JP2014061506A - 液体処理設備 - Google Patents

液体処理設備 Download PDF

Info

Publication number
JP2014061506A
JP2014061506A JP2012209565A JP2012209565A JP2014061506A JP 2014061506 A JP2014061506 A JP 2014061506A JP 2012209565 A JP2012209565 A JP 2012209565A JP 2012209565 A JP2012209565 A JP 2012209565A JP 2014061506 A JP2014061506 A JP 2014061506A
Authority
JP
Japan
Prior art keywords
treatment
water
liquid
ozone
backwash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012209565A
Other languages
English (en)
Other versions
JP5982239B2 (ja
Inventor
Masataka Hidaka
政隆 日高
Takahiro Tachi
隆広 舘
Takeshi Takemoto
剛 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012209565A priority Critical patent/JP5982239B2/ja
Publication of JP2014061506A publication Critical patent/JP2014061506A/ja
Application granted granted Critical
Publication of JP5982239B2 publication Critical patent/JP5982239B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

【課題】
活性汚泥法や膜分離活性汚泥法による下水または排水処理において、活性汚泥等の浮遊固形物の滞留を防止し、生物処理性能を向上させる。
【解決手段】
液体処理設備10aは、有機物を含む下水および排水の少なくともいずれかが流入して生物処理された後に固液分離する1次処理手段1と、1次処理手段で処理され発生した1次処理水W13を限外ろ過膜でろ過する2次処理手段4と、2次処理手段で処理され発生した2次処理水で2次処理手段を逆洗する逆洗手段11と、2次処理手段で逆洗されて発生した逆洗排水を前記1次処理手段に導く逆洗排水流路19と、1次処理手段から引抜汚泥を廃棄する汚泥引抜流路14とを備える。2次処理手段は、2次処理手段の被処理水を循環させる循環手段9を有する。
【選択図】図1

