JP2014119734A - 画像形成装置及び検出装置 - Google Patents

画像形成装置及び検出装置 Download PDF

Info

Publication number
JP2014119734A
JP2014119734A JP2012277447A JP2012277447A JP2014119734A JP 2014119734 A JP2014119734 A JP 2014119734A JP 2012277447 A JP2012277447 A JP 2012277447A JP 2012277447 A JP2012277447 A JP 2012277447A JP 2014119734 A JP2014119734 A JP 2014119734A
Authority
JP
Japan
Prior art keywords
image
detection
light
detected
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012277447A
Other languages
English (en)
Inventor
Kenichi Fujii
健一 藤井
Takuya Mukohara
卓也 向原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012277447A priority Critical patent/JP2014119734A/ja
Priority to US14/441,972 priority patent/US9576229B2/en
Priority to PCT/JP2013/081332 priority patent/WO2014097810A1/en
Publication of JP2014119734A publication Critical patent/JP2014119734A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Accessory Devices And Overall Control Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

【課題】色ずれ及び濃度補正制御に使用する光学センサに絞り機構を必要とせず、必要な検出精度を確保する。
【解決手段】画像形成装置は、像担持体と、像担持体に向けて光を照射する照射手段と、照射手段が照射した光の反射光を受光し、受光量に応じた検出信号を出力する受光手段と、現像剤像である検出画像を像担持体に形成する形成手段と、像担持体に形成した検出画像が照射手段による照射領域を通過する間に受光手段が出力する検出信号に基づき検出画像の位置情報または濃度情報を検出する検出手段と、を備えており、検出手段は、検出画像の移動方向の少なくとも一方の端部を除く、検出画像及び像担持体の表面の異なる位置からの正反射光成分を含む受光量に対応する検出信号の値の差に応じた信号により検出画像の位置情報または濃度情報を検出する。
【選択図】図8

