JP2014130969A - Wiring board and method of manufacturing the same - Google Patents

Wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2014130969A
JP2014130969A JP2012289000A JP2012289000A JP2014130969A JP 2014130969 A JP2014130969 A JP 2014130969A JP 2012289000 A JP2012289000 A JP 2012289000A JP 2012289000 A JP2012289000 A JP 2012289000A JP 2014130969 A JP2014130969 A JP 2014130969A
Authority
JP
Japan
Prior art keywords
wiring
base material
wiring board
resin base
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012289000A
Other languages
Japanese (ja)
Other versions
JP6031353B2 (en
Inventor
Koji Honto
孝治 本戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012289000A priority Critical patent/JP6031353B2/en
Publication of JP2014130969A publication Critical patent/JP2014130969A/en
Application granted granted Critical
Publication of JP6031353B2 publication Critical patent/JP6031353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve connection reliability by improving bonding strength at a connection interface between a via and wiring.SOLUTION: A wiring board 1 comprises: a resin substrate 10; front wiring 11 formed to be buried on one surface (surface 10a) side of the resin substrate 10; a conductive via 12 which penetrates the resin substrate 10 and is formed integrally with the front wiring 11; rear wiring 13 which is formed on the other surface (rear surface 10b) side of the resin substrate 10 and is connected to the conductive via 12; and a metal connection layer 14 forming an interface between the conductive via 12 and the rear wiring 13.

Description

この発明は、電子部品が表面実装される配線基板及びその製造方法に関する。   The present invention relates to a wiring board on which electronic components are surface-mounted and a manufacturing method thereof.

従来より、電子部品が表面実装されるタイプの配線基板として、例えば下記特許文献1に開示された配線基板が知られている。この配線基板は、樹脂基材の一方の面又は両面に金型によりパターンを転写して配線用溝を作り、この配線用溝に至る貫通穴を樹脂基材に作り、導電材料を配線用溝及び貫通穴に充填して形成された配線及びビアを有する。   Conventionally, for example, a wiring board disclosed in Patent Document 1 is known as a type of wiring board on which electronic components are surface-mounted. In this wiring board, a pattern is transferred to one or both surfaces of a resin base material by a mold to form a wiring groove, a through hole reaching the wiring groove is formed in the resin base material, and a conductive material is formed in the wiring groove. And wirings and vias formed by filling the through holes.

特開2001−244609号公報JP 2001-244609 A

しかしながら、上記特許文献1に開示された従来技術の配線基板では、例えば樹脂基材から露出するビアに対し、配線を樹脂基材の表面に形成して接続する場合、ビアと配線との接続界面が樹脂基材の表面と面一になるため、面方向に亀裂を生じさせる力が加わった際に両者が剥離し易いという問題があった。   However, in the prior art wiring board disclosed in Patent Document 1, for example, when a wiring is formed on the surface of the resin base and connected to a via exposed from the resin base, the connection interface between the via and the wiring Since the surface becomes flush with the surface of the resin base material, there is a problem that both are easy to peel off when a force causing cracks in the surface direction is applied.

この発明は、上述した従来技術による問題点を解消し、ビアと配線との接続界面における結合力を向上させ、接続信頼性を向上させることができる配線基板及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a wiring board capable of solving the above-described problems caused by the prior art, improving the coupling force at the connection interface between the via and the wiring, and improving the connection reliability, and the manufacturing method thereof. And

本発明に係る配線基板は、樹脂基材と、前記樹脂基材の一方の面側に埋設形成された表面配線パターンと、前記樹脂基材を貫通し前記表面配線パターンと一体形成された導電ビアと、前記樹脂基材の他方の面側に形成されて前記導電ビアと接続される裏面配線パターンと、前記導電ビアと前記裏面配線パターンとの界面をなす金属接続層とを備えることを特徴とする。   A wiring board according to the present invention includes a resin base material, a surface wiring pattern embedded and formed on one surface side of the resin base material, and a conductive via penetrating the resin base material and integrally formed with the surface wiring pattern. And a back surface wiring pattern formed on the other surface side of the resin base material and connected to the conductive via, and a metal connection layer that forms an interface between the conductive via and the back surface wiring pattern. To do.

本発明に係る配線基板によれば、導電ビアと裏面配線パターンとの界面をなす金属接続層が設けられているので、導電ビアと裏面配線との接続界面に化学的な結合力が付加され、接続信頼性を向上させることができる。   According to the wiring board according to the present invention, since the metal connection layer forming the interface between the conductive via and the back surface wiring pattern is provided, a chemical bonding force is added to the connection interface between the conductive via and the back surface wiring, Connection reliability can be improved.

本発明の一実施形態においては、前記金属接続層は、金属間化合物からなる。   In one embodiment of the present invention, the metal connection layer is made of an intermetallic compound.

本発明の他の実施形態においては、前記金属接続層は、半田からなる。   In another embodiment of the present invention, the metal connection layer is made of solder.

本発明の更に他の実施形態においては、前記金属接続層は、前記樹脂基材の他方の面に対して凹状又は凸状の断面形状を有する。   In still another embodiment of the present invention, the metal connection layer has a concave or convex cross-sectional shape with respect to the other surface of the resin base material.

本発明に係る配線基板の製造方法は、樹脂基材の一方の面側にインプリントによってスルーホールを含む回路パターンを形成し、前記回路パターンに導電性ペーストを充填して前記樹脂基材に前記スルーホールに対応した導電ビアを含む前記一方の面側に埋設された表面配線パターンを形成し、前記樹脂基材の他方の面側の前記導電ビア上に金属接続層を形成し、前記樹脂基材の他方の面側に前記導電ビアと前記金属接続層が界面をなす状態で接続される裏面配線パターンを形成することを特徴とする。   In the method for manufacturing a wiring board according to the present invention, a circuit pattern including a through hole is formed by imprinting on one surface side of a resin base material, and the circuit pattern is filled with a conductive paste, and the resin base material is filled with the circuit pattern. Forming a surface wiring pattern embedded on the one surface side including the conductive via corresponding to the through hole; forming a metal connection layer on the conductive via on the other surface side of the resin base; and A backside wiring pattern is formed on the other surface side of the material to be connected in a state where the conductive via and the metal connection layer form an interface.

本発明に係る配線基板の製造方法によれば、上記配線基板と同様の作用効果を奏する配線基板を製造することができる。   According to the method for manufacturing a wiring board according to the present invention, it is possible to manufacture a wiring board having the same effects as the above-described wiring board.

本発明によれば、ビアと配線との接続界面における結合力を向上させ、接続信頼性を向上させることができる。   According to the present invention, the coupling force at the connection interface between the via and the wiring can be improved, and the connection reliability can be improved.

本発明の第1の実施形態に係る配線基板の構造を示す断面図である。It is sectional drawing which shows the structure of the wiring board which concerns on the 1st Embodiment of this invention. 同配線基板の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the wiring board. 同配線基板を製造工程順に示す断面図である。It is sectional drawing which shows the same wiring board in order of a manufacturing process. 本発明の第2の実施形態に係る配線基板の構造を示す断面図である。It is sectional drawing which shows the structure of the wiring board which concerns on the 2nd Embodiment of this invention. 同配線基板を製造工程順に示す断面図である。It is sectional drawing which shows the same wiring board in order of a manufacturing process. 本発明の第3の実施形態に係る配線基板の構造を示す断面図である。It is sectional drawing which shows the structure of the wiring board which concerns on the 3rd Embodiment of this invention. 同配線基板を製造工程順に示す断面図である。It is sectional drawing which shows the same wiring board in order of a manufacturing process. 本発明の第4の実施形態に係る配線基板の構造を示す断面図である。It is sectional drawing which shows the structure of the wiring board which concerns on the 4th Embodiment of this invention. 同配線基板を製造工程順に示す断面図である。It is sectional drawing which shows the same wiring board in order of a manufacturing process. 本発明の第5の実施形態に係る配線基板の構造を示す断面図である。It is sectional drawing which shows the structure of the wiring board which concerns on the 5th Embodiment of this invention. 同配線基板を製造工程順に示す断面図である。It is sectional drawing which shows the same wiring board in order of a manufacturing process. 本発明の第6の実施形態に係る配線基板の構造を示す断面図である。It is sectional drawing which shows the structure of the wiring board which concerns on the 6th Embodiment of this invention. 同配線基板を製造工程順に示す断面図である。It is sectional drawing which shows the same wiring board in order of a manufacturing process. 本発明の他の実施形態に係る配線基板の構造を示す断面図である。It is sectional drawing which shows the structure of the wiring board which concerns on other embodiment of this invention. 同配線基板の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the same wiring board. 同配線基板を製造工程順に示す断面図である。It is sectional drawing which shows the same wiring board in order of a manufacturing process.

