JP2014070525A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2014070525A
JP2014070525A JP2012215621A JP2012215621A JP2014070525A JP 2014070525 A JP2014070525 A JP 2014070525A JP 2012215621 A JP2012215621 A JP 2012215621A JP 2012215621 A JP2012215621 A JP 2012215621A JP 2014070525 A JP2014070525 A JP 2014070525A
Authority
JP
Japan
Prior art keywords
opening
function
correction
flow rate
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012215621A
Other languages
English (en)
Inventor
Hisashi Ito
久志 伊藤
Masaki Ueno
将樹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012215621A priority Critical patent/JP2014070525A/ja
Publication of JP2014070525A publication Critical patent/JP2014070525A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】流量制御弁の開度領域内で流量特性が異なる場合においても、流量特性の学習補正を適切に行い、流体の流量を精度良く制御できる内燃機関の制御装置を提供する。
【解決手段】本発明による内燃機関の制御装置では、EGR弁開度LEGRの開度関数KEGRを表した流量特性線(図4)を記憶し、実開度関数値KEGRACTと目標開度関数値KEGRCMDとの差(関数誤差ΔKEGR)(ステップ12)を、EGR弁開度LEGRSと組み合わせてサンプリングし(ステップ14)、第1〜第4LEGR領域ごとに、EGR弁開度LEGRSの平均値である重心位置LAV(ステップ18)に、関数誤差ΔKEGRの平均値ΔKAV(ステップ19)を、補正基準点PC1〜4としてプロットし、補正基準点PC1〜4を補間することで補正特性線(図10)を設定し(ステップ20、21)と、補正特性線を用いて流量特性線を補正する(ステップ22)。
【選択図】図10

Description

本発明は、内燃機関の通路を流れる流体の流量を流量制御弁によって制御する内燃機関の制御装置に関し、特に流量制御弁の流量特性を学習補正する制御装置に関する。
従来のこの種の内燃機関の制御装置として、例えば特許文献1に記載されたものが知られている。この内燃機関は、吸気弁のリフト量(リフト及び開角)を変更する弁作動特性可変機構を備えている。この制御装置では、アイドル運転状態において、吸気弁のリフト量の基本値を目標吸入空気量に応じて設定するとともに、検出された吸入空気量が目標吸入空気量に一致するように、基本値を補正するリフト補正量が算出される。
また、このリフト補正量の学習値である学習補正量が、次のようにして算出される。すなわち、吸気弁のリフト量を検出するとともに、検出リフト量が所定のしきい値以下である低リフト領域では、低リフト領域用の第1学習値が算出され、学習補正量として設定される。一方、検出リフト量が所定のしきい値よりも大きな高リフト領域では、高リフト領域用の第2学習値が算出され、学習補正量として設定される。これにより、リフト量の広い領域にわたって適切な学習補正を行うようにしている。そして、設定された学習補正値とリフト補正量でリフト量の基本値を補正することによって、リフト量指令値が算出され
る。
また、リフト量が低リフト領域と高リフト領域の間で切り替わった場合には、第1学習値又は第2学習値に対してなまし処理が行われ、それにより、リフト量指令値の急激な変化を回避することで、円滑な制御を行うようにしている。
特許第4727679号公報
上述したように、従来の制御装置では、吸気弁のリフト量の領域が高低2つの領域に区分され、領域ごとに一定の学習補正値が設定されるにすぎない。しかし、弁作動特性可変機構の動作特性のずれの大きさは、リフト量に応じて異なり、各領域内においても、必ずしも一様ではなく、異なる(ばらつく)場合がある。このため、従来の制御装置のような、リフト量の領域ごとに一定の学習補正値を設定する手法では、各領域の一部においては、適切な学習補正が行えるものの、他の部分では、学習補正の過不足が生じることで、吸入空気量を適切に制御できないおそれがある。
また、従来の制御装置では、リフト量の領域の切替時に、リフト量指令値の急変を回避するために、第1又は第2学習値に対してなまし処理が行われる。このため、切替先の領域に適した学習補正が完了するまでに遅れが生じ、その間、吸入空気量を適切に制御できないおそれがあり、以上の点において改善の余地がある。
本発明は、このような課題を解決するためになされたものであり、流量制御弁の流量特性が流量制御弁の開度領域内で異なる場合においても、流量特性の学習補正を適切に行うことができ、それにより、流体の流量を精度良く制御することができる内燃機関の制御装置を提供することを目的とする。