Description

本発明は、下水や排水の浄化及び再生処理に使用される液体処理設備に関する。
下水や排水の処理方法については、種々の観点から多くの提案がなされている(特許文献1ないし特許文献5参照)。その中で、特許文献1では、有機性廃水の生物処理に伴って発生する余剰汚泥の発生量を顕著に減少させるために、有機性廃水の生物処理に伴って発生する汚泥を可溶化反応処理槽で可溶化し、可溶化液に気体を混入させて該液を膜濾過装置で膜濾過し、膜濾過液を生物反応槽で生物処理し、膜濾過液を可溶化反応処理槽に戻している。
特開2009−61455号公報 特開平7−60280号公報 特開2012−45488号公報 特開2012−96202号公報 特開2011−72939号公報
上記特許文献1に開示された有機性廃水の処理方法では、可溶化され低分子量化した有機物を限外ろ過膜(以下UF膜とも称す)でろ過する際に、ばっ気槽内の汚水中に活性汚泥(MLSS:Mixed Liquor Suspended Solids)が多く浮遊している。そして、高分子量の溶解性有機物を始め、ミクロンオーダーからミリメータオーダーの浮遊固形物(SS)が、膜面で流動を阻止され付着する。そのため、短時間で膜が閉塞するおそれが生じる。また、可溶化処理された成分のうち、比較的分子量が多いけれども微生物が捕食可能な成分もUF膜で阻止される。また、この阻止される量も多い。その結果、汚泥の可溶化処理に投入したエネルギーに対して、生物反応槽での水処理性能向上に与える効果が減少する。
本発明は上記従来の不具合に鑑みなされたものであり、その目的は、活性汚泥法や膜分離活性汚泥法による下水または排水処理において、活性汚泥等の浮遊固形物の滞留を防止し、生物処理性能を向上させることにある。
上記目的を達成する本発明の特徴は、液体処理設備が、有機物を含む下水および排水の少なくともいずれかが流入して生物処理された後に固液分離する1次処理手段と、この1次処理手段で処理され発生した1次処理水を限外ろ過膜でろ過する2次処理手段と、この2次処理手段で処理され発生した2次処理水で前記2次処理手段を逆洗する逆洗手段と、前記2次処理手段で逆洗されて発生した逆洗排水を前記1次処理手段に導く逆洗排水流路と、前記1次処理手段から引抜汚泥を廃棄する汚泥引抜流路とを備え、前記2次処理手段がこの2次処理手段の被処理水を循環させる循環手段を有することにある。
上記目的を達成する本発明の他の特徴は、液体処理設備が、有機物を含む下水および排水の少なくともいずれかが流入して生物処理された後に固液分離する1次処理手段と、この1次処理手段で処理され発生した1次処理水を限外ろ過膜でろ過する2次処理手段と、この2次処理手段で処理され発生した2次処理水で前記2次処理手段を逆洗する逆洗手段と、前記2次処理手段で逆洗されて発生した逆洗排水を前記1次処理手段に導く逆洗排水流路と、前記1次処理手段から引抜汚泥を廃棄する汚泥引抜流路とを備え、前記逆洗排水流路に弁および酸化装置を介在させ,前記2次処理手段がこの2次処理手段の被処理水を循環させる循環手段を有することにある。
本発明によれば、活性汚泥法による下水または排水処理において、下水または排水中の易分解性有機物と比較的低分子量の難分解性有機物を濃縮し、酸化させて低分子化した後生物反応槽に返流するので、下水または排水処理水中の浮遊固形物の滞留が防止されるとともに有機物濃度が減少し、処理水質が向上する。それとともに、生物反応槽の微生物の生物活性が向上し、水処理性能が向上する。
本発明に係る液体処理設備の一実施例のシステム図である。 本発明に係る液体処理設備の他の実施例のシステム図である。 本発明に係る液体処理設備のさらに他の実施例のシステム図である。 本発明に係る液体処理設備のさらに他の実施例のシステム図である。 本発明に係る液体処理設備のさらに他の実施例のシステム図である。 図6に示した液体処理設備が備えるオゾン処理装置のシステム図である。 本発明に係る液体処理設備のさらに他の実施例のシステム図である。 本発明に係る液体処理設備のさらに他の実施例のシステム図である。 本発明に係る液体処理設備のさらに他の実施例のシステム図である。 本発明に係る液体処理設備のさらに他の実施例のシステム図である。 本発明に係る液体処理設備のさらに他の実施例のシステム図である。
以下、本発明に係る液体処理設備のいくつかの実施例について、図面を参照して詳細に説明する。
図1は、本発明に係る液体処理設備101aの一実施例のシステム図である。液体処理設備101aは、例えば、膜分離活性汚泥法を用いた下水処理設備であり、中小規模の下水処理装置に好適である。液体処理設備101aでは、原水W1となる下水が、最初沈殿池25を経由して生物反応槽1に流入する。
生物反応槽1では、底部に活性汚泥13を沈殿させている。また、生物反応槽1には、膜分離活性汚泥法を適用して生物処理するとともに固液分離するために、精密ろ過膜18が浸漬されている。精密ろ過膜18には、吸引ポンプ28を介して精密ろ過膜処理水流路29が接続されている。精密ろ過膜処理水流路29は、詳細を後述する限外ろ過膜処理装置4の循環流路9に連通している。精密ろ過膜18で濾過された精密膜濾過水W13は、精密ろ過膜処理水流路29を経て、循環流路9に送られる。
生物反応槽1の底部と汚泥引抜ポンプ15間は、汚泥引抜流路14で接続されている。汚泥引抜ポンプ15の吐出側は、引抜汚泥廃棄流路17に接続されている。生物反応槽1に蓄積した余剰の活性汚泥13は、引抜汚泥W10として汚泥引き抜き流路14から引き抜かれ、引抜汚泥廃棄流路17を通って廃棄される。
限外ろ過膜処理装置4は、クロスフローろ過方式を用いた装置である。限外ろ過膜処理装置4の被処理水側(入力側)に、循環流路9が接続されている。上述したように、循環流路9の途中で、精密ろ過膜処理水流路29が結合している。循環流路9には、この循環流路9を循環水W4が循環できるよう循環ポンプ6が設けられており、循環ポンプ6の前後には、弁23、20が配置されている。