以下、添付の図面を参照して、この発明の実施の形態に係る配線基板及びその製造方法を詳細に説明する。   Hereinafter, a wiring board and a manufacturing method thereof according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.

[第1の実施形態]
図1は、本発明の第1の実施形態に係る配線基板の構造を示す断面図である。第1の実施形態に係る配線基板1は、樹脂基材10と、この樹脂基材10の一方の面(表面10a)側に埋設形成された表面配線11とを備える。また、配線基板1は、樹脂基材10を貫通し表面配線11と一体形成された導電ビア12と、樹脂基材10の他方の面(裏面10b)側に形成されて導電ビア12と接続される裏面配線13とを備える。更に、配線基板1は、導電ビア12と裏面配線13との界面をなす金属接続層14を備える。
[First Embodiment]
FIG. 1 is a cross-sectional view showing the structure of a wiring board according to the first embodiment of the present invention. The wiring substrate 1 according to the first embodiment includes a resin base material 10 and a surface wiring 11 embedded and formed on one surface (surface 10a) side of the resin base material 10. Further, the wiring substrate 1 is formed on the other surface (back surface 10b) side of the resin base material 10 and is connected to the conductive via 12 through the resin base material 10 and integrally formed with the surface wiring 11. The backside wiring 13 is provided. Further, the wiring substrate 1 includes a metal connection layer 14 that forms an interface between the conductive via 12 and the back surface wiring 13.

樹脂基材10は、例えば厚さ25μm程度の樹脂フィルムにより構成されている。樹脂フィルムとしては、熱可塑性或いは熱硬化性のポリイミド、半硬化状態のポリイミド、ポリエチレンテレフタレート(PET)、半硬化状態のエポキシ、ポリオレフィン、その他オレフィン系樹脂、液晶ポリマー等からなる樹脂フィルムを用いることができる。   The resin substrate 10 is made of, for example, a resin film having a thickness of about 25 μm. As the resin film, it is possible to use a resin film made of thermoplastic or thermosetting polyimide, semi-cured polyimide, polyethylene terephthalate (PET), semi-cured epoxy, polyolefin, other olefin resin, liquid crystal polymer, or the like. it can.

表面配線11及び導電ビア12は、樹脂基材10に形成されたスルーホール9を含むインプリント型の凹凸の回路パターンに充填された導電材からなる。導電材は、例えば銅、金、銀、白金等の金属やカーボン等が用いられ、これらをめっき液やインク、ペースト等に配合したものが使用される。   The surface wiring 11 and the conductive via 12 are made of a conductive material filled in an imprint-type uneven circuit pattern including the through hole 9 formed in the resin base material 10. As the conductive material, for example, a metal such as copper, gold, silver, or platinum, carbon, or the like is used.

導電材として導電性ペーストを用いた場合は、導電性ペーストは、例えばニッケル、金、銀、亜鉛、アルミニウム、鉄、タングステン等から選択される少なくとも1種類の低電気抵抗の金属粒子と、ビスマス、インジウム、鉛等から選択される少なくとも1種類の低融点の金属粒子とを含むように構成される。   When a conductive paste is used as the conductive material, the conductive paste includes, for example, at least one kind of low electrical resistance metal particles selected from nickel, gold, silver, zinc, aluminum, iron, tungsten, etc., bismuth, And at least one kind of low melting point metal particles selected from indium, lead and the like.

そして、導電性ペーストは、これらの金属粒子に錫を成分として含有させ、エポキシ、アクリル、ウレタン等を主成分とするバインダ成分を混合したペーストからなる。このように構成された導電性ペーストは、含有された錫と低融点の金属が200℃以下で溶融し合金を形成することができ、特に銅や銀等とは金属間化合物を形成することが可能な特性を備える。   The conductive paste is made of a paste in which tin is contained as a component in these metal particles and a binder component mainly composed of epoxy, acrylic, urethane, or the like is mixed. The conductive paste thus configured can form an alloy by melting the contained tin and the low melting point metal at 200 ° C. or less, and particularly can form an intermetallic compound with copper, silver, or the like. With possible characteristics.

なお、導電性ペーストは、例えば粒子径がナノレベルの金、銀、銅、ニッケル等のフィラーが、上記のようなバインダ成分に混合されたナノペーストで構成することもできる。その他、導電性ペーストは、上記ニッケル等の金属粒子が、上記のようなバインダ成分に混合されたペーストで構成することもできる。この場合、導電性ペーストは、金属粒子同士が接触することで電気的接続が行われる特性となる。   The conductive paste can also be constituted by a nanopaste in which fillers such as gold, silver, copper, nickel, etc. having a nanometer particle diameter are mixed with the binder component as described above. In addition, the conductive paste can also be configured by a paste in which metal particles such as nickel are mixed with the binder component as described above. In this case, the conductive paste has a characteristic that electrical connection is made when the metal particles come into contact with each other.

第1の実施形態に係る配線基板1の表面配線11及び導電ビア12は、例えば樹脂基材10に転写された凹凸の転写パターンに対し、無電解めっきによりシード層(図示せず)を形成した上で、更に電解めっきにより上記導電材を充填して形成されている。なお、シード層はスパッタリング等により形成されても良く、表面配線11及び導電ビア12は、その他、スクリーン印刷等により充填されても良い。   For the surface wiring 11 and the conductive via 12 of the wiring substrate 1 according to the first embodiment, for example, a seed layer (not shown) is formed by electroless plating on the uneven transfer pattern transferred to the resin base material 10. Further, the conductive material is filled by electrolytic plating. The seed layer may be formed by sputtering or the like, and the surface wiring 11 and the conductive via 12 may be filled by screen printing or the like.

裏面配線13は、上記導電材を用いてフルアディティブ法やセミアディティブ法、スクリーン印刷、インクジェット等によりパターニングされて形成されている。金属接続層14は、導電ビア12と裏面配線13との界面に当たる接合層を形成する。金属接続層14は、樹脂基材10の転写パターンに充填された導電材と、パターン形成された裏面配線13の導電材との接合を確実なものにするために形成されている。   The back surface wiring 13 is formed by patterning using the conductive material by a full additive method, a semi-additive method, screen printing, ink jet, or the like. The metal connection layer 14 forms a bonding layer corresponding to the interface between the conductive via 12 and the back surface wiring 13. The metal connection layer 14 is formed in order to ensure the bonding between the conductive material filled in the transfer pattern of the resin base material 10 and the conductive material of the patterned back surface wiring 13.

金属接続層14の材料としては、金属間化合物や半田等が用いられ、上記導電材に対して密着力があり電気的に接合可能なものであれば良い。具体的な材料としては、インサート材、ろう材或いは半田等が挙げられる。インサート材及びろう材としては、銅(Cu)、銀(Ag)、ニッケル(Ni)やチタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、クロム(Cr)、ニオブ(Nb)、バナジウム(V)等を含むCu、Ag、Ni基合金等が挙げられる。   As the material of the metal connection layer 14, an intermetallic compound, solder, or the like is used, and any material can be used as long as it has adhesion to the conductive material and can be electrically joined. Specific examples of the material include an insert material, a brazing material, and solder. Insert materials and brazing materials include copper (Cu), silver (Ag), nickel (Ni), titanium (Ti), zirconium (Zr), hafnium (Hf), chromium (Cr), niobium (Nb), vanadium ( Cu), Ag, Ni-based alloys and the like including V).

半田としては、錫(Sn)に金(Au)、鉛(Pb)、亜鉛(Zn)、インジウム(In)、ビスマス(Bi)、Cu等を含む多成分系のものが代表的に挙げられる。金属接続層14による接合は、濡れ広がりによる分子間力による接合、固相拡散及び液相拡散による接合、金属間化合物の生成による化学的結合等によりなされている。金属接続層14は、めっき、スクリーン印刷、インクジェット等により形成される。   As the solder, a multi-component solder containing tin (Sn), gold (Au), lead (Pb), zinc (Zn), indium (In), bismuth (Bi), Cu, and the like is typically given. Bonding by the metal connection layer 14 is performed by bonding by intermolecular force due to wetting and spreading, bonding by solid phase diffusion and liquid phase diffusion, chemical bonding by generation of an intermetallic compound, or the like. The metal connection layer 14 is formed by plating, screen printing, ink jet, or the like.