この目的を達成するために、請求項1に係る発明は、内燃機関3の通路(実施形態における(以下、本項において同じ)EGR通路12)を流れる流体の流量(EGR量GEGR)を制御する内燃機関の制御装置であって、内燃機関3の通路に設けられた流量制御弁(EGR弁13a)と、流量制御弁の開度(EGR弁開度LEGR)に対する流量特性を定める開度関数KEGRを表した流量特性線(図4)を記憶する流量特性線記憶手段(ECU2)と、内燃機関3の運転状態(アクセル開度AP、エンジン回転数NE、排気圧PEX、吸気圧PB、EGR温度TEGR)に応じて、開度関数KEGRの目標値である目標開度関数値KEGRCMDを設定する目標開度関数値設定手段(ECU2、図3のステップ5)と、設定された目標開度関数値KEGRCMDに応じ、流量特性線を検索することによって、流量制御弁の開度(目標開度LEGRCMD)を設定する開度設定手段(ECU2、図3のステップ6)と、設定された流量制御弁の開度に基づいて、流量制御弁を制御する制御手段(ECU2、図3のステップ7、8)と、制御手段により流量制御弁が制御されている状態で、開度関数KEGRの実際の値である実開度関数値KEGRACTを算出する実開度関数値算出手段(ECU2、図5のステップ11、図6)と、算出された実開度関数値KEGRACTと目標開度関数値KEGRCMDとの差を、関数誤差ΔKEGRとして算出する関数誤差算出手段(ECU2、図5のステップ12)と、算出された関数誤差ΔKEGRを、そのときに設定されている流量制御弁の開度(学習補正用のEGR弁開度LEGRS)と組み合わせて随時、サンプリングし、記憶する関数誤差サンプリング手段(ECU2、図5のステップ14)と、流量制御弁の開度領域を区分した所定の複数の開度領域(第1〜第4LEGR領域)ごとに、サンプリングされた流量制御弁の複数の開度の平均値を重心位置LAVとして算出する重心位置算出手段(ECU2、図5のステップ18)と、開度領域ごとに、サンプリングされた複数の関数誤差ΔKEGRの平均値ΔKAVを算出する平均値算出手段(ECU2、図5のステップ19)と、開度領域ごとに重心位置LAVに関数誤差の平均値ΔKAVを補正基準点PC1〜PC4としてプロットするとともに、プロットされた複数の補正基準点PC1〜PC4を補間することによって補正特性線(図10)を設定する補正特性線設定手段(ECU2、図5のステップ20、21)と、設定された補正特性線を用いて、流量特性線を補正する流量特性線補正手段(ECU2、図5のステップ22)と、を備えることを特徴とする。
この内燃機関の制御装置によれば、流量制御弁の開度に対する流量特性を定める開度関数を表した流量特性線が、あらかじめ記憶されている。流体の流量を制御する際には、内燃機関の運転状態に応じて目標開度関数値(開度関数の目標値)を設定するとともに、この目標開度関数値に応じ、流量特性線を検索することによって、流量制御弁の開度を算出し、算出された流量制御弁の開度に基づいて、流量制御弁を制御する。
また、本発明の制御装置によれば、流量制御弁の流量特性の学習補正が以下のようにして行われる。まず、上記のように流量制御弁が制御されている状態で、実開度関数値(開度関数の実際の値)を算出し、この実開度関数値と目標開度関数値との差を、関数誤差として算出する。算出した関数誤差を、そのときの流量制御弁の開度と組み合わせて随時、サンプリングし、記憶する。また、流量制御弁の所定の複数の開度領域ごとに、サンプリングされた流量制御弁の複数の開度の平均値を重心位置として算出するとともに、サンプリングされた複数の関数誤差の平均値を算出する。さらに、開度領域ごとに、算出された重心位置に関数誤差の平均値を補正基準点としてプロットするとともに、複数の補正基準点を補間することによって、補正特性線を設定する。そして、設定された補正特性線を用いて流量特性線を補正することによって、流量特性線が学習補正される。
以上のように、本発明によれば、目標開度関数値に応じて流量制御弁を制御するとともに、この制御中、開度関数の実際の値である実開度関数値を算出する。したがって、これらの実開度関数値と目標開度関数値との差である関数誤差は、流量特性のずれを表すので、この関数誤差に基づいて流量特性の学習補正を行うことができる。また、流量制御弁の複数の開度領域ごとに、流量制御弁の開度の平均値である重心位置と関数誤差の平均値を算出するとともに、各重心位置に関数誤差の平均値をプロットすることによって、補正の基準となる補正基準点を設定する。
これにより、流量制御弁の流量特性の誤差(ずれ)を良好に反映した補正基準点を、開度領域ごとに適切に設定することができる。この場合、補正基準点を定める流量制御弁の開度の重心位置として、サンプリングされた開度の平均値を用いるので、開度領域内でサンプリング開度が偏った場合においても、その偏りに応じた補正基準点を適切に設定できる。
さらに、これらの補正基準点を補間することによって、流量特性線を補正するための補正特性線を設定する。したがって、流量制御弁の流量特性の誤差が各開度領域内において一様でなく、異なる場合においても、そのような流量特性の相違を良好に補償するように、流量特性の学習補正を適切に行うことができ、それにより、流体の流量を精度良く制御することができる。
請求項2に係る発明は、請求項1に記載の内燃機関の制御装置において、補正特性線設定手段は、複数の補正基準点PC1〜PC4の補間を、所定の重み係数Wを用いた補間演算によって行うこと(図5のステップ21、図11、式(8))を特徴とする。
この構成によれば、複数の補正基準点の補間が所定の重み係数を用いた補間演算によって行われることで、補正基準点の重みを反映した滑らかな補正特性線が設定されるので、流量特性線に基づく流量の制御ハンチングを有効に防止することができる。
請求項3に係る発明は、請求項2に記載の内燃機関の制御装置において、重み係数Wは、補正特性線が、隣り合う各2つの補正基準点PC、PCの間において2つの補正基準点PC、PCを結ぶ線分の中点PNを中心として点対称になるように設定されていること(図10、図11)を特徴とする。
