JP2014066619A - 成膜装置および成膜方法 - Google Patents

成膜装置および成膜方法 Download PDF

Info

Publication number
JP2014066619A
JP2014066619A JP2012212362A JP2012212362A JP2014066619A JP 2014066619 A JP2014066619 A JP 2014066619A JP 2012212362 A JP2012212362 A JP 2012212362A JP 2012212362 A JP2012212362 A JP 2012212362A JP 2014066619 A JP2014066619 A JP 2014066619A
Authority
JP
Japan
Prior art keywords
film
light
mirror
pump light
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012212362A
Other languages
English (en)
Inventor
Hidekazu Tezuka
秀和 手塚
Hideaki Sasazawa
秀明 笹澤
Haruyuki Ishii
晴幸 石井
Yasuhiro Yoshitake
康裕 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012212362A priority Critical patent/JP2014066619A/ja
Priority to PCT/JP2013/071374 priority patent/WO2014050319A1/ja
Priority to TW102131271A priority patent/TW201413235A/zh
Publication of JP2014066619A publication Critical patent/JP2014066619A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】ロール・トゥ・ロール方式を用いてフィルム基材の表面に膜を成膜する成膜装置において、成膜工程中に、膜厚を直接精度よく測定する。
【解決手段】成膜装置は、巻出し部2、成膜部3、膜厚測定部4および巻取り部5を有する。巻出し部2は、巻出しロール11を含み、巻出しロール11からフィルム基材8が巻き出される。成膜部3は、巻出しロール11から巻き出されたフィルム基材8の表面に膜を成膜する。膜厚測定部4は、フィルム基材8の表面に成膜された膜にポンプ光およびプローブ光を照射し、照射されたプローブ光が反射された反射光の強度を測定し、測定された強度に基づいて、膜の膜厚を測定する。巻取り部5は、巻取りロール14を含み、膜厚測定部4により膜厚が測定されたフィルム基材8を巻取りロール14に巻き取る。
【選択図】図1