循環流路9には、弁23よりも上流側に分岐流路である逆洗排水流路19が設けられており、逆洗排水流路19の端部は生物反応槽1に接続されている。逆洗排水流路19には弁24が設けられており、この逆洗排水流路19内を逆洗排水W8が流通するのを制御する。逆洗排水W8を、返流水W9とも呼ぶ。
限外ろ過膜処理装置4で濾過された処理水W5を流通させる処理水流路10の一端側が、限外ろ過膜処理装置4の処理水側(出力側)に接続されている。処理水流路10の他端側は逆洗水タンク7に接続されている。処理水流路10の途中には、弁21が設けられている。逆洗水タンク7と、処理水流路10の弁21よりも上流側とを、内部を逆洗水W7が流通する、破線で示した逆洗水流路11が接続している。逆洗水流路11には、順に逆洗ポンプ8および弁22が配置されている。
このように構成した本実施例の液体処理設備101aの動作を、図1以下を用いて、説明する。これらの図において、弁20等のように塗りつぶしされていない弁は、通常の水処理においては、開状態であり、弁22等の塗りつぶされている弁は、通常の水処理時には閉状態で、逆洗時に開状態となる弁である。
初めに実線で示した水処理ラインについて説明する。最初沈殿池25で原水W1中の固形物が沈殿されるとともに、生物反応槽1内へ流入する流量が調整される。生物反応槽1に流入した原水W1は、生物反応槽1内で微生物(活性汚泥)により生物処理される。生物処理された原水W1中の固形分と活性汚泥、超高分子量の有機物は、精密ろ過膜18により通過を阻止される。
一方、精密ろ過膜18を通過した精密膜ろ過水W13は、吸引ポンプ28により、循環流路9に送られる。循環流路9に流入した精密膜ろ過水W13は、循環ポンプ6により200〜300kPaに加圧され、限外ろ過膜処理装置4に流入する。限外ろ過膜処理装置4では、比較的分子量の大きい有機物の流通が阻止される。限外ろ過膜処理装置4を通過した処理水W5の一部は、逆洗水タンク7に貯められる。処理水W5の残りは、余剰分W6として配水される。この余剰分W6は、用途に応じてその名称が変わり、河川等に排水する場合は放流水、再利用水として配水する場合は再生水となる。
次表に、汚泥の大きさに応じた成分比率の一例を示す。精密ろ過(MF)膜や限外(UF)ろ過膜で阻止される有機物の性状について示している。高分子量の有機物ほど生物分解性が低いことが分かる。概ね100kDa以上(0.1〜10μm:表1では0.45μm以下の欄が該当)が精密ろ過(MF)膜で阻止可能な分画分子数の領域であり、1kDa以上(表1では100kDa以下の欄が該当)が限外(UF)ろ過膜で阻止可能な領域である。表1から、限外(UF)ろ過膜で阻止可能な有機物には、生物分解性が高い成分が比較的多く含まれることが分かる。
Figure 2014061506
比較的分子量の大きい有機物が限外ろ過膜処理装置4で阻止されるので、放流水再生水中の有機物が減少する。また、分子量が小さい生物易分解成分が相対的に多くなるので、放流再生水W6の水質が向上する。
精密ろ過膜18で固形物や超高分子量の溶解性有機物が阻止された後の易分解性有機物や、比較的低分子量の難分解性有機物は、限外ろ過膜処理装置4の膜面に付着する。限外ろ過膜処理装置4の膜面に付着したこれら有機物を逆洗する場合について、次に説明する。図1において、逆洗の場合の水の流れ方向を、破線で示す。
塗りつぶされていない弁20および弁21、弁23を閉じ、塗りつぶした弁22および弁24を開き、逆洗ポンプ8を運転する。逆洗水タンク7に貯められた処理水W5が、客洗水流路11を流れて限外ろ過膜処理装置4に流入することにより、限外ろ過膜処理装置4におけるろ過膜の精密膜濾過水W13が流入する側に付着した有機物は、逆洗排水流路19を通って生物反応槽1に返流される。限外ろ過膜処理装置4から流出した逆洗排水W8中の有機物の一部は、生物反応槽1で微生物により捕食され低分子化される。
その後、再び水処理に戻るため、塗りつぶされていない弁20および弁21、弁23を開き、塗りつぶした弁22および弁24を閉じ、逆洗ポンプ8を停止する。これにより、通常の水処理が再開され、精密ろ過膜18と限外ろ過膜処理装置4による処理が開始される。さらに、弁20〜25の開閉と逆洗ポンプの運転/停止を繰り返し、逆洗処理と通常の水処理を繰り返す。
本実施例によれば、限外ろ過膜に付着した有機物を逆洗処理で生物反応槽に導くようにしたので、生物反応槽へ循環する有機物に含まれる捕食可能な有機物の一部を、生物反応槽内で捕食させることができる。したがって、有機物に含まれる捕食可能な有機物成分が可能な限り分解されて低分子量化され、下水処理及び排水処理水中の有機物の濃度が減少し、処理水質が向上する。
図2は、本発明に係る液体処理設備101bの他の実施例(実施例2)のシステム図である。本実施例は、図1に示した実施例1において、生物反応槽1と限外ろ過膜処理装置4のための循環流路9との間に、逆浸透膜処理装置3を追加したものである。逆浸透膜処理装置3の追加に伴い、逆浸透膜処理装置3の上流側の精密ろ過膜処理水流路29に貯水塔30と高圧ポンプ2を配置している。また、逆浸透膜処理装置3と限外ろ過膜処理装置4のための循環流路9とを、濃縮水流路5が接続している。その他は、実施例1と同様の構成である。
このように構成した本実施例では、生物反応槽1から流出した精密膜ろ過水W13は、高圧ポンプ2により数MPaに加圧される。そして、逆浸透膜処理装置3において逆浸透膜処理され、再生水W2が配水される。一方、逆浸透膜処理により発生した濃縮水W3は、数百kPaから1MPa前後の残留圧力を有しながら、濃縮水流路5を通って限外ろ過膜処理装置4の循環水流路9に供給される。
濃縮水W3が高い残留圧力を有しているので、循環水流路9を流れる循環水を駆動する循環ポンプ6に必要とされる水頭は、循環水流路9の圧力損失を回復できる高さだけあれば十分である。本実施例によれば、実施例1の効果に加えて、逆浸透膜処理により高品質な再生水が得られる。さらに、逆浸透膜処理後の濃縮水が有する残留圧力を利用できるので、循環ポンプ6の動力を低減でき、限外ろ過膜処理装置4の消費電力を低減できる。
図3は、本発明に係る液体処理設備102aのさらに他の実施例(実施例3)のシステム図である。本実施例は、図1に示した実施例1において、限外ろ過膜処理装置4に接続される逆洗排水流路19中に、酸化装置16を設けたものである。その他の構成は、図1に示した実施例1と同様の構成である。