Description

本発明は、主に電子写真プロセスを採用したカラーレーザプリンタ、カラー複写機、カラーファクシミリ等の画像形成装置における色ずれ及び濃度検出技術に関する。
近年、電子写真方式の画像形成装置は、印刷速度の高速化のために、感光体を色毎に設けたタンデム型が主流となっている。タンデム型の画像形成装置では、例えば、中間転写ベルトに色ずれや濃度検出のための現像剤像である検出画像を形成し、検出画像からの反射光を光学センサで検出することで色ずれや濃度の補正を実行している。
特許文献1は、トナー像からの正反射光(鏡面反射光ともいう)及び散乱反射光を検出する2つの光学センサを備え、2つの光学センサの出力差に応じて画像濃度を制御することを開示している。また、特許文献2は、正反射光と散乱反射光の双方を、プリズムを用いて検出する光学センサを開示している。これらの方式では、一方の受光素子で散乱反射光成分のみを検出し、もう一方の受光素子で検出した正反射光と散乱反射光の和から差し引く補正等を行うことで、正反射光成分のみを取り出している。この取り出した正反射光成分から濃度を検出する方式は、トナーからの散乱反射光ではなく、下地からの正反射光を主として検出する。したがって、散乱反射光量に差がある現像剤の色によらず濃度検出を行うことができ、また、人間の視覚特性に対しても敏感なハイライト領域の検出能力が高いとされている。しかしながら、特許文献1のような方式の場合、正反射光成分のみを取り出す補正処理の誤差が大きくなるとされている。そのため、特許文献3は、正反射光の実効スポット径を絞ることにより散乱反射光成分の比率を低下させて精度を向上させることを開示している。
また、色ずれや濃度検出のための検出画像による現像剤の消費は、極力減らすことが求められている。つまり、検出画像は可能な限り小さくすることが好ましい。小さい検出画像でも精度良く濃度検出を行うためには空間分解能の高いセンサが必要とされ、特許文献4は、発光側の照射面積を小さくしたセンサを開示している。
特開平3−209281号公報 特開2003−76129号公報 特開2005−300918号公報 特開2005−241933号公報
従来の光学センサにおいて正反射光のスポット径を絞ると、光学センサ内のLEDチップの位置のばらつきや、絞り機構のメカニカルなばらつき等により、製造上の歩留まりや検出精度に多大な影響を与えるという課題があった。例えば、光学センサの空間分解能を高くするには、その絞り機構を小さくする必要がある。しかしながら、特許文献4によると、製造上のばらつき等を考慮すれば、正反射光のスポット径は1mm程度が限界である。
本発明は、以上のような課題を鑑みてなされたものであり、簡易な構成のセンサとし、検出の分解能を高くすることを目的とする。
本発明の一側面によると、像担持体と、前記像担持体に向けて光を照射する照射手段と、前記照射手段が照射した光の反射光を受光し、受光量に応じた検出信号を出力する受光手段と、現像剤像である検出画像を前記像担持体に形成する形成手段と、前記像担持体に形成した前記検出画像が前記照射手段による照射領域を通過する間に前記受光手段が出力する前記検出信号に基づき前記検出画像の位置情報または濃度情報を検出する検出手段と、を備えており、前記検出手段は、前記検出画像の移動方向の少なくとも一方の端部を除く、前記検出画像及び前記像担持体の表面の異なる位置からの正反射光成分を含む受光量に対応する前記検出信号の値の差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする。
簡易な構成のセンサとし、検出の分解能を高くすることが可能となる。
一実施形態による光学センサと1本のラインを含む検出画像を示す図。 一実施形態による光学センサと複数のラインを含む検出画像を示す図。 一実施形態による複数のラインを含む検出画像を検出したときの受光量の時間変化を示す図。 一実施形態による複数のラインを含む検出画像に対する処理の説明図。 一実施形態による1本のラインを含む検出画像に対する処理の説明図。 一実施形態による検出システムの概略的な構成図。 散乱反射光成分の除去の説明図。 一実施形態による検出画像を示す図。 一実施形態による差動処理の説明図。 一実施形態による検出画像を示す図。 一実施形態による差動処理の説明図。 一実施形態による光検出信号と散乱光除去信号を示す図。 第三実施形態の他の実施形態との相違点の説明図。 一実施形態による検出システムの概略的な構成図。 一実施形態による画像形成装置の概略的な構成図。
以下、本発明の例示的な実施形態について図面を参照して説明する。なお、以下の各図においては、実施形態の説明に必要ではない構成要素については図から省略する。また、以下の各図において、同様の構成要素には同様の参照符号を使用する。
<第一実施形態>
まず、本実施形態による画像形成装置の画像形成部101について図15を用いて説明する。なお、図15の参照符号の末尾のY、M、C、Bkは、それぞれ、対応する部材が対象とする現像剤であるトナーの色が、イエロー、マゼンタ、シアン、ブラックであることを示している。なお、以下の説明において色を区別する必要がない場合には、末尾のY、M、C、Bkを省いた参照符号を使用する。帯電部2は、図中の矢印の方向に回転駆動される、像担持体である感光体1を一様に帯電し、露光部7は、感光体1にレーザ光を照射して感光体1に静電潜像を形成する。現像部3は、現像バイアスを印加することで、静電潜像に現像剤を供給して、静電潜像を可視像であるトナー像(現像剤像)とする。一次転写ローラ6は、一次転写バイアスにより感光体1のトナー像を中間転写ベルト8に転写する。なお、中間転写ベルト8は、矢印81の方向に回転駆動される。各感光体1が中間転写ベルト8にトナー像を重ねて転写することでカラー画像が形成される。クリーニングブレード4は、中間転写ベルト8に転写されず感光体1に残ったトナーを除去する。
搬送ローラ14、15及び16は、カセット13内の記録材を搬送路9に沿って二次転写ローラ11まで搬送する。二次転写ローラ11は、二次転写バイアスにより中間転写ベルト8のトナー像を記録材に転写する。なお、記録材に転写されず中間転写ベルト8に残ったトナーは、クリーニングブレード21により除去され、廃トナー回収容器22へと回収される。トナー像が転写された記録材は、定着部17において、加熱及び加圧されてトナー像の定着が行われ、搬送ローラ20により装置外へと排出される。なお、エンジン制御部25は、マイクロコントローラ26を搭載しており、画像形成装置の図示しない各種の駆動源のシーケンス制御や、センサを用いた各種制御等を行う。また、中間転写ベルト8に対向する位置に光学センサ27が設けられている。
例えば、タンデム型の画像形成装置では、装置製造時の組み付け誤差、部品公差、部品の熱膨張等により機械寸法が設計値からずれ、これにより、色毎の位置ずれが発生する。このため、各色の色ずれを検出するための検出画像を中間転写ベルト8等に形成し、形成した検出画像からの反射光を光学センサ27で検出する。そして、その検出結果に基づいて、主走査及び副走査方向の書き出し位置や画像クロックを色毎に調整することにより色ずれの補正を行う。また、画像形成装置では、経時変化又は連続印刷により出力される画像の色味や濃度等が変化し得る。この変動を補正するために、濃度制御が行われる。濃度制御においては、中間転写ベルト8等に各色の濃度を検出するための検出画像を形成し、形成した検出画像からの反射光を光学センサ27で検出する。そして、その検出結果を各電圧条件やレーザ光のパワーといったプロセス形成条件にフィードバックすることによって各色の最大濃度や、ハーフトーン階調特性を補正する。光学センサ27による濃度検出は、検出画像を光源で照射し、反射光の強度を受光素子で検出する方式が一般的である。反射光の強度に対応する信号は、マイクロコントローラ26で処理され、プロセス形成条件にフィードバックされる。最大濃度の制御は、各色のカラーバランスを一定に保つことと、トナーの載り過ぎによる色重ねした画像の飛び散りや、定着不良を防止することを目的とする。一方、ハーフトーンの階調制御は、非線形的な入出力特性によって、入力画像信号に対して出力濃度がずれて自然な画像が形成できないことを防止することを目的としている。
以下、本実施形態の光学センサ27の詳細について、図1(A)を用いて説明する。図1(A)は光学センサ27と検出画像40との関係を示す斜視図である。なお、図1(A)に示す検出画像40は、中間転写ベルト8の移動方向とは直交する方向のトナーによる1本のラインを含むトナー像である。なお、以下の実施形態では1本のラインを実線として説明するが、点線又は破線等、途切れたラインであっても良い。また、図1(A)においては、図を見やすくするため、中間転写ベルト8そのものは省略している。本実施形態による光学センサ27は、パッケージ基板271の上に配置された発光素子272と受光素子277と、処理回路275と遮光壁276とを有している。色ずれ及び濃度検出で使用される通常の発光素子は、発光素子からフレアに拡散した光を集めるために、素子内に反射板が設けられている。砲弾型の発光素子の場合、集光レンズも構成されている。これに対し、本実施形態の光学センサ27では、反射板や集光レンズを設けずにLEDチップのみを配置することで点光源の発散光束を中間転写ベルト8に照射する。受光側に関しても、集光レンズ等は用いず、例えば受光量に応じた電流を出力するフォトダイオードで構成する。つまり、中間転写ベルト8での反射光は、光を絞るため又は集光するための光学部材を経由することなく受光素子で受光量に応じた信号に変換される。処理回路275は、発光素子272の制御と、受光素子277で検出した信号の処理を行い、処理した信号をマイクロコントローラ26に出力する。なお、光学センサ27は、樹脂及びガラスによってパッケージングされている。遮光壁276は、発光素子272が照射した光が、直接、受光素子277に迷光として入射することや、パッケージの界面による反射による光が受光素子277に入射することを防ぐために設けている。
画像形成装置は、中間転写ベルト8及び中間転写ベルト8上に形成した検出画像40に対して、発光素子272より光を照射し、それらからの反射光を受光素子277で受光することで色ずれや、濃度を検出する。基本的には、各色の検出画像40の相対的な通過タイミングを検出することにより色ずれ量を求め、中間調で形成された検出画像40からの平均光量を検出することにより濃度を判定する。色ずれ及び濃度は、中間転写ベルト8からの正反射光成分をモニタすることによって検出される。本実施形態の画像形成装置は、4色のトナーを使用しているが、トナーの色によって光の吸収・反射特性が異なる。例えば、赤外光の場合には、ブラックのトナーは光をほぼ吸収し、その他の色のトナーは、光を散乱反射する。赤色光の場合には、ブラック及びシアンのトナーは光をほぼ吸収し、他の色のトナーは、光を散乱反射する。
つまり、散乱反射量が多いトナーと、散乱反射量が少ない又は殆ど生じないトナーが混在している状態において、検出画像40による散乱光成分を除去する処理を行う必要がある。このため、従来の色ずれや濃度制御においては、光学センサに絞り機構を設けて散乱反射光成分のみを検出するための受光素子を別途設けていた。しかし、本実施形態の光学センサ27は、絞り機構を設けずに検出画像40よる散乱反射光成分を除去する。絞り機構を設けないため、本実施形態の光学センサ27は、従来と比較して、数分の1のサイズに小型化することが可能となる。
以下では、中間転写ベルト8及び中間転写ベルト上の検出画像40からの反射光の状態について図1(B)及び図1(C)を用いて詳しく説明する。図1(B)は、図1(A)のX軸方向から見た図であり、中間転写ベルト8は図面奥側から手前側に進む。図1(C)は、図1(A)のY軸方向から見た図であり、中間転写ベルト8は図面の白抜きの矢印方向に進む。中間転写ベルト8の表面では、発光素子272から照射された光は主に正反射し、受光素子277が検出する。この正反射光を実線矢印で示す。なお、図1(B)に示す様に、受光素子277に入射する反射光の幅は、発光素子272が点発光源であり、且つ、中間転写ベルト8への入射光と反射光の光路長が同一となる配置関係であった場合において、中間転写ベルトでの長さの2倍となる。一方、中間転写ベルト8に形成した検出画像40のトナーによるラインでは、発光素子272から照射された光は主に散乱反射され、受光素子277が検出する。この散乱反射光を破線矢印で示す。なお、散乱反射光に関しては、図面が煩雑となるため、発光素子272から中間転写ベルト8への照射光を省略し、反射光についても破線矢印を短く表記している。
続いて、複数のラインを含む縞状の検出画像40を用いた場合の光学センサ27の受光量、つまり、光学センサ27が出力する光検出信号について図2及び図3を用いて説明する。なお、各ラインを実線として説明するが、破線や点線等、途切れたラインであっても良い。図2は、中間転写ベルト8の移動方向と直交する方向の複数のトナーによるラインを含む検出画像40と、光学センサ27を示す斜視図である。なお、図2においても、図を見やすくするため、中間転写ベルト8そのものは省略している。図3は、複数のラインを含む検出画像40が発光素子272の照射領域を通過する際の受光素子277の受光量の時間変化を示す図である。なお、検出画像40の副走査方向、つまり、中間転写ベルト8の移動方向の幅は凡そ100mmとし、図3(A)から(D)は、ラインの幅と、隣接するライン間の領域(以下、スペースと呼ぶ。)の幅をそれぞれ異なる値としたときの受光量の時間変化である。具体的には、図3(A)のライン幅及びスペース幅が最も狭く、図3(B)、図3(C)、図3(D)の順にライン幅及びスペース幅を広げている。なお、図3には参考のためトナーのライン及びスペースを波形の下部に示している。ここで、図の左右方向が副走査方向に対応する。さらに、図3には、受光素子277が受光する総受光量に加えて、その内の散乱反射光量も示している。
検出画像40のラインでの散乱反射光は互いに干渉し、この干渉の度合いにより検出画像40全体での散乱反射光の反射状態が決定される。ラインのピッチが大きく、スペース幅が広い場合、散乱反射光は互いに干渉しても均一な状態とはならず、振動又は変動する状態となる。ここで、ラインのピッチとは、隣接するラインの中心間の距離であり、ライン幅とスペース幅の合計に等しい。例えば、図3(C)の状態よりもラインのピッチが大きい場合には散乱反射光の振動が非常に大きく、図3(D)の状態では、各ラインでの散乱反射光は、ほとんど干渉していない。逆に、図3(B)では、散乱反射光の振動は非常に小さくなり、図3(A)の状態では、振動は発生せずにほぼ均一である。なお、この散乱反射光成分の振動は、ラインのピッチのみならず、光学センサ27と中間転写ベルト8との距離にも依存して変化する。一方、検出画像40のスペース部分からの正反射光量は、ラインのピッチに応じて振動するため、総受光量は、破線で示した散乱反射光の波形に重畳する形で振動を繰り返すことになる。
尚、図3に示すラインは、濃度がほぼ100%となる状態で形成されたものである。濃度を検出する際には、このラインが中間調濃度で形成されることになる。この場合、散乱反射光成分はラインのピッチの周期で振動するものの、濃度100%の時よりもその振動振幅値は小さくなる。例えば、濃度0%であれば散乱反射光成分の振動振幅は0であり、濃度100%であれば、図3で示したものとなり、濃度が中間調であればその間の振動振幅になる。つまり、濃度100%の条件時に、散乱反射光成分が略一定となる条件で複数のラインが形成されていれば、濃度が中間調のときも散乱反射光成分は略一定となる。
続いて、光学センサ27が検出した総受光量から、トナーによる散乱反射光成分を除去して正反射成分を取り出す方法について、図4から図6を用いて説明する。
図4は光学センサ27が出力する光検出信号に対する処理の説明図であり、主に濃度の検出に使用できる。なお、図4は、散乱反射光が多い色のトナーで形成した検出画像40に対する各信号(図の左側)と、散乱反射光が少ない色のトナーで形成した検出画像40に対する各信号(図の右側)の両方を示している。なお、検出画像40のスペース幅や、光学センサ27と中間転写ベルト8との距離等は、散乱反射光量の振動が所定量内となる様に調整する。
図4(A)は、光学センサ27が出力する光検出信号を示している。散乱反射が多い色の検出画像40では、図3と同様に、散乱反射光の影響により波形全体が持ち上がる。散乱反射が少ない色の検出画像40では、照射光はトナーに吸収されるため、波形の持ち上がりが少ない状態で振動する波形となる。
例えば、2つの区間を設定し、この2つの区間の移動平均値をそれぞれ求め、それら移動平均値の差動処理を行ったものが図4(B)である。なお、2つの区間間隔は、光検出信号の位相が異なる所定の期間に設定する。例えば、光検出信号の振動周期の略半分の期間となる様に設定する。上述した様に、散乱光除去信号の振動が所定の範囲内となる様に検出画像40を形成しているため、図4(A)に示す光検出信号の振動は主に正反射光量の振動である。したがって、2つの区間の差動処理を行うことで散乱反射成分は除去又は所定量以下に抑圧される。つまり、図4(B)に示す信号は、総受光量から散乱光成分を除去した散乱光除去信号である。散乱光除去信号の振幅は、検出画像のラインと、スペース、つまり、中間転写ベルト8の表面部分からの反射光の明暗コントラスト、つまりトナーの濃度情報を示すものとなる。例えば、検出画像40のラインの濃度を低くすると、図4(B)に示す波形の振幅は小さくなる。
図4(C)は、図4(B)の散乱光除去信号から振幅値を抽出したものであり、濃度情報として使用することが可能となる。なお、検出画像40の検出開始及び終了付近において散乱反射光成分が均一ではないため、散乱反射の多い検出画像40では図4(B)に示す様に波形が若干歪むことになる。波形に歪が生じている部分から振幅値を抽出すると誤差につながるため、検出画像40の副走査方向の長さをある程度長くし、散乱反射光量が均一な状態を確保する。散乱反射光成分が均一であれば、その部分から振幅値を高精度に抽出可能となる。つまり、高精度な濃度情報を検出することが可能である。
図5は、図4と異なり1本のラインを含む検出画像40を使用した場合の光検出信号とその処理の説明図である。ここで、1本のラインを含む検出画像40は、例えば、色ずれの検出に使用できる。なお、図4と同様に、図5は、散乱反射光の多い色のトナーで検出画像40を形成した場合(図の左側)と、散乱反射光の少ない色のトナーで検出画像40を形成した場合(図の右側)の両方について示している。図5(A)に示す様に、1本のラインを含む検出画像40では、受光素子277が正反射光を受光する位置にラインが来たときに受光量が減衰する波形となる。なお、図5(A)に示す様に、散乱反射光が多い場合には、散乱反射光の影響により正反射光が落ち込む前後に受光量が増大することになる。
複数のラインを含む検出画像40のときと同様に、2つの区間を設け、この2つの区間の移動平均値をそれぞれ求め、さらにその移動平均値を差動処理した信号波形が図5(B)である。図5(B)の信号波形では散乱反射光がほぼ除去されており、トナーの散乱反射の大小に関わらず、同様の波形に補正される。1本のラインを含む検出画像40の場合、検出画像40が光学センサ27の検出領域を通過する際の散乱反射光量が一定ではないため、図5(B)に示す散乱光除去信号には若干の散乱光成分が残存する。しかし、色ずれ量の検出の場合には、検出画像40の通過タイミングを検出することが目的であるため、このことは支障にはならない。ただし、この散乱反射光の残存成分が支障にならないようにするために、散乱反射光を検出する時間幅に対して、検出画像40が光学センサ27の検出領域を通過する時間幅を十分に小さくすることができる。図5(B)の信号を所定の閾値と比較してタイミングデータを生成することによって、検出画像40の到達タイミング、つまり位置情報を検出することが可能となる。本実施形態では、トナーの散乱反射の大小又は有無に関わらず、同じ処理によって各色の検出画像40の濃度情報や位置情報を検出することができる。なお、図4に示す複数のラインを含む検出画像40であっても図4(B)に示す信号を所定の閾値と比較することで到達タイミングを検出することができる。
次に、図4及び図5で説明した処理を行う例示的な検出システムを図6に示す。光学センサ27は、中間転写ベルト8及び中間転写ベルト8上の検出画像40から反射光を検出する受光素子277と、受光素子277が出力する受光量に応じた電流を電圧に変換して光検出信号として出力する処理回路275とを備えている。信号処理部28は、図1のエンジン制御部25内に設けられ、光検出信号から散乱反射光成分を取り除いた散乱光除去信号を生成する散乱光除去部30を備えている。さらに、信号処理部28は、散乱光除去信号の振幅データを抽出する振幅データ生成部50と、散乱光除去信号の到達タイミングデータを抽出するタイミングデータ生成部60と、を備えている。
散乱光除去部30のサンプリング部31は、光検出信号をサンプリングし、移動平均処理部32及び33は、サンプリングされた光検出信号の各区間の移動平均値を算出する。具体的には、移動平均処理部32は、図4(A)及び図5(A)の区間1の移動平均値を算出し、移動平均処理部33は、図4(A)及び図5(A)の区間2の移動平均値を算出する。差動処理部34は、移動平均処理部32及び33が算出した移動平均値を差動演算することにより、散乱反射光成分を互いに相殺(キャンセル)して除去又は抑圧した散乱光除去信号を生成する。なお、移動平均処理部32及び33のそれぞれが移動平均値を算出する区間の間隔は、複数のラインを含む検出画像40のラインのピッチに応じた値に設定される。例えば、光検出信号の振幅が異なる位置を含む区間とすることができる。例えば、移動平均処理部32が、図4(A)の光検出信号の極大値を含む区間の移動平均を求めている間に、移動平均処理部33が、図4(A)の光検出信号の極小値を含む区間の移動平均を求める様に2つの区間の間隔を設定することができる。
なお、2つの区間の移動平均の差分を求める形態を説明しているが、複数の第1区間の移動平均の合計と、複数の第2の区間の移動平均の合計との差分を求める構成とすることもできる。例えば、3つの第1の区間のそれぞれが図4(A)の光検出信号の異なる極大値を含む区間の移動平均を求めている間に、3つの第2の区間のそれぞれが光検出信号の異なる極小値を含む区間の移動平均を求める様に計6つの区間の間隔を設定することができる。つまり、複数の第1区間のそれぞれの光検出信号の位相は同相であり、複数の第2区間のそれぞれの光検出信号の位相は同相となる様に各区間を設定できる。なお、この区間の数量、各区間の長さ、各区間相互の間隔は、上記以外の様々な値に設定することが可能であるが、基本的に中間転写ベルト8に形成する検出画像40の有無や濃度差によるコントラストを検出できる状態に設定する。本実施形態では、最も簡素な構成である区間が2つの場合について例示するが、その他の数であっても良い。
散乱光除去部30から出力された散乱光除去信号は、振幅データ生成部50と、タイミングデータ生成部60とに入力される。振幅データ生成部50の振幅検出部51は、散乱光除去信号の振幅値を検出する。検出された散乱光除去信号の振幅値は、振幅データ管理部52によって、記憶され、検出画像40からの反射光量の強度に相当するデータ、例えば濃度情報として管理される。また、タイミングデータ生成部60のタイミング検出部61は、散乱光除去信号が閾値を超えるタイミングを検出する。検出されたタイミングデータは、検出画像40の形成位置に相当する位置情報であり、各色の検出画像40に対するタイミングデータの相対関係を管理することで、色ずれ情報として扱うことが可能となる。
例えば、濃度情報を、各バイアスの電圧条件やレーザ光のパワーといったプロセス形成条件にフィードバックすることによって各色の最大濃度やハーフトーン階調特性が補正される。また、色ずれ情報に基づき、主走査及び副走査方向の書き出し位置や画像クロックを色毎に調整することにより色ずれが補正される。なお、上述した様に、ラインは実線のみならず、破線や点線等の途切れたラインを含むものである。また、上述した実施形態では、検出画像40のラインは、中間転写ベルト8の移動方向に直交する方向であるものとしたが、例えば、直交する方向に対して斜めに引いたラインであっても良い。つまり、検出画像40は、中間転写ベルト8の移動方向において、トナー量(現像剤量)が規則的に変化する画像であれば良く、検出画像40の移動方向とは異なる方向のラインを含むものとすることができる。
また、本実施形態の光学センサ27は、光の絞り機構がない構成であるため、従来の数分の1の大きさに小型化することができ、かつ、検出画像40からの散乱光成分を高精度に除去した信号を生成することが可能となる。さらに、絞り機構が存在しないため、製造上のばらつきによる問題を生じさせずに、検出の分解能を高くすることが可能となる。さらに、検出の分解能が高いために、色ずれや濃度検出に使用する画像のサイズを小さくすることが可能となる。
なお、図4(B)に示す様に、散乱反射の多い検出画像40の端部では散乱反射光成分が均一ではないため波形が若干歪む。この波形の歪みをより小さく抑制することができれば、信号振幅の検出精度を向上させることができる。以下では、この検出精度を向上させるため、区間1の前後両側に2つの区間を配置して差分を取る方法について説明する。
図7(A)〜(D)は、図3(A)において点線で示す散乱反射光成分の波形である。検出画像40が光学センサ27の検出範囲内へ移動するにつれて散乱反射光は徐々に強くなる。また、検出画像40が光学センサ27の検出範囲外へと移動するにつて散乱反射光は徐々に弱くなる。したがって、図7(A)〜(D)に示す様に、散乱反射光の時間変化は、その両端部では傾斜を伴った波形となる。図7(A)〜(D)においては、差動処理を行う区間の設定と、中間転写ベルト8と光学センサ27との距離であるギャップ距離をそれぞれ変えている。また、図7(E)〜(H)は、それぞれ、図7(A)〜(D)に示す区間により差動処理を行った後の信号である。
図7(E)は、図7(A)に示す2つの区間の移動平均値をそれぞれ求めて差動処理を行ったときの波形であり、残存する散乱反射光成分を示している。検出画像40の端部では、散乱反射光成分が均一ではなく波形が傾斜しているため、残存する散乱反射光成分が比較的多いことが分かる。なお、図7(E)〜(H)は、残存する散乱反射光成分を強調して表示している。図7(F)は、図7(B)の様に、区間1の前後に区間2及び区間3を設け、区間1の移動平均値と、区間2及び区間3の移動平均値との差動処理を行ったときの波形である。区間2及び区間3の移動平均値とは、区間2の移動平均値と、区間3の移動平均値の平均値を意味する。なお、区間1と区間2との時間間隔と、区間1と区間3との時間間隔は同じとし、その時間間隔の設定の考え方は上記2つの区間の場合と同様である。区間1の両側に2つの区間を設定して差動処理を行うことで、検出画像40の端部においても、残存する散乱反射光成分を大幅に抑えることができる。図7(G)は、図7(C)に示す様に区間を設定して差動処理を行ったときの波形である。なお、図7(B)と図7(C)の区間の設定の違いは、区間間隔のみである。具体的には、図7(B)の区間1と区間2及び区間3それぞれとの区間間隔TSより、図7(C)の区間1と区間2及び区間3それぞれとの区間間隔TLを長くしている。なお、検出画像40のライン間のピッチは、区間間隔に合わせた長さとしている。図7(G)から検出画像40のライン・ピッチを狭くする程、差動処理による散乱反射光成分を抑制する効果が大きくなることが分かる。図7(H)は、図7(D)に示す様に区間を設定して差動処理を行ったときの波形である。なお、図7(D)と図7(C)の違いは、ギャップ距離のみであり、図7(D)のギャップ距離を図7(C)のギャップ距離より大きくしている。ギャップ距離が大きくなると、より広い範囲からの散乱反射光を検出するため、散乱反射光の検出波形の立ち上がり・立ち下がり部の傾きが緩やかになる。よって、差動処理による散乱反射光成分を抑制する効果が大きくなる。なお、図7(A)の様に2つの区間を設定するのではなく、図7(B)〜(D)に示す様に、区間1と、その両側の2つの区間との差動処理を行う形態を、以下では、両側差動演算と呼ぶものとする。なお、両側差動演算においては、図6の移動平均処理部32が区間1の移動平均を求め、移動平均処理部33が、区間1の両側の2つの区間それぞれの移動平均等を求める。
なお、上記両側差動演算においては、1つの区間1と、1つの区間2及び区間3との差動処理を行うものであったが、この3つの区間を1組とし、この組を複数設ける構成とすることもできる。このとき、区間2及び区間3は、他の組と共用することができる。例えば、第1の組の区間2は、当該第1の組より時間的に早い第2の組の区間3として使用することができる。また、区間毎の平均値を使用するため、区間1から区間3の幅を同じにしなくとも良い。例えば、区間2及び区間3を区間1の半分とすることができる。こうすることで、各区間が1つの組の属する様に、各区間を設定することが容易となる。さらに、区間の移動平均値ではなく、第1の時間位置と、第2の時間位置及び第3の時間位置の平均値との差分を、これら3つの時間位置を移動させながら求める構成であっても良い。なお、第2の時間位置は、第1の時間位置より早く、第3の時間位置は、第1の時間位置より遅い時間位置とする。このとき、第1の時間位置と第2の時間位置との時間間隔と、第1の時間位置と第3の時間位置との時間間隔とは等しくすることができる。
両側差動演算による除去される散乱反射光成分は、区間の設定方法と、区間間隔と、散乱反射光量の立ち上がり・立ち下がりの速さによって大きく変わる。例えば、区間間隔は、検出画像40のラインのピッチ間隔に応じて設定する必要がある。また、散乱反射光量の立ち上がり・立ち下がり部分の傾き具合は、検出画像40のラインの濃度やギャップ距離等の様々な条件によって決定されるため、所望の状態にできない場合もある。つまり、両側差動演算は、検出画像40のラインのピッチと、光学センサ27の配置を可能な範囲で適正化することによりその効果をより高めることができるものの、上記制約により所望の効果レベルにできない場合もある。
このような場合には、散乱反射光成分が残存していたとしても、散乱反射光成分が残存していない部分のみから信号振幅を抽出するようにすれば、信号振幅の抽出精度を向上することができる。
図8(A)は、散乱反射の多い色のトナーで形成した複数のラインを含む検出画像41を示している。なお、図中の白抜きの矢印は、中間転写ベルト8の移動方向である。検出画像41は、中央の部分41aと、その前後の部分41bとを含んでいる。なお、中央の部分41aの両端のライン41a−s及び41a−lは、端部41bのラインと同じ濃度で形成される。この端部41bにより、中央部41aからの正反射光を光学センサ27が受光している間の散乱反射光成分は略均一な状態となる。したがって、中央部41aからの正反射光を光学センサ27が受光している間の光検出信号に基づき信号振幅を抽出することにより、信号振幅の抽出精度を向上することができる。なお、端部41bのラインの数量は、ラインのピッチ、濃度及びギャップ距離等によって決定される。
図8(B)は、散乱反射の少ない色のトナーで形成した複数のラインを含む検出画像42を示している。検出画像42は、散乱反射成分が少ないため、検出画像41の様に端部41bを設ける必要はない。
図9(A)の左側に示す光検出信号は、検出画像41を検出したときのものであり、右側に示す光検出信号は、検出画像42を検出したときのものである。また、図9(C)の散乱光除去信号は、図9(A)に示す様に区間1〜区間3を設定して両側差動演算を行ったときのものである。また、図9(B)の左側に示す光検出信号は、検出画像41を検出したときのものであり、右側に示す光検出信号は、検出画像42を検出したときのものである。なお、図9(A)と図9(B)の違いは検出画像41、42のラインのピッチであり、図9(B)では、図9(A)よりラインのピッチを大きくしている。
図9(C)では、検出画像41の端部においても散乱反射光成分は略除去されている。これに対して、図9(D)では、検出画像41の端部において散乱反射光成分が除去されず、よって、散乱光除去信号は、その端部において歪が生じている。この場合、図9(B)に示す検出画像41の中央部からの正反射光を検出している部分のみを使用することで信号振幅の抽出精度を向上することが可能となる。なお、検出画像42では、全領域を使用することができる。
以上、両側差動演算を行っても散乱光成分が残存する場合には、検出画像41の端部からの反射光を使用せず、中央部からの正反射光に対応する光検出信号の部分から信号振幅を抽出することにより、信号振幅の抽出精度を向上することが可能となる。その結果、特に濃度検出の精度を向上することができる。なお、両側差動演算ではなく、図7(A)に示す2つの区間を使用する場合でも同様である。
<第二実施形態>
続いて、第二実施形態について第一実施形態との相違点を中心に説明する。第一実施形態では、検出画像41、42のラインの濃度は同じであった。本実施形態では、中間調濃度のラインを多段階に順次グラデーション状に形成した検出画像を使用する。図10(A)は、散乱反射光の多い色のトナーで形成した検出画像43を示している。なお、図中の白抜きの矢印は、中間転写ベルト8の移動方向である。検出画像43は、中間転写ベルト8の移動方向の前側にある本体部43aと、後ろ側にある後ろ側端部43bに分けられる。検出画像43の本体部43aにおいては、ライン43a−sの濃度が最も低く、ライン43a−lの濃度が最も高くなっている。後ろ側端部43bは、本体部43aを検出しているときに散乱反射光が急激に低下しないように設けられる。なお、後ろ側端部43bのラインの濃度は、ライン43a−lの濃度とは大きく異ならない様にし、その数量は、ラインのピッチ、濃度及びギャップ距離等によって決定される。図10(B)は、散乱反射光の少ない色のトナーで形成した検出画像44を示している。検出画像44のラインの濃度は、図の左端のラインが最も低く、図の右側に向かうほど、その濃度が徐々に濃くなっている。
図11(A)は、検出画像43が光学センサ27の検出範囲を通過する際の散乱反射光成分の時間変化を示したものである。ラインの濃度の増加に伴い散乱反射光量が徐々に増加し、さらにその増加量は高濃度側になるほど多くなるため、図11(A)に示す様に弓なりの曲線となる。また、検出画像43の後ろ側の端部では第一実施形態と同様の理由により傾斜を伴って減少する波形となる。なお、検出画像43の前側の端部での濃度は低いため、第一実施形態と異なり、検出画像43の前側の端部では、急激に散乱反射光成分は増加しない。
図11(B)は、図11(A)に示す様に区間を設定して両側差動演算を行った時に残存する散乱反射光成分を示している。図11(B)に示す様に検出画像43の後ろ側端部において、散乱反射光成分が残存する。この様に、検出画像43では、高濃度側の端部でのみ散乱反射光成分が残存する。なお、検出画像43において、高濃度のラインを前側に形成し、徐々に濃度を薄くしてゆくと、前側の端部において散乱反射光成分が残存することになる。
図12(A)の左側に示す光検出信号は、検出画像43を検出したときのものであり、右側に示す光検出信号は、検出画像44を検出したときのものである。また、図12(B)の散乱光除去信号は、図12(A)に示す様に区間1〜区間3を設定して両側差動演算を行ったときのものである。図12(B)に示す様に高濃度側端部、本例においては後ろ側の端部を除いた本体部からの正反射光に対応する光検出信号の部分から信号振幅を抽出することにより、信号振幅の抽出精度を向上することが可能となる。その結果、特に濃度検出の精度を向上することができる。
<第三実施形態>
第一実施形態では、点光源の発散光束で照射した際の反射光を単一の受光素子277を用いて検出していた。本実施形態では、複数の受光素子を含む受光素子アレイを用いても、第一実施形態と同様に散乱反射光の影響を低減できることについて説明する。なお、以下では第一実施形態との相違点を中心に説明し、第一実施形態と同様な部分については説明を省略する。
図13の(A)、(B)及び(C)は、単一の受光素子277を用いた第一実施形態の散乱光除去の説明図である。なお、照射光は点光源の発散光束を用いたものであるが、図が煩雑となるためその記載を省略する。また、図13(A)〜(F)において実線は正反射光を、破線は散乱反射光を示している。図13(A)は、受光素子277が、中間転写ベルト8のB3と示した領域からの正反射光を受光している状態である。領域B2に配置された検出画像40からの散乱反射光も受光している。その後、中間転写ベルト8が回転駆動され、受光素子277による正反射光の反射位置に検出画像40のラインが到達した状態が図13(B)である。受光素子277は正反射光を殆ど受光せず、領域B2に配置されたラインからの散乱反射光を受光する。図13(C)は、さらに中間転写ベルト8が回転駆動され、領域B1からの正反射光を受光している状態である。この状態においても、領域B2のラインからの散乱反射光は受光する。つまり、散乱反射光は図13(A)〜(C)の何れの状態においても受光するが、正反射光については図13(B)の状態では受光していない。従って、第一実施形態で説明したように、図13(B)の状態での受光量から、状態(A)及び(C)での受光量を減ずることで散乱光成分を精度良く抑圧することができる。
続いて、受光素子281、282、283を含む受光素子アレイ280を用いる本実施形態について説明する。図13(D)においては、中間転写ベルト8の領域B3からの正反射光を受光素子281が受光し、領域B5からの正反射光を受光素子283が受光している。一方、受光素子282は、正反射光の反射位置に検出画像のラインがあるため正反射光を殆ど受光していない。図13(E)は、図13(D)より中間転写ベルト8が移動した状態であり、受光素子282は、中間転写ベルト8の領域B3からの正反射光を受光している。一方、受光素子281及び受光素子283への正反射光の反射位置には検出画像のラインがあるため、これらは正反射光を殆ど受光していない。図13(F)は、さらに、中間転写ベルト8が移動し、受光素子281及び283は正反射光を受光しているが、受光素子282は、正反射光を殆ど受光していない。
尚、検出画像40からの散乱反射光については、図13(D)〜(F)の各状態において受光素子281、受光素子282及び受光素子283は受光している。このように中間転写ベルト8の表面が移動することで、検出画像40のラインにより各受光素子の受光量が逐次変化する。本実施形態では、受光素子282が出力する光検出信号と、受光素子282の両側に配置した受光素子281及び283の光検出信号の同じ時間位置の差動処理を行う。この構成により、第一実施形態における両側差動演算と同様に、散乱反射光を効果的に除去した信号を生成することができる。
図14は、本実施形態による検知システムの概略的な構成図である。図14に示す様に、本実施形態における光学センサ27は、受光素子アレイ280を含み、受光素子アレイ280は、受光素子281、282及び283を含んでいる。各受光素子281〜283が出力する受光量に応じた電流は、それぞれ、処理回路275の検出回路273、274及び279によって光検出信号に変換され、差動処理部290に出力される。差動処理部290は、検出回路274からの光検出信号と、検出回路273及び279からの光検出信号の和との差動処理により散乱反射光成分を除去した信号を生成する。なお、本実施形態では受光素子281から283を中間転写ベルト8の表面の移動方向、つまり副走査方向にそって、受光素子281、282、283の順で並べるものとしている。なお、本実施形態においては、受光素子282が受光する受光量と、受光素子281及び283の総受光量との差を使用する。したがって、受光素子281、282及び283の受光領域の面積が等しいとすると、受光量を一致させるため、受光素子281の受光量と受光素子283の受光量の平均値と、受光素子282の受光量との差動処理を行う。或いは、受光素子282の受光領域の副走査方向の長さを、受光素子281及び283の受光領域の副走査方向の長さの合計と等しくする。例えば、受光素子281及び283の受光領域の副走査方向の長さをそれぞれ、受光素子282の受光領域の副走査方向の長さの半分とすることができる。なお、本実施形態では、受光素子281から283の組を1つだけ設けたが、この組を副走査方向において複数設けることもできる。この場合、散乱光除去信号は、各組について差動処理を行った信号の和となる。これは、第一実施形態において、複数の区間1の移動平均の合計と、複数の区間2及び複数の区間3の移動平均との差分を求める構成に相当する。本実施形態において、受光素子281と受光素子282の距離は、第一実施形態における区間1と区間2との時間間隔に相当する。同様に、受光素子282と受光素子283の距離は、第一実施形態における区間1と区間3との時間間隔に相当する。
以下、信号処理部28では、第一実施形態と同様に、散乱反射光を除去した信号の振幅値情報及びタイミング情報用いることにより、各色について濃度情報及び位置情報を検出する。本実施形態は、中間転写ベルト8の異なる副走査位置での正反射光に対して、同じ時間タイミングで複数の受光素子を用いて検出する方法である。そのため、信号処理等に関して、簡素な構成とすることができる利点がある。また、リアルタイムに検出画像40からの散乱反射光を取り除いた信号を監視できる利点を有する。なお、両側差動演算に対応させて、3つの受光素子を使用する形態で説明したが、第一実施形態において2つの区間の差動処理を行う形態に対応させて、2つの受光素子を使用する形態であっても良い。また、本実施形態においても、散乱光の多いトナーで形成した検出画像に対しては、その端部からの反射光を使用しない。
なお、第一実施形態は、1つの受光素子を使用して検出した受光量の時間変化を示す信号の異なる時間位置の差動処理を行うものであった。これは、検出画像40が発光素子272の照射領域を通過する際、検出画像40及びその周囲の中間転写ベルト8表面の異なる位置からの正反射光成分を含む反射光量の差分を取るものである。例えば、第一実施形態で検出信号の第1の時間位置と、第1の時間位置より後の第2の時間位置との差動処理を行うものとする。なお、第1の時間において受光素子277への正反射光の反射位置である検出画像40上の位置を第1の位置とし、第2の時間において受光素子277への正反射光の反射位置である検出画像40又は中間転写ベルト8表面の位置を第2の位置とする。この場合、第1の位置と第2の位置との距離は、中間転写ベルト8の表面の移動速度に第1の時間と2の時間との差分を乗じた値に等しい。よって、第1の時間位置と第2の時間位置の差動処理を行うことは、受光素子277が第1の位置から正反射光を受光しているときの総受光量と、受光素子277が第2の位置から正反射光を受光しているときの総受光量との差動処理を行うことに相当する。なお、ここで、正反射光成分を含む反射光量とは、検出画像40のスペースや中間転写ベルト8表面からの強い正反射光を受光している状態のみならず、ラインにより散乱反射されて、正反射光成分が零や大変少なくなっている状態をも含んでいるものとする。さらに、第一実施形態では第1の時間位置と、第1の時間位置の前後にある第2の時間位置及び第3の時間位置との差動処理を行う形態についても説明した。これは、第1の位置から正反射光を受光しているときの総受光量と、第2の位置及び第3の位置から正反射光を受光しているときの総受光量との差動処理を行うことに相当する。なお、第3の位置とは、第3の時間位置において受光素子277への正反射光の反射位置である。
また、第三実施形態は、複数の受光素子を使用し、それぞれの受光素子で検出した受光量の時間変化を示す信号の同じ時間位置の差動処理を行うものであった。受光素子の配置位置同じにはなり得ず、異なるものであるため、これは、検出画像40及びその前後の中間転写ベルト8表面の異なる位置からの正反射光成分を含む反射光量の差分を取るものである。例えば、第三実施形態で第1の受光部と第2の受光部の2つの受光部を副走査方向に配置し、第1の受光部が第1の検出信号を出力し、第2の受光部が第2の検出信号を出力するものとする。第1の受光部が検出画像40の第1の位置から正反射光を受光している第1の時間において、第2の受光部への正反射光の反射位置となる検出画像40又は中間転写ベルト8の表面上の位置を第2の位置とする。この場合、第1の位置と第2の位置の距離は、第1の受光部と第2の受光部との距離に応じた距離となる。例えば、発光素子から検出画像40までの光路長と検出画像40から受光部までの光路長が等しい場合、第1の位置と第2の位置との距離は、第1の受光部と第2の受光部との距離の半分である。この場合、第1の検出信号及び第2の検出信号の第1の時間位置の値の差動処理を行うことは、第1の受光部が第1の位置から正反射光を受光し、第2の受光部が第2の位置から正反射光を受光しているときの各受光量の差動処理を行うことに相当する。つまり、第一実施形態と第三実施形態は、共に、検出画像40及びその前後の中間転写ベルト8表面の異なる位置からの正反射光成分を含む反射光量の差分を取るものである。さらに、例えば、第1の受光部〜第3の受光部の3つの受光部を副走査方向に配置し、第1の受光部が出力する第1の検出信号と、第2及び第3の受光部が出力する第2及び第3の検出信号の差動処理を行うものとする。上記と同様に、これは、第1の位置から正反射光を受光しているときの総受光量と、第2の位置及び第3の位置から正反射光を受光しているときの総受光量との差動処理を行うことに相当する。
なお、受光素子の受光領域は主走査方向の線でなく、副走査方向においてもある幅があるため、受光素子は、検出画像40及び中間転写ベルト8の副走査方向のある幅からの正反射光を同時に受光する。これは、副走査方向の受光量の平均値を求めていることに相当する。つまり、第一実施形態では区間の平均値を求めて差動処理を行っていたが、第一実施形態における区間の幅は、第三実施形態における受光素子の受光領域の副走査方向の長さに相当する。そして、第一実施形態における差動処理を行う2つの区間の区間間隔は、第三実施形態においては、2つの受光素子の副走査方向における配置間隔に相当する。
さらに、第一実施形態と第三実施形態は、共に、光検出信号の位相をずらして差動処理を行うものということができる。具体的には、第一実施形態において2つの区間の差動処理を行う構成は、1つの光検出信号を2分岐して一方の光検出信号を所定量だけ遅延させて差動処理を行っていることに等しい。ここで、遅延させる所定量は、第一実施形態における区間間隔に等しい。もちろん、単に位相をずらすのではなく、移動平均処理を行って差動処理を行うことも可能である。そして、第三実施形態では、複数の受光部それぞれの光検出信号の差動処理を行うものであるが、複数の受光部はその配置位置が異なるため、複数の受光部それぞれの光検出信号は互いに位相がずれたものである。この場合の位相差は、各受光部の配置位置の距離に相当する。
<その他の実施形態>
なお、画像形成装置を例にして本発明を説明したが、画像形成装置等に実装され得る検出装置として実装することも可能である。また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。

Claims (19)

  1. 像担持体と、
    前記像担持体に向けて光を照射する照射手段と、
    前記照射手段が照射した光の反射光を受光し、受光量に応じた検出信号を出力する受光手段と、
    現像剤像である検出画像を前記像担持体に形成する形成手段と、
    前記像担持体に形成した前記検出画像が前記照射手段による照射領域を通過する間に前記受光手段が出力する前記検出信号に基づき前記検出画像の位置情報または濃度情報を検出する検出手段と、
    を備えており、
    前記検出手段は、前記検出画像の移動方向の少なくとも一方の端部を除く、前記検出画像及び前記像担持体の表面の異なる位置からの正反射光成分を含む受光量に対応する前記検出信号の値の差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする画像形成装置。
  2. 前記照射手段は、前記像担持体に発散光束を照射することを特徴とする請求項1に記載の画像形成装置。
  3. 前記検出画像及び前記像担持体での反射光は、光を絞るため又は集光するための光学部材を経由することなく前記受光手段により受光されて前記検出信号に変換されることを特徴とする請求項1又は2に記載の画像形成装置。
  4. 前記検出手段は、前記検出画像及び前記像担持体の表面の第1の位置からの正反射光成分を含む受光量に対応する前記検出信号の値と、前記第1の位置に対して前記検出画像の移動方向の両側にある第2の位置及び第3の位置からの正反射光成分を含む受光量に対応する前記検出信号の値の平均値との差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする請求項1から3のいずれか1項に記載の画像形成装置。
  5. 前記検出画像は、前記検出画像の移動方向において現像剤量が変化し、
    前記検出画像の移動による、前記受光手段が受光する前記検出画像からの散乱反射光量の振動が所定量内となる様に、前記像担持体と前記受光手段との距離と、前記検出画像の現像剤量の変化は設定されていることを特徴とする請求項1から4のいずれか1項に記載の画像形成装置。
  6. 前記検出画像は、前記検出画像の移動方向とは異なる方向であり、前記移動方向に沿ってその濃度が高く又は低くなる複数のラインを含み、
    前記検出画像の移動方向の少なくとも一方の端部は、前記検出画像のラインの高濃度側の端部であることを特徴とする請求項1から5のいずれか1項に記載の画像形成装置。
  7. 前記検出手段は、前記検出画像の両方の端部を除く、前記検出画像及び前記像担持体の表面の異なる位置からの正反射光成分を含む受光量に対応する前記検出信号の値の差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする請求項1から5のいずれか1項に記載の画像形成装置。
  8. 像担持体と、
    前記像担持体に向けて光を照射する照射手段と、
    前記照射手段が照射した光の反射光を受光し、受光量に応じた検出信号を出力する受光手段と、
    現像剤像である検出画像を前記像担持体に形成する形成手段と、
    前記像担持体に形成した前記検出画像が前記照射手段による照射領域を通過する間に前記受光手段が出力する前記検出信号に基づき前記検出画像の位置情報または濃度情報を検出する検出手段と、
    を備えており、
    前記検出手段は、前記検出画像の移動方向の少なくとも一方の端部を検出している時間を除く異なる時間位置の前記検出信号の差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする画像形成装置。
  9. 前記検出手段は、前記検出信号の第1の時間位置の値と、前記検出信号の前記第1の時間位置より早い第2の時間位置の値及び前記検出信号の前記第1の時間位置より遅い第3の時間位置の値の平均値との差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする請求項8に記載の画像形成装置。
  10. 前記検出画像は、前記検出画像の移動方向とは異なる方向の複数のラインを含み、
    前記複数のラインの間隔は、前記検出画像の移動による、前記受光手段が受光する前記検出画像からの散乱反射光量の振動が所定量内となる間隔であることを特徴とする請求項8又は9に記載の画像形成装置。
  11. 前記検出画像は、前記検出画像の移動方向とは異なる方向であり、前記移動方向に沿ってその濃度が高く又は低くなる複数のラインを含み、
    前記検出画像の移動方向の少なくとも一方の端部は、前記検出画像のラインの高濃度側の端部であることを特徴とする請求項8から10のいずれか1項に記載の画像形成装置。
  12. 像担持体と、
    前記像担持体に向けて光を照射する照射手段と、
    前記照射手段が照射した光の反射光を受光し、受光量に応じた第1の検出信号を出力する第1の受光手段と、
    前記照射手段が照射した光の反射光を受光し、受光量に応じた第2の検出信号を出力する第2の受光手段と、
    現像剤像である検出画像を前記像担持体に形成する形成手段と、
    前記像担持体に形成した前記検出画像が前記照射手段による照射領域を通過する間に前記第1の受光手段が出力する前記第1の検出信号及び前記第2の受光手段が出力する前記第2の検出信号に基づき前記検出画像の位置情報または濃度情報を検出する検出手段と、
    を備えており、
    前記検出手段は、前記検出画像の少なくとも一方の端部を検出している時間を除く前記第1の検出信号と前記第2の検出信号の差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする画像形成装置。
  13. 前記照射手段が照射した光の反射光を受光し、受光量に応じた第3の検出信号を出力する第3の受光手段をさらに備えており、
    前記検出手段は、前記検出画像の少なくとも一方の端部を検出している時間を除く前記第1の検出信号と、前記第2の検出信号及び前記第3の検出信号の差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする画像形成装置。
  14. 前記検出画像は、前記検出画像の移動方向とは異なる方向の複数のラインを含み、
    前記複数のラインの間隔は、前記検出画像の移動による、前記第1の受光手段及び前記第2の受光手段が受光する前記検出画像からの散乱反射光量の変動が所定量内となる間隔であることを特徴とする請求項12又は13に記載の画像形成装置。
  15. 前記検出画像は、前記検出画像の移動方向とは異なる方向であり、前記移動方向に沿ってその濃度が高く又は低くなる複数のラインを含み、
    前記検出画像の移動方向の少なくとも一方の端部は、前記検出画像のラインの高濃度側の端部であることを特徴とする請求項12から14のいずれか1項に記載の画像形成装置。
  16. 前記位置情報を用いて形成する画像の位置の補正を行う、或いは、前記濃度情報を用いて形成する画像の濃度の補正を行うことを特徴とする請求項1から15のいずれか1項に記載の画像形成装置。
  17. 像担持体に向けて光を照射する照射手段と、
    前記照射手段が照射した光の反射光を受光し、受光量に応じた検出信号を出力する受光手段と、
    前記像担持体に形成された現像剤像である検出画像が前記照射手段による照射領域を通過する間に前記受光手段が出力する前記検出信号に基づき前記検出画像の位置情報または濃度情報を検出する検出手段と、
    を備えており、
    前記検出手段は、前記検出画像の移動方向の少なくとも一方の端部を除く、前記検出画像及び前記像担持体の表面の異なる位置からの正反射光成分を含む受光量に対応する前記検出信号の値の差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする検出装置。
  18. 像担持体に向けて光を照射する照射手段と、
    前記照射手段が照射した光の反射光を受光し、受光量に応じた検出信号を出力する受光手段と、
    前記像担持体に形成された現像剤像である検出画像が前記照射手段による照射領域を通過する間に前記受光手段が出力する前記検出信号に基づき前記検出画像の位置情報または濃度情報を検出する検出手段と、
    を備えており、
    前記検出手段は、前記検出画像の移動方向の少なくとも一方の端部を検出している時間を除く異なる時間位置の前記検出信号の差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする検出装置。
  19. 像担持体に向けて光を照射する照射手段と、
    前記照射手段が照射した光の反射光を受光し、受光量に応じた第1の検出信号を出力する第1の受光手段と、
    前記照射手段が照射した光の反射光を受光し、受光量に応じた第2の検出信号を出力する第2の受光手段と、
    前記像担持体に形成された現像剤像である検出画像が前記照射手段による照射領域を通過する間に前記第1の受光手段が出力する前記第1の検出信号及び前記第2の受光手段が出力する前記第2の検出信号に基づき前記検出画像の位置情報または濃度情報を検出する検出手段と、
    を備えており、
    前記検出手段は、前記検出画像の少なくとも一方の端部を検出している時間を除く前記第1の検出信号と前記第2の検出信号の差に応じた信号により前記検出画像の位置情報または濃度情報を検出することを特徴とする検出装置。
JP2012277447A 2012-12-19 2012-12-19 画像形成装置及び検出装置 Pending JP2014119734A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012277447A JP2014119734A (ja) 2012-12-19 2012-12-19 画像形成装置及び検出装置
US14/441,972 US9576229B2 (en) 2012-12-19 2013-11-14 Image forming apparatus and detection apparatus
PCT/JP2013/081332 WO2014097810A1 (en) 2012-12-19 2013-11-14 Image forming apparatus and detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012277447A JP2014119734A (ja) 2012-12-19 2012-12-19 画像形成装置及び検出装置

Publications (1)

Publication Number Publication Date
JP2014119734A true JP2014119734A (ja) 2014-06-30

Family

ID=51174573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012277447A Pending JP2014119734A (ja) 2012-12-19 2012-12-19 画像形成装置及び検出装置

Country Status (1)

Country Link
JP (1) JP2014119734A (ja)

Similar Documents

Publication Publication Date Title
JP6335624B2 (ja) 反射光検出装置およびこれを用いた装置
US9576229B2 (en) Image forming apparatus and detection apparatus
JP6089422B2 (ja) 画像形成装置
US9885990B2 (en) Image forming apparatus and detection apparatus for detecting position or density information of detection image
JP2002023458A (ja) 印刷装置及びトナー濃度測定方法
US10158780B2 (en) Image forming apparatus and optical sensor detecting target formed on image carrier or recording medium
JP5057165B2 (ja) 原稿読取装置及び画像形成装置
JP2014119733A (ja) 画像形成装置及び検出装置
US9494889B2 (en) Image forming apparatus and detection apparatus
JP6130659B2 (ja) 画像形成装置及び検出装置
JP2014119731A (ja) 画像形成装置及び検出装置
JP2014119734A (ja) 画像形成装置及び検出装置
JP2017090596A (ja) 画像形成装置
JP2008225171A (ja) 画像形成装置、位置ずれ調整方法、および位置ずれ調整プログラム
JP6525795B2 (ja) 反射光検出装置およびこれを用いた装置
JP2018063355A (ja) 画像形成装置、位置検出方法
JP5741028B2 (ja) 電子写真装置及びプログラム
JP2006184504A (ja) 記録材判別装置および画像形成装置
JP5265395B2 (ja) 画像形成装置
JP6071525B2 (ja) 画像形成装置
JP2009015242A (ja) 画像形成装置
JP2005091537A (ja) 画像形成装置
JP2010181481A (ja) 光走査装置及びこれを使用する画像形成装置
JP2001051469A (ja) カラー画像形成装置
JP2006215352A (ja) 画像形成装置