Description

本発明は、成膜装置および成膜方法に関し、特に、ロール・トゥ・ロール方式を用いてフィルム基材の表面に成膜された膜の膜厚を測定する成膜装置および成膜方法に関する。
フィルム基材を巻出しロールから巻き出し、搬送されているフィルム基材の表面に膜を成膜し、膜が成膜されたフィルム基材を巻取りロールに巻き取る、いわゆるロール・トゥ・ロール方式の成膜装置がある。このようなロール・トゥ・ロール方式の成膜装置では、例えばプラスティックまたは無機質等の長尺のフィルムまたはシートからなるフィルム基材が、真空チャンバ内で巻出しロールから巻き出されて搬送される。フィルム基材が真空チャンバ内で搬送されている状態で、例えばスパッタリング法または真空蒸着法などにより、成膜源から原料を供給し、フィルム基材の表面に、例えば機能性薄膜などの膜を、フィルム基材の搬送方向に沿って連続して成膜する。膜が成膜されたフィルム基材は、再び巻取りロールに巻き取られる。
このようなロール・トゥ・ロール方式のものも含め、成膜装置には、例えば真空チャンバ内に、フィルム基材などの基材の表面に成膜される膜の膜厚を測定するための膜厚モニタが設けられている。
膜厚モニタとして、水晶振動子を用いたものが知られている。例えば基材の表面に蒸着材料を蒸着する際に、基材の付近に配置された水晶振動子の表面に蒸着材料が付着すると、水晶振動子の重量が増加することで、水晶振動子の共振周波数が低くなる。したがって、水晶振動子の共振周波数を測定することで、蒸着量を算出することができ、水晶振動子の共振周波数の時間変化を測定することで、蒸着レートを算出することができる。
特開2010−77469号公報(特許文献1)には、真空蒸着設備に設けられ、検出素子としての水晶振動子を備えた検出ヘッドが検出器支持部材により保持されている、膜厚モニタの技術が記載されている。
また、水晶振動子以外の膜厚モニタとして、エリプソメータが知られている。エリプソメータは、例えば直線偏光からなる光を膜に入射し、入射された光が膜により反射された反射光の偏光状態の変化を測定することで、膜の膜厚を算出する。
特開2008−24990号公報(特許文献2)には、ロール・トゥ・ロール方式の薄膜形成装置に設けられたエリプソメータを用いた膜厚モニタの技術が記載されている。
特開2010−77469号公報 特開2008−24990号公報
上記特許文献1に記載された水晶振動子からなるセンサを用いた膜厚モニタの技術は、基材の表面に成膜された膜の膜厚を直接測定するものではない。したがって、予め、センサによる測定値と、膜厚測定の対象物(測定対象物)である膜の実際の膜厚との比較(較正)を行って補正係数を取得し、膜を成膜する際には、センサによる測定値を、予め取得した補正係数を用いて補正することで膜厚を算出しなくてはならない。
しかし、上記補正係数は、真空チャンバ内でセンサが設置される位置、真空チャンバ内における温度分布、または、成膜処理のフローなどの成膜工程により変化する。そのため、例えば成膜条件を変更した場合にも、上記補正係数が変化するため、補正係数を取得して補正をし直さなければならず、測定対象物である膜の膜厚を精度よく測定することは容易ではない。
また、蒸着材料が水晶振動子に付着する量が増加するのに伴って、水晶振動子の共振周波数が低下し、測定値における誤差が大きくなることがある。そのため、水晶振動子の共振周波数が予め決められた下限値よりも低くなったときに、水晶振動子を交換しなくてはならない。
水晶振動子を交換する際は、成膜工程を停止し、内部の温度が例えば数百℃程度になるように加熱されていた真空チャンバを、その内部の温度が常温に低下するまで冷却した後、真空チャンバを大気開放して水晶振動子の交換作業を行う。そして、水晶振動子の交換作業が終了した後、真空チャンバを真空排気し、真空チャンバ内の温度が数百℃程度になるように再び加熱した後、成膜工程を再開する。このため、水晶振動子の交換作業によって成膜工程が停止する時間が長くなり、生産性が低下する。
一方、上記特許文献2に記載されたエリプソメータを用いた膜厚モニタの技術によれば、膜厚を直接測定することができる。
しかしながら、エリプソメータを用いた技術では、通常、成膜工程が終了した後(オフラインで)、膜が成膜された基材のうち一部について、抜き取りにより膜厚を測定することが多い。オフラインで膜厚を測定する場合、膜厚の測定対象物である膜が成膜された時点と、その膜厚の測定結果に基づいて成膜条件へフィードバックする時点との間に、タイムラグ(時間差)が発生してしまう。
本発明は、上記課題に鑑みてなされたものであり、その目的は、ロール・トゥ・ロール方式を用いてフィルム基材の表面に膜を成膜する成膜装置において、成膜工程中に、膜厚を直接精度よく測定できる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
代表的な実施の形態による成膜装置は、ロール・トゥ・ロール方式を用いてフィルム基材の表面に膜を成膜する成膜装置である。成膜装置は、巻出し部、成膜部、膜厚測定部および巻取り部を有する。巻出し部は、フィルム基材が巻かれた巻出しロールを含み、巻出しロールからフィルム基材が巻き出される。成膜部は、巻出しロールから巻き出されたフィルム基材の表面に膜を成膜する。膜厚測定部は、成膜部によりフィルム基材の表面に成膜された膜にポンプ光およびプローブ光を照射し、照射されたプローブ光が膜により反射された反射光の強度を測定し、測定された強度に基づいて、膜の膜厚を測定する。巻取り部は、巻取りロールを含み、膜厚測定部により膜厚が測定されたフィルム基材を巻取りロールに巻き取る。
また、代表的な実施の形態による成膜方法は、ロール・トゥ・ロール方式を用いてフィルム基材の表面に膜を成膜する成膜方法である。まず、フィルム基材が巻かれた巻出しロールからフィルム基材を巻き出す。次いで、巻出しロールから巻き出されたフィルム基材の表面に膜を成膜する。次いで、フィルム基材の表面に成膜された膜にポンプ光およびプローブ光を照射し、照射されたプローブ光が膜により反射された反射光の強度を測定し、測定された強度に基づいて、膜の膜厚を測定する。その後、膜厚が測定されたフィルム基材を巻取りロールに巻き取る。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
代表的な実施の形態によれば、ロール・トゥ・ロール方式を用いてフィルム基材の表面に膜を成膜する成膜装置において、成膜工程中に、膜厚を直接精度よく測定できる。
実施の形態1の成膜装置の概略構成を示す図である。 実施の形態1の成膜装置における膜厚測定部の構成を示す図である。 反射光の強度の時間依存性を示すデータである。 反射光の強度の周波数依存性を示すデータである。 実施の形態1の成膜装置における膜厚測定部に備えられた可動ミラー部の構成を示す斜視図である。 実施の形態1の成膜装置における膜厚測定部に備えられた可動ミラー部の構成を示す斜視図である。 実施の形態2の成膜装置における膜厚測定部に備えられた可動ミラー部の構成を示す斜視図である。 実施の形態2の成膜装置における膜厚測定部に備えられた可動ミラー部の変形例の構成を示す斜視図である。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことはいうまでもない。
同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
また、実施の形態で用いる図面においては、断面図であっても図面を見やすくするためにハッチングを省略する場合もある。また、平面図であっても図面を見やすくするためにハッチングを付す場合もある。
(実施の形態1)
<成膜装置>
初めに、実施の形態1の成膜装置の構造について説明する。本実施の形態1の成膜装置は、フィルム基材を巻出しロールから巻き出し、搬送されているフィルム基材の表面に膜を成膜し、膜が成膜されたフィルム基材を巻取りロールに巻き取る、いわゆるロール・トゥ・ロール方式の成膜装置である。フィルム基材としては、例えばプラスティックまたは無機質等の長尺のフィルムまたはシートからなるフィルム基材が用いられる。
図1は、実施の形態1の成膜装置の概略構成を示す図である。図1に示すように、成膜装置は、真空チャンバ(成膜室)1、巻出し部2、成膜部3、膜厚測定部4、巻取り部5、搬送部6、および制御部7を有する。
真空チャンバ(成膜室)1は、気密に設けられており、真空チャンバ1の内部でフィルム基材8の表面に膜が成膜される。真空チャンバ1のチャンバ壁(壁部)1aには、ポンプ光およびプローブ光としてのレーザ光9が透過可能なレーザ透過窓(窓部)10が設けられている。
巻出し部2は、巻出しロール11、ガイドロール12およびロードセルロール13を含む。巻出しロール11には、フィルム基材8が巻かれており、搬送部6により例えば後述する巻取りロール14が回転駆動されることで、巻出しロール11からガイドロール12およびロードセルロール13を介してフィルム基材8が巻き出される。ガイドロール12は、フィルム基材8が巻き出される際に、フィルム基材8を案内する。ロードセルロール13は、フィルム基材8が巻き出される際に、フィルム基材8に加えられる張力を調整する。
成膜部3は、成膜ロール15および成膜源16を含む。巻出しロール11からガイドロール12およびロードセルロール13を介して巻き出されたフィルム基材8は、成膜ロール15の表面上を通過する。また、フィルム基材8が成膜ロール15の表面上を通過する際に、例えばスパッタリング法または真空蒸着法などにより、成膜源16から原料を供給することで、フィルム基材8の表面に膜を成膜する。図1に示すように、例えば2つの成膜源16が、成膜ロール15を挟んで対向するように、設けられていてもよい。
なお、成膜部3が、例えば塗布法などにより大気中でフィルム基材8の表面に膜を形成するものである場合には、真空チャンバ1が設けられていなくてもよい。つまり、本実施の形態1の成膜装置は、真空チャンバ内でフィルム基材の表面に膜を成膜する成膜装置に限られない。したがって、本実施の形態1の成膜装置は、気密に設けられた成膜室を有しておらず、大気中でフィルム基材を搬送し、大気中でフィルム基材の表面に膜を成膜するものでもよい。
膜厚測定部4は、成膜部3によりフィルム基材8の表面に成膜された膜の膜厚を、成膜工程中に(インラインで)測定する。膜厚測定部4の詳細な構成については、後述する。
巻取り部5は、ロードセルロール17、18、19、巻取りロール14および回転駆動部20を含む。回転駆動部20は、巻取りロール14に接続されており、回転駆動部20により巻取りロール14が回転駆動されることで、成膜部3により表面に膜が成膜されたフィルム基材8は、ロードセルロール17、18、19を介して巻取りロール14に巻き取られる。また、成膜部3により表面に膜が成膜されたフィルム基材8は、膜厚測定部4により、成膜工程中に(インラインで)膜厚が測定されるため、膜厚測定部4により膜厚が測定された後、巻取りロール14に巻き取られる。
搬送部6は、搬送駆動部21を含み、巻出しロール11から巻き出されたフィルム基材8を、巻取りロール14に搬送する。図1に示すように、搬送駆動部21を、例えば巻取りロール14を回転する回転駆動部20と兼用することができる。また、例えばロードセルロール13および成膜ロール15を回転駆動する回転駆動部(図示は省略)を設け、この回転駆動部により、ロードセルロール13および成膜ロール15を回転駆動することで、フィルム基材8を搬送することもできる。
制御部7は、成膜源制御機構22、搬送部制御機構23および制御機構24を含む。成膜源制御機構22は、成膜源16を制御することで、成膜源16が供給する原料の供給量を調整する。図1に示す例では、複数の成膜源16の各々に対応して、複数の成膜源制御機構22が設けられている。搬送部制御機構23は、回転駆動部20および搬送駆動部21を制御することで、フィルム基材8が巻取りロール14に巻き取られる速度、および、フィルム基材8が搬送される速度を制御する。制御機構24は、成膜源制御機構22および搬送部制御機構23を制御することで、成膜部3がフィルム基材8の表面に膜を成膜する成膜速度を制御する。
<膜厚測定部>
次に、本実施の形態1の成膜装置における膜厚測定部について説明する。図2は、実施の形態1の成膜装置における膜厚測定部の構成を示す図である。なお、図2では、理解を簡単にするために、真空チャンバのチャンバ壁の一部を切り取って図示しており、フィルム基材の一部を切り取って図示している。