なお、導電ビア12は、樹脂基材10に形成されたスルーホール9が開口した状態で充填形成されるので、充填条件を適宜調整することにより、樹脂基材10の裏面配線13側の面から、スルーホール9の径よりも大きな径の茸状の端部12aが突出した状態で形成されている。端部12aが茸状に突出しているので、いわゆるアンカー効果を奏することできる。   In addition, since the conductive via 12 is filled and formed with the through hole 9 formed in the resin base material 10 opened, the conductive via 12 can be adjusted from the surface of the resin base material 10 on the back surface wiring 13 side by appropriately adjusting the filling conditions. The flange-shaped end portion 12a having a diameter larger than the diameter of the through hole 9 is protruded. Since the end 12a protrudes like a bowl, a so-called anchor effect can be achieved.

このように構成された配線基板1によれば、導電ビア12と裏面配線13との界面をなす金属接続層14が設けられているので、導電ビア12と裏面配線13との接合部に化学的な結合力が付加される。また、導電ビア12と裏面配線13との接合部が樹脂基材10の面と面一とはならないので、樹脂基材10の面方向に亀裂を生じさせる力が加わったとしても導電ビア12及び裏面配線13が剥離しにくい構造を実現する。   According to the wiring board 1 configured as described above, the metal connection layer 14 that forms the interface between the conductive via 12 and the back surface wiring 13 is provided. A strong coupling force is added. In addition, since the joint portion between the conductive via 12 and the back surface wiring 13 is not flush with the surface of the resin base material 10, even if a force that causes a crack in the surface direction of the resin base material 10 is applied, A structure in which the back surface wiring 13 is difficult to peel off is realized.

更に、表面配線11と導電ビア12は一体形成され、表面配線11は樹脂基材10に埋設されているので、表面配線11と導電ビア12との剥離は構造的に生じ難く、更に基板全体の低背化も図ることができる。これにより、第1の実施形態に係る配線基板1によれば、接続信頼性を向上させることができる。   Further, since the surface wiring 11 and the conductive via 12 are integrally formed, and the surface wiring 11 is embedded in the resin base material 10, the separation between the surface wiring 11 and the conductive via 12 hardly occurs structurally. The height can be reduced. Thereby, according to the wiring board 1 which concerns on 1st Embodiment, connection reliability can be improved.

次に、第1の実施形態に係る配線基板の製造方法について説明する。
図2は、配線基板の製造工程を示すフローチャートである。図3は、配線基板を製造工程順に示す断面図である。
まず、図3(a)に示すように、例えば凹凸の回路形状のパターン21が形成されたインプリント型20と、熱可塑性ポリイミド樹脂フィルムからなる樹脂基材10を準備する(ステップS100)。
Next, a method for manufacturing a wiring board according to the first embodiment will be described.
FIG. 2 is a flowchart showing the manufacturing process of the wiring board. FIG. 3 is a cross-sectional view showing the wiring board in the order of the manufacturing process.
First, as shown to Fig.3 (a), the imprint type | mold 20 in which the uneven | corrugated circuit-shaped pattern 21 was formed, for example, and the resin base material 10 which consists of a thermoplastic polyimide resin film are prepared (step S100).

インプリント型20は、例えば最小ライン/スペース(L/S)が5μm/5μmで、配線高さ5μm、直径φ30μmのランド上に高さ20μm直径φ10μmのピラーが形成されたパターン21を有したシリコン製のモールドからなる。パターン21のピッチや材質は必要に応じて選定される。インプリント型20は、上記シリコンの他、ニッケル、銅、ダイヤモンドライクカーボン(DLC)等により形成されていても良く、表面にフッ素系樹脂等をコーティングして易離型処理を施したものでも良い。   The imprint mold 20 is, for example, a silicon having a pattern 21 having a minimum line / space (L / S) of 5 μm / 5 μm, a wiring height of 5 μm, and a pillar having a diameter of 20 μm and a diameter of φ10 μm formed on a land of diameter of 30 μm. It consists of a mold. The pitch and material of the pattern 21 are selected as necessary. The imprint mold 20 may be formed of nickel, copper, diamond-like carbon (DLC), or the like in addition to the above silicon, or may be subjected to easy release treatment by coating the surface with a fluorine resin or the like. .

次に、図3(b)に示すように、インプリント型20のパターン21を樹脂基材10に対向させ、所定の温度に加熱しながら樹脂基材10に押し付けて加圧し、パターン21により構成される転写パターン15を樹脂基材10に転写する(ステップS102)。このとき、好適には樹脂基材10を構成する樹脂材が柔らかくなる温度(例えば、約280℃)まで樹脂基材10とインプリント型20を加熱してから、所定の圧力(例えば、5MPa)で押し付けて、転写パターン15を転写する。なお、所定の温度は、上記のように樹脂基材10が熱可塑性樹脂からなる場合は、ガラス転移点以上の温度であることが望ましい。   Next, as shown in FIG. 3 (b), the pattern 21 of the imprint mold 20 is opposed to the resin base material 10, pressed against the resin base material 10 while being heated to a predetermined temperature, and configured by the pattern 21. The transferred pattern 15 is transferred to the resin base material 10 (step S102). At this time, the resin base material 10 and the imprint mold 20 are preferably heated to a temperature at which the resin material constituting the resin base material 10 becomes soft (for example, about 280 ° C.), and then a predetermined pressure (for example, 5 MPa). To transfer the transfer pattern 15. In addition, when the resin base material 10 consists of a thermoplastic resin as mentioned above, it is desirable for the predetermined temperature to be a temperature equal to or higher than the glass transition point.

そして、図3(c)に示すように、樹脂材が柔らかくなる温度以下に冷却を行って、樹脂基材10からインプリント型20を離型し、樹脂基材10に凹型の回路パターン16を形成する(ステップS104)。回路パターン16を形成したら、図3(d)に示すように、所定の充填条件に従って、例えば樹脂基材10の表面10a側から回路パターン16内に無電解めっきによりシード層(図示せず)を形成し、更に電解めっきにより導電材17を充填する(ステップS106)。導電材17は、その他インクジェットやスクリーン印刷等により回路パターン16内に充填されても良い。   Then, as shown in FIG. 3C, the resin material is cooled below the softening temperature, the imprint mold 20 is released from the resin base material 10, and the concave circuit pattern 16 is formed on the resin base material 10. Form (step S104). When the circuit pattern 16 is formed, as shown in FIG. 3D, a seed layer (not shown) is formed by electroless plating in the circuit pattern 16 from the surface 10a side of the resin base material 10, for example, according to predetermined filling conditions. Then, the conductive material 17 is filled by electrolytic plating (step S106). The conductive material 17 may be filled in the circuit pattern 16 by other ink jet or screen printing.

このとき、回路パターン16のスルーホール9は、樹脂基材10の裏面10b側が開口状態となっているため、充填した導電材17の一部は充填条件により裏面10bから茸状に突出した状態となる。突出した導電材17は、スルーホール9の穴径よりも大きな径を有する。その後、図3(e)に示すように、樹脂基材10の表面10a側の余剰な導電材17を研磨やエッチング等により除去する(ステップS108)。これにより、表面配線11を樹脂基材10の表面10aとフラットな(面一な)状態に形成すると共に、表面配線11と一体構造の導電ビア12を端部12aが裏面10bから突出した状態で形成する(ステップS110)。   At this time, since the through hole 9 of the circuit pattern 16 is in an open state on the back surface 10b side of the resin base material 10, a part of the filled conductive material 17 protrudes in a bowl shape from the back surface 10b due to filling conditions. Become. The protruding conductive material 17 has a diameter larger than the hole diameter of the through hole 9. Thereafter, as shown in FIG. 3E, excess conductive material 17 on the surface 10a side of the resin base material 10 is removed by polishing, etching, or the like (step S108). As a result, the front surface wiring 11 is formed in a flat (flat) state with the front surface 10a of the resin base material 10, and the conductive vias 12 integrated with the front surface wiring 11 are in a state where the end portion 12a protrudes from the back surface 10b. Form (step S110).

