- Advertising devices may receive a scan request from listening devices that are performing listening to obtain additional user data from the advertising device.
- the advertisement device transmits a response to the scan request to the device that transmitted the scan request through the same advertisement physical channel as the advertisement physical channel that received the scan request.
- Broadcast user data sent as part of advertising packets is dynamic data, while scan response data is generally static data.
- the advertising device may receive a connection request from the initiating device on the advertising (broadcast) physical channel. If the advertisement device uses a connectable advertisement event, and the initiating device is not filtered by the device filtering procedure, the advertisement device stops the advertisement and enters the connected mode. The advertising device may start advertising again after the connected mode.
- a device that performs scanning that is, a scanning device, performs a scanning procedure to listen to a non-directional broadcast of user data from advertising devices using an advertising physical channel.
- the scanning device sends a scan request to the advertising device through the advertising physical channel to request additional data from the advertising device.
- the advertisement device transmits a scan response that is a response to the scan request including additional data requested by the scanning device through the advertisement physical channel.
- the scanning procedure can be used while connecting to other BLE devices in the BLE piconet.
- the scanning device If the scanning device receives a broadcast advertisement event and is in an initiator mode capable of initiating a connection request, the scanning device sends the connection request to the advertisement device through the advertisement physical channel, thereby advertising device And Bluetooth connection can be started.
- the scanning device When the scanning device sends a connection request to the advertising device, the scanning device stops the initiator mode scanning for further broadcast and enters the connected mode.
- Bluetooth devices capable of Bluetooth communication (hereinafter referred to as'Bluetooth devices') perform advertisement and scanning procedures to discover nearby devices or to be discovered by other devices within a given area.
- the discovery process is performed asymmetrically.
- a Bluetooth device that seeks to find other devices around it is called a discovering device and listens to devices that advertise a scannable advertising event.
- a Bluetooth device found and available from another device is called a discoverable device, and actively broadcasts an advertising event to allow other devices to scan through the advertising (broadcast) physical channel.
- Both the discovering device and the discoverable device may already be connected to other Bluetooth devices in the piconet.
- connection procedure is asymmetric, and the connection procedure requires that another Bluetooth device perform the scanning procedure while the specific Bluetooth device performs the advertisement procedure.
- the advertising process can be an objective, and as a result, only one device will respond to the advertisement.
- the connection After receiving a connectable advertisement event from the advertisement device, the connection can be initiated by sending a connection request to the advertisement device through the advertisement (broadcast) physical channel.
- the link layer LL enters the advertisement state by the instruction of the host (stack).
- the link layer transmits advertisement packet data units (PDUs) in advertisement events.
- PDUs advertisement packet data units
- Each advertisement event is composed of at least one advertisement PDU, and advertisement PDUs are transmitted through advertisement channel indexes used.
- the advertisement event may be terminated when the advertisement PDU is transmitted through the advertisement channel indexes used, respectively, or the advertisement event may be terminated earlier if the advertisement device needs to make space for performing other functions.
- the link layer enters the scanning state at the instruction of the host (stack). In the scanning state, the link layer listens to advertisement channel indices.
- scanning states There are two types of scanning states: passive scanning and active scanning, and each scanning type is determined by the host.
- No separate time or advertisement channel index is defined to perform scanning.
- the scan interval is defined as the interval (interval) between the start points of two consecutive scan windows.
- the link layer should listen to complete all scan intervals of the scan window as directed by the host. In each scan window, the link layer must scan different ad channel indexes. The link layer uses all available advertising channel indices.
- the link layer only receives packets, and does not transmit any packets.
- the link layer performs listening to rely on the type of advertisement PDUs that can request advertisement PDUs and additional information related to the advertisement device to the advertisement device.
- the link layer enters the start state by the instruction of the host (stack).
- the link layer When the link layer is in the initiating state, the link layer performs listening on advertisement channel indexes.
- the link layer listens to the advertisement channel index during the scan window period.
- the link layer enters a connection state when a device performing a connection request, that is, when the initiating device transmits a CONNECT_REQ PDU to the advertising device or when the advertising device receives a CONNECT_REQ PDU from the initiating device.
- connection state After entering the connection state, it is considered that a connection is created. However, it is not necessary to be considered to be established when the connection enters the connection state. The only difference between a newly created connection and an established connection is the link layer connection supervision timeout value.
- the link layer performing the master role is called a master, and the link layer performing the slave role is called a slave.
- the master adjusts the timing of the connection event, and the connection event refers to the point in time between synchronization between the master and the slave.
- BLE devices use the packets defined below.
- the link layer has only one packet format used for both advertising channel packets and data channel packets.
- Each packet consists of four fields: Preamble, Access Address, PDU and CRC.
- the PDU When one packet is transmitted on the advertisement channel, the PDU will be the advertisement channel PDU, and when one packet is transmitted on the data channel, the PDU will be the data channel PDU.
- the advertising channel PDU Packet Data Circuit
- PDU Packet Data Circuit
- the PDU type field of the advertisement channel PDU included in the header indicates a PDU type as defined in Table 3 below.
- the advertising channel PDU types under an advertising PDU are called advertising PDUs and are used in specific events.
- ADV_IND Connectable non-directional advertising event
- ADV_DIRECT_IND Connectable directional advertising event
- ADV_NONCONN_IND Non-connectable non-directional advertising event
- ADV_SCAN_IND scannable non-directional advertising event
- the PDUs are transmitted in the link layer in an advertisement state and received by the link layer in a scanning state or an initiating state.
- the advertising channel PDU type below is called a scanning PDU and is used in the state described below.
- SCAN_REQ transmitted by the link layer in the scanning state, and received by the link layer in the advertising state.
- SCAN_RSP transmitted by the link layer in the advertisement state, and received by the link layer in the scanning state.
- the advertising channel PDU type below is called a starting PDU.
- CONNECT_REQ transmitted by the link layer in the initiation state, and received by the link layer in the advertising state.
- the data channel PDU has a 16-bit header, a payload of various sizes, and may include a message integrity check (MIC) field.
- MIC message integrity check
- the load 455 may be a battery.
- the battery may store energy using power output from the power pickup circuit 210.
- the battery is not necessarily included in the mobile device 450.
- the battery may be provided in an external configuration in a removable form.
- the wireless power receiving apparatus 200 may include driving means for driving various operations of the electronic device instead of the battery.
- the mobile device 450 is shown to include the wireless power receiving device 200, and the base station 400 is shown to include the wireless power transmitting device 100, but in a broad sense, the wireless power receiving device ( 200) may be identified with the mobile device 450, and the wireless power transmitter 100 may be identified with the base station 400.
- wireless power transmission including the communication/control circuit 120 may be represented by a simplified block diagram as shown in FIG. 4C.
- 4C is a block diagram illustrating a wireless power transmission system using BLE communication according to an example.
- the wireless power transmitter 100 includes a power conversion circuit 110 and a communication/control circuit 120.
- the communication/control circuit 120 includes an in-band communication module 121 and a BLE communication module 122.
- the wireless power receiver 200 includes a power pickup circuit 210 and a communication/control circuit 220.
- the communication/control circuit 220 includes an in-band communication module 221 and a BLE communication module 222.
- BLE communication modules 122 and 222 perform the architecture and operation according to FIG. 4B.
- the BLE communication modules 122 and 222 may be used to establish a connection between the wireless power transmitter 100 and the wireless power receiver 200 and exchange control information and packets necessary for wireless power transmission. have.
- the communication/control circuit 120 can be configured to operate a profile for wireless charging.
- the profile for wireless charging may be GATT using BLE transmission.
- the communication/control circuits 120 and 220 include only the in-band communication modules 121 and 221, respectively, as shown in FIG. 4D, and the BLE communication modules 122 and 222 are communication/control circuits 120, It is also possible to be provided separately from 220).
- the coil or coil part may also be referred to as a coil assembly, a coil cell, or a cell, including a coil and at least one element close to the coil.
- 5 is a state transition diagram for explaining a wireless power transmission procedure.
- power transmission from a wireless power transmission apparatus to a receiver is largely selected (selection phase, 510), ping phase (ping phase, 520), identification and configuration steps (identification) and configuration phase (530), negotiation phase (negotiation phase, 540), calibration phase (calibration phase, 550), power transfer phase (power transfer phase, 560) phase and renegotiation phase (renegotiation phase, 570). .
- the selection step 510 transitions when a specific error or a specific event is detected while starting or maintaining the power transmission-including, for example, reference numerals S502, S504, S508, S510 and S512 Can be.
- the wireless power transmitter may monitor whether an object is present on the interface surface. If the wireless power transmitter detects that an object is placed on the interface surface, it may transition to the ping step 520.
- the wireless power transmitter transmits an analog ping signal, which is a power signal (or pulse) corresponding to a very short duration, and a current of a transmitting coil or a primary coil. Based on the change, it is possible to detect whether an object exists in an active area of the interface surface.
- the wireless power transmitter may measure the quality factor of the wireless power resonant circuit (eg, a power transmission coil and/or resonant capacitor).
- the wireless power resonant circuit eg, a power transmission coil and/or resonant capacitor.
- a quality factor may be measured to determine whether a wireless power receiving device is placed with a foreign object in the charging area.
- the coil provided in the wireless power transmission device may reduce inductance and/or series resistance components in the coil due to environmental changes, thereby reducing the quality factor value.
- the wireless power transmitter may receive a reference quality factor value previously measured from the wireless power receiving device in the state where no foreign matter is placed in the charging area.
- the presence or absence of a foreign material may be determined by comparing the reference quality factor value received in the negotiation step 540 with the measured quality factor value.
- a wireless power receiving device having a low reference quality factor value for example, a specific wireless power receiving device may have a low reference quality factor value according to the type, use, and characteristics of the wireless power receiving device-where foreign matter exists.
- a quality factor value in a specific frequency domain (ex operating frequency domain) may be measured in order to determine whether or not it is disposed with a foreign material in the filling region.
- the coil of the wireless power transmitter may reduce inductance and/or series resistance components in the coil due to environmental changes, thereby changing (shifting) the resonance frequency of the coil of the wireless power transmitter. That is, the quality factor peak frequency, which is the frequency at which the maximum quality factor value in the operating frequency band is measured, may be moved.
- the wireless power transmitter activates the receiver when an object is detected, and transmits a digital ping to identify whether the detected object is a wireless power receiver.
- the wireless power transmitter may transition to the selection step 510 again.
- the wireless power transmitter may transition to the selection step 510 upon receiving a signal indicating that power transmission is completed from the receiver, that is, a charging complete packet.
- the wireless power transmitter may transition to the identification and configuration step 530 for identifying the receiver and collecting receiver configuration and status information.
- the wireless power transmitter may receive an unexpected packet, an undesired packet for a predefined time (time out), or a packet transmission error (transmission error), If no power transfer contract is established (no power transfer contract), the process may transition to the selection step 510.
- the wireless power transmitter may determine whether entry into the negotiation step 540 is necessary based on the value of the negotiation field of the configuration packet received in the identification and configuration step 530. As a result of the check, if negotiation is required, the wireless power transmitter may enter the negotiation step 540 and perform a predetermined FOD detection procedure. On the other hand, as a result of the confirmation, if negotiation is not required, the wireless power transmission device may immediately enter the power transmission step 560.
- the wireless power transmitter may receive a Foreign Object Detection (FOD) status packet including a reference quality factor value.
- FOD Foreign Object Detection
- an FOD status packet including a reference peak frequency value may be received.
- a status packet including a reference quality factor value and a reference peak frequency value may be received.
- the wireless power transmission apparatus may determine a quality factor threshold for FO detection based on the reference quality factor value.
- the wireless power transmitter may determine a peak frequency threshold for FO detection based on the reference peak frequency value.
- the wireless power transmitter can detect whether FO is present in the charging area using the determined quality factor threshold for detecting the FO and the currently measured quality factor value (quality factor value measured before the ping step). Accordingly, power transmission can be controlled. For example, when a FO is detected, power transmission may be stopped, but is not limited thereto.
- the wireless power transmitter can detect whether the FO exists in the charging area using the determined peak frequency threshold for detecting the FO and the currently measured peak frequency value (the peak frequency value measured before the ping step). Accordingly, power transmission can be controlled. For example, when a FO is detected, power transmission may be stopped, but is not limited thereto.
- the wireless power transmitter may return to the selection step 510.
- the wireless power transmission device may enter the power transmission step 560 through a correction step 550.
- the wireless power transmission device determines the intensity of the power received at the receiving end in the correction step 550, and determines the intensity of the power transmitted by the transmitting end. Power loss at the transmitting end can be measured. That is, the wireless power transmitter may predict power loss based on the difference between the transmitting power of the transmitting end and the receiving power of the receiving end in the correction step 550.
- the wireless power transmission apparatus may correct the threshold for FOD detection by reflecting the predicted power loss.
- the wireless power transmission device receives an undesired packet (unexpected packet), a desired packet is not received for a predetermined time (time out), or a violation of a preset power transmission contract occurs. Or (power transfer contract violation), or when charging is completed, may transition to the selection step 510.
- the wireless power transmission device may transition to the renegotiation step 570 when it is necessary to reconfigure the power transmission contract according to changes in the state of the wireless power transmission device. At this time, when the renegotiation is normally completed, the wireless power transmission device may return to the power transmission step 560.
- the correction step 550 and the power transfer step 560 are divided into separate steps, the correction step 550 may be integrated into the power transfer step 560. In this case, in the correction step 550 The operations can be performed at power transfer step 560.
- the above-described power transmission contract may be established based on status and characteristic information of the wireless power transmission device and the receiver.
- the wireless power transmission device status information may include information on the maximum transmittable power amount, information on the maximum number of receivers that can be accommodated, and receiver status information may include information on required power.
- FIG. 6 illustrates a power control control method according to an embodiment.
- the wireless power transmission device 100 and the wireless power reception device 200 may control the amount of power delivered by performing communication in parallel with power transmission and reception.
- the wireless power transmitter and the wireless power receiver operate at specific control points.
- the control point represents a combination of voltage and current provided at the output of the wireless power receiver when power transmission is performed.
- the wireless power receiver selects a desired control point-a desired output current/voltage, a temperature at a specific location of the mobile device, and additionally, an actual control point currently operating. ).
- the wireless power receiver may calculate a control error value using a desired control point and an actual control point, and transmit it to the wireless power transmitter as a control error packet.
- the wireless power transmission device may control power transmission by setting/controlling a new operation point-amplitude, frequency, and duty cycle-using the received control error packet. Therefore, the control error packet is transmitted/received at regular time intervals in the strategy delivery step, and as an embodiment, the wireless power receiving device has a negative control error value to decrease the current of the wireless power transmitter and a control error when increasing the current. It can be sent by setting the value to a positive number. In this way, in the induction mode, the wireless power receiver can control power transmission by transmitting a control error packet to the wireless power transmitter.
- the resonance mode which will be described below, it may operate in a different way than in the induction mode.
- one wireless power transmitter In the resonance mode, one wireless power transmitter must be able to simultaneously serve multiple wireless power receivers.
- the wireless power transmission device commonly transmits basic power, and the wireless power receiving device controls a resonance frequency of itself to use a method of controlling the amount of power received.
- the method described in FIG. 6 is not completely excluded, and additional transmission power may be controlled by the method of FIG. 6.
- the shared mode may refer to a mode for performing one-to-many communication and charging between the wireless power transmitter and the wireless power receiver.
- the shared mode may be implemented by a magnetic induction method or a resonance method.
- the wireless power transmission apparatus 700 includes a cover 720 that covers the coil assembly, a power adapter 730 that supplies power to the power transmitter 740, a power transmitter 740 that transmits wireless power, or It may include at least one of the user interface 750 providing power transmission progress and other related information.
- the user interface 750 may be optionally included, or may be included as another user interface 750 of the wireless power transmission device 700.
- the power transmitter 740 may include at least one of a coil assembly 760, an impedance matching circuit 770, an inverter 780, a communication circuit 790, or a control circuit 710.
- the coil assembly 760 includes at least one primary coil that generates a magnetic field, and may be referred to as a coil cell.
- the impedance matching circuit 770 may provide impedance matching between the inverter and the primary coil(s).
- the impedance matching circuit 770 may generate resonance at a suitable frequency that boosts the primary coil current.
- the impedance matching circuit in the multi-coil power transmitter 740 may further include a multiplex that routes the signal from the inverter to a subset of the primary coils.
- the impedance matching circuit may also be referred to as a tank circuit.
- the impedance matching circuit 770 may include capacitors, inductors, and switching elements to switch their connections. Impedance matching detects the reflected wave of wireless power transmitted through the coil assembly 760, and switches the switching element based on the detected reflected wave to adjust the connection state of the capacitor or inductor, adjust the capacitance of the capacitor, or inductance of the inductor It can be performed by adjusting. In some cases, the impedance matching circuit 770 may be omitted and implemented, and the present specification also includes an embodiment of the wireless power transmitter 700 in which the impedance matching circuit 770 is omitted.
- the inverter 780 may convert a DC input into an AC signal. Inverter 780 may be driven with half-bridge or full-bridge to generate pulse waves and duty cycles of adjustable frequency. In addition, the inverter may include a plurality of stages to adjust the input voltage level.
- the communication circuit 790 may perform communication with the power receiver.
- the power receiver performs load modulation to communicate requests and information to the power transmitter. Therefore, the power transmitter 740 may use the communication circuit 790 to monitor the amplitude and/or phase of the current and/or voltage of the primary coil to demodulate the data transmitted by the power receiver.
- the power transmitter 740 may control output power to transmit data using a FSK (Frequency Shift Keying) method through the communication circuit 790.
- FSK Frequency Shift Keying
- the control circuit 710 may control communication and power transmission of the power transmitter 740.
- the control circuit 710 may control power transmission by adjusting the operation points described above.
- the operating point may be determined, for example, by at least one of an operating frequency, duty cycle, and input voltage.
- the communication circuit 790 and the control circuit 710 may be provided as separate circuits/devices/chipsets, or may be provided as one circuit/device/chipset.
- FIG. 8 shows a wireless power receiving apparatus according to another embodiment. This may belong to a wireless power transmission system in a self-resonance method or a shared mode.
- the wireless power receiving device 800 includes a user interface 820 providing power transmission progress and other related information, a power receiver 830 receiving wireless power, a load circuit 840 or a coil assembly It may include at least one of the base 850 to cover the support.
- the user interface 820 may be optionally included, or may be included as another user interface 82 of the power receiving equipment.
- the power receiver 830 may include at least one of a power converter 860, an impedance matching circuit 870, a coil assembly 880, a communication circuit 890, or a control circuit 810.
- the power converter 860 may convert AC power received from the secondary coil into voltage and current suitable for a load circuit.
- the power converter 860 may include a rectifier.
- the rectifier may rectify the received wireless power to convert AC to DC.
- the rectifier converts alternating current to direct current using a diode or transistor, and can smooth it using a capacitor and a resistor.
- a rectifier a full-wave rectifier, a half-wave rectifier, and a voltage multiplier implemented by a bridge circuit or the like can be used.
- the power converter may adapt the reflected impedance of the power receiver.
- the impedance matching circuit 870 may provide impedance matching between the secondary coil and the combination of the power converter 860 and the load circuit 840. As an embodiment, the impedance matching circuit may generate resonance around 100 kHz, which can enhance power transfer.
- the impedance matching circuit 870 may be composed of a switching element that switches capacitors, inductors, and combinations thereof. Matching of impedance may be performed by controlling a switching element of the circuit constituting the impedance matching circuit 870 based on the received voltage value, current value, power value, frequency value, etc. of the wireless power. In some cases, the impedance matching circuit 870 may be omitted and implemented, and the present specification also includes an embodiment of the wireless power receiving apparatus 200 in which the impedance matching circuit 870 is omitted.
- the coil assembly 880 includes at least one secondary coil, and may optionally further include an element that shields a metal portion of the receiver from a magnetic field.
- the communication circuit 890 may perform load modulation to communicate requests and other information to the power transmitter.
- the power receiver 830 may switch resistors or capacitors to change the reflected impedance.
- the control circuit 810 may control received power. To this end, the control circuit 810 may determine/calculate the difference between the actual operating point of the power receiver 830 and the desired operating point. In addition, the control circuit 810 may adjust/reduce the difference between the actual operating point and the desired operating point by adjusting the reflection impedance of the power transmitter and/or requesting to adjust the operating point of the power transmitter. When this difference is minimized, optimal power reception can be performed.
- the communication circuit 890 and the control circuit 810 may be provided as separate devices/chipsets, or may be provided as one device/chipset.
- FIG. 9 shows a communication frame structure according to an embodiment. This may be a communication frame structure in a shared mode.
- a slotted frame having a plurality of slots such as (A) and a free format frame without a specific shape such as (B) may be used.
- the slot frame is a frame for transmission of short data packets from the wireless power receiver 200 to the wireless power transmitter 100, and the free-form frame does not have a plurality of slots, so long data packets It may be a frame that can be transmitted.
- slot frame and the free-form frame may be changed to various names by those skilled in the art.
- a slot frame may be changed to a channel frame
- a free-form frame may be changed to a message frame or the like.
- the slot frame may include a sync pattern indicating the start of a slot, a measurement slot, nine slots, and an additional sync pattern having the same time interval before each of the nine slots.
- the additional sync pattern is a sync pattern different from the sync pattern indicating the start of the aforementioned frame. More specifically, the additional sync pattern may indicate information related to adjacent slots (ie, two consecutive slots located on both sides of the sync pattern) without indicating the start of the frame.
- the sync patterns provided before each of the 9 slots and the 9 slots may have the same time interval.
- the nine slots may have a time interval of 50 ms.
- the nine sync patterns may have a time length of 50 ms.
- the free-form frame such as (B) may not have a specific shape other than a sync pattern and a measurement slot indicating the start of the frame. That is, the free-form frame is for performing a different role from the slot frame, for example, long data packets (eg, additional owner information packets) between the wireless power transmitter and the wireless power receiver. It can be used to perform a communication, or in a wireless power transmission device composed of a plurality of coils, to select any one of the plurality of coils.
- FIG. 10 is a structure of a sink pattern according to an embodiment.
- the sync pattern is composed of a preamble, a start bit, a response field, a type field, an information field, and a parity bit. Can be.
- the start bit is shown as ZERO.
- the preamble consists of consecutive bits, and all may be set to zero. That is, the preamble may be bits for matching the time length of the sync pattern.
- the number of bits constituting the preamble may be dependent on the operating frequency such that the length of the sync pattern is closest to 50 ms, but within a range not exceeding 50 ms.
- the sync pattern may consist of two preamble bits, and when the operating frequency is 105 kHz, the sync pattern may consist of three preamble bits.
- the start bit is a bit following the preamble and may indicate zero.
- the zero (ZERO) may be a bit indicating the type of the sync pattern.
- the type of the sync pattern may include a frame sync including information related to a frame and a slot sync including information on a slot. That is, the sync pattern is located between consecutive frames, is a frame sync indicating the start of a frame, or is located between consecutive slots among a plurality of slots constituting a frame, and information related to the consecutive slots It may be a slot sync.
- the corresponding slot is a slot sync located between the slot and the slot
- the corresponding sync pattern is a frame sync located between the frame and the frame.
- the parity bit is the last bit of the sync pattern and may indicate information on the number of bits constituting the data fields (ie, response field, type field, and information field) of the sync pattern.
- the pre-parity bit may be 1 when the number of bits constituting the data fields of the sync pattern is an even number, 1, and 0 in other cases (ie, an odd number).
- the Response field may include response information of the wireless power transmitter in communication with the wireless power receiver in a slot before the sync pattern.
- the response field may have '00' when communication with the wireless power receiver is not detected.
- the response field may have '01' when a communication error is detected in communication with the wireless power receiver.
- the communication error may be a case where two or more wireless power receivers attempt to access one slot and a collision occurs between two or more wireless power receivers.
- the response field may include information indicating whether the data packet has been correctly received from the wireless power receiver. More specifically, the response field is "10" (10-not acknowledge, NAK) when the wireless power transmitter rejects the data packet (deni), and the wireless power transmitter confirms the data packet (den) , "11" (11-acknowledge, ACK).
- the type field may indicate the type of sync pattern. More specifically, the type field may have a '1' indicating that the frame is synchronized when the sync pattern is the first sync pattern of the frame (ie, the first sync pattern of the frame, located before the measurement slot).
- the type field may have a '0' indicating that it is a slot sync.
- the meaning of the information field may be determined according to the type of sync pattern indicated by the type field. For example, when the type field is 1 (ie, indicating frame sync), the meaning of the information field may indicate the type of frame. That is, the information field may indicate whether the current frame is a slotted frame or a free-format frame. For example, when the information field is '00', a slot frame may be indicated, and when the information field is '01', a free-form frame may be indicated.
- the information field may indicate the state of the next slot located after the sync pattern. More specifically, the information field is '00' when the next slot is a slot allocated to a specific wireless power receiver, '00', when a specific wireless power receiver is temporarily used, and is a locked slot, '01', or if any wireless power receiver is a freely usable slot, may have '10'.
- 11 is a diagram illustrating an operation state of a wireless power transmitter and a wireless power receiver in a shared mode according to an embodiment.
- the wireless power receiver operating in the shared mode includes a selection phase 1100, an introduction phase 1110, a configuration phase 1120, and a negotiation state. It may operate in any one of (Negotiation Phase) 1130 and Power Transfer Phase 1140.
- the wireless power transmitter may transmit a wireless power signal in order to detect the wireless power receiver. That is, a process of detecting a wireless power receiver using a wireless power signal may be referred to as analog ping.
- the wireless power receiver that has received the wireless power signal may enter the selection state 1100.
- the wireless power receiving device that has entered the selection state 1100 may detect the presence of an FSK signal on the wireless power signal.
- the wireless power receiver may perform communication in either an exclusive mode or a shared mode depending on whether an FSK signal is present.
- the wireless power receiver may operate in the shared mode, or otherwise, in the exclusive mode.
- the wireless power receiving device When the wireless power receiving device operates in the shared mode, the wireless power receiving device may enter the introduction state 1110.
- the wireless power receiver may transmit a control information packet to the wireless power transmitter in order to transmit a control information packet (CI) in a set state, a negotiation state, and a power transmission state.
- the control information packet may have a header and information related to control.
- the control information packet may have a header of 0X53.
- the wireless power receiver performs an attempt to request a free slot to transmit a control information (CI) packet through the following configuration, negotiation, and power transmission steps.
- the wireless power receiver selects a free slot and transmits the first CI packet. If the wireless power transmission device responds with an ACK to the corresponding CI packet, the wireless power transmission device enters the configuration step. If the wireless power transmission device responds with a NAK, another wireless power reception device is in progress through the configuration and negotiation phase. In this case, the wireless power receiving apparatus retries the request of the free slot.
- CI control information
- the wireless power receiver determines the location of the private slot in the frame by counting the remaining slot sinks up to the first frame sink. In all subsequent slot-based frames, the wireless power receiver transmits a CI packet through the corresponding slot.
- the wireless power transmitter allows the wireless power receiver to proceed to the configuration stage, the wireless power transmitter provides a series of locked slots for exclusive use of the wireless power receiver. This ensures that the wireless power receiver proceeds with the configuration steps without collision.
- the wireless power receiver transmits sequences of data packets such as two identification data packets (IDHI and IDLO) using a lock slot. Upon completion of this step, the wireless power receiver enters the negotiation phase. In the negotiation phase, the wireless power transmitter continues to provide the wireless power receiver with a lock slot for exclusive use. This ensures that the wireless power receiver proceeds through the negotiation phase without conflict.