図2に示すように、膜厚測定部4は、照射測定部25および算出部26を含む。照射測定部25は、ポンプ光照射部27、プローブ光照射部28、強度測定部29および遅延時間発生部30を含み、いわゆるポンププローブ法により膜厚を測定する。ポンプ光照射部27は、フィルム基材8の表面に成膜された膜8aに、パルスレーザ光からなるポンプ光を、真空チャンバ(成膜室)1の外部からレーザ透過窓10を透過させて照射する。プローブ光照射部28は、膜8aのうちポンプ光が照射された領域に、パルスレーザ光からなるプローブ光を、真空チャンバ1の外部からレーザ透過窓10を透過させて照射する。すなわち、プローブ光照射部28は、ポンプ光が照射された膜8aに、プローブ光を照射する。
強度測定部29は、照射されたプローブ光が反射された反射光の強度を測定する。具体的には、強度測定部29は、例えばプローブ光と反射光との差分を測定することで、反射光の強度を測定する。遅延時間発生部30は、ポンプ光の光路長とプローブ光の光路長との間の差(光路長差)を発生させることで、膜8aにポンプ光が照射されるタイミング(時点、時刻)と、膜8aにプローブ光が照射されるタイミング(時点、時刻)との間の遅延時間を発生させる。すなわち、遅延時間発生部30は、ポンプ光とプローブ光との間の光路長差を発生させることで、ポンプ光とプローブ光との間の遅延時間を発生させる。
なお、ポンプ光とプローブ光との間の遅延時間というときは、ポンプ光が照射されるタイミングよりもプローブ光が照射されるタイミングの方が遅延するものとする。
前述した図1に示したように、搬送部6によりロードセルロール18とロードセルロール19との間でフィルム基材8に加えられる張力を調整することで、フィルム基材8が一定の位置を安定して通るように搬送する。そして、フィルム基材8が一定の位置を安定して通るように搬送されている状態で、照射測定部25は、ポンプ光およびプローブ光を、真空チャンバ1の外部からレーザ透過窓10を透過させて、その一定の位置における膜8aに照射する。
なお、レーザ透過窓10の位置は、図1に示す位置には限定されない。膜8aにポンプ光およびプローブ光が照射される位置において、フィルム基材8に加えられている張力が安定していて、その位置にポンプ光およびプローブ光が照射されるために適切な位置にレーザ透過窓10が設置できるのであれば、レーザ透過窓10の位置は、どこでもよい。
また、前述したように、成膜装置は、真空チャンバを有しておらず、大気中でフィルム基材を搬送し、大気中でフィルム基材の表面に膜を成膜するものでもよい。したがって、膜厚測定部は、フィルム基材の表面に成膜された膜に大気中でポンプ光を照射し、膜のうちポンプ光が照射された領域に大気中でプローブ光を照射し、照射されたプローブ光が反射された反射光の強度を測定することで、膜の膜厚を測定するものでもよい。
図2に示す照射測定部25には、レーザ31、集光レンズ32、例えばBBO(β−BaB)結晶からなる非線形光学結晶素子33、コリメートレンズ34およびダイクロイックミラー(波長分離ミラー)35の各光学素子が設けられている。また、図2に示す照射測定部25には、光路長変更ミラー36、ミラー37、音響光学変調素子(Acousto-Optic Modulator:AOM)38、ダイクロイックミラー(波長分離ミラー)39および集光レンズ40の各光学素子が設けられている。さらに、図2に示す照射測定部25には、ハーフミラー41、ミラー42a、ミラー42b、受光器43、偏光ビームスプリッタ(Polarizing Beam Splitter:PBS)44、例えば四分の一波長板からなる偏光板45およびミラー46の各光学素子または受光器が設けられている。
レーザ31は、ポンプ光およびプローブ光となるパルスレーザ光を出射する。レーザ31が出射するパルスレーザ光の出力については、特に限定されないが、例えば数W程度とすることができる。また、レーザ31が出射するパルスレーザ光のパルス幅については、特に限定されないが、例えば数百fs程度とすることができる。さらに、レーザ31が出射するパルスレーザ光の繰り返し周波数については、特に限定されないが、例えば80MHz程度とすることができる。
以下では、レーザ31として、例えばファイバレーザ、半導体レーザまたはYAG(Nd:YAG)レーザを用いて波長λが1064nmであるパルスレーザ光を出射する場合を例として、説明する。しかし、レーザ31として、上記のレーザに代え、チタンサファイアレーザなど各種のレーザを用いることができる。
また、以下では、パルスレーザ光を単にレーザ光ということがある。
レーザ31から出射された波長λが1064nmであるレーザ光は、前後に集光レンズ32およびコリメートレンズ34が配置された非線形光学結晶素子33に入射される。非線形光学結晶素子33は、非線形光学結晶素子33に入射された光の波長を、非線形光学効果を用いて変換する。非線形光学結晶素子33に入射された波長λが1064nmであるレーザ光は、その一部が波長変換される。そのため、非線形光学結晶素子33を透過したレーザ光は、波長λが1064nmである基本波と、波長λが532nmである第2高調波(Second Harmonic Generation:SHG)とに分けられる。本実施の形態1では、基本波がポンプ光として用いられ、第2高調波がプローブ光として用いられる。すなわち、非線形光学結晶素子33を透過したレーザ光は、波長λが1064nmであるポンプ光と、波長λが532nmであるプローブ光とからなる。
ポンプ光とプローブ光とからなるレーザ光は、ダイクロイックミラー35に入射される。ダイクロイックミラー35は、特定の波長の光を反射し、その他の波長の光を透過する。本実施の形態1では、ダイクロイックミラー35として、例えば波長λが1064nmである光を反射し、その他の波長の光を透過するものを用いることができる。このとき、非線形光学結晶素子33を透過したレーザ光がダイクロイックミラー35に入射されると、レーザ光のうち、波長λが1064nmであるポンプ光47は、ダイクロイックミラー35により反射される。また、レーザ光のうち、波長λが532nmであるプローブ光48は、ダイクロイックミラー35を透過する。
ダイクロイックミラー35により反射されたポンプ光47は、光路長変更ミラー36に入射される。光路長変更ミラー36は、ポンプ光47の光路上に移動可能に設けられており、光路長変更ミラー制御機構36aにより光路長変更ミラー36を移動させることで、ポンプ光47の光路長を変更することができる。そして、光路長変更ミラー制御機構36aにより光路長変更ミラー36を移動させ、ポンプ光47の光路長を調整し、ポンプ光47とプローブ光48との間の光路差を発生させることで、ポンプ光47とプローブ光48との間の遅延時間を発生させる。つまり、光路長変更ミラー36および光路長変更ミラー制御機構36aは、ポンプ光47とプローブ光48との間の遅延時間を発生させる遅延時間発生部30として動作する。
なお、本実施の形態1では、光路長変更ミラー36が、ポンプ光47の光路上に設けられているが、光路長変更ミラー36は、ポンプ光47の光路上に代え、プローブ光48の光路上に移動可能に設けられていてもよい。このような場合でも、光路長変更ミラー36を移動させ、プローブ光48の光路長を調整し、ポンプ光47とプローブ光48との間の光路差を発生させることで、ポンプ光47とプローブ光48との間の遅延時間を発生させることができる。
また、光路長変更ミラー36に代え、例えばパルスレーザ光からなるプローブ光を発生させるレーザを、パルスレーザ光からなるポンプ光を発生させるレーザ31とは別に設けることができる。そして、そのレーザがパルスレーザ光からなるプローブ光を発生させるタイミングを、レーザ31がパルスレーザ光からなるポンプ光を発生させるタイミングよりも遅延させることで、ポンプ光47とプローブ光48との間の遅延時間を発生させることができる。
光路長変更ミラー36により反射されたポンプ光47は、ミラー37により反射され、ミラー37により反射されたポンプ光47は、AOM38に入射される。AOM38は、AOM38に入射されたポンプ光47を、非線形光学効果を用いて変調する。例えば、発振器49により発生した、例えば1MHzの周波数を有する信号が、AOM38に送られる。そして、AOM38に入射され、繰り返し周波数が例えば80MHzであるポンプ光47は、AOM38により、例えば1MHzの周波数で振幅変調(強度変調)される。
AOM38により変調されたポンプ光47は、ダイクロイックミラー(波長分離ミラー)39に入射される。ダイクロイックミラー39として、ダイクロイックミラー35とは異なり、例えば波長λが532nmである光を反射し、その他の波長の光を透過するものを用いることができる。このときダイクロイックミラー39に入射され、波長λが1064nmであるポンプ光47は、ダイクロイックミラー39を透過する。
ダイクロイックミラー39を透過したポンプ光47は、真空チャンバ1の外部からレーザ透過窓10を透過し、真空チャンバ1の内部に配置されたフィルム基材8の表面に成膜された膜8aに照射される。本実施の形態1では、ダイクロイックミラー39とレーザ透過窓10との間であって、ポンプ光47の光路上には、集光レンズ40が設けられており、集光レンズ40を透過したポンプ光47は、膜8aの表面において集光された状態で、膜8aに照射される。
したがって、レーザ31、ダイクロイックミラー35、AOM38、ダイクロイックミラー39および集光レンズ40は、フィルム基材8の表面に成膜された膜8aにポンプ光47を照射するポンプ光照射部27として動作する。
膜8aのうちポンプ光47が照射された領域では、ポンプ光47により膜8a中の材料(物質)が励起され、例えば超音波振動が発生することで、膜8aの誘電率が時間に伴って変化する。
前述したように、ポンプ光47がパルスレーザ光からなるとき、ポンプ光47は、例えば12.5nsの繰り返し周期ごとに、例えば100fs程度のパルス幅を有するパルス光として照射される。そして、膜8aのうちポンプ光47が照射された領域では、例えば12.5nsの繰り返し周期ごとに、超音波振動が発生し、発生した超音波振動は、例えば数十〜数百ps程度の時間で減衰する。
また、ポンプ光47の繰り返し周波数が例えば80MHzであり、膜8aのうちポンプ光47が照射される領域の直径が例えば50μmであって、フィルム基材8の搬送速度が例えば1m/sであるとき、膜8aのうち同一の点には、例えば4000回照射される。したがって、フィルム基材8が搬送されている状態でも、搬送方向に沿って、連続的に励起することができる。
ポンプ光47は、一定の繰り返し周期で膜8a中の材料(物質)を励起することができるものであればよく、パルスレーザ光に限られない。したがって、ポンプ光47として、レーザ光以外の例えばLED(Light Emitting Diode)光などの各種の光を用いることができる。あるいは、ポンプ光47として、パルス光以外の例えば連続光などの各種の光を用いることができる。
一方、ダイクロイックミラー35を透過したプローブ光48は、ハーフミラー41に入射される。ハーフミラー41に入射されたプローブ光48のうち一部は、ハーフミラー41により反射され、さらにミラー42aおよびミラー42bで反射された後、基準光50として受光器43に入射される。
また、ハーフミラー41に入射されたプローブ光48のうち残りの部分は、ハーフミラー41を透過し、ハーフミラー41を透過したプローブ光48は、PBS44に入射される。PBS44は、入射された光について、偏光面が互いに直交する2つの偏光成分のうち、一方の偏光成分を透過させ、他方の偏光成分を反射させることで、この2つの偏光成分を分離する。ここでは、PBS44に入射された光のうち一部が、PBS44を透過する。
PBS44を透過したプローブ光48は、偏光板45を透過し、ミラー46で反射された後、ダイクロイックミラー39に入射され、波長λが532nmであるプローブ光48は、ダイクロイックミラー39により反射される。
ダイクロイックミラー39により反射されたプローブ光48の光路は、ポンプ光47の光路と共通の光路OP1となる。そして、ダイクロイックミラー39により反射されたプローブ光48は、真空チャンバ1の外部からレーザ透過窓10を透過し、真空チャンバ1の内部でフィルム基材8の表面に成膜された膜8aのうち、ポンプ光47が照射された領域に照射される。本実施の形態1では、前述したように集光レンズ40が設けられており、集光レンズ40を透過したプローブ光48は、膜8aの表面において集光された状態で、膜8aに照射される。また、膜8aに照射されたプローブ光48は、膜8aにより反射される。
したがって、レーザ31、非線形光学結晶素子33、ダイクロイックミラー35、PBS44、ダイクロイックミラー39および集光レンズ40は、フィルム基材8の表面に成膜された膜8aにプローブ光48を照射するプローブ光照射部28として動作する。プローブ光照射部28は、フィルム基材8の表面に成膜された膜8aのうち、ポンプ光47が照射された領域にプローブ光48を照射する。すなわち、プローブ光照射部28は、ポンプ光47が照射された膜8aに、プローブ光48を照射する。また、プローブ光照射部28は、プローブ光48を、ポンプ光47の光路と共通の光路OP1を通して、膜8aに照射する。
