JP2014098471A - 圧力リング装着ピストン - Google Patents

圧力リング装着ピストン Download PDF

Info

Publication number
JP2014098471A
JP2014098471A JP2012251945A JP2012251945A JP2014098471A JP 2014098471 A JP2014098471 A JP 2014098471A JP 2012251945 A JP2012251945 A JP 2012251945A JP 2012251945 A JP2012251945 A JP 2012251945A JP 2014098471 A JP2014098471 A JP 2014098471A
Authority
JP
Japan
Prior art keywords
ring
groove
piston
oil
ring groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012251945A
Other languages
English (en)
Inventor
Hideto Inagaki
英人 稲垣
Norikazu Katsumi
則和 勝見
Tomohisa Yamada
智久 山田
Kiyoyuki Kawai
清行 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
TPR Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TPR Co Ltd, Toyota Central R&D Labs Inc filed Critical TPR Co Ltd
Priority to JP2012251945A priority Critical patent/JP2014098471A/ja
Publication of JP2014098471A publication Critical patent/JP2014098471A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

【課題】圧力リング装着ピストンにおいて、第1圧力リングをリング溝面から離間しやすくして、オイル消費を低減することである。
【解決手段】圧力リング装着ピストン18は、第1リング溝40にピストン移動方向の移動可能に配置された第1圧力リングであるトップリング34と、第2リング溝42にピストン移動方向の移動可能に配置された第2圧力リングであるセカンドリング36とを含む。トップリング34の燃焼室側の軸方向片側の端面である第1端面、または第1端面に対向する第1リング溝40のリング溝面を対向形成面として、対向形成面は、表面粗さの最大深さよりも大きな凸部または凹部を有している。
【選択図】図2

Description

本発明は、圧力リング装着ピストンに関し、特にピストンの複数のリング溝に燃焼室側からクランク室側に向かって第1圧力リングと第2圧力リングとオイルリングとが順に配置された構造に関する。
従来から内燃機関用ピストンの外周面に複数のリング溝を設けるとともに、複数のリング溝に圧力リング及びオイルリングを配置することが行われている。
特許文献1には、2ピース構造のオイルリングが記載されている。オイルリングが油膜によってリング溝の下面に付着することを抑制し、オイルリングの上面とリング溝との間からリング溝内のオイルが吸い上げられるのを抑制するために、リング溝の下面またはオイルリングの下面に凹部が設けられている。
特許文献2には、第1圧力リングであるトップリングにおいて、皿バネ状の断面を持ち、シリンダにピストンが嵌合された場合に、トップリングが、ピストンのリング溝の溝面と対向する軸方向端のリング端面を有し、リング端面に溝面と平行またはほとんど平行な平滑部を設けることが記載されている。この場合、トップリングは、断面形状で燃焼室側の外側上向きか、またはクランク室側の外側下向きの姿勢を有する。
特許文献3には、ピストンの外周面で、トップリングと第2圧力リングであるセカンドリングとの間のセカンドランドと対向する空間の圧力上昇によって、セカンドリングの下面がリング溝に押し付けられる力を低減するために、セカンドリングの下面をテーパ形状とすることが記載されている。
特開2010−270868号公報 特開昭61−11441号公報 特開2000−9225号公報
第1圧力リングは、ピストンの往復移動に伴う慣性力と、シリンダ壁面との間の摩擦力と、リング両側の圧力差等とに影響されてリング溝内で移動する。この場合、第1圧力リングにおいて、ピストンの移動方向や移動速度の変化にかかわらず、第1圧力リングと第1リング溝のリング溝面との間の油の介在によりリング溝面に第1圧力リングが吸着されたままとなる場合がある。この場合、クランク室側のオイルが燃焼室側に運ばれて消費されるという「オイル上がり」が生じて、オイル消費が大きくなる可能性がある。
本発明の目的は、圧力リング装着ピストンにおいて、第1圧力リングをリング溝面から離間しやすくして、オイル消費を低減することである。
本発明に係る圧力リング装着ピストンは、外周面に燃焼室側からクランク室側に向かって第1リング溝と第2リング溝とオイルリング溝とが順に形成された内燃機関用のピストン本体と、前記第1リング溝にピストン移動方向へ移動可能に配置され、前記第1リング溝の溝底径よりも大きい内径を有する第1圧力リングと、前記第2リング溝にピストン移動方向へ移動可能に配置され、前記第2リング溝の溝底径よりも大きい内径を有する第2圧力リングとを備え、前記第1圧力リングの燃焼室側の第1端面、または前記第1端面に対向するリング溝面を対向形成面として、前記対向形成面は、表面粗さの最大深さよりも大きな凹部または、凸部を有している。
なお、本発明において、「凸部」には、第1圧力リングの第1端面を全面にわたって径方向外側に向かって第1溝面側に傾斜させてテーパ面とした場合の外周端は含まないし、「凹部」には同じ場合の内周側部分は含まない。
本発明に係る圧力リング装着ピストンにおいて、好ましくは、前記対向形成面の円周方向に対して直交する平面で切断した場合の断面形状は、一部または全部に軸方向に突出するように形成され、少なくとも一部が断面円弧の曲線である凸部を有する。
本発明に係る圧力リング装着ピストンにおいて、好ましくは、前記凸部は、前記第1圧力リングの前記第1端面に全周にわたって軸方向に突出するように形成され、前記第1リング溝内における前記第1圧力リングの移動にかかわらず、前記凸部の頂部は前記第1溝面に軸方向に対向している。
本発明に係る圧力リング装着ピストンにおいて、好ましくは、前記対向形成面に、油に対する濡れ性を低下させる濡れ性低減処理が施されている。
本発明の圧力リング装着ピストンによれば、第1圧力リングと第1リング溝のリング溝面との間に油が存在する場合でも、凹部、または凸部から外れた部分と、対向面との対向部分で隙間が大きくなるので油の移動及び変形の自由度が高くなり、全体として第1圧力リングとリング溝面との付着力が低減され、第1圧力リングがリング溝面から離間しやすくなる。このため、オイル上がりを抑制して、オイル消費を低減できる。
本発明の実施形態の圧力リング装着ピストンを組み込んだエンジンを示す概略部分断面図である。 図1のA部拡大図である。 トップリングを示している図2のB部拡大図である。 図3に示したトップリングの端面図である。 (a)は図3のC部拡大図であり、(b)は(a)の径方向位置に応じたトップリングの上端面と第1リング溝面との付着力を示す図である。 本発明の実施形態と同様の構成において、エンジンの低負荷または無負荷の運転状態で、クランク角度に応じた筒内圧Pa及びセカンドランド圧P1と、比較例のセカンドランド圧P2との計算結果、及び、ピストンの移動方向とを示す図である。 比較例を示している図3に対応する図である。 本発明の実施形態において、セカンドランド圧が大きくなる理由を説明するための図3の拡大対応図である。 比較例の第2例を示している図3に対応する図である。 本発明の実施形態の別例の第1例を示している図4に対応する図である。 本発明の実施形態の別例の第2例を示している図3に対応する図である。 図11の構成において、リング溝内でトップリングの内周面の一部が溝底面に接触した場合でのトップリングの径方向反対側の2個所を示す断面図である。 本発明の実施形態の別例の第3例を示している図3に対応する図である。 本発明の実施形態の別例の第4例を示している図3に対応する図である。 図14の構成において、リング溝内でトップリングの内周面の一部が溝底面に接触した場合でのトップリングの溝底面との接触部とは径方向反対側の断面図である。 本発明の実施形態の別例の第5例を示している図2に対応する図である。 ピストン移動時の油膜の動きを示す、図16のF部拡大図である。 本発明の実施形態の別例の第6例を示している図3に対応する図である。 図18において、トップリングがピストンに対し上に移動した場合の第1リング溝内のオイル挙動を示す図である。 本発明の実施形態の別例の第7例を示している図3に対応する図である。 本発明の効果確認のために行った実験結果を示しており、エンジンブレーキ作動時にトップリングがリング溝上面に付着した場合と付着しない場合とでオイル吸い上げ量の差を比較した図である。
以下、本発明の実施形態を、図面を用いて説明する。なお、以下の説明では、ピストンを自然吸気式のガソリンエンジンに使用する場合について説明するが、ピストンが往復移動する他のエンジンに適用することもできる。また、以下ではエンジンとして、シリンダが略鉛直方向に形成された直列複数気筒の場合を説明するが、これに限定するものではなく、V字形の複数気筒、水平対向の複数気筒等の他の形式のエンジンに適用してもよい。また、以下では、すべての図面において同様の要素には同一の符号を付して説明する。
図1は、本実施形態の圧力リング装着ピストンを組み込んだエンジンを示す概略部分断面図である。自然吸気式の内燃機関であるガソリンエンジン10は、エンジン本体12を形成するシリンダブロック14に略鉛直方向に形成された複数のシリンダ16と、各シリンダ16の内側に上下方向に往復移動する圧力リング装着ピストン18と、圧力リング装着ピストン18に上端部が結合された結合ロッド20と、結合ロッドの下端部が結合されたクランク軸22とを備える。クランク軸22の両端部はエンジン本体12に回転可能に支持される。クランク軸22の軸方向中間部は、エンジン本体12の下部内側のクランク室24に配置される。クランク室24にはエンジンオイルである潤滑油が溜まっている。シリンダブロック14の上側にシリンダヘッド26が結合され、シリンダヘッド26とシリンダブロック14と圧力リング装着ピストン18の上面とにより燃焼室28が形成されている。
図2は、図1のA部拡大図を示している。圧力リング装着ピストン18は、ピストン本体32と、トップリング34と、セカンドリング36と、オイルコントロールリングであるオイルリング38とを含む。ピストン本体32は、上端部が塞がれた略円筒状で、外周面の上側に燃焼室28側からクランク室24側に向かって、第1リング溝40と第2リング溝42とオイルリング溝44とが順に形成されている。各リング溝40,42,44は、ピストン本体32の外周面に全周に沿って形成された断面矩形状である。
また、ピストン本体32は、オイルリング溝44とピストン内部空間46とを通じさせるように形成された油孔であるドレンホール48を含んでいる。ピストン内部空間46は下側のクランク室24と通じている。ドレンホール48の一端部はオイルリング溝44の内周部及び下部に接続され、ドレンホール48の他端部はピストン本体32の内壁に開口している。
オイルリング38は、3ピース型であり、上下2つの環状サイドレール50,52と、環状サイドレール50,52間に介装された環状スペーサ54とを含み、オイルリング溝44に装着されている。環状スペーサ54は、上下2つの環状要素の外周部同士を連結部で連結して形成され、各環状要素によって、各環状サイドレール50,52をオイルリング溝44の上下のリング溝面に押し付けている。また、各環状要素の内周端部で環状サイドレール50,52を外周側に押し広げて、周方向の張力を付与することで、各環状サイドレール50,52の外周縁をシリンダ16の壁面に摺接させている。環状スペーサ54の連結部に厚み方向に貫通する孔を形成してもよい。
トップリング34は、第1リング溝40に配置された第1圧力リングである。セカンドリング36は、第2リング溝42に配置された第2圧力リングである。後述する図4に示すように、トップリング34は、鋼等の金属から周方向一部に合口56を有する略円環状に形成される。セカンドリング36も同様である。トップリング34及びセカンドリング36は、それぞれ第1リング溝40及び第2リング溝42の内側に、ピストン移動方向である上下方向に移動可能に配置される。
トップリング34は、第1リング溝40の溝底径よりも大きい自由状態での内径da(図4)を有する。トップリング34を第1リング溝40に装着しシリンダ16内にピストン18を組み付けた状態では、トップリング34の内周面と第1リング溝40の溝底との間に径方向の隙間が形成される。同様に、セカンドリング36は、第2リング溝42の溝底径よりも大きい自由状態での内径を有する。また、セカンドリング36を第2リング溝42に装着しシリンダ16内にピストン18を組み付けた状態では、セカンドリング36の内周面と第2リング溝42との間に径方向の隙間が形成される。トップリング34及びセカンドリング36の外周縁は、シリンダ16の壁面に摺接する。
ピストン本体32の外周面で、第1リング溝40よりも燃焼室28側には円筒面状のトップランド58が形成され、第1リング溝40と第2リング溝42との間には円筒面状のセカンドランド60が形成される。トップランド58とシリンダ16との間は筒状のトップランド空間62となり、セカンドランド60とシリンダ16との間は筒状のセカンドランド空間64となる。また、ピストン本体32の外周面で第2リング溝42とオイルリング溝44との間には円筒面状のサードランド66が形成される。サードランド66部分の圧力はクランク室24の圧力である大気圧とほぼ同じになる。
図3はトップリング34を示している図2のB部拡大図であり、図4はトップリング34の端面図である。トップリング34の軸方向片側の端面である第1端面であり、対向形成面である上端面70は、この上端面70の径方向内側部分にトップリング34の全周にわたって形成された凸部68を有する。図4では、砂地により凸部68を示している。凸部68の上端は平坦面としている。
図5において、(a)は図3のC部拡大図であり、(b)は(a)の径方向位置に応じたトップリング34の軸方向一端の上端面70と、第1リング溝40の第1リング溝面である上溝面72との付着力を示す図である。トップリング34の上端面70に形成された凸部68は、上端面70の表面粗さの最大深さよりも大きい軸方向高さを有する。例えば、表面粗さの最大深さに対して凸部68の軸方向高さを10倍以上とする。また、表面粗さの最大深さを50μm未満とする場合に、凸部68の軸方向高さを50μm以上としてもよい。トップリング34が第1リング溝40の上溝面72に押し付けられる場合に、トップリング34と第1リング溝40とは、凸部68と同じ範囲である、図5のPで示す範囲で接触する。範囲P以外である凸部68から外れた部分では、トップリング34と上溝面72とが十分に大きく離れている。また、トップリング34の凸部68では、トップリング34をピストン本体32に組み付けた後、シリンダ16内側に組み付ける前の状態で、トップリング34が内周面の一部を第1リング溝40の溝底面74に突き当てるように径方向に移動した場合でも、凸部68の外周縁が第1リング溝40からはみ出ないように凸部68の径方向位置及び寸法を規制することが好ましい。
このような圧力リング装着ピストン18によれば、トップリング34の上端面70と、この上端面70と対向する第1リング溝40の上溝面72との間に図5で砂地で示す潤滑油が存在する場合でも、上端面70全体を表面粗さが存在するだけの平坦面とする場合に比べて上溝面72との接触面積を減少させて、凸部68から外れた部分と上溝面72との対向部分で隙間が大きくなるので油の移動及び変形の自由度が高くなる。このため、全体としてトップリング34と上溝面72との付着力が低減され、トップリング34が上溝面72から離間しやすくなる。すなわち、油膜によるトップリング34と上溝面72との付着力は、図5に範囲Pで示す部分である凸部68の上端と同じ範囲部分でのみ大きく作用する。このため、トップリング34と上溝面72との間において、油膜による付着力の総和を低減できる。
このように油膜による付着力を低減できるので、エンジン運転時にトップリング34が第1リング溝40内で軸方向に移動して第1リング溝40の上溝面72に接触した場合でも、ピストン本体32の移動による慣性力や、トップリング34両側の圧力差等に応じてトップリング34が第1リング溝40から離間しやすくなる。このため、オイル消費に関係するトップリング34の設計の容易化を図れ、クランク室24側の油が燃焼室28に運ばれて消費されるオイル上がりを抑制して、オイル消費、特に設計外のオイル消費を低減できる。
次にこの理由をさらに詳しく説明する。エンジン内でオイル消費が生じる現象としては様々な形態があるが、本実施形態では、特にオイル上がりに着目した。オイル上がりの要因としては次の(1)から(3)がある。
(1)圧力リング及びオイルリングであるピストンリングと、シリンダとの摺動面において形成された油膜が蒸発して消費される。
(2)ピストンリングとシリンダとの摺動面において形成された油膜をピストンリングが掻き上げて消費される。
(3)ピストンリングとシリンダ及びピストンで囲まれた複数の空間(ピストンランド部)において、隣接する空間(ピストンランド部)との間の圧力差によってオイルがピストンの上方に運ばれて消費される。
(1)(2)については、ピストンリングとシリンダとの摺動面における油膜形成能力に関わるピストンリング摺動面に加わる面圧と、ピストンリング摺動面の形状及びシリンダの表面形状を含む形状及びオイルの蒸発量に関わる油膜の温度に基づいた計算によっておよその設計が可能である。
一方、(3)については、通常、ピストンリングに作用する慣性力、摺動面摩擦力、リング両側の圧力差に基づいてピストンリングのリング溝内での上下挙動を算出することによって、オイル上がりに対して不都合なピストンリング挙動が発生しないように設計を行なう。ただし、実際には、ピストンリングとリング溝との間に潤滑油が入った場合に、ピストンリングに作用する上記の3つの力に加えて油の表面張力と粘性とによって、油膜による付着力がピストンリングに作用することが分かった。このため、常には設計どおりのピストンリング挙動を実現できずに設計外のオイル消費現象が発生する場合がある。特に、ピストンリングを挟んで隣接する空間に作用する圧力差が大きい部位においては圧力差による潤滑油の移動が活発になるため、オイル消費量が急増することが分かった。例えば、自動車用エンジンのピストンにおいて本実施形態のようにトップリング及びセカンドリングとオイルリングの3本のリング構成にすることが多い。この中で、トップリング及びセカンドリングにおいてはオイルリングと比較してリング上下の圧力差が大きくなりやすい。このため、(3)に関わるオイル消費が発生しやすい。
ピストンリングに作用する油膜の付着力は、基本的にはピストンリングとリング溝面との接触面積と、そこに介在する油量とに応じて変化し、接触面積が大きいほど大きくなり、油量が多くなるほど小さくなる。実際のピストンリングとリング溝面との表面には粗さが存在する。このため、ピストンリングとリング溝面との間に介在する油膜の厚さが表面粗さと同等になるまでは、ピストンリングとリング溝面との接触面積の増加によって付着力も増加して、油膜厚さがそれ以上になると油膜が流動しやすくなり、これによって付着力が低下する傾向となる。
本実施形態によれば、このような理由からトップリング34の上端面70において、油膜による第1リング溝40の上溝面72との付着力を低減できる。図5において、Pの範囲では付着力が接触面積の増大に応じて大きくなるが、Rで示す範囲Pから外れた部分では油膜が流動しやすくなって付着力が低下する。このため、実機実働状態におけるトップリング34の挙動を、上記の3つの力(慣性力、摩擦力、圧力)によって設計された状態に近づけることができ、(3)に関わるオイル上がりに対し、設計外での現象発生を低減可能となる。
特に、エンジンの低負荷や無負荷時、例えばエンジンブレーキが作用する場合では、多くの期間で燃焼室が負圧となる。図6は、本実施形態において、エンジンの低負荷または無負荷の運転状態で、クランク角度に応じた筒内圧Pa及びセカンドランド圧P1と、比較例のセカンドランド圧P2との計算結果、及び、ピストンの移動方向とを示す図である。なお、図6において、吸入、圧縮、膨張、排気の期間は、バルブタイミングによってずれる場合がある。
図6に示すように、クランク角度によって筒内圧Paが負圧になる期間が多く発生する。また、ピストン18はクランク角度に応じて上下に往復移動する。この場合、破線P2で示す比較例は、本実施形態と異なり、図7に示すようにトップリング34の上端面70に凸部を形成していない。このような比較例の圧力リング装着ピストンを組み込んだエンジンでは、一般的なトップリングの設計形状と同様に、圧力による作用が最も大きくなり、トップリング34のリング溝内での位置は、ほぼ圧力によって決定される。このため、セカンドランド空間64の圧力であるセカンドランド圧が、図6に破線P2で示すように変化する。すなわち、筒内圧Paは圧縮後半から膨張前半にわたって急激に上昇した後、急激に減少するが、この期間(圧縮後半〜膨張前半)でトップリング34が第1リング溝40の上溝面72に付着したままであると、筒内圧Paにかかわらずセカンドランド圧P2は負圧のままとなる。すなわち、トップリング34を第1リング溝40の下側に押し下げる力が不足することと、第1リング溝40内の油による付着力によってトップリング34の位置が第1リング溝40上側に固定された状態となる場合がある。この場合、筒内が負圧の期間ではトップリング34の合口通路を介してセカンドランド空間64のガスが吸引されてセカンドランド圧が負圧になる。また、筒内が正圧になる期間でも、その期間が短いことと、ガス通路がトップリング34の合口しかないためにセカンドランド圧を十分に高めることができない。セカンドランド圧が低い負圧の状態になるとサードランド66側から潤滑油を吸い上げてしまうのでオイル消費を増大させる。さらにこの場合、吸い上げた潤滑油が第1リング溝40に供給されてしまうので、油によるリング付着現象から通常状態に復帰できなくなり、エンジンブレーキ状態が続く限りオイル消費量が増大する状態が継続する。このようにクランク室24からサードランド66部分を通じてセカンドランド空間64に潤滑油が多く吸引され、オイル消費が多くなる要因となる。なお、図6では、点U以下のクランク角度、及び、点V以上のクランク角度で、破線P2は一点鎖線P1と一致している。
一方、図6に一点鎖線P1で示す本実施形態の場合、ピストン18の移動方向や移動速度の変化に応じて図8に示すように、トップリング34が凸部68の存在により第1リング溝40の上溝面72から離間しやすくなる。このため、トップランド空間62の圧力が圧縮後半で高くなる場合にトップランド58側から図8に矢印で示すように、ガスがトップリング34と第1リング溝40との間を通じてセカンドランド空間64に流れる。したがって、図6に示すようにセカンドランド圧P1が筒内圧Paの増大から少し遅れて急激に増大する。すなわち、筒内が正圧になる期間でトップリング34が上溝面72から離間できる。この場合、トップリング34と第1リング溝40との間の隙間がガス通路として開放されるので、筒内の正圧がセカンドランド空間64に流れ込み、セカンドランド圧を高めることができる。この結果、セカンドランド空間64が負圧になる期間を少なくできて、オイルの吸い上げを抑制し、オイル消費を抑制できる。また、トップリング34と第1リング溝40との間のガス流れによる溝内油の吹き飛ばしと、サードランド66側からのオイル吸い上げ抑制の効果とにより、第1リング溝40内に油が付着しにくくなる。このため、エンジンブレーキが長期間にわたる場合でも、オイル消費の低減効果が持続する。
一方、特許文献1に記載された構成では、オイルリングやオイルリング溝に凹部を形成しているが、オイルリングからはオイルリング溝の内側以外にオイルリングの合口からも油の通過が可能である。オイルリングを通過した油は、トップリングとセカンドリングとの組み合わせで形成される各ランド空間の圧力の関係によって燃焼室に運ばれてオイル上がりが生じる場合がある。このようなオイル上がりに対して特許文献1は有効な手段を開示するものではない。本実施形態では、トップリング34の挙動を適正に設計することができ、オイルリング38の上側に作用する圧力を適正化できることで、オイルリング38の合口を介しての油の通過を低減することができる。
なお、特許文献1には、圧力リングに対して高温高圧によるリング溝への凝着を抑制する提案として、圧力リングのリング溝との当接面に冷却効果を生じる潤滑油を保持する溝を形成することが記載されている。ただし、この溝は本実施形態の凸部68とは異なる目的で考えられたもので、本実施形態の圧力リング装着ピストン18を考え付くための示唆となるものではない。
図9は、比較例の第2例を示している図3に対応する図である。この比較例では、トップリング34を皿バネ形状とし、その上端面70を全面にわたって径方向外側に向かって上溝面72側に傾斜させてテーパ面としている。このような比較例では、トップリング34の最上端である外周縁が第1リング溝40内からはみ出し、上端面70は第1リング溝40の開口端縁に角当たりで接触する。このため、第1リング溝40の開口端縁がトップリング34により削られやすくなり、トップリング34の姿勢によってはトップリング34の上端面70と上溝面72との間でのシール性を十分に高くできない可能性がある。
図3に示した本実施形態では、凸部68の上端は第1リング溝40の開口端縁よりも内側の上溝面72に接触するので、このような不都合は生じない。
なお、凸部68はトップリング34の全周にわたって形成する場合に限定せず、種々の数及び形状の凸部を採用できる。
図10は、本発明の実施形態の別例の第1例を示している図4に対応する図である。図10の構成では、図4に示した構成と異なり、トップリング34の上端面70の径方向内側部分に全周にわたって凸部を形成するのではなく、トップリング34の上端面70は、この上端面70の径方向外側部分に全周にわたって形成された凸部68を有する。この凸部68は、上端面70の合口56の周方向両側近傍部では径方向全長にわたって形成されている。図10では、砂地により凸部68を示している。
このような構造のトップリング34を使用する場合でも、上記の実施形態と同様にトップリング34が上溝面72から離間しやすくなる。しかも合口56近傍では径方向全長にわたって凸部68が形成されているので、第1リング溝40の上溝面72にトップリング34が接触した状態で、セカンドランド空間64から合口56周辺部を通じてガスがトップランド58側に抜けるのを効果的に抑制できる。また、負荷運転時にセカンドランド圧が筒内圧を上回ってセカンドランド空間64のガスが燃焼室28に逆流する現象が発生した際に、ブローバイガスの逆流量の低減を図れる。その他の構成及び作用は、上記の図1から図4に示した構成と同様である。
図11は、本発明の実施形態の別例の第2例を示している図3に対応する図である。図12は、図11の構成において、第1リング溝40内でトップリング34の内周面の一部が溝底面74に接触した場合でのトップリング34の径方向反対側の2個所を示す断面図である。
本例の構成では、上記の図1から図4に示した構成において、トップリング34の上端面70に全周にわたって断面円弧形の曲面が形成されている。この場合、対向形成面である上端面70は、トップリング34の円周方向に対して直交する平面で切断した場合の図11の断面形状で、径方向の全部に軸方向に突出するように形成され、全部が断面円弧の曲線である凸部68を有する。この凸部68は、周方向全体にわたって同一の断面形状を有し、第1リング溝40内におけるトップリング34の移動にかかわらず、凸部68の頂部Sは常に上溝面72に軸方向に対向している。頂部Sは、ほぼ円形の線状である。
例えば、トップリング34の凸部68では、図12に示すように、トップリング34をピストン本体32に組み付けた後、シリンダ内側に組み付ける前の状態で、トップリング34が内周面の一部を第1リング溝40の溝底面74に突き当てるように径方向に移動した場合でも、凸部68の外周縁である頂部Sが第1リング溝40からはみ出ないように凸部68の径方向位置及び寸法を規制することが好ましい。例えば、凸部68の頂部Sからトップリング34の内周面までの径方向寸法d1とトップリング34の内径daとの和である(d1+da)は、第1リング溝40の溝底径d2と第1リング溝40の溝深さd3との和(d2+d3)よりも小さくする((d1+da)<(d2+d3))。
このような構成によれば、凸部68の頂部Sと上溝面72との接触部は、概略円形の線状となるので、図1から図4に示した構成に比べて凸部68と上溝面72との接触面積を小さくでき、トップリング34を上溝面72からより離間しやすくなる。その他の構成及び作用は、図1から図4の構成と同様である。なお、図11のようにシリンダ16内にピストン18を組み付けたエンジンで、第1リング溝40内におけるトップリング34の移動にかかわらず、凸部68の頂部Sが上溝面72に軸方向に対向する構成を採用してもよい。
図13は、本発明の実施形態の別例の第3例を示している図3に対応する図である。本例の構成は、図1から図4の構成と、図11から図12の構成とを組み合わせた構成を有する。すなわち、トップリング34は、図1から図4の構成で、凸部68の上端面にトップリング34の全周にわたって同一の断面円弧形に形成された曲面部を有する。
上記構成によれば、図1から図4の構成の場合に比べて多くの部分で凸部68の上端面と第1リング溝40の上溝面72とを接触しないようにできる。また、図11から図12の構成の場合に比べて多くの部分である、凸部68から外れたトップリング34の径方向外側部分で上溝面72との距離を大きくできる。このため、上記の各構成の場合に比べてトップリング34の上端面を上溝面72から離間しやすい。その他の構成及び作用は、図1から図4の構成または図11から図12の構成と同様である。
図14は、本発明の実施形態の別例の第4例を示している図3に対応する図である。図15は、図14の構成において、第1リング溝40内でトップリング34の内周面の一部が溝底面74に接触した場合でのトップリング34の溝底面74との接触部とは径方向反対側の断面図である。
本例の構成では、上記の図11,12に示した構成で、トップリング34の凸部68の上端面の頂部Sに軸方向に対し直交する平面上の平坦面90が形成されている。また、トップリング34の凸部68では、図15に示すように、トップリング34をピストン本体32に組み付けた後、シリンダ16内側に組み付ける前の状態で、トップリング34が内周面の一部を第1リング溝40の溝底面74に突き当てるように径方向に移動した場合でも、凸部68の頂部Sの外周端S0が第1リング溝40からはみ出ないように、凸部68の径方向位置及び寸法を規制している。例えば、凸部68の頂部Sの外周端S0からトップリング34の内周面までの径方向寸法d1とトップリング34の内径daとの和である(d1+da)は、第1リング溝40の溝底径d2と第1リング溝40の溝深さd3との和(d2+d3)よりも小さくする((d1+da)<(d2+d3))。頂部Sの両側の曲面部は同じ曲率半径を有する断面円弧形としてもよいが、異なる曲率半径を有する断面円弧形としてもよい。その他の構成及び作用は、図11から図12の構成と同様である。
図16は、本発明の実施形態の別例の第5例を示している図2に対応する図である。本例の場合、ピストン本体32の外周面のセカンドランド60とサードランド66とにおいて、ピストン軸方向の両端部に各リング溝40,42,44に向かって直径が大きくなる方向に緩やかに傾斜したテーパ面S1,S2,S3,S4を全周にわたって形成している。このため、ピストン本体32は、セカンドランド60とサードランド66とにおいて、第1リング溝40、第2リング溝42及びオイルリング溝44の周辺部で当該リング溝40,42,44に向かって外径が大きくなっている。
このような構成によれば、ピストン本体32が上下動に伴う加速度によってセカンドランド60及びサードランド66に付着した潤滑油がリング溝40,42,44に近づく際に、潤滑油がリング溝40,42,44から遠ざかる方向の速度成分を有するので、各リング溝40,42,44への潤滑油の侵入を抑制できる。例えば、図17でセカンドランド60の第1リング溝40側部分で示すように、ピストン本体32が矢印α方向に変位することに伴い、セカンドランド60に付着した潤滑油の油膜がガス流れに伴って第1リング溝40に向かって上昇する傾向となる場合がある。この場合、テーパ面S1に沿って油膜がシリンダ16側に案内されて第1リング溝40内に浸入する潤滑油を少なくできる。このため、トップリング34の端面と第1リング溝40の溝面との間に存在する油膜を少なくでき、トップリング34の端面の第1リング溝40への付着力を小さくできる。この結果、オイル消費をより少なくできる。他のテーパ面S2、S3,S4の場合の作用も同様である。その他の構成及び作用は、上記の図1から図6の構成の場合と同様である。なお、図16から図17の構成を、図1から図6の構成以外の上記の別の構成と組み合わせることもできる。
なお、本例において、テーパ面S1,S2,S3,S4の代わりに、ピストン本体32の外周面のセカンドランド60とサードランド66とにおいて、ピストン軸方向の両端部にリング溝40,42,44に向かって直径が大きくなる方向に湾曲した曲面を全周に形成してもよい。また、トップランド58の第1リング溝40の周辺部に第1リング溝40に向かって直径が大きくなるテーパ面または曲面を形成してもよい。また、各ランド58,60,66のいずれか1つまたは2つにおいて、リング溝40,42,44周辺部に同様のテーパ面または曲面を形成してもよい。
図18は、本発明の実施形態の別例の第6例を示している図3に対応する図である。本例の場合、トップリング34の上下両端面70,76と第1リング溝40の上下両溝面72,78との破線で示す部分に、油に対する濡れ性を低下させる濡れ性低減処理を施している。例えば、濡れ性低減処理として、樹脂層を形成する等の撥油性のコーティング処理や、ポリテトラフルオロエチレン(PTFE)粒子の投射等の濡れ性低減用の表面加工処理を採用できる。なお、図18の例では、濡れ性低減処理を凸部68の上端面だけでなく、上端面70の凸部68以外の部分と、凸部68の段差面とにも施している。ただし、凸部68の上端面だけに濡れ性低減処理を施してもよい。
このような構成によれば、濡れ性低減処理を施した面の油に対する濡れ性が低下する。このため、図19に示すようにトップリング34の上下の圧力差によってトップリング34が第1リング溝40内で移動し、トップリング34と第1リング溝40との間に矢印方向のガス流れが生じた場合に、トップリング34と第1リング溝40との間の油を容易に排出できる。この結果、油膜によるトップリング34の第1リング溝40への付着を抑制できる。その他の構成及び作用は、上記の図1から図6の構成の場合と同様である。なお、トップリング34の上下両端面70,76と上下両溝面72,78との一部の面のみに濡れ性低減処理を施してもよい。
上記ではトップリング34の上端面70に凸部68を形成する場合を説明したが、この上端面70に直線状または円弧、円環等の曲線状の凹部を形成してもよい。また、図20に示すようにこの上端面70と対向する第1リング溝40の上溝面72に凹部75を形成してもよい。例えば凹部75を上溝面72に放射状に形成してもよい。この場合、凹部75の外周端をピストン本体32の外周面に開口させてもよい。凹部75は放射状に形成する場合に限定せず、種々の数及び形状の凹部75を採用できる。例えば上溝面72の外周側に円環状の凹部を形成し、トップリングの上端面が上溝面72の凹部から内周側に外れた部分に接触可能となるように、トップリングと上溝面72とを軸方向に対向させてもよい。また、トップリング34の上端面70と上溝面72との両方に凸部または凹部を形成してもよい。
また、トップリングの上端面または第1リングの上溝面に形成する凸部または凹部は、散点状に形成された凸部または凹部としてもよい。例えば、トップリングの上端面に複数の円形の凹部または円柱状の凸部を形成してもよい。上端面の凹部は、例えばサンドブラスト加工やショットピーニング加工等によりディンプル加工を上端面に施すことで形成できる。
図21は、本発明の効果確認のために行った実験結果を示しており、エンジンブレーキ作動時にトップリング34がリング溝上面に付着した場合と付着しない場合とでオイル吸い上げ量の差を比較した図である。上記の実験では、トップリング34の上端面が第1リング溝40の上溝面72に付着する場合と付着しない場合とでオイル上がり量であるオイル吸い上げ量を評価した。この吸い上げ量の評価は、エンジンを30分間、エンジンブレーキ作動状態で運転した後に、シリンダ16内及び吸気管内に付着したエンジンオイルの量を計測することで行った。図21において「付着あり」がトップリング34が第1リング溝の上溝面72に付着した場合を、「付着なし」がトップリング34が上溝面72に付着しない場合を、それぞれ示している。図21の結果から明らかなように、本発明と同様の「付着なし」の構成では、「付着あり」の構成に比べてオイル吸い上げ量を大きく低減させることができた。
以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
10 ガソリンエンジン、12 エンジン本体、14 シリンダブロック、16 シリンダ、18 圧力リング装着ピストン、20 結合ロッド、22 クランク軸、24 クランク室、26 シリンダヘッド、28 燃焼室、32 ピストン本体、34 トップリング、36 セカンドリング、38 オイルリング、40 第1リング溝、42 第2リング溝、44 オイルリング溝、46 ピストン内部空間、48 ドレンホール、50,52 環状サイドレール、54 環状スペーサ、56 合口、58 トップランド、60 セカンドランド、62 トップランド空間、64 セカンドランド空間、66 サードランド、68 凸部、69 凹部、70 上端面、72 上溝面、74 溝底面、75 凹部、76 下端面、78 下溝面、90 平坦面。

Claims (4)

  1. 外周面に燃焼室側からクランク室側に向かって第1リング溝と第2リング溝とオイルリング溝とが順に形成された内燃機関用のピストン本体と、
    前記第1リング溝にピストン移動方向へ移動可能に配置され、前記第1リング溝の溝底径よりも大きい内径を有する第1圧力リングと、
    前記第2リング溝にピストン移動方向へ移動可能に配置され、前記第2リング溝の溝底径よりも大きい内径を有する第2圧力リングとを備え、
    前記第1圧力リングの燃焼室側の第1端面、または前記第1端面に対向するリング溝面を対向形成面として、
    前記対向形成面は、表面粗さの最大深さよりも大きな凹部または、凸部を有している、圧力リング装着ピストン。
  2. 請求項1に記載の圧力リング装着ピストンにおいて、
    前記対向形成面の円周方向に対して直交する平面で切断した場合の断面形状は、一部または全部に軸方向に突出するように形成され、少なくとも一部が断面円弧の曲線である凸部を有することを特徴とする圧力リング装着ピストン。
  3. 請求項2に記載の圧力リング装着ピストンにおいて、
    前記凸部は、前記第1圧力リングの前記第1端面に全周にわたって軸方向に突出するように形成され、
    前記第1リング溝内における前記第1圧力リングの移動にかかわらず、前記凸部の頂部は前記第1溝面に軸方向に対向していることを特徴とする圧力リング装着ピストン。
  4. 請求項1から請求項3のいずれか1に記載の圧力リング装着ピストンにおいて、
    前記対向形成面に、油に対する濡れ性を低下させる濡れ性低減処理が施されていることを特徴とする圧力リング装着ピストン。
JP2012251945A 2012-11-16 2012-11-16 圧力リング装着ピストン Pending JP2014098471A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012251945A JP2014098471A (ja) 2012-11-16 2012-11-16 圧力リング装着ピストン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251945A JP2014098471A (ja) 2012-11-16 2012-11-16 圧力リング装着ピストン

Publications (1)

Publication Number Publication Date
JP2014098471A true JP2014098471A (ja) 2014-05-29

Family

ID=50940637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251945A Pending JP2014098471A (ja) 2012-11-16 2012-11-16 圧力リング装着ピストン

Country Status (1)

Country Link
JP (1) JP2014098471A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105258A (ja) * 2016-12-27 2018-07-05 Tpr株式会社 内燃機関用ピストン
US10605366B2 (en) 2017-04-14 2020-03-31 Toyota Jidosha Kabushiki Kaisha Pressure ring
JP2021156375A (ja) * 2020-03-27 2021-10-07 Tpr株式会社 ピストンリングの組み合わせ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113654A (ja) * 1974-02-01 1975-09-05
JPS5875933U (ja) * 1981-11-18 1983-05-23 日産自動車株式会社 内燃機関のピストンリング装置
JPS59158358A (ja) * 1983-02-25 1984-09-07 Toyota Motor Corp 内燃機関のピストンリング
JPH0628423U (ja) * 1992-09-17 1994-04-15 株式会社新潟鉄工所 往復動機関の圧縮リング
JPH11325248A (ja) * 1998-05-20 1999-11-26 Toyota Motor Corp 内燃機関のピストン
JP2003328852A (ja) * 2002-05-15 2003-11-19 Nissan Motor Co Ltd 内燃機関のピストンリング
JP2007009294A (ja) * 2005-07-01 2007-01-18 Mazda Motor Corp 摺動部材
JP2010222985A (ja) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc ピストンリング及び内燃機関

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113654A (ja) * 1974-02-01 1975-09-05
JPS5875933U (ja) * 1981-11-18 1983-05-23 日産自動車株式会社 内燃機関のピストンリング装置
JPS59158358A (ja) * 1983-02-25 1984-09-07 Toyota Motor Corp 内燃機関のピストンリング
JPH0628423U (ja) * 1992-09-17 1994-04-15 株式会社新潟鉄工所 往復動機関の圧縮リング
JPH11325248A (ja) * 1998-05-20 1999-11-26 Toyota Motor Corp 内燃機関のピストン
JP2003328852A (ja) * 2002-05-15 2003-11-19 Nissan Motor Co Ltd 内燃機関のピストンリング
JP2007009294A (ja) * 2005-07-01 2007-01-18 Mazda Motor Corp 摺動部材
JP2010222985A (ja) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc ピストンリング及び内燃機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105258A (ja) * 2016-12-27 2018-07-05 Tpr株式会社 内燃機関用ピストン
US10605366B2 (en) 2017-04-14 2020-03-31 Toyota Jidosha Kabushiki Kaisha Pressure ring
JP2021156375A (ja) * 2020-03-27 2021-10-07 Tpr株式会社 ピストンリングの組み合わせ

Similar Documents

Publication Publication Date Title
KR102047100B1 (ko) 내연 기관의 슬라이딩 구조, 아이들링 운전의 제어 방법, 내연 기관의 운전 제어 방법
JP2009091927A (ja) 往復動機関のピストンリング
JP5875694B2 (ja) バルブ
JP2008133923A (ja) 組合せオイルリング
JP2014101893A (ja) 圧力リング装着ピストン
KR102094349B1 (ko) 프로파일 섹션을 구비한 압축 피스톤 링 (compression piston ring with profiled section)
JP6522611B2 (ja) ピストンリング
JP2014098471A (ja) 圧力リング装着ピストン
JP2014098473A (ja) 圧力リング装着ピストン
CN106337755B (zh) 经配置以减少摩擦的活塞环
JP6259585B2 (ja) ピストン摺動部の潤滑構造
JP6153803B2 (ja) ピストンの摺動部潤滑構造
JP5550870B2 (ja) 内燃機関用組合せオイルリング及びその組付構造
JP2005264978A (ja) 圧力リング
JP2010222985A (ja) ピストンリング及び内燃機関
JP5164659B2 (ja) 組合せオイルリング
US10077838B2 (en) Piston ring configured to reduce friction
JP2009030558A (ja) ピストンリング及び内燃機関用ピストン
JP2013155829A (ja) 3ピースオイルリング
JP2013148026A (ja) シリンダライナ
JP7045383B2 (ja) ピストンリング
US10385970B2 (en) Bearing interface with recesses to reduce friction
JP6366807B2 (ja) ピストン摺動部の潤滑構造
BRPI0414054B1 (pt) Segment ring for internal combustion engines
CN206816317U (zh) 一种气门杆油封

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170620