生物反応槽1に浸漬した精密ろ過膜18によりろ過され発生した精密膜ろ過水W13は、循環ポンプ6により200〜300kPaに加圧されて、限外ろ過膜処理装置4の循環流路9を循環する。その際、一部が限外ろ過膜処理装置4でろ過される。表1に示したように、比較的分子量の大きい有機物が限外ろ過膜処理装置4で阻止されるので、限外ろ過膜を通過した処理水W5中の有機物が減少する。それとともに、処理水W5中には、分子量が小さな生物易分解成分が相対的に多くなり、放流再生水W6の水質が向上する。
生物反応槽1内の精密ろ過膜18により固形物や超高分子量の有機物が阻止されるので、精密膜濾過水W13中には生物易分解性の有機物や、生物難分解性であるが酸化処理を施せば生物易分解性に転換が容易な、比較的低分子量の難分解性有機物が残留する。限外ろ過膜処理装置4の膜面では、これらの有機物が阻止される。
したがって、逆洗水タンク7に貯めた処理水W5で逆洗すれば、限外ろ過膜処理装置4の膜面で阻止された有機物は、逆洗排水流路19を通って酸化装置16に流入できる。酸化装置16としては、例えばオゾン処理により被処理水を酸化処理する装置を使用する。その他、公知の水熱酸化法や薬剤添加法を用いた酸化処理装置も利用できる。
逆洗排水流路19内を流通する逆洗水W8に含まれる比較的低分子量の難分解性有機物は、酸化装置16で酸化される。そして、分子量が減少して、生物易分解性に転換する有機物も現れる。当然のことながら、元々生物易分解性の有機物はさらに低分子量化し、生物による分解が容易になる。酸化処理された逆洗水W8は、生物反応槽1に返流される。生物反応槽1では、微生物により捕食可能な有機物が増加するので、微生物の生物活性が向上し、水処理性能が向上する。
本実施例によれば、下水処理及び排水処理水中の難分解性有機物の濃度が、実施例1の場合よりもさらに減少するので、実施例1の効果に加えて、処理水質がさらに向上する。
図4は、本発明に係る液体処理設備102bのさらに他の実施例(実施例4)のシステム図である。本実施例は、図2に示した実施例2の液体処理設備101bに、図3に示した酸化装置16を組み合わせたものであり、その他の構成は実施例2と同様の構成である。
本実施例によれば、実施例3に示した液体処理装置の効果に加えて、実施例2で示した逆浸透膜処理により高品質の再生水が得られる。さらに、逆浸透膜処理における濃縮水が有する残留圧力を利用したので、限外ろ過膜処理装置4の消費電力を低減できる。
図5は、発明に係る液体処理設備103のさらに他の実施例(実施例5)のシステム図である。この図5で丸囲みのA、B、Cで示したのは、図面表示上、便宜的に付加した接続点である。
図6は、図5における丸囲みのA、B、C以下の部分であるZ部の詳細を示すシステム図である。
本実施例は、図4に示した実施例において、酸化装置に、オゾンマイクロバブルを用いた酸化装置16aを用いた例である。このような酸化装置16aを導入したのに伴い、生物反応槽1に接続される汚泥引抜流路14を途中で分岐し、引抜汚泥W10の一部を、弁26を介して酸化装置16aに導いている。酸化装置16aには弁46が接続されており、酸化装置16aに流入した汚泥の一部が廃棄される。
図6に詳細を示す酸化装置16aは、接触槽16とこの接触槽43に引抜汚泥W10を供給する丸囲みAのラインと、接触槽43に逆洗排水W8を供給する丸囲みBのラインと、接触槽43から返流水W9を排出する丸囲みCのラインと、を有する。丸囲みAのラインは、実施例1等に示した汚泥引抜流路14を含むラインである。汚泥引抜流路14を分岐し、分岐した流路を、弁26を介して接触槽43に接続している。これにより、汚泥引抜ポンプ15で引き抜かれた汚泥は、汚泥引抜流路14を通って接触槽43の水面下に放出される。丸囲みCのラインは、返流水W9が流通する返流水流路47であり、途中に弁48が設けられている。
本実施例で最も特徴的な丸囲みBのラインは、接触槽43に逆洗排水W8とオゾン発生槽31で発生したオゾンを供給するラインである。逆洗排水流路19には、弁24の下流側にガス混合器32、溶解水槽33、ノズル39が順に配置されている。
オゾン発生装置31で発生したオゾンガスは、ガス混合器32で逆洗排水流路19を流通する逆洗排水W8に混合される。混合器32の出口側には、エアベント34を備えた溶解水槽33が接続されており、未溶解のオゾンガスをエアベント34から取り出す。取り出された未溶解のオゾンガスは、未溶解ガス流路35を通って接触槽43の水面下に放出される。
一方、溶解水槽33の出口側には、ノズル19を有するガス混合水流路38が接続されている。ガス混合水流路38の端部は、接触槽43に開口している。ノズル39においてマイクロバブルを生成させるため、ノズル39では加圧水を減圧放出している。これにより、逆洗排水W8は、ノズル39で生成したオゾンマイクロバブルを同伴して、接触槽43内に流入する。
ここで、接触槽43は、複数の仕切板42により複数の区画に仕切られている。この図6では、底面から上方に延び、上方に開放空間を形成する仕切板と、天井部から下方に延び下方に連通空間を有する仕切板とを並べて配置することにより、複数の区画を形成している。マイクロバブル40を同伴した逆洗排水W8は、仕切られた区画間を迂流して、接触槽43から丸囲みCのラインである返流水流路47に排水される。なお、接触槽43の第2区画および第3区画の上部水面に、濁質除去用のホッパー45を設けている。
逆洗排水W8に含まれる有機物は、オゾンマイクロバブルで酸化される。それとともに、酸化装置16の接触槽43に供給された引抜汚泥W10も、残留するオゾンで一部が可溶化される。これにより、汚泥の一部は生物易分解で溶解性の有機物に転換され、逆洗排水W8とともに、返流水W9として生物反応槽1に返流される。
つまり、引抜汚泥W10が加えられた逆洗排水W8は、オゾンマイクロバブルの酸化力により酸化処理される。一方汚泥は可溶化され、一部が溶解性成分として逆洗排水W8中に溶出する。可溶化後の汚泥を含む水中の濁質が、マイクロバブルの浮上分離効果により接触槽43の第2区画および第3区画の水面上に浮上し蓄積する。返流水流路47に介在させた弁48を閉じ、接触槽43内の水面を通常時水面から上昇させて、浮上蓄積した濁質41をホッパー45から系外に排出する。以上の酸化処理および汚泥可溶化、濁質除去を施した返流水W9が、生物反応槽1に返流される。
可溶化処理に送る引抜汚泥W10の流量は、逆洗排水W8の有機物汚濁負荷とオゾンの注入率のバランスに由来するオゾン処理の余力に依存する。この引抜汚泥W10の流量を、汚泥引抜流路14に介在させた弁26、および汚泥引抜流路14から分岐した廃棄流路に介在させた弁27の開度で調整する。
本実施例によれば、実施例4の効果に加えて、引抜汚泥を可溶化して生物反応槽に存在している微生物の捕食に適した生物易分解性有機物の量を増大させているので、微生物の生物活性が向上し、水処理性能が向上する。これにより、下排水処理水中の難分解性有機物の濃度がさらに減少し、処理水質が向上する。
図7は、発明に係る液体処理設備104のさらに他の実施例(実施例6)のシステム図である。本実施例の液体処理設備104は、上記実施例5に示した液体処理設備103において、限外ろ過膜処理装置4の循環流路9内を流通する循環水W4を駆動する循環ポンプ6を濃縮水流路5内の圧力に基づいて、回転数制御するようにしたものである。その他は、実施例5と同様の構成である。
濃縮水流路5には、圧力伝送器51が取り付けられている。圧力伝送器51の計装配線52を循環ポンプ6の制御器50に接続する。制御器50と循環ポンプ6を、制御配線53で接続する。これにより、圧力伝送器51が検出した圧力に応じて、制御器50が循環ポンプ6の回転数を制御する。
限外膜ろ過処理装置4が有するろ過膜が閉塞し、ろ過流量が低下してろ過圧力が高まると、濃縮水W3が加圧され、逆浸透膜処理装置3の処理水W5の流量が低下する。処理水W5の流量の変動を防止し放流再生水W6の生成量を安定化させるため、濃縮水W3の圧力が一定になるように、制御器50で循環ポンプ6の回転数を増加させる。これにより限外膜ろ過処理装置4のろ過圧力が高まり、ろ過流量が回復し、処理流量がバランスし安定性が保たれる。
本実施例によれば、逆浸透膜処理装置と限外膜ろ過処理装置の処理流量の一定化を図ったので、実施例5の効果に加えて、需要に応じた安定な設備運転が可能になる。
図8は、本発明に係る液体処理設備105aのさらに他の実施例(実施例7)のシステム図である。図9は、図8に示す液体処理設備105aの変形例のシステム図である。図8に示す液体処理設備105aは、実施例2に示した液体処理設備101bに、放流再生水W6の一部を生物反応槽1の出口側に配置した吸引ポンプ28の下流に戻す還流水流路55を付加したものである。また、図9に示す液体処理設備105bは、図7に示す実施例6の液体処理設備104に、同様の還流水流路55を付加したものである。
実施例7及びその変形例においては、放流再生水W6が流れる放流再生水流路12を分岐して還流水流路55を形成し、還流水流路55の途中に弁54を配置している。そして、還流水流路55は、逆浸透膜処理装置3の高圧ポンプ2の上流側に連通している。
実施例1で説明したように、比較的分子量の大きい有機物が限外ろ過膜処理装置4で阻止されるので、限外膜ろ過処理装置4のろ過水である放流再生水W6に含まれる有機物の量および分子量がともに減少している。その結果、逆浸透膜処理装置3の回収率によっては、処理水W5の有機物濃度が精密膜ろ過水W13に含まれる有機物濃度より低くなる場合がある。
このような場合には、放流再生水W6の一部を再循環水W11として逆浸透膜処理装置の上流側に戻し、精密膜ろ過水W13の有機物濃度を低下させるのがよい。その理由は、精密膜濾過水W13の有機物濃度よりも処理水W5の濃度が低いときに、精密ろ過水W13に処理水W5(再循環水W11)を加えれば、高圧ポンプ2から逆浸透膜処理装置3に供給される精密膜ろ過水W13中の水(有機物成分を除いた量)の流量が増加し、有機物濃度が低下するからである。被処理水中の有機物濃度が低いと、逆浸透膜処理装置3の相対的な汚濁負荷が減少し、再生水W2の回収率と流量が増加する。また、原水W1の有機物濃度が減少し、逆浸透膜処理装置3が有する逆浸透膜に、微生物由来の付着物質で閉塞する現象であるファウリングが生じるのが緩和される。
したがって、本実施例及び変形例によれば、等しい原水流量に対して逆浸透膜処理による高水質の再生水の配水流量が増加する。また、ファウリング等の発生割合が低下し、ファウリング等により生じた膜の目詰まりを薬洗で処理する頻度が低下し、膜の維持管理費用を削減できるので、処理流量当りの設備の運転コストを削減できる。
図10は、本発明に係る液体処理設備106のさらに他の実施例(実施例8)のシステム図である。本実施例の液体処理設備106は、実施例2に示した液体処理設備101bに、限外ろ過膜処理装置4の逆洗水タンク7内へオゾンガスを注入するオゾン発生装置56を付加したものである。逆洗水タンク7内の放流再生水W6に、オゾン発生装置57が発生したオゾンガスをガス流路57から注入し、オゾンが溶存した放流再生水W6を限外ろ過膜処理装置4の逆洗に用いる。
本実施例によれば、限外ろ過膜処理装置4内の流路と限外ろ過膜をオゾン水で消毒することが可能になり、微生物由来の付着物質による限外ろ過膜のファウリングを防止できる。また、限外ろ過膜に阻止された有機物を膜上で酸化できるので、逆洗時の限外ろ過膜からの有機物の剥離が容易になり、有機物由来の限外ろ過膜の閉塞を防止できるだけでなく、限外ろ過膜の逆洗に要する水量を削減できる。
さらに本実施例によれば、実施例2の効果に加えて、限外ろ過膜の洗浄効果によって維持管理費用を削減でき、処理流量当りの設備の運転コストを削減できる。なお、本実施例では実施例2に示した液体処理設備にオゾン処理装置を付加したが、実施例1に示した液体処理設備に同様のオゾン処理装置を付加しても、本実施例と同様の効果が得られる。
図11は、本発明に係る液体処理設備107のさらに他の実施例(実施例9)のシステム図である。本実施例は、大規模な下水処理設備で従来使用されている、典型的な活性汚泥法の下水処理設備78に本発明を組み合わせたものであり、上記各実施例に記載した生物反応槽1の代わりに、活性汚泥法の下水処理設備78が使用されている。
活性汚泥法を用いた下水処理設備78は、下水の原水W1が流入し固形物を分離する最初沈殿池61、最初沈殿池流からの出水を活性汚泥を用いて微生物処理する生物反応槽62、生物反応槽流出水から活性汚泥や再度固形物を分離する最終沈殿池63、最終沈殿池からの流出水を放流前に消毒する消毒設備64、及び生物反応槽62を曝気するブロワ68を備えている。
活性汚泥法においては、最終沈殿池63に沈殿された汚泥を、汚泥引抜流路65を通って汚泥引抜ポンプ67で引抜く。引き抜かれた活性汚泥W10の一部を、汚泥返送流路66を通して生物反応槽に返流し、生物反応槽62内の活性汚泥浮遊物質の濃度を一定に保持する。一方、引抜汚泥W10の残りを、余剰汚泥として引抜汚泥廃棄流路17を通して廃棄する。
このような下水処理設備において、最終沈殿池63から流出する最終沈殿池流出水W10の一部あるいは全部を、最終沈殿池流出水採水流路70を介して取り出し、限外ろ過膜処理装置4の循環流路9に導いている。循環流路9よりも下流の構成は、上記各実施例に記載したものと同様である。
すなわち、循環流路9には循環ポンプ6が設けられ、処理水流路10に逆洗ポンプ8を備えた逆洗水流路11が設けられている。そして各流路に設けた弁20〜弁23を開閉させることで、限外ろ過膜処理装置4が有する膜を逆洗することが可能になっている。
限外ろ過膜処理装置4の循環流路9から、逆洗水排水流路19が分岐している。逆洗時には、分岐した流路に介在させた弁24を開いて、酸化装置16に逆洗排水W8を供給する。酸化装置16の処理水出口と生物反応槽1とは、返流水流路47で連通している。
最終沈殿池流出水採水流路70で取り出した最終沈殿池流出水W12は、循環ポンプ6で200〜300kPaに加圧される。そして、限外ろ過膜処理装置4でろ過される。比較的分子量の大きい有機物が、限外ろ過膜処理装置4で阻止されるので、処理水W5中の有機物が減少する。また、有機物の分子量が小さく生物易分解成分が相対的に多くなるので、放流再生水W6の水質が向上する。
ここで、放流再生水W6は用途に応じ、河川等に排水する場合は放流水、再利用水として配水する場合は再生水と見なす。表1に示した比較的分子量の大きい有機物が限外ろ過膜処理装置4で阻止されるため、放流水再生水中の有機物が減少するとともに、有機物の分子量が小さく生物易分解成分が相対的に多くなるので、放流再生水W6の水質が向上する。
限外ろ過膜処理装置4の膜面に、最終沈殿池流出水W12中の有機物が付着する。限外ろ過膜処理装置4の限外ろ過膜を逆洗水タンク7に貯めた処理水W5で逆洗すると、限外ろ過膜の膜面に付着した有機物は、逆洗排水流路19を通って酸化装置16aに流入する。酸化装置16aには、例えば図6に示したオゾン処理法を用いた装置を用いる。その他の酸化方法として、水熱酸化法や薬剤添加法も利用できる。
逆洗水W8に含まれる比較的低分子量の難分解性有機物が酸化装置16aで酸化され、さらに分子量が減少して、生物易分解性に転換するものが生じる。そして、元々生物易分解性の有機物はさらに低分子量化し、生物による分解が容易になる。酸化処理された逆洗水を、返流水W9として生物反応槽62に返流する。生物反応槽62では、微生物が捕食可能な有機物が増加して、微生物の生物活性が向上し水処理性能が向上する。
本実施例によれば、既存の下水処理設備であっても、本発明に係る水処理ライン及び逆洗・返流ラインを追加するだけで、水中の難分解性有機物の濃度を減少させ、処理水質の向上が可能になる。また、固形分や高分子量の有機物を除去した高水質の放流再生水が得られる。なお、新規の下水処理設備に本発明が適用できることは言うまでもない。さらに、上記図1ないし図10に示す各実施例では、生物反応槽に精密ろ過膜を備えた場合を例示しているが、図1ないし図10に、図11に示す生物反応槽及び最初沈殿池、最終沈殿池を組み合わせてもよいことは言うまでもない。
すなわち、本発明は上記各実施例に限定されるものではなく、本発明の範囲は添付の特許請求の範囲の記載によって示されている。これらの特許請求の範囲の記載の意味の中に含まれる全ての変形例は、本発明に含まれる。
1…生物反応槽(1次処理手段)、2…高圧ポンプ(ポンプ)、3…逆浸透膜処理装置、4…限外ろ過膜処理装置(2次処理手段)、5…濃縮水流路、6…循環ポンプ(ポンプ)、7…逆洗水タンク、8…逆洗ポンプ(ポンプ)、9…循環流路、10…処理水流路、11…逆洗水流路、12…放流再生水流路、13…活性汚泥、14…汚泥引抜流路、15…汚泥引抜ポンプ(ポンプ)、16,16a…酸化装置、17…引抜汚泥廃棄流路、18…精密ろ過膜、19…逆洗排水流路、20…弁、21〜14…弁、25…最初沈殿池、26、27…弁、28…吸引ポンプ(ポンプ)、29…精密ろ過膜処理水流路、30…貯水槽、31…オゾン発生装置、32…ガス混合器、33…溶解水槽、34…エアベント、35…未溶解ガス流路、36…弁、38…ガス混合水流路、39…ノズル、40…マイクロバブル、41…濁質、42…仕切板、43…接触槽、44…濁質廃棄流路、45…ホッパー、46…弁、47…返流水流路、48…仕切板、50…制御器、51…圧力伝送器、52…計装配線、53…制御配線、54…弁、55…還流水流路、56…オゾン発生装置、57…ガス流路、61…最初沈殿池、62…生物反応槽(1次処理手段)、63…最終沈殿池(1次処理手段)、64…消毒設備、65…汚泥引抜流路、66…汚泥返送流路、67…汚泥引抜ポンプ(ポンプ)、68…ブロワ、69…弁、70…最終沈殿池流出水採水流路、71…弁、72…初沈汚泥廃棄流路、78…下水処理設備、101〜107…液体処理設備、W1…原水、W2…再生水、W3…濃縮水、W4…循環水、W5…処理水(2次処理水)、W6…余剰分(放流再生水)、W7…逆洗水(2次処理水)、W8…逆洗排水、W9…返流水、W10…引抜汚泥、W11…再循環水、W12…最終沈殿池流出水、W13…精密膜ろ過水(1次処理水)、W14…放流水。