プローブ光48が照射されるタイミングは、ポンプ光47が照射されるタイミングよりも遅延している。また、前述したように、膜8aのうちポンプ光47が照射された領域では、ポンプ光47により膜8a中の材料(物質)が励起され、例えば超音波振動が発生することで、膜8aの誘電率が時間に伴って変化している。したがって、プローブ光48が膜8aにより反射される反射率、すなわち反射光51の強度は、時間に伴って変化する。すなわち、プローブ光48(基準光50)と反射光51とは、振幅および位相が異なり、プローブ光48(基準光50)と反射光51との間の振幅差および位相差は、時間に伴って変化する。
プローブ光48は、反射光51の強度を精度よく測定するため、好適には、パルスレーザ光である。しかし、プローブ光48として、レーザ光以外の例えばLED光などの各種の光を用いることができる。あるいは、プローブ光48として、パルス光以外の例えば連続光などの各種の光を用いることができる。
膜8aにより反射された反射光51は、レーザ透過窓10を透過し、真空チャンバ1の外部に導かれる。真空チャンバ1の外部に導かれた反射光51は、集光レンズ40を通った後、ダイクロイックミラー39に入射される。ダイクロイックミラー39に入射された反射光51は、ダイクロイックミラー39により反射される。ダイクロイックミラー39により反射された反射光51は、ミラー46で反射された後、PBS44に入射される。PBS44に入射された反射光51のうち、一部は、PBS44に反射され、受光器43に入射される。
前述したように、受光器43に入射された基準光50(プローブ光48)と反射光51とは、振幅および位相が異なる。受光器43は、この基準光50と反射光51との差分を取り出し、取り出した差分を信号として出力する。受光器43により出力された信号は、ロックインアンプ52に入力される。ロックインアンプ52は、受光器43から入力された信号のうち、例えば前述した発振器49により発生した信号と同期した成分を抽出することで、反射光51の強度を測定する。つまり、受光器43およびロックインアンプ52は、基準光50(プローブ光48)と反射光51との差分を測定することで、反射光51の強度を測定する強度測定部29として動作する。
このようにして受光器43およびロックインアンプ52により測定された反射光51の強度の測定値は、ロックインアンプ52からパーソナルコンピュータ53に送られる。
前述したように、遅延時間発生部30は、ポンプ光47とプローブ光48との光路長差を発生させることで、ポンプ光47とプローブ光48との間の遅延時間を発生させる。そして、膜厚測定部4は、遅延時間発生部30により発生させる遅延時間を変更しながら、ポンプ光照射部27によるポンプ光47の照射、プローブ光照射部28によるプローブ光48の照射、および、強度測定部29による反射光51の強度の測定を繰り返す。パーソナルコンピュータ53は、各遅延時間に対応した、反射光51の強度の測定値を含むデータを取得する。パーソナルコンピュータ53は、このようにして取得したデータを例えば重ね合わせることで、すなわち、取得したデータに基づいて、反射光51の強度の時間依存性を示すデータを得る。
図3は、反射光の強度の時間依存性を示すデータである。図3において、横軸は、ポンプ光とプローブ光との間の光路長差によって発生させた、ポンプ光とプローブ光との間の遅延時間に対応した時間を示し、縦軸は、反射光の強度に対応した強度を示している。図3に示すように、反射光の強度の時間依存性を示すデータは、振動波形を含む。
パーソナルコンピュータ53(図2参照)は、このような振動波形を含むデータに対して、例えばフーリエ変換を施すことで、振動波形に含まれる周波数成分を抽出し、反射光の強度の周波数依存性を示すデータ、すなわち、反射光の強度の周波数スペクトルを得る。
図4は、反射光の強度の周波数依存性を示すデータである。図4において、横軸は、周波数を示し、縦軸は、反射光の強度に対応した強度を示している。図4に示すデータ、すなわち周波数スペクトルでは、膜8aが振動する振動周波数f1に対応したピークPK1が検出され、ピークPK1以外にも、フィルム基材8が振動する振動周波数f2に対応したピークPK2が検出される。
ここで、膜の弾性定数をC(Nm−2)とし、膜の密度をρ(kgm−3)とし、膜の膜厚をd(m)とし、膜の振動周波数をf(Hz)とするとき、振動周波数fと膜厚dとの関係は、下記式(1)
C=ρ×(2d×f) (1)
で表される。上記式(1)を用いて膜の膜厚dを算出するためには、膜の振動周波数fを測定するだけでなく、膜の弾性定数Cおよび密度ρを予め求めておく必要がある。
本実施の形態1では、フィルム基材8の表面内で、膜8aの弾性定数Cおよび密度ρの変動は少ないと考えられる。そのため、図4において、膜8aの振動周波数に対応したピークが検出されると予測される周波数の付近で検出されるピークのみを、膜8aの振動に対応するものと判断することができる。このようにして、膜8aの振動周波数fを決定することができ、上記式(1)を用いて膜8aの膜厚dを算出することができる。
つまり、パーソナルコンピュータ53は、遅延時間を変更しながら、強度測定部29により測定された反射光51の強度の測定値を取得し、取得した測定値に基づいて、膜厚を算出する算出部26として動作する。
このような構成により、本実施の形態1の成膜装置では、搬送部6により巻出しロール11から巻き出されたフィルム基材8が成膜ロール15の表面を通過する際に、フィルム基材8の表面に成膜部3により膜8aが成膜される。フィルム基材8の表面に成膜された膜8aには、膜厚測定部4によりポンプ光47およびプローブ光48が照射され、照射されたプローブ光48が膜8aにより反射された反射光51の強度が測定され、測定された強度に基づいて、膜8aの膜厚が測定される。また、膜厚測定部4により膜8aの膜厚が測定されたフィルム基材8は、搬送部6により巻取りロール14に巻き取られる。
膜厚測定部4の照射測定部25および算出部26により測定された膜厚のデータは、制御部7の制御機構24に送られる。そして、送られたデータに基づいて、制御機構24が成膜源制御機構22および搬送部制御機構23を制御することで、制御部7は、成膜部3がフィルム基材8の表面に膜8aを成膜する成膜速度を制御する。つまり、膜厚測定部4により測定された膜厚のデータは、成膜源制御機構22および搬送部制御機構23にフィードバックされる。
フィルム基材8の搬送速度が例えば1m/sであり、膜厚を測定するための時間が2〜3秒であるとき、この時間の間にフィルム基材8は2〜3m搬送される。したがって、膜厚のデータは、フィルム基材8の搬送方向に沿って、2〜3mの範囲における平均値として測定される。
なお、図示は省略するが、レーザ光から作業者を保護するために、ポンプ光、プローブ光および反射光の光路を覆うように、各々の光を透過させない材質からなるカバーを設け、ポンプ光、プローブ光および反射光を外部に対して遮光することは、いうまでもない。
<可動ミラー部>
本実施の形態1の成膜装置における膜厚測定部は、以下に説明するような可動ミラー部を備えていてもよい。可動ミラー部を備えることにより、フィルム基材の搬送方向に交差する方向に沿った複数の位置の各々において、膜の膜厚を測定することができる。
図5および図6は、実施の形態1の成膜装置における膜厚測定部に備えられた可動ミラー部の構成を示す斜視図である。図5および図6は、ポンプ光およびプローブ光が膜に照射される照射位置が互いに異なる場合について示す図である。なお、図5では、理解を簡単にするために、真空チャンバのチャンバ壁の一部を切り取って図示しており、フィルム基材の一部を切り取って図示しており、レーザ透過窓を取り外した状態を図示している。さらに、図5および図6では、理解を簡単にするために、ポンプ光の光路およびプローブ光の光路を共通の光路OP1により示している。
図5に示すように、可動ミラー部60は、回転板61、レーザ側ミラー62、真空チャンバ側ミラー63および走査部64を含む。可動ミラー部60は、真空チャンバ1の外部に設けられている。
回転板61は、方向DR11に沿って延伸する軸AX1を中心として回転可能に設けられている。軸AX1が延伸する方向DR11は、フィルム基材8の表面に交差する方向であり、好適には、フィルム基材8の表面に垂直な方向である。
レーザ側ミラー62は、回転板61上であって軸AX1上に、回転板61と一体で回転可能に設けられている。すなわち、レーザ側ミラー62は、軸AX1上に、軸AX1を中心として回転可能に設けられている。
ポンプ光47およびプローブ光48は、それぞれ照射測定部25のポンプ光照射部27およびプローブ光照射部28により、方向DR11に沿って、レーザ側ミラー62に照射される。そして、レーザ側ミラー62は、ポンプ光照射部27により方向DR11から照射されたポンプ光47、および、プローブ光照射部28により方向DR11から照射されたプローブ光48を、方向DR11と異なる方向DR12に反射する。
なお、図5および図6では、ポンプ光47およびプローブ光48は、軸AX1に沿ってレーザ側ミラー62に照射される場合について、示している。
真空チャンバ側ミラー63は、回転板61上であって軸AX1から離れた位置に、回転板61と一体で回転可能に設けられている。すなわち、真空チャンバ側ミラー63は、軸AX1を中心として、レーザ側ミラー62に対応して回転移動可能に設けられている。真空チャンバ側ミラー63は、レーザ側ミラー62により方向DR12に反射されたポンプ光47およびプローブ光48を、方向DR12と異なる方向DR13に反射して膜8aに照射する。
走査部64は、回転板61を回転駆動することで、軸AX1を中心としてレーザ側ミラー62を回転させる。また、走査部64は、回転板61を回転駆動することで、軸AX1を中心とし、レーザ側ミラー62に対応して真空チャンバ側ミラー63を回転移動させる。このようにして、走査部64は、真空チャンバ側ミラー63をレーザ側ミラー62に対応して回転移動させることで、ポンプ光47およびプローブ光48が膜8aに照射される照射位置を、フィルム基材8の搬送方向TRDに交差する方向CRD1に沿って走査する。
真空チャンバ1のチャンバ壁1aには、複数のレーザ透過窓10として、レーザ透過窓10a、レーザ透過窓10bおよびレーザ透過窓10cが設けられている。複数のレーザ透過窓10a、10b、10cは、ポンプ光47およびプローブ光48が膜8aに照射される照射位置が、フィルム基材8の搬送方向TRDに交差する方向CRD1に沿って、互いに異なる複数の位置MP11、MP12、MP13に走査できるように、設けられている。複数の小さなレーザ透過窓が設けられる場合、真空チャンバにおけるリークの発生を抑制することができる。
図5および図6に示すように、走査部64は、真空チャンバ側ミラー63を回転移動させ、ポンプ光47およびプローブ光48を、真空チャンバ1の外部から複数のレーザ透過窓10a、10b、10cのいずれかを透過させて照射する。これにより、ポンプ光47およびプローブ光48の照射位置を、フィルム基材8の搬送方向TRDに交差する方向CRD1に沿った複数の位置MP11、MP12、MP13の間で走査する。そして、ポンプ光47およびプローブ光48の照射位置を走査しながら、算出部26(図2参照)により膜厚を算出することで、複数の位置MP11、MP12、MP13の各々において、膜8aの膜厚を測定する。
軸AX1が延伸する方向DR11は、好適には、フィルム基材8の表面に垂直な方向であり、このとき、複数の位置MP11、MP12、MP13の各々において、ポンプ光47およびプローブ光48の入射角度、光路長を等しくすることができる。しかし、軸AX1が延伸する方向DR11は、フィルム基材8の表面に交差する方向であればよく、フィルム基材8の表面に垂直な方向に限られない。
なお、図5および図6において、レーザ透過窓10は3つ設けられているが、複数設けられていればよく、3つに限定されない。あるいは、複数の小さなレーザ透過窓に代え、その複数のレーザ透過窓をまとめた1つの大きなレーザ透過窓が設けられてもよい。複数の小さなレーザ透過窓が設けられる場合、真空チャンバにおけるリークの発生を抑制することができる。また、1つの大きなレーザ透過窓が設けられる場合、真空チャンバの部品の点数を少なくすることができる。
<可動ミラー部を用いた膜厚測定方法>
このような可動ミラー部を用いることにより、例えば以下のような2つの方法により、複数の位置の各々において、膜厚を測定することができる。
なお、以下の説明において、ポンプ光47が照射される位置とプローブ光48が照射される位置とが同一である場合には、ポンプ光47およびプローブ光48の照射位置とは、その同一の位置を示す。また、ポンプ光47が照射される位置とプローブ光48が照射される位置とが例えば微小距離離れている場合には、ポンプ光47およびプローブ光48の照射位置とは、ポンプ光47が照射される位置とプローブ光48が照射される位置との2つの位置からなる組み合わせを示す。
第1の方法としては、まず、走査部64によりポンプ光47およびプローブ光48の照射位置をある位置MP11(図6参照)に決定する。そして、光路長変更ミラー36(図2参照)によりポンプ光47とプローブ光48との間の遅延時間を変更しながら反射光51(図2参照)の強度の測定を繰り返すことで、位置MP11における膜8aの膜厚を算出する。
次いで、走査部64によりポンプ光47およびプローブ光48の照射位置を別の位置MP12(図5参照)に決定する。そして、光路長変更ミラー36により遅延時間を変更しながら反射光51の強度の測定を繰り返すことで、位置MP12における膜8aの膜厚を算出する。
このようにして、走査部64により照射位置を走査しながら、算出部26による膜厚の算出を繰り返すことで、フィルム基材8の搬送方向TRDに交差する方向CRD1に沿った複数の位置MP11、MP12、MP13の各々において、膜8aの膜厚を測定する。つまり、走査部64により照射位置を走査しながら、膜厚測定部4による膜厚の測定を繰り返すことで、複数の位置MP11、MP12、MP13の各々において、膜8aの膜厚を測定する。
または、第2の方法としては、光路長変更ミラー36によりポンプ光47とプローブ光48との間の遅延時間をある時間に決定する。そして、走査部64によりポンプ光47およびプローブ光48の照射位置を、フィルム基材8の搬送方向TRDに交差する方向CRD1に沿った複数の位置MP11、MP12、MP13の間で走査しながら、その遅延時間における反射光51の強度を測定する。
次いで、光路長変更ミラー36により遅延時間を別の時間に決定する。そして、走査部64によりポンプ光47およびプローブ光48の照射位置を走査しながら、その遅延時間における反射光51の強度を測定する。
このようにして、光路長変更ミラー36により遅延時間を変更しながら反射光51の強度の測定を繰り返すことで、フィルム基材8の搬送方向TRDに交差する方向CRD1に沿った複数の位置MP11、MP12、MP13の各々において、膜8aの膜厚を測定する。
走査部64によりポンプ光47およびプローブ光48の照射位置を走査するための時間が、光路長変更ミラー36により遅延時間を変更するための時間よりも長いときは、上記第1の方法を行うことで、測定時間を短縮することができる。一方、走査部64によりポンプ光47およびプローブ光48の照射位置を走査するための時間が、光路長変更ミラー36により遅延時間を変更するための時間よりも短いときは、上記第2の方法を行うことで、測定時間を短縮することができる。
なお、図示は省略するが、レーザ光から作業者を保護するために、可動ミラー部についても、全体をカバーなどで遮光することは、いうまでもない。
また、本実施の形態1の成膜装置における膜厚測定部が、可動ミラー部を備えず、フィルム基材の搬送方向に交差する方向に沿って単一の位置において、膜の膜厚を測定するものであってもよい。
<成膜工程中における膜厚測定について>
上記特許文献1に記載された水晶振動子からなるセンサを用いた膜厚モニタの技術は、基材の表面に成膜された膜の膜厚を直接測定するものではない。したがって、予め、センサによる測定値と、膜厚測定の対象物(測定対象物)である膜の実際の膜厚との比較(較正)を行って補正係数を取得し、膜を成膜する際には、センサによる測定値を、予め取得した補正係数を用いて補正することで膜厚を算出しなくてはならない。このような補正係数は、ツーリングファクターとも呼ばれている。
しかし、上記補正係数(ツーリングファクター)は、真空チャンバ内でセンサが設置される位置、真空チャンバ内における温度分布、または、成膜工程のフローなどの成膜条件により変化する。そのため、例えば成膜条件を変更した場合にも、上記補正係数が変化するため、補正係数を取得して補正をし直さなければならず、測定対象物である膜の膜厚を精度よく測定することは容易ではない。
また、上記水晶振動子からなるセンサを用いた膜厚モニタの技術によれば、膜厚を直接測定するものではないため、基材の表面内で、膜の膜厚分布を直接測定することができない。
さらに、蒸着材料が水晶振動子に付着する量が増加するのに伴って、水晶振動子の共振周波数が低下し、測定値における誤差が大きくなることがある。そのため、水晶振動子の共振周波数が予め決められた下限値よりも低くなったときに、水晶振動子を交換しなくてはならない。
水晶振動子を交換する際は、成膜工程を停止し、内部の温度が例えば数百℃程度になるように加熱されていた真空チャンバを、その内部の温度が常温に低下するまで冷却した後、真空チャンバを大気開放して水晶振動子の交換作業を行う。そして、水晶振動子の交換作業が終了した後、真空チャンバを真空排気し、真空チャンバ内の温度が数百℃程度になるように再び加熱した後、成膜工程を再開する。このため、水晶振動子の交換作業によって成膜工程が停止する時間が長くなり、ロール・トゥ・ロール方式による成膜工程において、タクトタイムが増加し、生産性が低下する。
水晶振動子の交換作業を行う間隔は、成膜源のメンテナンス作業を行う間隔よりも短い。そこで、成膜源のメンテナンス作業に合わせて水晶振動子の交換作業を行えるようにするために、真空チャンバ内に複数の水晶振動子を用意し、必要に応じて交換する交換機構が設けられる場合もある。しかし、このような交換機構が設けられる場合でも、水晶振動子の交換作業によって成膜工程が停止する時間が発生するため、タクトタイムが増加し、生産性が低下する。
一方、上記特許文献2記載のエリプソメータを用いた膜厚モニタの技術によれば、膜厚を直接測定することができる。また、上記エリプソメータを用いた技術では、水晶振動子を使用しないため、水晶振動子の交換作業によって成膜作業が停止することはない。
しかしながら、エリプソメータを用いた技術では、通常、成膜工程が終了した後(オフラインで)、膜が成膜された基材のうち一部について、抜き取りによりオフラインで膜厚を測定することが多い。オフラインで膜厚を測定する場合、膜厚の測定対象物である膜が成膜される時点と、その膜厚の測定結果に基づいて成膜条件へフィードバックする時点との間に、タイムラグ(時間差)が発生してしまう。また、膜が成膜された基材の全てについてオフラインで膜厚を測定する場合、測定に要する時間が増加し、膜が成膜される時点と、成膜条件へフィードバックする時点との間のタイムラグ(時間差)がさらに長くなる。すなわち、基材の一部について抜き取りにより検査を行う場合でも、基材の全てについて検査を行う場合でも、ロール・トゥ・ロール方式による成膜工程において、タクトタイムが増加し、生産性が低下する。
また、エリプソメータを用いた技術では、例えば直線偏光からなる光が、膜の表面、すなわち、基材の表面に斜めに入射される。そのため、平面視において、光を入射する入射部と、反射光を検出する検出部とを、膜のうち光が入射される領域を挟んで対向するように配置する必要があり、膜厚測定部の設置面積が大きくなってしまう。
<本実施の形態の主要な特徴と効果>
一方、本実施の形態1の成膜装置は、ロール・トゥ・ロール方式を用いてフィルム基材の表面に膜を成膜する成膜装置であって、成膜工程中に、膜厚測定部によりポンププローブ法を用いて膜厚を測定する。膜厚測定部は、フィルム基材の表面に成膜された膜にポンプ光およびプローブ光を照射し、照射されたプローブ光が反射された反射光の強度を測定し、測定された強度に基づいて、膜の膜厚を測定する。
本実施の形態1によれば、成膜工程中に(インラインで)、膜厚を直接測定することができる。そのため、水晶振動子からなるセンサを用いた膜厚モニタの技術と異なり、成膜条件を変更した場合に、センサによる測定値を予め取得した補正係数を用いて補正する必要がない。これにより、測定対象物である膜の膜厚を直接精度よく測定することができるので、膜厚変化の有無について、および、成膜源の状態の変化について、正確にモニタリングすることができる。
また、本実施の形態1によれば、成膜工程中に(インラインで)、膜厚を直接測定することができるので、フィルム基材の表面内で、膜の膜厚分布を直接測定することができる。例えば前述した可動ミラー部を設けることで、フィルム基材の搬送方向に交差する方向に沿った複数の位置の各々において、膜の膜厚を測定することができる。これにより、フィルム基材の表面内で、直接精度よく膜厚の分布を測定することができ、膜厚分布の変化の有無について、および、各成膜源の状態の変化について、さらに正確にモニタリングすることができる。
さらに、本実施の形態1によれば、水晶振動子を用いていないため、水晶振動子の交換作業を行う必要がない。このため、水晶振動子の交換作業によって成膜工程が停止する時間が長くなることがなく、水晶振動子からなるセンサを用いた膜厚モニタの技術に比べ、ロール・トゥ・ロール方式による成膜工程において、タクトタイムを低減し、生産性を向上させることができる。
また、前述したように、真空チャンバ内に複数の水晶振動子を用意し、必要に応じて交換する交換機構が設けられる場合でも、水晶振動子の交換作業によって成膜作業が停止する時間が発生する。そのため、本実施の形態1によれば、複数の水晶振動子を交換する交換機構が設けられる場合に比べても、ロール・トゥ・ロール方式による成膜工程において、タクトタイムを低減し、生産性を向上させることができる。
一方、本実施の形態1によれば、膜を成膜した後、巻取りロールにフィルム基材を巻き取る前に、フィルム基材を搬送しながら、膜厚を測定する。そのため、成膜工程が終了した後(オフラインで)、抜き取りにより膜厚を測定する場合に比べ、膜が成膜される時点と、膜厚の測定結果に基づいて成膜条件へフィードバックする時点との間に、タイムラグ(時間差)が発生しない。また、膜が成膜されたフィルム基材の全てについて膜厚を測定する場合でも、膜厚測定に要する時間が増加すること、および、膜が成膜される時点と、成膜条件へフィードバックする時点との間のタイムラグ(時間差)が長くなることを、防止または抑制することができる。したがって、本実施の形態1によれば、ロール・トゥ・ロール方式による成膜工程において、膜が成膜されたフィルム基材の全てについて膜厚を測定しつつ、タクトタイムを低減し、生産性を向上させることができる。
さらに、本実施の形態1によれば、エリプソメータを用いた場合のように、平面視において、光を入射する入射部と、反射光を検出する検出部とを、膜のうち光が入射される領域を挟んで対向するように配置する必要がない。そのため、エリプソメータを用いた技術に比べ、膜厚測定部の設置面積を小さくすることができる。
(実施の形態2)
次に、実施の形態2の成膜装置について説明する。実施の形態1の成膜装置では、可動ミラー部における真空チャンバ側ミラーは、レーザ側ミラーを中心として回転移動可能に設けられていた。それに対して、本実施の形態2の成膜装置では、可動ミラー部における真空チャンバ側ミラーが複数設けられており、その複数の真空チャンバ側ミラーが、フィルム基材の搬送方向に交差する方向に沿って、互いに異なる位置に設けられている。したがって、本実施の形態2の成膜装置のうち、可動ミラー部以外の各部分については、実施の形態1の成膜装置における各部分と同一であり、その説明を省略する。
<可動ミラー部>
図7は、実施の形態2の成膜装置における膜厚測定部に備えられた可動ミラー部の構成を示す斜視図である。なお、図7では、理解を簡単にするために、真空チャンバのチャンバ壁の一部を切り取って図示しており、フィルム基材の一部を切り取って図示しており、レーザ透過窓を取り外した状態を図示している。また、図7では、ポンプ光の光路およびプローブ光の光路を共通の光路OP1により示している。
図7に示すように、可動ミラー部60aは、レーザ側ミラー62a、複数の真空チャンバ側ミラー63a、63b、63cおよび走査部64を含む。可動ミラー部60aは、真空チャンバ1の外部に設けられている。
レーザ側ミラー62aは、方向DR21に沿って延伸する軸AX2上に、軸AX2を中心として回転可能に設けられている。軸AX2が延伸する方向DR21は、フィルム基材8の表面に交差する方向であり、好適には、フィルム基材8の表面に垂直な方向である。
レーザ側ミラー62aとして、ポリゴンミラーまたはガルバノミラーなどを用いることができる。図7では、レーザ側ミラー62aとして、ポリゴンミラーを用いた例について示している。
ポンプ光47およびプローブ光48は、それぞれ照射測定部25のポンプ光照射部27およびプローブ光照射部28により、方向DR22に沿って、レーザ側ミラー62aに照射される。そして、レーザ側ミラー62aは、ポンプ光照射部27により方向DR22から照射されたポンプ光47、および、プローブ光照射部28により方向DR22から照射されたプローブ光48を、方向DR22と異なる方向DR23に反射する。
複数の真空チャンバ側ミラー63a、63b、63cは、軸AX2に交差する面を面PLN1とするとき、面PLN1の面内で、フィルム基材8の搬送方向TRDに交差する方向CRD2に平行な方向に沿って、互いに異なる位置に設けられている。面PLN1は、軸AX2に交差する面であるが、好適には、軸AX2に垂直な面(フィルム基材8の表面に平行な面)である。複数の真空チャンバ側ミラー63a、63b、63cの各々は、レーザ側ミラー62aにより反射されたポンプ光47およびプローブ光48が照射されたときに、照射されたポンプ光47およびプローブ光48を、方向DR23と異なる方向DR24に反射して膜8aに照射する。
走査部64は、レーザ側ミラー62aを回転駆動することで、ポンプ光47およびプローブ光48が膜8aに照射される照射位置を、フィルム基材8の搬送方向TRDに交差する方向CRD2に沿って、複数の位置MP21、MP22、MP23の間で走査する。
真空チャンバ1のチャンバ壁1aには、実施の形態1と同様に、複数のレーザ透過窓10として、レーザ透過窓10d、レーザ透過窓10eおよびレーザ透過窓10fが設けられている。複数のレーザ透過窓10d、10e、10fは、ポンプ光47およびプローブ光48が膜8aに照射される照射位置が、フィルム基材8の搬送方向TRDに交差する方向CRD2に沿って、互いに異なる複数の位置MP21、MP22、MP23に走査できるように、設けられている。複数の小さなレーザ透過窓が設けられる場合、真空チャンバにおけるリークの発生を抑制することができる。
図7に示すように、走査部64は、レーザ側ミラー62aを回転させ、ポンプ光47およびプローブ光48を、真空チャンバ1の外部から複数のレーザ透過窓10d、10e、10fのいずれかを透過させて照射する。このとき、プローブ光48は、複数の真空チャンバ側ミラー63a、63b、63cのうち、ポンプ光47を反射した真空チャンバ側ミラーと同一の真空チャンバ側ミラーにより反射される。これにより、ポンプ光47およびプローブ光48の照射位置を、フィルム基材8の搬送方向TRDに交差する方向CRD2に沿った複数の位置MP21、MP22、MP23の間で走査する。そして、ポンプ光47およびプローブ光48の照射位置を走査しながら、算出部26(図2参照)により膜厚を算出することで、複数の位置MP21、MP22、MP23の各々において、膜8aの膜厚を測定する。
なお、図7において、真空チャンバ側ミラーは、3つ設けられているが、複数設けられていればよく、3つに限定されない。あるいは、複数の真空チャンバ側ミラーに代え、その複数の小さな真空チャンバ側ミラーをまとめた1つの大きな真空チャンバ側ミラーが設けられていてもよい。一方、図7において、レーザ透過窓10は3つ設けられているが、複数設けられていればよく、3つに限定されない。あるいは、複数の小さなレーザ透過窓に代え、その複数の小さなレーザ透過窓をまとめた1つの大きなレーザ透過窓が設けられてもよい。
<可動ミラー部の変形例>
次に、可動ミラー部の変形例について説明する。図8は、実施の形態2の成膜装置における膜厚測定部に備えられた可動ミラー部の変形例の構成を示す斜視図である。なお、図8では、理解を簡単にするために、真空チャンバのチャンバ壁の一部を切り取って図示しており、フィルム基材の一部を切り取って図示しており、レーザ透過窓を取り外した状態を図示している。また、図8では、ポンプ光の光路およびプローブ光の光路を共通の光路OP1により示している。
また、図8に示す可動ミラー部60bのうち、真空チャンバ側ミラー63dおよびレーザ透過窓10g以外の部分については、図7に示す可動ミラー部60aにおける各部分と同一であり、その説明を省略する。
図8に示す真空チャンバ側ミラー63dは、図7に示す複数の小さな真空チャンバ側ミラー63a、63b、63cをまとめた1つの大きな真空チャンバ側ミラーである。すなわち、図8に示す真空チャンバ側ミラー63dは、前述したように、軸AX2に交差する面を面PLN1とするとき、面PLN1の面内で、フィルム基材8の搬送方向TRDに交差する方向CRD2に沿って延伸しており、一体として設けられている。前述したように、面PLN1は、軸AX2に交差する面であるが、好適には、軸AX2に垂直な面(フィルム基材8の表面に平行な面)である。真空チャンバ側ミラー63dは、レーザ側ミラー62aにより反射されたポンプ光47およびプローブ光48を、方向DR23と異なる方向DR24に反射して膜8aに照射する。
図8に示すレーザ透過窓10gは、図7に示す複数の小さなレーザ透過窓10d、10e、10fをまとめた1つの大きなレーザ透過窓である。図8に示すレーザ透過窓10gは、ポンプ光47およびプローブ光48が膜8aに照射される照射位置が、フィルム基材8の搬送方向TRDに交差する方向CRD2に沿って、互いに異なる複数の位置MP21、MP22、MP23に走査できるように、一体として設けられている。1つの大きなレーザ透過窓が設けられる場合、真空チャンバの部品の点数を少なくすることができる。
<可動ミラー部を用いた膜厚測定方法>
本実施の形態2でも、実施の形態1と同様に、このような可動ミラー部を用いることにより、例えば以下のような2つの方法により、複数の位置の各々において、膜厚を測定することができる。
なお、以下の説明において、ポンプ光47が照射される位置とプローブ光48が照射される位置とが同一である場合には、ポンプ光47およびプローブ光48の照射位置とは、その同一の位置を示す。また、ポンプ光47が照射される位置とプローブ光48が照射される位置とが例えば微小距離離れている場合には、ポンプ光47およびプローブ光48の照射位置とは、ポンプ光47が照射される位置とプローブ光48が照射される位置との2つの位置からなる組み合わせを示す。
第1の方法としては、まず、走査部64によりポンプ光47およびプローブ光48の照射位置をある位置MP21に決定する。そして、光路長変更ミラー36により遅延時間を変更しながら反射光51の強度の測定を繰り返すことで、位置MP21における膜8aの膜厚を算出する。
次いで、走査部64によりポンプ光47およびプローブ光48の照射位置を別の位置MP22に決定する。そして、光路長変更ミラー36により遅延時間を変更しながら反射光51の強度の測定を繰り返すことで、位置MP22における膜8aの膜厚を算出する。
このようにして、走査部64により照射位置を走査しながら、算出部26による膜厚の算出を繰り返すことで、フィルム基材8の搬送方向TRDに交差する方向CRD2に沿った複数の位置MP21、MP22、MP23の各々において、膜8aの膜厚を測定する。つまり、走査部64により照射位置を走査しながら、膜厚測定部4による膜厚の測定を繰り返すことで、複数の位置MP21、MP22、MP23の各々において、膜8aの膜厚を測定する。
または、第2の方法としては、光路長変更ミラー36によりポンプ光47とプローブ光48との間の遅延時間をある時間に決定する。そして、走査部64によりポンプ光47およびプローブ光48の照射位置を、フィルム基材8の搬送方向TRDに交差する方向CRD2に沿った複数の位置MP21、MP22、MP23の間で走査しながら、その遅延時間における反射光51の強度を測定する。
次いで、光路長変更ミラー36により遅延時間を別の時間に決定する。そして、走査部64によりポンプ光47およびプローブ光48の照射位置を走査しながら、その遅延時間における反射光51の強度を測定する。
このようにして、光路長変更ミラー36により遅延時間を変更しながら反射光51の強度の測定を繰り返すことで、フィルム基材8の搬送方向TRDに交差する方向CRD2に沿った複数の位置MP21、MP22、MP23の各々において、膜8aの膜厚を測定する。
走査部64によりポンプ光47およびプローブ光48の照射位置を走査するための時間が、光路長変更ミラー36により遅延時間を変更するための時間よりも長いときは、上記第1の方法を行うことで、測定時間を短縮することができる。一方、走査部64によりポンプ光47およびプローブ光48の照射位置を走査するための時間が、光路長変更ミラー36により遅延時間を変更するための時間よりも短いときは、上記第2の方法を行うことで、測定時間を短縮することができる。
また、例えばレーザ側ミラー62aとしてポリゴンミラーを用いるときは、ポリゴンミラーを高速で回転させることで、ポンプ光47およびプローブ光48の照射位置を走査するための時間を、遅延時間を変更するための時間よりも短くすることができる。また、レーザ側ミラー62aとしてガルバノミラーを用いるときは、ガルバノミラーを高速で振動させることで、ポンプ光47およびプローブ光48の照射位置を走査するための時間を、遅延時間を変更するための時間よりも短くすることができる。これらの場合には、前述した第2の方法を行うことで、測定時間を短縮することができる。
なお、図示は省略するが、レーザ光から作業者を保護するために、可動ミラー部についても、全体をカバーなどで遮光することは、いうまでもない。
<本実施の形態の主要な特徴と効果>
本実施の形態2の成膜装置も、実施の形態1の成膜装置と同様に、成膜工程中に(インラインで)、膜の膜厚を直接精度よく測定することができるので、膜厚変化の有無について、および、成膜源の状態の変化について、正確にモニタリングすることができる。
また、本実施の形態2においても、実施の形態1と同様に、可動ミラー部を設けることで、フィルム基材の搬送方向に交差する方向に沿った複数の位置の各々において、膜の膜厚を測定することができる。これにより、基材の表面内で、直接精度よく膜厚の分布を測定することができ、膜厚分布の変化の有無について、および、各成膜源の状態の変化について、さらに正確にモニタリングすることができる。
また、本実施の形態2においても、実施の形態1と同様に、水晶振動子からなるセンサを用いた膜厚モニタの技術に比べ、ロール・トゥ・ロール方式による成膜工程において、タクトタイムを低減し、生産性を向上させることができる。
一方、本実施の形態2においても、実施の形態1と同様に、膜が成膜されたフィルム基材の全てについて膜厚を測定しつつ、タクトタイムを低減し、生産性を向上させることができる。
さらに、本実施の形態2の成膜装置では、可動ミラー部において、真空チャンバ側ミラーを回転移動させる必要がない。また、本実施の形態2では、可動ミラー部において、レーザ側ミラーとしてポリゴンミラーまたはガルバノミラーを用いるときは、走査部によりポンプ光およびプローブ光の照射位置を走査するための時間を短くすることができる。そのため、実施の形態1の成膜装置に比べ、膜厚の測定時間をさらに短縮することができる。
以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
本発明は、成膜装置および成膜方法に適用して有効である。
1 真空チャンバ(成膜室)
1a チャンバ壁(壁部)
2 巻出し部
3 成膜部
4 膜厚測定部
5 巻取り部
6 搬送部
7 制御部
8 フィルム基材
8a 膜
9 レーザ光
10、10a〜10g レーザ透過窓(窓部)
11 巻出しロール
12 ガイドロール
13、17〜19 ロードセルロール
14 巻取りロール
15 成膜ロール
16 成膜源
20 回転駆動部
21 搬送駆動部
22 成膜源制御機構
23 搬送部制御機構
24 制御機構
25 照射測定部
26 算出部
27 ポンプ光照射部
28 プローブ光照射部
29 強度測定部
30 遅延時間発生部
31 レーザ
32、40 集光レンズ
33 非線形光学結晶素子
34 コリメートレンズ
35、39 ダイクロイックミラー(波長分離ミラー)
36 光路長変更ミラー
36a 光路長変更ミラー制御機構
37、42a、42b、46 ミラー
38 音響光学変調素子(AOM)
41 ハーフミラー
43 受光器
44 偏光ビームスプリッタ(PBS)
45 偏光板
47 ポンプ光
48 プローブ光
49 発振器
50 基準光
51 反射光
52 ロックインアンプ
53 パーソナルコンピュータ
60、60a、60b 可動ミラー部
61 回転板
62、62a レーザ側ミラー
63、63a〜63d 真空チャンバ側ミラー
64 走査部
AX1、AX2 軸
CRD1、CRD2、DR11〜DR13、DR21〜DR24 方向
MP11〜MP13、MP21〜MP23 位置
OP1 光路
PLN1 面
TRD 搬送方向

Claims (14)

  1. フィルム基材が巻かれた第1ロールを含み、前記第1ロールから前記フィルム基材が巻き出される巻出し部と、
    前記第1ロールから巻き出された前記フィルム基材の表面に膜を成膜する成膜部と、
    前記成膜部により前記フィルム基材の前記表面に成膜された前記膜にポンプ光およびプローブ光を照射し、照射された前記プローブ光が前記膜により反射された反射光の強度を測定し、測定された前記強度に基づいて、前記膜の膜厚を測定する膜厚測定部と、
    第2ロールを含み、前記膜厚測定部により前記膜厚が測定された前記フィルム基材を前記第2ロールに巻き取る巻取り部と、
    を有する、成膜装置。
  2. 請求項1記載の成膜装置において、
    前記膜厚測定部は、
    前記膜に前記ポンプ光を照射するポンプ光照射部と、
    前記ポンプ光が照射された前記膜に、前記プローブ光を照射するプローブ光照射部と、
    照射された前記プローブ光が前記膜により反射された前記反射光の強度を測定する強度測定部と、
    前記ポンプ光と前記プローブ光との間の遅延時間を発生させる遅延時間発生部と、
    前記膜厚を算出する算出部と、
    を含み、
    前記膜厚測定部は、前記遅延時間発生部により発生させる前記遅延時間を変更しながら、前記ポンプ光照射部による前記ポンプ光の照射と、前記プローブ光照射部による前記プローブ光の照射と、前記強度測定部による前記反射光の強度の測定とを繰り返し、前記強度測定部により測定された前記強度に基づいて、前記算出部により前記膜厚を算出することで、前記膜厚を測定する、成膜装置。
  3. 請求項2記載の成膜装置において、
    前記プローブ光照射部は、前記プローブ光を、前記ポンプ光の光路と共通の光路を通して、前記膜に照射し、
    前記膜厚測定部は、
    前記フィルム基材の前記表面に交差する第1方向に沿って延伸する第1軸上に、前記第1軸を中心として回転可能に設けられ、前記共通の光路を通して照射された前記ポンプ光および前記プローブ光を反射する第1ミラーと、
    前記第1軸を中心として前記第1ミラーに対応して回転移動可能に設けられ、前記第1ミラーにより反射された前記ポンプ光および前記プローブ光を反射して前記膜に照射する第2ミラーと、
    前記第2ミラーを前記第1ミラーに対応して回転移動させることで、前記ポンプ光および前記プローブ光が前記膜に照射される照射位置を、前記表面内で、前記フィルム基材の搬送方向に交差する方向に沿って走査する走査部と、
    を含み、
    前記走査部により前記照射位置を走査しながら、前記膜厚測定部による前記膜厚の測定を繰り返すことで、前記表面内で、前記搬送方向に交差する方向に沿った複数の位置の各々において、前記膜厚を測定する、成膜装置。
  4. 請求項2記載の成膜装置において、
    前記プローブ光照射部は、前記プローブ光を、前記ポンプ光の光路と共通の光路を通して、前記膜に照射し、
    前記膜厚測定部は、
    前記フィルム基材の前記表面に交差する第1方向に沿って延伸する第1軸上に、前記第1軸を中心として回転可能に設けられ、前記共通の光路を通して照射された前記ポンプ光および前記プローブ光を反射する第1ミラーと、
    前記第1軸に交差する第1面内で、前記フィルム基材の搬送方向に交差する方向に沿って、互いに異なる位置に設けられ、前記第1ミラーにより反射された前記ポンプ光および前記プローブ光が照射されたときに、照射された前記ポンプ光および前記プローブ光を反射して前記膜に照射する複数の第2ミラーと、
    前記第1ミラーを回転させることで、前記ポンプ光および前記プローブ光が前記膜に照射される照射位置を、前記表面内で、前記搬送方向に交差する方向に沿って走査する走査部と、
    を含み、
    前記走査部により前記照射位置を走査しながら、前記膜厚測定部による前記膜厚の測定を繰り返すことで、前記表面内で、前記搬送方向に交差する方向に沿った複数の位置の各々において、前記膜厚を測定する、成膜装置。
  5. 請求項2記載の成膜装置において、
    前記プローブ光照射部は、前記プローブ光を、前記ポンプ光の光路と共通の光路を通して、前記膜に照射し、
    前記膜厚測定部は、
    前記フィルム基材の前記表面に交差する第1方向に沿って延伸する第1軸上に、前記第1軸を中心として回転可能に設けられ、前記共通の光路を通して照射された前記ポンプ光および前記プローブ光を反射する第1ミラーと、
    前記第1軸に交差する第1面内で、前記フィルム基材の搬送方向に交差する方向に沿って延伸するように設けられ、前記第1ミラーにより反射された前記ポンプ光および前記プローブ光を反射して前記膜に照射する第2ミラーと、
    前記第1ミラーを回転させることで、前記ポンプ光および前記プローブ光が前記膜に照射される照射位置を、前記表面内で、前記搬送方向に交差する方向に沿って走査する走査部と、
    を含み、
    前記走査部により前記照射位置を走査しながら、前記膜厚測定部による前記膜厚の測定を繰り返すことで、前記表面内で、前記搬送方向に交差する方向に沿った複数の位置の各々において、前記膜厚を測定する、成膜装置。
  6. 請求項1記載の成膜装置において、
    気密に設けられた成膜室と、
    前記成膜室の壁部に設けられ、前記ポンプ光および前記プローブ光が透過可能な窓部と、
    を含み、
    前記第1ロールは、前記成膜室の内部に設けられており、
    前記成膜部は、前記成膜室の内部で、前記表面に前記膜を成膜し、
    前記膜厚測定部は、前記ポンプ光および前記プローブ光を、前記成膜室の外部から前記窓部を透過させて照射し、前記窓部を透過して前記成膜室の外部に導かれた前記反射光の強度を測定し、測定された前記強度に基づいて、前記膜厚を測定し、
    前記第2ロールは、前記成膜室の内部に設けられている、成膜装置。
  7. 請求項1記載の成膜装置において、
    前記ポンプ光はパルスレーザ光からなり、
    前記プローブ光はパルスレーザ光からなる、成膜装置。
  8. (a)フィルム基材が巻かれた第1ロールから前記フィルム基材を巻き出す工程、
    (b)前記第1ロールから巻き出された前記フィルム基材の表面に膜を成膜する工程、
    (c)前記フィルム基材の前記表面に成膜された前記膜にポンプ光およびプローブ光を照射し、照射された前記プローブ光が前記膜により反射された反射光の強度を測定し、測定された前記強度に基づいて、前記膜の膜厚を測定する工程、
    (d)前記膜厚が測定された前記フィルム基材を第2ロールに巻き取る工程、
    を有する、成膜方法。
  9. 請求項8記載の成膜方法であって、
    前記(c)工程は、
    (c1)ポンプ光照射部により、前記膜に前記ポンプ光を照射する工程、
    (c2)前記ポンプ光が照射された前記膜に、プローブ光照射部により、前記プローブ光を照射する工程、
    (c3)照射された前記プローブ光が前記膜により反射された前記反射光の強度を、強度測定部により測定する工程、
    を含み、
    前記(c)工程において、前記ポンプ光と前記プローブ光との間の遅延時間を変更しながら、前記(c1)工程と、前記(c2)工程と、前記(c3)工程とを繰り返し、前記強度測定部により測定された前記強度に基づいて、前記膜厚を算出することで、前記膜厚を測定する、成膜方法。
  10. 請求項9記載の成膜方法であって、
    前記(c1)工程において、前記ポンプ光照射部により照射された前記ポンプ光を、前記フィルム基材の前記表面に交差する第1方向に沿って延伸する第1軸上に、前記第1軸を中心として回転可能に設けられた第1ミラーにより反射し、前記第1ミラーにより反射された前記ポンプ光を、前記第1軸を中心として前記第1ミラーに対応して回転移動可能に設けられた第2ミラーにより反射して前記膜に照射し、
    前記(c2)工程において、前記プローブ光照射部により、前記ポンプ光の光路と共通の光路を通して照射された前記プローブ光を、前記第1ミラーにより反射し、前記第1ミラーにより反射された前記プローブ光を、前記第2ミラーにより反射して前記膜に照射し、
    走査部により前記第2ミラーを前記第1ミラーに対応して回転移動させ、前記ポンプ光および前記プローブ光が前記膜に照射される照射位置を、前記表面内で、前記フィルム基材の搬送方向に交差する方向に沿って走査しながら、前記(c)工程を繰り返すことで、前記表面内で、前記搬送方向に交差する方向に沿った複数の位置の各々において、前記膜厚を測定する、成膜方法。
  11. 請求項9記載の成膜方法であって、
    前記(c1)工程において、前記ポンプ光照射部により照射された前記ポンプ光を、前記フィルム基材の前記表面に交差する第1方向に沿って延伸する第1軸上に、前記第1軸を中心として回転可能に設けられた第1ミラーにより反射し、前記第1ミラーにより反射された前記ポンプ光を、前記第1軸に交差する第1面内で、前記フィルム基材の搬送方向に交差する方向に沿って、互いに異なる位置に設けられた複数の第2ミラーのうちいずれかの第2ミラーにより反射して前記膜に照射し、
    前記(c2)工程において、前記プローブ光照射部により、前記ポンプ光の光路と共通の光路を通して照射された前記プローブ光を、前記第1ミラーにより反射し、前記第1ミラーにより反射された前記プローブ光を、前記複数の第2ミラーのうち前記ポンプ光を反射した第2ミラーと同一の第2ミラーにより反射して前記膜に照射し、
    走査部により前記第1ミラーを回転させ、前記ポンプ光および前記プローブ光が前記膜に照射される照射位置を、前記表面内で、前記搬送方向に交差する方向に沿って走査しながら、前記(c)工程を繰り返すことで、前記表面内で、前記搬送方向に交差する方向に沿った複数の位置の各々において、前記膜厚を測定する、成膜方法。
  12. 請求項9記載の成膜方法であって、
    前記(c1)工程において、前記ポンプ光照射部により照射された前記ポンプ光を、前記フィルム基材の前記表面に交差する第1方向に沿って延伸する第1軸上に、前記第1軸を中心として回転可能に設けられた第1ミラーにより反射し、前記第1ミラーにより反射された前記ポンプ光を、前記第1軸に交差する第1面内で、前記フィルム基材の搬送方向に交差する方向に沿って延伸するように設けられた第2ミラーにより反射して前記膜に照射し、
    前記(c2)工程において、前記プローブ光照射部により、前記ポンプ光の光路と共通の光路を通して照射された前記プローブ光を、前記第1ミラーにより反射し、前記第1ミラーにより反射された前記プローブ光を、前記第2ミラーにより反射して前記膜に照射し、
    走査部により前記第1ミラーを回転させ、前記ポンプ光および前記プローブ光が前記膜に照射される照射位置を、前記表面内で、前記搬送方向に交差する方向に沿って走査しながら、前記(c)工程を繰り返すことで、前記表面内で、前記搬送方向に交差する方向に沿った複数の位置の各々において、前記膜厚を測定する、成膜方法。
  13. 請求項8記載の成膜方法であって、
    前記(a)工程において、気密に設けられた成膜室の内部に設けられた前記第1ロールから前記フィルム基材を巻き出し、
    前記(b)工程において、前記成膜室の内部で、前記表面に前記膜を成膜し、
    前記(c)工程において、前記ポンプ光および前記プローブ光を、前記成膜室の外部から、前記成膜室の壁部に設けられ、前記ポンプ光および前記プローブ光が透過可能な窓部を透過させて照射し、前記窓部を透過して前記成膜室の外部に導かれた前記反射光の強度を測定し、測定された前記強度に基づいて、前記膜厚を測定し、
    前記(d)工程において、前記フィルム基材を、前記成膜室の内部に設けられた前記第2ロールに巻き取る、成膜方法。
  14. 請求項8記載の成膜方法であって、
    前記ポンプ光はパルスレーザ光からなり、
    前記プローブ光はパルスレーザ光からなる、成膜方法。
JP2012212362A 2012-09-25 2012-09-26 成膜装置および成膜方法 Pending JP2014066619A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012212362A JP2014066619A (ja) 2012-09-26 2012-09-26 成膜装置および成膜方法
PCT/JP2013/071374 WO2014050319A1 (ja) 2012-09-25 2013-08-07 成膜装置および成膜方法
TW102131271A TW201413235A (zh) 2012-09-25 2013-08-30 成膜裝置及成膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012212362A JP2014066619A (ja) 2012-09-26 2012-09-26 成膜装置および成膜方法