- IDHI and IDLO identification data packets
- the wireless power receiver transmits one or more negotiation data packets using the corresponding lock slot, which may be mixed with private data packets.
- the sequence ends with a specific request (SRQ) packet.
- SRQ specific request
- the wireless power receiver enters the power transmission phase, and the wireless power transmitter stops providing the lock slot.
- the wireless power receiver performs transmission of the CI packet using the allocated slot and receives power.
- the wireless power receiver may include a regulator circuit.
- the regulator circuit may be included in the communication/control circuit.
- the wireless power receiver can self-regulate the reflected impedance of the wireless power receiver through a regulator circuit. In other words, the wireless power receiver can adjust the reflected impedance to transmit the amount of power required by the external load. This can prevent excessive power reception and overheating.
- the wireless power transmitter may not perform the power adjustment in response to the received CI packet (depending on the operation mode), in this case, control to prevent an overvoltage condition may be required.
- the wireless power transmission system may be provided with a function of exchanging messages at an application layer to support expansion to various application fields. Based on this function, information related to authentication of the device or other application level messages may be transmitted and received between the wireless power transmitter and the receiver. In this way, in order for the upper layer messages to be exchanged between the wireless power transmitter and the receiver, a separate hierarchical architecture for data transmission is required, and an efficient management and operation method of the hierarchical architecture is required.
- This embodiment discloses a method of performing a handover procedure using a random address in a wireless power transmission system.
- This embodiment discloses a method of advertising when using Bluetooth Low Energy (BLE) communication in a wireless power transmission system.
- BLE Bluetooth Low Energy
- the Qi standard of WPC can be exemplified as a standard technology, but the technical idea of the present invention includes not only the Qi standard, but also an embodiment of authentication based on other standards.
- the wireless power transmitter and the wireless power receiver use the MAC address to transmit or receive the MAC address required for BLE connection using in-band communication for BLE communication between each other. You can try BLE connection.
- a fixed address such as a MAC address or a BLE device address, is a unique address of the corresponding device, and thus does not exhibit good performance in terms of security.
- the wireless power transmitter and the wireless power receiver according to the present embodiment can make a more secure BLE connection by using a random address without using a fixed BLE device address.
- the wireless power transmitter or the wireless power receiver according to the present embodiment performs an operation of replacing the BLE device address with an arbitrary address and configuring an advertising packet (or advertising packet). can do.
- the central device receives an arbitrary address through in-band communication, and updates an address to attempt pairing when receiving an advertising packet.
- the claim value may be a wireless power transmission device or a wireless power reception device.
- This embodiment embodies a method of address transmission using in-band communication in a handover phase.
- FIG. 12 is a flowchart illustrating a BLE connection procedure between a wireless power transmitter and a wireless power receiver according to an embodiment.
- the wireless power receiver 1210 and the wireless power transmitter 1220 include in-band communication modules 1212 and 1222 and OOB communication modules (or BLE communication modules) 1214 and 1224, respectively.
- Can. In-band communication performed in the operating frequency domain using the in-band communication modules 1212 and 1222 in the present specification is represented by a flow chart in a white area, and out-band communication in another frequency domain through the OOB communication modules 1214 and 1224. Is represented by a flow chart of the hatched area.
- the wireless power transmitter 1220 and the wireless power receiver 1210 first turn on the power to maintain the device in operation (S1102, S1104). Then, object detection is performed using the in-band communication modules 1212 and 1222 of the wireless power transmitter 1220 and the wireless power receiver 1210 (S1206).
- the object detection is an operation of detecting whether an object related to wireless charging exists in the vicinity using an operating frequency of wireless charging (object detection). Through the process, the wireless power receiver 1210 and the wireless power transmitter 1220 become aware of each other's existence.
- the wireless power transmitter 1220 completes object detection (S1206) between the wireless power receiver 1210, information about a random BLE address is transmitted between the wireless power transmitter 1220 and the wireless power receiver 1210. It can be done.
- the communication packet used for information transmission may be as shown in FIG. 14 (see FIG. 14).
- the wireless power transmitter 1220 and the wireless power receiver 1210 each perform handover from in-band communication to BLE communication (or OOB communication) using the BLE random address. (S1210, S1212). After handover is performed, the procedure related to wireless power charging and the necessary information transfer in the procedure are performed through BLE communication.
- the wireless power transmitter 1220 and the wireless power receiver 1210 initiate a BLE connection and establish a connection based on at least one of the BLE random addresses of each other previously received through in-band communication. (S1214).
- random addresses are updated for each BLE connection and transmitted using in-band communication. Therefore, the BLE connection proceeds after information is transmitted through in-band communication.
- the wireless power transmitter in the embodiment according to FIG. 12 corresponds to the wireless power transmitter or wireless power transmitter or power transmitter disclosed in FIGS. 1 to 11. Accordingly, the operation of the wireless power transmission apparatus in this embodiment is implemented by one or a combination of two or more of each component of the wireless power transmission apparatus in FIGS. 1 to 11. For example, in this embodiment, in-band communication, BLE communication, BLE information transmission by a wireless power transmission device, processing, transmission and reception of communication packets including arbitrary addresses are performed by the communication/control circuit 120 Can be.
- the wireless power receiver in the embodiment according to FIG. 12 corresponds to the wireless power receiver or wireless power receiver or power receiver disclosed in FIGS. 1 to 11.
- the operation of the wireless power receiver in this embodiment is implemented by one or a combination of two or more of each component of the wireless power receiver in FIGS. 1 to 11.
- in-band communication, BLE communication, BLE information transmission by a wireless power receiver, processing, transmission or reception of a communication packet including an arbitrary address is performed by the communication/control circuit 220 Can be.
- FIGS. 13A and 13B are flowcharts illustrating a BLE connection procedure through transmission and reception of a random address of a wireless power receiver and a wireless power transmitter according to an embodiment.
- This embodiment assumes an embodiment in which the wireless power receiving device first generates a random address and delivers it to the wireless power transmitting device.
- the present embodiment assumes the above situation, but the function and operation order of each other may be changed.
- the wireless power receiver sets an arbitrary address to be used to establish BLE communication (S1310).
- the random address may be derived from a device-specific address, or it may be generated from a completely arbitrary address (see description of the static address, the resolvable private address, and the non-resolvable private address section below).
- the wireless power receiver After the wireless power receiver generates a random address, it is packetized and transmitted to the wireless power transmitter through in-band communication (S1312). Then, it waits for a response from the wireless power transmitter (S1314). At this time, if a certain time elapses without receiving a response, a packet containing a random address is retransmitted. The packet can be retransmitted even when an Nck response arrives.
- the wireless power receiver Upon receiving the Ack indicating that the packet was normally received within a certain time, the wireless power receiver performs handover.
- the Ack packet may include an arbitrary address of the wireless power transmitter. Alternatively, the wireless power transmitter may separately generate a response packet including its own address after the Ack packet and transmit it to the wireless power receiver in response to receiving a packet containing a random address from the wireless power receiver.
- an advertising packet is configured in the out-band communication module (S1316), and an BLE connection is attempted (S1318).
- the wireless power transmitter waits for a packet containing a random address of the wireless power receiver generated by the wireless power receiver (S1320), and when a random address packet arrives from the wireless power receiver, the corresponding packet It receives (S1322). If reception is not properly performed (S1322) or an error is detected in the packet (S1326), the wireless power transmitter transmits Nck to the wireless power receiver (S1324). If the reception is properly performed and no error is detected in the corresponding packet, the wireless power transmitter transmits Ack (S1328). At this time, it may be transmitted by including its own address in the Ack packet, or it may transmit a packet including its own address within a predetermined time after the Ack to the wireless power receiver.
- the wireless power transmission device secures a random address of the wireless power reception device, and then performs handover from in-band communication to out-band communication.
- FIG. 14 shows a communication packet structure including an arbitrary address according to the present embodiment.
- communication packets exchanged during in-band communication may include a header field, a message field, and a checksum field.
- the header may include information about the index of the packet and information related to the properties of the packet, and the checksum field may include a total value of purposes (for error detection) to check the accuracy of data.
- the message field may include 6 bytes of random address information.
- the random address may be a random address derived from a device-specific address or a randomly generated random address (refer to the descriptions of static addresses, resolvable private addresses, and non-resolvable private addresses).
- the message field may further include a data field in addition to an arbitrary address.
- the data field may be used in an out-of-band (OOB) connection or other in-band communication in the future.
- OOB out-of-band
- the random address included in the message field may be updated every BLE connection. That is, after a BLE connection with the first device, when a BLE connection with the second device is required, any address delivered to the second device may be updated after the BLE connection with the first device.
- an updated random address may be used when disconnecting the first BLE and then connecting the second BLE.
- it is preferable that such an arbitrary address is transmitted through in-band communication before BLE communication connection, more specifically, before handover.
- FIG. 15 is a flowchart illustrating a BLE pairing process between a wireless power transmitter and a wireless power receiver according to this embodiment.
- OOB communication or BLE communication
- information for distinguishing a wireless power receiving device to be charged may be used.
- the information may be included in an advertising packet.
- Each OOB communication module (or BLE communication module) used for OOB communication performs a pairing process as shown in FIG. 15 when connecting between devices for the first time.
- the advertiser 1510 performs advertising (S1502).
- the advertiser 1510 is a device for notifying its presence in the vicinity, and may be a wireless power transmitter or a wireless power receiver. Advertising is performed by the link layer of the advertiser 1510.
- the advertising process is a process in which the advertiser 1510 informs the device of its surrounding BLE their existence.
- the advertiser 1510 advertises its presence to the scanner 1520 at regular intervals. In most cases, the period may be 1 second. However, it is not necessarily 1 second, and may be set to other cycles such as 0.1 second, 0.2 second, 0.5 second, 2 second, 3 second, 5 second and 10 second.
- the scanner 1520 performs an initiating connection operation (S1504).
- the link layer is also responsible for initiating the connection.
- the connection initiation procedure connects when the scanner 1520 scans and receives an advertiser packet transmitted by the advertiser 1510, and establishes a connection with the advertiser 1510 to exchange data. It is the process of asking.
- the device requesting the connection (usually the scanner 1520 performs this role) is the master role (master role), and the advertiser 1510 performs a slave role (slave role).
- the slave transmits the frequency hopping channel map information in a connection request packet requested by the master so as to be synchronized with the master's frequency hopping sequence.
- the security establishment procedure is a process of performing encryption and authentication according to a security mode set in a BLE device.
- the security establishment process includes pairing, bonding, and encryption re-dstablishment.
- the security manager creates a temporary security encryption key to establish a secure link.
- the encryption key is maintained for the duration of the connection, but cannot be reused for other connections because it is not stored.
- the security manager establishes a security relationship that can be reused for the next connection by storing a shared security key after the pairing process is completed.
- the security manager allows keys to be stored on both devices so that the secure connection can be reestablished without a pairing-bonding process the next time it is reconnected using the stored key.
- the OOB communication module of both devices After establishing the security, the OOB communication module of both devices performs BLE application connection (S1508), maintains the relevant communication, and goes out of the range of BLE communication, connects with other devices, or forcibly disconnects, disconnects ( Disconnected) (S1510).
- Each of the BLE communication modules of the wireless power receiving device or the wireless power transmitting device may be an advertiser or a scanner.
- the operation of the advertiser according to FIG. 15 is the operation of the wireless power transmitter
- the operation of the scanner according to FIG. 15 may be an operation of the wireless power receiving device.
- the operation of the advertiser according to FIG. 15 is the operation of the wireless power receiver.
- the operation of the scanner according to FIG. 15 may be an operation of the wireless power transmission device.
- the wireless power transmitter in the embodiment according to FIG. 15 corresponds to the wireless power transmitter or wireless power transmitter or power transmitter disclosed in FIGS. 1 to 11. Accordingly, the operation of the wireless power transmission apparatus in this embodiment is implemented by one or a combination of two or more of each component of the wireless power transmission apparatus in FIGS. 1 to 11. For example, in this embodiment, in-band communication, BLE communication, advertising, communication initiation, security establishment processing, transmission, and reception operations by the wireless power transmitter may be performed by the communication/control circuit 120. Can.
- the wireless power receiver in the embodiment according to FIG. 15 corresponds to the wireless power receiver or wireless power receiver or power receiver disclosed in FIGS. 1 to 11.
- the operation of the wireless power receiver in this embodiment is implemented by one or a combination of two or more of each component of the wireless power receiver in FIGS. 1 to 11.
- the in-band communication, advertising, communication initiation, security establishment processing, transmission, or reception operation by the wireless power receiver may be performed by the communication/control circuit 220.
- 16 is a conceptual diagram illustrating a packet structure exchanged in the BLE pairing process according to the present embodiment.
- a packet includes a preamble, an access address field, a PDU field, and a CRC.
- the preamble may be composed of 1 or 2 octets.
- the preamble transmitted or received on the BLE 1M of the physical layer may be 1 octet
- the preamble transmitted or received on the BLE 2M of the physical layer may be 2 octets.
- the access address field is, for example, 4 octets, and the access address for all advertising channel packets may be “10001110100010011011111011010110b (0x8E89BED6)”.
- CRC is, for example, 3 octets, and is used to check errors of access addresses, PDUs, and CRCs.
- the PDU field is 2 to 257 octets, for example, and includes a header and a payload.
- a header and a payload which are specific information in a PDU field in the packet, are added.
- the header indicates an advertising type, and the payload may include the device identification information.
- the advertising type of the header is set to ADV_DIRECT_IND
- the payload is the address of the advertiser (for example, 6 bytes) and the target device (Target).
- Device address (for example, 6 bytes) and device-identifying data.
- ADV_DIRECT_IND represents a connectable directional advertisement event (Used to send connectable directed advertisement).
- the advertising type is set to ADV_IND, and the payload can be transmitted including the address of the advertiser and data that can distinguish the device. As described above, this represents a connectable non-directed advertisement event. This will be described in more detail with reference to FIG. 17.
- 17 is a conceptual diagram illustrating a structure of a PDU portion of a packet exchanged in the BLE pairing process according to the present embodiment.
- the header indicates ADV_IND
- the payload may include two pieces of information.
- the two pieces of information include the address of the advertiser and manufacturer information.
- the address of the advertiser includes a BLE device address, that is, a MAC address.
- an arbitrary address may be used instead of the MAC address.
- the random address may be a random address derived from a device-specific address or a randomly generated random address (refer to the description of the static address, the resolvable private address, and the non-resolvable private address).
- data for classifying the device may be manufacturer information.
- the manufacturer information may be composed of 1 byte, and the manufacturer corresponding to a specific index value may be shared between devices in the form of a table, etc., to exchange the index value to recognize the information.
- the packet may have a maximum length of 31 bytes.
- the header indicates ADV_DIRECT_IND
- the payload may include three pieces of information.
- the three pieces of information include the address of the advertiser, the address of the target device, and the manufacturer information. That is, it is possible to generate an advertising packet by including address information of the target device more than when the address between devices is not known.
- the address of the target device includes the scanner's BLE device address, that is, the MAC address.
- an arbitrary address of the scanner may be used.
- handover is initiated by receiving a packet carrying a random address through in-band communication. That is, in any step of the wireless power transmission procedure of FIG. 5, handover occurs in a step in which a random address packet is received, and after handover is performed, information transmission required in each step is transmitted in an out band. For example, when a packet carrying a random address is received in the negotiation step 540, the handover is performed in the corresponding step, and the negotiation step is performed again after the handover, and then information is transmitted in the negotiation, correction, power transmission, and renegotiation steps. Can be done through out band.
- This embodiment relates to a method of setting up OOB communication using a white list to prevent cross-connection and establish secure OOB communication.
- the link layer of the wireless power receiver or the wireless power transmitter may perform device filtering while managing and maintaining the white list.
- the link manager can be limited to respond only to a specific set of devices (ie, white list). That is, transmissions or requests from devices not included in the white list are ignored.
- the white list is the opposite of the Black List, which is a list to be monitored or to restrict rights, and refers to a list of objects that are allowed access by releasing regulations or conditions. That is, information related to a trusted device (which may include an address of a device that was previously securely connected) may be included in the white list.
- device filtering includes an operation that responds only to MAC address devices in the white list and does not respond to MAC address devices (advertisers, scanners, initiators, etc.) other than the white list.
- Device filtering may be performed or managed under specific rules defined for each step, such as advertising, scanning, and initiating connection.
- the white list can be updated and managed with an arbitrary address as well as a MAC address.
- the random address is a static private address and a non-resolvable private address, it is difficult to identify an actual address through the random address. Therefore, in this case, the random address may be included in the white list during the maintenance period (for example, a specific power cycle), thereby benefiting as a white list device.
- the white list set as a protocol between devices can be controlled to be generated as an address with manageable rules so that the white list can be updated through the corresponding random address to receive benefits as a white list device.
- a MAC address can be derived from an arbitrary address using a known key value and hash value, and a white list can be updated and managed through the derived MAC address.
- the advertising filtering rule defines how the link layer of the advertiser handles scan and connection requests.
- the link layer of the advertiser processes only scan requests or connection requests from devices in the white list.
- the link layer of the advertiser processes scan requests from all devices, but in the case of connection requests, only the connection requests from terminals in the white list.
- the link layer of the advertiser processes connection requests from all devices, but in the case of scan requests, only scan requests from terminals in the white list are processed.
- the scanner filtering rules define how the link layer of the scanner processes advertising packets.
- the link layer of the scanner only processes advertising packets from devices in the white list.
- the initiator filtering rules define how the initiator's link layer handles advertising packets.
- the link layer of the scanner only processes connectable advertising packets from devices in the white list.
- the low-power Bluetooth (BLE) privacy feature allows the device to hide the actual address.
- the device can communicate using a random address rather than an actual address.
- any address may change over time. In particular, it can be newly set for every BLE connection.
- Arbitrary addresses can include two things:
- the device may perform (or select) an operation of initializing its static address to a new value after each power cycle. However, the device cannot change its static address within the power cycle.
- the public device address is composed of a 3 byte (3 byte) manufacturer assigned address (company_assigned) and a 3 byte (3 byte) manufacturer ID (company) id).
- a static address of an arbitrary address is composed of a total of 6 bytes of an arbitrary portion of 46 bits plus "1" and "1". Alternatively, it may be composed of any part of 48 bits.
- the reason address includes a non-resolvable reason address and a resolvable reason address.
- the non-resolvable reason address of an arbitrary address is composed of a total of 6 bytes with an arbitrary part of 46 bits plus "1" and "1". Alternatively, it may be composed of any part of 48 bits.
- the peer device can derive the real address using any address and/or the link key of the connection.
- the resolvable private address of an arbitrary address consists of a hash part of 24 bits, a friend part of 22 bits, and a total of 6 bytes plus "1" and "1".
- both static and private addresses can be used, but preferably a static address may be more suitable for security.
- FIG. 18 is an operation flowchart of performing a BLE connection based on a white list between a wireless power transmitter and a receiver according to an example.
- the wireless power receiving device 1810 and the transmitting device 1820 include in-band communication modules 1812 and 1822 and out-band (OOB) communication modules 1814 and 1824, respectively.
- the in-band communication modules 1812 and 1822 may transmit or receive packets based on coils in the operating frequency domain.
- the out-band communication modules 1814 and 1824 may be BLE communication modules.
- the in-band communication module 1812 of the wireless power receiver 1810 transmits an arbitrary address packet to the wireless power transmitter using in-band communication (Random Address Packet by Inband) (S1802).
- the in-band communication module 1824 of the wireless power transmission device 1820 transmits an arbitrary address in an arbitrary address packet received from the wireless power reception device 1810 to the out-band communication module 1824 (Transfer Random Address) (S1804) ). Then, the out-band communication module 1824 of the wireless power transmission device 1820 updates the white list with the received random address (White List Renewal) (S1806).
- the out-band communication module 1824 of the wireless power transmission device 1820 transmits a response signal to the wireless power reception device 1810 only when the wireless power reception device 1810 is included in the white list (No response except White) List) (S1808). If it is not included in the white list, a response signal is not transmitted.
- the wireless power receiving apparatus establishes a connection only with devices (that is, wireless power transmitting apparatus) existing in the white list.
- the in-band communication module 1922 of the wireless power transmitter 1920 transmits an arbitrary address packet to the wireless power transmitter using in-band communication (Random Address Packet by Inband) (S1902).
- in-band communication Random Address Packet by Inband
- the in-band communication module 1914 of the wireless power receiver 1910 transmits an arbitrary address in an arbitrary address packet received from the wireless power transmitter 1920 to the out-band communication module 1914 (Transfer Random Address) (S1904) ). Then, the out-band communication module 1914 of the wireless power transmission device 1910 updates the white list with the received random address (White List Renewal) (S1906).
- the out-band communication module 1914 of the wireless power receiver 1910 transmits a response signal to the wireless power transmitter 1920 only when the wireless power transmitter 1920 is included in the white list (No response except White) List) (S1908). If it is not included in the white list, a response signal is not transmitted. In this way, the wireless power receiving device 1910 can proactively operate the white list of the wireless power transmitting device 1920 and prevent cross-connection.
- 20 is an operation flowchart of performing a BLE connection based on a white list between a wireless power transmitter and a receiver according to another example.
- the wireless power transmission device 2020 may establish a connection with devices (ie, wireless power reception devices 2010) that exist only on the white list.
- the wireless power transmitter 2020 establishes a connection only with specific peer devices designated by the host and devices present in the white list (ie, wireless power transmitter 2010).
- the wireless power receiving apparatus 2010 may establish a connection with devices (ie, wireless power transmitting apparatus 2020) existing only on the white list.
- the in-band communication module 2012 of the wireless power receiver 2010 transmits a random address packet including its own address using the operating frequency-based in-band communication to the wireless power transmitter 2020. Is transmitted to the in-band communication module 2022 (Random Address Packet by Inband) (S2002).
- the in-band communication module 2022 of the wireless power transmission device 2020 transmits the received random address to the out-band communication module 2024 (Transfer Random Address) (S2004).
- the out-band communication module 2024 of the wireless power transmission device 2020 updates the white list based on the received random address (White List Renewal) (S2006).
- the wireless power transmission device 2020 manages a white list of the wireless power reception device 2010 and prevents cross-referencing.
- the cross-reference prevention may be performed together by the wireless power receiving device 2010. That is, the wireless power transmitting device 2020 and the receiving device 2010 may perform a cross check to prevent cross reference.
- the wireless power receiver 2010 manages the white list of the wireless power transmitter 2020 and starts a process of preventing cross-referencing.
- the in-band communication module 2022 of the wireless power transmission device 2020 uses an in-band communication based on the operating frequency to transmit an arbitrary address packet including its own address to the in-band communication module 2010 of the wireless power receiving device 2010 ( 2012) (Random Address Packet by Inband) (S2008).
- the in-band communication module 2012 of the wireless power receiver 2010 transmits the received random address to the out-band communication module 2014 (Transfer Random Address) (S20010).
- the out-band communication module 2014 of the wireless power receiving apparatus 2010 updates the white list based on the received random address (White List Renewal) (S2012).
- the out-band communication modules (2014, 2024) of both devices determine whether the other device is included in the white list and send a response only if it is included in the white list to perform a direct connection, otherwise the response signal It does not deliver to prevent unsafe connection in advance (S2014). That is, a BLE connection can be established only when the addresses are known to each other. Even if only one of the wireless power receiver 2010 and the wireless power transmitter 2020 is included in the white list, there is a device that does not transmit a response signal, thereby preventing direct connection.
- the wireless power receiving device and the receiving device prevent cross-referencing through mutual checks with each other, so that more secure BLE communication can be established.
- the wireless power transmitter in the embodiments of FIGS. 18 to 20 corresponds to the wireless power transmitter or wireless power transmitter or power transmitter disclosed in FIGS. 1 to 11. Accordingly, the operation of the wireless power transmission apparatus in this embodiment is implemented by one or a combination of two or more of each component of the wireless power transmission apparatus in FIGS. 1 to 11.
- the in-band communication module of the wireless power transmission device in this embodiment is the same as the in-band communication circuit 121 of Fig. 4C or 4D
- the out-band communication module of the wireless power transmission device is of Fig. 4C or 4D. It may be the same as the outband communication circuit 122.
- the wireless power receiver in the embodiments of FIGS. 18 to 20 corresponds to the wireless power receiver or wireless power receiver or power receiver disclosed in FIGS. 1 to 11. Accordingly, the operation of the wireless power receiver in this embodiment is implemented by one or a combination of two or more of each component of the wireless power receiver in FIGS. 1 to 11.
- the in-band communication module of the wireless power receiver in this embodiment is the same as the in-band communication circuit 221 of FIG. 4C or 4D
- the out-band communication module of the wireless power receiver is shown in FIG. 4C or 4D. It may be the same as the outband communication circuit 222.
- the wireless power transmission apparatus and method, or reception apparatus and method are not necessarily all of the components or steps, the wireless power transmission apparatus and method, or reception apparatus and method, are the above-described components. Or it may be performed including some or all of the steps. In addition, embodiments of the above-described wireless power transmission apparatus and method, or reception apparatus and method may be performed in combination with each other. In addition, each component or step described above is not necessarily performed in the order described, it is also possible that the steps described later are performed prior to the steps described first.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 명세서는 무선 전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법에 관한 것이다. 이러한 본 명세서는 전력 전송 페이즈에서 자기 커플링에 기반하여 생성된 무선전력을 무선전력 전송장치로부터 수신하도록 구성된 전력 픽업 회로, 및 인밴드 통신을 통해 무선전력 수신장치의 임의주소(random address)를 포함하는 제 1 임의주소 패킷을 무선전력 전송장치로 전송하거나 무선전력 전송장치의 임의주소를 포함하는 제 2 임의주소 패킷을 무선전력 전송장치로부터 수신하도록 구성된 통신 및 컨트롤 회로를 포함하는 무선전력 수신장치를 개시한다. 임의 주소(Random Address)를 이용하여 핸드오버를 수행함에 의해, 교차 참조(Cross Reference)를 방지하고 보안이 강화되며, 이에 따라 무선 충전 시스템에서 BLE 연결을 보다 안전하게 수행할 수 있다.
Description
본 발명은 무선전력 전송 시스템에 관한 것으로서, 보다 상세하게는 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법에 관한 것이다.
무선 전력 전송 기술은 전원 소스와 전자 기기 사이에 무선으로 전력을 전달하는 기술이다. 일 예로 무선 전력 전송 기술은 스마트폰이나 태블릿 등의 무선 단말기를 단지 무선 충전 패드 상에 올려놓는 것만으로 무선 단말기의 배터리를 충전할 수 있도록 함으로써, 기존의 유선 충전 커넥터를 이용하는 유선 충전 환경에 비해 보다 뛰어난 이동성과 편의성 그리고 안전성을 제공할 수 있다. 무선 전력 전송 기술은 무선 단말기의 무선 충전 이외에도, 전기 자동차, 블루투스 이어폰이나 3D 안경 등 각종 웨어러블 디바이스(wearable device), 가전기기, 가구, 지중시설물, 건물, 의료기기, 로봇, 레저 등의 다양한 분야에서 기존의 유선 전력 전송 환경을 대체할 것으로 주목받고 있다.
무선전력 전송방식을 비접촉(contactless) 전력 전송방식 또는 무접점(no point of contact) 전력 전송방식, 무선충전(wireless charging) 방식이라 하기도 한다. 무선전력 전송 시스템은, 무선전력 전송방식으로 전기에너지를 공급하는 무선전력 전송장치와, 상기 무선전력 전송장치로부터 무선으로 공급되는 전기에너지를 수신하여 배터리셀등 수전장치에 전력을 공급하는 무선전력 수신장치로 구성될 수 있다.
무선 전력 전송 기술은 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식 등 다양하다. 자기 커플링에 기반한 방식은 다시 자기 유도(magnetic induction) 방식과 자기 공진(magnetic resonance) 방식으로 분류된다. 자기유도 방식은 전송 측의 코일과 수신 측의 코일 간의 전자기결합에 따라 전송 측 코일배터리셀에서 발생시킨 자기장로 인해 수신 측 코일에 유도되는 전류를 이용하여 에너지를 전송하는 방식이다. 자기공진 방식은 자기장을 이용한다는 점에서 자기유도 방식과 유사하다. 하지만, 자기공진 방식은 전송 측의 코일과 수신 측의 코일에 특정 공진 주파수가 인가될 때 공진이 발생하고, 이로 인해 전송 측과 수신 측 양단에 자기장이 집중되는 현상에 의해 에너지가 전달되는 측면에서 자기유도와는 차이가 있다.
기존 무선전력 전송 시스템에서 무선전력 전송장치와 수신장치 간 통신은 일반적으로 자기장 변화를 이용한 진폭 변조 방식(amplitude shift keying: ASK) 또는 주파수 변화를 이용한 주파수 변조 방식(frequency shift keying: FSK)를 사용하고 있다. 그러나 ASK와 FSK의 전송 속도는 수 kHz에 불과하며 전기적, 자기적인 외란(disturbance)에 취약하기 때문에, 기존의 통신 방식은 진화된 무선전력 전송 시스템에서 요구되는 중전력급 전송이나 인증(authentication)과 같은 대용량 데이터 전송에 적합하지 않다.
따라서, 무선 전력 전송의 다양한 응용을 지원하기 위해, 무선전력 전송장치와 수신장치간에 여러 가지 통신 규약을 효율적으로 선택할 수 있는 방법이 요구된다.
본 발명의 기술적 과제는 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법을 제공함에 있다.
본 발명의 다른 기술적 과제는 무선전력 전송 시스템에서 이종의 통신 방법간에 핸드오버를 수행하는 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 기술적 과제는 무선 충전 시스템에서 통신 방법 전환을 위한 어드버타이징(advertising) 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 기술적 과제는 무선전력 전송 시스템에서 이종의 통신 방법을 지원하기 위한 패킷 구조와 절차를 제공함에 있다.
상기한 목적을 달성하기 위한 본 발명의 일 양태에 따른, 이종 통신을 지원하는 무선전력 수신장치는, 동작 주파수(operating frequency)에서 무선전력 전송장치와의 자기 커플링(magnetic coupling)에 의해 상기 무선전력 전송장치로부터 무선전력을 수신하고, 상기 무선전력에 의해 발생하는 교류 신호를 직류 신호로 변환하도록 구성된 전력 픽업 회로(power pick-up circuit), 상기 전력 픽업 회로로부터 상기 직류 신호를 공급받고, 상기 무선전력 전송장치와 통신을 수행하도록 구성된 통신/컨트롤 회로 및 상기 전력 픽업 회로로부터 상기 직류 신호를 공급받도록 구성된 부하(load)를 포함하되, 상기 통신/컨트롤 회로는 상기 동작 주파수를 이용하는 인밴드(in-band) 통신과 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드(out-band) 통신 중 적어도 하나를 이용하여 상기 무선전력 전송장치와 통신하고, 상기 통신/컨트롤 회로는 상기 인밴드 통신을 통해 상기 무선전력 수신장치의 임의주소(random address)를 포함하는 제 1 임의주소 패킷을 상기 무선전력 전송장치로 전송하거나 상기 무선전력 전송장치의 임의주소를 포함하는 제 2 임의주소 패킷을 상기 무선전력 전송장치로부터 수신하며, 상기 통신/컨트롤 회로는, 상기 전력 픽업 회로가 상기 무선전력을 수신하는 전력 전송 페이즈(power transfer phase)로 진입하기 전에, 상기 무선전력 수신장치의 임의주소 및 상기 무선전력 전송장치의 임의주소 중 적어도 하나를 이용하여, 상기 아웃밴드로의 핸드오버(handover) 절차를 수행하도록 구성될 수 있다.
상기 무선전력 수신장치 또는 상기 무선전력 전송장치의 임의주소는 매 아웃 밴드 연결마다 갱신될 수 있다.
상기 제 1 임의주소 패킷의 전송 절차는, 상기 제 1 임의주소 패킷을 상기 무선전력 전송장치로 전송하고, 상기 제 1 임의주소 패킷 수신에 대응한 응답 패킷을 상기 무선전력 전송장치로부터 수신함에 의해 이루어지되, 상기 제 1 임의주소 패킷을 송신한 후, 임계시간 동안 상기 응답 패킷을 수신하지 못할 경우, 상기 핸드오버 절차를 수행하지 않고 상기 제 1 임의주소 패킷을 상기 무선전력 전송장치로 재전송할 수 있다.
상기 제 1 임의주소 패킷 또는 상기 제 2 임의주소 패킷은 6바이트의 임의 주소 필드를 포함하는 구조로 이루어질 수 있다.
상기 통신/컨트롤 회로는 인-밴드 통신 모듈 및 아웃 밴드 통신 모듈을 포함하되, 핸드오버 절차가 완료되면, 상기 아웃 밴드 통신 모듈은, 상기 무선전력 수신장치의 임의주소 및 상기 무선전력 전송장치의 임의주소 중 적어도 하나를 이용하여 무선전력 전송장치와의 아웃 밴드 연결을 위한 페어링(pairing) 절차를 진행할 수 있다.
상기 페어링 절차에서, 어드버타이저(advertiser)의 주소를 포함하는 어드버타이징 패킷(advertising packet)을 상기 무선전력 전송장치로 전송하거나 상기 무선전력 전송장치로부터 수신하되, 상기 어드버타이저는 상기 무선전력 전송장치 또는 상기 무선전력 수신장치이고, 상기 어드버타이저의 주소는 임의주소를 포함할 수 있다.
상기 어드버타이징 패킷의 수신 이후, 상기 아웃 밴드 통신 모듈은, 연결 개시 절차(initiating connection)를 수행하되, 상기 연결 개시 절차에서, 상기 어드버타이징 패킷을 수신하여 상기 무선전력 전송장치와의 연결을 요청하며, 여기서, 상기 무선전력 전송장치와의 연결 요청시 상기 무선전력 수신장치의 주파수 호핑 시퀀스(frequency hopping sequence)에 상기 무선전력 전송장치가 동기화되도록 주파수 호핑 채널 맵(frequency hopping channel map) 정보를 포함시켜 전송할 수 있다.
상기 어드버타이징 절차와 상기 연결 개시 절차는 링크 계층(link layer)을 통해 이루어질 수 있다.
상기 어드버타이징 패킷은 프리앰블(preamble), 접근 주소(access address) 필드, PDU(Packet Data Unit) 필드 및 CRC(Cyclic Redundancy Check)로 구성되고, 상기 PDU 필드는 헤더(header) 및 페이로드(payload)로 구성되며, 상기 헤더에는 어드버타이징의 타입 정보가 포함되고, 상기 페이로드에는 상기 어드버타이저의 주소가 포함될 수 있다.
(i) 상기 인밴드 통신을 통해 상기 무선전력 수신장치와 상기 무선전력 전송장치 간의 주소를 알고 있는 경우, 상기 어드버타이징 타입 정보는 연결가능한 비지향성 광고 이벤트(ADV_DIRECT_IND)로 설정되고, 상기 페이로드에는 상기 어드버타이저의 주소와 타겟 디바이스(Target Device)의 주소가 포함되며, (ii) 상기 인밴드 통신을 통해 상기 무선전력 수신장치와 상기 무선전력 전송장치 간의 주소를 모르고 있는 경우, 상기 어드버타이징 타입 정보는 연결 가능한 비지향성 광고 이벤트(ADV_IND)로 설정되고, 상기 페이로드에는 상기 어드버타이저의 주소가 포함될 수 있다.
상기 페어링 절차에서, 화이트 리스트(white list)를 기반으로 장치 필터링(device fitering)이 이루어지되, 상기 화이트 리스트는 특정 디바이스들의 집합(a certain set of devices)일 수 있다.
상기 화이트 리스트는 임의 주소를 기반으로 갱신될 수 있다.
상기 장치 필터링은 어드버타이징 절차, 스캐닝 절차 및 연결 개시 절차 중 적어도 하나에서 이루어질 수 있다.
상기 어드버타이징 절차에서, 상기 무선전력 수신장치의 링크 계층은 스캔 및 연결 요청을 처리하되, (i) 상기 화이트 리스트에 포함된 장치로부터의 스캔 및 연결 요청만 처리하거나, (ii) 모든 장치로부터의 스캔 요청을 처리하되, 연결 요청에 대해서는, 상기 화이트 리스트에 포함된 장치로부터의 연결 요청만 처리하거나, 또는 (iii) 모든 장치로부터의 연결 요청을 처리하되, 스캔 요청에 대해서는, 상기 화이트 리스트에 포함된 장치로부터의 스캔 요청만 처리할 수 있다.
상기 스캐닝 절차 또는 상기 연결 개시 절차에서, 상기 무선전력 수신장치의 링크 계층은 화이트 리스트 내에 포함된 장치로부터의 어드버타이징 패킷만을 처리할 수 있다.
상기 통신/컨트롤 회로는 인-밴드 통신 모듈 및 아웃 밴드 통신 모듈을 포함하되, 상기 인-밴드 통신 모듈이 상기 제 2 임의주소 패킷을 수신하면, 상기 인-밴드 통신 모듈은 상기 무선전력 전송장치의 임의 주소를 상기 아웃 밴드 통신 모듈로 전달하고, 상기 아웃 밴드 통신 모듈은 상기 무선전력 전송장치의 임의주소를 이용하여 상기 화이트 리스트를 갱신할 수 있다.
상기 아웃 밴드 통신 모듈은 상기 무선전력 전송장치의 임의주소를 이용하여 상기 무선전력 전송장치가 상기 화이트 리스트 내에 포함된 경우에 한하여 응답 패킷을 상기 무선전력 전송장치로 전송할 수 있다.
상기한 목적을 달성하기 위한 본 발명의 일 양태에 따른, 동작 주파수(operating frequency)에서 무선전력 전송장치와의 자기 커플링(magnetic coupling)에 의해 상기 무선전력 전송장치로부터 무선전력을 수신하도록 구성된 무선전력 수신장치가 이종 통신을 수행하는 방법은, 식별 및 설정 페이즈에서, 상기 동작 주파수를 이용하는 인밴드 통신을 통해, 상기 무선전력 수신장치의 임의주소(random address)를 포함하는 제 1 임의주소 패킷을 상기 무선전력 전송장치로 전송하거나 상기 무선전력 전송장치의 임의주소를 포함하는 제 2 임의주소 패킷을 상기 무선전력 전송장치로부터 수신하는 단계, 전력 전송 페이즈(power transfer phase)로 진입하기 전에, 상기 무선전력 수신장치의 임의주소 및 상기 무선전력 전송장치의 임의주소 중 적어도 하나를 이용하여, 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드로의 핸드오버(handover) 절차를 수행하는 단계 및 상기 전력 전송 페이즈에서, 상기 무선전력을 수신하는 단계를 포함할 수 있다.
상기한 목적을 달성하기 위한 본 발명의 다른 양태에 따른, 이종 통신을 지원하는 무선전력 전송장치는, 동작 주파수(operating frequency)에서 무선전력 수신장치와의 자기 커플링(magnetic coupling)에 의해 상기 무선전력 수신장치로 무선전력을 전송하는 전력 변환 회로(power conversion cirtuit) 및 상기 동작 주파수를 이용하는 인밴드(in-band) 통신과 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드(out-band) 통신 중 적어도 하나를 수행하는 통신/컨트롤 회로를 포함하되, 상기 통신/컨트롤 회로는 상기 인밴드 통신을 통해 상기 무선전력 전송장치의 임의주소(random address)를 포함하는 제 1 임의주소 패킷을 상기 무선전력 수신장치로 전송하거나 상기 무선전력 수신장치의 임의주소를 포함하는 제 2 임의주소 패킷을 상기 무선전력 수신장치로부터 수신하며, 상기 통신/컨트롤 회로는, 상기 전력 변환 회로가 상기 무선전력을 전송하는 전력 전송 페이즈(power transfer phase)로 진입하기 전에, 상기 무선전력 전송장치의 임의주소 및 상기 무선전력 수신장치의 임의주소 중 적어도 하나를 이용하여, 상기 아웃밴드로의 핸드오버(handover) 절차를 수행하도록 구성될 수 있다.
상기한 목적을 달성하기 위한 본 발명의 다른 양태에 따른, 동작 주파수(operating frequency)에서 무선전력 수신장치와의 자기 커플링(magnetic coupling)에 의해 상기 무선전력 수신장치로 무선전력을 전송하도록 구성된 무선전력 전송장치가 이종 통신을 수행하는 방법은, 식별 및 설정 페이즈에서, 상기 동작 주파수를 이용하는 인밴드 통신을 통해, 상기 무선전력 전송장치의 임의주소(random address)를 포함하는 제 1 임의주소 패킷을 상기 무선전력 수신장치로 전송하거나 상기 무선전력 수신장치의 임의주소를 포함하는 제 2 임의주소 패킷을 상기 무선전력 수신장치로부터 수신하는 단계, 전력 전송 페이즈(power transfer phase)로 진입하기 전에, 상기 무선전력 전송장치의 임의주소 및 상기 무선전력 수신장치의 임의주소 중 적어도 하나를 이용하여, 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드로의 핸드오버(handover) 절차를 수행하는 단계 및 상기 전력 전송 페이즈에서, 상기 무선전력을 전송하는 단계를 포함할 수 있다.
본 실시예에 따르면, 임의 주소(Random Address)를 이용하여 핸드오버를 수행함에 의해, 교차 참조(Cross Reference)를 방지하고 보안이 강화되는 효과가 있다. 이에 따라 무선 충전 시스템에서 BLE 연결을 보다 안전하게 수행하는 효과가 있다.
도 1은 일 실시예에 따른 무선 전력 시스템의 블록도이다.
도 2는 다른 실시예에 따른 무선 전력 시스템의 블록도이다.
도 3a는 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3b는 무선 전력 전송 시스템에서 WPC NDEF의 일례를 나타낸다.
도 4a는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4b는 본 발명이 적용될 수 있는 블루투스 통신 아키텍처(Architecture)의 일 예를 나타낸 개념도이다.
도 4c는 일례에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4d는 다른 예에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다.
도 9는 일 실시예에 따른 통신 프레임 구조를 나타낸다.
도 10은 일 실시예에 따른 싱크 패턴의 구조이다.
도 11은 일 실시예에 따른 쉐어드 모드에서 무선 전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시한다.
도 12는 일 실시예에 따른 무선전력 전송장치와 무선전력 수신장치 간에 BLE 연결 절차를 도시한 흐름도이다.
도 13a 및 도 13b는 일 실시예에 따른 무선전력 수신장치와 무선전력 송신장치의 임의 주소(Random Address) 송수신을 통한 BLE 연결 절차를 도시한 흐름도이다.
도 14는 본 실시예에 따른 랜덤 주소를 포함하는 통신 패킷 구조를 도시한 개념도이다.
도 15는 본 실시예에 따른 무선전력 전송장치와 무선전력 수신장치 간에 BLE 페어링(pairing) 과정을 도시한 흐름도이다.
도 16은 본 실시예에 따른 BLE 페어링 과정에서 교환되는 패킷 구조를 나타낸 개념도이다.
도 17은 본 실시예에 따른 BLE 페어링 과정에서 교환되는 패킷의 PDU 부분의 구조를 구체화한 개념도이다.
도 18은 일례에 따른 무선전력 전송장치와 수신장치간의 화이트 리스트(White List)를 기반으로 BLE 연결을 수행하는 동작 흐름도이다.
도 19는 다른 예에 따른 무선전력 전송장치와 수신장치간의 화이트 리스트를 기반으로 BLE 연결을 수행하는 동작 흐름도이다.
도 20은 또 다른 예에 따른 무선전력 전송장치와 수신장치간의 화이트 리스트를 기반으로 BLE 연결을 수행하는 동작 흐름도이다.
이하에서 사용되는 "무선 전력" 이라는 용어는, 물리적인 전자기 전도체들의 사용없이 무선전력 전송기(wireless power transmitter)로부터 무선전력 수신장치(wireless power receiver)로 전달되는 전기장, 자기장, 전자기장 등과 관련된 임의의 형태의 에너지를 의미하도록 사용된다. 무선전력은 무선 전력 신호(wireless power signal)이라고 불릴 수도 있으며, 1차 코일과 2차 코일에 의해 둘러싸이는(enclosed) 진동하는 자속(oscillating magnetic flux)을 의미할 수 있다. 예를 들어, 이동 전화기, 코드리스 전화기, iPod, MP3 플레이어, 헤드셋 등을 포함하는 디바이스들을 무선으로 충전하기 위해 시스템에서의 전력 변환이 여기에 설명된다. 일반적으로, 무선 전력 전송의 기본적인 원리는, 예를 들어, 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식을 모두 포함한다.
도 1은 일 실시예에 따른 무선 전력 시스템의 블록도이다.
도 1을 참조하면, 무선 전력 시스템(10)은 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)를 포함한다.
무선 전력 전송 장치(100)는 외부의 전원 소스(S)로부터 전원을 인가받아 자기장을 발생시킨다. 무선 전력 수신 장치(200)는 발생된 자기장을 이용하여 전류를 발생시켜 무선으로 전력을 수신받는다.
또한, 무선 전력 시스템(10)에서 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)는 무선 전력 전송에 필요한 다양한 정보를 송수신할 수 있다. 여기서, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)간의 통신은 무선 전력 전송에 이용되는 자기장을 이용하는 인-밴드 통신(in-band communication)이나 별도의 통신 캐리어를 이용하는 아웃-밴드 통신(out-band communication) 중 어느 하나의 방식에 따라 수행될 수 있다. 아웃-밴드 통신은 아웃-오브-밴드(out-of-band) 통신이라 불릴 수도 있다. 이하에서는 아웃-밴드 통신으로 용어를 통일하여 기술한다. 아웃-밴드 통신의 예로서 NFC, 블루투스(bluetooth), BLE(bluetooth low energy) 등을 포함할 수 있다.
여기서, 무선 전력 전송 장치(100)는 고정형 또는 이동형으로 제공될 수 있다. 고정형의 예로는 실내의 천장이나 벽면 또는 테이블 등의 가구에 임베디드(embedded)되는 형태, 실외의 주차장, 버스 정류장이나 지하철역 등에 임플란트 형식으로 설치되는 형태나 차량이나 기차 등의 운송 수단에 설치되는 형태 등이 있다. 이동형인 무선 전력 전송 장치(100)는 이동 가능한 무게나 크기의 이동형 장치나 노트북 컴퓨터의 덮개 등과 같이 다른 장치의 일부로 구현될 수 있다.
또 무선 전력 수신 장치(200)는 배터리를 구비하는 각종 전자 기기 및 전원 케이블 대신 무선으로 전원을 공급받아 구동되는 각종 가전 기기를 포함하는 포괄적인 개념으로 해석되어야 한다. 무선 전력 수신 장치(200)의 대표적인 예로는, 이동 단말기(portable terminal), 휴대 전화기(cellular phone), 스마트폰(smart phone), 개인 정보 단말기(PDA: Personal Digital Assistant), 휴대 미디어 플레이어(PMP: Portable Media Player), 와이브로 단말기(Wibro terminal), 태블릿(tablet), 패블릿(phablet), 노트북(notebook), 디지털 카메라, 네비게이션 단말기, 텔레비전, 전기차량(EV: Electronic Vehicle) 등이 있다.
무선 전력 시스템(10)에서 무선 전력 수신 장치(200)는 하나 또는 복수일 수 있다. 도 1에서는 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)가 일대일로 전력을 주고 받는 것으로 표현되고 있으나, 도 2와 같이 하나의 무선 전력 전송 장치(100)가 복수의 무선 전력 수신 장치(200-1, 200-2,..., 200-M)로 전력을 전달하는 것도 가능하다. 특히, 자기 공진 방식으로 무선 전력 전송을 수행하는 경우에는 하나의 무선 전력 전송 장치(100)가 동시 전송 방식이나 시분할 전송 방식을 응용하여 동시에 여러 대의 무선 전력 수신 장치(200-1, 200-2,...,200-M)로 전력을 전달할 수 있다.
또한, 도 1에는 무선 전력 전송 장치(100)가 무선 전력 수신 장치(200)에 바로 전력을 전달하는 모습이 도시되어 있으나, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200) 사이에 무선전력 전송 거리를 증대시키기 위한 릴레이(relay) 또는 중계기(repeater)와 같은 별도의 무선 전력 송수신 장치가 구비될 수 있다. 이 경우, 무선 전력 전송 장치(100)로부터 무선 전력 송수신 장치로 전력이 전달되고, 무선 전력 송수신 장치가 다시 무선 전력 수신 장치(200)로 전력을 전달할 수 있다.
이하 본 명세서에서 언급되는 무선전력 수신기, 전력 수신기, 수신기는 무선 전력 수신 장치(200)를 지칭한다. 또한 본 명세서에서 언급되는 무선전력 전송기, 전력 전송기, 전송기는 무선 전력 수신 전송 장치(100)를 지칭한다.
도 3a는 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3a에는 무선 전력 전송 시스템에서 송신 및 수신하는 전력 양에 따라 전자 기기들을 분류하여 도시하였다. 도 3a를 참조하면, 스마트 시계(Smart watch), 스마트 글래스(Smart Glass), HMD(Head Mounted Display), 및 스마트 링(Smart ring)과 같은 웨어러블 기기들 및 이어폰, 리모콘, 스마트폰, PDA, 태블릿 PC 등의 모바일 전자 기기들(또는 포터블 전자 기기들)에는 소전력(약 5W이하 또는 약 20W 이하) 무선 충전 방식이 적용될 수 있다.
노트북, 로봇 청소기, TV, 음향 기기, 청소기, 모니터와 같은 중/소형 가전 기기들에는 중전력(약 50W이하 또는 약 200W)이하) 무선 충전 방식이 적용될 수 있다. 믹서기, 전자 레인지, 전기 밥솥과 같은 주방용 가전 기기, 휠체어, 전기 킥보드, 전기 자전거, 전기 자동차 등의 개인용 이동 기기들(또는, 전자 기기/이동 수단들)은 대전력(약 2kW 이하 또는 22kW이하) 무선 충전 방식이 적용될 수 있다.
상술한(또는 도 1에 도시된) 전자 기기들/이동 수단들은 후술하는 무선 전력 수신기를 각각 포함할 수 있다. 따라서, 상술한 전자 기기들/이동 수단들은 무선 전력 송신기로부터 무선으로 전력을 수신하여 충전될 수 있다.
이하에서는 전력 무선 충전 방식이 적용되는 모바일 기기를 중심으로 설명하나 이는 실시예에 불과하며, 본 발명에 따른 무선 충전 방법은 상술한 다양한 전자 기기에 적용될 수 있다.
무선전력 전송에 관한 표준(standard)은 WPC(wireless power consortium), AFA(air fuel alliance), PMA(power matters alliance)을 포함한다.
WPC 표준은 기본 전력 프로파일(baseline power profile: BPP)과 확장 전력 프로파일(extended power profile: EPP)을 정의한다. BPP는 5W의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이고, EPP는 5W보다 크고 30W보다 작은 범위의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이다.
서로 다른 전력레벨(power level)을 사용하는 다양한 무선전력 전송장치와 수신장치들이 각 표준별로 커버되고, 서로 다른 전력 클래스(power class) 또는 카테고리로 분류될 수 있다.
예를 들어, WPC는 무선전력 전송장치와 수신장치를 전력 클래스(power class :PC) -1, PC0, PC1, PC2로 분류하고, 각 PC에 대한 표준문서를 제공한다. PC-1 표준은 5W 미만의 보장전력(guaranteed power)을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC-1의 어플리케이션은 스마트 시계와 같은 웨어러블 기기를 포함한다.
PC0 표준은 5W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC0 표준은 보장전력이 30W까지인 EPP를 포함한다. 인-밴드(in-band :IB) 통신이 PC0의 필수적인(mandatory) 통신 프로토콜이나, 옵션의 백업 채널로 사용되는 아웃-밴드(out-band : OB) 통신도 사용될 수 있다. 무선전력 수신장치는 OB의 지원 여부를 구성 패킷(configuration packe)내의 OB 플래그를 설정함으로써 식별할 수 있다. OB를 지원하는 무선전력 전송장치는 상기 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴(bit-pattern)을 전송함으로써 OB 핸드오버 페이즈(handover phase)로 진입할 수 있다. 상기 구성 패킷에 대한 응답은 NAK, ND 또는 새롭게 정의되는 8비트의 패턴일 수 있다. PC0의 어플리케이션은 스마트폰을 포함한다.
PC1 표준은 30W~150W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. OB는 PC1을 위한 필수적인 통신 채널이며, IB는 OB로의 초기화 및 링크 수립(link establishment)로서 사용된다. 무선전력 전송장치는 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴을 이용하여 OB 핸드오버 페이즈로 진입할 수 있다. PC1의 어플리케이션은 랩탑이나 전동 공구(power tool)을 포함한다.
PC2 표준은 200W~2kW의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것으로서, 그 어플리케이션은 주방가전을 포함한다.
이렇듯 전력 레벨에 따라 PC가 구별될 수 있으며, 동일한 PC간 호환성(compatibility)을 지원할지 여부는 선택 또는 필수 사항일 수 있다. 여기서 동일한 PC간 호환성은, 동일한 PC 간에는 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 동일한 PC x를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 동일한 PC간 호환성이 유지되는 것으로 볼 수 있다. 이와 유사하게 서로 다른 PC간의 호환성 역시 지원 가능할 수 있다. 여기서 서로 다른 PC간 호환성은, 서로 다른 PC 간에도 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 PC y를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 서로 다른 PC간 호환성이 유지되는 것으로 볼 수 있다.
PC간 호환성의 지원은 사용자 경험(User Experience) 및 인프라 구축 측면에서 매우 중요한 이슈이다. 다만, PC간 호환성 유지에는 기술적으로 아래와 같은 여러 문제점이 존재한다.
동일한 PC간 호환성의 경우, 예를 들어, 연속적으로 전력이 전송되는 경우에만 안정적으로 충전이 가능한 랩-탑 충전(lap-top charging) 방식의 무선 전력 수신장치는, 동일한 PC의 무선 전력 송신장치라 하더라도, 불연속적으로 전력을 전송하는 전동 툴 방식의 무선 전력 송신장치로부터 전력을 안정적으로 공급받는 데 문제가 있을 수 있다. 또한, 서로 다른 PC간 호환성의 경우, 예를 들어, 최소 보장 전력이 200W인 무선 전력 송신장치는 최대 보장 전력이 5W인 무선 전력 수신장치로 전력을 송신하는 경우, 과전압으로 인해 무선전력 수신장치가 파손될 위험이 있다. 그 결과, PC는 호환성을 대표/지시하는 지표/기준으로 삼기 어렵다.
무선전력 전송 및 수신장치들은 매우 편리한 사용자 경험과 인터페이스(UX/UI)를 제공할 수 있다. 즉, 스마트 무선충전 서비스가 제공될 수 있다, 스마트 무선충전 서비스는 무선전력 전송장치를 포함하는 스마트폰의 UX/UI에 기초하여 구현될 수 있다. 이러한 어플리케이션을 위해, 스마트폰의 프로세서와 무선충전 수신장치간의 인터페이스는 무선전력 전송장치와 수신장치간의 "드롭 앤 플레이(drop and play)" 양방향 통신을 허용한다.
일례로서, 사용자는 호텔에서 스마트 무선 충전 서비스를 경험할 수 있다. 사용자가 호텔 방으로 입장하고 방안의 무선충전기 위에 스마트폰을 올려놓으면, 무선충전기는 스마트폰으로 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이 과정에서, 무선충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 부가적 특징으로의 동의(opt-in)를 문의하는 상태로 진입한다. 이를 위해, 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Welcome to ### hotel. Select "Yes" to activate smart charging functions : Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 그리고 스마트폰과 무선충전기는 스마트 충전 기능을 함께 수행한다.
스마트 무선 충전 서비스는 또한 WiFi 자격(wifi credentials) 자동 입력(auto-filled)을 수신하는 것을 포함할 수 있다. 예를 들어, 무선충전기는 WiFi 자격을 스마트폰으로 전송하고, 스마트폰은 적절한 앱을 실행하여 무선충전기로부터 수신된 WiFi 자격을 자동적으로 입력한다.
스마트 무선 충전 서비스는 또한 호텔 프로모션을 제공하는 호텔 어플리케이션을 실행하거나, 원격 체크인/체크아웃 및 컨택 정보들을 획득하는 것을 포함할 수 있다.
다른 예로서, 사용자는 차량 내에서 스마트 무선 충전 서비스를 경험할 수 있다. 사용자가 차량에 탑승하고 스마트폰을 무선충전기 위에 올려놓으면, 무선충전기는 스마트폰에 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이러한 과정에서, 무선 충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 신분(identity)를 확인을 문의하는 상태로 진입한다.
이 상태에서, 스마트폰은 WiFi 및/또는 블루투스를 통해 자동적으로 자동차와 연결된다. 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Welcome to your car. Select "Yes" to synch device with in-car controls : Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 그리고 스마트폰과 무선충전기는 차량내 어플리케이션/디스플레이 소프트웨어를 구동함으로서, 차량 내 스마트 제어 기능을 함께 수행할 수 있다. 사용자는 원하는 음악을 즐길 수 있고, 정규적인 맵 위치를 확인할 수 있다. 차량 내 어플리케이션/디스플레이 소프트웨어는 통행자들을 위한 동기화 접근을 제공하는 성능을 포함할 수 있다.
또 다른 예로서, 사용자는 스마트 무선 충전을 댁내에서 경험할 수 있다. 사용자가 방으로 들어가서 방안의 무선충전기 위에 스마트폰을 올려놓으면, 무선충전기는 스마트폰으로 무선전력을 전송하고, 스마트폰은 무선전력을 수신한다. 이 과정에서, 무선충전기는 스마트 무선 충전 서비스에 관한 정보를 스마트폰으로 전송한다. 스마트폰이 무선충전기 상에 위치됨을 감지하거나, 무선전력의 수신을 감지하거나, 또는 스마트폰이 무선충전기로부터 스마트 무선 충전 서비스에 관한 정보를 수신하면, 스마트폰은 사용자에게 부가적 특징으로의 동의(opt-in)를 문의하는 상태로 진입한다. 이를 위해, 스마트폰은 알람음을 포함하거나 또는 포함하지 않는 방식으로 스크린상에 메시지를 디스플레이할 수 있다. 메시지의 일례는 "Hi xxx, Would you like to activate night mode and secure the building?: Yes | No Thanks."와 같은 문구를 포함할 수 있다. 스마트폰은 Yes 또는 No Thanks를 선택하는 사용자의 입력을 받고, 사용자에 의해 선택된 다음 절차를 수행한다. 만약 Yes가 선택되면 스마트폰은 무선충전기에 해당 정보를 전송한다. 스마트폰과 무선 충전기는 적어도 사용자의 패턴을 인지하고 사용자에게 문과 창문을 잠그거나 불을 끄거나, 알람을 설정하도록 권유할 수 있다.
이하에서는 호환성을 대표/지시하는 지표/기준으로 '프로필(profile)'을 새롭게 정의하기로 한다. 즉, 동일한 '프로필'을 갖는 무선 전력 송수신 장치간에는 호환성이 유지되어 안정적인 전력 송수신이 가능하며, 서로 다른 '프로필'을 갖는 무선 전력 송수신장치간에는 전력 송수신이 불가한 것으로 해석될 수 있다. 프로필은 전력 클래스와 무관하게(또는 독립적으로) 호환 가능 여부 및/또는 어플리케이션에 따라 정의될 수 있다.
프로필은 크게 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 이렇게 3가지로 구분될 수 있다.
또는, 프로필은 크게 i) 모바일, ii) 전동 툴, iii) 주방 및 iv) 웨어러블 이렇게 4가지로 구분될 수 있다.
'모바일' 프로필의 경우, PC는 PC0 및/또는 PC1, 통신 프로토콜/방식은 IB 및 OB, 동작 주파수는 87~205kHz로 정의될 수 있으며, 어플리케이션의 예시로는 스마트폰, 랩-탑 등이 존재할 수 있다.
'전동 툴' 프로필의 경우, PC는 PC1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~145kHz로 정의될 수 있으며, 어플리케이션의 예시로는 전동 툴 등이 존재할 수 있다.
'주방' 프로필의 경우, PC는 PC2, 통신 프로토콜/방식은 NFC-기반, 동작 주파수는 100kHz 미만으로 정의될 수 있으며, 어플리케이션의 예시로는 주방/가전 기기 등이 존재할 수 있다.
전동 툴과 주방 프로필의 경우, 무선전력 전송장치와 수신장치 간에 NFC 통신이 사용될 수 있다. 무선전력 전송장치와 수신장치는 WPC NDEF(NFC Data Exchange Profile Format)을 교환함으로써 상호간에 NFC 기기임을 확인할 수 있다. 예를 들어 WPC NDEF는 도 3B와 같이 어플리케이션 프로파일(application profile) 필드(예를 들어 1B), 버전 필드(예를 들어 1B), 및 프로파일 특정 데이터(profile specific data, 예를 들어 1B)를 포함할 수 있다. 어플리케이션 프로파일 필드는 해당 장치가 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 중 어느 것인지를 지시하고, 버전 필드의 상위 니블(upper nibble)은 메이저 버전(major version)을 지시하고 하위 니블(lower nibble)은 마이너 버전(minor version)을 지시한다. 또한 프로파일 특정 데이터는 주방을 위한 컨텐츠를 정의한다.
'웨어러블' 프로필의 경우, PC는 PC-1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~205kHz으로 정의될 수 있으며, 어플리케이션의 예시로는 사용자 몸에 착용하는 웨어러블 기기 등이 존재할 수 있다.
동일한 프로필간에는 호환성 유지는 필수 사항일 수 있으며, 다른 프로필간의 호환성 유지는 선택 사항일 수 있다.
상술한 프로필(모바일 프로필, 전동 툴 프로필, 주방 프로필 및 웨어러블 프로필)들은 제1 내지 제n 프로필로 일반화되어 표현될 수 있으며, WPC 규격 및 실시예에 따라 새로운 프로필이 추가/대체될 수 있다.
이와 같이 프로필이 정의되는 경우, 무선 전력 전송장치가 자신과 동일한 프로필의 무선 전력 수신장치에 대해서만 선택적으로 전력 송신을 수행하여 보다 안정적으로 전력 송신이 가능하다. 또한 무선 전력 전송장치의 부담이 줄어들고, 호환이 불가능한 무선 전력 수신장치로의 전력 송신을 시도하지 않게 되므로 무선 전력 수신장치의 파손 위험이 줄어든다는 효과가 발생한다.
'모바일' 프로필 내의 PC1은 PC0를 기반으로 OB와 같은 선택적 확장을 차용함으로써 정의될 수 있으며, '전동 툴' 프로필의 경우, PC1 '모바일' 프로필이 단순히 변경된 버전으로서 정의될 수 있다. 또한, 현재까지는 동일한 프로필간의 호환성 유지를 목적으로 정의되었으나, 추후에는 서로 다른 프로필간의 호환성 유지 방향으로 기술이 발전될 수 있다. 무선 전력 전송장치 또는 무선 전력 수신장치는 다양한 방식을 통해 자신의 프로필을 상대방에게 알려줄 수 있다.
AFA 표준은 무선 전력 전송장치를 PTU(power transmitting circuit)이라 칭하고, 무선 전력 수신장치를 PRU(power receiving circuit)이라 칭하며, PTU는 표 1과 같이 다수의 클래스로 분류되고, PRU는 표 2와 같이 다수의 카테고리로 분류된다.
PTX_IN_MAX | 최소 카테고리 지원 요구사항 | 지원되는 최대 기기 개수를 위한 최소값 | |
Class 1 | 2W | 1x 카테고리 1 | 1x 카테고리 1 |
Class 2 | 10W | 1x 카테고리 3 | 2x 카테고리 2 |
Class 3 | 16W | 1x 카테고리 4 | 2x 카테고리 3 |
Class 4 | 33W | 1x 카테고리 5 | 3x 카테고리 3 |
Class 5 | 50W | 1x 카테고리 6 | 4x 카테고리 3 |
Class 6 | 70W | 1x 카테고리 7 | 5x 카테고리 3 |
PRU | PRX_OUT_MAX' | 예시 어플리케이션 |
Category 1 | TBD | 블루투스 헤드셋 |
Category 2 | 3.5W | 피쳐폰 |
Category 3 | 6.5W | 스마트폰 |
Category 4 | 13W | 태블릿, 패플릿 |
Category 5 | 25W | 작은 폼팩터 랩탑 |
Category 6 | 37.5W | 일반 랩탑 |
Category 7 | 50W | 가전 |
표 1에서와 같이, 클래스 n PTU의 최대 출력 전력 성능(capability)은 해당 클래스의 PTX_IN_MAX 값보다 크거나 같다. PRU는 해당 카테고리에서 명세된(specified) 전력보다 더 큰 전력을 끌어당길(draw) 수는 없다.
도 4a는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4a를 참조하면, 무선 전력 전송 시스템(10)은 무선으로 전력을 수신하는 모바일 기기(Mobile Device)(450) 및 무선으로 전력을 송신하는 베이스 스테이션(Base Station)(400)을 포함한다.
베이스 스테이션(400)은 유도 전력 또는 공진 전력을 제공하는 장치로서, 적어도 하나의 무선 전력 전송장치(power transmitter, 100) 및 시스템 회로(405)을 포함할 수 있다. 무선 전력 전송장치(100)는 유도 전력 또는 공진 전력을 전송하고, 전송을 제어할 수 있다. 무선 전력 전송장치(100)는, 1차 코일(primary coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환하는 전력 변환 회로(power conversion circuit, 110) 및 적절한 레벨로 전력을 전달하도록 무선 전력 수신장치(200)와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 회로(communications & control circuit, 120)을 포함할 수 있다. 시스템 회로(405)은 입력 전력 프로비저닝(provisioning), 복수의 무선전력 전송장치들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션(400)의 기타 동작 제어를 수행할 수 있다.
1차 코일은 교류 전력(또는 전압 또는 전류)을 이용하여 전자기장을 발생시킬 수 있다. 1차 코일은 전력 변환 회로(110)에서 출력되는 특정 주파수의 교류전력(또는 전압 또는 전류)을 인가받고, 이에 따라 특정 주파수의 자기장을 발생시킬 수 있다. 자기장은 비방사형 또는 방사형으로 발생할 수 있는데, 무선 전력 수신 장치(200)는 이를 수신하여 전류를 생성하게 된다. 다시 말해 1차 코일은 무선으로 전력을 전송하는 것이다.
자기 유도 방식에서, 1차 코일과 2차 코일은 임의의 적합한 형태들을 가질 수 있으며, 예컨대, 페라이트 또는 비정질 금속과 같은 고투자율의 형성물의 주위에 감긴 동선일 수 있다. 1차 코일은 전송 코일(transmitting coil), 1차 코어(primary core), 1차 와인딩(primary winding), 1차 루프 안테나(primary loop antenna) 등으로 불릴 수도 있다. 한편, 2차 코일은 수신 코일(receiving coil), 2차 코어(secondary core), 2차 와인딩(secondary winding), 2차 루프 안테나(secondary loop antenna), 픽업 안테나(pickup antenna) 등으로 불릴 수도 있다.
자기 공진 방식을 이용하는 경우에는 1차 코일과 2차 코일은 각각 1차 공진 안테나와 2차 공진 안테나 형태로 제공될 수 있다. 공진 안테나는 코일과 캐패시터를 포함하는 공진 구조를 가질 수 있다. 이때 공진 안테나의 공진 주파수는 코일의 인덕턴스와 캐패시터의 캐패시턴스에 의해 결정된다. 여기서, 코일은 루프의 형태로 이루어질 수 있다. 또 루프의 내부에는 코어가 배치될 수 있다. 코어는 페라이트 코어(ferrite core)와 같은 물리적인 코어나 공심 코어(air core)를 포함할 수 있다.
1차 공진 안테나와 2차 공진 안테나 간의 에너지 전송은 자기장의 공진 현상을 통해 이루어질 수 있다. 공진 현상이란 하나의 공진 안테나에서 공진 주파수에 해당하는 근접장이 발생할 때 주위에 다른 공진 안테나가 위치하는 경우, 양 공진 안테나가 서로 커플링되어 공진 안테나 사이에서 높은 효율의 에너지 전달이 일어나는 현상을 의미한다. 1차 공진 안테나와 2차 공진 안테나 안테나 사이에서 공진 주파수에 해당하는 자기장이 발생하면, 1차 공진 안테나와 2차 공진 안테나가 서로 공진하는 현상이 발생되고, 이에 따라 일반적인 경우 1차 공진 안테나에서 발생한 자기장이 자유공간으로 방사되는 경우에 비해 보다 높은 효율로 2차 공진 안테나를 향해 자기장이 집속되며, 따라서 1차 공진 안테나로부터 2차 공진 안테나에 높은 효율로 에너지가 전달될 수 있다. 자기 유도 방식은 자기 공진 방식과 유사하게 구현될 수 있으나 이때에는 자기장의 주파수가 공진 주파수일 필요가 없다. 대신 자기 유도 방식에서는 1차 코일과 2차 코일을 구성하는 루프 간의 정합이 필요하며 루프 간의 간격이 매우 근접해야 한다.
도면에 도시되지 않았으나, 무선 전력 전송장치(100)는 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신 할 수 있다.
통신/컨트롤 회로(120)는 무선 전력 수신 장치(200)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(120)는 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(120)는 무선전력 전송의 동작 주파수에 통신 정보를 실어 1차 코일을 통해 전송하거나 또는 정보가 담긴 동작 주파수를 1차 코일을 통해 수신함으로써 인-밴드 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(120)는 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(120)는 근거리 통신 모듈로 제공될 수 있다. 근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(120)는 무선 전력 전송 장치(100)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(120)는 각종 정보의 연산 및 처리를 수행하고, 무선 전력전송 장치(100)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(120)는 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(120)는 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(120)를 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 회로(120)는 동작 포인트(operating point)를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트는 주파수(또는 위상), 듀티 사이클(duty cycle), 듀티 비(duty ratio) 및 전압 진폭의 조합에 해당될 수 있다. 통신/컨트롤 회로(120)는 주파수(또는 위상), 듀티 사이클, 듀티비 및 전압 진폭 중 적어도 하나를 조절하여 송신 전력을 컨트롤할 수 있다. 또한, 무선 전력 전송장치(100)는 일정한 전력을 공급하고, 무선 전력 수신장치(200)가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
모바일 기기(450)는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 무선전력 수신장치(power receiver, 200)와 무선전력 수신장치(200)에서 수신된 전력을 전력을 전달받아 저장하고 기기에 공급하는 부하(load, 455)를 포함한다.
무선전력 수신장치(200)는 전력 픽업 회로(power pick-up circuit, 210) 및 통신/컨트롤 회로(communications & control circuit, 220)를 포함할 수 있다. 전력 픽업 회로(210)는 2차 코일을 통해 무선 전력을 수신하여 전기 에너지로 변환할 수 있다. 전력 픽업 회로(210)는 2차 코일을 통해 얻어지는 교류 신호를 정류하여 직류 신호로 변환한다. 통신/컨트롤 회로(220)는 무선 전력의 송신과 수신(전력 전달 및 수신)을 제어할 수 있다.
2차 코일은 무선 전력 전송 장치(100)에서 전송되는 무선 전력을 수신할 수 있다. 2차 코일은 1차 코일에서 발생하는 자기장을 이용하여 전력을 수신할 수 있다. 여기서, 특정 주파수가 공진 주파수인 경우에는 1차 코일과 2차 코일 간에 자기 공진 현상이 발생하여 보다 효율적으로 전력을 전달받을 수 있다.
도 4a에는 도시되지 않았으나 통신/컨트롤 회로(220)는 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신할 수 있다.
통신/컨트롤 회로(220)는 무선 전력 전송 장치(100)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(220)는 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(220)는 자기파에 정보를 실어 2차 코일을 통해 송신하거나 또는 정보가 담긴 자기파를 2차 코일을 통해 수신함으로써 IB 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(220)는 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(220)는 근거리 통신 모듈로 제공될 수 있다.
근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(220)는 무선 전력 수신 장치(200)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(220)는 각종 정보의 연산 및 처리를 수행하고, 무선 전력수신 장치(200)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(220)는 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(220)는 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(220)를 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)가 OB 통신 모듈 또는 근거리 통신 모듈로서 블루투스 또는 블루투스 LE일 경우, 통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)는 각각 도 4B와 같은 통신 아키텍처로 구현되어 동작할 수 있다.
도 4b는 본 발명이 적용될 수 있는 블루투스 통신 아키텍처(Architecture)의 일 예를 나타낸 도이다.
도 4b를 참고하면, 도 4b의 (a)는 GATT를 지원하는 블루투스 BR(Basic Rate)/EDR(Enhanced Data Rate)의 프로토콜 스택의 일 예를 나타내며, (b)는 블루투스 LE(Low Energy)의 프로토콜 스택의 일 예를 나타낸다.
구체적으로, 도 4b의 (a)에 도시된 바와 같이, 블루투스 BR/EDR 프로토콜 스택은 호스트 컨트롤러 인터페이스(Host Controller Interface, HCI, 18)를 기준으로 상부의 컨트롤러 스택(Controller stack, 460)과 하부의 호스트 스택(Host Stack, 470)을 포함할 수 있다.
상기 호스트 스택(또는 호스트 모듈)(470)은 2.4GHz의 블루투스 신호를 받는 무선 송수신 모듈과 블루투스 패킷을 전송하거나 수신하기 위한 하드웨어를 말하며, 상기 컨트롤러 스택(460)은 블루투스 모듈과 연결되어 블루투스 모듈을 제어하고 동작을 수행한다.
상기 호스트 스택(470)은 BR/EDR PHY 계층(12), BR/EDR Baseband 계층(14), 링크 매니저 계층(Link Manager, 16)을 포함할 수 있다.
상기 BR/EDR PHY 계층(12)은 2.4GHz 무선 신호를 송수신하는 계층으로, GFSK (Gaussian Frequency Shift Keying) modulation을 사용하는 경우 79 개의 RF 채널을 hopping 하여 데이터를 전송할 수 있다.
상기 BR/EDR Baseband 계층(14)은 Digital Signal을 전송하는 역할을 담당하며, 초당 1400번 hopping 하는 채널 시퀀스를 선택하며, 각 채널 별 625us 길이의 time slot을 전송한다.
상기 링크 매니저 계층(16)은 LMP(Link Manager Protocol)을 활용하여 Bluetooth Connection의 전반적인 동작(link setup, control, security)을 제어한다.
상기 링크 매니저 계층(16)은 아래와 같은 기능을 수행할 수 있다.
- ACL/SCO logical transport, logical link setup 및 control을 한다.
- Detach: connection을 중단하고, 중단 이유를 상대 디바이스에게 알려준다.
- Power control 및 Role switch를 한다.
- Security(authentication, pairing, encryption) 기능을 수행한다.
상기 호스트 컨트롤러 인터페이스 계층(18)은 Host 모듈과 Controller 모듈 사이의 인터페이스 제공하여 Host가 command와 Data를 Controller에게 제공하게 하며, Controller가 event와 Data를 Host에게 제공할 수 있도록 해준다.
상기 호스트 스택(또는 호스트 모듈, 20)은 논리적 링크 제어 및 적응 프로토콜(L2CAP, 21), 속성 프로토콜(Protocol, 22), 일반 속성 프로파일(Generic Attribute Profile, GATT, 23), 일반 접근 프로파일(Generic Access Profile, GAP, 24), BR/EDR 프로파일(25)을 포함한다.
상기 논리적 링크 제어 및 적응 프로토콜(L2CAP, 21)은 특정 프로토콜 또는 포로파일에게 데이터를 전송하기 위한 하나의 양방향 채널을 제공할 수 있다.
상기 L2CAP(21)은 블루투스 상위에서 제공하는 다양한 프로토콜, 프로파일 등을 멀티플렉싱(multiplexing)할 수 있다.
블루투스 BR/EDR의 L2CAP에서는 dynamic 채널 사용하며, protocol service multiplexer, retransmission, streaming mode를 지원하고, Segmentation 및 reassembly, per-channel flow control, error control을 제공한다.
상기 일반 속성 프로파일(GATT, 23)은 서비스들의 구성 시에 상기 속성 프로토콜(22)이 어떻게 이용되는지를 설명하는 프로토콜로서 동작 가능할 수 있다. 예를 들어, 상기 일반 속성 프로파일(23)은 ATT 속성들이 어떻게 서비스들로 함께 그룹화되는지를 규정하도록 동작 가능할 수 있고, 서비스들과 연계된 특징들을 설명하도록 동작 가능할 수 있다.
따라서, 상기 일반 속성 프로파일(23) 및 상기 속성 프로토콜(ATT, 22)은 디바이스의 상태와 서비스들을 설명하고, 특징들이 서로 어떻게 관련되며 이들이 어떻게 이용되는지를 설명하기 위하여, 특징들을 사용할 수 있다.
상기 속성 프로토콜(22) 및 상기 BR/EDR 프로파일(25)은 블루트스 BR/EDR를 이용하는 서비스(profile)의 정의 및 이들 데이터를 주고 받기 위한 application 프로토콜을 정의하며, 상기 일반 접근 프로파일(Generic Access Profile, GAP, 24)은 디바이스 발견, 연결, 및 보안 수준을 정의한다.
도 4b의 (b)에 도시된 바와 같이, 블루투스 LE 프로토콜 스택은 타이밍이 중요한 무선장치 인터페이스를 처리하도록 동작 가능한 컨트롤러 스택(Controller stack, 480)과 고레벨(high level) 데이터를 처리하도록 동작 가능한 호스트 스택(Host stack, 490)을 포함한다.
먼저, 컨트롤러 스택(480)은 블루투스 무선장치를 포함할 수 있는 통신 모듈, 예를 들어, 마이크로프로세서와 같은 프로세싱 디바이스를 포함할 수 있는 프로세서 모듈을 이용하여 구현될 수 있다.
호스트 스택(490)은 프로세서 모듈 상에서 작동되는 OS의 일부로서, 또는 OS 위의 패키지(package)의 인스턴스 생성(instantiation)으로서 구현될 수 있다.
일부 사례들에서, 컨트롤러 스택 및 호스트 스택은 프로세서 모듈 내의 동일한 프로세싱 디바이스 상에서 작동 또는 실행될 수 있다.
상기 컨트롤러 스택(480)은 물리 계층(Physical Layer, PHY, 32), 링크 레이어(Link Layer, 34) 및 호스트 컨트롤러 인터페이스(Host Controller Interface, 36)를 포함한다.
상기 물리 계층(PHY, 무선 송수신 모듈, 32)은 2.4 GHz 무선 신호를 송수신하는 계층으로 GFSK (Gaussian Frequency Shift Keying) modulation과 40 개의 RF 채널로 구성된 frequency hopping 기법을 사용한다.
블루투스 패킷을 전송하거나 수신하는 역할을 하는 상기 링크 레이어(34)는 3개의 Advertising 채널을 이용하여 Advertising, Scanning 기능을 수행한 후에 디바이스 간 연결을 생성하고, 37개 Data 채널을 통해 최대 257bytes 의 데이터 패킷을 주고 받는 기능을 제공한다.
상기 호스트 스택은 GAP(Generic Access Profile, 40), 논리적 링크 제어 및 적응 프로토콜(L2CAP, 41), 보안 매니저(Security Manager, SM, 42), 속성 프로토콜(Attribute Protocol, ATT, 440), 일반 속성 프로파일(Generic Attribute Profile, GATT, 44), 일반 접근 프로파일(Generic Access Profile, 25), LT 프로파일(46)을 포함할 수 있다. 다만, 상기 호스트 스택(490)은 이것으로 한정되지는 않고 다양한 프로토콜들 및 프로파일들을 포함할 수 있다.
호스트 스택은 L2CAP을 사용하여 블루투스 상위에서 제공하는 다양한 프로토콜, 프로파일 등을 다중화(multiplexing)한다.
먼저, L2CAP(Logical Link Control and Adaptation Protocol, 41)은 특정 프로토콜 또는 프로파일에게 데이터를 전송하기 위한 하나의 양방향 채널을 제공할 수 있다.
상기 L2CAP(41)은 상위 계층 프로토콜들 사이에서 데이터를 다중화(multiplex)하고, 패키지(package)들을 분할(segment) 및 재조립(reassemble)하고, 멀티캐스트 데이터 송신을 관리하도록 동작 가능할 수 있다.
블루투스 LE 에서는 3개의 고정 채널(signaling CH을 위해 1개, Security Manager를 위해 1개, Attribute protocol을 위해 1개)을 기본적으로 사용한다. 그리고, 필요에 따라 동적 채널을 사용할 수도 있다.
반면, BR/EDR(Basic Rate/Enhanced Data Rate)에서는 동적인 채널을 기본적으로 사용하며, protocol service multiplexer, retransmission, streaming mode 등을 지원한다.
SM(Security Manager, 42)은 디바이스를 인증하며, 키 분배(key distribution)를 제공하기 위한 프로토콜이다.
ATT(Attribute Protocol, 43)는 서버-클라이언트(Server-Client) 구조로 상대 디바이스의 데이터를 접근하기 위한 규칙을 정의한다. ATT에는 아래의 6가지의 메시지 유형(Request, Response, Command, Notification, Indication, Confirmation)이 있다.
① Request 및 Response 메시지: Request 메시지는 클라이언트 디바이스에서 서버 디바이스로 특정 정보 요청 및 전달 하기 위한 메시지이며, Response 메시지는 Request 메시지에 대한 응답 메시지로서, 서버 디바이스에서 클라이언트 디바이스로 전송하는 용도로 사용할 수 있는 메시지를 말한다.
② Command 메시지: 클라이언트 디바이스에서 서버 디바이스로 주로 특정 동작의 명령을 지시하기 위해 전송하는 메시지로, 서버 디바이스는 Command 메시지에 대한 응답을 클라이언트 디바이스로 전송하지 않는다.
③ Notification 메시지: 서버 디바이스에서 클라이언트 디바이스로 이벤트 등과 같은 통지를 위해 전송하는 메시지로, 클라이언트 디바이스는 Notification 메시지에 대한 확인 메시지를 서버 디바이스로 전송하지 않는다.
④ Indication 및 Confirm 메시지: 서버 디바이스에서 클라이언트 디바이스로 이벤트 등과 같은 통지를 위해 전송하는 메시지로, Notification 메시지와는 달리, 클라이언트 디바이스는 Indication 메시지에 대한 확인 메시지(Confirm message)를 서버 디바이스로 전송한다.
본 발명은 상기 속성 프로토콜(ATT, 43)을 사용하는 GATT 프로파일에서 긴 데이터 요청 시 데이터 길이에 대한 값을 전송하여 클라이언트가 데이터 길이를 명확히 알 수 있게 하며, UUID를 이용하여 서버로부터 특성(Characteristic) 값을 전송 받을 수 있다.
상기 일반 접근 프로파일(GAP, 45)은 블루투스 LE 기술을 위해 새롭게 구현된 계층으로, 블루투스 LE 디바이스들 간의 통신을 위한 역할 선택, 멀티 프로파일 작동이 어떻게 일어나는지를 제어하는데 사용된다.
또한, 상기 일반 접근 프로파일(45)은 디바이스 발견, 연결 생성 및 보안 절차 부분에 주로 사용되며, 사용자에게 정보를 제공하는 방안을 정의하며, 하기와 같은 attribute의 type을 정의한다.
① Service: 데이터와 관련된 behavior의 조합으로 디바이스의 기본적인 동작을 정의
② Include: 서비스 사이의 관계를 정의
③ Characteristics: 서비스에서 사용되는 data 값
④ Behavior: UUID(Universal Unique Identifier, value type)로 정의된 컴퓨터가 읽을 수 있는 포맷
상기 LE 프로파일(46)은 GATT에 의존성을 가지는 profile 들로 주로 블루투스 LE 디바이스에 적용된다. LE 프로파일(46)은 예를 들면, Battery, Time, FindMe, Proximity, Time 등이 있을 수 있으며, GATT-based Profiles의 구체적인 내용은 하기와 같다.
① Battery: 배터리 정보 교환 방법
② Time: 시간 정보 교환 방법
③ FindMe: 거리에 따른 알람 서비스 제공
④ Proximity: 배터리 정보 교환 방법
⑤ Time: 시간 정보 교환 방법
상기 일반 속성 프로파일(GATT, 44)은 서비스들의 구성 시에 상기 속성 프로토콜(43)이 어떻게 이용되는지를 설명하는 프로토콜로서 동작 가능할 수 있다. 예를 들어, 상기 일반 속성 프로파일(44)은 ATT 속성들이 어떻게 서비스들로 함께 그룹화되는지를 규정하도록 동작 가능할 수 있고, 서비스들과 연계된 특징들을 설명하도록 동작 가능할 수 있다.
따라서, 상기 일반 속성 프로파일(44) 및 상기 속성 프로토콜(ATT, 43)은 디바이스의 상태와 서비스들을 설명하고, 특징들이 서로 어떻게 관련되며 이들이 어떻게 이용되는지를 설명하기 위하여, 특징들을 사용할 수 있다.
이하에서, 블루투스 저전력 에너지(Bluetooth Low Energy:BLE) 기술의 절차(Procedure)들에 대해 간략히 살펴보기로 한다.
BLE 절차는 디바이스 필터링 절차(Device Filtering Procedure), 광고 절차(Advertising Procedure), 스캐닝 절차(Scanning Procedure), 디스커버링 절차(Discovering Procedure), 연결 절차(Connecting Procedure) 등으로 구분될 수 있다.
디바이스 필터링 절차(Device Filtering Procedure)
디바이스 필터링 절차는 컨트롤러 스택에서 요청, 지시, 알림 등에 대한 응답을 수행하는 디바이스들의 수를 줄이기 위한 방법이다.
모든 디바이스에서 요청 수신 시, 이에 대해 응답하는 것이 불필요하기 때문에, 컨트롤러 스택은 요청을 전송하는 개수를 줄여서, BLE 컨트롤러 스택에서 전력 소비가 줄 수 있도록 제어할 수 있다.
광고 디바이스 또는 스캐닝 디바이스는 광고 패킷, 스캔 요청 또는 연결 요청을 수신하는 디바이스를 제한하기 위해 상기 디바이스 필터링 절차를 수행할 수 있다.
여기서, 광고 디바이스는 광고 이벤트를 전송하는 즉, 광고를 수행하는 디바이스를 말하며, 광고자(Advertiser)라고도 표현된다.
스캐닝 디바이스는 스캐닝을 수행하는 디바이스, 스캔 요청을 전송하는 디바이스를 말한다.
BLE에서는, 스캐닝 디바이스가 일부 광고 패킷들을 광고 디바이스로부터 수신하는 경우, 상기 스캐닝 디바이스는 상기 광고 디바이스로 스캔 요청을 전송해야 한다.
하지만, 디바이스 필터링 절차가 사용되어 스캔 요청 전송이 불필요한 경우, 상기 스캐닝 디바이스는 광고 디바이스로부터 전송되는 광고 패킷들을 무시할 수 있다.
연결 요청 과정에서도 디바이스 필터링 절차가 사용될 수 있다. 만약, 연결 요청 과정에서 디바이스 필터링이 사용되는 경우, 연결 요청을 무시함으로써 상기 연결 요청에 대한 응답을 전송할 필요가 없게 된다.
광고 절차(Advertising Procedure)
광고 디바이스는 영역 내 디바이스들로 비지향성의 브로드캐스트를 수행하기 위해 광고 절차를 수행한다.
여기서, 비지향성의 브로드캐스트(Undirected Advertising)는 특정 디바이스를 향한 브로드캐스트가 아닌 전(모든) 디바이스를 향한 광고(Advertising)이며, 모든 디바이스가 광고(Advertising)을 스캔(Scan)하여 추가 정보 요청이나 연결 요청을 할 수 있다.
이와 달리, 지향성 브로드캐스트(Directed advertising)는 수신 디바이스로 지정된 디바이스만 광고(Advertising)을 스캔(Scan)하여 추가 정보 요청이나 연결 요청을 할 수 있다.
광고 절차는 근처의 개시 디바이스와 블루투스 연결을 확립하기 위해 사용된다.
또는, 광고 절차는 광고 채널에서 리스닝을 수행하고 있는 스캐닝 디바이스들에게 사용자 데이터의 주기적인 브로드캐스트를 제공하기 위해 사용될 수 있다.
광고 절차에서 모든 광고(또는 광고 이벤트)는 광고 물리 채널을 통해 브로드캐스트된다.
광고 디바이스들은 광고 디바이스로부터 추가적인 사용자 데이터를 얻기 위해 리스닝을 수행하고 있는 리스닝 디바이스들로부터 스캔 요청을 수신할 수 있다. 광고 디바이스는 스캔 요청을 수신한 광고 물리 채널과 동일한 광고 물리 채널을 통해, 스캔 요청을 전송한 디바이스로 스캔 요청에 대한 응답을 전송한다.
광고 패킷들의 일 부분으로서 보내지는 브로드캐스트 사용자 데이터는 동적인 데이터인 반면에, 스캔 응답 데이터는 일반적으로 정적인 데이터이다.
광고 디바이스는 광고 (브로드캐스트) 물리 채널 상에서 개시 디바이스로부터 연결 요청을 수신할 수 있다. 만약, 광고 디바이스가 연결 가능한 광고 이벤트를 사용하였고, 개시 디바이스가 디바이스 필터링 절차에 의해 필터링 되지 않았다면, 광고 디바이스는 광고를 멈추고 연결 모드(connected mode)로 진입한다. 광고 디바이스는 연결 모드 이후에 다시 광고를 시작할 수 있다.
스캐닝 절차(Scanning Procedure)
스캐닝을 수행하는 디바이스 즉, 스캐닝 디바이스는 광고 물리 채널을 사용하는 광고 디바이스들로부터 사용자 데이터의 비지향성 브로드캐스트를 청취하기 위해 스캐닝 절차를 수행한다.
스캐닝 디바이스는 광고 디바이스로부터 추가적인 데이터를 요청 하기 위해, 광고 물리 채널을 통해 스캔 요청을 광고 디바이스로 전송한다. 광고 디바이스는 광고 물리 채널을 통해 스캐닝 디바이스에서 요청한 추가적인 데이터를 포함하여 상기 스캔 요청에 대한 응답인 스캔 응답을 전송한다.
상기 스캐닝 절차는 BLE 피코넷에서 다른 BLE 디바이스와 연결되는 동안 사용될 수 있다.
만약, 스캐닝 디바이스가 브로드캐스트되는 광고 이벤트를 수신하고, 연결 요청을 개시할 수 있는 개시자 모드(initiator mode)에 있는 경우, 스캐닝 디바이스는 광고 물리 채널을 통해 광고 디바이스로 연결 요청을 전송함으로써 광고 디바이스와 블루투스 연결을 시작할 수 있다.
스캐닝 디바이스가 광고 디바이스로 연결 요청을 전송하는 경우, 스캐닝 디바이스는 추가적인 브로드캐스트를 위한 개시자 모드 스캐닝을 중지하고, 연결 모드로 진입한다.
디스커버링 절차(Discovering Procedure)
블루투스 통신이 가능한 디바이스(이하, '블루투스 디바이스'라 한다.)들은 근처에 존재하는 디바이스들을 발견하기 위해 또는 주어진 영역 내에서 다른 디바이스들에 의해 발견되기 위해 광고 절차와 스캐닝 절차를 수행한다.
디스커버링 절차는 비대칭적으로 수행된다. 주위의 다른 디바이스를 찾으려고 하는 블루투스 디바이스를 디스커버링 디바이스(discovering device)라 하며, 스캔 가능한 광고 이벤트를 광고하는 디바이스들을 찾기 위해 리스닝한다. 다른 디바이스로부터 발견되어 이용 가능한 블루투스 디바이스를 디스커버러블 디바이스(discoverable device)라 하며, 적극적으로 광고 (브로드캐스트) 물리 채널을 통해 다른 디바이스가 스캔 가능하도록 광고 이벤트를 브로드캐스트한다.
디스커버링 디바이스와 디스커버러블 디바이스 모두 피코넷에서 다른 블루투스 디바이스들과 이미 연결되어 있을 수 있다.
연결 절차(Connecting Procedure)
연결 절차는 비대칭적이며, 연결 절차는 특정 블루투스 디바이스가 광고 절차를 수행하는 동안 다른 블루투스 디바이스는 스캐닝 절차를 수행할 것을 요구한다.
즉, 광고 절차가 목적이 될 수 있으며, 그 결과 단지 하나의 디바이스만 광고에 응답할 것이다. 광고 디바이스로부터 접속 가능한 광고 이벤트를 수신한 이후, 광고 (브로트캐스트) 물리 채널을 통해 광고 디바이스로 연결 요청을 전송함으로써 연결을 개시할 수 있다.
다음으로, BLE 기술에서의 동작 상태 즉, 광고 상태(Advertising State), 스캐닝 상태(Scanning State), 개시 상태(Initiating State), 연결 상태(connection state)에 대해 간략히 살펴보기로 한다.
광고 상태(Advertising State)
링크 계층(LL)은 호스트 (스택)의 지시에 의해, 광고 상태로 들어간다. 링크 계층이 광고 상태에 있을 경우, 링크 계층은 광고 이벤트들에서 광고 PDU(Packet Data Unit)들을 전송한다.
각각의 광고 이벤트는 적어도 하나의 광고 PDU들로 구성되며, 광고 PDU들은 사용되는 광고 채널 인덱스들을 통해 전송된다. 광고 이벤트는 광고 PDU가 사용되는 광고 채널 인덱스들을 통해 각각 전송되었을 경우, 종료되거나 광고 디바이스가 다른 기능 수행을 위해 공간을 확보할 필요가 있을 경우 좀 더 일찍 광고 이벤트를 종료할 수 있다.
스캐닝 상태(Scanning State)
링크 계층은 호스트 (스택)의 지시에 의해 스캐닝 상태로 들어간다. 스캐닝 상태에서, 링크 계층은 광고 채널 인덱스들을 리스닝한다.
스캐닝 상태에는 수동적 스캐닝(passive scanning), 적극적 스캐닝(active scanning)의 두 타입이 있으며, 각 스캐닝 타입은 호스트에 의해 결정된다.
스캐닝을 수행하기 위한 별도의 시간이나 광고 채널 인덱스가 정의되지는 않는다.
스캐닝 상태 동안, 링크 계층은 스캔윈도우(scanWindow) 구간(duration) 동안 광고 채널 인덱스를 리스닝한다. 스캔인터벌(scanInterval)은 두 개의 연속적인 스캔 윈도우의 시작점 사이의 간격(인터벌)으로서 정의된다.
링크 계층은 스케쥴링의 충돌이 없는 경우, 호스트에 의해 지시되는 바와 같이 스캔윈도우의 모든 스캔인터벌 완성을 위해 리스닝해야한다. 각 스캔윈도우에서, 링크 계층은 다른 광고 채널 인덱스를 스캔해야한다. 링크 계층은 사용 가능한 모든 광고 채널 인덱스들을 사용한다.
수동적인 스캐닝일 때, 링크 계층은 단지 패킷들만 수신하고, 어떤 패킷들도 전송하지 못한다.
능동적인 스캐닝일 때, 링크 계층은 광고 디바이스로 광고 PDU들과 광고 디바이스 관련 추가적인 정보를 요청할 수 있는 광고 PDU 타입에 의존하기 위해 리스닝을 수행한다.
개시 상태(Initiating State)
링크 계층은 호스트(스택)의 지시에 의해 개시 상태로 들어간다.
링크 계층이 개시 상태에 있을 때, 링크 계층은 광고 채널 인덱스들에 대한 리스닝을 수행한다.
개시 상태 동안, 링크 계층은 스캔윈도우 구간 동안 광고 채널 인덱스를 리스닝한다.
연결 상태(connection state)
링크 계층은 연결 요청을 수행하는 디바이스 즉, 개시 디바이스가 CONNECT_REQ PDU를 광고 디바이스로 전송할 때 또는 광고 디바이스가 개시 디바이스로부터 CONNECT_REQ PDU를 수신할 때 연결 상태로 들어간다.
연결 상태로 들어간 이후, 연결이 생성되는 것으로 고려된다. 다만, 연결이 연결 상태로 들어간 시점에서 확립되도록 고려될 필요는 없다. 새로 생성된 연결과 기 확립된 연결 간의 유일한 차이는 링크 계층 연결 감독 타임아웃(supervision timeout) 값뿐이다.
두 디바이스가 연결되어 있을 때, 두 디바이스들은 다른 역할로 활동한다.
마스터 역할을 수행하는 링크 계층은 마스터로 불리며, 슬레이브 역할을 수행하는 링크 계층은 슬레이브로 불린다. 마스터는 연결 이벤트의 타이밍을 조절하고, 연결 이벤트는 마스터와 슬레이브 간 동기화되는 시점을 말한다.
이하에서, 블루투스 인터페이스에서 정의되는 패킷에 대해 간략히 살펴보기로 한다. BLE 디바이스들은 하기에서 정의되는 패킷들을 사용한다.
패킷 포맷(Packet Format)
링크 계층(Link Layer)은 광고 채널 패킷과 데이터 채널 패킷 둘 다를 위해 사용되는 단지 하나의 패킷 포맷만을 가진다.
각 패킷은 프리앰블(Preamble), 접속 주소(Access Address), PDU 및 CRC 4개의 필드로 구성된다.
하나의 패킷이 광고 채널에서 송신될 때, PDU는 광고 채널 PDU가 될 것이며, 하나의 패킷이 데이터 채널에서 전송될 때, PDU는 데이터 채널 PDU가 될 것이다.
광고 채널 PDU(Advertising Channel PDU)
광고 채널 PDU(Packet Data Circuit)는 16비트 헤더와 다양한 크기의 페이로드를 가진다.
헤더에 포함되는 광고 채널 PDU의 PDU 타입 필드는 하기 표 3에서 정의된 바와 같은 PDU 타입을 나타낸다.
PDU Type | Packet Name |
0000 | ADV_IND |
0001 | ADV_DIRECT_IND |
0010 | ADV_NONCONN_IND |
0011 | SCAN_REQ |
0100 | SCAN_RSP |
0101 | CONNECT_REQ |
0110 | ADV_SCAN_IND |
0111-1111 | Reserved |
광고 PDU(Advertising PDU)아래 광고 채널 PDU 타입들은 광고 PDU로 불리고 구체적인 이벤트에서 사용된다.
ADV_IND: 연결 가능한 비지향성 광고 이벤트
ADV_DIRECT_IND: 연결 가능한 지향성 광고 이벤트
ADV_NONCONN_IND: 연결 가능하지 않은 비지향성 광고 이벤트
ADV_SCAN_IND: 스캔 가능한 비지향성 광고 이벤트
상기 PDU들은 광고 상태에서 링크 계층(Link Layer)에서 전송되고, 스캐닝 상태 또는 개시 상태(Initiating State)에서 링크 계층에 의해 수신된다.
스캐닝 PDU(Scanning PDU)
아래 광고 채널 PDU 타입은 스캐닝 PDU로 불리며, 하기에서 설명되는 상태에서 사용된다.
SCAN_REQ: 스캐닝 상태에서 링크 계층에 의해 전송되며, 광고 상태에서 링크 계층에 의해 수신된다.
SCAN_RSP: 광고 상태에서 링크 계층에 의해 전송되며, 스캐닝 상태에서 링크 계층에 의해 수신된다.
개시 PDU(Initiating PDU)
아래 광고 채널 PDU 타입은 개시 PDU로 불린다.
CONNECT_REQ: 개시 상태에서 링크 계층에 의해 전송되며, 광고 상태에서 링크 계층에 의해 수신된다.
데이터 채널 PDU(Data Channel PDU)
데이터 채널 PDU는 16 비트 헤더, 다양한 크기의 페이로드를 가지고, 메시지 무결점 체크(Message Integrity Check:MIC) 필드를 포함할 수 있다.
앞에서 살펴본, BLE 기술에서의 절차, 상태, 패킷 포맷 등은 본 명세서에서 제안하는 방법들을 수행하기 위해 적용될 수 있다.
다시 도 4a를 참조하면, 부하(455)는 배터리일 수 있다. 배터리는 전력 픽업 회로(210)으로부터 출력되는 전력을 이용하여 에너지를 저장할 수 있다. 한편, 모바일 기기(450)에 배터리가 반드시 포함되어야 하는 것은 아니다. 예를 들어, 배터리는 탈부착이 가능한 형태의 외부 구성으로 제공될 수 있다. 다른 예를 들어, 무선 전력 수신 장치(200)에는 전자 기기의 다양한 동작을 구동하는 구동 수단이 배터리 대신 포함될 수도 있다.
모바일 기기(450)는 무선전력 수신장치(200)을 포함하는 것을 도시되어 있고, 베이스 스테이션(400)은 무선전력 전송장치(100)를 포함하는 것으로 도시되어 있으나, 넓은 의미에서는 무선전력 수신장치(200)는 모바일 기기(450)와 동일시될 수 있고 무선전력 전송장치(100)는 베이스 스테이션(400)와 동일시 될 수도 있다.
통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)이 IB 통신 모듈 이외에 OB 통신 모듈 또는 근거리 통신 모듈로서 블루투스 또는 블루투스 LE을 포함하는 경우, 통신/컨트롤 회로(120)를 포함하는 무선전력 전송장치(100)와 통신/컨트롤 회로(220)를 포함하는 무선전력 수신장치(200)은 도 4C와 같은 단순화된 블록도로 표현될 수 있다.
도 4c는 일례에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4c를 참조하면, 무선전력 전송장치(100)는 전력 변환 회로(110)과 통신/컨트롤 회로(120)를 포함한다. 통신/컨트롤 회로(120)는 인밴드 통신 모듈(121) 및 BLE 통신 모듈(122)를 포함한다.
한편 무선전력 수신장치(200)는 전력 픽업 회로(210)과 통신/컨트롤 회로(220)를 포함한다. 통신/컨트롤 회로(220)는 인밴드 통신 모듈(221) 및 BLE 통신 모듈(222)를 포함한다.
일 측면에서, BLE 통신 모듈들(122, 222)은 도 4B에 따른 아키텍처 및 동작을 수행한다. 예를 들어, BLE 통신 모듈들(122, 222)은 무선전력 전송장치(100)와 무선전력 수신장치(200) 사이의 접속을 수립하고, 무선전력 전송에 필요한 제어 정보와 패킷들을 교환하는데 사용될 수도 있다.
다른 측면에서, 통신/컨트롤 회로(120)는 무선충전을 위한 프로파일을 동작시키도록 구성될 수 있다. 여기서, 무선충전을 위한 프로파일은 BLE 전송을 사용하는 GATT일 수 있다.
한편, 통신/컨트롤 회로들(120, 220)은 도 4d와 같이 각각 인밴드 통신 모듈들(121, 221)만을 포함하고, BLE 통신 모듈들(122, 222)은 통신/컨트롤 회로들(120, 220)과 분리되어 구비되는 형태도 가능하다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 무선전력 전송장치로부터 수신기로의 파워 전송은 크게 선택 단계(selection phase, 510), 핑 단계(ping phase, 520), 식별 및 구성 단계(identification and configuration phase, 530), 협상 단계(negotiation phase, 540), 보정 단계(calibration phase, 550), 전력 전송 단계(power transfer phase, 560) 단계 및 재협상 단계(renegotiation phase, 570)로 구분될 수 있다.
선택 단계(510)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계-예를 들면, 도면 부호 S502, S504, S508, S510 및 S512를 포함함-일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(510)에서 무선전력 전송장치는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 무선전력 전송장치가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(520)로 천이할 수 있다. 선택 단계(510)에서 무선전력 전송장치는 매우 짧은 구간(duration)에 해당하는 전력 신호(또는 펄스)인 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
선택 단계(510)에서 물체가 감지되는 경우, 무선전력 전송장치는 무선전력 공진 회로(예를 들어 전력전송 코일 및/또는 공진 캐패시터)의 품질 인자를 측정할 수 있다. 본 발명의 일 실시예에서는 선택단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 무선전력 수신장치가 놓였는지 판단하기 위하여 품질 인자를 측정할 수 있다. 무선전력 전송장치에 구비되는 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬저항 성분이 감소될 수 있고, 이로 인해 품질 인자 값이 감소하게 된다. 측정된 품질 인자 값을 이용하여 이물질의 존재 여부를 판단하기 위해, 무선전력 전송장치는 충전 영역에 이물질이 배치되지 않은 상태에서 미리 측정된 기준 품질 인자 값을 무선전력 수신장치로부터 수신할 수 있다. 협상 단계(540)에서 수신된 기준 품질 인자 값과 측정된 품질 인자 값을 비교하여 이물질 존재 여부를 판단할 수 있다. 그러나 기준 품질 인자 값이 낮은 무선전력 수신장치의 경우-일 예로, 무선전력 수신장치의 타입, 용도 및 특성 등에 따라 특정 무선전력 수신장치는 낮은 기준 품질 인자 값을 가질 수 있음-, 이물질이 존재하는 경우에 측정되는 품질 인자 값과 기준 품질 인자 값 사이의 큰 차이가 없어 이물질 존재 여부를 판단하기 어려운 문제가 발생할 수 있다. 따라서 다른 판단 요소를 더 고려하거나, 다른 방법을 이용하여 이물질 존재 여부를 판단해야 한다.
본 발명의 또 다른 실시예에서는 선택 단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 배치되었는지 판단하기 위하여 특정 주파수 영역 내(ex 동작 주파수 영역) 품질 인자 값을 측정할 수 있다. 무선전력 전송장치의 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬 저항 성분이 감소될 수 있고, 이로 인해 무선전력 전송장치의 코일의 공진 주파수가 변경(시프트)될 수 있다. 즉, 동작 주파수 대역 내 최대 품질 인자 값이 측정되는 주파수인 품질 인자 피크(peak) 주파수가 이동될 수 있다.
단계(520)에서 무선전력 전송장치는 물체가 감지되면, 수신기를 활성화(Wake up)시키고, 감지된 물체가 무선 전력 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(520)에서 무선전력 전송장치는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 패킷-을 수신기로부터 수신하지 못하면, 다시 선택 단계(510)로 천이할 수 있다. 또한, 핑 단계(520)에서 무선전력 전송장치는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(510)로 천이할 수도 있다.
핑 단계(520)가 완료되면, 무선전력 전송장치는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(530)로 천이할 수 있다.
식별 및 구성 단계(530)에서 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(510)로 천이할 수 있다.
무선전력 전송장치는 식별 및 구성 단계(530)에서 수시된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(540)로의 진입이 필요한지 여부를 확인할 수 있다. 확인 결과, 협상이 필요하면, 무선전력 전송장치는 협상 단계(540)로 진입하여 소정 FOD 검출 절차를 수행할 수 있다. 반면, 확인 결과, 협상이 필요하지 않은 경우, 무선전력 전송장치는 곧바로 전력 전송 단계(560)로 진입할 수도 있다.
협상 단계(540)에서, 무선전력 전송장치는 기준 품질 인자 값이 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신할 수 있다. 또는 기준 피크 주파수 값이 포함된 FOD 상태 패킷을 수신할 수 있다. 또는 기준 품질 인자 값 및 기준 피크 주파수 값이 포함된 상태 패킷을 수신할 수 있다. 이때, 무선전력 전송장치는 기준 품질 인자 값에 기반하여 FO 검출을 위한 품질 계수 임계치를 결정할 수 있다. 무선전력 전송장치는 기준 피크 주파수 값에 기반하여 FO 검출을 위한 피크 주파수 임계치를 결정할 수 있다.
무선전력 전송장치는 결정된 FO 검출을 위한 품질 계수 임계치 및 현재 측정된 품질 인자 값(핑 단계 이전에 측정된 품질인자 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
무선전력 전송장치는 결정된 FO 검출을 위한 피크 주파수 임계치 및 현재 측정된 피크 주파수 값(핑 단계 이전에 측정된 피크 주파수 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
FO가 검출된 경우, 무선전력 전송장치는 선택 단계(510)로 회귀할 수 있다. 반면, FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)를 거쳐 전력 전송 단계(560)로 진입할 수도 있다. 상세하게, 무선전력 전송장치는 FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)에서 수신단에 수신된 전력의 세기를 결정하고, 송신단에서 전송한 전력의 세기를 결정하기 위해 수신단과 송신단에서의 전력 손실을 측정할 수 있다. 즉, 무선전력 전송장치는 보정 단계(550)에서 송신단의 송신 파워와 수신단의 수신 파워 사이의 차이에 기반하여 전력 손실을 예측할 수 있다. 일 실시예에 따른 무선전력 전송장치는 예측된 전력 손실을 반영하여 FOD 검출을 위한 임계치를 보정할 수도 있다.
전력 전송 단계(560)에서, 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(510)로 천이할 수 있다.
또한, 전력 전송 단계(560)에서, 무선전력 전송장치는 무선전력 전송장치 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(570)로 천이할 수 있다. 이때, 재협상이 정상적으로 완료되면, 무선전력 전송장치는 전력 전송 단계(560)로 회귀할 수 있다.
본 실시예에서는 보정 단계(550과 전력 전송 단계(560)를 별개의 단계로 구분하였지만, 보정 단계(550)는 전력 전송 단계(560)에 통합될 수 있다. 이 경우 보정 단계(550)에서의 동작들은 전력 전송 단계(560)에서 수행될 수 있다.
상기한 파워 전송 계약은 무선전력 전송장치와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 무선전력 전송장치 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 6에서 전력 전송 단계(560)에서, 무선전력 전송장치(100) 및 무선전력 수신장치(200)는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다. 무선전력 전송장치 및 무선전력 수신장치는 특정 컨트롤 포인트에서 동작한다. 컨트롤 포인트는 전력 전달이 수행될 때 무선전력 수신장치의 출력단(output)에서 제공되는 전압 및 전류의 조합(combination)을 나타낸다.
더 상세히 설명하면, 무선전력 수신장치는 원하는 컨트롤 포인트(desired Control Point)- 원하는 출력 전류/전압, 모바일 기기의 특정 위치의 온도 등을 선택하고, 추가로 현재 동작하고 있는 실제 컨트롤 포인트(actual control point)를 결정한다. 무선전력 수신장치는 원하는 컨트롤 포인트와 실제 컨트롤 포인트를 사용하여, 컨트롤 에러 값(control error value)을 산출하고, 이를 컨트롤 에러 패킷으로서 무선전력 전송장치로 전송할 수 있다.
그리고 무선전력 전송장치는 수신한 컨트롤 에러 패킷을 사용하여 새로운 동작 포인트- 진폭, 주파수 및 듀티 사이클-를 설정/컨트롤하여 전력 전달을 제어할 수 있다. 따라서 컨트롤 에러 패킷은 전략 전달 단계에서 일정 시간 간격으로 전송/수신되며, 실시예로서 무선전력 수신장치는 무선전력 전송장치의 전류를 저감하려는 경우 컨트롤 에러 값을 음수로, 전류를 증가시키려는 경우 컨트롤 에러 값을 양수로 설정하여 전송할 수 있다. 이와 같이 유도 모드에서는 무선전력 수신장치가 컨트롤 에러 패킷을 무선전력 전송장치로 송신함으로써 전력 전달을 제어할 수 있다.
이하에서 설명할 공진 모드에서는 유도 모드에서와는 다른 방식으로 동작할 수 있다. 공진 모드에서는 하나의 무선전력 전송장치가 복수의 무선전력 수신장치를 동시에 서빙할 수 있어야 한다. 다만 상술한 유도 모드와 같이 전력 전달을 컨트롤하는 경우, 전달되는 전력이 하나의 무선전력 수신장치와의 통신에 의해 컨트롤되므로 추가적인 무선전력 수신장치들에 대한 전력 전달은 컨트롤이 어려울 수 있다. 따라서 본 발명의 공진 모드에서는 무선전력 전송장치는 기본 전력을 공통적으로 전달하고, 무선전력 수신장치가 자체의 공진 주파수를 컨트롤함으로써 수신하는 전력량을 컨트롤하는 방법을 사용하고자 한다. 다만, 이러한 공진 모드의 동작에서도 도 6에서 설명한 방법이 완전히 배제되는 것은 아니며, 추가적인 송신 전력의 제어를 도 6의 방법으로 수행할 수도 있다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다. 쉐어드 모드는 무선전력 전송장치와 무선전력 수신장치간에 1대다 통신 및 충전을 수행하는 모드를 지칭할 수 있다. 쉐어드 모드는 자기 유도 방식 또는 공진 방식으로 구현될 수 있다.
도 7을 참조하면, 무선 전력 전송 장치(700)는 코일 어셈블리를 덮는 커버(720), 전력 송신기(740)로 전력을 공급하는 전력 어답터(730), 무선 전력을 송신하는 전력 송신기(740) 또는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(750) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(750)는 옵셔널하게 포함되거나, 무선 전력 전송 장치(700)의 다른 사용자 인터페이스(750)로서 포함될 수도 있다.
전력 송신기(740)는 코일 어셈블리(760), 임피던스 매칭 회로(770), 인버터(780), 통신 회로(790) 또는 컨트롤 회로(710) 중 적어도 하나를 포함할 수 있다.
코일 어셈블리(760)는 자기장을 생성하는 적어도 하나의 1차 코일을 포함하며, 코일 셀로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 인버터와 1차 코일(들) 간의 임피던스 매칭을 제공할 수 있다. 임피던스 매칭 회로(770)는 1차 코일 전류를 부스팅(boost)하는 적합한(suitable) 주파수에서 공진(resonance)을 발생시킬 수 있다. 다중-코일(multi-coil) 전력 송신기(740)에서 임피던스 매칭 회로는 인버터에서 1차 코일들의 서브세트로 신호를 라우팅하는 멀티플렉스를 추가로 포함할 수도 있다. 임피던스 매칭 회로는 탱크 회로(tank circuit)로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 캐패시터, 인덕터 및 이들의 연결을 스위칭하는 스위칭 소자를 포함할 수 있다. 임피던스의 매칭은 코일 어셈블리(760)를 통해 전송되는 무선전력의 반사파를 검출하고, 검출된 반사파에 기초하여 스위칭 소자를 스위칭하여 캐패시터나 인덕터의 연결 상태를 조정하거나 캐패시터의 캐패시턴스를 조정하거나 인덕터의 인덕턴스를 조정함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(770)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(770)가 생략된 무선전력 전송장치(700)의 실시예도 포함한다.
인버터(780)는 DC 인풋을 AC 신호로 전환할 수 있다. 인버터(780)는 가변(adjustable) 주파수의 펄스 웨이브 및 듀티 사이클을 생성하도록 하프-브리지 또는 풀-브리지로 구동될 수 있다. 또한 인버터는 입력 전압 레벨을 조정하도록 복수의 스테이지들을 포함할 수도 있다.
통신 회로(790)은 전력 수신기와의 통신을 수행할 수 있다. 전력 수신기는 전력 송신기에 대한 요청 및 정보를 통신하기 위해 로드(load) 변조를 수행한다. 따라서 전력 송신기(740)는 통신 회로(790)을 사용하여 전력 수신기가 전송하는 데이터를 복조하기 위해 1차 코일의 전류 및/또는 전압의 진폭 및/또는 위상을 모니터링할 수 있다.
또한, 전력 송신기(740)는 통신 회로(790)을 통해 FSK(Frequency Shift Keying) 방식 등을 사용하여 데이터를 전송하도록 출력 전력을 컨트롤할 수도 있다.
컨트롤 회로(710)은 전력 송신기(740)의 통신 및 전력 전달을 컨트롤할 수 있다. 컨트롤 회로(710)은 상술한 동작 포인트를 조정하여 전력 전송을 제어할 수 있다. 동작 포인트는, 예를 들면, 동작 주파수, 듀티 사이클 및 입력 전압 중 적어도 하나에 의해 결정될 수 있다.
통신 회로(790) 및 컨트롤 회로(710)은 별개의 회로/소자/칩셋으로 구비되거나, 하나의 회로/소자/칩셋으로 구비될 수도 있다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다.
도 8에서, 무선전력 수신 장치(800)는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(820), 무선 전력을 수신하는 전력 수신기(830), 로드 회로(load circuit, 840) 또는 코일 어셈블리를 받치며 커버하는 베이스(850) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(820)는 옵셔널하게 포함되거나, 전력 수신 장비의 다른 사용자 인터페이스(82)로서 포함될 수도 있다.
전력 수신기(830)는 전력 컨버터(860), 임피던스 매칭 회로(870), 코일 어셈블리(880), 통신 회로(890) 또는 컨트롤 회로(810) 중 적어도 하나를 포함할 수 있다.
전력 컨버터(860)는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 실시예로서, 전력 컨버터(860)는 정류기(rectifier)를 포함할 수 있다. 정류기는 수신된 무선 전력을 정류하여 교류에서 직류로 변환할 수 있다. 정류기는 다이오드나 트랜지스터를 이용하여 교류를 직류로 변환하고, 캐패시터와 저항을 이용하여 이를 평활할 수 있다. 정류기로는 브릿지 회로 등으로 구현되는 전파 정류기, 반파 정류기, 전압 체배기 등이 이용될 수 있다. 추가로, 전력 컨버터는 전력 수신기의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
임피던스 매칭 회로(870)는 전력 컨버터(860) 및 로드 회로(840)의 조합과 2차 코일 간의 임피던스 매칭을 제공할 수 있다. 실시예로서, 임피던스 매칭 회로는 전력 전달을 강화할 수 있는 100kHz 근방의 공진을 발생시킬 수 있다. 임피던스 매칭 회로(870)는 캐패시터, 인덕터 및 이들의 조합을 스위칭하는 스위칭 소자로 구성될 수 있다. 임피던스의 정합은 수신되는 무선 전력의 전압값이나 전류값, 전력값, 주파수값 등에 기초하여 임피던스 매칭 회로(870)를 구성하는 회로의 스위칭 소자를 제어함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(870)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(870)가 생략된 무선전력 수신장치(200)의 실시예도 포함한다.
코일 어셈블리(880)는 적어도 하나의 2차 코일을 포함하며, 옵셔널하게는 자기장으로부터 수신기의 금속 부분을 쉴딩(shield)하는 엘러먼트(element)를 더 포함할 수도 있다.
통신 회로(890)은 전력 송신기로 요청(request) 및 다른 정보를 통신하기 위해 로드 변조를 수행할 수 있다.
이를 위해 전력 수신기(830)는 반사 임피던스를 변경하도록 저항 또는 커패시터를 스위칭할 수도 있다.
컨트롤 회로(810)은 수신 전력을 컨트롤할 수 있다. 이를 위해 컨트롤 회로(810)은 전력 수신기(830)의 실제 동작 포인트와 원하는 동작 포인트의 차이를 결정/산출할 수 있다. 그리고 컨트롤 회로(810)은 전력 송신기의 반사 임피던스의 조정 및/또는 전력 송신기의 동작 포인트 조정 요청을 수행함으로써 실제 동작 포인트와 원하는 동작 포인트의 차이를 조정/저감할 수 있다. 이 차이를 최소화하는 경우 최적의 전력 수신을 수행할 수 있다.
통신 회로(890) 및 컨트롤 회로(810)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다.
도 9는 일 실시예에 따른 통신 프레임 구조를 나타낸다. 이는 쉐어드 모드(shared mode)에서의 통신 프레임 구조일 수 있다.
도 9를 참조하면, 쉐어드 모드에서는, 서로 다른 형태의 프레임이 함께 사용될 수 있다. 예를 들어, 상기 쉐어드 모드에서는, (A)와 같은 복수의 슬롯을 가지는 슬롯 프레임(slotted frame) 및 (B)와 같은 특정 형태가 없는 자유 형식 프레임(free format frame)을 사용할 수 있다. 보다 구체적으로, 슬롯 프레임은 무선 전력 수신장치(200)로부터, 무선 전력 전송장치(100)에게 짧은 데이터 패킷들의 전송을 위한 프레임이고, 자유 형식 프레임은 복수의 슬롯들을 구비하지 않아, 긴 데이터 패킷들의 전송이 가능한 프레임일 수 있다.
한편, 슬롯 프레임 및 자유 형식 프레임은, 당업자에 의하여 다양한 명칭으로 변경될 수 있다. 예를 들어, 슬롯 프레임은, 채널 프레임으로, 자유 형식 프레임은, 메시지 프레임 등으로 변경되어 명명될 수 있다.
보다 구체적으로, 슬롯 프레임은, 슬롯의 시작을 나타내는 싱크 패턴, 측정 슬롯, 9개의 슬롯들 및 상기 9개의 슬롯들 각각에 앞서, 동일한 시간 간격을 갖는 추가적인 싱크 패턴을 포함할 수 있다.
여기에서, 상기 추가적인 싱크 패턴은, 앞서 설명한 프레임의 시작을 나타내는 싱크 패턴과 다른 싱크 패턴이다. 보다 구체적으로, 상기 추가적인 싱크 패턴은, 프레임의 시작을 나타내지 않고, 인접한 슬롯들(즉, 싱크 패턴의 양 옆에 위치한 연속하는 두 개의 슬롯들)과 관련된 정보를 나타낼 수 있다.
상기 9개의 슬롯들 중 연속하는 두 개의 슬롯들 사이에는, 각각 싱크 패턴이 위치할 수 있다. 이 경우, 상기 싱크 패턴은, 상기 연속하는 두 개의 슬롯들과 관련된 정보를 제공할 수 있다.
또한, 상기 9개의 슬롯들 및 상기 9개의 슬롯들 각각에 앞서 제공되는 싱크 패턴들은, 각각 동일한 시간 간격을 가질 수 있다. 예를 들어, 상기 9개의 슬롯들은 50ms의 시간 간격을 가질 수 있다. 또한, 상기 9개의 싱크 패턴들도 50ms의 시간 길이를 가질 수 있다.
한편, (B)와 같은 자유 형식 프레임은, 프레임의 시작을 나타내는 싱크 패턴 및 측정 슬롯 이외에, 구체적인 형태를 가지지 않을 수 있다. 즉, 상기 자유 형식 프레임은, 상기 슬롯 프레임과 다른 역할을 수행하기 위한 것으로, 예를 들어, 상기 무선 전력 전송장치와 무선 전력 수신장치 간에 긴 데이터 패킷들(예를 들어, 추가 소유자 정보 패킷들)의 통신을 수행하거나, 복수의 코일로 구성된 무선 전력 전송장치에 있어서, 복수의 코일 중 어느 하나의 코일을 선택하는 역할을 위하여 사용될 수 있다.
이하에서는, 각 프레임에 포함된 싱크 패턴(sync pattern)에 대하여 도면과 함께 보다 구체적으로 살펴본다.
도 10은 일 실시예에 따른 싱크 패턴의 구조이다.
도 10을 참조하면, 싱크 패턴은 프리앰블(preamble), 시작 비트(start bit), 응답 필드(Resonse field), 타입 필드(type field), 정보 필드(info field) 및 패리티 비트(parity bit)로 구성될 수 있다. 도 10에서는 시작 비트가 ZERO로 도시되어 있다.
보다 구체적으로, 프리앰블은 연속되는 비트들로 이루어져 있으며, 모두 0으로 설정될 수 있다. 즉, 프리앰블은 싱크 패턴의 시간 길이를 맞추기 위한 비트들일 수 있다.
프리앰블을 구성하는 비트들의 개수는 싱크 패턴의 길이가 50ms에 가장 가깝도록, 그러나, 50ms를 초과하지 않는 범위 내에서, 동작 주파수에 종속될 수 있다. 예를 들어, 동작 주파수가 100kHz인 경우, 싱크 패턴은 2개의 프리앰블 비트들로 구성되고, 동작 주파수가 105kHz인 경우, 싱크 패턴은, 3개의 프리앰블 비트들로 구성될 수 있다.
시작 비트는 프리앰블 다음에 따라오는 비트로 제로(ZERO)를 의미할 수 있다. 상기 제로(ZERO)는 싱크 패턴의 종류를 나타내는 비트일 수 있다. 여기에서, 싱크 패턴의 종류는, 프레임과 관련된 정보를 포함하는 프레임 싱크(frame sync)와 슬롯의 정보를 포함하는 슬롯 싱크(slot sync)를 포함할 수 있다. 즉, 상기 싱크 패턴은, 연속하는 프레임들 사이에 위치하며, 프레임의 시작을 나타내는 프레임 싱크이거나, 프레임을 구성하는 복수의 슬롯 중 연속하는 슬롯들 사이에 위치하며, 상기 연속하는 슬롯과 관련된 정보를 포함하는 슬롯 싱크일 수 있다.
예를 들어, 상기 제로가 0인 경우, 해당 슬롯이 슬롯과 슬롯 사이에 위치한, 슬롯 싱크임을 의미하고, 1인 경우, 해당 싱크 패턴이 프레임과 프레임 사이에 위치한 프레임 싱크임을 의미할 수 있다.
패리티 비트는 싱크 패턴의 마지막 비트로, 싱크 패턴의 데이터 필드들(즉, 응답 필드, 타입 필드, 정보 필드)를 구성하는 비트들의 개수 정보를 나타낼 수 있다. 예를 들어, 기 패리티 비트는 싱크 패턴의 데이터 필드들을 구성하는 비트의 개수가 짝수인 경우, 1, 그 밖의 경우(즉, 홀수인 경우), 0이 될 수 있다.
응답(Response) 필드는 싱크 패턴 이전의 슬롯 내에서, 무선 전력 수신장치와의 통신에 대한, 무선 전력 전송장치의 응답 정보를 포함할 수 있다. 예를 들어, 응답 필드는 무선 전력 수신장치와 통신의 수행이 감지되지 않은 경우, '00'을 가질 수 있다. 또한, 상기 응답 필드는 무선 전력 수신장치와의 통신에 통신 에러(communication error)가 감지된 경우, '01'을 가질 수 있다. 통신 에러는, 두 개 또는 그 이상의 무선 전력 수신장치가 하나의 슬롯에 접근을 시도하여, 두 개 또는 그 이상의 무선 전력 수신장치 간의 충돌이 발생한 경우일 수 있다.
또한, 응답 필드는, 무선 전력 수신장치로부터 데이터 패킷을 정확하게 수신하였는지 여부를 나타내는 정보를 포함할 수 있다. 보다 구체적으로, 응답필드는, 무선 전력 전송장치가 데이터 패킷을 거부(deni)한 경우, "10"(10-not acknowledge, NAK), 무선 전력 전송장치가 상기 데이터 패킷을 확인(confirm)한 경우, "11"(11-acknowledge, ACK)이 될 수 있다.
타입 필드는 싱크 패턴의 종류를 나타낼 수 있다. 보다 구체적으로, 타입 필드는 싱크 패턴이 프레임의 첫번째 싱크 패턴인 경우(즉, 프레임의 첫번째 싱크 패턴으로, 측정 슬롯 이전에 위치한 경우), 프레임 싱크임을 나타내는 '1'을 가질 수 있다.
또한, 타입 필드는 슬롯 프레임에서, 싱크 패턴이 프렘임의 첫번째 싱크 패턴이 아닌 경우, 슬롯 싱크임을 나타내는 '0'을 가질 수 있다.
또한, 정보 필드는 타입 필드가 나타내는 싱크 패턴의 종류에 따라 그 값의 의미가 결정될 수 있다. 예를 들어, 타입 필드가 1인 경우(즉, 프레임 싱크를 나타내는 경우), 정보 필드의 의미는 프레임의 종류를 나타낼 수 있다. 즉, 정보 필드는 현재 프레임이 슬롯 프레임(slotted frame)인지 또는 자유 형식 프레임(free-format frame)인지 나타낼 수 있다. 예를 들어, 정보 필드가 '00'인 경우, 슬롯 프레임을, 정보 필드가 '01'인 경우, 자유 형식 프레임을 나타낼 수 있다.
이와 달리, 타입 필드가 0인 경우(즉, 슬롯 싱크인 경우), 정보 필드는 싱크 패턴의 뒤에 위치한 다음 슬롯(next slot)의 상태를 나타낼 수 있다. 보다 구체적으로, 정보 필드는 다음 슬롯이 특정(specific) 무선 전력 수신장치에 할당된(allocated) 슬롯인 경우, '00', 특정 무선 전력 수신장치가 일시적으로 사용하기 위하여, 잠겨 있는 슬롯인 경우, '01', 또는 임의의 무선 전력 수신장치가 자유롭게 사용 가능한 슬롯인 경우, '10'을 가질 수 있다.
도 11은 일 실시예에 따른 쉐어드 모드에서 무선 전력 전송장치 및 무선전력 수신장치의 동작 상태를 도시하였다.
도 11을 참조하면, 쉐어드 모드로 동작하는 무선 전력 수신장치는, 선택 상태(Selection Phase) (1100), 도입 상태(Introduction Phase)(1110), 설정 상태(Configuration Phase) (1120), 교섭 상태(Negotiation Phase)(1130) 및 전력 전송 상태(Power Transfer Phase) (1140) 중 어느 하나의 상태로 동작할 수 있다.
우선, 일 실시예에 따른 무선 전력 전송장치는 무선 전력 수신장치를 감지하기 위하여, 무선 전력 신호를 전송할 수 있다. 즉, 무선 전력 신호를 이용하여, 무선 전력 수신장치를 감지하는 과정을 아날로그 핑(Analog ping)이라 할 수 있다.
한편, 무선 전력 신호를 수신한 무선 전력 수신장치는 선택 상태(1100)에 진입할 수 있다. 선택 상태(1100)에 진입한 무선 전력 수신장치는 앞서 설명한 바와 같이, 상기 무선 전력 신호 상에 FSK신호의 존재를 감지할 수 있다.
즉, 무선 전력 수신장치는 FSK 신호의 존재 여부에 따라 익스클루시브 모드 또는 쉐어드 모드 중 어느 하나의 방식으로 통신을 수행할 수 있다.
보다 구체적으로, 무선 전력 수신장치는 무선 전력 신호에 FSK 신호가 포함되어 있으면, 쉐어드 모드로 동작하고, 그렇지 않은 경우, 익스클루시브 모드로 동작할 수 있다.
무선 전력 수신장치가 쉐어드 모드로 동작하는 경우, 상기 무선 전력 수신장치는 도입 상태(1110)에 진입할 수 있다. 도입 상태(1110)에서, 무선 전력 수신장치는, 설정 상태, 교섭 상태 및 전력 전송 상태에서, 제어 정보 패킷(CI, Control Information packet)을 전송하기 위하여, 무선 전력 전송장치에게 제어 정보 패킷을 전송할 수 있다. 제어 정보 패킷은, 헤더(Header) 및 제어와 관련된 정보를 가질 수 있다. 예를 들어, 제어 정보 패킷은, 헤더가 0X53일 수 있다.
도입 상태(1110)에서, 무선전력 수신장치는 제어정보(control information: CI) 패킷을 전송하기 위해 자유슬롯(free slot)을 요청하는 시도를 다음의 구성, 협상, 전력 전송 단계에 걸쳐 수행한다. 이때 무선전력 수신장치는 자유슬롯을 선택하고 최초 CI 패킷을 전송한다. 만약 무선전력 전송장치가 해당 CI 패킷에 ACK으로 응답하면, 무선전력 전송장치는 구성 단계로 진입한다. 만약 무선전력 전송장치가 NAK으로 응답하면, 다른 무선전력 수신장치가 구성 및 협상 단계를 통해 진행되고 있는 것이다. 이 경우, 무선전력 수신장치는 자유슬롯의 요구를 재시도한다.
만약 무선전력 수신장치가 CI 패킷에 대한 응답으로 ACK을 수신하면, 무선전력 수신장치는 최초 프레임 싱크까지 나머지 슬롯 싱크들을 카운팅함으로써 프레임 내의 개인 슬롯(private slot)의 위치를 결정한다. 모든 후속 슬롯 기반 프레임들에서, 무선전력 수신장치는 해당 슬롯을 통해 CI 패킷을 전송한다.
만약 무선전력 전송장치가 무선전력 수신장치에게 구성 단계로 진행함을 허락하면, 무선전력 전송장치는 무선전력 수신장치의 배타적 사용을 위한 잠금 슬롯(locked slot) 시리즈를 제공한다. 이는 무선전력 수신장치가 충돌없이 구성 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 2개의 식별 데이터 패킷들(IDHI와 IDLO)와 같은 데이터 패킷의 시퀀스들을 잠금 슬롯을 사용하여 전송한다. 본 단계를 완료하면, 무선전력 수신장치는 협상 단계로 진입한다. 협상 단계에서, 무선전력 전송장치가 무선전력 수신장치에게 배타적 사용을 위한 잠금 슬롯을 계속 제공한다. 이는 이는 무선전력 수신장치가 충돌없이 협상 단계를 진행하는 것을 확실시 해준다.
무선전력 수신장치는 해당 잠금 슬롯을 사용하여 하나 또는 그 이상의 협상 데이터 패킷들을 전송하며, 이는 사적 데이터 패킷들과 섞일 수도 있다. 결국 해당 시퀀스는 특정 요청 (specific request (SRQ)) 패킷과 함께 종료된다. 해당 시퀀스를 완료하면, 무선전력 수신장치는 전력 전송 단계로 진입하고, 무선전력 전송장치는 잠금 슬롯의 제공을 중단한다.
전력 전송 상태에서, 무선전력 수신장치는 할당된 슬롯을 사용하여 CI 패킷의 전송을 수행하며, 전력을 수신한다. 무선전력 수신장치는 레귤레이터 회로를 포함할 수 있다. 레귤레이터 회로는 통신/제어 회로에 포함될 수 있다. 무선전력 수신장치는 레귤레이터 회로를 통해 무선전력 수신장치의 반사 임피턴스를 자가-조절(self-regulate)할 수 있다. 다시 말해, 무선전력 수신장치는 외부 부하에 의해 요구되는 양의 파워를 전송하기 위해 반사되는 임피던스를 조정할 수 있다. 이는 과도한 전력의 수신과 과열을 방지할 수 있다.
쉐어드 모드에서, 무선전력 전송장치는 수신되는 CI 패킷에 대한 응답으로서 전력을 조정하는 것을 수행하지 않을 수 있기 때문에(동작 모드에 따라), 이 경우에는 과전압 상태를 막기 위한 제어가 필요할 수 있다.
무선전력 전송 시스템은 다양한 응용 분야로의 확장을 지원하기 위해 응용 계층의 메시지의 교환 기능을 구비할 수 있다. 이러한 기능에 기반하여, 기기의 인증 관련 정보 또는 기타 어플리케이션 레벨의 메시지들이 무선전력 전송장치와 수신장치 간에 송수신될 수 있다. 이와 같이 무선전력 전송장치와 수신장치 간에 상위계층의 메시지들이 교환되기 위하여, 데이터 전송을 위한 별도의 계층적 아키텍쳐(architecture)가 요구되며, 계층적 아키텍쳐의 효율적인 관리 및 운영 방법이 요구된다.
임의주소(random address)를 이용한 BLE 통신 연결
본 실시예는 무선 전력 전송 시스템에서 임의주소(Random Address)를 이용하여 핸드오버 절차를 수행하는 방법을 개시한다.
본 실시예는 무선 전력 전송 시스템에서 BLE(Bluetooth Low Energy) 통신을 이용할 때 어드버타이징하는 방법을 개시한다.
본 명세서에서는 표준기술로서 WPC의 Qi 표준을 예시로 들 수 있으나, 본 발명의 기술적 사상은 Qi 표준뿐만 아니라 다른 표준을 기반으로 하는 인증의 실시예까지 포함하는 것이다.
무선전력 전송장치와 무선전력 수신장치는 서로간에 BLE 통신을 위해, BLE 연결(Connection)에 필요한 MAC 주소(Address)를 인밴드(In-band) 통신을 이용하여 전송 또는 수신하고 상기 MAC 주소를 사용하여 BLE 연결을 시도할 수 있다. 다만, MAC 주소 또는 BLE 디바이스 주소와 같이 고정된 주소는 해당 디바이스의 고유 주소이기 때문에, 보안 측면에서 좋은 성능을 보이지 못한다.
따라서, 본 실시예에 따른 무선전력 전송장치와 무선전력 수신장치는 고정된 BLE 디바이스 주소(device address)를 사용하지 않고 임의 주소(Random Address)를 이용해 보다 안전한 BLE 연결이 이루어지도록 할 수 있다. 이를 위해, 본 실시예에 따른 무선전력 전송장치 또는 무선전력 수신장치는 BLE 디바이스 주소를 임의 주소로 교체하고 어드버타이징 패킷(또는 어드버타이즈먼트 패킷(Advertisement Packet))을 구성하는 동작을 수행할 수 있다. 주장치(Central)는 인밴드 통신을 통해 임의 주소를 받고, 어드버타이징 패킷을 수신할 때 페어링(Pairing)을 시도할 주소를 갱신한다. 여기서, 상기 주장치는 무선전력 전송장치 또는 무선전력 수신장치일 수 있다. 본 실시예는 핸드오버 페이즈(Handover Phase)에서 인밴드 통신을 이용한 주소 전송 방법을 구체화한다.
도 12는 일 실시예에 따른 무선전력 전송장치와 무선전력 수신장치 간에 BLE 연결 절차를 도시한 흐름도이다.
도 12를 참조하면, 무선전력 수신장치(1210)와 무선전력 전송장치(1220)는 각각 인밴드 통신 모듈(1212, 1222)과 OOB 통신 모듈(또는 BLE 통신 모듈)(1214, 1224)을 구비할 수 있다. 본 명세서 상에서 인밴드 통신 모듈(1212, 1222)을 이용하여 동작 주파수 영역에서 이루어지는 인 밴드 통신은 흰색 영역의 흐름도로 표현되고, OOB 통신 모듈(1214, 1224)을 통한 다른 주파수 영역에서 이루어지는 아웃 밴드 통신은 빗금 영역의 흐름도로 표현된다.
무선전력 전송장치(1220)와 무선전력 수신장치(1210)는 먼저 전력을 턴-온(turn-on)하여 장치가 동작 중인 상태를 유지한다(S1102, S1104). 그리고는, 무선전력 전송장치(1220)와 무선전력 수신장치(1210)의 인-밴드 통신 모듈(1212, 1222)를 이용하여 물체 검출을 수행한다(S1206). 물체 검출이란, 무선 충전의 동작 주파수를 이용하여 주변에 무선 충전과 관련된 물체가 존재하는지 검출하는 동작(object detection)으로, 해당 과정을 통해 무선전력 수신장치(1210)와 무선전력 전송장치(1220)는 서로의 존재를 인지하게 된다.
무선전력 전송장치(1220)가 무선전력 수신장치(1210) 간의 물체 검출(S1206)을 완료한 이후, 무선전력 전송장치(1220)와 무선전력 수신장치(1210) 간에 BLE 임의 주소에 관한 정보 전달이 이루어질 수 있다. 이때 정보 전달에 사용되는 통신 패킷은 도 14와 같을 수 있다(도 14 참조).
BLE 임의 주소가 상호간에 성공적으로 교환되면, 무선전력 전송장치(1220)와 무선전력 수신장치(1210)는 BLE 임의 주소를 이용하여 인밴드 통신에서 BLE 통신(또는 OOB 통신)으로 각자 핸드오버를 수행한다(S1210, S1212). 핸드오버가 이루어진 이후에는 무선전력 충전과 관련된 절차 및 해당 절차에서의 필요한 정보 전달은 BLE 통신을 통해 이루어진다.
즉, 핸드 오버 이후, 무선전력 전송장치(1220)와 무선전력 수신장치(1210)는 앞서 인밴드 통신을 통해 수신한 서로의 BLE 임의 주소 중 적어도 하나에 기반하여 BLE 연결을 개시하고 연결을 확립한다(S1214).
본 실시예에 따르면, 임의 주소는 BLE 연결마다 갱신되어 인밴드 통신을 이용하여 전송된다. 따라서, BLE 연결은 인밴드 통신으로 정보 전달이 이루어진 후에 진행된다.
이러한 도 12에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 11에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 11에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 무선전력 전송장치에 의한 인밴드 통신, BLE 통신, BLE 정보 전달, 임의 주소를 포함하는 통신 패킷의 처리, 전송 및 수신 동작은 통신/컨트롤 회로(120)에 의해 수행될 수 있다. 또한 도 12에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 11에서 개시된 무선전력 수신장치 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 11에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 무선전력 수신장치에 의한 인밴드 통신, BLE 통신, BLE 정보 전달, 임의 주소를 포함하는 통신 패킷의 처리, 전송 또는 수신 동작은 통신/컨트롤 회로(220)에 의해 수행될 수 있다.
도 13a 및 도 13b는 일 실시예에 따른 무선전력 수신장치와 무선전력 송신장치의 임의 주소(Random Address) 송수신을 통한 BLE 연결 절차를 도시한 흐름도이다. 본 실시예는, 무선전력 수신장치가 먼저 임의주소를 생성하여 무선전력 전송장치로 전달하는 실시예를 가정한다. 본 실시예는 위와 같은 상황을 가정하지만, 상호간의 기능 및 동작 순서는 변경되어도 무방하다.
도 13a를 참조하면, BLE 통신을 확립하기 전에, 무선전력 수신장치는 BLE 통신을 확립하기 위해 사용될 임의주소를 설정한다(S1310). 상기 임의 주소는 장치 고유 주소로부터 유도될 수도 있고, 그렇지 않고 완전 임의의 주소로 생성될 수도 있다(이하 정적 주소, 분해가능한 사유 주소 및 분해불가능한 사유 주소 부분 설명 참조).
무선전력 수신장치가 임의 주소를 생성하고 나면, 이를 패킷화하여 인밴드 통신을 통해 무선전력 전송장치로 전달한다(S1312). 그리고는, 무선전력 전송장치로부터 응답을 기다린다(S1314). 이때, 응답을 수신하지 못한 채 일정시간이 경과하면, 다시 임의 주소를 포함하는 패킷을 재전송한다. Nck의 응답이 도달하는 경우에도 상기 패킷을 재전송할 수 있다. 일정시간 내에 정상적으로 패킷을 수신했음을 알리는 Ack를 수신하면, 무선전력 수신장치는 핸드오버를 수행한다. 상기 Ack 패킷에는 무선전력 전송장치의 임의 주소가 포함되어 있을 수 있다. 또는, 무선전력 전송장치는 무선전력 수신장치로부터 임의 주소를 포함하는 패킷을 받은 것에 대응하여 상기 Ack 패킷 이후에 자신의 임의 주소를 포함하는 응답 패킷을 별도로 생성하여 무선전력 수신장치로 전송할 수 있다.
그리고는, 아웃 밴드 통신 모듈에서 어드버타이징 패킷(Advertising Packet)을 구성하여(S1316), BLE 연결을 시도한다(S1318).
도 13b를 참조하면, 무선전력 전송장치는 무선전력 수신장치에서 생성된 무선전력 수신장치의 임의주소가 포함된 패킷을 기다리고 있다가(S1320), 무선전력 수신장치로부터 임의 주소 패킷이 도달하면 해당 패킷을 수신한다(S1322). 수신이 적절히 이루어지지 않거나(S1322) 패킷 내에 에러가 검출되면(S1326), 무선전력 전송장치는 무선전력 수신장치로 Nck를 전송한다(S1324). 만약, 수신이 적절히 이루어졌고, 해당 패킷 내에서 에러가 검출되지도 않았다면, 무선전력 전송장치는 Ack를 전송한다(S1328). 이때, Ack 패킷에 자신의 임의 주소를 포함시켜 전송시킬 수도 있고, Ack 이후 일정시간 내에 자신의 임의주소를 포함하는 패킷을 무선전력 수신장치로 전송할 수도 있다.
그리고는, 무선전력 전송장치는 상기 무선전력 수신장치의 임의주소를 확보하고 나서, 인밴드 통신에서 아웃 밴드 통신으로 핸드오버를 수행한다.
핸드오버 이후, 아웃 밴드 통신 모듈을 이용하여 상기 임의주소로 BLE 연결을 시도한다(S1330).
도 14는 본 실시예에 따른 임의 주소를 포함하는 통신 패킷 구조를 도시한 것이다.
도 14를 참조하면, BLE 연결(또는 연결 수립(connection establishment)) 전에, 인밴드 통신 시 교환되는 통신 패킷은 헤더 필드, 메시지 필드 및 체크섬(checksum) 필드로 구성될 수 있다. 헤더에는 해당 패킷의 인덱스, 패킷의 성질과 관련된 제반사항에 대한 정보가 포함될 수 있고, 체크섬 필드에는 데이터의 정확성을 검사하기 위한 용도(오류 검출 용도)의 합계 값이 포함될 수 있다.
그리고, 메시지 필드에는, 6바이트의 임의 주소(Random address) 정보가 포함될 수 있다. 상기 임의 주소는 장치 고유 주소로부터 유도되는 임의주소일 수도 있고, 완전 랜덤하게 생성되는 임의주소일 수도 있다(이하 정적 주소, 분해가능한 사유 주소 및 분해불가능한 사유 주소 부분 설명 참조). 상기 메시지 필드에는, 임의 주소 이외에도 데이터 필드를 더 포함할 수 있다. 데이터 필드는 추후 OOB(out of band) 연결이나 다른 인밴드 통신에서 사용되어질 수 있다.
본 실시예에서, 메시지 필드에 포함되는 상기 임의 주소는 매 BLE 연결마다 갱신될 수 있다. 즉, 제 1 장치와의 BLE 연결 이후, 제 2 장치와의 BLE 연결이 필요할 때, 제 2 장치에 전달되는 임의 주소는 제 1 장치와의 BLE 연결 이후 갱신된 것일 수 있다. 또한, 동일 장치와의 복수 회의 BLE 연결 시에도 첫 번째 BLE 연결 해제 후 두 번째 BLE 연결시 갱신된 임의 주소가 사용될 수 있다. 다만, 이러한 임의 주소는 BLE 통신 연결 전, 보다 상세하게는, 핸드오버 이전에, 먼저 인밴드 통신을 통해 전달되는 것이 바람직하다.
도 15는 본 실시예에 따른 무선전력 전송장치와 무선전력 수신장치 간에 BLE 페어링(pairing) 과정을 도시한 흐름도이다. OOB 통신(또는 BLE 통신)에 기반하여 무선 충전을 수행할 때, 충전하고자 하는 무선전력 수신장치를 구분하기 위한 정보가 사용될 수 있다. 이때, 상기 정보는 어드버타이징 패킷(advertising packet)에 포함될 수 있다. OOB 통신에 사용되는 각 OOB 통신 모듈(또는 BLE 통신 모듈)들은 처음 기기간 연결을 할 때 도 15와 같은 페어링 과정을 진행한다.
도 15를 참조하면, 어드버타이저(1510)는 어드버타이징(advertising)을 수행한다(S1502). 어드버타이저(1510)는 주변에 자신의 존재를 알리는 장치로, 무선전력 전송장치 또는 무선전력 수신장치가 될 수 있다. 어드버타이징(advertising)은 어드버타이저(1510)의 링크 계층(Link layer)이 담당한다. 어드버타이징 절차는 어드버타이저(1510)가 주변에 있는 BLE를 지원하는 디바이스에게 자신의 존재를 알리는 과정이다. 어드버타이저(1510)는 자신의 존재를 스캐너(1520)에게 일정 주기마다 어드버타이징한다. 대개의 경우, 상기 주기는 1초일 수 있다. 다만, 반드시 1초여야 하는 것은 아니고, 0.1초, 0.2초, 0.5초, 2초, 3초, 5초 및 10초 등 다른 주기로도 설정될 수 있다.
다음, 스캐너(1520)는 연결 개시(initiating connection) 동작을 수행한다(S1504). 연결 개시 역시, 링크 계층이 담당한다. 연결 개시 절차는 스캐너(1520)가 어드버타이저(1510)에 의해 전송되는 어드버타이저 패킷을 스캐닝하여 수신하고, 어드버타이저(1510)와 연결을 형성하여 데이터를 교환하고자 할 때 연결을 요청하는 과정이다. 여기서, 연결을 요청하는 디바이스(보통 스캐너(1520)가 이 역할을 수행)는 마스터 역할(master role)이고, 어드버타이저(1510)는 슬레이브 역할(slave role)을 수행한다. 슬레이브는 마스터의 주파수 호핑 시퀀스(frequency hopping sequence)에 동기화되도록 마스터가 요청하는 연결 요청 패킷(connection request packet)에 주파수 호핑 채널 맵(frequency hopping channel map) 정보를 포함하여 전송한다.
다음으로, 어드버타이저(1510)와 스캐너(1520)는 보안 수립(Security Establishment)을 수행한다(S1506). 보안 수립은 보안 관리자(Security Manager)가 담당한다. 보안 수립 절차는 BLE 디바이스에 설정된 보안 모드(security mode)에 따라 암호화(Encryption) 및 인증(Authentication)을 수행하는 과정이다. 보안 수립 과정은 페어링(pairing), 본딩(bonding) 및 암호화 재수립(Encyption Re-dstablishment) 과정을 포함한다. 페어링 절차에서, 보안 관리자는 보안 링크를 구축하기 위해 일시적인 보안 암호화 키(temporary security encryption key)를 생성한다. 암호화 키(Encryption key)는 연결이 지송되는 동안 유지되지만 저장되지 않기 때문에 다른 연결에 재사용될 수 없다. 본딩(Bonding) 절차에서, 보안 관리자는 페어링 과정이 끝나면 공유 보안 키(shared security key)를 저장해서 다음 번 연결에도 재사용할 수 있는 보안 관계를 구축한다. 암호화 재수립 단계에서, 보안 관리자는 키가 양쪽 장치에 저장되도록 하여 상기 저장된 키를 이용해서 다음 번에 다시 연결될 때 페어링-본딩 과정 없이 보안 연결을 재설정할 수 있도록 한다.
보안 수립 이후, 양 장치의 OOB 통신 모듈은 BLE 애플리케이션 연결을 수행하고(S1508), 관련 통신을 유지하다가 BLE 통신의 거리 범위를 벗어나거나 타 장치와 연결되거나 또는 강제로 연결을 해제하면, 디스커넥트(Disconnect)된다(S1510).
무선전력 수신장치 또는 무선전력 전송장치의 BLE 통신 모듈은 각각 어드버타이저(advertiser)가 될 수도 있고, 스캐너(scanner)가 될 수도 있다. 어드버타이저인 BLE 통신 모듈이 무선전력 전송장치에 포함되고 스캐너인 BLE 통신 모듈일 무선전력 수신장치에 포함된 경우, 도 15에 따른 어드버타이저의 동작은 곧 무선전력 전송장치의 동작이고, 도 15에 따른 스캐너의 동작은 곧 무선전력 수신장치의 동작일 수 있다. 반면 어드버타이저인 BLE 통신 모듈이 무선전력 수신장치에 포함되고 스캐너인 BLE 통신 모듈일 무선전력 전송장치에 포함된 경우, 도 15에 따른 어드버타이저의 동작은 곧 무선전력 수신장치의 동작이고, 도 15에 따른 스캐너의 동작은 곧 무선전력 전송장치의 동작일 수 있다.
이러한 도 15에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 11에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 11에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 무선전력 전송장치에 의한 인밴드 통신, BLE 통신, 어드버타이징, 통신 개시, 보안 수립의 처리, 전송 및 수신 동작은 통신/컨트롤 회로(120)에 의해 수행될 수 있다. 또한 도 15에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 11에서 개시된 무선전력 수신장치 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 11에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서 무선전력 수신장치에 의한 인밴드 통신, 어드버타이징, 통신 개시, 보안 수립의 처리, 전송 또는 수신 동작은 통신/컨트롤 회로(220)에 의해 수행될 수 있다.
도 16은 본 실시예에 따른 BLE 페어링 과정에서 교환되는 패킷 구조를 나타낸 개념도이다.
도 16를 참조하면, 패킷은 프리앰블, 접근 주소(access address) 필드, PDU 필드, CRC를 포함한다. 이때, 프리앰블은 1 또는 2 옥텟으로 구성될 수 있다. 예를 들어 물리계층의 BLE 1M 상에서 전송 또는 수신되는 프리앰블은 1 옥텟(1 octet)이고, 물리계층의 BLE 2M 상에서 전송 또는 수신되는 프리앰블은 2 옥텟(2 octet)일 수 있다.
접근 주소 필드는 예를 들어 4 옥텟(4 octet)으로서, 모든 어드버타이징 채널 패킷들을 위한 접근 주소는 "10001110100010011011111011010110b (0x8E89BED6)"일 수 있다.
CRC는 예를 들어 3 옥텟(3 octet)으로서 접근 주소, PDU 및 CRC의 오류를 체크하는데 사용된다.
PDU 필드는 예를 들어 2 내지 257 옥텟(2~257 octet)으로서, 헤더(header)와 페이로드(payload)를 포함한다. 본 실시예에 따르면, BLE 페어링 과정에서 충전되는 기기를 구분하기 위한 정보를 어드버타이징 패킷(advertising packet)에 포함시키기 위해, 패킷 내의 PDU 필드에 특정한 정보인 헤더와 페이로드가 추가된다. 헤더는 어드버타이징 타입(advertising type)을 지시하고, 페이로드는 상기 기기 구분 정보를 포함할 수 있다.
만약, 앞서 언급한 인밴드 통신에 의해 디바이스 간 주소를 알고 있다면, 헤더의 어드버타이징 타입은 ADV_DIRECT_IND으로 설정되고, 페이로드는 어드버타이저의 주소(예를 들어 6 바이트)와 타겟 디바이스(Target Device)의 주소(예를 들어 6 바이트)와 기기를 구분할 수 있는 데이터를 포함하여 전송될 수 있다. 앞서 설명한 바와 같이, ADV_DIRECT_IND는 연결 가능한 지향성 광고 이벤트를 나타낸다(Used to send connectable directed advertisement).
반면, 만약 인밴드 통신에 의한 디바이스 간 주소를 알고 있지 않다면, 어드버타이징 타입은 ADV_IND로 설정되고, 페이로드는 어드버타이저의 주소 및 디바이스를 구분할 수 있는 데이터를 포함하여 전송될 수 있다. 앞서 설명한 바와 같이, 이는 연결 가능한 비지향성 광고 이벤트를 나타낸다(Used to send connectable undirected advertisement). 이는 도 17을 참조하여 보다 상세히 설명한다.
도 17은 본 실시예에 따른 BLE 페어링 과정에서 교환되는 패킷의 PDU 부분의 구조를 구체화한 개념도이다.
도 17을 참조하면, 기기간 주소를 모르는 경우, 헤더는 ADV_IND을 지시하고, 페이로드에는 2가지 정보가 포함될 수 있다. 상기 2가지 정보는 어드버타이저의 주소 및 제조사 정보를 포함한다. 여기서 어드버타이저의 주소는 BLE 장치 주소, 즉, MAC address를 포함한다. 다만, 본 실시예에서, BLE 페어링 시의 보안을 강화하기 위해, MAC address 대신 임의 주소가 사용될 수 있다. 상기 임의 주소는 장치 고유 주소로부터 유도되는 임의주소일 수도 있고, 완전 랜덤하게 생성되는 임의주소일 수도 있다(이하 정적 주소, 분해가능한 사유 주소 및 분해불가능한 사유 주소 부분 설명 참조). 또한, 상기 기기를 구분하는 데이터는 제조사 정보일 수 있다. 상기 제조사 정보는 1 바이트(1 byte)로 구성될 수 있고, 특정 인덱스 값에 대응하는 제조사를 테이블 등의 형태로 기기 간에 공유하여 상기 인덱스 값을 주고받음으로써 서로 간에 해당 정보를 인지할 수 있다. 이때, 패킷은 최대 31 바이트(31 byte)의 길이를 가질 수 있다.
인밴드 통신을 통해 기기간 주소를 알고 있는 경우, 헤더는 ADV_DIRECT_IND을 지시하고, 페이로드에는 3가지 정보가 포함될 수 있다. 상기 3가지 정보는 어드버타이저의 주소, 타겟 디바이스의 주소 및 제조사 정보를 포함한다. 즉, 기기간 주소를 모를 때보다 타겟 디바이스의 주소 정보를 더 포함시켜 어드버타이징 패킷을 생성할 수 있다. 상기 타겟 디바이스의 주소는 스캐너의 BLE 장치 주소, 즉, MAC address를 포함한다. 다만, 본 실시예에서, BLE 페어링 시의 보안을 강화하기 위해, 스캐너의 임의 주소가 사용될 수 있다.
본 실시예에서, 핸드오버는 인밴드 통신을 통해 임의주소가 실린 패킷을 수신하면 개시된다. 즉, 도 5의 무선전력 전송 절차 중 어느 단계든지 임의주소 패킷이 수신되는 단계에서 핸드오버가 일어나고, 핸드오버가 이루어진 후에는 각 단계에서 필요한 정보 전달은 아웃 밴드에서 전달된다. 예컨대, 협상 단계(540)에서 임의주소가 실린 패킷이 수신되면, 해당 단계에서 핸드오버가 수행되고, 핸드오버 이후 다시 협상 단계가 진행되되, 이후 협상, 보정, 전력 전송 및 재협상 단계 등에서의 정보 전달은 아웃 밴드를 통해 이루어질 수 있다.
화이트 리스트를 이용한 BLE 통신 연결
본 실시예는 교차 연결을 방지하고 안전한 OOB 통신 확립을 위해 화이트 리스트(White List)를 이용하여 OOB 통신을 셋업하는 방법에 관한 것이다. 무선전력 수신장치 또는 무선전력 전송장치의 링크 계층(link layer)은 화이트 리스트(White List)를 관리하고 유지하면서 장치 필터링(Device Filtering)을 수행할 수 있다. 장치 필터링을 이용하여, 링크 관리자(link manager)는 특정한 디바이스의 집합(즉, 화이트 리스트)에만 응답하도록 한정될 수 있다. 즉 화이트 리스트에 포함되지 않은 디바이스들로부터의 전송 또는 요청은 무시된다. 여기서, 화이트 리스트란 감시 대상이거나 또는 권리를 제한하기 위한 목록인 블랙리스트(Black List)의 반대 의미로, 규제나 조건 등을 풀어서 접근을 허용한 대상 리스트를 나타낸다. 즉, 신뢰할 수 있는 디바이스와 관련된 정보(안전하게 기 접속했었던 디바이스의 주소 등이 포함될 수 있음)가 화이트 리스트에 포함될 수 있다.
일례로서, 장치 필터링은 상기 화이트 리스트 내의 MAC 주소 장치에만 응답하고, 화이트 리스트 이외의 MAC 주소 장치(어드버타이저, 스캐너, 개시자 등)에 응답하지 않는 동작을 포함한다. 장치 필터링은 어드버타이징(Advertising), 스캐닝(Scanning), 연결 개시(Initiating)과 같은 각 단계별로 정의된 특정 규칙 하에서 수행 또는 관리될 수 있다. 본 실시예에서, 화이트 리스트는 MAC 주소뿐만 아니라 임의 주소로 갱신 및 관리될 수 있다. 여기서, 임의주소가 정적 사유주소 및 분해불가능한 사유 주소라면, 임의 주소를 통해 실제 주소를 확인하기는 어렵다. 따라서, 이 경우, 임의주소가 유지 기간(예컨대, 특정 전력 사이클) 동안 해당 임의 주소가 화이트 리스트에 포함되어 화이트 리스트 디바이스로써의 혜택을 받을 수 있다. 또는, 임의 주소 생성시 디바이스들 간의 규약으로 설정된 화이트 리스트로 관리가능한 규칙을 갖는 주소로 생성되도록 제어하여 해당 임의 주소를 통해 화이트 리스트가 갱신된 후에 화이트 리스트 디바이스로써의 혜택을 받을 수 있도록 할 수 있다. 분해가능한 사유 주소의 경우, 알고있는 키 값 및 해쉬 값을 이용하여 임의 주소로부터 MAC 주소를 유도하고 유도된 MAC 주소를 통해 화이트 리스트를 갱신 및 관리할 수 있다.
먼저, 어드버타이징 필터링 규칙은 어드버타이저(advertiser)의 링크 계층이 스캔과 연결 요청을 처리하는 방법을 정의한다. 일례로서, 어드버타이저의 링크 계층은 화이트 리스트 내의 장치들로부터의 스캔 요청이나 연결 요청만을 처리한다. 다른 예로서, 어드버타이저의 링크 계층은 모든 장치들로부터 스캔 요청을 처리하지만, 연결 요청의 경우 화이트 리스트 내의 단말들로부터의 연결 요청만을 처리한다. 또 다른 예로서, 어드버타이저의 링크 계층은 모든 장치들로부터 연결 요청을 처리하지만, 스캔 요청의 경우 화이트 리스트 내의 단말들로부터의 스캔 요청만을 처리한다.
다음으로, 스캐너 필터링 규칙은 스캐너(scanner)의 링크 계층이 어드버타이징 패킷을 처리하는 방법을 정의한다. 일례로서, 스캐너의 링크 계층은 화이트 리스트 내의 장치들로부터의 광고 패킷들만을 처리한다.
마지막으로, 개시자 필터링 규칙은 개시자(initiator)의 링크 계층이 어드버타이징 패킷을 처리하는 방법을 정의한다. 일례로서, 스캐너의 링크 계층은 화이트 리스트 내의 장치들로부터의 연결 가능한 어드버타이징 패킷들만을 처리한다.
한편, 저전력 블루투스(BLE)의 프라이버시(privacy) 기능은 디바이스가 실제 주소를 숨길 수 있도록 한다. 이 경우 디바이스는 실제 주소가 아닌 임의 주소(random address)를 사용하여 통신을 수행할 수 있다. 앞서 설명한 바와 같이, 임의 주소는 시간에 따라 변경될 수 있다. 특히, 매 BLE 연결마다 새롭게 설정될 수 있다. 임의 주소는 다음의 2가지를 포함할 수 있다.
(1) 정적 주소(static address)
디바이스는 매 전력 사이클(each power cycle) 이후에 자신의 정적 주소를 새로운 값으로 초기화하는 동작을 수행(또는 선택)할 수 있다. 그러나 디바이스는 전력 사이클 내에서는 자신이 정적 주소를 변경할 수 없다.
기본적으로, 임의주소가 아닌, 공적 디바이스 주소는 3 바이트(3 byte)의 제조사 할당 주소(company_assigned)와 3 바이트(3 byte)의 제조사 ID(company)id)로 구성된다. 이에 반해, 임의 주소의 정적 주소는 46 bit의 임의 부분과 "1", 그리고 "1"을 더한 총 6 바이트로 구성된다. 또는, 48 bit의 임의 부분으로 구성될 수도 있다.
(2) 사유 주소(private address)
사유 주소는 분해불가한(non-resolvable) 사유 주소와, 분해가능한(resolvable) 사유 주소를 포함한다.
분해불가한 사유 주소에 관하여, 피어 디바이스(peer device)는 실제 주소를 발견할 수 없다. 임의 주소의 분해불가한 사유 주소는 46 bit의 임의 부분과 "1", 그리고 "1"을 더한 총 6 바이트로 구성된다. 또는, 48 bit의 임의 부분으로 구성될 수도 있다.
분해가능한 사유 주소에 관하여, 피어 디바이스는 임의 주소 및/또는 연결의 링크 키(link key)를 이용하여 실제 주소를 도출할 수 있다. 임의 주소의 분해가능한 사유 주소는 24 bit의 해쉬(hash) 부분과 22 bit의 프랜드(prand) 부분, 그리고 "1" 및 "1"을 더한 총 6 바이트로 구성된다.
본 실시예에서는, 정적 주소 및 사유 주소를 모두 사용가능하나, 바람직하게는 정적 주소를 사용하는 것이 보안에 보다 적합할 수 있다.
도 18은 일례에 따른 무선전력 전송장치와 수신장치간의 화이트 리스트(White List)를 기반으로 BLE 연결을 수행하는 동작 흐름도이다.
도 18을 참조하면, 무선전력 수신장치(1810)와 전송장치(1820)는 각각 인밴드 통신 모듈(1812, 1822)과 아웃밴드(OOB) 통신 모듈(1814, 1824)을 포함한다. 앞서 설명한 바와 같이, 인밴드 통신 모듈(1812, 1822)은 동작 주파수 영역에서 코일을 기반으로 패킷을 전송 또는 수신할 수 있다. 아웃밴드 통신 모듈(1814, 1824)은 BLE 통신 모듈일 수 있다.
무선전력 수신장치(1810)의 인밴드 통신 모듈(1812)은 인밴드 통신을 이용하여 임의 주소 패킷을 무선전력 전송장치로 전송한다(Random Address Packet by Inband)(S1802).
무선전력 전송장치(1820)의 인밴드 통신 모듈(1824)은 무선전력 수신장치(1810)로부터 수신되는 임의 주소 패킷 내의 임의 주소를 아웃밴드 통신 모듈(1824)로 전달한다(Transfer Random Address)(S1804). 그리고는, 무선전력 전송장치(1820)의 아웃 밴드 통신 모듈(1824)은 전달받은 임의 주소를 가지고 화이트 리스트를 갱신(renewal)한다(White List Renewal)(S1806).
무선전력 전송장치(1820)의 아웃 밴드 통신 모듈(1824)은 무선전력 수신장치(1810)가 화이트 리스트 내에 포함된 경우에 한하여 응답 신호를 무선전력 수신장치(1810)로 전송한다(No response except White List)(S1808). 만약, 화이트 리스트 내에 포함되지 않는 경우, 응답 신호를 전달하지 않는다.
도 19는 다른 예에 따른 무선전력 전송장치와 수신장치간의 화이트 리스트를 기반으로 BLE 연결을 수행하는 동작 흐름도이다. 본 실시예에 따르면, 무선전력 수신장치는 오직 화이트 리스트에 존재하는 디바이스(즉, 무선전력 전송장치)들과 연결을 수립한다.
도 19를 참조하면, 무선전력 전송장치(1920)의 인밴드 통신 모듈(1922)은 인밴드 통신을 이용하여 임의 주소 패킷을 무선전력 전송장치로 전송한다(Random Address Packet by Inband)(S1902).
무선전력 수신장치(1910)의 인밴드 통신 모듈(1914)은 무선전력 전송장치(1920)로부터 수신되는 임의 주소 패킷 내의 임의 주소를 아웃밴드 통신 모듈(1914)로 전달한다(Transfer Random Address)(S1904). 그리고는, 무선전력 전송장치(1910)의 아웃 밴드 통신 모듈(1914)은 전달받은 임의 주소를 가지고 화이트 리스트를 갱신(renewal)한다(White List Renewal)(S1906).
무선전력 수신장치(1910)의 아웃 밴드 통신 모듈(1914)은 무선전력 전송장치(1920)가 화이트 리스트 내에 포함된 경우에 한하여 응답 신호를 무선전력 전송장치(1920)로 전송한다(No response except White List)(S1908). 만약, 화이트 리스트 내에 포함되지 않는 경우, 응답 신호를 전달하지 않는다. 이와 같이 무선전력 수신장치(1910)가 주도적으로 무선전력 전송장치(1920)의 화이트 리스트를 운영하며 교차 연결을 방지할 수 있다.
도 20은 또 다른 예에 따른 무선전력 전송장치와 수신장치간의 화이트 리스트를 기반으로 BLE 연결을 수행하는 동작 흐름도이다.
일 실시예에 있어서, 무선전력 전송장치(2020)는 오직 화이트 리스트에 존재하는 디바이스(즉, 무선전력 수신장치(2010))들과 연결을 수립할 수 있다.
다른 실시예에 있어서, 무선전력 전송장치(2020)는 오직 호스트에 의해 지정된 특정 피어 디바이스들과 화이트 리스트에 존재하는 디바이스(즉, 무선전력 전송장치(2010))들과 연결을 수립한다.
또 다른 예로서, 무선전력 수신장치(2010)는 오직 화이트 리스트에 존재하는 디바이스(즉, 무선전력 전송장치(2020))들과 연결을 수립할 수 있다.
도 20을 참조하면, 무선전력 수신장치(2010)의 인밴드 통신 모듈(2012)은 자신의 임의 주소를 포함하는 임의 주소 패킷을 동작주파수 기반의 인밴드 통신을 이용하여 무선전력 전송장치(2020)의 인밴드 통신 모듈(2022)로 전송한다(Random Address Packet by Inband)(S2002).
무선전력 전송장치(2020)의 인밴드 통신 모듈(2022)은 수신된 임의 주소를 아웃밴드 통신 모듈(2024)로 전달한다(Transfer Random Address)(S2004). 무선전력 전송장치(2020)의 아웃밴드 통신 모듈(2024)은 수신된 임의 주소를 기반으로 화이트 리스트를 갱신(renewal)한다(White List Renewal)(S2006).
무선전력 전송장치(2020)는 무선전력 수신장치(2010)에 관한 화이트 리스트를 관리하며 교차 참조를 방지할 수 있다. 이와 같은 교차 참조 방지는 무선전력 수신장치(2010)에 의해서도 함께 수행될 수 있다. 즉, 무선전력 전송장치(2020)와 수신장치(2010)가 교차 참조 방지를 위해 교차 체크(cross check)를 할 수 있다.
다음에선, 무선전력 수신장치(2010)가 무선전력 전송장치(2020)에 관한 화이트 리스트를 관리하며 교차 참조를 방지하는 과정을 개시한다.
무선전력 전송장치(2020)의 인밴드 통신 모듈(2022)은 자신의 임의 주소를 포함하는 임의 주소 패킷을 동작주파수 기반의 인밴드 통신을 이용하여 무선전력 수신장치(2010)의 인밴드 통신 모듈(2012)로 전송한다(Random Address Packet by Inband)(S2008).
무선전력 수신장치(2010)의 인밴드 통신 모듈(2012)은 수신된 임의 주소를 아웃밴드 통신 모듈(2014)로 전달한다(Transfer Random Address)(S20010). 무선전력 수신장치(2010)의 아웃밴드 통신 모듈(2014)은 수신된 임의 주소를 기반으로 화이트 리스트를 갱신(renewal)한다(White List Renewal)(S2012).
그리고는, 양 장치의 아웃밴드 통신 모듈(2014, 2024)은 상대 장치가 화이트리스트에 포함되어 있는지를 판단하여 화이트 리스트에 포함된 경우에만 응답을 보내서 직접 연결을 수행하고, 그렇지 않은 경우는 응답 신호를 전달하지 않아 안전하지 않은 연결을 미연에 방지한다(S2014). 즉, 주소를 서로 알고 있을 경우에만 BLE 연결이 수립될 수 있다. 무선전력 수신장치(2010)와 무선전력 전송장치(2020) 중 하나의 장치만이 화이트 리스트에 포함되어 있는 경우에도 응답 신호를 전송하지 않는 장치가 존재하기 때문에, 직접 연결이 방지된다.
이와 같이 무선전력 수신장치와 수신장치가 서로 간에 상호 체크를 통해 교차 참조를 방지하여 보다 안전한 BLE 통신이 확립될 수 있다.
도 18 내지 도 20의 실시예들에서의 무선전력 전송장치는 도 1 내지 도 11에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 11에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서의 무선전력 전송장치의 인밴드 통신 모듈은 도 4C 또는 4D의 인밴드 통신 회로(121)와 동일하고, 무선전력 전송장치의 아웃밴드 통신 모듈은 도 4C 또는 4D의 아웃밴드 통신 회로(122)와 동일할 수 있다.
또한 도 18 내지 도 20의 실시예들에서의 무선전력 수신장치는 도 1 내지 도 11에서 개시된 무선전력 수신장치 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 11에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 본 실시예에서의 무선전력 수신장치의 인밴드 통신 모듈은 도 4C 또는 4D의 인밴드 통신 회로(221)와 동일하고, 무선전력 수신장치의 아웃밴드 통신 모듈은 도 4C 또는 4D의 아웃밴드 통신 회로(222)와 동일할 수 있다.
상술한 본 발명의 실시예에 따른 무선 전력 송신 방법 및 장치, 또는 수신 장치 및 방법은 모든 구성요소 또는 단계가 필수적인 것은 아니므로, 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법은 상술한 구성요소 또는 단계의 일부 또는 전부를 포함하여 수행될 수 있다. 또 상술한 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법의 실시예들은 서로 조합되어 수행될 수도 있다. 또 상술한 각 구성요소 또는 단계들은 반드시 설명한 순서대로 수행되어야 하는 것은 아니며, 나중에 설명된 단계가 먼저 설명된 단계에 앞서 수행되는 것도 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 발명의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (20)
- 이종 통신을 지원하는 무선전력 수신장치로서,동작 주파수(operating frequency)에서 무선전력 전송장치와의 자기 커플링(magnetic coupling)에 의해 상기 무선전력 전송장치로부터 무선전력을 수신하고, 상기 무선전력에 의해 발생하는 교류 신호를 직류 신호로 변환하도록 구성된 전력 픽업 회로(power pick-up circuit);상기 전력 픽업 회로로부터 상기 직류 신호를 공급받고, 상기 무선전력 전송장치와 통신을 수행하도록 구성된 통신/컨트롤 회로; 및상기 전력 픽업 회로로부터 상기 직류 신호를 공급받도록 구성된 부하(load)를 포함하되,상기 통신/컨트롤 회로는 상기 동작 주파수를 이용하는 인밴드(in-band) 통신과 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드(out-band) 통신 중 적어도 하나를 이용하여 상기 무선전력 전송장치와 통신하고,상기 통신/컨트롤 회로는 상기 인밴드 통신을 통해 상기 무선전력 수신장치의 임의주소(random address)를 포함하는 제 1 임의주소 패킷을 상기 무선전력 전송장치로 전송하거나 상기 무선전력 전송장치의 임의주소를 포함하는 제 2 임의주소 패킷을 상기 무선전력 전송장치로부터 수신하며,상기 통신/컨트롤 회로는, 상기 전력 픽업 회로가 상기 무선전력을 수신하는 전력 전송 페이즈(power transfer phase)로 진입하기 전에, 상기 무선전력 수신장치의 임의주소 및 상기 무선전력 전송장치의 임의주소 중 적어도 하나를 이용하여, 상기 아웃밴드로의 핸드오버(handover) 절차를 수행하도록 구성되는, 무선전력 수신장치.
- 제 1 항에 있어서,상기 무선전력 수신장치 또는 상기 무선전력 전송장치의 임의주소는 매 아웃 밴드 연결마다 갱신되는, 무선전력 수신장치.
- 제 1 항에 있어서,상기 제 1 임의주소 패킷의 전송 절차는, 상기 제 1 임의주소 패킷을 상기 무선전력 전송장치로 전송하고, 상기 제 1 임의주소 패킷 수신에 대응한 응답 패킷을 상기 무선전력 전송장치로부터 수신함에 의해 이루어지되,상기 제 1 임의주소 패킷을 송신한 후, 임계시간 동안 상기 응답 패킷을 수신하지 못할 경우, 상기 핸드오버 절차를 수행하지 않고 상기 제 1 임의주소 패킷을 상기 무선전력 전송장치로 재전송하는, 무선전력 수신장치.
- 제 1 항에 있어서,상기 제 1 임의주소 패킷 또는 상기 제 2 임의주소 패킷은 6바이트의 임의 주소 필드를 포함하는 구조로 이루어지는, 무선전력 수신장치.
- 제 1 항에 있어서,상기 통신/컨트롤 회로는 인-밴드 통신 모듈 및 아웃 밴드 통신 모듈을 포함하되,핸드오버 절차가 완료되면, 상기 아웃 밴드 통신 모듈은, 상기 무선전력 수신장치의 임의주소 및 상기 무선전력 전송장치의 임의주소 중 적어도 하나를 이용하여 무선전력 전송장치와의 아웃 밴드 연결을 위한 페어링(pairing) 절차를 진행하는, 무선전력 수신장치.
- 제 5 항에 있어서,상기 페어링 절차에서, 어드버타이저(advertiser)의 주소를 포함하는 어드버타이징 패킷(advertising packet)을 상기 무선전력 전송장치로 전송하거나 상기 무선전력 전송장치로부터 수신하되,상기 어드버타이저는 상기 무선전력 전송장치 또는 상기 무선전력 수신장치이고,상기 어드버타이저의 주소는 임의주소를 포함하는, 무선전력 수신장치.
- 제 6 항에 있어서, 상기 어드버타이징 패킷의 수신 이후, 상기 아웃 밴드 통신 모듈은, 연결 개시 절차(initiating connection)를 수행하되,상기 연결 개시 절차에서, 상기 어드버타이징 패킷을 수신하여 상기 무선전력 전송장치와의 연결을 요청하며,여기서, 상기 무선전력 전송장치와의 연결 요청시 상기 무선전력 수신장치의 주파수 호핑 시퀀스(frequency hopping sequence)에 상기 무선전력 전송장치가 동기화되도록 주파수 호핑 채널 맵(frequency hopping channel map) 정보를 포함시켜 전송하는, 무선전력 수신장치.
- 제 7 항에 있어서,상기 어드버타이징 절차와 상기 연결 개시 절차는 링크 계층(link layer)을 통해 이루어지는, 무선전력 수신장치.
- 제 6 항에 있어서,상기 어드버타이징 패킷은 프리앰블(preamble), 접근 주소(access address) 필드, PDU(Packet Data Unit) 필드 및 CRC(Cyclic Redundancy Check)로 구성되고,상기 PDU 필드는 헤더(header) 및 페이로드(payload)로 구성되며,상기 헤더에는 어드버타이징의 타입 정보가 포함되고, 상기 페이로드에는 상기 어드버타이저의 주소가 포함되는, 무선전력 수신장치.
- 제 9 항에 있어서,(i) 상기 인밴드 통신을 통해 상기 무선전력 수신장치와 상기 무선전력 전송장치 간의 주소를 알고 있는 경우, 상기 어드버타이징 타입 정보는 연결가능한 비지향성 광고 이벤트(ADV_DIRECT_IND)로 설정되고, 상기 페이로드에는 상기 어드버타이저의 주소와 타겟 디바이스(Target Device)의 주소가 포함되며,(ii) 상기 인밴드 통신을 통해 상기 무선전력 수신장치와 상기 무선전력 전송장치 간의 주소를 모르고 있는 경우, 상기 어드버타이징 타입 정보는 연결 가능한 비지향성 광고 이벤트(ADV_IND)로 설정되고, 상기 페이로드에는 상기 어드버타이저의 주소가 포함되는, 무선전력 수신장치.
- 제 5 항에 있어서,상기 페어링 절차에서, 화이트 리스트(white list)를 기반으로 장치 필터링(device fitering)이 이루어지되,상기 화이트 리스트는 특정 디바이스들의 집합(a certain set of devices)인, 무선전력 수신장치.
- 제 11 항에 있어서,상기 화이트 리스트는 임의 주소를 기반으로 갱신되는, 무선전력 수신장치.
- 제 11 항에 있어서,상기 장치 필터링은 어드버타이징 절차, 스캐닝 절차 및 연결 개시 절차 중 적어도 하나에서 이루어지는, 무선전력 수신장치.
- 제 13 항에 있어서,상기 어드버타이징 절차에서, 상기 무선전력 수신장치의 링크 계층은 스캔 및 연결 요청을 처리하되,(i) 상기 화이트 리스트에 포함된 장치로부터의 스캔 및 연결 요청만 처리하거나, (ii) 모든 장치로부터의 스캔 요청을 처리하되, 연결 요청에 대해서는, 상기 화이트 리스트에 포함된 장치로부터의 연결 요청만 처리하거나, 또는 (iii) 모든 장치로부터의 연결 요청을 처리하되, 스캔 요청에 대해서는, 상기 화이트 리스트에 포함된 장치로부터의 스캔 요청만 처리하는, 무선전력 수신장치.
- 제 13 항에 있어서,상기 스캐닝 절차 또는 상기 연결 개시 절차에서, 상기 무선전력 수신장치의 링크 계층은 화이트 리스트 내에 포함된 장치로부터의 어드버타이징 패킷만을 처리하는, 무선전력 수신장치.
- 제 12 항에 있어서,상기 통신/컨트롤 회로는 인-밴드 통신 모듈 및 아웃 밴드 통신 모듈을 포함하되,상기 인-밴드 통신 모듈이 상기 제 2 임의주소 패킷을 수신하면, 상기 인-밴드 통신 모듈은 상기 무선전력 전송장치의 임의 주소를 상기 아웃 밴드 통신 모듈로 전달하고,상기 아웃 밴드 통신 모듈은 상기 무선전력 전송장치의 임의주소를 이용하여 상기 화이트 리스트를 갱신하는, 무선전력 수신장치.
- 제 16 항에 있어서,상기 아웃 밴드 통신 모듈은 상기 무선전력 전송장치의 임의주소를 이용하여 상기 무선전력 전송장치가 상기 화이트 리스트 내에 포함된 경우에 한하여 응답 패킷을 상기 무선전력 전송장치로 전송하는, 무선전력 수신장치.
- 동작 주파수(operating frequency)에서 무선전력 전송장치와의 자기 커플링(magnetic coupling)에 의해 상기 무선전력 전송장치로부터 무선전력을 수신하도록 구성된 무선전력 수신장치가 이종 통신을 수행하는 방법으로서,식별 및 설정 페이즈에서, 상기 동작 주파수를 이용하는 인밴드 통신을 통해, 상기 무선전력 수신장치의 임의주소(random address)를 포함하는 제 1 임의주소 패킷을 상기 무선전력 전송장치로 전송하거나 상기 무선전력 전송장치의 임의주소를 포함하는 제 2 임의주소 패킷을 상기 무선전력 전송장치로부터 수신하는 단계;전력 전송 페이즈(power transfer phase)로 진입하기 전에, 상기 무선전력 수신장치의 임의주소 및 상기 무선전력 전송장치의 임의주소 중 적어도 하나를 이용하여, 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드로의 핸드오버(handover) 절차를 수행하는 단계; 및상기 전력 전송 페이즈에서, 상기 무선전력을 수신하는 단계를 포함하는 방법.
- 이종 통신을 지원하는 무선전력 전송장치로서,동작 주파수(operating frequency)에서 무선전력 수신장치와의 자기 커플링(magnetic coupling)에 의해 상기 무선전력 수신장치로 무선전력을 전송하는 전력 변환 회로(power conversion cirtuit); 및상기 동작 주파수를 이용하는 인밴드(in-band) 통신과 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드(out-band) 통신 중 적어도 하나를 수행하는 통신/컨트롤 회로를 포함하되,상기 통신/컨트롤 회로는 상기 인밴드 통신을 통해 상기 무선전력 전송장치의 임의주소(random address)를 포함하는 제 1 임의주소 패킷을 상기 무선전력 수신장치로 전송하거나 상기 무선전력 수신장치의 임의주소를 포함하는 제 2 임의주소 패킷을 상기 무선전력 수신장치로부터 수신하며,상기 통신/컨트롤 회로는, 상기 전력 변환 회로가 상기 무선전력을 전송하는 전력 전송 페이즈(power transfer phase)로 진입하기 전에, 상기 무선전력 전송장치의 임의주소 및 상기 무선전력 수신장치의 임의주소 중 적어도 하나를 이용하여, 상기 아웃밴드로의 핸드오버(handover) 절차를 수행하도록 구성되는, 무선전력 전송장치.
- 동작 주파수(operating frequency)에서 무선전력 수신장치와의 자기 커플링(magnetic coupling)에 의해 상기 무선전력 수신장치로 무선전력을 전송하도록 구성된 무선전력 전송장치가 이종 통신을 수행하는 방법으로서,식별 및 설정 페이즈에서, 상기 동작 주파수를 이용하는 인밴드 통신을 통해, 상기 무선전력 전송장치의 임의주소(random address)를 포함하는 제 1 임의주소 패킷을 상기 무선전력 수신장치로 전송하거나 상기 무선전력 수신장치의 임의주소를 포함하는 제 2 임의주소 패킷을 상기 무선전력 수신장치로부터 수신하는 단계;전력 전송 페이즈(power transfer phase)로 진입하기 전에, 상기 무선전력 전송장치의 임의주소 및 상기 무선전력 수신장치의 임의주소 중 적어도 하나를 이용하여, 상기 동작 주파수 이외의 주파수를 이용하는 아웃밴드로의 핸드오버(handover) 절차를 수행하는 단계; 및상기 전력 전송 페이즈에서, 상기 무선전력을 전송하는 단계를 포함하는, 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/423,844 US11527924B2 (en) | 2019-01-21 | 2019-11-12 | Device and method for supporting heterogeneous communication in wireless power transfer system |
US17/986,595 US11791670B2 (en) | 2019-01-21 | 2022-11-14 | Device and method for supporting heterogeneous communication in wireless power transfer system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0007470 | 2019-01-21 | ||
KR20190007470 | 2019-01-21 | ||
KR10-2019-0038412 | 2019-04-02 | ||
KR20190038412 | 2019-04-02 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/423,844 A-371-Of-International US11527924B2 (en) | 2019-01-21 | 2019-11-12 | Device and method for supporting heterogeneous communication in wireless power transfer system |
US17/986,595 Continuation US11791670B2 (en) | 2019-01-21 | 2022-11-14 | Device and method for supporting heterogeneous communication in wireless power transfer system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020153586A1 true WO2020153586A1 (ko) | 2020-07-30 |
Family
ID=71736931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/015332 WO2020153586A1 (ko) | 2019-01-21 | 2019-11-12 | 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 |
Country Status (2)
Country | Link |
---|---|
US (2) | US11527924B2 (ko) |
WO (1) | WO2020153586A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4231500A4 (en) * | 2020-10-19 | 2024-08-14 | Lg Electronics Inc | METHOD OF SETTING AN AUTOMATIC CONNECTION AND OPERATION TO SUPPORT DATA INTEGRITY IN A WIRELESS POWER TRANSMISSION SYSTEM |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11527924B2 (en) | 2019-01-21 | 2022-12-13 | Lg Electronics Inc. | Device and method for supporting heterogeneous communication in wireless power transfer system |
WO2020213958A1 (ko) * | 2019-04-15 | 2020-10-22 | 엘지전자 주식회사 | 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법 |
US11973542B2 (en) * | 2019-04-17 | 2024-04-30 | Lg Electronics Inc. | Method for controlling communication connection in wireless power transmission system, and apparatus therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130043829A (ko) * | 2011-10-21 | 2013-05-02 | 삼성전자주식회사 | 충전 전력 제어 방법 및 이를 위한 무선 충전 장치 |
KR20160125048A (ko) * | 2015-04-21 | 2016-10-31 | 엘지이노텍 주식회사 | 네트워크 기반의 무선 전력 제어 방법 및 무선 전력 제어 장치 및 시스템 |
KR20160125636A (ko) * | 2015-04-22 | 2016-11-01 | 엘지이노텍 주식회사 | 네트워크 기반의 무선 전력 제어 방법 및 무선 전력 제어 장치 및 시스템 |
US20160380439A1 (en) * | 2015-06-26 | 2016-12-29 | Lei Shao | Notification techniques for wireless power transfer systems |
JP2018191359A (ja) * | 2017-04-28 | 2018-11-29 | キヤノン株式会社 | 無線電力受電装置制御方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9543782B2 (en) * | 2014-09-18 | 2017-01-10 | Qualcomm Incorporated | Apparatus and method for lost power detection |
JP2017004404A (ja) * | 2015-06-15 | 2017-01-05 | ソニー株式会社 | 通信装置、及び、制御方法 |
CN107026516B (zh) * | 2016-02-01 | 2022-04-05 | 恩智浦美国有限公司 | 无线充电系统中的接收机移除检测 |
US10224764B2 (en) * | 2016-02-05 | 2019-03-05 | Intel Corporation | Wireless link management techniques for wireless charging systems |
AU2018325468B2 (en) * | 2017-09-01 | 2023-09-07 | Powercast Corporation | Methods, systems, and apparatus for automatic RF power transmission and single antenna energy harvesting |
CN117791901A (zh) * | 2017-11-08 | 2024-03-29 | 欧希亚有限公司 | 无线电力传输系统及操作其的方法 |
US11527924B2 (en) | 2019-01-21 | 2022-12-13 | Lg Electronics Inc. | Device and method for supporting heterogeneous communication in wireless power transfer system |
-
2019
- 2019-11-12 US US17/423,844 patent/US11527924B2/en active Active
- 2019-11-12 WO PCT/KR2019/015332 patent/WO2020153586A1/ko active Application Filing
-
2022
- 2022-11-14 US US17/986,595 patent/US11791670B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130043829A (ko) * | 2011-10-21 | 2013-05-02 | 삼성전자주식회사 | 충전 전력 제어 방법 및 이를 위한 무선 충전 장치 |
KR20160125048A (ko) * | 2015-04-21 | 2016-10-31 | 엘지이노텍 주식회사 | 네트워크 기반의 무선 전력 제어 방법 및 무선 전력 제어 장치 및 시스템 |
KR20160125636A (ko) * | 2015-04-22 | 2016-11-01 | 엘지이노텍 주식회사 | 네트워크 기반의 무선 전력 제어 방법 및 무선 전력 제어 장치 및 시스템 |
US20160380439A1 (en) * | 2015-06-26 | 2016-12-29 | Lei Shao | Notification techniques for wireless power transfer systems |
JP2018191359A (ja) * | 2017-04-28 | 2018-11-29 | キヤノン株式会社 | 無線電力受電装置制御方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4231500A4 (en) * | 2020-10-19 | 2024-08-14 | Lg Electronics Inc | METHOD OF SETTING AN AUTOMATIC CONNECTION AND OPERATION TO SUPPORT DATA INTEGRITY IN A WIRELESS POWER TRANSMISSION SYSTEM |
Also Published As
Publication number | Publication date |
---|---|
US20220085667A1 (en) | 2022-03-17 |
US11791670B2 (en) | 2023-10-17 |
US20230084965A1 (en) | 2023-03-16 |
US11527924B2 (en) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020017859A1 (ko) | 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 | |
WO2020222528A1 (ko) | 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법 | |
WO2019194524A1 (ko) | 무선전력 전송 시스템에서 전력 전송을 제어하는 장치 및 방법 | |
WO2020149492A1 (ko) | 멀티 코일을 이용하여 다수의 기기에 무선전력을 전송하는 장치 및 방법 | |
WO2020153586A1 (ko) | 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 | |
WO2020213958A1 (ko) | 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법 | |
WO2020222415A1 (ko) | 근거리 무선통신을 이용하여 전력 클래스를 협상하는 무선충전 장치, 방법 및 시스템 | |
WO2020004940A1 (ko) | 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법 | |
WO2020085614A1 (ko) | 무선전력 전송 시스템에서 데이터를 전송하는 방법 및 장치 | |
WO2020027521A1 (ko) | 이물질 검출에 기반하여 무선전력 전송을 수행하는 장치 및 방법 | |
WO2020130265A1 (ko) | 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법 | |
WO2020085828A1 (ko) | 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법 | |
WO2020190109A1 (ko) | 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법 | |
WO2021006475A1 (ko) | 무선전력 전송장치 | |
WO2020185051A1 (ko) | 저전력 및 중전력 호환 무선충전 수신 장치 및 방법 | |
WO2020226384A1 (ko) | 무선 전력 링크 제어 방법 및 그를 위한 장치 | |
WO2021153815A1 (ko) | 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법 | |
WO2020246685A1 (ko) | 무선전력 전송 시스템에서 접속 제어 방법 및 장치 | |
WO2020171316A1 (ko) | 무선전력 전송 시스템에서 충전 상태 정보를 제공하는 장치 및 방법 | |
WO2021215793A1 (ko) | 무선전력 수신장치 및 무선전력 전송장치 | |
WO2021230703A1 (ko) | 무선전력 수신장치 및 무선전력 수신장치에 의한 통신 방법 | |
WO2021235909A1 (ko) | 무선전력 전송장치, 무선전력 전송장치에 의한 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신장치에 의한 무선전력 수신방법 | |
WO2020218800A1 (ko) | 펌웨어를 업데이트하는 무선충전 장치, 방법 및 시스템 | |
WO2020213980A1 (ko) | 무선 전력 전송 시스템에서 통신 연결 제어 방법 및 그를 위한 장치 | |
WO2020180004A1 (ko) | 무선 전력 전송 시스템에서 아웃밴드 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19911827 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19911827 Country of ref document: EP Kind code of ref document: A1 |