なお、上記ステップS108の処理は、上記ステップS106での導電材17の充填条件を最適化することにより、樹脂基材10の表面10a上に余剰な導電材17が形成されないようにすることで省略することが可能である。その後、図3(f)に示すように、樹脂基材10の裏面10b側の突出した導電ビア12の茸状の端部12a上に、めっき、スクリーン印刷、インクジェット等により上記材料からなる金属接続層14を形成する(ステップS112)。   In addition, the process of the said step S108 is abbreviate | omitted by optimizing the filling conditions of the electrically conductive material 17 in the said step S106, so that the excess electrically conductive material 17 may not be formed on the surface 10a of the resin base material 10. FIG. Is possible. Thereafter, as shown in FIG. 3 (f), a metal connection made of the above-described material is formed on the flange-shaped end portion 12a of the conductive via 12 protruding on the back surface 10b side of the resin base material 10 by plating, screen printing, inkjet, or the like. Layer 14 is formed (step S112).

金属接続層14を形成したら、図3(g)に示すように、樹脂基材10の裏面10b上に上記フルアディティブ法やセミアディティブ法等により裏面配線13をパターニングして形成する(ステップS114)。最後に、図示は省略するが、金属接続層14を介して導電ビア12(端部12a)と裏面配線13とを確実に接合させるために、加熱処理或いは加熱加圧処理を行って(ステップS116)、第1の実施形態に係る配線基板1を製造する。   When the metal connection layer 14 is formed, as shown in FIG. 3G, the back surface wiring 13 is patterned and formed on the back surface 10b of the resin base material 10 by the full additive method, the semi-additive method, or the like (step S114). . Finally, although not shown in the figure, in order to securely bond the conductive via 12 (end portion 12a) and the backside wiring 13 through the metal connection layer 14, heat treatment or heat pressure treatment is performed (step S116). The wiring board 1 according to the first embodiment is manufactured.

ステップS116での処理においては、例えば金属接続層14がSn−Bi系の半田からなり、導電ビア12及び裏面配線13がCuからなる場合は、加熱温度約150℃程度で半田が溶融する。このため、導電ビア12及び裏面配線13間にCuSn及びCuSnの金属間化合物からなる金属接続層14が生成され、導電ビア12及び裏面配線13の接合強度が向上する。 In the processing in step S116, for example, when the metal connection layer 14 is made of Sn-Bi solder and the conductive via 12 and the backside wiring 13 are made of Cu, the solder is melted at a heating temperature of about 150 ° C. Therefore, the metal connection layer 14 made of the intermetallic compound of Cu 3 Sn and Cu 6 Sn 5 is generated between the conductive via 12 and the backside interconnect 13, the bonding strength of the conductive vias 12 and the back surface wiring 13 is improved.

このように、第1の実施形態に係る配線基板1は、導電ビア12と裏面配線13との接続界面が樹脂基材10の裏面10bとフラットにならず、この接続界面が金属接続層14により構成されて化学的な結合力が更に付与されているため、導電ビア12と裏面配線13とが剥離しにくく、接続信頼性を向上させることが可能となる。   As described above, in the wiring board 1 according to the first embodiment, the connection interface between the conductive via 12 and the back surface wiring 13 is not flat with the back surface 10b of the resin base material 10, and the connection interface is formed by the metal connection layer 14. Since it is configured and a chemical bonding force is further applied, the conductive via 12 and the back surface wiring 13 are difficult to peel off, and the connection reliability can be improved.

[第2の実施形態]
図4は、本発明の第2の実施形態に係る配線基板の構造を示す断面図である。図5は、配線基板を製造工程順に示す断面図である。第2の実施形態に係る配線基板2は、図4に示すように、基本的な構成は第1の実施形態に係る配線基板1と同様であるが、樹脂基材10の裏面10b側の導電ビア12の端部12bの形状が異なる点が相違している。
[Second Embodiment]
FIG. 4 is a cross-sectional view showing the structure of a wiring board according to the second embodiment of the present invention. FIG. 5 is a cross-sectional view showing the wiring board in the order of the manufacturing process. As shown in FIG. 4, the wiring substrate 2 according to the second embodiment has the same basic configuration as the wiring substrate 1 according to the first embodiment, but is electrically conductive on the back surface 10 b side of the resin base material 10. The difference is that the shape of the end 12b of the via 12 is different.

配線基板2は、次のように製造される。すなわち、上述した製造工程と同様に、図5(a)に示すように、インプリント型20及び樹脂基材10を準備し、図5(b)に示すように、インプリント型20のパターン21により構成される転写パターン15を樹脂基材10に転写し、図5(c)に示すように、インプリント型20を離型して回路パターン16を形成する。   The wiring board 2 is manufactured as follows. That is, as in the manufacturing process described above, as shown in FIG. 5A, an imprint mold 20 and a resin base material 10 are prepared, and as shown in FIG. 5B, a pattern 21 of the imprint mold 20 is prepared. 5 is transferred to the resin substrate 10, and the imprint mold 20 is released to form the circuit pattern 16 as shown in FIG. 5C.

そして、図5(d)に示すように、回路パターン16内に充填条件を変更して導電材17を充填し、図5(e)に示すように、樹脂基材10の表面10a側の余剰な導電材17を除去する。これにより、形成された表面配線11から続く導電ビア12の端部12bが、スルーホール9の穴径と同径若しくは小さい径で樹脂基材10の裏面10b側から曲面状に突出した状態となる。   And as shown in FIG.5 (d), the filling conditions are changed in the circuit pattern 16, and it fills with the electrically-conductive material 17, and as shown in FIG.5 (e), the surplus by the surface 10a side of the resin base material 10 is shown. The conductive material 17 is removed. As a result, the end 12b of the conductive via 12 continuing from the formed surface wiring 11 is in a state of projecting in a curved shape from the back surface 10b side of the resin base material 10 with the same diameter as or smaller than the diameter of the through hole 9. .

その後、図5(f)に示すように、突出した導電ビア12の曲面状の端部12b上に金属接続層14を形成し、図5(g)に示すように、樹脂基材10の裏面10b上に裏面配線13を形成して、加熱処理等を行って、第2の実施形態に係る配線基板2を製造する。なお、形成される金属接続層14の部分を含めると、導電ビア12の端部12bは、スルーホール9の穴径よりも大きな径となっても良い。   Thereafter, as shown in FIG. 5 (f), a metal connection layer 14 is formed on the curved end portion 12b of the protruding conductive via 12, and as shown in FIG. 5 (g), the back surface of the resin base material 10 is formed. The back surface wiring 13 is formed on 10b, heat processing etc. are performed, and the wiring board 2 which concerns on 2nd Embodiment is manufactured. Including the portion of the metal connection layer 14 to be formed, the end 12 b of the conductive via 12 may have a diameter larger than the hole diameter of the through hole 9.

このような構成の第2の実施形態に係る配線基板2によっても、導電ビア12と裏面配線13との接続界面が樹脂基材10の裏面10bとフラットにはならない。そして、金属接続層14が形成されるので、第1の実施形態に係る配線基板1と同様の作用効果を奏することができる。   Even with the wiring substrate 2 according to the second embodiment having such a configuration, the connection interface between the conductive via 12 and the back surface wiring 13 does not become flat with the back surface 10 b of the resin base material 10. And since the metal connection layer 14 is formed, there can exist an effect similar to the wiring board 1 which concerns on 1st Embodiment.

[第3の実施形態]
図6は、本発明の第3の実施形態に係る配線基板の構造を示す断面図である。図7は、配線基板を製造工程順に示す断面図である。第3の実施形態に係る配線基板3は、図6に示すように、基本的な構成は第1及び第2の実施形態に係る配線基板1,2と同様であるが、樹脂基材10の裏面10b側の導電ビア12の端部12cの形状が異なる点が相違している。
[Third Embodiment]
FIG. 6 is a cross-sectional view showing the structure of a wiring board according to the third embodiment of the present invention. FIG. 7 is a cross-sectional view showing a wiring board in the order of manufacturing steps. As shown in FIG. 6, the basic configuration of the wiring board 3 according to the third embodiment is the same as that of the wiring boards 1 and 2 according to the first and second embodiments. The difference is that the shape of the end 12c of the conductive via 12 on the back surface 10b side is different.