Publications (1)

Publication Number Publication Date
JP2014066619A true JP2014066619A (ja) 2014-04-17

Family

ID=50743171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012212362A Pending JP2014066619A (ja) 2012-09-25 2012-09-26 成膜装置および成膜方法

Country Status (1)

Country Link
JP (1) JP2014066619A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017750A (ja) * 2014-07-04 2016-02-01 株式会社Ihi 膜厚計測装置と方法
JP5938155B1 (ja) * 2015-04-24 2016-06-22 大塚電子株式会社 光学測定装置および光学測定方法
JP2017067703A (ja) * 2015-10-01 2017-04-06 日産自動車株式会社 膜厚検査装置、膜厚検査方法、膜構造体の製造装置、および膜構造体の製造方法
CN106967959A (zh) * 2017-05-15 2017-07-21 成都西沃克真空科技有限公司 一种晶振探头用控制系统
JP2020019991A (ja) * 2018-07-31 2020-02-06 キヤノントッキ株式会社 成膜装置及び電子デバイスの製造方法
JP2020020032A (ja) * 2018-07-31 2020-02-06 キヤノントッキ株式会社 蒸発レート測定装置、蒸発レート測定装置の制御方法、成膜装置、成膜方法及び電子デバイスを製造する方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017750A (ja) * 2014-07-04 2016-02-01 株式会社Ihi 膜厚計測装置と方法
JP5938155B1 (ja) * 2015-04-24 2016-06-22 大塚電子株式会社 光学測定装置および光学測定方法
WO2016170667A1 (ja) * 2015-04-24 2016-10-27 大塚電子株式会社 光学測定装置および光学測定方法
CN106304845A (zh) * 2015-04-24 2017-01-04 大塚电子株式会社 光学测定装置以及光学测定方法
US9921149B2 (en) 2015-04-24 2018-03-20 Otsuka Electronics Co., Ltd. Optical measurement apparatus and optical measurement method
CN106304845B (zh) * 2015-04-24 2019-09-03 大塚电子株式会社 光学测定装置以及光学测定方法
JP2017067703A (ja) * 2015-10-01 2017-04-06 日産自動車株式会社 膜厚検査装置、膜厚検査方法、膜構造体の製造装置、および膜構造体の製造方法
CN106967959A (zh) * 2017-05-15 2017-07-21 成都西沃克真空科技有限公司 一种晶振探头用控制系统
JP2020019991A (ja) * 2018-07-31 2020-02-06 キヤノントッキ株式会社 成膜装置及び電子デバイスの製造方法
JP2020020032A (ja) * 2018-07-31 2020-02-06 キヤノントッキ株式会社 蒸発レート測定装置、蒸発レート測定装置の制御方法、成膜装置、成膜方法及び電子デバイスを製造する方法
JP7138504B2 (ja) 2018-07-31 2022-09-16 キヤノントッキ株式会社 成膜装置及び電子デバイスの製造方法

Similar Documents

Publication Publication Date Title
WO2014050319A1 (ja) 成膜装置および成膜方法
JP2014066619A (ja) 成膜装置および成膜方法
JP5610399B2 (ja) ポンププローブ測定装置
CA2939534C (en) Photo-acoustic device and method for non-contact measurement of thin layers
US9743503B2 (en) Laser device and extreme ultraviolet light generation system
EP0927333A1 (en) Interferometer with air turbulence compensation
JP2014081285A (ja) 多層セラミックの膜厚測定方法
WO2009120706A2 (en) Autofocus method and apparatus for wafer scribing
US20160087389A1 (en) Laser system, extreme ultraviolet light generation system, and method of controlling laser apparatus
CN109445226B (zh) 基于极性分子相干转动的太赫兹光频梳产生装置及方法
JP5992147B2 (ja) テラヘルツ波を用いた検査装置及び検査方法
TW201626113A (zh) 投影系統
JP2018069310A (ja) レーザ加工装置
JP2014066536A (ja) 成膜装置および成膜方法
US9707714B2 (en) Apparatus and method for manufacturing fine pattern using interferogram of optical axis direction
JP5920402B2 (ja) 偏光測定装置、偏光測定方法及び偏光光照射装置
US10868403B2 (en) Laser apparatus and extreme ultraviolet light generation system
US5530541A (en) Atomic absorption apparatus using a phase-modulated light beam
US20160190766A1 (en) Optical resonator system
KR101290104B1 (ko) 레이저빔 분기 및 파워 보정장치
KR102459817B1 (ko) 레이저 결정화 장치
JP2009150811A (ja) テラヘルツ分光装置
US20120257218A1 (en) Method for longitudinally stabilizing an optical cavity
JP2007057407A (ja) テラヘルツ分光装置
KR101930741B1 (ko) 레이저 어닐링 장치 및 레이저 어닐링 방법