この構成によれば、隣り合う各2つの補正基準点の間において、補正特性線が、両補正基準点を結ぶ線分の中点を中心とする点対称に設定される。これにより、各2つの補正基準点の間がバランス良く結ばれ、補正特性線がより滑らかに設定されるので、流量の制御ハンチングをさらに有効に防止することができる。
請求項4に係る発明は、請求項1ないし3のいずれかに記載の内燃機関の制御装置において、開度領域ごとに、関数誤差の平均値(仮平均値ΔKAVP)が算出された後、複数の関数誤差ΔKEGRの各々が、平均値を中心とする所定の範囲(ΔKAVP+2σDK、ΔKAVP−2σDK)にあるか否かを判定する判定手段(ECU2、図7のステップ43、44)をさらに備え、重心位置算出手段及び平均値算出手段は、関数誤差ΔKEGR及び流量制御弁の開度を含む複数のサンプルのうち、関数誤差ΔKEGRが所定の範囲にないと判定されたサンプルを除く残りのサンプルを対象として、重心位置LAV及び関数誤差の平均値ΔKAVをそれぞれ算出すること(図5のステップ17〜19、図7のステップ43〜46)を特徴とする。
例えば、内燃機関が加速時などの過渡運転状態にある場合には、目標開度関数値に応じた開度に基づいて流量制御弁を制御しても、それに対して流体の流れが遅れるため、流量特性の誤差が実際には生じていないときでも、実開度関数値が目標開度関数値に対して一時的に大きくずれることがある。この構成によれば、開度領域ごとに、関数誤差の平均値を算出した後、複数の関数誤差の各々が、算出された平均値を中心とする所定の範囲にあるか否かを判定し、関数誤差がこの所定の範囲にないと判定されたサンプルを、重心位置及び関数誤差の平均値の算出対象から除外する。
これにより、上記のような原因で一時的に大きくずれた関数誤差を含むサンプルが確実に除外されることで、学習補正をより適切に行えるので、流量の制御精度をさらに向上させることができる。また、上記の判定用の所定の範囲を、すべてのサンプルを対象として仮に算出された、関数誤差の平均値を中心として設定するので、この判定を適切に行うことができる。
本発明を適用した内燃機関を概略的に示す図である。 制御装置を示すブロック図である。 EGR弁の制御処理を示すフローチャートである。 EGR弁の開度関数を表した流量特性線の一例を示す図である。 EGR弁の流量特性の学習補正処理を示すフローチャートである。 実開度関数値の算出処理のサブルーチンを示すフローチャートである。 関数誤差の判定処理のサブルーチンを示すフローチャートである。 複数のLEGR領域を示す図である。 関数誤差の判定手法を説明するための図である。 設定された補正基準点を含む補正特性線の一例を示す図である。 重み係数を示す図である。 補正特性線による流量特性線の補正方法を説明するための図である。 補正された流量特性線を用いて目標開度を設定した例を示す図である。 重み係数の他の2つの例を示す図である。
以下、図面を参照しながら、本発明の好ましい実施形態を詳細に説明する。図1は、本発明を適用した内燃機関(以下「エンジン」という)3を示す。このエンジン3は、車両(図示せず)に搭載された、例えば4気筒のガソリンエンジンである。各気筒3a(1つのみ図示)のピストン3bとシリンダヘッド3cとの間には、燃焼室3dが形成されている。
各気筒3aには、吸気コレクタ部6aを有する吸気マニホルド6bを介して、吸気通路6が接続されるとともに、排気コレクタ部7aを有する排気マニホルド7bを介して、排気通路7が接続されている。吸気マニホルド6bには燃料噴射弁4(図2参照)が、シリンダヘッド3cには点火プラグ5(図2参照)が、それぞれ気筒3aごとに設けられている。燃料噴射弁4による燃料の噴射量・噴射時期、及び点火プラグ5の点火時期IGは、後述するECU2からの制御信号によって制御される。
また、各気筒3aには、吸気弁8及び排気弁9が設けられている。吸気弁8を駆動する吸気カムシャフト(図示せず)の一端部には、吸気カム位相可変機構15が設けられている。この吸気カム位相可変機構15は、エンジン3のクランクシャフト(図示せず)に対する吸気カムシャフトの相対的な位相(以下「吸気カム位相」という)CAINを無段階に変更するものであり、それにより、吸気弁8の開閉タイミングがクランクシャフトに対して無段階に変更(シフト)される。なお、吸気カム位相CAINは、吸気カム位相可変機構15のコントロールシャフト(図示せず)をVTCアクチュエータ15a(図2参照)で駆動することによって制御され、VTCアクチュエータ15aの動作は、ECU2からの制御信号によって制御される。
吸気通路6の吸気コレクタ部6aよりも上流側には、スロットル弁機構10が設けられている。このスロットル弁機構10は、吸気通路6内に配置されたバタフライ式のスロットル弁10aと、スロットル弁10aを駆動するTHアクチュエータ10bを有する。スロットル弁10aの開度(以下「スロットル開度」という)θTHは、THアクチュエータ10bに供給される電流をECU2で制御することによって制御され、それにより、燃焼室3dに吸入される吸気量(新気量)GAIRが調整される。
また、エンジン3には、燃焼室3dから排気通路7に排出された排ガスの一部を、EGRガスとして、吸気通路6に還流させるためのEGR装置11が設けられている。EGR装置11は、EGR通路12と、EGR通路12の途中に設けられたEGR弁機構13及びEGRクーラ14などで構成されている。EGR通路12は、排気通路7の排気コレクタ部7aと吸気通路6の吸気コレクタ部6aに接続されている。