Claims (15)

  1. 有機物を含む下水および排水の少なくともいずれかが流入して生物処理された後に固液分離する1次処理手段と、この1次処理手段で処理され発生した1次処理水を限外ろ過膜でろ過する2次処理手段と、この2次処理手段で処理され発生した2次処理水で前記2次処理手段を逆洗する逆洗手段と、前記2次処理手段で逆洗されて発生した逆洗排水を前記1次処理手段に導く逆洗排水流路と、前記1次処理手段から引抜汚泥を廃棄する汚泥引抜流路とを備え、前記2次処理手段はこの2次処理手段の被処理水を循環させる循環手段を有することを特徴とする液体処理設備。
  2. 請求項1に記載の液体処理設備において、
    前記1次処理手段は精密ろ過膜を有する生物反応槽であり、前記2次処理手段は限外ろ過膜を有する限外ろ過膜処理装置であり、前記1次処理手段における生物処理が膜分離活性汚泥法を用いた処理であり、前記1次処理手段で固液分離される固体成分が活性汚泥であることを特徴とする液体処理設備。
  3. 請求項2に記載の液体処理設備において、
    前記1次処理手段と前記2次処理手段間に、1次処理水を送水するポンプと逆浸透膜を有する逆浸透膜処理装置とを設け、この逆浸透膜処理装置で発生した濃縮水を前記2次処理手段に導くことを特徴とする液体処理設備。
  4. 請求項1または2に記載の液体処理設備において、
    前記逆洗排水流路に弁および酸化装置を介在させたことを特徴とする液体処理設備。
  5. 請求項3に記載の液体処理設備において、
    前記逆洗排水流路に弁および酸化装置を介在させたことを特徴とする液体処理設備。
  6. 請求項4に記載の液体処理設備において、
    前記酸化装置はオゾン処理装置であり、前記逆洗排水流路を流通する逆洗排水をオゾンガスに接触させて逆洗排水中の有機物を酸化し低分子化することを特徴とする液体処理設備。
  7. 請求項5に記載の液体処理設備において、
    前記酸化装置はオゾン処理装置であり、前記逆洗排水流路を流通する逆洗排水をオゾンガスに接触させて逆洗排水中の有機物を酸化し低分子化することを特徴とする液体処理設備。
  8. 請求項6の液体処理設備において、
    前記オゾン処理装置はオゾンマイクロバブル処理装置であり、生成したオゾンマイクロバブルを逆洗排水に接触させて逆洗排水中の有機物を酸化し低分子化することを特徴とする液体処理設備。
  9. 請求項7の液体処理設備において、
    前記オゾン処理装置はオゾンマイクロバブル処理装置であり、生成したオゾンマイクロバブルを逆洗排水に接触させて逆洗排水中の有機物を酸化し低分子化することを特徴とする液体処理設備。
  10. 請求項8に記載の液体処理設備において、
    前記オゾンマイクロバブル処理装置は、オゾン発生装置と、このオゾン発生装置で発生したオゾンを逆洗排水に混合させるガス混合器と、このガス混合器の下流側に配置した溶解槽と、溶解槽でオゾンが溶解した逆洗排水がノズルを介して流入する接触槽とを有し、前記汚泥引抜流路を前記接触槽に接続して、前記1次処理手段で固液分離した活性汚泥を前記接触槽に供給し、この接触槽内で逆洗排水と接触させて固体成分を浮上分離作用で固液分離し、固液分離した液体を前記1次処理手段に返流することを特徴とする液体処理設備。
  11. 請求項9に記載の液体処理設備において、
    前記オゾンマイクロバブル処理装置は、オゾン発生装置と、このオゾン発生装置で発生したオゾンを逆洗排水に混合させるガス混合器と、このガス混合器の下流側に配置した溶解槽と、溶解槽でオゾンが溶解した逆洗排水がノズルを介して流入する接触槽とを有し、前記汚泥引抜流路を前記接触槽に接続して、前記1次処理手段で固液分離した活性汚泥を前記接触槽に供給し、この接触槽内で逆洗排水と接触させて固体成分を浮上分離作用で固液分離し、固液分離した液体を前記1次処理手段に返流することを特徴とする液体処理設備。
  12. 請求項3に記載の液体処理設備において、
    前記2次処理手段で発生した2次処理水の一部を、前記逆浸透膜処理装置の上流側に導く還流水流路を設け、2次処理水を前記逆浸透膜処理装置の原水として使用することを特徴とする液体処理設備。
  13. 請求項1または2に記載の液体処理設備において、
    前記逆洗手段にオゾン処理装置を設け、逆洗水にオゾンガスを接触させて生成したオゾン水を用いて前記2次処理手段を逆洗することを特徴とする液体処理設備。
  14. 請求項3に記載の液体処理設備において、
    前記逆洗手段にオゾン処理装置を設け、逆洗水にオゾンガスを接触させて生成したオゾン水を用いて前記2次処理手段を逆洗することを特徴とする液体処理設備。
  15. 請求項10に記載の液体処理設備において、
    前記1次処理手段は、原水が流入する最初沈殿池と、最初沈殿池で固液分離した処理液が流入曝気手段が浸漬された生物反応槽と、この生物反応槽で処理された処理水を沈殿する最終沈殿池とを含むことを特徴とする液体処理設備。
JP2012209565A 2012-09-24 2012-09-24 液体処理設備 Expired - Fee Related JP5982239B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209565A JP5982239B2 (ja) 2012-09-24 2012-09-24 液体処理設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209565A JP5982239B2 (ja) 2012-09-24 2012-09-24 液体処理設備

Publications (2)

Publication Number Publication Date
JP2014061506A true JP2014061506A (ja) 2014-04-10
JP5982239B2 JP5982239B2 (ja) 2016-08-31

Family

ID=50617271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209565A Expired - Fee Related JP5982239B2 (ja) 2012-09-24 2012-09-24 液体処理設備

Country Status (1)

Country Link
JP (1) JP5982239B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151669A1 (ja) * 2015-03-20 2016-09-29 三菱重工業株式会社 水処理装置
JP6015841B1 (ja) * 2015-06-22 2016-10-26 王子ホールディングス株式会社 水処理システム、水処理方法、無菌水製造方法、抗菌水製造方法および水処理方法の管理方法
CN110451724A (zh) * 2019-08-09 2019-11-15 温州市宏泰市政园林建设有限公司 一种污水处理系统
CN113200642A (zh) * 2021-06-17 2021-08-03 军事科学院系统工程研究院卫勤保障技术研究所 一种消毒灭菌舱室水路系统自动化控制装置及排水方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098009B1 (ko) * 2018-02-13 2020-04-07 한국산업기술시험원 농축수를 재활용하는 역삼투막 정수처리 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118996U (ja) * 1987-01-28 1988-08-01
JPH022895A (ja) * 1988-06-13 1990-01-08 Komatsu Ltd 廃水処理装置
JPH0474584A (ja) * 1990-07-16 1992-03-09 Kuraray Co Ltd 廃水処理方法
JP2002035554A (ja) * 2000-07-24 2002-02-05 Nkk Corp 水処理方法および水処理装置
JP2002306930A (ja) * 2001-04-13 2002-10-22 Toray Ind Inc 水処理方法および水処理装置
JP2008086863A (ja) * 2006-09-29 2008-04-17 Ngk Insulators Ltd 槽外設置型膜分離活性汚泥法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118996U (ja) * 1987-01-28 1988-08-01
JPH022895A (ja) * 1988-06-13 1990-01-08 Komatsu Ltd 廃水処理装置
JPH0474584A (ja) * 1990-07-16 1992-03-09 Kuraray Co Ltd 廃水処理方法
JP2002035554A (ja) * 2000-07-24 2002-02-05 Nkk Corp 水処理方法および水処理装置
JP2002306930A (ja) * 2001-04-13 2002-10-22 Toray Ind Inc 水処理方法および水処理装置
JP2008086863A (ja) * 2006-09-29 2008-04-17 Ngk Insulators Ltd 槽外設置型膜分離活性汚泥法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151669A1 (ja) * 2015-03-20 2016-09-29 三菱重工業株式会社 水処理装置
JP6015841B1 (ja) * 2015-06-22 2016-10-26 王子ホールディングス株式会社 水処理システム、水処理方法、無菌水製造方法、抗菌水製造方法および水処理方法の管理方法
JP2017006899A (ja) * 2015-06-22 2017-01-12 王子ホールディングス株式会社 水処理システム、水処理方法、無菌水製造方法、抗菌水製造方法および水処理方法の管理方法
CN110451724A (zh) * 2019-08-09 2019-11-15 温州市宏泰市政园林建设有限公司 一种污水处理系统
CN113200642A (zh) * 2021-06-17 2021-08-03 军事科学院系统工程研究院卫勤保障技术研究所 一种消毒灭菌舱室水路系统自动化控制装置及排水方法

Also Published As

Publication number Publication date
JP5982239B2 (ja) 2016-08-31

Similar Documents

Publication Publication Date Title
US7396453B1 (en) Hydraulically integrated solids/liquid separation system for wastewater treatment
JP5982239B2 (ja) 液体処理設備
JP5908186B2 (ja) 膜を用いた水処理方法および水処理装置
JP4649529B1 (ja) 膜処理設備
JP2011088053A (ja) 淡水化処理設備及び方法
US20100012582A1 (en) Method and apparatus for biological wastewater purification
JPH07155758A (ja) 廃水処理装置
JP2007532297A (ja) 浸漬膜のスループット及び動作寿命を改善する方法および装置
CN100377968C (zh) 处理船上废水的方法和装置
JP2007289847A (ja) 水道原水の浄水処理方法及びその装置
US20110263009A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP6613323B2 (ja) 水処理装置及び水処理方法
JP2002177990A (ja) 浄水方法および浄水装置
WO2011136043A1 (ja) 廃水処理装置および廃水処理方法
JP2016117064A (ja) 汚水処理装置及びこれを用いた汚水処理方法
JP2014000495A (ja) 汚水処理装置及びこれを用いた汚水処理方法
WO2006029635A2 (en) Process for intensified, biological (waste-)water treatment in an mbr
ZA200201560B (en) Method and device for purifying and treating waste water in order to obtain drinking water.
EP2822901B1 (en) Water treatment system and method
JP5269331B2 (ja) 廃水処理装置
KR102208641B1 (ko) 산화전처리를 이용한 폐수처리시스템
KR102092306B1 (ko) 물리화학적 가축 분뇨 처리 시스템
KR101774440B1 (ko) 상향식으로 원수가 유입되는 막분리조를 포함하는 막생물 반응기 시스템
ZA200205320B (en) Method and device for effluent treatment.
JP2004305926A (ja) 浸漬型膜分離活性汚泥処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160801

R150 Certificate of patent or registration of utility model

Ref document number: 5982239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees