WO2015156628A1 - 무선 전력 송신기 및 무선 전력 송신 방법 - Google Patents

무선 전력 송신기 및 무선 전력 송신 방법 Download PDF

Info

Publication number
WO2015156628A1
WO2015156628A1 PCT/KR2015/003594 KR2015003594W WO2015156628A1 WO 2015156628 A1 WO2015156628 A1 WO 2015156628A1 KR 2015003594 W KR2015003594 W KR 2015003594W WO 2015156628 A1 WO2015156628 A1 WO 2015156628A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
sub
pulse signal
half bridge
receiver
Prior art date
Application number
PCT/KR2015/003594
Other languages
English (en)
French (fr)
Inventor
박용철
이현범
이재성
정병상
박진무
이성훈
이지현
서정교
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to JP2016560998A priority Critical patent/JP6273040B2/ja
Priority to US15/303,413 priority patent/US10177592B2/en
Priority to EP15776640.3A priority patent/EP3131180B1/en
Priority to CN201580019050.7A priority patent/CN106165250B/zh
Priority to KR1020167025941A priority patent/KR20160145554A/ko
Publication of WO2015156628A1 publication Critical patent/WO2015156628A1/ko
Priority to US16/204,244 priority patent/US10804729B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/521Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/263Multiple coils at either side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to a wireless power transmission apparatus and method, and more particularly to a wireless power transmission apparatus and method capable of charging together a plurality of wireless power receiving apparatus.
  • Contactless wireless charging is an energy transmission method that removes wires and transfers energy electromagnetically in a method of transmitting energy through a conventional wire and using it as a power source of an electronic device.
  • Contactless wireless transmission has an electromagnetic induction method and a resonance method.
  • the electromagnetic induction method is a method of generating a magnetic field through the power transmission coil (primary coil) in the power transmission unit and transferring power by placing a receiving coil (secondary coil) at a position where a current can be induced.
  • the resonant method transmits energy by using a resonance phenomenon between a transmitting coil and a receiving coil, but uses resonance mode energy coupling between coils by constructing a system in which the resonance frequency of the primary coil and the resonance frequency of the secondary coil are the same. .
  • wireless power transmission standardizes wireless power transmission related technologies.
  • the released WPC standard targets charging low power mobile devices. However, in order to diversify mobile devices and improve charging efficiency, higher power charging is required than conventional low power charging. In addition, as the commercialization of wireless charging technology is rapidly progressing, there is a need for a method of simultaneously charging a plurality of devices for ease of use.
  • a wireless power transmitter capable of charging a plurality of wireless power receiver, a plurality of coil cells; A main half bridge inverter to which a main pulse signal is applied; A plurality of sub half bridge inverters to which the first sub pulse signal or the second sub pulse signal is applied; A current sensor for monitoring the current in the coil cell; And a communication / control unit configured to control a pulse signal applied to the main half bridge inverter and the plurality of sub half bridge inverters, and to communicate with the wireless power receiver.
  • the first sub pulse signal is a pulse signal in which the main pulse signal is phase inverted
  • the second sub pulse signal is a signal in which the main pulse signal is phase controlled.
  • control unit may apply the second sub-pulse signal to at least one sub half bridge inverter of the plurality of sub half bridge inverters for power receiver discovery. have.
  • the control unit is connected to the coil cell in which the response of the power receiver is received.
  • Power transmission may be performed by applying the first sub pulse signal to a connected sub half bridge inverter.
  • control unit may disable the plurality of sub half bridge inverters. Can be.
  • the control unit when the wireless power receiver in which the response is received is an inductive type wireless power receiver, the control unit is configured to control the second power signal applied to the sub half bridge inverter. Power transfer may also be performed by controlling the phase.
  • the response of the wireless power receiver may include mode information, and the mode information may indicate whether the wireless power receiver is an induction type or a resonance type.
  • the second sub pulse signal to at least one sub half bridge inverter of the plurality of sub half bridge inverters may be simultaneously or sequentially performed.
  • a wireless power transmission method of a wireless power transmitter including one main half bridge inverter and a plurality of sub half bridge inverter, at least one Setting a selection signal to which the second sub-pulse signal is applied among the first sub-pulse signal and the second sub-pulse signal to the sub half-bridge inverter of the control signal; Transmitting power to at least one coil cell by applying an enable signal to the at least one sub half bridge inverter; And changing the selection signal to apply the first sub pulse signal to the at least one sub half bridge inverter when receiving the response of the wireless power receiver in the at least one coil cell.
  • the signal is a pulse signal in which a main pulse signal applied to the main half bridge inverter is phase inverted, and the second sub pulse signal is a signal in which the main pulse signal is phase controlled.
  • the wireless power transmission method may further include terminating the application of the enable signal when the at least one coil cell does not receive a response from the wireless power receiver.
  • the wireless power transmission method when receiving the response of the wireless power receiver in the at least one coil cell further comprises the step of determining whether the wireless power receiver is an induction type or a resonance type. It may include.
  • the wireless power transmission method according to the embodiment of the present invention may further include controlling the phase of the second sub-pulse signal instead of changing the selection signal when the wireless power receiver is an induction type.
  • the response of the wireless power receiver may include mode information, and the mode information may indicate whether the wireless power receiver is an induction type or a resonance type.
  • the enable signal may be applied simultaneously or sequentially to the at least one sub half bridge.
  • the wireless power transmitter according to the present invention can identify whether the wireless power receiver is a resonance type or an induction type to control power transmission in an appropriate manner.
  • the wireless power transmitter can identify the type of the wireless power receiver by receiving mode information from the wireless power receiver.
  • the wireless power transmitter may also indicate a charging scheme-induction type / resonance type-supported by the wireless power transmitter by transmitting mode information.
  • the wireless power transmitter according to the present invention includes a main half bridge inverter and a plurality of sub half bridge inverters, and a plurality of sub half signal rolls for applying communication power or charging power to the plurality of coil cells. It can be applied to the bridge inverter.
  • communication power and charging power can be switched efficiently, and thus, a plurality of wireless power receivers can be efficiently found and charged.
  • individual control of multiple coil cells can be efficiently performed while reducing circuit complexity.
  • the wireless power transmitter according to the present invention may use a plurality of coil cells to efficiently find different types of wireless power receivers and perform charging control according to the types.
  • FIG. 1 shows a wireless power transmission and reception system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a power transmission and reception method according to an embodiment of the present invention.
  • FIG 3 illustrates a method for controlling power delivery in induction mode according to an embodiment of the present invention.
  • FIG 4 illustrates power transmission equipment according to an embodiment of the present invention.
  • FIG 5 illustrates power receiving equipment according to an embodiment of the present invention.
  • FIG. 6 shows a power transmission method according to an embodiment of the present invention.
  • FIG. 7 illustrates a configuration packet transmitted by a power receiver and a configuration packet transmitted by a power transmitter according to an embodiment of the present invention.
  • FIG. 8 shows a flow of control and a difference in a method of operation according to the type of power transmitter and the type of power receiver.
  • FIG 9 illustrates an ID assignment packet according to an embodiment of the present invention.
  • FIG. 10 illustrates a frame structure for data communication during power delivery, in accordance with an embodiment of the present invention.
  • FIG. 11 illustrates a sync packet according to an embodiment of the present invention.
  • FIG. 12 illustrates a power transmitter according to an embodiment of the present invention.
  • FIG. 13 illustrates a power transmitter according to an embodiment of the present invention.
  • FIG. 15 illustrates a method of operating a wireless power transmitter according to an embodiment of the present invention.
  • FIG. 16 illustrates a power transmitter according to another embodiment of the present invention.
  • FIG 17 illustrates a power transmitter according to another embodiment of the present invention.
  • the mobile device refers to a portable and mobile electronic device such as a mobile phone, a tablet PC, a notebook, an electric toothbrush, and the like.
  • a mobile device is described as an example of an electronic device for receiving wireless power in the present specification, it will be apparent that any electronic device including a wireless power receiver is an embodiment for the purpose of the present invention.
  • the present invention relates to a wireless charging system in which a resonance method is added, and proposes a resonance type wireless charging transmitter / receiver compatible with a low power / medium power induction type wireless charging / receiver.
  • the wireless power transmitter may be abbreviated as a power transmitter or a transmitter
  • the wireless power receiver may be referred to as a power receiver or a receiver.
  • FIG. 1 shows a wireless power transmission and reception system according to an embodiment of the present invention.
  • a wireless power transmission / reception system includes a mobile device 1010 and a base station 1020 that receive power wirelessly.
  • the mobile device 1010 receives a power receiver 1040 that receives wireless power through a secondary coil, and a load 1030 that receives and stores the power received from the power receiver and supplies the power to the device. It includes. In addition, the power receiver 1040 communicates with the power pick-up unit (1080) and the power transmitter (1050) for receiving a wireless power signal through a secondary coil and converting the electrical power into electrical energy (transmitting power) Communication / control unit 1090 (Control & Receive). The mobile device 1010 may also be referred to as power receiving equipment hereinafter.
  • the base station 1020 is an apparatus for providing inductive power or resonant power, and may include one or a plurality of power transmitters 1050 and 1060 (Power Transmitter) and a system unit 1070. have.
  • the power transmitter 1050 may transmit induced / resonant power and control power transmission.
  • the power transmitter 1050 transfers power to an appropriate level and a power conversion unit 1100 that converts / transfers electrical energy into a power signal by generating a magnetic field through a primary coil (s).
  • Communications & Control Unit 1110 which controls communication and power delivery with the power receiver.
  • the system unit 1070 may perform other operational control of the base station, such as input power provisioning, control of a plurality of power transmitters, and user interface control.
  • Base station 1020 may hereinafter be referred to as power transmission equipment.
  • the power transmitter can control the transmit power by controlling the operating point.
  • the controlling operating point may correspond to a combination of frequency (phase), duty cycle, and voltage amplitude.
  • the power transmitter may control power delivered by adjusting at least one of frequency (phase), duty cycle / duty ratio, and amplitude of the input voltage.
  • the power transmitter may supply a constant power, and the power receiver may control the received power by controlling the resonant frequency.
  • the coil or coil unit may be referred to as a coil assembly, a coil cell, or a cell including the coil and at least one element adjacent to the coil.
  • the power transmission and reception apparatus may operate in an inductive mode and a resonant mode.
  • the operation mode may be divided into a low power mode and a medium power mode according to the amount of power to be transmitted and received.
  • the power transceiver may perform power transmission and reception at a predetermined capacity / level.
  • the power transmission level may be divided into low power transmission, medium power transmission, and high power transmission.
  • the case of performing wireless power transmission and reception up to about 5W may be referred to as the transmission and reception in the low power mode and the transmission and reception of the wireless power up to about 15W.
  • the low power may correspond to 0 to 10W
  • the medium power may correspond to 10 to 20W.
  • the power transmission device may simultaneously supply power to the plurality of power reception devices.
  • the resonance mode may be referred to as a shared mode.
  • the power transceiver may perform power transmission and reception in a manner different from that of the induction mode.
  • the induction mode may be referred to as an exclusive mode.
  • FIG. 2 is a block diagram illustrating a power transmission and reception method according to an embodiment of the present invention.
  • wireless charging can be performed in five phases.
  • the five stages include a selection phase (S2010), a ping phase (S2020), an identification & configuration phase (S2030), a negotiation phase (S2040), and a power delivery phase (S2050).
  • S2010 selection phase
  • S2020 ping phase
  • S2030 identification & configuration phase
  • S2040 negotiation phase
  • S2050 power delivery phase
  • the power transmitter monitors the contact / departure of the object with respect to the interface surface provided in the transmitter.
  • the wireless power transmitter may detect a contact of an external object by applying a power signal.
  • the power transmitter may apply a short power signal to the primary coil, detect the current of the primary coil generated by the power signal, and monitor the presence of the external object.
  • the power transmitter When the power transmitter receives the signal strength information (packet) monitored in the selection step S2010 and detects an object based on the detected signal strength information, the power transmitter is a power receiver or a simple external object ( Keys, coins, etc.) For this selection, the power transmitter may further perform at least one of the ping step S2020, the identification / configuration step S2030, and the negotiation step S2040.
  • the power transmitter may perform a digital ping and wait for a response of the power receiver.
  • Digital ping represents the application / transmission of a power signal to detect and identify a power receiver. If the power transmitter finds the power receiver, the power transmitter may extend the digital ping to proceed to the identification / configuration step S2030.
  • the power transmitter may identify the selected power receiver and obtain configuration information of the power receiver such as a maximum power amount.
  • the power transmitter may receive identification / configuration information to obtain information about the power receiver and use this information to establish a power transfer contract.
  • This power delivery contract may include a restriction on a plurality of parameters that characterize power delivery in a subsequent power delivery step (S2050).
  • the power receiver may negotiate with the power transmitter to generate additional power delivery agreement.
  • the power transmitter may receive a negotiation request / information from the power receiver, and the negotiation step S2040 may proceed only when the target receiver is identified as the intermediate power receiver in the identification / configuration step S2030.
  • additional parameters such as the guaranteed power level of the power transmitter and the maximum power of the power receiver may be negotiated. If the power receiver is a low power receiver, the negotiation step S2040 may be omitted and the process may proceed directly to the power transfer step S2050 in the identification / configuration step S2030.
  • the power transmitter wirelessly provides power to the power receiver.
  • the power transmitter may receive control data for the transmitted power and control power delivery accordingly.
  • the power transmitter may stop the power transfer and proceed to the selection step (S2010) when the limitations of the parameters according to the power transfer contract are violated during the power transfer.
  • FIG 3 illustrates a method for controlling power delivery in induction mode according to an embodiment of the present invention.
  • the power transmitter 3010 and the power receiver 3020 may include a power conversion unit 3030 and a power pickup unit 3040, respectively, as shown in FIG. 1.
  • the power transmitter and the power receiver may control the amount of power delivered by parallel communication with the power transmission and reception.
  • the power transmitter and power receiver operate at specific control points.
  • the control point represents the combination of voltage and current provided at the output of the power receiver when power delivery is performed.
  • the power receiver selects the desired control point-the desired output current / voltage, the temperature at a specific location of the mobile device, and additionally the actual control point currently in operation. Determine.
  • the power receiver may use the desired control point and the actual control point to calculate a control error value and transmit it as a control error packet to the power transmitter.
  • the power transmitter can then use the received control error packet to set / control a new operating point—amplitude, frequency and duty cycle—to control power delivery. Therefore, the control error packet is transmitted / received at predetermined time intervals during the strategy transfer phase.
  • the power receiver may control the control error value to a negative value to reduce the current of the power transmitter, or to control the value of the control error value to a positive value. Can be set and sent.
  • the power receiver may control the power transfer by transmitting a control error packet to the power transmitter.
  • the resonance mode may operate in a manner different from that of the induction mode.
  • one power transmitter should be able to serve multiple power receivers simultaneously.
  • the power transfer to the additional power receivers may be difficult to control since the transferred power is controlled by communication with one power receiver. Therefore, in the resonance mode of the present invention, the power transmitter commonly transmits basic power, and uses a method of controlling the amount of power received by the power receiver by controlling its resonance frequency.
  • the method described in FIG. 3 is not completely excluded even in the operation of the resonance mode, and the additional transmission power may be controlled by the method of FIG. 3.
  • FIG 4 illustrates power transmission equipment according to an embodiment of the present invention.
  • the power transmission equipment 4010 includes a cover 4020 covering the coil assembly, a power adapter 4030 for supplying power to the power transmitter, a power transmitter 4040 for transmitting wireless power or power delivery progress and other associated It may include at least one of the user interface 4050 for providing information.
  • the user interface 4050 may be optional or may be included as another user interface 4050 of the power transmission equipment.
  • the power transmitter 4040 may include at least one of a coil assembly 4060, an impedance matching circuit 4070, an inverter 4080, a communication unit 4090, or a control unit 4100.
  • Coil assembly 4060 includes at least one primary coil that generates a magnetic field and may be referred to as a coil cell.
  • Impedance matching circuit 4070 may provide impedance matching between the inverter and the primary coil (s). Impedance matching circuit 4070 may generate a resonance at a suitable frequency that boosts the primary coil current.
  • the impedance matching circuit in a multi-coil power transmitter may further include a multiplex that routes the signal to a subset of primary coils in the inverter.
  • the impedance matching circuit may be referred to as a tank circuit.
  • the inverter 4080 may convert a DC input into an AC signal. Inverter 4080 may be driven half-bridge or full-bridge to produce pulse waves and duty cycles of adjustable frequency. The inverter may also include a plurality of stages to adjust the input voltage level.
  • the communication unit 4090 can perform communication with a power receiver.
  • the power receiver performs load modulation to communicate requests and information to the power transmitter.
  • the power transmitter can use the communication unit 4090 to monitor the amplitude and / or phase of the current and / or voltage of the primary coil to demodulate the data transmitted by the power receiver.
  • the power transmitter may control the output power to transmit data through the communication unit 4090 using a frequency shift keying (FSK) scheme.
  • FSK frequency shift keying
  • the control unit 4100 may control communication and power delivery of the power transmitter.
  • the control unit 4100 may control the power transmission by adjusting the operation point described above.
  • the operating point may be determined by at least one of an operating frequency, a duty cycle, and an input voltage, for example.
  • the communication unit 4090 and the control unit 4100 may be provided as separate units / elements / chipsets, or may be provided as one unit / elements / chipsets as shown in FIG. 1.
  • FIG 5 illustrates power receiving equipment according to an embodiment of the present invention.
  • power receiving equipment 5010 supports and covers a user interface 5020 that provides power delivery progress and other related information, a power receiver 5030 that receives wireless power, a load circuit 5040, or a coil assembly. It may include at least one of the base 5050. In particular, the user interface 4050 may be optional or may be included as another user interface 4050 of the power receiving equipment.
  • the power receiver 5030 may include at least one of the power converter 5060, the impedance matching circuit 5070, the coil assembly 5080, the communication unit 5090, or the control unit 5100.
  • the power converter 5060 may convert AC power received from the secondary coil to a voltage and current suitable for the load circuit.
  • the power converter 5060 may include a rectifier.
  • the power converter may adapt the reflected impedance of the power receiver.
  • the impedance matching circuit 5070 can provide impedance matching between the combination of the power converter 5060 and the load circuit 5070 and the secondary coil.
  • the impedance matching circuit can generate a resonance near 100 kHz that can enhance power transfer.
  • the coil assembly 5080 includes at least one secondary coil and may optionally further include an element that shields a metal part of the receiver from the magnetic field.
  • the communication unit 5090 can perform load modulation to communicate requests and other information to the power transmitter.
  • the power receiver 5030 may switch a resistor or a capacitor to change the reflection impedance.
  • the control unit 5100 may control the received power. To this end, the control unit 5100 may determine / calculate a difference between an actual operating point of the power receiver 5030 and a desired operating point. The control unit 5100 may adjust / reduce the difference between the actual operating point and the desired operating point by performing the adjustment of the reflection impedance of the power transmitter and / or the operating point adjustment request of the power transmitter. Minimizing this difference can achieve optimal power reception.
  • the communication unit 5090 and the control unit 5100 may be provided as separate devices / chipsets, or may be provided as one device / chipset as shown in FIG. 1.
  • the power transmission / reception system may operate in an induction mode and a resonance mode, and may operate in a low power mode and an intermediate power mode in an induction mode.
  • the power transmitter intends to support both the resonance mode and the induction mode receivers. That is, the power transmitter attempts to transmit power in the resonant mode if the receiver is a resonance type receiver and in the induction mode if the receiver is an induction type receiver according to the type of the found receiver.
  • the power transmitter intends to transmit power in the low power mode and the medium power mode, respectively, depending on whether it is a low power receiver or a medium power receiver. To do this, the power transmitter must determine what type the power receiver is.
  • the resonance type power transmitter parses the information included in the packet received from the power receiver to determine the type of the power receiver.
  • the resonance type power receiver is driven in the induction mode until the negotiation stage, and parses the information included in the packet received from the power transmitter in the negotiation stage to determine the type of the power transmitter. From the parsed information, when the power transmitter is a resonant mode transmitter, the operation mode may be changed from the induction mode to the resonant mode.
  • the power receiver in the resonant mode may perform the power transfer step in the resonant mode or the induction mode according to the type of the power transmitter.
  • the information transmitted by the transmitter and the receiver in order to identify their type may be referred to as mode information.
  • the mode information may indicate whether the transmitter and the receiver operate in the resonant mode and / or in the induction mode.
  • the power receiver may send a configuration packet to the transmitter in the identification / configuration phase. If the negotiation step request is indicated in this configuration packet, the power transmitter may enter the negotiation step. In this case, it can be determined that the receiver is a receiver of an intermediate power mode among the induction modes. If the negotiation request is not indicated in the configuration packet, it may proceed directly to the power delivery step.
  • FIG. 6 shows a power transmission method according to an embodiment of the present invention.
  • FIG. 6 illustrates the identification / configuration phase and the negotiation phase of FIG. 2 in more detail, in particular how the power transmitter and power receiver identify each other's types and determine the mode of operation.
  • the identification / configuration step S6010 and the negotiation step S6020 correspond to the identification / configuration step S2030 and negotiation step S2040 of FIG. 2, respectively, and the same description will mainly be provided to describe the supplementary description without overlapping. .
  • the power receiver transmits an identification packet and a configuration packet to the power transmitter.
  • the identification packet includes version information (Major / Minor Version), manufacturer code information and identification information (Basic Device Identifier) of the power receiver, the power transmitter can identify the power receiver through the identification packet.
  • the configuration packet includes information about the configuration of the power receiver.
  • the configuration packet includes mode information. The mode information may indicate whether the power receiver is a receiver in an induction mode or a receiver supporting up to a resonance mode.
  • the power transmitter receiving the identification packet and the configuration packet may identify the type of the power receiver through the configuration packet.
  • the power transmitter may use the negotiation step request information to identify whether the power receiver is a low power induction type receiver or a medium power induction type receiver / resonance type receiver.
  • the power transmitter may parse the mode information to identify whether the power receiver is an induction type receiver or a resonance type receiver of medium power.
  • the power transmitter may proceed to the power transfer step without going through a negotiation step (S6020).
  • the power transmitter may transmit an acknowledgment (ACK) to the power receiver when the power receiver is an induction type or a resonance type of intermediate power, and may proceed to a negotiation step (S6020).
  • ACK acknowledgment
  • the power transmitter may also transmit an identification packet and a configuration packet to the power receiver.
  • the identification packet transmitted by the power transmitter may include version information (Major / Minor Version) and manufacturer information.
  • the configuration packet transmitted by the power transmitter may include power information and mode information.
  • the power transmitter performs power allocation and operation mode determination in the negotiation step S6020, and may perform ID assignment to at least one power receiver when operating in the resonance mode.
  • the power receiver may identify the type of the power transmitter through the mode information received from the power transmitter. First, since the entry into the negotiation phase, the power transmitter can identify the induction type or the resonance type of the intermediate power.
  • the mode information received in the negotiation step S6020 may identify whether the power transmitter is an induction type or a resonance type.
  • the intermediate power induction type receiver may perform power reception and charging with full power that it supports.
  • the resonance type receiver may select a power control method according to the type of the transmitter to perform power reception and charging.
  • the power receiver may receive power at a maximum power capacity that can be received. Receive and charge can be performed. If the power transmitter is resonant type
  • FIG. 7 illustrates a configuration packet transmitted by a power receiver and a configuration packet transmitted by a power transmitter according to an embodiment of the present invention.
  • FIG. 7 (a) shows a configuration packet transmitted by the power receiver in the above-described identification / configuration step. Description of each field included in the configuration packet of FIG. 7A is as follows.
  • Power Class field Contains an unsigned integer value associated with the Guaranteed power value.
  • Maximum Power field indicates the maximum amount of power the power receiver expects to provide at the output of the rectifier.
  • Prop field Represents a method of controlling power delivery in a power delivery step.
  • Neg field If the value of this field is set to 1, the power transmitter sends an ACK message and enters the negotiation phase. If the value of this field is 0, the power transmitter does not enter the negotiation stage but enters the power transfer stage.
  • FSK Polarity field indicates whether the transmitter's modulation polarity is a default value or an inverted value.
  • FSK Depth field indicates the modulation depth of the transmitter.
  • Count field indicates the number of optional configuration packets transmitted by the power receiver in the identification / configuration phase.
  • Window Size field indicates the window size for averaging received power.
  • Window Offset field Indicate the interval between the window averaging the received power and the received power packet transmission.
  • OP Mode field The above-described mode information, which indicates an operation mode supported by the power receiver.
  • FIG. 7 (b) shows a configuration packet transmitted by the power transmitter in the above-described negotiation step. Description of each field included in the configuration packet of FIG. 7 (b) is as follows.
  • Guaranteed Power Class field indicates the power class of the power transmitter.
  • the low power transmitter may set the field value to 1
  • the intermediate power receiver may set the field value to 0.
  • Guaranteed Power field Represents the guaranteed power of a power transmitter that meets an appropriate reference power receiver.
  • Potential Power Class field indicates the power class of the power transmitter.
  • the low power transmitter may set the field value to 1
  • the intermediate power receiver may set the field value to 0.
  • Potential Power field indicates the maximum amount of power that the power transmitter can potentially deliver to the appropriate reference power receiver.
  • OP Mode field The above-described mode information, which indicates an operation mode supported by the power transmitter.
  • the value of the operation mode field when the value of the operation mode field is 0, it may represent an induction mode, or 1: 1 charging mode.
  • the value of the operation mode field When the value of the operation mode field is 1, it may represent a resonance mode or a sharing mode.
  • FIG. 8 shows a flow of control and a difference in a method of operation according to the type of power transmitter and the type of power receiver.
  • FIG. 8 (a) shows the data flow between the power transmitter and each type of power receiver when the power transmitter is an induction type and a low power transmission type.
  • the power transmitter corresponds to the low power induction type
  • the only power providing method that the power receiver can support is the low power induction type. Therefore, not only the low power induction type receiver but also the intermediate power induction type receiver and the resonance type receiver operate in the low power induction mode. Therefore, as described above, the negotiation step is omitted, and in all of the digital ping step, identification / configuration step, and power delivery step, data is transmitted from the receiver to the transmitter, and the receiver controls the overall operation.
  • FIG 8 (b) shows the data flow between the power transmitter and each type of power receiver when the power transmitter is an induction type and an intermediate power transmission type.
  • the power transmitter since the power transmitter corresponds to the medium power induction type, the power transmitter may support the low power induction type receiver and the medium power induction type receiver. Accordingly, when the power receiver is a low power induction receiver, the power receiver may operate in a low power induction mode without a negotiation step. In the case of an intermediate power induction receiver or a resonant receiver, the power receiver may operate in an intermediate power induction mode through a negotiation step.
  • the power transmitter may also transmit ID information or configuration information to the power receiver in the negotiation phase, so that bidirectional communication is performed in the negotiation phase. In other stages, however, the transmitter transmits data to the receiver, and the overall operation of power charging is also controlled by the receiver.
  • the power transmitter since the power transmitter corresponds to a resonance type, the power transmitter may support both an induction type receiver and a resonance type receiver for each type. Accordingly, the low power induction receiver operates in the low power induction mode, the medium power induction receiver in the medium power induction mode, and the resonance type receiver operates in the resonance mode.
  • the receiver In the case of power transmission between the resonant transmitter and the resonant receiver, data communication is performed in both directions even in the power transmission step.
  • the receiver controls the reception power by controlling its resonance frequency, and may further control the reception power by requesting the operating point control of the power transmitter.
  • FIG 9 illustrates an ID assignment packet according to an embodiment of the present invention.
  • the resonance type power transmitter may simultaneously charge a plurality of resonance type power receivers. However, when transmitting power to a plurality of resonance type power receivers, IDs should be assigned to each power receiver for communication.
  • the ID field indicates ID information of at least one detected power receiver.
  • the power receiver may transmit an ID request to the power transmitter.
  • the power transmitter may assign an ID to the power receiver and include the assigned ID information in the ID allocation packet of FIG. 9 to transmit the ID to the power receiver.
  • FIG. 10 illustrates a frame structure for data communication during power delivery, in accordance with an embodiment of the present invention.
  • the power transmitter may transmit a sink signal as a master to the power receiver, and the power receiver may transmit a response signal to the sink signal as a slave.
  • the communication between the power transmitter and the power receiver may be terminated by the power transmitter not sending a sync signal.
  • the sync signal is a sync packet and the response signal is a response packet and may be allocated to a time slot obtained by time-dividing a frame in the structure shown in FIG.
  • a method of allocating time slots included in a frame for communication to the power receiver may be used.
  • a plurality of sync signals are used by using one sync signal per frame as shown in FIG. 10 (a) and allocating sync signals for each time slot in a frame as shown in FIG. Can be used.
  • the allocation of time slots for each power receiver may be performed using the ID and ID assignment packets described in FIG.
  • the power transmitter may send a sync packet and receive status information of the power transmitter as a response packet thereto.
  • state information may include received power information or a power transfer termination request.
  • the power receiver can transmit OV / OC / OT information without receiving a sync signal.
  • FIG. 11 illustrates a sync packet according to an embodiment of the present invention.
  • the power transmitter may send a sync packet to receive a response from the specific power receiver.
  • the sync packet may include an address ID (ADDR ID) field and a request field.
  • the ADDR ID field may identify a target power receiver for which the power transmitter requests a response.
  • the address ID information for identifying the target power receiver may correspond to ID information assigned through the ID assignment packet shown in FIG. 9.
  • the power transmitter may not only use the address ID of the specific power receiver, but also use the address ID requesting a response from all the power receivers currently being charged.
  • all charging power receivers may transmit a response in the allocated time slot.
  • the address ID field value indicates a specific power receiver, only the corresponding power receiver may transmit a response.
  • the Request field may indicate information that the power transmitter requests from the power receiver.
  • the request field may request the following response according to the field value.
  • a status report of the power receiver may be requested.
  • the status report may correspond to a received power packet, a power transmission end packet, and the like. If the field value of the request field is 0010b, the power transmitter may request re-negotiation for power distribution. In other words, the power transmitter may request the power receiver to perform the negotiation step again for power reallocation. Alternatively, the ID information may be requested again.
  • the request field may request the following response according to the field value.
  • the power receiver may request transmission of the received power information.
  • the power receiver may request transmission of rectified voltage information.
  • the power receiver may request transmission of a power transfer end packet. If the field value of the request field is 0100b, the power transmitter may request re-negotiation for power distribution. In other words, the power transmitter may request the power receiver to perform the negotiation step again for power reallocation.
  • the power receiver may request transmission of ID information.
  • An object of the present invention is to provide a power transmitter capable of charging both an induction power receiver and a resonant power receiver.
  • the power itself is controlled by the power transmitter, but in the case of the resonant power receiver, the power receiver may control the power received. Therefore, the power transmitted in the resonance mode may be set to be higher or stronger than the power transmitted in the induction mode.
  • the design of the inverter for easily supporting both methods and the power transmission method thereof will be further described below.
  • FIG. 12 illustrates a power transmitter according to an embodiment of the present invention.
  • the power transmitter of FIG. 12 supplements and describes the power transmitters of FIGS. 1 and 4. Components of the above-described power transmitter not shown in FIG. 12 are omitted for convenience of description and may be included or excluded depending on the configuration. Can be.
  • the power transmitter may include a selection unit 12010, a communication / control unit 12020, and a power conversion circuit 1230.
  • the selection unit 12010 is a circuit for detecting the position or presence of the power receiver and may be optionally provided.
  • the communication / control unit 12020 may communicate with a power receiver, perform a related power control algorithm and protocol, and drive power of an AC waveform to control power delivery.
  • the present invention may control the driving of the sub half bridge inverter 12070 and the pulse signal PWM driving the sub half bridge inverter 12070.
  • the power conversion unit 1230 is an inverter for converting a DC input into an AC waveform driving a resonant circuit, and the main herb free inverter 1204 to which the main pulse signal is applied and the sub pulse signal are applied.
  • the sub half bridge inverter 12070 may include a coil cell 12060 that generates a magnetic field, and a current sensor 12050 that monitors a current of the coil cell.
  • the coil cell 12060 may include a coil and a resonant capacitor.
  • the power transmitter according to the present invention may include a plurality of coil cells for simultaneously charging a plurality of power receivers.
  • a plurality of inverters are provided such that an inverter is provided for each of the plurality of coil cells, power control may be performed for each of the plurality of power receivers simultaneously charging, but the circuit complexity and the circuit manufacturing cost may increase. Can be.
  • a main half bridge inverter to which a main pulse signal is applied, and a plurality of half bridge inverters for a plurality of coil cells are designed to easily control a plurality of power receivers while reducing circuit complexity. It is proposed a power transmitter that can.
  • FIG. 13 illustrates a power transmitter according to an embodiment of the present invention.
  • FIG. 13 shows the power transmitter shown in FIG. 12 in more detail.
  • the power transmitter includes a main half bridge inverter 1300, a current sensor 1320, N coil cells 1302-1 to N, N sub half bridge inverters 1340-1 to N, and N multiplexers. (13050-1-N; MUX), N enable terminals (13060-1-N; EN), N selection terminals (13070-1-N; SEL), and a communication / control unit (13080).
  • a main pulse signal (main PWM) is applied to the main half bridge inverter (13010), and a first sub pulse signal (sub PWM 1) or a second sub pulse signal (sub PWM) is applied to each of the plurality of sub half free inverters (13040). 2) can be applied.
  • the multiplexer 1350 may apply the first sub pulse signal or the second sub pulse signal to the sub half bridge inverter 1340 according to the selection input of the selection terminal 13070. However, depending on the application, two or more sub-pulse signals may be selectively applied.
  • the communication / control unit 1308 may apply the enable signal / disable signal to the enable terminals 1260 to enable or disable each sub-half bridge inverter 1030. .
  • the communication / control unit 1308 may enable or disable the sub half bridge inverter 1030 by applying the enable signal or terminating the application of the enable signal.
  • the communication / control unit 1308 may apply the selection signal to the selection terminals 13070 to select the output of the multiplexer 1350.
  • the enable terminal 1260 and the selection terminal 1070 are controlled by the communication / control unit 13080 and may be optionally included depending on the transmitter design.
  • the power transmitter of FIG. 13 basically drives the main half bridge inverters 13010 and enables / disables each sub half bridge inverter or selectively applies a sub pulse signal applied to each sub half bridge inverter. It is possible to control the current flowing through each coil cell and thus to efficiently control the transfer power. The method of operation of the additional power transmitter will be described in more detail below.
  • the main pulse signal may be a pulse signal having a specific amplitude and frequency.
  • the sub pulse signal is implemented using the main pulse signal. That is, the first sub pulse signal (sub PWM 1) may use a phase inverted signal of the main pulse signal, that is, a signal having a phase difference of 180 degrees from the main pulse signal.
  • the second sub-pulse signal (sub PWM 2) may use a signal obtained by controlling the phase of the main pulse signal.
  • a main pulse signal is applied to the main half bridge inverter, and a first sub pulse signal or a second sub pulse signal is applied to the sub half bridge inverter.
  • the coil can deliver the maximum power due to the phase difference from the main pulse signal.
  • the second sub-pulse signal is applied, the coil may deliver power smaller than the maximum power due to the phase difference from the main pulse signal.
  • the power delivered may vary depending on the degree of phase control. As the controlled phase difference approaches 180 degrees, power close to the maximum power may be transmitted. As the controlled phase difference approaches 0 degrees, small power may be transmitted.
  • the second sub-pulse signal may be a signal whose phase is controlled such that a phase difference from the main pulse signal corresponds to a range of -90 to +90 degrees. This is because it may be more efficient to control the first sub pulse signal when it is out of this range.
  • the sub pulse signal is switched in the multiplexer.
  • the multiplexer may output the sub pulse signal by switching the sub pulse signal according to the selection signal. As in the embodiment of FIG. 14, when the communication / control unit applies 1 as the selection signal, the multiplexer can output the first sub pulse signal, and when the communication / control unit applies 0 as the selection signal, the multiplexer can output the second sub pulse signal. have.
  • the enable signal is a signal that applies actual power transfer.
  • a main pulse signal is applied to the main half bridge, but a current may be applied to the coil cell only when an enable signal is applied to transfer power.
  • the coil cell when the first sub pulse signal is applied to the sub half bridge inverter, the coil cell delivers large power, and when the second sub pulse signal is applied, the coil cell may deliver small power.
  • power output by the coil cell when the first sub-pulse signal is applied, power output by the coil cell may be referred to as charging power, and when the second sub-pulse signal is applied, power output by the coil cell may be referred to as communication power.
  • the communication power may be used to discover a power receiver by applying a ping or digital ping when driving the circuit, or may be used to communicate with the power receiver.
  • the second sub-pulse signal may be referred to as communication power.
  • the power transmitter can efficiently control the plurality of coil cells to discover at least one power receiver and perform power transmission.
  • a method of controlling the power transmitter of FIG. 13 using the signal of FIG. 14 will be described with reference to FIG. 15.
  • FIG. 15 illustrates a method of operating a wireless power transmitter according to an embodiment of the present invention.
  • FIG. 15 illustrates a method of performing a process until the power transmitter finds a power receiver and starts power transmission using the circuit of FIG. 13 and the pulse signals of FIG. 14. At the beginning of the method of FIG. 15, the power transmitter assumes that all of the enable signals for the plurality of coil cells are not applied.
  • the power transmitter may set a selection signal for applying the second sub-pulse signal (S15010).
  • the power transmitter may set the selection signal for outputting the second sub-pulse signal and apply it to the multiplexer.
  • the selection signal when the selection signal is set to 0, the second sub pulse signal can be applied, and the communication / control unit applies the selection signal 0 to the multiplexer through the selection terminal to the desired second sub pulse. Can output a signal.
  • the power transmitter may transmit power by applying an enable signal to the sub half bridge inverter of the first coil cell (S15020).
  • the transmitted power is power for communication and may correspond to the above-described ping or digital ping. Or, it may be used for data transmission of the above-described power transmitter.
  • a second sub pulse signal is applied to the sub half bridge inverter so that the first coil cell can transmit a small power for circuit driving / receiver discovery.
  • the power transmitter may receive a response of the power receiver (S15030).
  • the power transmitter may detect the power receiver by detecting a change in the primary coil according to the communication power applied using the current sensor, and detect the response of the power receiver.
  • Step 15030 shown in FIG. 15 shows the discovery of the power receiver and the response reception of the power receiver. This step may correspond to at least one of the identification / configuration step or negotiation step of FIG. 2.
  • the power transmitter may change the setting of the selection signal to apply the first sub-pulse signal (S15040).
  • the communication / control unit may apply the first sub pulse signal to the sub half bridge inverter by changing the selection signal to one. Since the first sub pulse signal is applied to the sub half bridge inverter, the first coil cell may transmit charging power to initiate power transfer.
  • the power transmitter may terminate application of the enable signal to the first sub-half bridge inverter (S15050). Since no power receiver has been found, the power transmitter may determine that a power receiver that requires charging is not attached to the first coil cell.
  • steps S15010 to 15050 may be performed for each of the plurality of coil cells.
  • the power transmitter may perform the steps of FIG. 15 with respect to the second coil cell, and may terminate after performing the steps of FIG. 15 to the Nth coil cell (the last coil cell) in the same manner. If the external object is found after a certain time interval or by analog ping, the steps of FIG. 15 may be performed again.
  • the power transmitter may perform the steps of FIG. 15 only for coil cells that are not charging power, or may perform the steps of FIG. 15 only for coil cells in which an external object is found by analog ping.
  • the second sub-pulse signal may be time-divisionally supplied to only one coil at a time.
  • the power transmitter may operate differently according to the type of the power receiver.
  • the selection signal setting may be changed to apply the first sub pulse signal (S15040).
  • the power transmitter may transmit power by controlling the phase of the second sub-pulse signal instead of changing the selection signal setting.
  • the power receiver When the power receiver is a resonant type, when the power transmitter transmits a large amount of power, the power receiver may adjust the resonant frequency to receive appropriate power. However, if the power receiver is of an inductive type, the power transmitter must transmit adequate power, in which case adjusting power from low to high power is more advantageous to the stability of the circuit and power delivery.
  • the response of the power receiver may include the mode information described above.
  • the power transmitter may parse the received mode information to determine whether the power receiver is a resonance type power receiver or an induction type power receiver.
  • FIG. 16 illustrates a power transmitter according to another embodiment of the present invention.
  • the configuration of the power transmitter of FIG. 16 is as shown in FIG. 12. However, the configuration of the current sensor 16010 is different from FIG. 12, which will be described in more detail with reference to FIG. 17. Other descriptions other than the position and configuration of the current sensor are as described with reference to FIG. 12.
  • FIG 17 illustrates a power transmitter according to another embodiment of the present invention.
  • FIG. 17 illustrates the power transmitter shown in FIG. 16 in more detail.
  • FIG. 17 includes the same sub units as the power transmitter shown in FIG. 13. That is, the power transmitter includes a main half bridge inverter, N coil cells, N sub half bridge inverters, N multiplexers, N enable terminals, N selection terminals, and a communication / control unit. Instead of connecting one current sensor to the main half bridge inverter as shown in FIG. 13, in FIG. 17, N current sensors are included between each coil cell and the sub half bridge inverters. The description of the configuration other than the difference is the same as that of FIG. 13, and hereinafter, the configuration difference of the current sensor will be described.
  • a current sensor may be added to each coil cell to perform communication and control for each coil cell.
  • the method of FIG. 15 may be performed on all coil cells instead of sequentially performing the method of FIG. 15 for each coil cell.
  • the power transmitter of FIG. 17 may transmit power for communication in all coil cells by simultaneously applying an enable signal to all coil cells, that is, all sub half bridge inverters.
  • Each of the current sensors 1710-1 to N may be used to discover a power receiver or communicate with the power receiver, and apply power to only the coil cell in which the response is confirmed.
  • the power transmitter may operate differently depending on the type of power receiver found in each coil cell.
  • the power receiver is an inductive type
  • power transmission may be performed by controlling a phase of an already applied second sub pulse signal without applying the first sub pulse signal.
  • the phase of the first sub-pulse signal may be changed to a phase capable of performing initial power transmission (for example, an initial phase of the second sub-pulse signal), and the changed first sub-pulse signal may be supplied to the remaining coils. .
  • the plurality of power receivers may be charged at the same time, and control may be performed by communicating with each of the plurality of power receivers. Therefore, not only a plurality of resonant type receivers but also a plurality of inductive type receivers can be simultaneously charged, and a resonant type receiver and an inductive type receiver can be simultaneously charged.
  • a resonant type receiver and an inductive type receiver can be simultaneously charged.
  • by using two or more sub pulse signals it is possible to support as many inductive type receivers as the number of sub pulse signals. That is, charging can be performed simultaneously by individually controlling the N sub-pulse signals for the N induction type receivers.
  • the present invention finds use in the field of wireless charging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

무선 전력 송신기가 개시된다. 본 발명의 실시예에 따른, 복수의 무선 전력 수신기를 충전할 수 있는 무선 전력 송신기는, 복수의 코일 셀; 메인 펄스 신호가 인가되는 메인 하프 브리지 인버터; 제 1 서브 펄스 신호 또는 제 2 서브 펄스 신호가 인가되는 복수의 서브 하프 브리지 인버터; 상기 코일 셀의 전류를 모니터링하는 전류 센서; 및 상기 메인 하프 브리지 인버터 및 상기 복수의 서브 하프 브리지 인버터에 인가되는 펄스 신호를 컨트롤하며, 상기 무선 전력 수신기와 통신을 수행하는 통신/컨트롤 유닛을 포함하며, 상기 복수의 서브 하프 브리지 인버터 각각은 상기 복수의 코일 셀 각각에 연결될 수 있다.

Description

무선 전력 송신기 및 무선 전력 송신 방법
본 발명은 무선 전력 송신 장치 및 방법에 관한 것으로, 특히 하나 뿐 아니라 복수의 무선 전력 수신 장치를 함께 충전할 수 있는 무선 전력 송신 장치 및 방법에 관한 것이다.
무접점 무선 충전은 기존의 유선을 통해 에너지를 전송하여 전자기기의 전원으로 사용하는 방식에서, 선을 제거하고 전자기적으로 에너지를 전달하는 에너지 전달 방식이다. 무 접점 무선 전송 방식에는 전자기 유도 방법 및 공진 방법이 존재한다. 전자기 유도 방식은 전력 송신부에서 전력 송신 코일(1차 코일)을 통해 자기장을 발생시키고, 전류가 유도될 수 있는 위치에 수신 코일(2차 코일)을 위치시킴으로써 전력을 전달하는 방식이다. 공진 방식은, 송신 코일 및 수신 코일 간의 공명 현상을 이용하여 에너지를 전송하며, 다만 1차 코일의 공진 주파수와 2차 코일의 공진 주파수를 동일하게 시스템을 구성함으로써 코일 간의 공진 모드 에너지 결합을 사용한다.
최근 모바일 기기를 위한 전자기 유도 방식 무선 충전 장치 즉 무선 전력 송신 장치가 개발되고 있다. 특히, 이러한 무선 전력 송신 장치들의 표준화를 위해 WPC(Wireless Power Consirtium)에서 무선 전력 전송 관련 기술을 규격화하고 있다.
릴리스된 WPC 표준은 저전력의 모바일 기기 충전을 대상으로 한다. 그러나 모바일 기기의 다양화 및 충전 효율 향상을 위해 기존의 저전력 충전보다 높은 전력의 충전이 필요하게 되었다. 또한, 무선 충전 기술의 상용화가 급격히 진행되면서 사용 편의성을 위해 복수의 기기들을 동시에 충전할 수 있는 방법도 필요하게 되었다.
상술한 기술적 과제를 해결하기 위하여, 본 발명의 실시예에 따른 무선 전력 송신기는, 복수의 무선 전력 수신기를 충전할 수 있는 무선 전력 송신기로서, 복수의 코일 셀; 메인 펄스 신호가 인가되는 메인 하프 브리지 인버터; 제 1 서브 펄스 신호 또는 제 2 서브 펄스 신호가 인가되는 복수의 서브 하프 브리지 인버터; 상기 코일 셀의 전류를 모니터링하는 전류 센서; 및 상기 메인 하프 브리지 인버터 및 상기 복수의 서브 하프 브리지 인버터에 인가되는 펄스 신호를 컨트롤하며, 상기 무선 전력 수신기와 통신을 수행하는 통신/컨트롤 유닛을 포함하며, 상기 복수의 서브 하프 브리지 인버터 각각은 상기 복수의 코일 셀 각각에 연결되고, 상기 제 1 서브 펄스 신호는 상기 메인 펄스 신호가 위상 반전된 펄스 신호이고 상기 제 2 서브 펄스 신호는 상기 메인 펄스 신호가 위상 컨트롤된 신호이다.
또한, 본 발명의 실시예에 따른 무선 전력 송신기에 있어서, 상기 컨트롤 유닛은 전력 수신기 발견을 위해 상기 복수의 서브 하프 브리지 인버터 중 적어도 하나의 서브 하프 브리지 인버터에 상기 제 2 서브 펄스 신호를 인가할 수 있다.
또한, 본 발명의 실시예에 따른 무선 전력 송신기는, 상기 복수의 코일 셀 중 적어도 하나의 코일 셀에서 전력 수신기의 응답을 수신한 경우, 상기 컨트롤 유닛은 상기 전력 수신기의 응답이 수신된 코일 셀에 연결된 서브 하프 브리지 인버터에 상기 제 1 서브 펄스 신호를 인가함으로써 전력 전송을 수행할 수 있다.
또한, 본 발명의 실시예에 따른 무선 전력 송신기는, 상기 복수의 코일 셀 중 적어도 하나의 코일 셀에서 전력 수신기의 응답을 수신하지 않은 경우, 상기 컨트롤 유닛은 복수의 서브 하프 브리지 인버터를 디스에이블할 수 있다.
또한, 본 발명의 실시예에 따른 무선 전력 송신기에 있어서, 상기 응답이 수신된 무선 전력 수신기가 유도 타입 무선 전력 수신기인 경우, 상기 컨트롤 유닛은 상기 서브 하프 브리지 인버터에 인가된 상기 제 2 전력 신호의 위상을 컨트롤함으로써 전력 전송을 수행할 수도 있다.
또한, 상기 무선 전력 수신기의 응답은 모드 정보를 포함하며, 상기 모드 정보는 상기 무선 전력 수신기가 유도 타입인지 또는 공진 타입인지를 나타낼 수 있다.
또한, 본 발명의 실시예에 따른 무선 전력 송신기에 있어서, 상기 복수의 서브 하프 브리지 인버터 중 적어도 하나의 서브 하프 브리지 인버터에 대한 상기 제 2 서브 펄스 신호를 인가는 동시에 또는 순차적으로 수행될 수 있다.
상술한 기술적 과제를 해결하기 위하여, 본 발명의 실시예에 따른 무선 전력 송신 방법은, 하나의 메인 하프 브리지 인버터 및 복수의 서브 하프 브리지 인버터를 포함하는 무선 전력 송신기의 무선 전력 송신 방법으로서, 적어도 하나의 서브 하프 브리지 인버터에 제 1 서브 펄스 신호 및 제 2 서브 펄스 신호 중 상기 제 2 서브 펄스 신호가 인가되는 셀렉션 신호를 설정하는 단계; 상기 적어도 하나의 서브 하프 브리지 인버터에 인에이블 신호를 인가함으로써 적어도 하나의 코일 셀로 전력을 전송하는 단계; 및 상기 적어도 하나의 코일 셀에서 무선 전력 수신기의 응답을 수신하는 경우 상기 적어도 하나의 서브 하프 브리지 인버터에 상기 제 1 서브 펄스 신호가 인가되도록 셀렉션 신호를 변경하는 단계를 포함하며, 상기 제 1 서브 펄스 신호는 상기 메인 하프 브리지 인버터에 인가되는 메인 펄스 신호가 위상 반전된 펄스 신호이고 상기 제 2 서브 펄스 신호는 상기 메인 펄스 신호가 위상 컨트롤된 신호이다.
또한, 본 발명의 실시예에 따른 무선 전력 송신 방법은, 상기 적어도 하나의 코일 셀에서 무선 전력 수신기의 응답을 수신하지 않은 경우 상기 인에이블 신호의 인가를 종료하는 단계를 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 무선 전력 송신 방법은, 상기 적어도 하나의 코일 셀에서 상기 무선 전력 수신기의 응답을 수신하는 경우 상기 무선 전력 수신기가 유도 타입인지 또는 공진 타입인지를 결정하는 단계를 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 무선 전력 송신 방법은, 상기 무선 전력 수신기가 유도 타입인 경우 상기 셀렉션 신호를 변경하는 대신 상기 제 2 서브 펄스 신호의 위상을 컨트롤하는 단계를 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 무선 전력 송신 방법에 있어서, 상기 무선 전력 수신기의 응답은 모드 정보를 포함하며, 상기 모드 정보는 상기 무선 전력 수신기가 유도 타입인지 또는 공진 타입인지를 나타낼 수 있다.
또한, 본 발명의 실시예에 따른 무선 전력 송신 방법에 있어서, 상기 인에이블 신호는 상기 적어도 하나의 서브 하프 브리지에 대해 동시에 또는 순차적으로 인가될 수 있다.
본 발명에 따른 무선 전력 송신기는 무선 전력 수신기가 공진 타입인지 또는 유도 타입인지를 식별하여 적절한 방법으로 전력 전송을 컨트롤할 수 있다.
특히, 본 발명에 따른 무선 전력 송신기는 무선 전력 수신기로부터 모드정보를 수신함으로써 무선 전력 수신기의 타입을 식별할 수 있다. 바람직하게는, 무선 전력 송신기 또한 모드 정보를 전송함으로써 무선 전력 송신기가 지원하는 충전 방식- 유도 타입/공진 타입-을 나타낼 수 있다.
또한, 본 발명에 따른 무선 전력 송신기는 메인 하프 브리지 인버터와 복수의 서브 하프 브리지 인버터를 포함하고, 복수의 코일 셀에 통신용 전력 또는 충전용 전력을 인가하기 위한 복수의 서브 펄스 신호롤 복수의 서브 하프 브리지 인버터에 인가할 수 있다. 이러한 구조를 사용함으로써 통신용 전력 및 충전용 전력을 효율적으로 스위칭할 수 있으며, 따라서 복수의 무선 전력 수신기를 효율적으로 발견하고 충전할 수 있다. 또한 이러한 구조를 사용함으로써 회로 복잡도를 낮추면서도 복수 코일 셀에 대한 개별 제어를 효율적으로 수행할 수 있다.
또한, 본 발명에 따른 무선 전력 송신기는 복수의 코일 셀을 사용하여 효율적으로 상이한 타입의 무선 전력 수신기를 발견하고 타입에 맞는 충전 컨트롤을 수행할 수도 있다.
도 1은 본 발명의 일 실시예에 따른 무선 전력 송수신 시스템을 나타낸다.
도 2는 본 발명의 실시예에 따른 전력 송수신 방법을 나타내는 블록도이다.
도 3은 본 발명의 실시예에 따른 유도 모드의 전력 전달 컨트롤 방법을 나타낸다.
도 4는 본 발명의 일 실시예에 따른 전력 송신 장비를 나타낸다.
도 5는 본 발명의 일 실시예에 따른 전력 수신 장비를 나타낸다.
도 6은 본 발명의 일 실시예에 따른 전력 전송 방법을 나타낸다.
도 7은 본 발명의 실시예에 따른, 전력 수신기가 전송하는 구성 패킷 및 전력 송신기가 전송하는 구성 패킷을 나타낸다.
도 8은 전력 송신기의 타입 및 전력 수신기의 타입에 따른 동작 방법의 차이 및 제어의 흐름을 나타낸다.
도 9는 본 발명의 일 실시예에 따른 ID 배정 패킷을 나타낸다.
도 10은 본 발명의 일 실시예에 따른, 전력 전달 동안의 데이터 통신을 위한 프레임 구조를 나타낸다.
도 11은 본 발명의 일 실시예에 따른 싱크 패킷을 나타낸다.
도 12는 본 발명의 실시예에 따른 전력 송신기를 나타낸 도면이다.
도 13은 본 발명의 실시예에 따른 전력 송신기를 나타낸 도면이다.
도 14는 본 발명의 실시예에 다른 메인 펄스 신호, 서브 펄스 신호 및 멀티 플렉서의 출력 펄스 신호를 나타낸다.
도 15는 본 발명의 일 실시예에 따른 무선 전력 송신기의 동작 방법을 나타낸다.
도 16은 본 발명의 다른 일 실시예에 따른 전력 송신기를 나타낸 도면이다.
도 17은 본 발명의 다른 일 실시예에 따른 전력 송신기를 나타낸 도면이다.
본 발명의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 본 발명의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 본 발명의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 본 발명에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함한다. 그러나 본 발명이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다.
본 발명에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 본 발명은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.

최근 모바일 기기를 포함하는 다양한 전자기기를 위한 전자기 유도 방식 무선 충전 장치 즉 무선 전력 송신 장치가 개발되고 있다. 특히, 이러한 무선 전력 송신 장치들의 표준화를 위해 WPC(Wireless Power Consirtium)에서 무선 전력 송신/수신 관련 기술을 규격화하고 있다. 본 명세서에서 모바일 기기는 핸드폰, 태블릿 PC, 노트북, 전동 칫솔 등과 같은 휴대 및 이동이 가능한 전자 기기를 지칭힌다. 본 명세서에서 무선 전력을 수신하는 전자 기기로서 모바일 기기를 예로서 설명하나, 이는 실시예에 대한 것으로 무선 전력 수신기를 포함하는 임의의 전자기기가 본 발명의 대상이 되는 것임은 명백할 것이다.
최근 개발되는 무선 충전 시스템은 약 5W까지의 저전력 송수신을 지원한다. 다만, 최근 모바일 기기의 크기가 커지고 배터리 용량도 증가되고 있어, 이러한 저전력 충전 방식의 경우 충전 시간이 길고 효율이 떨어지는 문제점이 있어, 약 15W까지의 중간전력 송수신을 지원하는 무선 충전 시스템이 개발되고 있다. 이와 함께 동시에 복수의 전자 기기를 충전하기 위해 공진 방식이 추가된 무선 충전 시스템 또한 개발되고 있다. 본 발명은 공진 방식이 추가된 무선 충전 시스템에 대한 것으로서, 저전력/중간 전력의 유도 타입의 무선 충선 송/수신기와 호환이 가능한 공진 타입의 무선 충전 송/수신기를 제안하고자 한다.
이하에서 무선 전력 송신기는 전력 송신기 또는 송신기로, 무선 전력 수신기는 전력 수신기 또는 수신기로 약칭할 수도 있다.

도 1은 본 발명의 일 실시예에 따른 무선 전력 송수신 시스템을 나타낸다.
도 1에서, 무선 전력 송수신 시스템은 무선으로 전력을 수신하는 모바일 기기(1010; Mobile Device) 및 베이스 스테이션(1020; Base Station)을 포함한다.
모바일 기기(1010)는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 전력 수신기(1040; Power Receiver) 및 전력 수신기에서 수신한 전력을 전달받아 저장하고 기기에 공급하는 로드(1030; Load)를 포함한다. 그리고 전력 수신기(1040)는 2차 코일을 통해 무선 전력 신호를 수신하여 전기 에너지로 변환하는 전력 픽업 유닛(1080; Power Pick-Up Unit) 및 전력 송신기(1050)와의 통신 및 전력 신호 송수신(전력 전달/수신)을 제어하는 통신/컨트롤 유닛(1090; Communications & Control Unit)을 포함할 수 있다. 모바일 기기(1010)는 이하에서 전력 수신 장비로 지칭될 수도 있다.
베이스 스테이션(1020)은 유도 전력(inductive power) 또는 공진 전력(resonant power)를 제공하는 장치로서, 하나 또는 복수의 전력 송신기들(1050, 1060; Power Transmitter) 및 시스템 유닛(1070)을 포함할 수 있다. 전력 송신기(1050)는 유도/공진 전력을 전송하고, 전력 전송을 제어할 수 있다. 전력 송신기(1050)는, 1차 코일(Primary Coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환/전달하는 전력 변환 유닛(1100; Power Conversion Unit) 및 적절한 레벨로 전력을 전달하도록 전력 수신기와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 유닛(1110; Communications & Control Unit)을 포함할 수 있다. 시스템 유닛(1070)은 입력 전력 프로비저닝(provisioning), 복수의 전력 송신기들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션의 기타 동작 제어를 수행할 수 있다. 베이스 스테이션(1020)은 이하에서 전력 송신 장비로 지칭될 수도 있다.
전력 송신기는 동작 포인트를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트(operating point)는 주파수(위상), 듀티 사이클(duty cycle) 및 전압 진폭의 조합에 해당될 수 있다. 전력 송신기는 주파수(위상), 듀티 사이클/듀티비(duty ratio) 및 입력 전압의 진폭 중 적어도 하나를 조절하여 전달되는 전력을 컨트롤할 수 있다. 또한, 전력 송신기는 일정한 전력을 공급하고, 전력 수신기가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.

본 명세서에서 전력 송수신 장치는 유도(inductive) 모드 및 공진(resonant) 모드에서 동작할 수 있다. 유도 모드에서 동작하는 경우, 송수신하는 전력량에 따라 동작 모드를 저전력 모드 및 중간전력 모드로 나눌 수 있다.
유도 모드에서, 전력 송수신 장치는 정해진 용량/레벨에서 전력 송수신을 수행할 수 있다. 예를 들면 저전력(Low Power) 송신/중간 전력(Medium Power) 송신/고전력 송신 등과 같이 전력 송신 레벨을 나눌 수 있다. 본 명세서에서는 약 5W까지의 무선 전력 송수신을 수행하는 경우를 저전력 모드의 송수신, 약 15W까지의 무선 전력을 송수신하는 경우를 중간 전력 모드의 송수신으로 지칭할 수 있다. 실시예에 따라서, 저전력은 0~10W, 중간 전력은 10~20W에 해당할 수도 있다.
공진 모드에서, 전력 송신 장치는 동시에 복수의 전력 수신 장치에게 전력을 공급할 수 있다. 따라서 공진 모드는 공유 모드(shared mode)라고 지칭할 수도 있다. 공진 모드에서 전력 송수신 장치는 유도 모드와는 다른 방식으로 전력 송수신을 수행할 수 있다. 공유 모드에 대응하여 유도 모드를 독점 모드(exclusive mode)라고 지칭할 수도 있다.
이하에서는 먼저 전력 송수신 단계들에 대하여 설명하도록 한다.

도 2는 본 발명의 실시예에 따른 전력 송수신 방법을 나타내는 블록도이다.
본 발명에 따른 무선 충전 시스템에서, 무선 충전은 5개의 단계(phase)들을 통해 수행될 수 있다. 5개의 단계들은 셀렉션 단계(S2010; selection phase), 핑 단계(S2020; ping phase), 식별/구성 단계(S2030; identification & configuration phase), 협상 단계(S2040; negotiation phase) 및 전력 전달 단계(S2050; power transfer phase)를 포함하며, 다만 저전력 모드의 전력 송수신에서 협상 단계(S2040)는 생략될 수 있다. 즉, 저전력 모드에서는 4개의 단계들로 전력 송수신이 수행되며, 중간 전력 모드에서 협상 단계(S2040)를 추가로 수행할 수 있다.
셀렉션 단계(S2010)에서, 전력 송신기는 송신기에 구비된 인터페이스 표면에 대한 오브젝트의 접촉/이탈을 모니터링한다. 도 2에서와 같이, 무선 전력 송신기는 전력 신호를 인가하여 외부 오브젝트의 접촉을 감지할 수 있다. 다시 말하면, 전력 송신기는 1차 코일에 짧은 전력 신호를 인가하고, 이 전력 신호로 인해 발생하는 1차 코일의 전류를 감지하여 외부 오브젝트의 존부를 모니터링할 수 있다. 그리고 전력 송신기는 셀렉션 단계(S2010)에서 모니터링된 신호 강도(signal strength) 정보(패킷)를 수신, 이에 기초하여 오브젝트를 검출(디텍트; detect)하면, 이 오브젝트가 전력 수신기인지 또는 단순한 외부 오브젝트(열쇠, 동전 등)인지 여부를 선택할 수도 있다. 이러한 선택을 위해, 전력 송신기는 핑 단계(S2020), 식별/구성 단계(S2030) 및 협상 단계(S2040) 중 적어도 하나의 단계를 추가로 수행할 수 있다.
핑 단계(S2020)에서, 전력 송신기는 디지털 핑을 수행하고, 전력 수신기의 응답을 대기할 수 있다. 디지털 핑은 전력 수신기를 검출 및 식별하기 위한 전력 신호의 인가/전송을 나타낸다. 전력 송신기가 전력 수신기를 발견하면, 전력 송신기는 디지털 핑을 확장하여 식별/구성 단계(S2030)로 진행할 수 있다.
식별/구성 단계(S2030)에서, 전력 송신기는 선택된 전력 수신기를 식별하고 최대 전력 양과 같은 전력 수신기의 구성(configuration) 정보를 획득할 수 있다. 다시 말하면, 전력 송신기는 식별/구성 정보를 수신하여 전력 수신기에 대한 정보를 획득하고, 이 정보를 사용하여 전력 전달 계약(Power Transfer Contract)를 설정(establish)할 수 있다. 이 전력 전달 계약은 이후의 전력 전달 단계(S2050)에서 전력 전달을 특징짓는 복수의 파라미터들에 대한 제한을 포함할 수 있다.
협상 단계(S2040)에서, 전력 수신기는 추가적인 전력 전달 약정을 생성하기 위해 전력 송신기와 협상할 수 있다. 다시 말하면, 전력 송신기는 전력 수신기로부터 협상 요청/정보를 수신할 수 있으며, 협상 단계(S2040)는 식별/구성 단계(S2030)에서 대상 수신기가 중간 전력 수신기인 것으로 확인된 경우에만 진행될 수 있다. 협상 단계(S2040)에서, 전력 송신기의 보장(guaranteed) 전력 레벨 및 전력 수신기의 최대 전력과 같은 추가적인 파라미터들이 협상될 수 있다. 전력 수신기가 저전력 수신기인 경우에는 협상 단계(S2040)는 생략하고, 식별/구성 단계(S2030)에서 바로 전력 전달 단계(S2050)로 진행할 수 있다.
전력 전달 단계(S2050)에서, 전력 송신기는 전력 수신기로 무선으로 전력을 제공한다. 전력 송신기는 송신되는 전력에 대한 컨트롤 데이터를 수신하여 이에 따라 전력 전달을 제어할 수 있다. 그리고 전력 송신기는 전력 전달 중 전력 전달 계약에 따른 파라미터들의 제한이 위반되면 전력 전달을 중지하고 셀렉션 단계(S2010)로 진행할 수 있다.

도 3은 본 발명의 실시예에 따른 유도 모드의 전력 전달 컨트롤 방법을 나타낸다.
도 3에서 전력 송신기(3010) 및 전력 수신기(3020)는 도 1에서 도시한 바와 같이 각각 전력 변환 유닛(3030) 및 전력 픽업 유닛(3040)을 포함할 수 있다.
상술한 유도 모드의 전력 전달 단계(S2050)에서, 전력 송신기 및 전력 수신기는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다. 전력 송신기 및 전력 수신기는 특정 컨트롤 포인트에서 동작한다. 컨트롤 포인트는 전력 전달이 수행될 때 전력 수신기의 출력단(output)에서 제공되는 전압 및 전류의 조합(combination)을 나타낸다.
조금 더 상세히 설명하면, 전력 수신기는 원하는 컨트롤 포인트(desired Control Point)- 원하는 출력 전류/전압, 모바일 기기의 특정 위치의 온도 등을 선택하고, 추가로 현재 동작하고 있는 실제 컨트롤 포인트(actual Control Point)를 결정한다. 전력 수신기는 원하는 컨트롤 포인트와 실제 컨트롤 포인트를 사용하여, 컨트롤 에러 값(Control Error Value)을 산출하고, 이를 컨트롤 에러 패킷으로서 전력 송신기로 전송할 수 있다.
그리고 전력 송신기는 수신한 컨트롤 에러 패킷을 사용하여 새로운 동작 포인트- 진폭, 주파수 및 듀티 사이클-를 설정/컨트롤하여 전력 전달을 제어할 수 있다. 따라서 컨트롤 에러 패킷은 전략 전달 단계에서 일정 시간 간격으로 전송/수신되며, 실시예로서 전력 수신기는 전력 송신기의 전류를 저감하려는 경우 컨트롤 에러 값을 음수로, 전류를 증가시키려는 경우 컨트롤 에러 값을 양수로 설정하여 전송할 수 있다. 이와 같이 유도 모드에서는 전력 수신기가 컨트롤 에러 패킷을 전력 송신기로 송신함으로써 전력 전달을 제어할 수 있다.
이하에서 설명할 공진 모드에서는 유도 모드에서와는 다른 방식으로 동작할 수 있다. 공진 모드에서는 하나의 전력 송신기가 복수의 전력 수신기를 동시에 서빙할 수 있어야 한다. 다만 상술한 유도 모드와 같이 전력 전달을 컨트롤하는 경우, 전달되는 전력이 하나의 전력 수신기와의 통신에 의해 컨트롤되므로 추가적인 전력 수신기들에 대한 전력 전달은 컨트롤이 어려울 수 있다. 따라서 본 발명의 공진 모드에서는 전력 송신기는 기본 전력을 공통적으로 전달하고, 전력 수신기가 자체의 공진 주파수를 컨트롤함으로써 수신하는 전력량을 컨트롤하는 방법을 사용하고자 한다. 다만, 이러한 공진 모드의 동작에서도 도 3에서 설명한 방법이 완전히 배제되는 것은 아니며, 추가적인 송신 전력의 제어를 도 3의 방법으로 수행할 수도 있다.

도 4는 본 발명의 일 실시예에 따른 전력 송신 장비를 나타낸다.
도 4에서, 전력 송신 장비(4010)는 코일 어셈블리를 덮는 커버(4020), 전력 송신기로 전력을 공급하는 전력 어답터(4030), 무선 전력을 송신하는 전력 송신기(4040) 또는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(4050) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(4050)는 옵셔널하게 포함되거나, 전력 송신 장비의 다른 사용자 인터페이스(4050)로서 포함될 수도 있다.
전력 송신기(4040)는 코일 어셈블리(4060), 임피던스 매칭 회로(4070), 인버터(4080), 통신 유닛(4090) 또는 컨트롤 유닛(4100) 중 적어도 하나를 포함할 수 있다.
코일 어셈블리(4060)는 자기장을 생성하는 적어도 하나의 1차 코일을 포함하며, 코일 셀로 지칭될 수도 있다.
임피던스 매칭 회로(4070)는 인버터와 1차 코일(들) 간의 임피던스 매칭을 제공할 수 있다. 임피던스 매칭 회로(4070)는 1차 코일 전류를 부스팅(boost)하는 적합한(suitable) 주파수에서 공진(resonance)을 발생시킬 수 있다. 다중-코일(multi-coil) 전력 송신기에서 임피던스 매칭 회로는 인버터에서 1차 코일들의 서브세트로 신호를 라우팅하는 멀티플렉스를 추가로 포함할 수도 있다. 임피던스 매칭 회로는 탱크 회로(tank circuit)로 지칭될 수도 있다.
인버터(4080)는 DC 인풋을 AC 신호로 전환할 수 있다. 인버터(4080)는 가변(adjustable) 주파수의 펄스 웨이브 및 듀티 사이클을 생성하도록 하프-브리지 또는 풀-브리지로 구동될 수 있다. 또한 인버터는 입력 전압 레벨을 조정하도록 복수의 스테이지들을 포함할 수도 있다.
통신 유닛(4090)은 전력 수신기와의 통신을 수행할 수 있다. 전력 수신기는 전력 송신기에 대한 요청 및 정보를 통신하기 위해 로드(load) 변조를 수행한다. 따라서 전력 송신기는 통신 유닛(4090)을 사용하여 전력 수신기가 전송하는 데이터를 복조하기 위해 1차 코일의 전류 및/또는 전압의 진폭 및/또는 위상을 모니터링할 수 있다. 또한, 전력 송신기는 통신 유닛(4090)을 통해 FSK(Frequency Shift Keying) 방식 등을 사용하여 데이터를 전송하도록 출력 전력을 컨트롤할 수도 있다.
컨트롤 유닛(4100)은 전력 송신기의 통신 및 전력 전달을 컨트롤할 수 있다. 컨트롤 유닛(4100)은 상술한 동작 포인트를 조정하여 전력 전송을 제어할 수 있다. 동작 포인트는, 예를 들면, 동작 주파수, 듀티 사이클 및 입력 전압 중 적어도 하나에 의해 결정될 수 있다.
통신 유닛(4090) 및 컨트롤 유닛(4100)은 별개의 유닛/소자/칩셋으로 구비되거나, 도 1에서 나타낸 바와 같이 하나의 유닛/소자/칩셋으로 구비될 수도 있다.

도 5는 본 발명의 일 실시예에 따른 전력 수신 장비를 나타낸다.
도 5에서, 전력 수신 장비(5010)는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(5020), 무선 전력을 수신하는 전력 수신기(5030), 로드 회로(5040) 또는 코일 어셈블리를 받치며 커버하는 베이스(5050) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(4050)는 옵셔널하게 포함되거나, 전력 수신 장비의 다른 사용자 인터페이스(4050)로서 포함될 수도 있다.
전력 수신기(5030)는 전력 컨버터(5060), 임피던스 매칭 회로(5070), 코일 어셈블리(5080), 통신 유닛(5090) 또는 컨트롤 유닛(5100) 중 적어도 하나를 포함할 수 있다.
전력 컨버터(5060)는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 실시예로서, 전력 컨버터(5060)는 정류기(rectifier)를 포함할 수 있다. 추가로, 전력 컨버터는 전력 수신기의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
임피던스 매칭 회로(5070)는 전력 컨버터(5060) 및 로드 회로(5070)의 조합과 2차 코일 간의 임피던스 매칭을 제공할 수 있다. 실시예로서, 임피던스 매칭 회로는 전력 전달을 강화할 수 있는 100kHz 근방의 공진을 발생시킬 수 있다.
코일 어셈블리(5080)는 적어도 하나의 2차 코일을 포함하며, 옵셔널하게는 자기장으로부터 수신기의 금속 부분을 쉴딩(shield)하는 엘러먼트(element)를 더 포함할 수도 있다.
통신 유닛(5090)은 전력 송신기로 요청(request) 및 다른 정보를 통신하기 위해 로드 변조를 수행할 수 있다. 이를 위해 전력 수신기(5030)는 반사 임피던스를 변경하도록 저항 또는 커패시터를 스위칭할 수도 있다.
컨트롤 유닛(5100)은 수신 전력을 컨트롤할 수 있다. 이를 위해 컨트롤 유닛(5100)은 전력 수신기(5030)의 실제 동작 포인트와 원하는 동작 포인트의 차이를 결정/산출할 수 있다. 그리고 컨트롤 유닛(5100)은 전력 송신기의 반사 임피던스의 조정 및/또는 전력 송신기의 동작 포인트 조정 요청을 수행함으로써 실제 동작 포인트와 원하는 동작 포인트의 차이를 조정/저감할 수 있다. 이 차이를 최소화하는 경우 최적의 전력 수신을 수행할 수 있다.
통신 유닛(5090) 및 컨트롤 유닛(5100)은 별개의 소자/칩셋으로 구비되거나, 도 1에서 나타낸 바와 같이 하나의 소자/칩셋으로 구비될 수도 있다.

이하에서는, 공진 모드에서의 전력 송수신 시스템 및 송수신 방법에 대하여 추가로 설명하도록 한다.
상술한 바와 같이, 전력 송수신 시스템은 유도 모드 및 공진 모드에서 동작할 수 있으며, 유도 모드에서는 저전력 모드 및 중간 전력 모드에서 동작할 수 있다. 다만, 본 발명에서 전력 송신기는 공진 모드와 유도 모드의 수신기들을 모두 지원하고자 한다. 즉, 전력 송신기는 발견된 수신기의 종류에 따라서, 수신기가 공진 타입 수신기이면 공진 모드에서, 유도 타입 수신기이면 유도 모드에서 전력을 전송하고자 한다. 또한 유도 타입 수신기인 경우, 전력 송신기는 저전력 수신기인지 중간 전력 수신기인지에 따라서 각각 저전력 모드 및 중간 전력 모드에서 전력을 전송하고자 한다. 이를 위해서, 전력 송신기는 전력 수신기가 어떤 타입에 해당하는지를 결정해야 한다.
이하에서는, 전력 송신기 및 전력 수신기가 서로 공진 모드의 송/수신기인지 또는 유도 모드의 송/수신기인지를 디텍팅하여 동작 모드에 따라 무선 충전을 수행하는 방법에 대하여 설명하도록 한다.

먼저, 공진 타입 전력 송신기는 전력 수신기로부터 수신한 패킷에 포함된 정보를 파싱하여 전력 수신기의 종류를 결정하도록 한다. 그리고 공진 타입 전력 수신기는 협상 단계까지는 유도 모드에서 구동하고, 협상 단계에서 전력 송신기로부터 수신한 패킷에 포함된 정보를 파싱하여 전력 송신기의 종류를 결정하도록 한다. 파싱된 정보로부터 전력 송신기가 공진 모드의 송신기인 경우에는 동작 모드를 유도 모드에서 공진 모드로 변경할 수 있다. 공진 모드의 전력 수신기는 전력 송신기의 타입에 따라서 공진 모드 또는 유도 모드에서 전력 전달 단계를 수행할 수 있다.
이렇게 송신기 및 수신기가 각각 자기의 타입을 식별하기 위해 전송하는 정보를 모드 정보라고 지칭할 수 있다. 다시 말하면, 모드 정보는 송신기 및 수신기가 공진 모드에서 동작하는지 및/또는 유도 모드에서 동작하는지를 나타낼 수 있다.
상술한 바와 같이, 전력 수신기는 식별/구성 단계에서 구성 패킷(configuration packet)을 송신기로 전송할 수 있다. 이 구성 패킷에서 협상 단계 요청이 나타내지는 경우 전력 송신기는 협상 단계로 진입할 수 있다. 즉 이 경우 수신기가 유도 모드 중 중간 전력 모드의 수신기인 것으로 판단할 수 있는 것이다. 구성 패킷에 협상 단계 요청이 나타내지지 않은 경우에는 바로 전력 전달 단계로 진행할 수도 있다.

도 6은 본 발명의 일 실시예에 따른 전력 전송 방법을 나타낸다.
도 6은 도 2의 식별/구성 단계 및 협상 단계를 더욱 상세히 나타내며, 특히 전력 송신기 및 전력 수신기가 서로의 타입을 식별하고 동작 모드를 결정하는 방법을 나타낸다. 식별/구성 단계(S6010) 및 협상 단계(S6020)는 각각 도 2의 식별/구성 단계(S2030) 및 협상 단계(S2040)에 대응되며, 동일한 설명은 중복하여 하지 않고 보충되는 설명을 주로 기술하도록 한다.
식별/구성 단계(S6010)에서 전력 수신기는 식별 패킷(identification packet) 및 구성 패킷(configuration packet)을 전력 송신기로 전송한다.
식별 패킷은 전력 수신기의 버전 정보(Major/Minor Version), 제조사(manufacturer) 코드 정보 및 식별 정보(Basic Device Identifier)를 포함하며, 식별 패킷을 통해 전력 송신기는 전력 수신기를 식별할 수 있다.
구성 패킷은 전력 수신기의 구성에 대한 정보를 포함한다. 본 발명의 실시예에서, 구성 패킷은 협상 단계 요청 정보(Neg Field)를 포함할 수 있다. 협상 단계 요청 정보가 0로 설정된 경우(Neg=0), 전력 송신기는 협상 단계를 거치지 않고 바로 전력 전달 단계로 진행할 수 있으며, 협상 단계 요청 정보가 1로 설정된 경우(Neg=1), 전력 송신기는 협상 단계로 진입할 수 있다. 또한, 본 발명의 실시예에서, 구성 패킷은 모드 정보를 포함한다. 모드 정보는 전력 수신기가 유도 모드의 수신기인지, 공진 모드까지 지원하는 수신기인지를 나타낼 수 있다.
식별/구성 단계(S6010)에서, 식별 패킷 및 구성 패킷을 수신한 전력 송신기는 구성 패킷을 통해 전력 수신기의 타입을 식별할 수 있다. 상술한 바와 같이 전력 송신기는 협상 단계 요청 정보를 사용하여 전력 수신기가 저전력의 유도 타입 수신기인지 또는 중간 전력의 유도 타입 수신기/공진 타입 수신기인지를 식별할 수 있다. 그리고 전력 송신기는 모드 정보를 파싱하여 전력 수신기가 중간 전력의 유도 타입 수신기인지 또는 공진 타입 수신기인지를 식별할 수 있다.
전력 송신기는 전력 수신기가 저전력의 유도 타입 수신기인 경우 협상 단계(S6020)를 거치지 않고 전력 전달 단계로 진행할 수 있다. 전력 송신기는 전력 수신기가 중간 전력의 유도 타입 또는 공진 타입인 경우 전력 수신기로 긍정 응답(ACK)을 전송하고 협상 단계(S6020)로 진행할 수 있다.
협상 단계(S6020)에서, 전력 송신기 또한 전력 수신기로 식별 패킷 및 구성 패킷을 전송할 수 있다. 전력 송신기가 전송하는 식별 패킷은 버전 정보(Major/Minor Version) 및 제조자 정보를 포함할 수 있다. 전력 송신기가 전송하는 구성 패킷은 전력 정보 및 모드 정보를 포함할 수 있다.
전력 송신기는 협상 단계(S6020)에서 전력 할당(power allocation), 동작 모드 결정을 수행하며, 공진 모드에서 동작하는 경우에는 적어도 하나의 전력 수신기에 대해 ID 배정(ID assignment)을 수행할 수도 있다.
전력 수신기는 전력 송신기로부터 수신한 모드 정보를 통해 전력 송신기의 종류를 식별할 수 있다. 먼저, 협상 단계로 진입을 했으므로 전력 송신기는 중간 전력의 유도 타입이거나 공진 타입임을 식별할 수 있다. 그리고 협상 단계(S6020)에서 수신한 모드 정보를 통해 전력 송신기가 유도 타입인지 또는 공진 타입인지를 식별할 수 있다.
중간 전력 유도 타입 수신기는, 지원하는 최대(full) 전력으로 전력 수신 및 충전을 수행할 수 있다. 공진 타입 수신기는 송신기의 타입에 따라 전력 컨트롤 방법을 선택하여 전력 수신 및 충전을 수행할 수 있다.전력 송신기가 중간 전력 유도 타입인 경우, 전력 수신기는 수신할 수 있는 최대(full) 전력 용량으로 전력을 수신 및 충전을 수행할 수 있다. 전력 송신기가 공진 타입인 경우

도 7은 본 발명의 실시예에 따른, 전력 수신기가 전송하는 구성 패킷 및 전력 송신기가 전송하는 구성 패킷을 나타낸다.
도 7(a)는 전력 수신기가 상술한 식별/구성 단계에서 전송하는 구성 패킷을 나타낸다. 도 7(a)의 구성 패킷에 포함된 각 필드들에 대한 설명은 이하와 같다.
- 전력 클래스(Power Class) 필드: 보장된(Guaranteed) 전력 값과 관련된 무부호(unsigned) 정수 값을 포함함.
- 최대 전력(Maximum Power) 필드: 전력 수신기가 정류기의 출력에서 제공할 것을 기대하는 전력의 최대양을 나타냄.
- Prop 필드: 전력 전달 단계에서의 전력 전달을 제어하는 방법을 나타냄.
- Neg 필드(협상 단계 요청 정보): 이 필드의 값이 1로 설정되면 전력 송신기는 ACK 메시지를 전송하고 협상 단계로 진입함. 이 필드의 값이 0이면 전력 송신기는 협상 단계로 진입하지 않고 전력 전달 단계로 진입함.
- FSK 극성(FSKPolarity) 필드: 송신기의 변조 극성이 디폴트 값인지 반전된 값인지를 나타냄.
- FSK 뎁스(FSKDEpth) 필드: 송신기의 변조 뎁스를 나타냄.
- 카운트(Count) 필드: 식별/구성 단계에서 전력 수신기가 전송하는 옵셔널 구성 패킷의 수를 나타냄.
- 윈도우 사이즈(Window Size) 필드: 수신 전력의 에버리징(averaging)을 위한 윈도우 사이즈를 나타냄.
- 윈도우 오프셋(Window Offset) 필드: 수신 전력을 에버리징하는 윈도우와 수신 전력 패킷 전송 간의 인터벌을 나타냄.
- 동작 모드(OP Mode) 필드: 상술한 모드 정보로서, 전력 수신기가 지원하는 동작 모드를 나타냄. 실시예로서, 동작 모드 필드의 값이 0인 경우에는 유도 모드 즉(=독점 모드)임을 나타내고, 동작 모드 필드의 값이 1인 경우에는 공진 모드(=공유 모드)임을 나타낼 수 있다.
도 7(b)는 전력 송신기가 상술한 협상 단계에서 전송하는 구성 패킷을 나타낸다. 도 7(b)의 구성 패킷에 포함된 각 필드들에 대한 설명은 이하와 같다.
- 보장 전력 클래스(Guaranteed Power Class) 필드: 전력 송신기의 전력 클래스를 나타냄. 실시예로서 저전력 송신기는 필드값을 1로, 중간 전력 수신기는 필드값을 0으로 설정할 수 있음.
- 보장 전력(Guaranteed Power) 필드: 적절한(apporiate) 기준 전력 수신기를 충족시키는 전력 송신기의 보장 전력을 나타냄.
- 잠재 전력 클래스(Potential Power Class) 필드: 전력 송신기의 전력 클래스를 나타냄. 실시예로서 저전력 송신기는 필드값을 1로, 중간 전력 수신기는 필드값을 0으로 설정할 수 있음.
- 잠재 전력(Potential Power) 필드: 적절한 기준 전력 수신기로 잠재적으로 전달할 수 있는 전력 송신기의 최대 전력량을 나타냄.
- 동작 모드(OP Mode) 필드: 상술한 모드 정보로서, 전력 송신기가 지원하는 동작 모드를 나타냄. 실시예로서, 동작 모드 필드의 값이 0인 경우에는 유도 모드 즉 1:1 충전 모드임을 나타내고, 동작 모드 필드의 값이 1인 경우에는 공진 모드 즉 공유 모드임을 나타낼 수 있다.

도 8은 전력 송신기의 타입 및 전력 수신기의 타입에 따른 동작 방법의 차이 및 제어의 흐름을 나타낸다.
도 8(a)는 전력 송신기가 유도 타입으로서 저전력 전송 타입인 경우 전력 송신기와 각 타입의 전력 수신기와의 데이터 흐름을 나타낸다.
도 8(a)에서, 전력 송신기가 저전력 유도 타입에 해당하므로 이 전력 수신기가 지원할 수 있는 전력 제공 방법은 저전력 유도 타입뿐이다. 따라서 저전력 유도 타입 수신기뿐 아니라 중간 전력 유도 타입 수신기 및 공진 타입 수신기 또한 저전력 유도 모드에서 동작하게 된다. 따라서 상술한 바와 같아 협상 단계는 생략되며, 디지털 핑 단계, 식별/구성 단계 및 전력 전달 단계 모두 데이터는 수신기에서 송신기로 전송되며, 수신기가 전반적인 동작을 제어한다.
도 8(b)는 전력 송신기가 유도 타입으로서 중간전력 전송 타입인 경우 전력 송신기와 각 타입의 전력 수신기와의 데이터 흐름을 나타낸다.
도 8(b)에서, 전력 송신기가 중간전력 유도 타입에 해당하므로, 이 전력 송신기는 저전력 유도 타입 수신기 및 중간 전력 유도 타입 수신기를 지원할 수 있다. 따라서 전력 수신기가 저전력 유도 수신기인 경우에는 협상단계 없이 저전력 유도 모드에서 동작하나, 중간 전력 유도 수신기 또는 공진 수신기인 경우에는 협상 단계를 거쳐 중간 전력 유도 모드에서 동작할 수 있다.
중간전력의 유도 모드로 구동하는 경우, 협상 단계에서 전력 송신기도 ID 정보 또는 구성 정보를 전력 수신기로 전송할 수 있어, 협상 단계에서는 양방향 통신이 수행된다. 다만, 다른 단계들에서는 송신기가 수신기로 데이터를 전송하며, 전력 충전의 전반적인 동작 또한 수신기에 의해 컨트롤된다.
도 8(c)는 전력 송신기가 공진 타입인 경우 전력 송신기와 각 타입의 전력 수신기와의 데이터 흐름을 나타낸다.
도 8(c)에서, 전력 송신기가 공진 타입에 해당하므로 이 전력 송신기는 유도 타입 수신기 및 공진 타입 수신기를 각각의 타입에 맞게 모두 지원할 수 있다. 따라서 저전력 유도 수신기는 저전력 유도 모드에서, 중간 전력 유도 수신기는 중간 전력 유도 모드에서, 공진 타입 수신기는 공진 모드에서 각각 동작한다. 공진 송신기와 공진 수신기의 전력 전송의 경우에는 전력 전달 단계에서도 양방향으로 데이터 통신이 수행된다. 공진 모드의 전력 전달의 경우 수신기가 자체의 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤하며, 추가로 전력 송신기의 동작 포인트 제어를 요청하여 수신 전력을 컨트롤할 수도 있다.

도 9는 본 발명의 일 실시예에 따른 ID 배정 패킷을 나타낸다.
공진 타입의 전력 송신기는 복수의 공진 타입 전력 수신기를 동시에 충전할 수 있다. 다만, 복수의 공진 타입 전력 수신기로 전력을 전송하는 경우, 통신을 위해 각각의 전력 수신기에 ID를 배정해야 한다.
도 9에서, ID 필드는 디텍팅된 적어도 하나의 전력 수신기의 ID 정보를 나타낸다. 전력 송수신이 공진 모드에서 수행되는 경우 전력 수신기는 ID 요청을 전력 송신기로 전송할 수 있다. 이러한 경우 전력 송신기는 전력 수신기에게 ID를 배정하고, 배정된 ID 정보를 도 9의 ID 배정 패킷에 포함시켜 전력 수신기로 전송할 수 있다.

도 10은 본 발명의 일 실시예에 따른, 전력 전달 동안의 데이터 통신을 위한 프레임 구조를 나타낸다.
공진 모드에서, 전력 송신기는 마스터로서 싱크 신호를 전력 수신기로 전송하고, 전력 수신기는 슬레이브로서 싱크 신호에 대한 응답(response) 신호를 전송할 수 있다. 전력 송신기와 전력 수신기간의 통신은 전력 송신기가 싱크 신호를 보내지 않음으로써 종료될 수도 있다. 싱크 신호는 싱크 패킷으로, 응답 신호는 응답 패킷으로 도 10과 같은 구조로 프레임을 시분할한 타임 슬롯에 할당될 수 있다.
공진 모드에서, 전력 송신기는 복수의 전력 수신기와 통신을 수행해야 하므로, 통신을 위한 프레임에 포함된 타임 슬롯들을 전력 수신기에게 할당하는 방식을 사용할 수 있다. 이러한 경우 싱크 신호의 할당 방법에 따라 도 10(a)와 같이 프레임당 하나의 싱크 신호를 사용하는 방법과 도 10(b)와 같이 프레임에서 타임 슬롯마다 싱크 신호를 할당함으로써 복수의 싱크 신호를 사용하는 방법을 사용할 수 있다. 각각의 전력 수신기에 대한 타임 슬롯의 할당은 도 9에서 설명한 ID 및 ID 배정 패킷를 사용하여 수행될 수 있다.
전력 송신기는 싱크 패킷을 전송하고, 그에 대한 응답 패킷으로서 전력 송신기의 상태 정보를 수신할 수도 있다. 이러한 상태 정보는 수신되는 전력 정보 또는 전력 전송 종료 요청을 포함할 수도 있다. 안전을 위해, 전력 수신기는 싱크 신호의 수신이 없어도 OV/OC/OT 정보를 전송할 수 있다.

도 11은 본 발명의 일 실시예에 따른 싱크 패킷을 나타낸다.
전력 송신기는 특정 전력 수신기로부터 응답을 수신하기 위해 싱크 패킷을 전송할 수 있다. 도 11에서와 같이, 싱크 패킷은 주소 ID(ADDR ID) 필드 및 요청(request) 필드를 포함할 수 있다.
주소 ID(ADDR ID) 필드는 전력 송신기가 응답을 요청하는 대상 전력 수신기를 식별할 수 있다. 대상 전력 수신기를 식별하는 주소 ID 정보는 도 9에서 나타낸 ID 배정 패킷을 통해 배정한 ID 정보에 해당할 수도 있다. 다만, 전력 송신기는 특정 전력 수신기의 주소 ID를 사용할 뿐만 아니라, 현재 충전중인 모든 전력 수신기에게 응답을 요청하는 주소 ID를 사용할 수도 있다.
실시예로서, 주소 ID 필드값이 111b인 경우 모든 충전중인 전력 수신기들이 할당된 시간 슬롯에 응답을 전송할 수 있다. 주소 ID 필드값이 특정 전력 수신기를 나타내는 경우, 해당 전력 수신기 만이 응답을 전송할 수 있다.
요청(Request) 필드는 전력 송신기가 전력 수신기에게 요청하는 정보를 나타낼 수 있다.
일 실시예로서, 요청 필드는 필드값에 따라 이하와 같은 응답을 요청할 수 있다.
요청 필드의 필드값이 0001b인 경우, 전력 수신기의 상태 리포트를 요청할 수 있다. 상태 리포트는 수신 전력 패킷, 전력 전송 종료 패킷 등이 해당할 수 있다. 요청 필드의 필드값이 0010b인 경우, 전력 송신기는 전력 분배를 위한 재-협상을 요청할 수 있다. 다시 말하면, 전력 송신기는 전력 재할당을 위해 협상 단계를 다시 수행할 것을 전력 수신기에게 요청할 수 있다. 또는, ID 정보 등을 다시 요청할 수도 있다.
다른 실시예로서, 요청 필드는 필드값에 따라 이하와 같은 응답을 요청할 수 있다.
요청 필드의 필드값이 0001b인 경우, 전력 수신기에게 수신 전력 정보의 전송을 요청할 수 있다. 요청 필드의 필드값이 0010b인 경우, 전력 수신기에게 정류(rectified) 전압 정보의 전송을 요청할 수 있다. 요청 필드의 필드값이 0011b인 경우, 전력 수신기에게 전력 전달 종료 패킷의 전송을 요청할 수 있다. 요청 필드의 필드값이 0100b인 경우, 전력 송신기는 전력 분배를 위한 재-협상을 요청할 수 있다. 다시 말하면, 전력 송신기는 전력 재할당을 위해 협상 단계를 다시 수행할 것을 전력 수신기에게 요청할 수 있다. 요청 필드의 필드값이 0101b인 경우, 전력 수신기에게 ID 정보의 전송을 요청할 수 있다.

이하에서는, 본 발명의 실시예에 따른 전력 송신기의 전력 전달 방법에 대하여 더욱 상세히 설명하도록 한다.
본 발명은 유도 전력 수신기와 공진 전력 수신기를 모두 충전할 수 있는 전력 송신기를 제공하고자 한다. 다만 상술한 바와 같이 유도 전력 수신기의 경우 전력 송신기가 전송하는 전력 자체를 컨트롤하나, 공진 전력 수신기의 경우 전력 수신기가 수신한 전력을 컨트롤할 수 있다. 따라서 공진 모드에서 전송하는 전력이 유도 모드에서 전송하는 전력보다 높거나 강하도록 설정할 수 있다. 그리고 양 방식을 용이하게 지원하기 위한 인버터의 디자인과 이에 따른 전력 전송 방법을 이하에서 추가로 설명하도록 한다.

도 12는 본 발명의 실시예에 따른 전력 송신기를 나타낸 도면이다.
도 12의 전력 송신기는 도 1 및 도 4의 전력 송신기를 보충하여 설명하는 것으로, 도 12에 도시되지 않은 상술한 전력 송신기의 구성 요소들은 설명의 편의를 위해 생략된 것이며 구성에 따라 포함되거나 제외될 수 있다.
도 12에서 전력 송신기는 셀렉션 유닛(12010; Selection Unit), 통신/컨트롤 유닛(12020) 및 전력 변환 회로(12030)를 포함할 수 있다.
셀렉션 유닛(12010)은 전력 수신기의 위치 또는 유무를 디텍팅하는 회로로서, 옵셔널하게 구비될 수 있다.
통신/컨트롤 유닛(12020)은 전력 수신 장치와 통신을 수행하고, 관련 전력 컨트롤 알고리즘 및 프로토콜을 수행하며, AC 파형의 주파수를 구동(drive)하여 전력 전달을 컨트롤할 수 있다. 특히 본 발명에서는 서브 하프 브리지 인버터(12070)의 구동 및 서브 하프 브리지 인버터(12070)를 구동하는 펄스 신호(PWM)를 컨트롤할 수 있다.
도 12의 실시예에서, 전력 변환 유닛(12030)은 DC 입력을 공진 회로를 구동하는 AC 파형으로 변환하는 인버터로서, 메인 펄스 신호가 인가되는 메인 하브 프리지 인버터(12040), 서브 펄스 신호가 인가되는 서브 하프 브리지 인버터(12070), 자기장을 생성하는 코일셀(12060; Coil cell) 및 코일 셀의 전류를 모니터링하는 전류 센서(12050; Current Sense)를 포함할 수 있다. 코일 셀(12060)은 코일과 공진 커페시터를 포함할 수도 있다.
본 발명에 따른 전력 송신기는 동시에 복수의 전력 수신기를 충전하기 위해 복수의 코일 셀을 포함할 수 있다. 이러한 경우 복수의 코일 셀들에 대해 하나의 인버터만을 사용한다면 동시에 충전하는 전력 수신기들 각각에 대한 전력 컨트롤을 수행하기 어렵다. 또한, 복수의 코일 셀들 각각에 대해 인버터가 구비되도록 복수의 인버터들을 사용한다면, 동시에 충전하는 복수의 전력 수신기들 각각에 대한 전력 콘트롤을 수행할 수는 있으나 회로 복잡도가 상승하고 회로 제작 비용이 증가될 수 있다. 따라서, 본 발명에서는 메인 펄스 신호가 인가되는 메인 하프 브리지 인버터를 두고, 복수의 코일 셀에 대하여 복수의 하프 브리지 인버터를 구비하도록 설계하여, 회로 복잡도를 낮추면서도 복수의 전력 수신기들을 더욱 용이하게 컨트롤할 수 있는 전력 송신기를 제안하고자 한다.

도 13은 본 발명의 실시예에 따른 전력 송신기를 나타낸 도면이다.
도 13은 도 12에서 도시한 전력 송신기를 더욱 상세히 나타낸다.
도 13에서, 전력 송신기는 메인 하프 브리지 인버터(13010), 전류 센서(13020), N개의 코일 셀(13030-1~N), N개의 서브 하프 브리지 인버터(13040-1~N), N개의 멀티플렉서(13050-1~N; MUX), N개의 인에이블 단자(13060-1~N; EN), N개의 셀렉션 단자(13070-1~N; SEL) 및 통신/컨트롤 유닛(13080)을 포함한다.
메인 하프 브리지 인버터(13010)에는 메인 펄스 신호(메인 PWM)가 인가되며, 복수의 서브 하브 프리지 인버터(13040) 각각에는 제 1 서브 펄스 신호(서브 PWM 1) 또는 제 2 서브 펄스 신호(서브 PWM 2)가 인가될 수 있다. 멀티플렉서(13050)는 셀렉션 단자(13070)의 셀렉션 입력에 따라서 제 1 서브 펄스 신호 또는 제 2 서브 펄스 신호를 서브 하프 브리지 인버터(13040)에게 인가할 수 있다. 다만, 응용에 따라서는 2개 이상의 서브 펄스 신호가 선택적으로 인가될 수도 있다.
통신/컨트롤 유닛(13080)은 인에이블 신호/디스에이블 신호를 인에이블 단자들(13060)에 인가하여 각각의 서브 하프 브리지 인버터(13040)를 인에이블(enable) 또는 디스에이블(disable)시킬 수 있다. 다른 표현으로서, 통신/컨트롤 유닛(13080)은 인에이블 신호를 인가하거나, 인에이블 신호의 인가를 종료함으로써 서브 하프 브리지 인버터(13040)를 인에이블 또는 디스에이블시킬 수 있다. 또한, 통신/컨트롤 유닛(13080)은 셀렉션 신호를 셀렉션 단자들(13070)에 인가하여 멀티플렉서(13050)의 출력을 선택할 수 있다. 인에이블 단자(13060) 및 셀렉션 단자(13070)는 통신/컨트롤 유닛(13080)에 의해 제어되며, 송신기 디자인에 따라 옵셔널하게 포함될 수 있다.
도 13의 전력 송신기는, 기본적으로 메인 하프 브리지 인버터(13010)를 구동하고, 각각의 서브 하프 브리지 인버터를 인에이블/디스에이블하거나 각각의 서브 하프 브리지 인버터에 인가되는 서브 펄스 신호를 선택적으로 인가함으로써 각각의 코일 셀에 흐르는 전류를 컨트롤하고, 따라서 전달 전력을 효율적으로 컨트롤할 수 있다. 추가적인 전력 송신기의 동작 방법은 이하에서 더욱 상세히 설명할 것이다.

도 14는 본 발명의 실시예에 다른 메인 펄스 신호, 서브 펄스 신호 및 멀티 플렉서의 출력 펄스 신호를 나타낸다.
먼저, 메인 펄스 신호(메인 PWM)는 특정 진폭과 주파수를 갖는 펄스 신호가 될 수 있다. 이에 대해, 서브 펄스 신호는 메인 펄스 신호를 사용하여 구현된다. 즉, 제 1 서브 펄스 신호(서브 PWM 1)은 메인 펄스 신호의 위상 반전된 신호 즉 메인 펄스 신호와 180도의 위상차가 나는 신호를 사용할 수 있다. 그리고 제 2 서브 펄스 신호(서브 PWM 2)는 메인 펄스 신호를 위상 컨트롤한 신호를 사용할 수 있다.
이렇게 메인 펄스 신호 및 서브 펄스 신호들을 구성할 경우, 다음과 같은 동작 방법을 사용할 수 있는 이점이 있다. 상술한 바와 같이 메인 하프 브리지 인버터에는 메인 펄스 신호가 인가되고, 서브 하프 브리지 인버터에는 제 1 서브 펄스 신호 또는 제 2 서브 펄스 신호가 인가된다. 먼저 제 1 서브 펄스 신호가 인가될 경우, 메인 펄스 신호와의 위상차에 의해 코일은 최대 전력을 전달할 수 있게 된다. 그리고 제 2 서브 펄스 신호가 인가되는 경우에는 메인 펄스 신호와의 위상차에 의해 코일은 최대 전력 보다는 작은 전력을 전달할 수 있게 된다.
제 2 서브 펄스 신호가 인가되는 경우 전달되는 전력은 위상 컨트롤의 정도에 따라 다를 수 있다. 컨트롤되는 위상차가 180도에 가까워질수록 최대 전력에 가까운 전력이 전달되고, 컨트롤되는 위상차가 0도에 가까워질수록 작은 전력이 전달될 수 있다. 실시예로서, 제 2 서브 펄스 신호는 메인 펄스 신호와 위상차가 -90 ~ +90도의 범위에 해당하도록 위상 컨트롤된 신호일 수 있다. 이 범위를 벗어나는 경우에는 제 1 서브 펄스 신호를 컨트롤하는 것이 더 효율적일 수도 있기 때문이다.
서브 펄스 신호는 멀트플렉서에서 스위칭된다. 멀티플렉서는 셀렉션 신호에 따라서 서브 펄스 신호를 스위칭하여 출력할 수 있다. 도 14의 실시예에서와 같이, 통신/컨트롤 유닛이 셀렉션 신호로 1을 인가하면 멀티플렉서는 제 1 서브 펄스 신호를 출력하고, 셀렉션 신호로 0을 인가하면 멀티플렉서는 제 2 서브 펄스 신호를 출력할 수 있다.
인에이블 신호는 실제 전력 전송을 인가하는 신호이다. 도 13에서 메인 하프 브리지에는 메인 펄스 신호가 인가되고 있으나, 코일 셀에는 인에이블 신호가 인가된 경우에만 전류가 인가되어 전력을 전달할 수 있다.
도 14에서, 서브 하프 브리지 인버터에 제 1 서브 펄스 신호를 인가하면 코일 셀은 큰 전력을 전달하고, 제 2 서브 펄스 신호를 인가하면 코일 셀은 작은 전력을 전달할 수 있다. 본 명세서에서, 제 1 서브 펄스 신호를 인가하는 경우 코일 셀이 출력하는 전력을 충전용 전력으로, 제 2 서브 펄스 신호를 인가하는 경우 코일 셀이 출력하는 전력을 통신용 전력으로 지칭할 수 있다. 통신용 전력은 회로 구동시 핑 또는 디지털 핑을 인가하여 전력 수신기를 발견하는데 사용되거나, 전력 수신기와 통신을 수행하는데 사용될 수 있다. 물론 위상을 추가로 컨트롤하여 통신 전력을 충전에 사용하는 것도 가능하나, 설명의 편의상 제 2 서브 펄스 신호를 통신용 전력이라 지칭할 수 있다.
도 13 및 도 14와 같은 구성을 사용함으로써, 전력 송신기는 복수의 코일 셀을 효율적으로 제어하여 적어도 하나의 전력 수신기를 발견하고 전력 송신을 수행할 수 있다. 이하에서 도 14의 신호를 사용하여 도 13의 전력 송신기를 제어하는 방법에 대해 도 15에서 설명하도록 한다.

도 15는 본 발명의 일 실시예에 따른 무선 전력 송신기의 동작 방법을 나타낸다.
도 15의 동작들은 통신/컨트롤 유닛에 의해 제어되나, 설명의 편의상 무선 전력 송신기가 제어하는 것으로 설명할 수도 있다. 또한, 도 15는 전력 송신기가 전력 수신기를 발견하고, 전력 전송을 시작하기까지의 과정을 도 13의 회로 및 도 14의 펄스 신호들을 사용하여 수행하는 방법을 나타낸다. 도 15의 방법의 시작에서, 전력 송신기는 복수의 코일 셀들에 대한 인에이블 신호는 모두 인가되지 않는 상태인 것을 가정한다.
전력 송신기는 제 2 서브 펄스 신호를 인가하는 셀렉션 신호를 설정할 수 있다(S15010). 다시 말하면, 전력 송신기는 제 2 서브 펄스 신호를 출력하는 셀렉션 신호를 설정하여 멀티플렉서에 적용할 수 있다. 상술한 실시예에서와 같이, 셀렉션 신호를 0으로 설정하면 제 2 서브 펄스 신호가 인가될 수 있으며, 통신/컨트롤 유닛은 셀렉션 단자를 통해 멀티플렉서로 셀렉션 신호(0)를 인가하여 원하는 제 2 서브 펄스 신호를 출력할 수 있다.
전력 송신기는 제 1 코일 셀의 서브 하프 브리지 인버터에 인에이블 신호를 인가하여 전력을 전송할 수 있다(S15020). 이때 전송되는 전력은 통신용 전력으로서, 상술한 핑 또는 디지털 핑에 해당할 수 있다. 또는, 상술한 전력 송신기의 데이터 전송에도 사용될 수도 있다. 다시 말하면, 서브 하프 브리지 인버터에 제 2 서브 펄스 신호가 인가되어 제 1 코일 셀은 회로 구동/수신기 발견용의 작은 전력을 전송할 수 있다.
전력 송신기는 전력 수신기의 응답을 수신할 수 있다(S15030). 전력 송신기는 전류 센서를 사용하여 인가한 통신용 전력에 따른 1차 코일의 변화를 감지함으로써 전력 수신기를 발견하고, 전력 수신기의 응답을 디텍팅할 수 있다. 도 15에서 나타낸 단계(15030)는 전력 수신기의 발견 및 전력 수신기의 응답 수신을 함께 나타내었으며. 이 단계는 도 2의 식별/구성 단계 또는 협상 단계 중 적어도 하나에 해당할 수 있다.
전력 수신기의 응답이 수신되면, 전력 송신기는 셀렉션 신호의 설정을 제 1 서브 펄스 신호를 인가하도록 변경할 수 있다(S15040). 상술한 실시예에서, 통신/컨트롤 유닛은 셀렉션 신호를 1로 변경함으로써 서브 하프 브리지 인버터에 제 1 서브 펄스 신호를 인가할 수 있다. 서브 하프 브리지 인버터에 제 1 서브 펄스 신호가 인가되므로, 제 1 코일 셀은 충전 전력을 송신하여 전력 전달을 개시할 수 있다.
전력 수신기의 응답이 수신되지 않으면, 전력 송신기는 제 1 서브 하프 브리지 인버터에 대한 인에이블 신호 인가를 종료할 수 있다(S15050). 전력 수신기가 발견되지 않았으므로, 전력 송신기는 제 1 코일 셀에는 충전을 요하는 전력 수신기가 어태치(attach)되지 않을 것으로 판단할 수 있기 때문이다.
도 15에서, 단계들(S15010~15050)은 복수의 코일 셀 각각에 대하여 수행될 수 있다. 따라서 전력 송신기는 제 2 코일 셀에 대해 도 15의 단계들을 수행하고, 같은 방식으로 N번째 코일 셀(마지막 코일 셀)까지 도 15의 단계들을 수행한 후 종료할 수 있다. 그리고 일정 시간 간격 후 또는 아날로그 핑에 의해 외부 오브젝트를 발견한 경우 다시 도 15의 단계들을 수행할 수 있다. 전력 송신기는 전력 충전 중이 아닌 코일 셀들에 대해서만 도 15의 단계들을 수행하거나, 아날로그 핑에 의해 외부 오브젝트가 발견된 코일 셀에 대해서만 도 15의 단계들을 수행할 수도 있다. 그리고 제 2 서브 펄스 신호는 시분할하여 한번에 한 코일에만 공급될 수도 있다.
추가적으로, 전력 수신기의 응답이 수신된 경우(S15030), 전력 송신기는 전력 수신기의 종류에 따라서 다르게 동작할 수도 있다. 전력 수신기가 공진 타입 전력 수신기인 경우에는 도 15에서 설명한 바와 같이 셀렉션 신호 설정을 제 1 서브 펄스 신호가 인가되도록 변경할 수 있다(S15040). 전력 송신기가 전력 수신기가 유도 타입 전력 수신기인 경우에는, 셀렉션 신호 설정을 변경하지 않고, 대신 제 2 서브 펄스 신호의 위상을 컨트롤함으로써 전력을 전송할 수 있다.
전력 수신기가 공진 타입인 경우, 전력 송신기가 큰 전력을 송신하면 전력 수신기가 공진 주파수를 조정하여 적절한 전력을 수신할 수 있다. 그러나 전력 수신기가 유도 타입인 경우에는 전력 송신기가 적합한 전력을 전송해야 하며, 이 경우에는 낮은 전력에서 높은 전력으로 전력을 조정하는 것이 회로 및 전력 전달의 안정성에 더 유리하기 때문이다.
실시예로서, 전력 수신기의 응답은 상술한 모드 정보를 포함할 수도 있다. 전력 송신기는 수신한 모드 정보를 파싱하여, 전력 수신기가 공진 타입 전력 수신기인지 도는 유도 타입 전력 수신기인지를 결정할 수도 있다.

도 16은 본 발명의 다른 일 실시예에 따른 전력 송신기를 나타낸 도면이다.
도 16의 전력 송신기의 구성은 도 12에서 도시한 바와 같다. 다만, 전류 센서(16010)의 구성이 도 12와 다르며, 이에 대해서는 도 17을 참고하여 더욱 상세히 설명하도록 한다. 전류 센서의 위치 및 구성 외의 다른 설명은 도 12에서 설명한 바와 같다.

도 17은 본 발명의 다른 일 실시예에 따른 전력 송신기를 나타낸 도면이다.
도 17은 도 16에서 도시한 전력 송신기를 더욱 상세히 나타낸다.
도 17은 도 13에서 도시한 전력 송신기와 동일한 서브 유닛들을 포함하고 있다. 즉, 전력 송신기는 메인 하프 브리지 인버터, N개의 코일 셀, N개의 서브 하프 브리지 인버터, N개의 멀티플렉서, N개의 인에이블 단자, N개의 셀렉션 단자 및 통신/컨트롤 유닛을 포함한다. 다만 도 13과 같이 1개의 전류 센서가 메인 하프 브리지 인버터와 연결되는 대신, 도 17에서는 N개의 전류 센서들이 각각의 코일 셀과 서브 하프 브리지 인버터들 사이에 포함된다. 이러한 구성의 차이점 외의 설명은 도 13과 동일하며, 이하에서는 전류 센서의 구성 차이에 대해서 설명하도록 한다.
도 17의 전력 송신기는 전류 센서가 각각의 코일 셀에 부가되어, 코일 셀 별로 통신 및 제어를 수행할 수 있다. 다시 말하면, 도 15와 같은 방법을 수행하는 경우에도, 코일 셀 별로 순차적으로 도 15의 방법을 수행하는 대신, 모든 코일 셀들에 대해 도 15의 방법을 수행할 수 있다.
도 15의 방법을 수행하는 경우, 도 17의 전력 송신기는 동시에 모든 코일 셀 즉 모든 서브 하프 브리지 인버터에 인에이블 신호를 인가함으로써 모든 코일 셀에서 통신용 전력을 전송할 수 있다. 그리고 각각의 전류 센서들(17010-1~N)을 사용하여 전력 수신기를 발견하거나 전력 수신기와 통신하고, 응답이 확인된 코일 셀에 대해서만 제 1 서브 펄스 신호를 적용함으로써 전력을 전달할 수 있다.
도 17의 전력 송신기에서도, 도 15에서 설명한 바와 같이 각 코일 셀에서 발견된 전력 수신기의 타입에 따라 다르게 동작할 수도 있다. 통신 결과 전력 수신기가 유도 타입인 경우에는 제 1 서브 펄스 신호를 인가하지 않고 이미 인가된 제 2 서브 펄스 신호의 위상을 컨트롤하여 전력 전송을 수행할 수 있다. 다만, 제 1 서브 펄스 신호의 위상을 초기 전력 전송을 할 수 있는 페이즈(예를 들면, 제 2 서브 펄스 신호의 초기 페이즈)로 변경하고, 변경된 제 1 서브 펄스 신호를 나머지 코일들에게 공급할 수도 있다.
도 16 및 도 17과 같은 전력 송신기를 사용하는 경우, 동시에 복수의 전력 수신기를 충전할 수 있을 뿐 아니라, 복수의 전력 수신기 각각과 통신하여 컨트롤을 수행할 수 있다. 따라서 복수의 공진 타입 수신기뿐 아니라 복수의 유도 타입 수신기까지도 동시에 충전이 가능하며, 공진 타입 수신기와 유도 타입 수신기의 동시 충전도 가능하다. 특히, 2개 이상의 서브 펄스 신호를 사용함으로써, 서브 펄스 신호의 숫자만큼의 유도 타입 수신기를 지원할 수 있다. 즉 N개의 유도 타입 수신기에 대해 N개의 서브 펄스 신호를 사용하여 개별적으로 제어를 수행함으로써 동시에 충전을 수행할 수 있다.

본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.
본 발명은 일련의 무선 충전 분야에서 이용된다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.

Claims (13)

  1. 복수의 무선 전력 수신기를 충전할 수 있는 무선 전력 송신기로서,
    복수의 코일 셀;
    메인 펄스 신호가 인가되는 메인 하프 브리지 인버터;
    제 1 서브 펄스 신호 또는 제 2 서브 펄스 신호가 인가되는 복수의 서브 하프 브리지 인버터;
    상기 코일 셀의 전류를 모니터링하는 전류 센서; 및
    상기 메인 하프 브리지 인버터 및 상기 복수의 서브 하프 브리지 인버터에 인가되는 펄스 신호를 컨트롤하며, 상기 무선 전력 수신기와 통신을 수행하는 통신/컨트롤 유닛을 포함하며,
    상기 복수의 서브 하프 브리지 인버터 각각은 상기 복수의 코일 셀 각각에 연결되고,
    상기 제 1 서브 펄스 신호는 상기 메인 펄스 신호가 위상 반전된 펄스 신호이고 상기 제 2 서브 펄스 신호는 상기 메인 펄스 신호가 위상 컨트롤된 신호인, 무선 전력 송신기.
  2. 제 1 항에 있어서,
    상기 컨트롤 유닛은 전력 수신기 발견을 위해 상기 복수의 서브 하프 브리지 인버터 중 적어도 하나의 서브 하프 브리지 인버터에 상기 제 2 서브 펄스 신호를 인가하는, 무선 전력 송신기.
  3. 제 2 항에 있어서,
    상기 복수의 코일 셀 중 적어도 하나의 코일 셀에서 전력 수신기의 응답을 수신한 경우, 상기 컨트롤 유닛은 상기 전력 수신기의 응답이 수신된 코일 셀에 연결된 서브 하프 브리지 인버터에 상기 제 1 서브 펄스 신호를 인가함으로써 전력 전송을 수행하는, 무선 전력 송신기.
  4. 제 2 항에 있어서,
    상기 복수의 코일 셀 중 적어도 하나의 코일 셀에서 전력 수신기의 응답을 수신하지 않은 경우, 상기 컨트롤 유닛은 복수의 서브 하프 브리지 인버터를 디스에이블하는, 무선 전력 송신기.
  5. 제 3 항에 있어서,
    상기 응답이 수신된 무선 전력 수신기가 유도 타입 무선 전력 수신기인 경우, 상기 컨트롤 유닛은 상기 서브 하프 브리지 인버터에 인가된 상기 제 2 전력 신호의 위상을 컨트롤함으로써 전력 전송을 수행하는, 무선 전력 송신기.
  6. 제 3 항에 있어서,
    상기 무선 전력 수신기의 응답은 모드 정보를 포함하며, 상기 모드 정보는 상기 무선 전력 수신기가 유도 타입인지 또는 공진 타입인지를 나타내는, 무선 전력 송신기.
  7. 제 2 항에 있어서,
    상기 복수의 서브 하프 브리지 인버터 중 적어도 하나의 서브 하프 브리지 인버터에 대한 상기 제 2 서브 펄스 신호를 인가는 동시에 또는 순차적으로 수행되는, 무선 전력 송신기.
  8. 하나의 메인 하프 브리지 인버터 및 복수의 서브 하프 브리지 인버터를 포함하는 무선 전력 송신기의 무선 전력 송신 방법에 있어서,
    적어도 하나의 서브 하프 브리지 인버터에 제 1 서브 펄스 신호 및 제 2 서브 펄스 신호 중 상기 제 2 서브 펄스 신호가 인가되는 셀렉션 신호를 설정하는 단계;
    상기 적어도 하나의 서브 하프 브리지 인버터에 인에이블 신호를 인가함으로써 적어도 하나의 코일 셀로 전력을 전송하는 단계; 및
    상기 적어도 하나의 코일 셀에서 무선 전력 수신기의 응답을 수신하는 경우 상기 적어도 하나의 서브 하프 브리지 인버터에 상기 제 1 서브 펄스 신호가 인가되도록 셀렉션 신호를 변경하는 단계를 포함하며,
    상기 제 1 서브 펄스 신호는 상기 메인 하프 브리지 인버터에 인가되는 메인 펄스 신호가 위상 반전된 펄스 신호이고 상기 제 2 서브 펄스 신호는 상기 메인 펄스 신호가 위상 컨트롤된 신호인, 무선 전력 송신 방법.
  9. 제 8 항에 있어서,
    상기 적어도 하나의 코일 셀에서 무선 전력 수신기의 응답을 수신하지 않은 경우 상기 인에이블 신호의 인가를 종료하는 단계를 더 포함하는, 무선 전력 송신 방법.
  10. 제 8 항에 있어서,
    상기 적어도 하나의 코일 셀에서 상기 무선 전력 수신기의 응답을 수신하는 경우 상기 무선 전력 수신기가 유도 타입인지 또는 공진 타입인지를 결정하는 단계를 더 포함하는, 무선 전력 송신 방법.
  11. 제 10 항에 있어서,
    상기 무선 전력 수신기가 유도 타입인 경우 상기 셀렉션 신호를 변경하는 대신 상기 제 2 서브 펄스 신호의 위상을 컨트롤하는 단계를 더 포함하는, 무선 전력 송신 방법.
  12. 제 8 항에 있어서,
    상기 무선 전력 수신기의 응답은 모드 정보를 포함하며, 상기 모드 정보는 상기 무선 전력 수신기가 유도 타입인지 또는 공진 타입인지를 나타내는, 무선 전력 송신 방법.
  13. 제 8 항에 있어서,
    상기 인에이블 신호는 상기 적어도 하나의 서브 하프 브리지에 대해 동시에 또는 순차적으로 인가되는, 무선 전력 송신 방법.
PCT/KR2015/003594 2014-04-11 2015-04-10 무선 전력 송신기 및 무선 전력 송신 방법 WO2015156628A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016560998A JP6273040B2 (ja) 2014-04-11 2015-04-10 無線電力送信機及び無線電力送信方法
US15/303,413 US10177592B2 (en) 2014-04-11 2015-04-10 Wireless power transmitter and wireless power transmission method
EP15776640.3A EP3131180B1 (en) 2014-04-11 2015-04-10 Wireless power transmitter and wireless power transmitting method
CN201580019050.7A CN106165250B (zh) 2014-04-11 2015-04-10 无线电力发送器以及无线电力发送方法
KR1020167025941A KR20160145554A (ko) 2014-04-11 2015-04-10 무선 전력 송신기 및 무선 전력 송신 방법
US16/204,244 US10804729B2 (en) 2014-04-11 2018-11-29 Wireless power transmitter and wireless power transmission method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461978592P 2014-04-11 2014-04-11
US61/978,592 2014-04-11
US201461979867P 2014-04-15 2014-04-15
US61/979,867 2014-04-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/303,413 A-371-Of-International US10177592B2 (en) 2014-04-11 2015-04-10 Wireless power transmitter and wireless power transmission method
US16/204,244 Continuation US10804729B2 (en) 2014-04-11 2018-11-29 Wireless power transmitter and wireless power transmission method

Publications (1)

Publication Number Publication Date
WO2015156628A1 true WO2015156628A1 (ko) 2015-10-15

Family

ID=54288124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003594 WO2015156628A1 (ko) 2014-04-11 2015-04-10 무선 전력 송신기 및 무선 전력 송신 방법

Country Status (6)

Country Link
US (2) US10177592B2 (ko)
EP (1) EP3131180B1 (ko)
JP (1) JP6273040B2 (ko)
KR (1) KR20160145554A (ko)
CN (1) CN106165250B (ko)
WO (1) WO2015156628A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094891A (ko) * 2016-02-12 2017-08-22 엘지이노텍 주식회사 복수의 송신 코일이 구비된 무선 전력 기기 및 그 구동 방법
JP2019506113A (ja) * 2016-12-08 2019-02-28 ホアウェイ・テクノロジーズ・カンパニー・リミテッド インテリジェント無線充電制御方法、デバイス、およびシステム
CN109463026A (zh) * 2016-06-08 2019-03-12 Lg 电子株式会社 无线电力传输方法及其设备
JP2019526220A (ja) * 2016-07-01 2019-09-12 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
JP2019528671A (ja) * 2016-08-23 2019-10-10 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
CN115296444A (zh) * 2022-10-10 2022-11-04 国网江西省电力有限公司电力科学研究院 一种无线传能装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156628A1 (ko) * 2014-04-11 2015-10-15 엘지전자(주) 무선 전력 송신기 및 무선 전력 송신 방법
US10840744B2 (en) 2015-03-04 2020-11-17 Apple Inc. Inductive power transmitter
US10512528B2 (en) * 2015-04-06 2019-12-24 Panasonic Intellectual Property Management Co., Ltd. Non-contact power supply device
KR102579343B1 (ko) * 2015-06-11 2023-09-15 엘지전자 주식회사 무선 전력 전송 시스템의 구조
KR20170002903A (ko) * 2015-06-30 2017-01-09 엘지이노텍 주식회사 다중 모드 무선 전력 송신 방법 및 그를 위한 장치
US9819215B2 (en) * 2015-07-17 2017-11-14 Hon Hai Precision Industry Co., Ltd. Wireless charging system
CN109075613B (zh) * 2016-02-02 2022-05-31 韦特里西提公司 控制无线电力传输系统
KR20180124103A (ko) * 2016-04-04 2018-11-20 애플 인크. 유도 전력 송신기
KR102644295B1 (ko) * 2016-11-08 2024-03-07 한국전자통신연구원 무선 충전 장치 및 방법
KR20180073246A (ko) * 2016-12-22 2018-07-02 엘지이노텍 주식회사 무선전력 송신장치 및 무선전력 수신장치와 그 동작 방법
EP3346581B1 (en) * 2017-01-04 2023-06-14 LG Electronics Inc. Wireless charger for mobile terminal in vehicle
US10416742B2 (en) * 2017-02-17 2019-09-17 Microsoft Technology Licensing, Llc Smart battery for ultrafast charging
EP3565087B1 (en) * 2017-02-22 2021-03-31 Samsung Electronics Co., Ltd. Wireless power transmitter
DE102017108302A1 (de) * 2017-04-19 2018-10-25 Weidmüller Interface GmbH & Co. KG Vorrichtung zur kontaktlosen induktiven Energieübertragung und Verfahren zum Betreiben der Vorrichtung
CN110476362B (zh) 2017-08-24 2022-04-22 Lg电子株式会社 在无线电力传输系统中执行通信的设备和方法
HRP20220279T1 (hr) * 2017-10-09 2022-05-13 Voice Life Inc. Uređaj prijemnik za olakšavanje bežičnog prijema napajanja
JP7233424B2 (ja) * 2017-11-02 2023-03-06 エルジー イノテック カンパニー リミテッド 無線充電方法およびそのための装置
KR102454603B1 (ko) * 2017-11-30 2022-10-14 주식회사 위츠 무선 전력 송신 장치 및 그의 제어 방법
KR102517345B1 (ko) 2017-12-27 2023-04-03 삼성전자주식회사 차량 내의 모바일 디바이스를 충전하기 위한 시스템 및 방법
US20200044468A1 (en) * 2018-07-31 2020-02-06 Ling Yung LIN Mobile power supply module with light source
CN114342214B (zh) 2019-09-06 2024-10-11 谷歌有限责任公司 使用时分复用的无线充电
CN114450868A (zh) * 2019-10-02 2022-05-06 Lg 电子株式会社 无线功率接收装置、无线功率发送装置以及使用其的功率校准方法
WO2021235864A1 (ko) * 2020-05-20 2021-11-25 엘지전자 주식회사 무선전력 전송방법 및 무선전력 수신방법
CN116018743A (zh) * 2020-08-14 2023-04-25 思睿逻辑国际半导体有限公司 具有串联耦合功率转换器的无线功率架构
JP2023145260A (ja) * 2022-03-28 2023-10-11 キヤノン株式会社 送電装置、受電装置、制御方法及びプログラム
TWI842518B (zh) * 2023-05-09 2024-05-11 亞福儲能股份有限公司 無線充電系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214821A1 (en) * 2002-05-16 2003-11-20 Koninklijke Philips Electronics N.V. System, method and apparatus for contact-less battery charging with dynamic control
JP2008104295A (ja) * 2006-10-19 2008-05-01 Voltex:Kk 非接触電源装置
KR100911763B1 (ko) * 2008-03-27 2009-08-10 주식회사 한빛나노바이오테크 컴퓨터 입출력장치를 위한 무선 전력전송 장치 및 방법
KR20120085498A (ko) * 2011-01-24 2012-08-01 전자부품연구원 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼 및 그 에너지 전송부
WO2014042681A2 (en) * 2012-09-11 2014-03-20 Access Business Group International Llc Wireless power control

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809687A (zh) * 2007-09-28 2010-08-18 捷通国际有限公司 多相感应供电系统
KR101604600B1 (ko) * 2008-04-03 2016-03-18 코닌클리케 필립스 엔.브이. 무선 파워 송신 시스템
JP5347708B2 (ja) * 2009-05-18 2013-11-20 トヨタ自動車株式会社 コイルユニット、非接触電力伝送装置、非接触給電システムおよび車両
KR101733403B1 (ko) * 2009-05-25 2017-05-11 코닌클리케 필립스 엔.브이. 무선 전력 송신 시스템에서 디바이스를 검출하기 위한 방법 및 디바이스
US8779745B2 (en) * 2010-03-01 2014-07-15 National Semiconductor Corporation Three-quarter bridge power converters for wireless power transfer applications and other applications
NZ586526A (en) * 2010-06-30 2012-12-21 Auckland Uniservices Ltd Inductive power transfer system with ac-ac converter and two-way power transmission ability
JP2013027076A (ja) 2011-07-15 2013-02-04 Panasonic Corp 非接触給電装置
EP3185262B1 (en) * 2012-07-09 2018-09-12 Lg Electronics Inc. Wireless power transfer method, apparatus and system
US10038339B2 (en) * 2012-08-13 2018-07-31 WIPQTUS Inc. Dual mode wireless power receiver
KR20150103651A (ko) * 2012-08-28 2015-09-11 오클랜드 유니서비시즈 리미티드 개별적으로 위상을 제어하는 다상 유도 전력 전달 시스템
WO2014056540A1 (de) * 2012-10-11 2014-04-17 Siemens Aktiengesellschaft Modularen multilevel dc/dc wandler für hvdc anwendungen
US20140191568A1 (en) * 2013-01-04 2014-07-10 Mojo Mobility, Inc. System and method for powering or charging multiple receivers wirelessly with a power transmitter
KR20140099822A (ko) * 2013-02-04 2014-08-13 엘지전자 주식회사 무선 전력 전송장치 및 이를 구비하는 무선충전시스템
US10320234B2 (en) * 2013-08-02 2019-06-11 Integrated Device Technology, Inc. Multimode wireless power receivers and related methods
CN106464016B (zh) * 2014-03-31 2019-05-14 皇家飞利浦有限公司 无线感应功率传输
WO2015156628A1 (ko) * 2014-04-11 2015-10-15 엘지전자(주) 무선 전력 송신기 및 무선 전력 송신 방법
KR102056252B1 (ko) * 2015-02-11 2019-12-16 엘에스산전 주식회사 Hvdc 시스템의 전력 손실 보정 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214821A1 (en) * 2002-05-16 2003-11-20 Koninklijke Philips Electronics N.V. System, method and apparatus for contact-less battery charging with dynamic control
JP2008104295A (ja) * 2006-10-19 2008-05-01 Voltex:Kk 非接触電源装置
KR100911763B1 (ko) * 2008-03-27 2009-08-10 주식회사 한빛나노바이오테크 컴퓨터 입출력장치를 위한 무선 전력전송 장치 및 방법
KR20120085498A (ko) * 2011-01-24 2012-08-01 전자부품연구원 멀티노드 무선 충전 베이스 스테이션 하드웨어 플랫폼 및 그 에너지 전송부
WO2014042681A2 (en) * 2012-09-11 2014-03-20 Access Business Group International Llc Wireless power control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3131180A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510454A (ja) * 2016-02-12 2019-04-11 エルジー イノテック カンパニー リミテッド 複数の送信コイルを備えた無線電力器機及びその駆動方法
KR102536828B1 (ko) 2016-02-12 2023-05-25 엘지이노텍 주식회사 복수의 송신 코일이 구비된 무선 전력 기기 및 그 구동 방법
KR20170094891A (ko) * 2016-02-12 2017-08-22 엘지이노텍 주식회사 복수의 송신 코일이 구비된 무선 전력 기기 및 그 구동 방법
US10651694B2 (en) 2016-06-08 2020-05-12 Lg Electronics Inc. Wireless power transmission method and device therefor
US11715982B2 (en) 2016-06-08 2023-08-01 Lg Electronics Inc. Wireless power transmission method and device therefor
EP4277318A3 (en) * 2016-06-08 2023-12-27 LG Electronics Inc. Wireless power transmission method and device therefor
EP3457527A4 (en) * 2016-06-08 2019-12-25 LG Electronics Inc. -1- METHOD FOR WIRELESS POWER TRANSMISSION AND DEVICE THEREFOR
CN109463026A (zh) * 2016-06-08 2019-03-12 Lg 电子株式会社 无线电力传输方法及其设备
CN115051438A (zh) * 2016-06-08 2022-09-13 Lg 电子株式会社 无线电力传输方法及其设备
CN109463026B (zh) * 2016-06-08 2022-07-12 Lg 电子株式会社 无线电力传输方法及其设备
EP3972088A1 (en) * 2016-06-08 2022-03-23 LG Electronics Inc. Wireless power transmission method and device therefor
US11289954B2 (en) 2016-06-08 2022-03-29 Lg Electronics Inc. Wireless power transmission method and device therefor
US11646607B2 (en) 2016-07-01 2023-05-09 Lg Innotek Co., Ltd. Method for detecting foreign material, and device and system therefor
JP7557260B2 (ja) 2016-07-01 2024-09-27 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
US12034317B2 (en) 2016-07-01 2024-07-09 Lg Innotek Co., Ltd. Method for detecting foreign material, and device and system therefor
JP2019526220A (ja) * 2016-07-01 2019-09-12 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
JP2022172339A (ja) * 2016-07-01 2022-11-15 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
US11070095B2 (en) 2016-07-01 2021-07-20 Lg Innotek Co., Ltd. Method for detecting foreign material, and device and system therefor
US11652371B2 (en) 2016-08-23 2023-05-16 Lg Innotek Co., Ltd. Method for detecting foreign material, and apparatus and system therefor
JP2022177206A (ja) * 2016-08-23 2022-11-30 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
JP2019528671A (ja) * 2016-08-23 2019-10-10 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
US11923699B2 (en) 2016-08-23 2024-03-05 Lg Innotek Co., Ltd. Method for detecting foreign material, and apparatus and system therefor
JP7506804B2 (ja) 2016-08-23 2024-06-26 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
JP7146737B2 (ja) 2016-08-23 2022-10-04 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
JP7525564B2 (ja) 2016-08-23 2024-07-30 エルジー イノテック カンパニー リミテッド 異物質検出方法及びそのための装置及びシステム
JP2019506113A (ja) * 2016-12-08 2019-02-28 ホアウェイ・テクノロジーズ・カンパニー・リミテッド インテリジェント無線充電制御方法、デバイス、およびシステム
US11018518B2 (en) 2016-12-08 2021-05-25 Huawei Technologies Co., Ltd Intelligent wireless charging control method, device, and system
CN115296444B (zh) * 2022-10-10 2023-03-24 国网江西省电力有限公司电力科学研究院 一种无线传能装置
CN115296444A (zh) * 2022-10-10 2022-11-04 国网江西省电力有限公司电力科学研究院 一种无线传能装置

Also Published As

Publication number Publication date
EP3131180B1 (en) 2019-06-05
CN106165250A (zh) 2016-11-23
US20190097450A1 (en) 2019-03-28
US10177592B2 (en) 2019-01-08
JP2017511111A (ja) 2017-04-13
KR20160145554A (ko) 2016-12-20
JP6273040B2 (ja) 2018-01-31
EP3131180A1 (en) 2017-02-15
CN106165250B (zh) 2019-06-25
US10804729B2 (en) 2020-10-13
US20170047786A1 (en) 2017-02-16
EP3131180A4 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
US10804729B2 (en) Wireless power transmitter and wireless power transmission method
EP3457527B1 (en) Wireless power transmission method and device therefor
KR102494143B1 (ko) 무선 전력 전달 방법 및 이를 위한 장치
US10396605B2 (en) Wireless power transmitter and receiver
US10958109B2 (en) Wireless power transmitter and receiver
US10601249B2 (en) Wireless power transmitter and receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167025941

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016560998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15303413

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015776640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015776640

Country of ref document: EP