JP2014093252A - 色素増感太陽電池 - Google Patents

色素増感太陽電池 Download PDF

Info

Publication number
JP2014093252A
JP2014093252A JP2012244471A JP2012244471A JP2014093252A JP 2014093252 A JP2014093252 A JP 2014093252A JP 2012244471 A JP2012244471 A JP 2012244471A JP 2012244471 A JP2012244471 A JP 2012244471A JP 2014093252 A JP2014093252 A JP 2014093252A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
semiconductor layer
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012244471A
Other languages
English (en)
Inventor
Tomohiro Kudo
智広 工藤
Naoya Watanabe
直哉 渡邊
Shogo Muroya
尚吾 室屋
Hironobu Ozawa
弘宜 小澤
Hironori Arakawa
裕則 荒川
Naoyuki Shibayama
直之 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Toppan Inc
Original Assignee
Tokyo University of Science
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, Toppan Printing Co Ltd filed Critical Tokyo University of Science
Priority to JP2012244471A priority Critical patent/JP2014093252A/ja
Publication of JP2014093252A publication Critical patent/JP2014093252A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】光吸収率及び光電変換効率を向上させた色素増感太陽電池を提供する。
【解決手段】可撓性を有する負極と、負極上に設けられ、機能性半導体層に光増感色素が保持された光電変換層3と、正極と、光電変換層と正極との間に配された電解質層5とを備える色素増感太陽電池10は、光増感色素が、機能性半導体層との固定基としてカルボキシル基またはホスホノ基を備えた錯体色素である色素Aと、機能性半導体層との固定基としてカルボキシル基またはホスホノ基を備えた有機分子色素である色素Bとを含み、機能性半導体層に保持される色素Aおよび色素Bの量をそれぞれvA、vBとしたときに、1.5≦vA/vB≦100となることを特徴とする。
【選択図】図1

Description

本発明は、色素増感太陽電池、より詳しくは、複数の増感色素を用いた高効率な色素増感太陽電池に関する。
化石燃料に代わるエネルギー源として、太陽光を利用する太陽電池が注目され、種々の研究がおこなわれている。太陽電池は、光エネルギーを電気エネルギーに変換する光電変換装置の1種であり、太陽光をエネルギー源としているため、地球環境に対する影響が極めて小さく、より一層の普及が期待されている。
太陽電池の原理や材料として、様々なものが検討されている。そのうち、半導体のpn接合を利用する太陽電池は、現在最も普及しており、シリコンを半導体材料とした太陽電池が多数市販されている。これらは、単結晶または多結晶のシリコンを用いた結晶シリコン系太陽電池と、非晶質(アモルファス)のシリコンを用いたアモルファスシリコン系太陽電池とに大別される。
結晶シリコン系太陽電池及びアモルファスシリコン系太陽電池のいずれのシリコン系太陽電池でも、高純度の半導体材料を製造する工程やpn接合を形成する工程が必要であるため、製造工程数が多くなるという問題点や、真空下での製造工程が必要であるため、設備コストおよびエネルギーコストが高くなるという問題点があった。そこで、より低コストで製造できる太陽電池を実現するために、シリコン系材料に代えて有機材料を用いる太陽電池が長く研究されてきたが、これらの多くは光電変換効率が低く、実用化にいたらなかった。
しかしながら、1991年に光誘起電子移動を応用した色素増感太陽電池(光電変換装置)が提案された(特許文献1)。この色素増感太陽電池は、高い光電変換効率を有し、大掛かりな製造装置を必要とせず、安価な材料を用いて、簡易に生産性よく製造できるため、新世代の太陽電池として期待されている。
色素増感太陽電池としては、ガラスなどの透明基板、FTO(フッ素がドープされた酸化スズ(IV)SnO)などの透明導電層からなる透明電極(負極)、増感色素を保持した半導体層、電解質層、対向電極(正極)、対向基板、および封止材などで構成されているものが一般的である。
特許第2664194号公報 特許第4380779号公報
従来、色素増感太陽電池において高い光電変換効率を実現するには、純度の高い単一種の色素を用いるのがよいとされてきた。これは、複数種の色素を1つの半導体層の上に混在させた場合、色素同士の間で電子の授受もしくは電子とホールの再結合が起こったり、励起された色素から半導体層に譲りわたされた電子が別種の色素によって捕獲されたりして、励起された増感色素から透明電極に到達する電子が減少し、吸収された光子から電流が得られる比率、すなわち量子収率が著しく低下すると考えられるからである。
単独で用いる色素としては、ビピリジン錯体の1種であるシス−ビス(イソチオシアナト)ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)二テトラブチルアンモニウム錯体(通称N719)が、増感色素としての性能に優れており、一般的に用いられている。その他、ビピリジン錯体の1種であるシス−ビス(イソチオシアナト)ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)(通称:N3)や、テルピリジン錯体の1種であるトリス(イソチオシアナト)(2,2’:6’,2”−テルピリジル−4,4’,4”−トリカルボン酸)ルテニウム(II)三テトラブチルアンモニウム錯体(通称:ブラックダイ)が一般的に用いられる。
特にN3やブラックダイを用いる時には、共吸着剤もよく用いられる。共吸着剤は半導体層上で色素分子が会合するのを防止するために添加される分子であり、代表的な共吸着剤としてケノデオキシコール酸、タウロデオキシコール酸塩、および1−デクリルホスホン酸などが挙げられる。これらの分子の構造的特徴としては、半導体層を構成する酸化チタンに吸着されやすい官能基として、カルボキシル基やホスホノ基などをもつこと、および、色素分子間に介在して色素分子間の干渉を防止するために、σ結合で形成されていることなどが挙げられる。また、光増感色素を混合して使う例も報告されている。しかし、この報告では、カルボキシル基もしくはホスホノ基を固定基として用いている(特許文献2)。
一般に太陽電池を効果的に動作させるためには、まずは、太陽電池に入射してくる光を最大限に利用できるように、光吸収率を高めることが重要であり、続いて、吸収した光エネルギーを電気エネルギーに変換する変換効率を高めることが重要である。色素増感太陽電池では、光吸収は光増感色素によって担われるから、増感色素として入射光に対して最適な光吸収特性を有する色素を選択することによって、光吸収率を高めることができると期待される。
太陽光には赤外光から紫外光まで連続して様々な波長の光が含まれているから、太陽電池として応用した場合に高い光吸収率を実現するには、長波長領域も含めてできるだけ広範囲の波長領域の光、特に波長が300〜1000nmの光を余すことなく吸収できる色素を選択することが望ましい。
しかしながら、光増感色素内の電子の状態は量子力学的に定まり、その物質固有のエネルギー状態しか取り得ない。従って、基底状態(HOMO)にある電子と励起状態(LUMO)にある電子とのエネルギー差、つまり、電子を基底状態から励起状態に励起するのに必要なエネルギー(バンドギャップエネルギー)もその物質固有の値として定まっており、それに対応して増感色素が吸収できる光も特定の波長領域の光に限定される。また、励起された電子が半導体層の伝導帯へ移動できるように、色素のバンドギャップエネルギーは小さくなりすぎないことが必要である。
例えば、光増感色素として用いられるブラックダイは、900nm付近を長波長末端として広範囲の吸収波長領域を有することがわかるが、全般にモル吸光係数が小さく、特に短波長側に吸光度が不足する領域が存在する。N719は、短波長側でブラックダイと同等以上のモル吸光係数を有するものの、吸収波長領域の長波長側末端は730nm付近にあり、長い波長の光を有効に利用することができない。
このように、現在のところ、波長300〜1000nmの太陽光を余すことなく吸収できる色素は存在しないため、単一種の色素を用いた色素増感太陽電池では、太陽光に含まれる様々な波長の光のすべてを効率よく吸収することが困難である。その結果、光吸収率はいまだ充分とは言えない。
単一種の色素では十分な光吸収を実現できないのであれば、吸収波長特性が互いに異なる複数種の色素を混合して光増感色素として用いることが考えられる。しかしながら、先述したように、複数種の色素を1つの半導体層の上に混在させて用いると、実際には光電変換効率が低下する場合がほとんどである。これは、前述したように、色素間での電子移動などによって、吸収された光子から電流が得られる比率、すなわち量子収率が著しく低下するからである。
また、屈曲性を持たせた色素増感太陽電池とするためには、基材に樹脂フィルム等の可撓性材料を用いる必要がある。樹脂フィルムは所定値以下の波長の光を吸収する性質があるため、吸収された光は光電変換されないという問題がある。
本発明は、上記のような事情に鑑みてなされたものであって、その目的は、光吸収率及び光電変換効率を向上させた色素増感太陽電池を提供することにある。
本発明は、可撓性を有する負極と、前記負極上に設けられ、機能性半導体層に光増感色素が保持された光電変換層と、正極と、前記光電変換層と前記正極との間に配された電解質層とを備える色素増感太陽電池であって、前記光増感色素が、前記機能性半導体層との固定基としてカルボキシル基またはホスホノ基を備えた錯体色素である色素Aと、前記機能性半導体層との固定基としてカルボキシル基またはホスホノ基を備えた有機分子色素である色素Bとを含み、前記機能性半導体層に保持される色素Aおよび色素Bの量をそれぞれvA、vBとしたときに、1.5≦vA/vB≦100となることを特徴とする。
本発明の色素増感太陽電池においては、色素Aや色素Bの固定基が電子受容基を兼ねてもよい。
前記色素Aは、ポリピリジル錯体を含有してもよい。このとき、前記ポリピリジル錯体に用いられる金属は、ルテニウムまたはオスミウムであってもよい。
前記機能性半導体層はTiOを含んでもよい。このとき、前記TiOはアナターゼ型であってもよい。
前記電解質層は、電解液、またはゲル状あるいは固体状の電解質であってもよい。
本発明の色素増感太陽電池によれば、光吸収率及び光電変換効率を向上させることができる。
本発明の色素増感太陽電池の断面模式図である。 本発明の色素増感太陽電池の動作原理を説明するためのエネルギー図である。 本発明の実施例および比較例におけるIPCEスペクトルを示すグラフである。
本発明の一実施形態における色素増感太陽電池について説明する。
まず、本発明の色素増感太陽電池に用いられる光増感色素(以下、「増感色素」と称することがある。)について説明する。本発明の色素増感太陽電池における光増感色素は、半導体層に吸着する官能基(固定基)としてカルボキシル基もしくはホスホノ基を有する錯体色素である増感色素(色素A)と、半導体層に吸着する官能基(固定基)としてカルボキシル基もしくはホスホノ基を有する有機分子色素である増感色素(色素B)とを含んで構成されている。
本発明の色素増感太陽電池にあっては、色素Aおよび色素Bのそれぞれの基底状態(HOMO)から励起状態(LUMO)への最小励起エネルギーが、互いに十分異なっているのがよい。この際、前記複数種の色素の前記最小励起エネルギーが、0.172〜0.209eV以上異なっているのが好ましい。
また、光利用を有効利用することを考えると、色素Aおよび色素Bが、半導体層吸着後に最大吸収帯が400nm以上の波長領域に存在するのが好ましく、色素Aと色素Bとで最大吸収帯が異なっているとさらに好ましい。特に、樹脂フィルムは400nm以下の波長の光を多く吸収するため、樹脂フィルムを用いた負極を使用する場合は、色素Aおよび色素Bの最大吸収帯が400nm以上の波長領域に存在すると、樹脂フィルムを透過した光を効率よく利用できるため好ましい。色素Aと色素Bとで最大吸収帯が異なっているとさらに好ましい。
また、色素Aおよび色素Bが、モル吸光係数が大きな色素と、モル吸光係数の小さな色素とからなるのがよい。この際、モル吸光係数が大きい色素のモル吸光係数が100,000以上であり、モル吸光係数が小さい色素のモル吸光係数が100,000以下であるのがよい。
本発明の色素増感太陽電池にあっては、色素Aが、MLCT(Metalto Ligand Charge Transfer)を引き起こす性質を有する錯体色素であり、色素Bが分子内CT(Charge Transfer)の性質を有する有機分子色素であるのが好ましい。
CTとは、電荷移動遷移のことであり、MLCTとは錯体色素の金属中心から配位子への電荷移動遷移のことである。
MLCTを引き起こす性質を有する錯体色素としては、ビピリジン錯体、ビキノリン錯体、テルピリジン錯体などのポリピリジン錯体を用いることができ、例えばブラックダイやN719などが好適である。
分子内CTとは、主に分子内における電子供与性の基から、電子受容性の基への電荷移動遷移のことである。
分子内CTの性質を有する有機分子色素としては、電子供与性の基と電子受容性の基の両方を有している分子を用いることが出来るが、これらが、直接または共役系を介して直線状に配置された、芳香族共役系分子等が好適である。さらに、この分子が酸化チタンなどの半導体層の表面に吸着される際に、半導体層の側に電子受容性の基が配置され、電解質層の側に電子供与性の基が配置されると、色素から半導体層への電子の移行に有利に作用するので、このような構造をもつ分子であることが望ましい。これは、CTの性質を有する有機分子色素における電荷の移動方法ならびに移動方向が、MLCTを引き起こす無機錯体色素における電荷の移動方法ならびに移動方向と異なるからである。
分子内CTの性質を有する有機分子色素としては、電子受容性の基として、カルボキシル基もしくはホスホノ基を備える芳香族共役系分子が使用される。
色素Bとして用いられる芳香族共役系分子においては、電子供与性の基として特に制限はないが、色素Bの固定基よりも電子供与性が高ければよい。
色素Bは、カルボキシル基もしくはホスホノ基を固定基として半導体層に結合し、色素Aと異なる立体配置を取って半導体層に結合する。このため、色素Aと色素Bは、半導体層表面上で隣接していても、強い相互作用を及ぼし合うことなく共存することができ、互いの光電変換性能を損なうことがない。
また、色素Aと色素Bの色素が会合を抑制することによって、両者を混合して用いると、色素AおよびBの一方を単独で用いたときに比べて光電変換効率を向上させることができる。
図1に、本実施形態の色素増感太陽電池の断面模式図を示した。本実施形態の色素増感太陽電池10は、透明基板1側から順に、透明電極2、機能性半導体層に複数種の増感色素を担持させて形成した光電変換層3、電解質層5、対向電極(正極)6、対向基板7で構成される。なお、図1にあっては負極に可撓性を有する透明基板1および透明電極2を用い、負極2側から光を入射させているが、本発明の色素増感太陽電池は図1の構成に限定されるものではなく、正負両極の電極及び基板に透明材料を用いることで、正負両極側から光を入射させることも可能である。
機能性半導体層としては、例えば酸化チタンTiOの微粒子を焼結させた多孔質層を用いることができる。機能性半導体層を構成する微粒子の表面に、色素Aおよび色素Bをそれぞれ1種類以上含む複数種の増感色素が保持されている。電解質層5は光電変換層3と対向電極6との間に充填され、I/I などの酸化還元種(レドックス対)を含む有機電解液などが用いられる。対向電極6は、例えば白金層などで構成され、対向基板7の上に形成されている。
色素増感太陽電池10は、増感色素が、カルボキシル基またはホスホノ基を有する色素A、色素Bをそれぞれ1種類以上有する増感色素からなることを除けば、従来の色素増感太陽電池と構造上の違いはない。
増感色素として色素Aおよび色素Bを用いることで、色素Aで十分変換されない波長の光の変換効率を向上させることができる。
本発明の色素増感太陽電池においては、機能性半導体層に担持される色素Aと色素Bとの比率においては、色素Aの方が色素Bよりも高くなっている。これは、色素Aは色素Bに比べ、単体の際に高い性能を出すことができるためである。
増感色素に占める色素Aおよび色素Bの量に関しては、機能性半導体層に保持される色素Aおよび色素Bの量をそれぞれvA、vBとしたときに、下記(1)の式を満たすようにvAおよびvBを設定する、すなわち、vAをvBの1.5倍以上100倍以下とすると、好適に変換効率を向上させることができる。これについては後に実施例および比較例を用いて説明する。
(1)1.5≦vA/vB≦100
図2に、本発明の色素増感太陽電池の動作原理を説明するためのエネルギー図を示した。色素増感太陽電池10は、光が入射すると、対向電極6を正極、透明基板1および透明電極2を負極とする電池として動作する。その原理は次の通りである。(なお、図2では、透明電極2の材料としてFTOを用い、半導体層3の材料として酸化チタンTiOを用い、レドックス対としてI/I の酸化還元種を用いることを想定している。)
透明基板1および透明電極2を透過してきた光子を光電変換層3の増感色素が吸収すると、増感色素中の電子が基底状態(HOMO)から励起状態(LUMO)へ励起される。この際、色素増感太陽電池10では増感色素が色素Aおよび色素Bを含むため、増感色素が単一の色素からなる従来の色素増感太陽電池に比べて、より広い波長領域の光をより高い光吸収率で吸収することができる。
励起状態の電子は、増感色素と機能性半導体層との間の電気的結合を介して、光電変換層3の伝導帯に引き出され、光電変換層3を通って透明電極2に到達する。この際、増感色素に含まれる色素Aと色素Bが、半導体層3に結合しているため、前記複数種の色素による光電変換機能が発現し、電流の発生量が大きく向上する。
電流−電圧曲線測定時において、電圧値を徐々に上昇させることで、半導体層のフェルミ準位が増感色素のLUMO側へ移動し,半導体層のフェルミ準位と増感色素のLUMOの準位が近くなることで、光電変換層3から電解質層5へと電子が移動することで、徐々に電流値が低下する。これは、光電変換層3から電解質層5への電子移動が起きやすくなるからである。色素Aと色素Bを用いることで光電変換層3からの電解質層5への電子の移動を防ぐことができる。これにより、電圧値とフィルファクターを向上させることができる。
一方、電子を失った増感色素は、電解質層5中の還元剤、例えばIから下記の反応によって電子を受け取り、電解質層5中に酸化剤、例えばI (IとIとの結合体)を生成させる。
2I→ I+ 2e
+ I → I
生じた酸化剤は拡散によって対向電極6に到達し、以下に示す、上記の反応の逆反応によって対向電極6から電子を受け取り、もとの還元剤に還元される。
→ I + I
+ 2e → 2I
透明電極2から外部回路へ送り出された電子は、外部回路で電気的仕事をした後、対向電極6に戻る。このようにして、増感色素にも電解質層5にも何の変化も残さず、光エネルギーが電気エネルギーに変換される。
増感色素を構成する色素Aとしては、カルボキシル基−COOHまたはホスホノ基−PO(OH)を有する芳香族共役系分子が用いられる。カルボキシル基やホスホノ基は、半導体層のブレンステッド酸基サイトとエステル結合を作り、結合する。また、カルボキシル基やホスホノ基は、電子受容基としても機能する。このような芳香族共役系分子の中でも、カルボキシル基を有するものが好ましく、中でもカルボキシル基を有するポリピリジン錯体がさらに好ましい。ポリピリジン錯体としては、ビピリジン錯体、ビキノリン錯体、テルピリジン錯体を用いることができる。具体的には、ビピリジン錯体の1種であるシス−ビス(イソチオシアナト)ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)二テトラブチルアンモニウム錯体(N719)が、増感色素としての性能に優れており、一般的に用いられている。その他、ビピリジン錯体の1種であるシス−ビス(イソチオシアナト)ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)(通称:N3)や、テルピリジン錯体の1種であるトリス(イソチオシアナト)(2,2’:6’,2”−テルピリジル−4,4’,4”−トリカルボン酸)ルテニウム(II)三テトラブチルアンモニウム錯体(ブラックダイ)を用いることができる。
[化1]に、色素Aの一例として、ポリピリジン錯体として用いられるトリス(イソチオシアナト)(2,2’:6’,2”−テルピリジル−4,4’,4”−トリカルボン酸)ルテニウム(II)三テトラブチルアンモニウム錯体(ブラックダイ)の構造式を示す。
Figure 2014093252
[化2]に、色素Bの一例として、分子内CTの性質を示す有機分子であるD131の構造式を示す。
Figure 2014093252
色素増感太陽電池において、単に増感色素を複数種類用いるだけでは、必ずしも光吸収率及び光電変換効率が向上しないことは既に説明したが、本発明者は、種々の色素の組み合わせについて研究を重ねた結果、光吸収率及び光電変換効率を向上させ得る色素の組み合わせを発見した。すなわち、カルボキシル基またはホスホノ基を有し半導体層のブレンステッド酸基に結合するブラックダイやN719などの、モル吸光係数は小さいが広い吸収波長領域を有する色素A(以下、基本色素と呼ぶことがある。)と、モル吸光係数は大きいが吸収波長領域が狭い色素B(以下、補助色素と呼ぶことがある。)とを組み合わせた場合、光電変換率が向上することを見出し本発明にいたった。
本発明の一例であるブラックダイとD131との組み合わせのIPCE(Incident Photon−to−current Conversion Efficiency)スペクトルによれば、基本色素であるブラックダイの吸光度が不足する短波長領域の光吸収を、補助色素である色素Bが補助する関係にある。しかも、ブラックダイの吸収ピーク波長が400nm以上の波長領域に存在し、吸収波長領域の長波長側末端が860nm付近にあるのに対し、D131等の色素Bの吸収ピーク波長は450nm以下の波長領域に存在し、吸収波長領域の長波長側末端は600nm付近にある。これは両色素のバンドギャップエネルギーが大きく異なっていることを表している。ブラックダイと色素Bとを半導体層3の上に混在させた場合、従来知られていた例とは異なり光電変換効率が低下しないのは、両色素のバンドギャップエネルギーが大きく異なっているため、色素間での電子移動が起こりにくいためと考えられる。色素Bは、短波長領域では大きな吸光度を有する増感色素として働いている。
図2のエネルギー図には、増感色素が色素Aと色素Bとからなる系では、色素Bの光電変換効率が向上する機構が示されている。上述したように、各色素がそれぞれ光子を吸収すると色素中の電子が基底状態(HOMO)から励起状態(LUMO)へ励起される。この系では、色素Bの励起状態の電子が光電変換層3の伝導帯に引き出される経路が、2種類存在する。すなわち、色素Bの励起状態から直接、半導体層3の伝導帯に引き出される直接経路と、色素Bの励起状態の電子が、まず、エネルギー準位の低い色素Aの励起状態へ引き出され、次に、色素Aの励起状態から光電変換層3の伝導帯に引き出される間接経路とである。この間接経路12の寄与によって、色素Aが共存する系では、色素Bの光電変換効率が向上する。
色素Aと色素Bとが共存する系では、光電変換効率の向上が起こる。ブラックダイはテルピリジン基の平面性が高く、会合抑制剤(共吸着剤)がないと、ブラックダイ間で電子移動が生じ、効率が低下することが知られている。すなわち、実施例において、会合抑制剤を用いずに色素Bをブラックダイと共に用いることで光電変換効率の向上が生じたことは、色素Bが会合抑制剤として機能することを意味している。しかしながら、この結果は他の会合抑制剤を共に用いることを否定するものではなく、他の会合抑制剤を共に用いてもよい。
増感色素を機能性半導体層に保持させる方法には、特に制限は無いが、増感色素を適当な溶媒、例えば、アルコール類、ニトリル類、ニトロメタン、ハロゲン化炭化水素、エーテル類、ジメチルスルホキシド、アミド類、N−メチルピロリドン、1,3−ジメチルイミダゾリジノン、3−メチルオキサゾリジノン、エステル類、炭酸エステル類、ケトン類、炭化水素、THF、および水などに溶解させ、この色素溶液に機能性半導体層を浸漬するか、もしくは色素溶液を機能性半導体層に塗布して、機能性半導体層に増感色素を吸着させるのがよい。また、色素同士の会合を減少させるために、色素溶液に色素間の会合を抑制するとされているデオキシコール酸などを添加してもよい。
また、本発明の色素増感太陽電池にあっては、増感色素同士の会合を減少させるために、増感色素溶液に共吸着剤を添加してもよい。共吸着剤として、例えばケノデオキシコール酸、タウロデオキシコール酸塩、および1−デクリルホスホン酸などを用いることができるが、ケノデオキシコール酸を用いるのが一般的である。濃度は一般的には10μM〜0.5Mであるが、0.3μM〜0.2Mであることが特に好ましい。なお、Mとは、mol/L(モル/リットル)を意味する。
増感色素以外の部材については、従来の色素増感太陽電池などと同様であるが、以下に詳述する。
透明基板1の材質は、光が透過しやすく可撓性を有するものであれば特に限定されるものではなく、樹脂を始めとする各種の材料を用いることができるが、特に可視光の透過率が高い基板材料が好ましい。また、光電変換素子に外部から侵入しようとする水分やガスを阻止する遮断性能が高く、また、耐溶剤性や耐候性に優れている材料が好ましい。具体的には、ポリエチレンテレフタラート、ポリエチレンナフタラート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、アセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルホン類、ポリオレフィン類などの透明プラスチック基板が挙げられる。透明基板1の厚さは特に制限されず、光の透過率や、光電変換素子内外を遮断する性能を勘案して、適宜選択することができる。
この透明基板1の表面上に、電子取り出し電極(負極)として透明電極(透明導電層)2を形成する。透明導電層2は、その表面抵抗率が小さいほど好ましく、具体的には500Ω/sq.(Ω/□)以下であることが好ましく、100Ω/□以下であることがさらに好ましい。透明導電層2を形成する材料は、公知の材料が使用可能であり、具体的にはインジウム−スズ複合酸化物(ITO)、フッ素がドープされた酸化スズ(IV)SnO (FTO)、酸化スズ(IV)SnO 、酸化亜鉛(II)ZnO、インジウム−亜鉛複合酸化物(IZO)などが挙げられる。また、これらに限定されるものではなく、2種類以上を組み合わせて用いることができる。透明導電層2は、スパッタリング法などによって形成される。
表面抵抗率は、三菱化学アナリテック社のLoresta−GPの型番MCP−T610で測定した。この機器はJIS K7194−1994に準拠している。単位はΩ/sq.またはΩ/□で示されるが、実質的には、Ωである(sq.、□は無次元)。
また、表面抵抗率は試験片の表面に沿って流れる電流と平行方向の電位傾度を、表面の単位幅当たりの電流で除した数値を意味する。この数値は、各辺1cmの正方形の相対する辺を電極とする二つの電極間の表面抵抗に等しいと、JIS K6911−1995に定義されている
また、電子取り出し路の抵抗を低減し、集電効率を向上させる目的で、導電性の高い金属配線をパターニングして形成することも可能である。金属配線の材料に特に制限は無いが、耐食性、耐酸化性が高く、金属材料自体の漏れ電流は低いことが望ましい。また、耐食性が低い材料でも別途保護層を設けることで使用可能である。また、基板からの暗電流低減を目的として、この金属配線に各種酸化物薄膜のバリア層を設けることも可能である。
機能性半導体層としては、半導体微粒子を焼結させた多孔質膜が用いられることが多い。半導体材料として、シリコンに代表される単体半導体材料の他に、化合物半導体材料またはペロブスカイト構造を有する材料などを用いることができる。これらの半導体材料は、光励起下で伝導帯電子がキャリアとなり、アノード電流を生じるn型半導体材料であることが好ましい。具体的に例示すると、酸化チタンTiO、酸化亜鉛ZnO、酸化タングステンWO、酸化ニオブNb、チタン酸ストロンチウムSrTiO、および酸化スズSnOであり、特に好ましくはアナターゼ型の酸化チタンTiOである。また、半導体材料の種類はこれらに限定されるものでは無く、単独で、もしくは2種類以上を混合または複合化して用いることができる。また、半導体微粒子は粒状、チューブ状、棒状など必要に応じて様々な形態をとることが可能である。
機能性半導体層の製膜方法に特に制限は無いが、物性、利便性、製造コストなどを考慮した場合、湿式による製膜法が好ましく、半導体微粒子の粉末あるいはゾルを水などの溶媒に均一に分散させたペースト状の分散液を調製し、透明導電層2を形成した透明基板1の上に塗布または印刷する方法が好ましい。塗布方法または印刷方法に特に制限はなく、公知の方法に従って行うことができる。例えば、塗布方法としては、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、およびグラビアコート法などを用いることができ、また、湿式印刷方法としては、凸版印刷法、オフセット印刷法、グラビア印刷法、凹版印刷法、ゴム版印刷法、およびスクリーン印刷法などを用いることができる。
酸化チタンの結晶型は光触媒活性の優れたアナターゼ型が好ましい。アナターゼ型酸化チタンは、粉末状、ゾル状、またはスラリー状の市販品を用いてもよいし、あるいは、酸化チタンアルコキシドを加水分解するなどの公知の方法によって、所定の粒径のものを形成してもよい。市販の粉末を使用する際には粒子の二次凝集を解消することが好ましく、ペースト状分散液の調製時に、乳鉢やボールミルなどを使用して粒子の粉砕を行うことが好ましい。このとき、二次凝集が解消された粒子が再度凝集するのを防ぐために、アセチルアセトン、塩酸、硝酸、界面活性剤、およびキレート剤などをペースト状分散液に添加することができる。また、ペースト状分散液の粘性を増すために、ポリエチレンオキシドやポリビニルアルコールなどの高分子、あるいはセルロース系の増粘剤などの各種増粘剤をペースト状分散液に添加することもできる。
半導体微粒子の粒径に特に制限は無いが、一次粒子の平均粒径で1〜200nmが好ましく、特に好ましくは5〜100nmである。また、半導体微粒子よりも大きいサイズの粒子を混合し、入射光を散乱させ、量子収率を向上させることも可能である。この場合、別途混合する粒子の平均サイズは20〜500nmであることが好ましい。
機能性半導体層は、多くの増感色素を吸着することができるように、多孔膜内部の空孔に面する微粒子表面も含めた実表面積の大きいものが好ましい。このため、半導体層3を透明電極2の上に形成した状態での実表面積は、機能性半導体層の外側表面の面積(投影面積)に対して10倍以上であることが好ましく、さらに100倍以上であることが好ましい。この比に特に上限はないが、通常1000倍程度である。
なお、平均粒径は、SEM写真で粒径を測定して算出した。以下本願では同じ方法で平均粒径を算出した。
一般に、光電変換層3の厚みが増し、単位投影面積当たりに含まれる半導体微粒子の数が増加するほど、実表面積が増加し、単位投影面積に保持できる色素量が増加するため、光吸収率が高くなる。一方、光電変換層3の厚みが増加すると、増感色素から機能性半導体層に移行した電子が透明電極2に達するまでに拡散する距離が増加するため、光電変換層3内での電荷再結合による電子のロスも大きくなる。従って、光電変換層3には好ましい厚さが存在するが、一般的には0.1〜100μmであり、1〜50μmであることがより好ましく、3〜30μmであることが特に好ましい。
機能性半導体層は、半導体微粒子を透明電極2上に塗布または印刷した後に、微粒子同士を電気的に接続し、機能性半導体層の機械的強度を向上させ、透明電極2との密着性を向上させるために、焼成することが好ましい。焼成温度の範囲に特に制限は無いが、温度を上げ過ぎると、透明電極2の電気抵抗(表面抵抗率)が高くなり、さらには透明電極2が溶融することもあるため、通常は40℃〜700℃が好ましく、より好ましくは40℃〜650℃である。また、焼成時間にも特に制限は無いが、通常は10分〜10時間程度である。
焼成後、半導体微粒子の表面積を増加させたり、半導体微粒子間のネッキングを高めたりする目的で、例えば、四塩化チタン水溶液や直径10nm以下の酸化チタン超微粒子ゾルによるディップ処理を行ってもよい。透明電極(透明導電層)2を支持する透明基板1としてプラスチック基板を用いている場合には、結着剤を含むペースト状分散液を用いて透明導電層2上に機能性半導体層を製膜し、加熱プレスによって透明導電層2に圧着することも可能である。
電解質層5としては、電解液、またはゲル状あるいは固体状の電解質が使用可能である。電解液としては、酸化還元系(レドックス対)を含む溶液が挙げられ、具体的には、ヨウ素Iと金属または有機物のヨウ化物塩との組み合わせや、臭素Brと金属または有機物の臭化物塩との組み合わせを用いる。金属塩を構成するカチオンは、リチウムLi、ナトリウムNa、カリウムK、セシウムCs、マグネシウムMg2+、およびカルシウムCa2+などであり、有機物塩を構成するカチオンは、テトラアルキルアンモニウムイオン類、ピリジニウムイオン類、イミダゾリウムイオン類などの第4級アンモニウムイオンが好適であるが、これらに限定されるものでは無く、単独もしくは2種類以上を混合して用いることができる。
これらのほか、電解質として、フェロシアン酸塩とフェリシアン酸塩との組み合わせや、フェロセンとフェリシニウムイオンとの組み合わせなどの金属錯体、コバルト錯体、ポリ硫化ナトリウム、アルキルチオールとアルキルジスルフィドとの組み合わせなどのイオウ化合物、ビオロゲン色素、ヒドロキノンとキノンとの組み合わせなどを用いることができる。
上記の中でも特に、ヨウ素Iと、ヨウ化リチウムLiI、ヨウ化ナトリウムNaI、またはイミダゾリウムヨーダイドなどの第4級アンモニウム化合物とを組み合わせた電解質が好適である。電解質塩の濃度は溶媒に対して0.05M〜10Mが好ましく、さらに好ましくは0.2M〜3Mである。ヨウ素Iまたは臭素Brの濃度は0.0005M〜1Mが好ましく、さらに好ましくは0.001〜0.5Mである。また、開放電圧や短絡電流を向上させる目的で4−tert−ブチルピリジンやベンズイミダゾリウム類など各種添加剤を加えることもできる。
電解質として、ヨウ素の変わりにコバルト錯体を用いた場合、ヨウ素を用いる場合と比べ、金属の腐食が発生しにくくなるため、色素増感太陽電池内部に金属配線などを使用することができるようになる。
電解液を構成する溶媒として、水、アルコール類、エーテル類、エステル類、炭酸エステル類、ラクトン類、カルボン酸エステル類、リン酸トリエステル類、複素環化合物類、ニトリル類、ケトン類、アミド類、ニトロメタン、ハロゲン化炭化水素、ジメチルスルホキシド、スルフォラン、N−メチルピロリドン、1,3−ジメチルイミダゾリジノン、3−メチルオキサゾリジノン、および炭化水素などが挙げられるが、これらに限定されるものではなく、単独で、もしくは2種類以上を混合して用いることができる。また、溶媒としてテトラアルキル系、ピリジニウム系、イミダゾリウム系第4級アンモニウム塩の室温イオン性液体を用いることも可能である。また、電解質の漏洩を防ぐため、CuIに代表されるような固体の金属塩などを用いてもよい。
色素増感太陽電池10からの電解液の漏液や、電解液を構成する溶媒の揮発を減少させる目的で、電解質構成物にゲル化剤、ポリマー、または架橋モノマーなどを溶解または分散させて混合し、ゲル状電解質として用いることも可能である。ゲル化材料と電解質構成物の比率は、電解質構成物が多ければイオン導電率は高くなるが、機械的強度は低下する。逆に、電解質構成物が少なすぎると、機械的強度は大きいが、イオン導電率は低下する。このため、電解質構成物はゲル状電解質の50wt%〜99wt%であるのが好ましく、80wt%〜97wt%であるのがより好ましい。また、電解質と可塑剤とをポリマーと混合した後、可塑剤を揮発させて除去することで、全固体型の色素増感太陽電池を実現することも可能である。
対向電極6の材料としては、導電性物質であれば任意のものを用いることができるが、絶縁性材料の電解質層5に面している側に導電層が形成されていれば、これも用いることが可能である。ただし、電気化学的に安定である材料を対向電極6の材料として用いることが好ましく、具体的には、白金、金、カーボン、および導電性ポリマーなどを用いることが望ましい。
また、対向電極6での還元反応に対する触媒作用を向上させるために、電解質層5に接している対向電極6の表面には、微細構造が形成され、実表面積が増大するように形成されていることが好ましく、例えば、白金であれば白金黒の状態に、カーボンであれば多孔質カーボンの状態に形成されていることが好ましい。白金黒は、白金の陽極酸化法や塩化白金酸処理などによって、また多孔質カーボンは、カーボン微粒子の焼結や有機ポリマーの焼成などの方法によって形成することができる。
対向基板7は、光を透過させる必要はないので、材料として、不透明なガラス板、プラスチック板、セラミック板、および金属板を使用してもかまわない。また、透明な対向電極上に透明導電層を形成し、その上に酸化還元触媒作用の高い白金などの金属による配線を形成するか、表面を塩化白金酸処理することによって、透明な対向電極として用いることもできる。
色素増感太陽電池10の製造方法は特に限定されない。電解質が液状である場合、または、液状の電解質を導入し、色素増感太陽電池10の内部でゲル化させる場合には、予め周囲が封止され、注入口が設けられた色素増感太陽電池10に電解液を注入する方法が好ましい。
色素増感太陽電池10を封止するには、光電変換層3と対向電極6とを、互いに接しないように適当な間隙を設けて対向させ、光電変換層3が形成されていない領域で基板1と対向基板7とを貼り合わせる。光電変換層3と対向電極6との間隙の大きさに特に制限は無いが、通常1〜100μmであり、より好ましくは1〜50μmである。この間隙の距離が大きすぎると、導電率が低下し、光電流が減少する。
封止材の材料は特に制限されないが、耐光性、絶縁性、防湿性を備えた材料が好ましく、種々の溶接法、エポキシ樹脂、紫外線硬化樹脂、アクリル樹脂、ポリイソブチレン樹脂、EVA(エチレンビニルアセテート)、アイオノマー樹脂、セラミック、各種熱融着樹脂などを用いることができる。また、注入口を設ける場所は、光電変換層3およびそれに対向する対向電極6上でなければ、特に限定されない。
電解液の注入方法に特に制限はないが、注入口に溶液を数滴垂らし、毛細管現象によって導入する方法が簡便である。また、必要に応じて、減圧もしくは加熱下で注入操作を行うこともできる。完全に溶液が注入された後、注入口に残った溶液を除去し、注入口を封止する。この封止方法にも特に制限は無いが、必要であればガラス板やプラスチック基板を封止材で貼り付けて封止することもできる。
また、電解質が、ポリマーなどを用いてゲル化された電解質や、全固体型の電解質である場合、電解質と可塑剤とを含むポリマー溶液を、光電変換層3の上にキャスト法などによって塗布する。その後、可塑剤を揮発させ、完全に除去した後、上記と同様に封止材によって封止する。この封止は、真空シーラーなどを用いて、不活性ガス雰囲気下、もしくは減圧中で行うことが好ましい。封止を行った後、電解質層5の電解液が光電変換層3に十分に浸透するように、必要に応じて加熱、加圧の操作を行うことも可能である。
本発明の実施の形態に基づく色素増感型光電変換装置(色素増感太陽電池)はその用途に応じて様々な形状で作製することが可能であり、その形状は特に限定されない。
<色素増感太陽電池の作製>
(実施例1)
(チタニア半導体粒子懸濁液の調製)
オルトチタン酸テトライソプロピル56.8gを、イオン交換水200mL中によく撹拌しながら滴下し、滴下終了後、さらに1時間撹拌を続けることで加水分解を完結させ、目的とする水酸化チタンの沈殿物を得た。沈殿物は濾紙を用いて濾別し、イオン交換水で十分に洗浄した。
5.8gのテトラメチルアンモニウムハイドロオキサイド(TMAH)を溶解させたイオン交換水にこの沈殿物を加え、さらにイオン交換水を追加して試料の全量を160gとした。
この試料を、140℃で4時間加熱還流を行った後、ガラスフィルターでマイクロクリスタルを除去することで、白濁半透明なコロイド溶液を得た。
得られたコロイド溶液を密閉したオートクレーブ容器に移し260℃で8時間水熱合成を行い、この水熱合成後、エバポレーターを用いてコロイド溶液の溶媒をエタノールに置換した後、超音波分散の処理を行い、平均粒子径20nmのアナターゼ結晶型のチタニア粒子〔A〕を含むエタノール懸濁液〔A〕を得た(以上の操作を「半導体粒子懸濁液の調製操作」という。)。
なお、TMAHが分解して生成されるトリメチルアミンは、コロイド溶液の溶媒をエタノールに置換する操作の際にほぼ全量除去される。
この半導体粒子懸濁液の調製操作において、TMAHの添加量を1.5gとしたことの他は同様にして、平均粒子径100nmのアナターゼ結晶型のチタニア粒子〔B〕を含むエタノール懸濁液〔B〕を得た。
なお、エタノール懸濁液〔A〕、〔B〕に含有されるチタニア粒子については、エタノール懸濁液をスライドガラス上にドクターブレード法で塗布・乾燥後、XRDパターンを測定し、得られたXRDパターンから半価幅を求め、Scherrerの式(D=K×λ/βcosθ)を用いることにより、平均粒子径を算出した。さらに、チタニア粒子の結晶型を確認した。ただし、上記の式中、Dは結晶子の長さ、βは半価幅、θは回折角、K=0.94、λ=1.5418である。
チタニア粒子〔A〕およびチタニア粒子〔B〕は、その結晶型がほぼ100%アナターゼ結晶型であり、ルチル結晶型の存在は確認されなかった。
なお、Scherrerの式は、平均粒子径が50nmを超える場合は誤差が大きくなるため、平均粒子径が50nmを超えた場合は、次の方法を用いた。すなわち、エタノール懸濁液をスライドガラス上にドクターブレード法で塗布・乾燥後、SEMを用いて撮像し、画像に得られた、粒子の粒子半径の算術平均を取ることで平均粒子径とした。
(光電変換層形成用水性ペーストの調製)
これら2種類のエタノール懸濁液〔A〕,〔B〕について、各々のチタニア粒子の濃度を以下のように測定した。まず、るつぼの質量(W)を電子天秤で秤り、その後、るつぼにエタノール懸濁液を取り、るつぼとエタノール懸濁液の総質量(W1)を秤り、これを電気炉内に入れ、150℃で2時間保持してエタノール懸濁液の溶媒を完全に除去し、次いで、再び質量(W2)を秤り、式{チタニア粒子の濃度(wt%)=(W2−W)/(W1−W)×100}から求めた。
そして、それぞれの懸濁液のチタニア粒子濃度に基づいて、チタニア粒子〔A〕およびチタニア粒子〔B〕が重量比で7:3となるように混合し、この混合液を再びエバポレーターを用いて溶媒をほぼ完全に水で置換した上で濃縮することにより、最終的に、チタニア粒子の濃度が10wt%であって水を媒体とする光電変換層形成用ペースト〔1〕を得た。
この光電変換層形成用水性ペースト〔1〕を、ドクターブレード法により、シート抵抗13Ω/□のITO/PEN(ポリエチレンナフタレート)基板(王子トービ製)よりなる透光性基板に、0.5cm×0.5cmの大きさの作用極領域に塗布した後、室温で乾燥させて塗膜を形成し、この塗膜に対して平プレス処理を行った。平プレス処理には、ミニテストプレス−10(東洋精機製)を使用した。5mmのコーネックスフェルト(デュポン株式会社製)、感圧フィルム(「プレスケール」、富士フィルム社製)、透光性基板、フッ素離型フィルム、及び5mmのコーネックスフェルト(デュポン株式会社製)を順次積層し、上から「コーネックスフェルト」/「感圧フィルム」/「フッ素離型フィルム」/チタニア塗布ITO−PEN基板/「コーネックスフェルト」の層構成とした積層体を得た。この積層体を、感圧フィルムで実測プレス加重を確認しながら60秒間プレスした。このときの加重は圧力100MPaであった。前記方法により、透光性基板上に機能性半導体層が形成された光電極構造体を得た。
平プレス処理後における機能性半導体層の膜厚は8μmであった。セル実効面積については、デジタルマイクロスコープおよび校正スケールを用い、有効数字4桁での補正を行った。また、膜厚測定は触針式表面形状測定器DEKTAK(ULVAC製)を用いて行った。
(増感色素の担持・光電極の作製)
色素担持溶液として、増感色素として色素Aとしてブラックダイ、色素BとしてD131を用い、1−プロパノール中にブラックダイ:0.2mM、D131:0.007mMの濃度で溶解させて色素溶液を得、この色素溶液中に20mMのDCAを溶解させた。その後、機能性半導体層を形成した上記光電極構造体を24時間浸漬させ、機能性半導体層に増感色素が担持された光電変換層を備えた光電極〔1〕を得た。
(電解質部分として用いる電解質溶液の作製)
電解質溶液として、ヨウ素、ヨウ化リチウム、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドおよびt−ブチルピリジンが溶解されたアセトニトリル溶液を用いた。これらはそれぞれ0.05M、0.1M、0.6Mおよび0.3Mになるよう窒素雰囲気下でアセトニトリルに溶解されたものである。
(対向電極の作製)
厚さ100μmのTi箔上に、スパッタ法を用いて触媒層としてのPt層を形成し、導電層とした。その際、用いたスパッタ条件は、60W、Arガス:4sccm、0.6Pa、60minである。
上記の光電極〔1〕に、厚さ30μmの絶縁スペーサー、対極の順に重ね合わせ、光電極〔1〕と対極との間にマイクロシリンジで電解質溶液を注入することにより、色素増感太陽電池を作製した。
〔実施例2〕
色素担持溶液として、増感色素として色素Aとしてブラックダイ、色素BとしてD131を用い、1−プロパノール中にブラックダイ:0.2mM、D131:0.035mMの濃度で溶解させた色素担持溶液を用いた以外は、実施例1と同様の方法で色素増感太陽電池を作製した。
〔比較例1〕
色素担持溶液として、増感色素としてブラックダイのみを用い、1−プロパノール中にブラックダイ:0.2mMの濃度で溶解させた色素担持溶液を用いた以外は、実施例1と同様の方法で色素増感太陽電池を作製した。
〔比較例2〕
色素担持溶液として、増感色素として色素Aとしてブラックダイ、色素BとしてD131を用い、1−プロパノール中にブラックダイ:0.2mM、D131:0.14mMの濃度で溶解させた色素担持溶液を用いた以外は、実施例1と同様の方法で色素増感太陽電池を作製した。
<色素増感太陽電池の性能評価>
以上のようにして作製した実施例1から2、および比較例1から3の色素増感太陽電池について、擬似太陽光(AM1.5、100mW/cm)照射時における開放電圧、電流−電圧曲線における短絡電流、フィルファクター、および光電変換効率を測定した。また、IPCEスペクトルを測定した。
<増感色素量の測定>
電池性能の評価およびIPCEスペクトルの測定後、各例の色素増感太陽電池を分解し、50mMのNaOH水溶液0.5mlと0.1MのTBAOHエタノール溶液0.5mlとを混合した色素脱離液に光電変換層を浸漬させた。その後、UVスペクトル測定し、色素Aと色素Bの担持量を求めた。
実施例1、2、および比較例1、2の測定結果を表1に示す。
Figure 2014093252
表1におけるffとは、フィルファクターを意味する。フィルファクターは形状因子とも言われ、太陽電池の特性を示すパラメータの1つである。理想的な光電変換装置の電流電圧曲線では、開放電圧と同じ大きさの一定の出力電圧が、出力電流が短絡電流と同じ大きさに達するまで維持されるが、実際の太陽電池の電流電圧曲線は、内部抵抗があるため、理想的な電流電圧曲線からはずれた形になる。実際の電流電圧曲線とx軸およびy軸とで囲まれる領域の面積の、理想的な電流電圧曲線とx軸およびy軸とで囲まれる長方形の面積に対する比を、フィルファクターという。フィルファクターは、理想的な電流電圧曲線からのずれの度合いを示すもので、実際の光電変換効率を算出する時に用いられる。
表1に示すように、色素Aと色素Bを両方用い、かつ、色素Aを色素Bよりも多く機能性半導体層に保持させた本発明の構成において、光電変換効率が向上していた。
この原因のすべてが解明されたわけではないが、主要な原因は、上述したとおりである。
図3に、各例におけるIPCEスペクトルを示す。色素Aのみを増感色素とする比較例1に比べ、色素Bを加えた他の例では、波長400nm〜600nmの光の変換効率が向上されていることがわかる。また、色素Bが色素Aよりも多い比較例2では、波長600nm〜800nmの光の変換効率が比較例1よりも低下してしまっていることがわかる。
以上、実施形態および実施例を用いて本発明の色素増感太陽電池について説明したが、本発明の技術範囲は上記実施形態および実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において構成要素の組み合わせを変えたり、各構成要素に種々の変更を加えたり、削除したりすることが可能である。
例えば、本発明の色素増感太陽電池においては、光電極が光透過性を有さなくてもよく、たとえば不透明な樹脂フィルム上に導電層を設けた基板上に光電変換層が形成されてもよい。この場合は、光電極側から光を取り込めなくなるため、光透過性を有する材料で対向電極を形成すればよい。
1 透明基板
2 透明電極
3 光電変換層
5 電解質層
6 対向電極(正極)
7 対向基板
10 色素増感太陽電池

Claims (8)

  1. 可撓性を有する負極と、前記負極上に設けられ、機能性半導体層に光増感色素が保持された光電変換層と、正極と、前記光電変換層と前記正極との間に配された電解質層とを備える色素増感太陽電池であって、
    前記光増感色素が、
    前記機能性半導体層との固定基としてカルボキシル基またはホスホノ基を備えた錯体色素である色素Aと、
    前記機能性半導体層との固定基としてカルボキシル基またはホスホノ基を備えた有機分子色素である色素Bと、を含み、
    前記機能性半導体層に保持される色素Aおよび色素Bの量をそれぞれvA、vBとしたときに、
    1.5≦vA/vB≦100
    となることを特徴とする色素増感太陽電池。
  2. 前記色素Aの固定基が、電子受容基を兼ねていることを特徴とする請求項1に記載の色素増感太陽電池。
  3. 前記色素Bの固定基が、電子受容基を兼ねていることを特徴とする請求項1または2に記載の色素増感太陽電池。
  4. 前記色素Aは、ポリピリジル錯体を含有することを特徴とする請求項1から3のいずれか一項に記載の色素増感太陽電池。
  5. 前記ポリピリジル錯体に用いられる金属は、ルテニウムまたはオスミウムであることを特徴とする請求項4に記載の色素増感太陽電池。
  6. 前記機能性半導体層はTiOを含むことを特徴とする請求項1から5のいずれか一項に記載の色素増感太陽電池。
  7. 前記TiOはアナターゼ型であることを特徴とする請求項6に記載の色素増感太陽電池。
  8. 前記電解質層が、電解液、またはゲル状あるいは固体状の電解質であることを特徴とする請求項1から7のいずれか一項に記載の色素増感太陽電池。

JP2012244471A 2012-11-06 2012-11-06 色素増感太陽電池 Pending JP2014093252A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244471A JP2014093252A (ja) 2012-11-06 2012-11-06 色素増感太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012244471A JP2014093252A (ja) 2012-11-06 2012-11-06 色素増感太陽電池

Publications (1)

Publication Number Publication Date
JP2014093252A true JP2014093252A (ja) 2014-05-19

Family

ID=50937179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244471A Pending JP2014093252A (ja) 2012-11-06 2012-11-06 色素増感太陽電池

Country Status (1)

Country Link
JP (1) JP2014093252A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107885A (ja) * 2004-10-04 2006-04-20 Sharp Corp 色素増感太陽電池および色素増感太陽電池モジュール
JP2007234580A (ja) * 2006-02-02 2007-09-13 Sony Corp 色素増感型光電変換装置
WO2010053105A1 (ja) * 2008-11-05 2010-05-14 ソニー株式会社 色素増感太陽電池およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107885A (ja) * 2004-10-04 2006-04-20 Sharp Corp 色素増感太陽電池および色素増感太陽電池モジュール
JP2007234580A (ja) * 2006-02-02 2007-09-13 Sony Corp 色素増感型光電変換装置
WO2010053105A1 (ja) * 2008-11-05 2010-05-14 ソニー株式会社 色素増感太陽電池およびその製造方法

Similar Documents

Publication Publication Date Title
JP5023866B2 (ja) 色素増感光電変換素子およびその製造方法ならびに電子機器
US8415558B2 (en) Dye sensitization photoelectric converter
JP5007784B2 (ja) 光電変換装置
JP5070704B2 (ja) 光電変換装置
KR101245006B1 (ko) 색소증감 광전변환 소자 및 그 제조 방법 및 전자장치 및그 제조 방법 및 전자기기
JP4470370B2 (ja) 光電変換素子の製造方法
JP4635473B2 (ja) 光電変換素子の製造方法及び半導体電極の製造方法
JP5263458B1 (ja) 色素増感太陽電池
JP4380779B2 (ja) 色素増感型光電変換装置
WO2004064191A1 (ja) 光電変換素子
JP2004234988A (ja) 光電変換素子およびその製造方法ならびに電子装置およびその製造方法ならびに半導体層およびその製造方法
JP2012059599A (ja) カーボン系電極及び電気化学装置
JP4678125B2 (ja) 光電変換素子およびその製造方法ならびに電子装置およびその製造方法
JP2007242544A (ja) 光電変換装置及びその製造方法、並びに金属酸化物多孔質層の表面処理液
JP2015115110A (ja) 色素増感太陽電池の製造方法および色素増感太陽電池
JP2014093252A (ja) 色素増感太陽電池
JP2009081074A (ja) 色素増感光電変換素子、電解質組成物、電解質用添加剤および電子機器
JP2016100488A (ja) 半導体層、および、色素増感太陽電池
JP2016076683A (ja) 色素増感太陽電池、色素増感太陽電池用電極、および色素増感太陽電池用電極の製造方法
JP2017045759A (ja) 色素増感太陽電池、色素増感太陽電池用電極、および、色素増感太陽電池用電極の製造方法
JPWO2004109840A1 (ja) 電極およびその形成方法ならびに光電変換素子およびその製造方法ならびに電子装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823