EGR弁機構13は、EGR通路12内に配置されたポペット式のEGR弁13aと、EGR弁13aを駆動するEGRアクチュエータ13bを有する。EGR弁13aのリフト量(以下「EGR弁開度」という)LEGRは、EGRアクチュエータ13bに供給される電流をECU2で制御することによって制御され、それにより、吸気通路6に還流するEGR量GEGRが調整される。EGRクーラ14は、EGR弁13aの上流側に配置されており、エンジン3の冷却水を利用し、高温のEGRガスを冷却する。
エンジン3のクランクシャフトには、クランク角センサ20が設けられている(図2参照)。クランク角センサ20は、クランクシャフトの回転に伴い、所定クランク角(例えば30°)ごとに、パルス信号であるCRK信号をECU2に出力する。ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。また、ECU2には、アクセル開度センサ21(図2参照)から、車両のアクセルペダル(図示せず)の操作量(以下「アクセル開度」という)APを表す検出信号が入力される。
また、吸気通路6のスロットル10aよりも上流側には、エアフローセンサ22が設けられている。エアフローセンサ22は、吸気通路6を流れる新気量GAIRを検出し、その検出信号をECU2に出力する。
さらに、吸気コレクタ部6aには吸気圧センサ23が、排気コレクタ部7aには排気圧センサ24が、それぞれ設けられている。吸気圧センサ23は、吸気通路6内のスロットル弁10aよりも下流側における圧力(以下「吸気圧」という)PBを検出する。また、排気圧センサ24は、排気通路7内の圧力(以下「排気圧」という)PEXを検出する。それらの検出信号はECU2に出力される。
また、EGR通路12には、EGR弁13aのすぐ上流側に、EGR温度センサ25が設けられている。EGR温度センサ25は、EGR弁13aを通過するEGRガスの温度(以下「EGR温度」という)TEGRを検出し、その検出信号をECU2に出力する。
ECU2は、CPU、RAM、ROM及びI/Oインターフェース(いずれも図示せず)などから成るマイクロコンピュータで構成されている。ECU2は、前述した各種のセンサ20〜25の検出信号などに応じて、エンジン3の運転状態を判別するとともに、判別した運転状態に応じて、エンジン3の燃料噴射及び点火時期IGや吸気量GAIR及びEGR量GEGRの制御を含む制御処理を実行する。
本実施形態では、ECU2が、流量特性線記憶手段、目標開度関数値設定手段、開度設定手段、制御手段、実開度関数値算出手段、関数誤差算出手段、関数誤差サンプリング手段、重心位置算出手段、平均値算出手段、補正特性線設定手段、流量特性線補正手段、及び判定手段に相当する。
次に、ECU2で実行されるEGR弁13aの制御処理及び流量特性の学習補正処理の説明に先立ち、これらの処理に用いられるノズル式について、まず説明する。
このノズル式は、ノズルを通過する流体を圧縮性流体と見なし、ノズルの上下流の圧力とノズルを通過する流体の流量との関係をモデル化したものであり、その一般式は次式(1)で表される。
Figure 2014070525
ここで、左辺のGは流体の流量である。右辺のKは、ノズルの構成及び開度に応じて定まる開度関数、P1はノズルの上流側圧力、Rは流体の気体定数、Tは流体の温度である。また、Ψは、次式(2)によって定義される圧力関数である。
Figure 2014070525
ここで、P2はノズルの下流側圧力、κは流体の比熱比である。この式(2)から明らかなように、圧力関数Ψは、ノズルの構成や開度にかかわらず、その下流側圧力P2と上流側圧力P1との圧力比P2/P1のみによって一義的に定まるものである。
また、式(1)を開度関数Kについて表すと、次式(3)が得られる。
Figure 2014070525
次に、図3を参照しながら、EGR弁13aの制御処理について説明する。本処理は、所定時間ごとに繰り返し実行される。
本処理では、まずステップ1(「S1」と図示。以下同じ)において、エンジン3の目標トルクTRQCMDを算出する。この目標トルクTRQCMDの算出は、検出されたアクセル開度AP及びエンジン回転数NEに応じ、所定のマップ(図示せず)を検索することによって行われる。
次に、算出された目標トルクTRQCMD及びエンジン回転数NEに応じ、所定のマップ(図示せず)を検索することによって、目標EGR量GEGRCMDを設定する(ステップ2)。次いで、EGR弁13aの上流側圧力として、EGR圧PEGRを算出する(ステップ3)。このEGR圧PEGRの算出は、検出された排気圧PEXからEGRクーラ14での圧力損失を差し引くことによって行われる。
次に、次式(4)によって、EGR弁13a用の圧力関数ΨEGRを算出する(ステップ4)。
Figure 2014070525
この式(4)は、前述した圧力関数Ψを表す式(2)をEGR弁13aに適用し、式(2)中の上流側圧力P1をステップ3で算出されたEGR圧PEGRに、下流側圧力P2を検出された吸気圧PBに、それぞれ置き換えたものである。
次に、ステップ2で設定された目標EGR量GEGRCMDと圧力関数ΨEGRを用い、次式(5)によって、EGR弁13aの開度関数KEGRの目標値である目標開度関数値KEGRCMDを設定する(ステップ5)。
Figure 2014070525
この式(5)は、前述した開度関数Kを表す式(3)をEGR弁13aに適用し、式(3)中の流体流量Gを目標EGR量GEGRCMDに、流体の温度Tを検出されたEGR温度TEGRに、開度関数Kを目標開度関数値KEGRCMDに、それぞれ置き換えたものである。
次に、設定された開度関数KEGRに応じ、図4に示す流量特性線を検索することによって、EGR弁13aの目標開度LEGRCMDを算出する(ステップ6)。この流量特性線は、EGR弁開度LEGRと開度関数KEGRとの関係を実験などによって求め、マップとして表したものである。なお、流量特性線は、後述する学習補正処理による学習補正によって更新されるようになっており、学習補正が行われた後には、ステップ6において、更新された流量特性線が用いられる。
次に、算出された目標開度LEGRCMDに応じ、所定のマップ(図示せず)を検索することによって、制御入力U_EGRを算出する(ステップ7)。そして、この制御入力U_EGRに基づく駆動信号をEGRアクチュエータ13bに出力し、EGR弁13aを駆動する(ステップ8)ことによって、EGR弁開度LEGRを目標開度LEGRCMDになるように制御し、本処理を終了する。
次に、図5を参照しながら、EGR弁13aの流量特性の学習補正処理について説明する。本処理は、図3の制御処理の実行間隔よりも長い所定時間ごとに、繰り返し実行される。
本処理では、まずステップ11において、EGR弁13aの開度関数KEGRの実際の値である実開度関数値KEGRACTを算出する。
図6は、その算出処理のサブルーチンを示す。本処理では、ステップ31において、燃焼室3dに吸入される総ガス量GGASを算出する。この総ガス量GGASは、吸気圧PB及び吸気カム位相CAINに応じ、所定のマップ(図示せず)を検索することによって、吸気圧PBにほぼ比例するように算出される。
次に、算出された総ガス量GGASと検出された新気量GAIRとの差(=GGAS−GAIR)を、実際のEGR量(実EGR量)GEGRACTとして算出する(ステップ32)。次に、算出された実EGR量GEGRACTを用い、次式(6)によって、EGR弁13aの開度関数KEGRの実際の値である実開度関数値KEGRACTを算出し(ステップ33)、本処理を終了する。
Figure 2014070525
この式(6)は、前述した式(5)中の目標EGR量GEGRCMDを実EGR量GEGRACTに、目標開度関数値KEGRCMDを実開度関数値KEGRACTに、それぞれ置き換えたものである。
図5に戻り、前記ステップ11に続くステップ12では、算出された実開度関数値KEGRACTとそのときに設定されている目標開度関数値KEGRCMDとの差(=KEGRACT−KEGRCMD)を、関数誤差ΔKEGRとして算出する。次に、そのときに設定されているEGR弁13aの目標開度LEGRCMDを、学習補正用のEGR弁開度LEGRSに置換する(ステップ13)。
次に、上記のように算出された関数誤差ΔKEGRとEGR弁開度LEGRSとの組み合わせをサンプリングし、LEGR領域ごとに記憶する(ステップ14)。以下、このようにサンプリング・記憶された両データの組み合わせを「サンプル」という。図8に示すように、このLEGR領域は、EGR弁開度LEGRがとり得る領域(=0〜LMAX)を、3つの所定値L1〜L3で区分することによって設定された第1〜第4LEGR領域(ZONE1〜4)で構成されている。
次に、LEGR領域ごとのサンプル数の最小値NSMPMINが、所定値NREF(例えば100)以上であるか否かを判別する(ステップ15)。この答がNOのときには、そのまま本処理を終了する。
一方、ステップ15の答がYESのとき、すなわち、すべてのLEGR領域に対して所定値NREF以上の数のサンプルがサンプリングされたときには、LEGR領域ごとに、すべてのサンプルの関数誤差ΔKEGRの平均値を、仮平均値ΔKAVPとして算出する(ステップ16)。
次に、ステップ17に進み、関数誤差ΔKEGRの判定処理を実行する。この判定処理は、仮平均値ΔKAVPに対する関数誤差ΔKEGRのずれ(乖離度合)の大きさを個々に判定し、ずれの大きな関数誤差ΔKEGRを含むサンプルを除外するためのものであり、図7はそのサブルーチンを示す。本処理は、LEGR領域ごとに実行される。
本処理では、まずステップ41において、上記ステップ16で算出された仮平均値ΔKAVPを用い、次式(7)によって、関数誤差ΔKEGRの標準偏差σDKを算出する。
Figure 2014070525
次に、サンプルを指示するインデックス番号iを「1」にセットした(ステップ42)後、そのサンプルの関数誤差ΔKEGRiが、仮平均値ΔKAVPに標準偏差σDKの2倍を加算した値(=ΔKAVP+2σDK)以下であるか否かを判別する(ステップ43)とともに、仮平均値ΔKAVEPから標準偏差σDKの2倍を減算した値(=ΔKAVP−2σDK)以上であるか否かを判別する(ステップ44)。
これらのステップ43及び44の答がいずれもYESのときには、関数誤差ΔKEGRiが仮平均値ΔKAVPを中心とする所定の範囲にあると判定し(図9の白丸)、そのままステップ47に進む。一方、ステップ43又は44の答がNOのときには、関数誤差ΔKEGRiが所定の範囲にないと判定し(図9の黒丸)、関数誤差ΔKEGRi及びEGR弁開度LEGRSiをそれぞれ0に設定した(ステップ45、46)後、ステップ47に進む。これにより、仮平均値ΔKAVPに対して大きくずれた関数誤差ΔKEGRiを含むサンプルが実質的に除外される。
上記のステップ47では、インデックス番号iがサンプル数nに等しいか否かを判別する。この答がNOのときには、ステップ48においてインデックス番号iをインクリメントした後、前記ステップ43に戻り、上述した関数誤差ΔKEGRの判定を繰り返す。そして、すべてのサンプルについて関数誤差ΔKEGRの判定が完了すると、ステップ47の答がYESになるのに応じて、本処理を終了する。
図5に戻り、前記ステップ17に続くステップ18では、LEGR領域ごとに、図7の判定処理で除外されたサンプル以外のサンプルについて、EGR弁開度LEGRSの平均値を算出し、重心位置LAVとして設定する。また、LEGR領域ごとに、除外されたサンプル以外のサンプルについて、関数誤差ΔKEGRの平均値を再度、算出し、平均値ΔKAVとして設定する(ステップ19)。
次に、上記のように算出された重心位置LAV及び関数誤差の平均値ΔKAVを用いて、補正基準点PCを設定する(ステップ20)。具体的には、図10に示すように、EGR弁開度LEGR及び関数誤差ΔKEGRを座標軸とする座標平面上に、LEGR領域ごとの重心位置LAV1〜LAV4と、それに対応する関数誤差の平均値ΔKAV1〜ΔKAV4とを座標とする4つの補正基準点PC1〜PC4をプロットする。
次に、これらの補正基準点PC1〜PC4と重み係数Wを用いて、補正特性線を設定する(ステップ21)。図11は、重み係数Wの一例を示している。この重み係数Wは、x(0〜1)を変数とし、x=0のときに値1に、x=1のときに値0に、x=0.5のときに値0.5に、それぞれ設定されるとともに、全体として、この点(0.5, 0.5)を中心として点対称である曲線状に設定されている。
そして、この重み係数Wを用い、EGR弁開度LEGRに応じて、次式(8)によって、補正特性線を定める補正量関数CKを算出する。
Figure 2014070525
この式(8)から明らかなように、補正量関数CKは、隣り合う各2つの補正基準点PC、PCの間を、重み係数Wを用いて補間演算することによって、算出される。また、重み係数Wが上述したように設定される結果、補正特性線は、2つの補正基準点PC、PCを結ぶ線分の中点PN(PN1〜PN3)を中心として点対称になるように、曲線状に設定される。
次に、設定された補正特性線を用いて、既存の流量特性線を補正し(ステップ22)、本処理を終了する。図12に示すように、この流量特性線の補正は、流量特性線(同図(a))に補正特性線(同図(b))を足し合わせることによって、すなわち、開度関数KEGRに補正量関数CKを加算することによって行われる。これにより、同図(c)に点線で示す流量特性線が、実線で示す流量特性線に補正・更新される。
更新された流量特性線は、ECU2のRAMに記憶され、図13に示すように、その後のEGR弁13aの制御において、目標開度関数値KEGRCMDに応じて目標開度LEGRCMDを設定するのに用いられる(図3のステップ6)。
以上のように、本実施形態によれば、目標開度関数値KEGRCMDに応じてEGR弁13aを制御するとともに、この制御中、実開度関数値KEGRACTを算出する。また、実開度関数値KEGRACTと目標開度関数値KEGRCMDとの差である関数誤差ΔKEGRを算出するとともに、EGR弁開度LEGRの領域を区分した第1〜第4LEGR領域(ZONE1〜ZONE4)ごとに、EGR弁開度LEGRの平均値である重心位置LAV(LAV1〜LAV4)と関数誤差ΔKEGRの平均値ΔKAV(ΔKAV1〜ΔKAV4)を算出するとともに、各重心位置LAVに関数誤差ΔKEGRの平均値ΔKAVをプロットすることで、補正の基準となる補正基準点PC(PC1〜PC4)をそれぞれ設定する。
これにより、EGR弁13aの流量特性の誤差(ずれ)を良好に反映した補正基準点PCを、LEGR領域ごとに適切に設定することができる。この場合、補正基準点PCを定めるEGR弁開度LEGRの重心位置LAVとして、サンプリングされた開度の平均値を用いるので、LEGR領域内でサンプリング開度が偏った場合においても、その偏りに応じた補正基準点PCを適切に設定できる。
さらに、補正基準点PC1〜PC4を補間することによって、流量特性線を補正するための補正特性線を設定する。したがって、EGR弁13aの流量特性の誤差が各LEGR領域内において一様でなく、異なる場合においても、そのような流量特性の相違を良好に補償するように、流量特性の学習補正を適切に行うことができ、それにより、EGR量GEGRを精度良く制御することができる。
また、複数の補正基準点PC1〜PC4の補間を重み係数Wを用いた補間演算によって行うので、補正基準点PCの重みを反映した滑らかな補正特性線が設定されることで、流量特性線に基づくEGR量GEGRの制御ハンチングを有効に防止することができる。
さらに、前述した重み係数Wの設定により、隣り合う各2つの補正基準点PC、PCの間において、補正特性線が、両補正基準点PC、PCを結ぶ線分の中点PNを中心とする点対称に設定される。これにより、各2つの補正基準点PC、PCの間がバランス良く結ばれ、補正特性線がより滑らかに設定されるので、EGR量GEGRの制御ハンチングをさらに有効に防止することができる。
また、LEGR領域ごとに、関数誤差ΔKEGRの仮平均値ΔKAVPを算出するとともに、各関数誤差ΔKEGRが仮平均値ΔKAVを中心とする所定の範囲にないと判定されたサンプルを、重心位置LAV及び関数誤差ΔKEGRの平均値ΔKAVの算出対象から除外する。これにより、エンジン3の過渡運転時などに一時的に大きくずれた関数誤差ΔKEGRを含むサンプルが確実に除外し、学習補正をより適切に行えるので、EGR量GEGRの制御精度をさらに向上させることができる。また、上記の判定用の所定の範囲を、すべてのサンプルを対象として算出された、関数誤差ΔKEGRの仮平均値ΔKEGRを中心として設定するので、この判定を適切に行うことができる。
なお、本発明は、説明した実施形態に限定されることなく、種々の態様で実施することができる。例えば、実施形態は、EGR量GEGRを制御するEGR弁13aに本発明を適用した例であるが、、本発明は、これに限らず、内燃機関において流体の流量の制御に用いられる限り、他の流量制御弁に適用することが可能であり、例えば、実施形態に示したスロットル弁10aに適用できる。
また、実施形態で示した重み係数Wは、あくまで例示であり、他の任意の形状の重み係数を採用してもよい。図14は、そのような重み係数Wの2つの例を示しており、(a)は三角形状、(b)は台形状のものである。また、両重み係数Wは、いずれも座標(0.5, 0.5)を中心として点対称に形成されており、それに応じて、補正特性線の各2つの補正基準点PC、PCの間が、それらの中点を中心として点対称に設定される。
さらに、実施形態では、関数誤差ΔKEGRのばらつきを判定するための所定の範囲を、仮平均値ΔKAV±2σDKとして設定しているが、これに限らず、例えば標準偏差σDKに代えて所定値を用い、設定してもよい。
また、実施形態は、本発明を車両用のガソリンエンジンに適用した例であるが、本発明は、これに限らず、ガソリンエンジン以外のディーゼルエンジンなどの各種のエンジンに適用してもよく、また、車両用以外のエンジン、例えば、クランク軸を鉛直に配置した船外機などのような船舶推進機用エンジンにも適用可能である。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。
2 ECU(流量特性線記憶手段、目標開度関数値設定手段、開度設定手段、制御手 段、実開度関数値算出手段、関数誤差算出手段、関数誤差サンプリング手段、重 心位置算出手段、平均値算出手段、補正特性線設定手段、流量特性線補正手段、 判定手段)
3 エンジン(内燃機関)
12 EGR通路(通路)
13a EGR弁(流量制御弁)
GEGR EGR量
LEGR EGR弁開度(流量制御弁の開度)
KEGR 開度関数
AP アクセル開度(内燃機関の運転状態)
NE エンジン回転数(内燃機関の運転状態)
PEX 排気圧(内燃機関の運転状態)
PB 吸気圧(内燃機関の運転状態)
TEGR EGR温度(内燃機関の運転状態)
KEGRCMD 目標開度関数値
LEGRCMD EGR弁の目標開度(流量制御弁の開度)
KEGRACT 実開度関数値
ΔKEGR 関数誤差
LAV 重心位置
ΔKAV 関数誤差の平均値
PC 補正基準点
W 重み係数
PN 中点
ΔKAVP 関数誤差の仮平均値(関数誤差の平均値)
σDK 関数誤差の標準偏差(所定の範囲)

Claims (4)

  1. 内燃機関の通路を流れる流体の流量を制御する内燃機関の制御装置であって、
    前記内燃機関の前記通路に設けられた流量制御弁と、
    前記流量制御弁の開度に対する流量特性を定める開度関数を表した流量特性線を記憶する流量特性線記憶手段と、
    前記内燃機関の運転状態に応じて、前記開度関数の目標値である目標開度関数値を設定する目標開度関数値設定手段と、
    当該設定された目標開度関数値に応じ、前記流量特性線を検索することによって、前記流量制御弁の開度を設定する開度設定手段と、
    当該設定された流量制御弁の開度に基づいて、前記流量制御弁を制御する制御手段と、
    当該制御手段により前記流量制御弁が制御されている状態で、前記開度関数の実際の値である実開度関数値を算出する実開度関数値算出手段と、
    当該算出された実開度関数値と前記目標開度関数値との差を、関数誤差として算出する関数誤差算出手段と、
    当該算出された関数誤差を、そのときに設定されている前記流量制御弁の開度と組み合わせて随時、サンプリングし、記憶する関数誤差サンプリング手段と、
    前記流量制御弁の開度領域を区分した所定の複数の開度領域ごとに、前記サンプリングされた流量制御弁の複数の開度の平均値を重心位置として算出する重心位置算出手段と、
    前記開度領域ごとに、前記サンプリングされた複数の関数誤差の平均値を算出する平均値算出手段と、
    前記開度領域ごとに前記重心位置に前記関数誤差の平均値を補正基準点としてプロットするとともに、当該プロットされた複数の補正基準点を補間することによって補正特性線を設定する補正特性線設定手段と、
    当該設定された補正特性線を用いて、前記流量特性線を補正する流量特性線補正手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記補正特性線設定手段は、前記複数の補正基準点の補間を、所定の重み係数を用いた補間演算によって行うことを特徴とする、請求項1に記載の内燃機関の制御装置。
  3. 前記重み係数は、前記補正特性線が、隣り合う各2つの前記補正基準点の間において、当該2つの補正基準点を結ぶ線分の中点を中心として点対称になるように設定されていることを特徴とする、請求項2に記載の内燃機関の制御装置。
  4. 前記開度領域ごとに、前記関数誤差の平均値が算出された後、前記複数の関数誤差の各々が、前記平均値を中心とする所定の範囲にあるか否かを判定する判定手段をさらに備え、
    前記重心位置算出手段及び平均値算出手段は、前記関数誤差及び前記流量制御弁の開度を含む複数のサンプルのうち、前記関数誤差が前記所定の範囲にないと判定されたサンプルを除く残りのサンプルを対象として、前記開度の重心位置及び前記関数誤差の平均値をそれぞれ算出することを特徴とする、請求項1ないし3のいずれかに記載の内燃機関の制御装置。
JP2012215621A 2012-09-28 2012-09-28 内燃機関の制御装置 Pending JP2014070525A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215621A JP2014070525A (ja) 2012-09-28 2012-09-28 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215621A JP2014070525A (ja) 2012-09-28 2012-09-28 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2014070525A true JP2014070525A (ja) 2014-04-21

Family

ID=50745984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215621A Pending JP2014070525A (ja) 2012-09-28 2012-09-28 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2014070525A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084848A (ja) * 2012-10-26 2014-05-12 Denso Corp バルブ装置及びバルブ装置の製造方法
JP2020060140A (ja) * 2018-10-10 2020-04-16 株式会社ニッキ Egr電動バルブの制御システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463636A (en) * 1987-09-02 1989-03-09 Mazda Motor Air-fuel ratio control device for engine
JPH05141299A (ja) * 1991-11-15 1993-06-08 Fujitsu Ten Ltd 内燃機関の空燃比制御方法
JPH07293350A (ja) * 1994-04-27 1995-11-07 Unisia Jecs Corp 内燃機関の排気還流制御装置
JP2010127174A (ja) * 2008-11-27 2010-06-10 Denso Corp 機関バルブ制御機構の学習装置及び機関バルブ制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463636A (en) * 1987-09-02 1989-03-09 Mazda Motor Air-fuel ratio control device for engine
JPH05141299A (ja) * 1991-11-15 1993-06-08 Fujitsu Ten Ltd 内燃機関の空燃比制御方法
JPH07293350A (ja) * 1994-04-27 1995-11-07 Unisia Jecs Corp 内燃機関の排気還流制御装置
JP2010127174A (ja) * 2008-11-27 2010-06-10 Denso Corp 機関バルブ制御機構の学習装置及び機関バルブ制御システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084848A (ja) * 2012-10-26 2014-05-12 Denso Corp バルブ装置及びバルブ装置の製造方法
US9309991B2 (en) 2012-10-26 2016-04-12 Denso Corporation Valve device and manufacturing method for the same
JP2020060140A (ja) * 2018-10-10 2020-04-16 株式会社ニッキ Egr電動バルブの制御システム

Similar Documents

Publication Publication Date Title
EP2806146B1 (en) Device for controlling internal combustion engine
JP5103459B2 (ja) エンジンの制御装置
JP5858159B2 (ja) 内燃機関
EP2602461B1 (en) Control system for internal combustion engine
JP5273183B2 (ja) 内燃機関の制御装置
JP4969546B2 (ja) 内燃機関の制御装置および方法
JP2004036473A (ja) 内燃機関の空燃比制御装置
JP2009150345A (ja) 内燃機関の制御装置
JP2014070525A (ja) 内燃機関の制御装置
JP5925641B2 (ja) 内燃機関の吸気制御装置
JP2007085218A (ja) 内燃機関の制御装置
US7363889B2 (en) Control device for multicylinder internal combustion engine
JP5476359B2 (ja) 内燃機関の圧力推定装置
JP2014005803A (ja) 内燃機関の制御装置
JP5303349B2 (ja) 内燃機関のegr制御装置
JP2009185732A (ja) 内燃機関の制御装置
JP2016211504A (ja) 内燃機関の制御装置
JP2005090325A (ja) 燃料噴射量制御装置
JP2006322363A (ja) エンジンの内部egr率推定方法
JP2013113095A (ja) 内燃機関のegrパラメータ推定装置
JP7177385B2 (ja) エンジンの制御装置
US10408145B2 (en) EGR control device
WO2022219908A1 (ja) 内燃機関制御装置及び内燃機関制御方法
JP2007040237A (ja) 圧縮着火内燃機関の制御装置
JP2020153255A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308