配線基板3は、次のように製造される。すなわち、上述した製造工程と同様に、図7(a)に示すように、インプリント型20及び樹脂基材10を準備し、図7(b)に示すように、インプリント型20のパターン21により構成される転写パターン15を樹脂基材10に転写し、図7(c)に示すように、インプリント型20を離型して回路パターン16を形成する。   The wiring board 3 is manufactured as follows. That is, similarly to the above-described manufacturing process, an imprint mold 20 and a resin base material 10 are prepared as shown in FIG. 7A, and a pattern 21 of the imprint mold 20 is prepared as shown in FIG. 7 is transferred to the resin base material 10, and the imprint mold 20 is released to form a circuit pattern 16 as shown in FIG. 7C.

そして、図7(d)に示すように、回路パターン16内に充填条件を変更して導電材17を充填し、図7(e)に示すように、樹脂基材10の表面10a側の余剰な導電材17を除去する。これにより、形成された表面配線11から続く導電ビア12の端部12bが、スルーホール9の穴径よりも小さい径で樹脂基材10の裏面10b側から一部が鋭い曲面状に突出した状態となる。   Then, as shown in FIG. 7 (d), the filling conditions are changed in the circuit pattern 16 to fill the conductive material 17, and as shown in FIG. 7 (e), surplus on the surface 10a side of the resin base material 10 is filled. The conductive material 17 is removed. Thereby, the end 12b of the conductive via 12 continuing from the formed surface wiring 11 has a diameter smaller than the hole diameter of the through hole 9 and a part thereof protrudes in a sharp curved shape from the back surface 10b side of the resin base material 10 It becomes.

具体的には、端部12cは、樹脂基材10の裏面10bを基準面とした場合、その突出頂部が基準面よりも外側に突出し、突出頂部から続く裾野部の裾終端部が基準面よりも内側(すなわち表面10a側)に引っ込んだ形状で形成される。その後、図7(f)に示すように、導電ビア12の端部12cの突出頂部及び裾野部上に金属接続層14を形成する。金属接続層14は、端部12cに沿った状態で形成されるので、上記基準面よりも出たり引っ込んだりする部分を備えて形成される。   Specifically, when the back surface 10b of the resin base material 10 is used as the reference surface, the end portion 12c protrudes outward from the reference surface, and the skirt end portion of the skirt portion continuing from the protruding top portion is from the reference surface. Is also formed in a shape retracted inward (that is, on the surface 10a side). Thereafter, as shown in FIG. 7 (f), the metal connection layer 14 is formed on the projecting top and the bottom of the end 12 c of the conductive via 12. Since the metal connection layer 14 is formed in a state along the end 12c, the metal connection layer 14 is formed with a portion that protrudes or retracts from the reference surface.

そして、図7(g)に示すように、樹脂基材10の裏面10b上に裏面配線13を形成して、加熱処理等を行って、第3の実施形態に係る配線基板3を製造する。このような構成の第3の実施形態に係る配線基板3によっても、導電ビア12と裏面配線13との接続界面が樹脂基材10の裏面10bとフラットにはならない。そして、金属接続層14が形成されるので、第1及び第2の実施形態に係る配線基板1,2と同様の作用効果を奏することができる。   Then, as illustrated in FIG. 7G, the back surface wiring 13 is formed on the back surface 10 b of the resin base material 10, and heat treatment or the like is performed to manufacture the wiring substrate 3 according to the third embodiment. Even with the wiring substrate 3 according to the third embodiment having such a configuration, the connection interface between the conductive via 12 and the back surface wiring 13 does not become flat with the back surface 10 b of the resin base material 10. And since the metal connection layer 14 is formed, there can exist an effect similar to the wiring boards 1 and 2 which concern on 1st and 2nd embodiment.

[第4の実施形態]
図8は、本発明の第4の実施形態に係る配線基板の構造を示す断面図である。図9は、配線基板を製造工程順に示す断面図である。第4の実施形態に係る配線基板4は、図8に示すように、基本的な構成は第1〜第3の実施形態に係る配線基板1〜3と同様であるが、樹脂基材10の裏面10b側の導電ビア12の端部12dが裏面10bよりも外側に突出していない点が相違している。
[Fourth Embodiment]
FIG. 8 is a cross-sectional view showing the structure of a wiring board according to the fourth embodiment of the present invention. FIG. 9 is a cross-sectional view showing the wiring board in the order of the manufacturing process. As shown in FIG. 8, the basic configuration of the wiring board 4 according to the fourth embodiment is the same as that of the wiring boards 1 to 3 according to the first to third embodiments. The difference is that the end 12d of the conductive via 12 on the back surface 10b side does not protrude outward from the back surface 10b.

配線基板4は、次のように製造される。すなわち、上述した製造工程と同様に、図9(a)に示すように、インプリント型20及び樹脂基材10を準備し、図9(b)に示すように、インプリント型20のパターン21により構成される転写パターン15を樹脂基材10に転写し、図9(c)に示すように、インプリント型20を離型して回路パターン16を形成する。   The wiring board 4 is manufactured as follows. That is, as in the manufacturing process described above, as shown in FIG. 9A, an imprint mold 20 and a resin base material 10 are prepared, and as shown in FIG. 9B, a pattern 21 of the imprint mold 20 is prepared. 9 is transferred to the resin substrate 10, and the imprint mold 20 is released to form the circuit pattern 16 as shown in FIG. 9C.

そして、図9(d)に示すように、回路パターン16内に充填条件を変更してスルーホール9内に導電材17が止まるように、すなわち裏面10bから導電材17が突出しないように導電材17を充填し、図9(e)に示すように、樹脂基材10の表面10a側の余剰な導電材17を除去する。   Then, as shown in FIG. 9D, the conductive material 17 is changed so that the conductive material 17 stops in the through hole 9 by changing the filling condition in the circuit pattern 16, that is, the conductive material 17 does not protrude from the back surface 10b. 17 and the excess conductive material 17 on the surface 10a side of the resin base material 10 is removed as shown in FIG.

これにより、形成された表面配線11から続く導電ビア12の端部12dが、スルーホール9の穴径と同径或いはそれよりも小さい径で樹脂基材10の裏面10b側から突出しない凸型の曲面状に、スルーホール9の内部に形成された状態となる。その後、図9(f)に示すように、スルーホール9内の導電ビア12の端部12d上に金属接続層14を形成し、図9(g)に示すように、樹脂基材10の裏面10b上に裏面配線13を形成して、加熱処理等を行い、第4の実施形態に係る配線基板4を製造する。   Thereby, the end 12d of the conductive via 12 continuing from the formed front surface wiring 11 is a convex type that does not protrude from the back surface 10b side of the resin base material 10 with a diameter equal to or smaller than the diameter of the through hole 9. A curved surface is formed inside the through hole 9. Thereafter, as shown in FIG. 9 (f), a metal connection layer 14 is formed on the end 12d of the conductive via 12 in the through hole 9, and as shown in FIG. 9 (g), the back surface of the resin base material 10 is formed. The back surface wiring 13 is formed on 10b, heat processing etc. are performed, and the wiring board 4 which concerns on 4th Embodiment is manufactured.

裏面配線13は、一部がスルーホール9の内部に裏面10bよりも入り込んで金属接続層14を介して導電ビア12と接合される。このような構成の第4の実施形態に係る配線基板4によっても、導電ビア12と裏面配線13との接続界面が樹脂基材10の裏面10bとフラットにはならずに金属接続層14が形成されるので、第1〜第3の実施形態に係る配線基板1〜3と同様の作用効果を奏することができる。   A part of the back surface wiring 13 enters the inside of the through hole 9 from the back surface 10 b and is joined to the conductive via 12 through the metal connection layer 14. Also with the wiring substrate 4 according to the fourth embodiment having such a configuration, the connection interface between the conductive via 12 and the back surface wiring 13 is not flat with the back surface 10b of the resin base material 10, and the metal connection layer 14 is formed. Therefore, the same effects as the wiring boards 1 to 3 according to the first to third embodiments can be obtained.

[第5の実施形態]
図10は、本発明の第5の実施形態に係る配線基板の構造を示す断面図である。図11は、配線基板を製造工程順に示す断面図である。第5の実施形態に係る配線基板5は、図10に示すように、基本的な構成は第4の実施形態に係る配線基板4と同様であるが、樹脂基材10の裏面10b側の導電ビア12の端部12eの形状が異なる点が相違している。
[Fifth Embodiment]
FIG. 10 is a cross-sectional view showing the structure of a wiring board according to the fifth embodiment of the present invention. FIG. 11 is a cross-sectional view showing a wiring board in the order of manufacturing steps. As shown in FIG. 10, the wiring board 5 according to the fifth embodiment has the same basic configuration as the wiring board 4 according to the fourth embodiment, but is electrically conductive on the back surface 10 b side of the resin base material 10. The difference is that the shape of the end 12e of the via 12 is different.

配線基板5は、次のように製造される。すなわち、上述した製造工程と同様に、図11(a)に示すように、インプリント型20及び樹脂基材10を準備し、図11(b)に示すように、インプリント型20のパターン21により構成される転写パターン15を樹脂基材10に転写し、図11(c)に示すように、インプリント型20を離型して回路パターン16を形成する。   The wiring board 5 is manufactured as follows. That is, similarly to the above-described manufacturing process, an imprint mold 20 and a resin base material 10 are prepared as shown in FIG. 11A, and a pattern 21 of the imprint mold 20 is prepared as shown in FIG. As shown in FIG. 11C, the imprint mold 20 is released to form the circuit pattern 16.

そして、図11(d)に示すように、回路パターン16内に充填条件を変更して導電材17を充填し、図11(e)に示すように、樹脂基材10の表面10a側の余剰な導電材17を除去すると共に、エッチングやサンドブラスト島により裏面10b側の所定量の導電材17をスルーホール9内に凹むように除去する。これにより、形成された表面配線11から続く導電ビア12の端部12eが、スルーホール9の穴径と同径で樹脂基材10の裏面10b側から突出しない凹型の曲面状に、スルーホール9の内部に形成された状態となる。   And as shown in FIG.11 (d), the filling conditions are changed in the circuit pattern 16, and it fills with the electrically conductive material 17, and as shown in FIG.11 (e), the surplus by the surface 10a side of the resin base material 10 is shown. In addition to removing the conductive material 17, a predetermined amount of the conductive material 17 on the back surface 10 b side is removed so as to be recessed in the through hole 9 by etching or sandblast island. Thereby, the end 12e of the conductive via 12 continuing from the formed surface wiring 11 has the same diameter as the through hole 9 and has a concave curved shape that does not protrude from the back surface 10b side of the resin substrate 10. It will be in the state formed inside.

その後、図11(f)に示すように、スルーホール9内の導電ビア12の端部12e上に金属接続層14を形成し、図11(g)に示すように、樹脂基材10の裏面10b上に裏面配線13を形成して、加熱処理等を行い、第5の実施形態に係る配線基板5を製造する。   Thereafter, as shown in FIG. 11 (f), a metal connection layer 14 is formed on the end portion 12 e of the conductive via 12 in the through hole 9, and as shown in FIG. 11 (g), the back surface of the resin base material 10. The back surface wiring 13 is formed on 10b, heat processing etc. are performed, and the wiring board 5 which concerns on 5th Embodiment is manufactured.

この場合も裏面配線13は、一部がスルーホール9の内部に裏面10bよりも入り込んで金属接続層14を介して導電ビア12と接合されるので、第5の実施形態に係る配線基板5によっても、導電ビア12と裏面配線13との接続界面が樹脂基材10の裏面10bとフラットにはならずに金属接続層14が形成され、第4の実施形態に係る配線基板4と同様の作用効果を奏することができる。   Also in this case, the back surface wiring 13 partially enters the through hole 9 from the back surface 10b and is joined to the conductive via 12 via the metal connection layer 14, so that the wiring substrate 5 according to the fifth embodiment However, the connection interface between the conductive via 12 and the back surface wiring 13 is not flat with the back surface 10b of the resin base material 10, and the metal connection layer 14 is formed, and the same operation as that of the wiring substrate 4 according to the fourth embodiment. There is an effect.

[第6の実施形態]
図12は、本発明の第6の実施形態に係る配線基板の構造を示す断面図である。図13は、配線基板を製造工程順に示す断面図である。第6の実施形態に係る配線基板6は、図12に示すように、基本的な構成は第5の実施形態に係る配線基板5と同様であるが、樹脂基材10の裏面10b側の導電ビア12の端部12fの形状が異なる点が相違している。
[Sixth Embodiment]
FIG. 12 is a cross-sectional view showing the structure of the wiring board according to the sixth embodiment of the present invention. FIG. 13 is a cross-sectional view showing a wiring board in the order of manufacturing steps. As shown in FIG. 12, the wiring board 6 according to the sixth embodiment has the same basic configuration as the wiring board 5 according to the fifth embodiment, but the conductive property on the back surface 10 b side of the resin base material 10. The difference is that the shape of the end portion 12f of the via 12 is different.

配線基板6は、次のように製造される。すなわち、上述した製造工程と同様に、図13(a)に示すように、インプリント型20及び樹脂基材10を準備し、図13(b)に示すように、インプリント型20のパターン21により構成される転写パターン15を樹脂基材10に転写し、図13(c)に示すように、インプリント型20を離型して回路パターン16を形成する。   The wiring board 6 is manufactured as follows. That is, as in the manufacturing process described above, as shown in FIG. 13A, an imprint mold 20 and a resin base material 10 are prepared, and as shown in FIG. 13B, a pattern 21 of the imprint mold 20 is prepared. As shown in FIG. 13C, the imprint mold 20 is released to form the circuit pattern 16.

そして、図13(d)に示すように、回路パターン16内に充填条件を変更して導電材17を充填し、図13(e)に示すように、樹脂基材10の表面10a側の余剰な導電材17を除去すると共に、裏面10b側の所定量の導電材17をスルーホール9内にフラットに凹むように除去する。これにより、形成された表面配線11から続く導電ビア12の端部12fが、スルーホール9の穴径と同径で樹脂基材10の裏面10b側から突出しない平面状に、スルーホール9の内部に形成された状態となる。   And as shown in FIG.13 (d), the filling conditions are changed in the circuit pattern 16, and it fills with the electrically conductive material 17, and as shown in FIG.13 (e), the surplus by the surface 10a side of the resin base material 10 is shown. In addition to removing the conductive material 17, a predetermined amount of the conductive material 17 on the back surface 10 b side is removed so as to be recessed flat in the through hole 9. As a result, the end 12f of the conductive via 12 continuing from the formed surface wiring 11 has the same diameter as the through hole 9 and does not protrude from the back surface 10b side of the resin base material 10 so that the inside of the through hole 9 It will be in the state formed.

その後、図13(f)に示すように、スルーホール9内の導電ビア12の端部12f上に金属接続層14を形成し、図13(g)に示すように、樹脂基材10の裏面10b上に裏面配線13を形成して、加熱処理等を行い、第6の実施形態に係る配線基板6を製造する。   Thereafter, as shown in FIG. 13 (f), a metal connection layer 14 is formed on the end portion 12f of the conductive via 12 in the through hole 9, and as shown in FIG. 13 (g), the back surface of the resin base material 10 is formed. The back surface wiring 13 is formed on 10b, heat processing etc. are performed, and the wiring board 6 which concerns on 6th Embodiment is manufactured.

この場合も裏面配線13は、一部がスルーホール9の内部に裏面10bよりも入り込んで金属接続層14を介して導電ビア12と接合されるので、第6の実施形態に係る配線基板6によっても、導電ビア12と裏面配線13との接続界面が樹脂基材10の裏面10bとフラットにはならずに金属接続層14が形成され、第5の実施形態に係る配線基板5と同様の作用効果を奏することができる。   Also in this case, the back surface wiring 13 partially enters the through hole 9 from the back surface 10b and is joined to the conductive via 12 via the metal connection layer 14, so that the wiring substrate 6 according to the sixth embodiment However, the connection interface between the conductive via 12 and the back surface wiring 13 is not flat with the back surface 10b of the resin base material 10, and the metal connection layer 14 is formed, and the same operation as that of the wiring substrate 5 according to the fifth embodiment is achieved. There is an effect.

[他の実施形態]
その他、本発明に係る配線基板は、次のような構成であっても良い。
図14は、本発明の他の実施形態に係る配線基板の構造を示す断面図である。図15は、配線基板の製造工程を示すフローチャートである。図16は、配線基板を製造工程順に示す断面図である。
[Other Embodiments]
In addition, the wiring board according to the present invention may have the following configuration.
FIG. 14 is a cross-sectional view showing the structure of a wiring board according to another embodiment of the present invention. FIG. 15 is a flowchart showing a manufacturing process of the wiring board. FIG. 16 is a cross-sectional view showing a wiring board in the order of manufacturing steps.

本実施形態に係る配線基板は、上述した各実施形態における各種材料や各種工程を同様に適用して製造することができる。この配線基板は、樹脂基材と、樹脂基材の一方の面側に埋設形成された表面配線パターンと、樹脂基材を貫通し表面配線パターンと一体形成された導電ビアと、樹脂基材の他方の面側に形成されて導電ビアと接続される裏面配線パターンと、導電ビアと裏面配線パターンとの界面をなす金属接続層と、表面配線パターン及び裏面配線パターン上の所定箇所にそれぞれ形成された凹み部上に設けられた半田ボールとを備えて構成されている。   The wiring board according to the present embodiment can be manufactured by similarly applying various materials and various processes in the above-described embodiments. This wiring board includes a resin base material, a surface wiring pattern embedded in one surface of the resin base material, a conductive via penetrating the resin base material and integrally formed with the surface wiring pattern, and a resin base material. A backside wiring pattern formed on the other surface side and connected to the conductive via, a metal connection layer that forms an interface between the conductive via and the backside wiring pattern, and a predetermined position on the front side wiring pattern and the backside wiring pattern, respectively. And a solder ball provided on the concave portion.

具体的には、図14に示すように、配線基板7は、樹脂基材10と、この樹脂基材10の表面10a側に埋設形成された表面配線11と、樹脂基材10を貫通し表面配線11と一体形成された導電ビア12と、樹脂基材10の裏面10b側に形成されて導電ビア12と接続される裏面配線13と、導電ビア12と裏面配線13との界面をなす金属接続層14とを備える点は、上記実施形態に係る配線基板1〜6と同様であるが、以下の点が相違している。   Specifically, as shown in FIG. 14, the wiring substrate 7 includes a resin base material 10, a surface wiring 11 embedded and formed on the surface 10 a side of the resin base material 10, and a surface penetrating the resin base material 10. The conductive via 12 formed integrally with the wiring 11, the back surface wiring 13 formed on the back surface 10b side of the resin substrate 10 and connected to the conductive via 12, and the metal connection forming the interface between the conductive via 12 and the back surface wiring 13 Although the point provided with the layer 14 is the same as that of the wiring boards 1-6 which concern on the said embodiment, the following points differ.

すなわち、配線基板7は、表面配線11及び裏面配線13の所定箇所を露出させるように樹脂基材10の表面10a及び裏面10b上に形成されたソルダーレジスト8を備える。また、配線基板7は、ソルダーレジスト8により露出された箇所の表面配線11及び裏面配線13上に形成された凹み部11a,13aを備え、更にこの凹み部11a,13a上に形成された半田ボール19を備える。   That is, the wiring board 7 includes a solder resist 8 formed on the front surface 10a and the back surface 10b of the resin base material 10 so as to expose predetermined portions of the front surface wiring 11 and the back surface wiring 13. In addition, the wiring board 7 includes recesses 11a and 13a formed on the front surface wiring 11 and the back surface wiring 13 at locations exposed by the solder resist 8, and further solder balls formed on the recesses 11a and 13a. 19 is provided.

このように構成された配線基板7は、各配線11,13の凹み部11a,13a上に半田ボール19が設けられているので、平面状の配線上に半田ボールを形成する場合と比べて、各配線11,13と半田ボール19との接触面積を増加させることができる。また、各配線11,13と半田ボール19との接続界面が平面状ではなく3次元的な曲面状となる。   In the wiring board 7 configured in this manner, since the solder balls 19 are provided on the recessed portions 11a and 13a of the respective wirings 11 and 13, compared with the case where the solder balls are formed on the planar wiring, The contact area between the wirings 11 and 13 and the solder ball 19 can be increased. Further, the connection interface between each of the wirings 11 and 13 and the solder ball 19 is not a planar shape but a three-dimensional curved surface shape.

更に、凹み部11a,13aの凹み量分だけ半田ボール19の実装高さを抑えることができ、半田ボール19の横広がりも抑制されるので、半田ボール19の小径化が可能となる。従って、各配線11,13と半田ボール19との接続信頼性を向上させることができると共に、配線基板7全体の低背化を進めることが可能となる。   Further, the mounting height of the solder balls 19 can be suppressed by the amount of the recesses of the recess portions 11a and 13a, and the lateral expansion of the solder balls 19 is also suppressed, so that the diameter of the solder balls 19 can be reduced. Therefore, the connection reliability between the wirings 11 and 13 and the solder balls 19 can be improved, and the overall height of the wiring board 7 can be reduced.

本実施形態に係る配線基板7は、次のように製造される。すなわち、上述した実施形態において説明した製造工程と同様に、図16(a)に示すように、インプリント型20及び樹脂基材10を準備し、図16(b)に示すように、インプリント型20のパターン21により構成される転写パターン15を樹脂基材10に転写し、図16(c)に示すように、インプリント型20を離型して回路パターン16を形成する。   The wiring board 7 according to this embodiment is manufactured as follows. That is, similarly to the manufacturing process described in the above-described embodiment, as shown in FIG. 16A, an imprint mold 20 and a resin base material 10 are prepared, and as shown in FIG. The transfer pattern 15 constituted by the pattern 21 of the mold 20 is transferred to the resin substrate 10, and the imprint mold 20 is released to form the circuit pattern 16 as shown in FIG.

そして、図16(d)に示すように、回路パターン16内に充填条件に従って導電材17を充填し、図16(e)に示すように、樹脂基材10の表面10a側の余剰な導電材17を除去すると共に、裏面10b側の所定量の導電材17をスルーホール9内にフラットに凹むように除去する。   Then, as shown in FIG. 16 (d), the conductive material 17 is filled in the circuit pattern 16 according to the filling conditions, and as shown in FIG. 16 (e), the surplus conductive material on the surface 10a side of the resin base material 10 is filled. 17 is removed, and a predetermined amount of the conductive material 17 on the back surface 10 b side is removed so as to be recessed flat in the through hole 9.

これにより、形成された表面配線11から続く導電ビア12の端部12gが、スルーホール9の穴径と同径で樹脂基材10の裏面10b側から突出しない平面状に、スルーホール9の内部に形成された状態となる。その後、スルーホール9内の導電ビア12の端部12g上に金属接続層14を形成し、図16(f)に示すように、樹脂基材10の裏面10b上に裏面配線13を形成して、加熱処理等を行う。   As a result, the end 12g of the conductive via 12 continuing from the formed surface wiring 11 has the same diameter as the through hole 9 and does not protrude from the back surface 10b side of the resin base material 10 so that the inside of the through hole 9 It will be in the state formed. Thereafter, a metal connection layer 14 is formed on the end portion 12g of the conductive via 12 in the through hole 9, and a back surface wiring 13 is formed on the back surface 10b of the resin substrate 10 as shown in FIG. And heat treatment.

そして、図15及び図16(g)に示すように、表面配線11及び裏面配線13の所定箇所を露出させるように、樹脂基材10の表面10a及び裏面10b上にそれぞれ開口部8a,8bを有する所定パターンのソルダーレジスト8を形成する(ステップS118)。   Then, as shown in FIGS. 15 and 16 (g), openings 8a and 8b are respectively formed on the front surface 10a and the back surface 10b of the resin base material 10 so that the predetermined portions of the front surface wiring 11 and the back surface wiring 13 are exposed. A solder resist 8 having a predetermined pattern is formed (step S118).

ソルダーレジスト8を形成したら、図15及び図16(h)に示すように、開口部8a,8b内の表面配線11及び裏面配線13上に、エッチングやサンドブラスト等により選択的に凹み部11a,13aを形成する(ステップS120)。最後に、図示は省略するが、形成した凹み部11a,13a上に半田を充填して半田ボール19を形成し(ステップS122)、本実施形態に係る配線基板7を製造する。これにより、上述した実施形態に係る配線基板1〜6と同様の作用効果を奏することができると共に、半田ボール19を形成した場合の基板全体の低背化を可能とする。   When the solder resist 8 is formed, as shown in FIGS. 15 and 16 (h), the recesses 11a and 13a are selectively formed on the front surface wiring 11 and the back surface wiring 13 in the openings 8a and 8b by etching or sandblasting. Is formed (step S120). Finally, although not shown, solder is filled in the formed recesses 11a and 13a to form solder balls 19 (step S122), and the wiring board 7 according to this embodiment is manufactured. Accordingly, the same operational effects as those of the wiring substrates 1 to 6 according to the above-described embodiment can be obtained, and the overall height of the substrate when the solder balls 19 are formed can be reduced.

1〜7 配線基板
8 ソルダーレジスト
8a,8b 開口部
9 スルーホール
10 樹脂基材
11 表面配線
11a,13a 凹み部
12 導電ビア
13 裏面配線
14 金属接続層
15 転写パターン
16 回路パターン
17 導電材
19 半田ボール
20 インプリント型
DESCRIPTION OF SYMBOLS 1-7 Wiring board 8 Solder resist 8a, 8b Opening 9 Through hole 10 Resin base material 11 Front surface wiring 11a, 13a Recessed part 12 Conductive via 13 Back surface wiring 14 Metal connection layer 15 Transfer pattern 16 Circuit pattern 17 Conductive material 19 Solder ball 20 Imprint type

Claims (5)

樹脂基材と、
前記樹脂基材の一方の面側に埋設形成された表面配線パターンと、
前記樹脂基材を貫通し前記表面配線パターンと一体形成された導電ビアと、
前記樹脂基材の他方の面側に形成されて前記導電ビアと接続される裏面配線パターンと、
前記導電ビアと前記裏面配線パターンとの界面をなす金属接続層とを備える
ことを特徴とする配線基板。
A resin substrate;
A surface wiring pattern embedded and formed on one surface side of the resin substrate;
Conductive vias penetrating the resin substrate and integrally formed with the surface wiring pattern;
A backside wiring pattern formed on the other surface side of the resin base material and connected to the conductive via;
A wiring board comprising: a metal connection layer that forms an interface between the conductive via and the backside wiring pattern.
前記金属接続層は、金属間化合物からなることを特徴とする請求項1記載の配線基板。   The wiring board according to claim 1, wherein the metal connection layer is made of an intermetallic compound. 前記金属接続層は、半田からなることを特徴とする請求項1記載の配線基板。   The wiring board according to claim 1, wherein the metal connection layer is made of solder. 前記金属接続層は、前記樹脂基材の他方の面に対して凹状又は凸状の断面形状を有することを特徴とする請求項1〜3のいずれか1項記載の配線基板。   The wiring board according to claim 1, wherein the metal connection layer has a concave or convex cross-sectional shape with respect to the other surface of the resin base material. 樹脂基材の一方の面側にインプリントによってスルーホールを含む回路パターンを形成し、
前記回路パターンに導電性ペーストを充填して前記樹脂基材に前記スルーホールに対応した導電ビアを含む前記一方の面側に埋設された表面配線パターンを形成し、
前記樹脂基材の他方の面側の前記導電ビア上に金属接続層を形成し、
前記樹脂基材の他方の面側に前記導電ビアと前記金属接続層が界面をなす状態で接続される裏面配線パターンを形成する
ことを特徴とする配線基板の製造方法。
Form a circuit pattern including through-holes on one side of the resin substrate by imprinting,
Filling the circuit pattern with a conductive paste to form a surface wiring pattern embedded on the one surface side including conductive vias corresponding to the through holes in the resin base material,
Forming a metal connection layer on the conductive via on the other side of the resin substrate;
A method of manufacturing a wiring board, comprising: forming a backside wiring pattern connected to the other surface side of the resin base material in a state where the conductive via and the metal connection layer form an interface.
JP2012289000A 2012-12-28 2012-12-28 Wiring board and manufacturing method thereof Expired - Fee Related JP6031353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012289000A JP6031353B2 (en) 2012-12-28 2012-12-28 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012289000A JP6031353B2 (en) 2012-12-28 2012-12-28 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014130969A true JP2014130969A (en) 2014-07-10
JP6031353B2 JP6031353B2 (en) 2016-11-24

Family

ID=51409101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012289000A Expired - Fee Related JP6031353B2 (en) 2012-12-28 2012-12-28 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6031353B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225611A (en) * 2015-05-27 2016-12-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip inductor
JP2017098544A (en) * 2015-11-20 2017-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
US10147533B2 (en) 2015-05-27 2018-12-04 Samsung Electro-Mechanics Co., Ltd. Inductor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221567A (en) * 2002-12-26 2004-08-05 Sumitomo Bakelite Co Ltd Solder joint part and multilayer wiring board
JP2006303338A (en) * 2005-04-25 2006-11-02 J Macc Co Ltd Multilayer circuit board and its manufacturing method
JP2006339365A (en) * 2005-06-01 2006-12-14 Mitsui Mining & Smelting Co Ltd Wiring board, its manufacturing method, manufacturing method of multilayer laminated wiring board and forming method of via hole
JP2012227391A (en) * 2011-04-20 2012-11-15 Fujikura Ltd Multilayer circuit board and method for manufacturing the same
JP2012227302A (en) * 2011-04-19 2012-11-15 Fujikura Ltd Manufacturing method of wiring board
JP2012243777A (en) * 2011-05-13 2012-12-10 Fujikura Ltd Circuit board, imprint mold, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221567A (en) * 2002-12-26 2004-08-05 Sumitomo Bakelite Co Ltd Solder joint part and multilayer wiring board
JP2006303338A (en) * 2005-04-25 2006-11-02 J Macc Co Ltd Multilayer circuit board and its manufacturing method
JP2006339365A (en) * 2005-06-01 2006-12-14 Mitsui Mining & Smelting Co Ltd Wiring board, its manufacturing method, manufacturing method of multilayer laminated wiring board and forming method of via hole
JP2012227302A (en) * 2011-04-19 2012-11-15 Fujikura Ltd Manufacturing method of wiring board
JP2012227391A (en) * 2011-04-20 2012-11-15 Fujikura Ltd Multilayer circuit board and method for manufacturing the same
JP2012243777A (en) * 2011-05-13 2012-12-10 Fujikura Ltd Circuit board, imprint mold, and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225611A (en) * 2015-05-27 2016-12-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip inductor
US10147533B2 (en) 2015-05-27 2018-12-04 Samsung Electro-Mechanics Co., Ltd. Inductor
JP2017098544A (en) * 2015-11-20 2017-06-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
US11488768B2 (en) 2015-11-20 2022-11-01 Samsung Electro-Mechanics Co., Ltd. Coil component

Also Published As

Publication number Publication date
JP6031353B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US7851928B2 (en) Semiconductor device having substrate with differentially plated copper and selective solder
US20090217518A1 (en) Device-incorporated substrate and method of manufacturing thereof as well as printed circuit board and method of manufacturing thereof
US6297553B1 (en) Semiconductor device and process for producing the same
US8164003B2 (en) Circuit board surface structure and fabrication method thereof
WO2013027718A1 (en) Component-mounting printed circuit board and manufacturing method for same
US20080272177A1 (en) Conductive bonding material fill techniques
JP2009158593A (en) Bump structure and method of manufacturing the same
JP6406598B2 (en) Printed wiring board and manufacturing method thereof
US7956472B2 (en) Packaging substrate having electrical connection structure and method for fabricating the same
JP6031353B2 (en) Wiring board and manufacturing method thereof
US20220102262A1 (en) Semiconductor device having chip stacked and molded
JP5760260B2 (en) Printed circuit board with built-in component and manufacturing method thereof
CN104979314A (en) Semiconductor packaging structure and semiconductor technologies
JP3299679B2 (en) Multilayer wiring board and method of manufacturing the same
JP4835629B2 (en) Manufacturing method of semiconductor device
JP3608559B2 (en) Method for manufacturing element-embedded substrate
JP5677179B2 (en) Multilayer circuit board and manufacturing method thereof
US10470314B1 (en) Methods of soldering and applications thereof
JP2007048919A (en) Bump forming method
JP3994924B2 (en) Circuit board manufacturing method
TW200816418A (en) Method for manufacturing surface structure of package substrate
US20090159318A1 (en) Printed circuit board and manufacturing method thereof
JP6024019B2 (en) Printed circuit board and manufacturing method thereof
JP2008160150A (en) Method of producing substrate
JP2907154B2 (en) Printed circuit board and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6031353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees