JP2002306930A - 水処理方法および水処理装置 - Google Patents

水処理方法および水処理装置

Info

Publication number
JP2002306930A
JP2002306930A JP2001114955A JP2001114955A JP2002306930A JP 2002306930 A JP2002306930 A JP 2002306930A JP 2001114955 A JP2001114955 A JP 2001114955A JP 2001114955 A JP2001114955 A JP 2001114955A JP 2002306930 A JP2002306930 A JP 2002306930A
Authority
JP
Japan
Prior art keywords
water
membrane
treatment
treated
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001114955A
Other languages
English (en)
Inventor
Toshiji Onoe
利次 尾上
Hiromichi Okada
宏道 岡田
Teruo Senda
輝雄 千田
Masahiro Henmi
昌弘 辺見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001114955A priority Critical patent/JP2002306930A/ja
Publication of JP2002306930A publication Critical patent/JP2002306930A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

(57)【要約】 【課題】ナノろ過膜や逆浸透膜を用いて水中のイオンを
除去するとともに、排出される濃縮水中のBOD成分や
COD成分などの有機物質を分解、除去する水処理方法
を提供することを目的とする。 【解決手段】被処理水をナノろ過膜および/または逆浸
透膜にて透過水と濃縮水とに分離する水処理方法におい
て、濃縮水を促進酸化処理する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】産業廃水、生活廃水などを処
理して再利用水を得るのに特に好適な水処理方法および
装置に関する。
【0002】
【従来の技術】従来、混合物から特定の物質を選択的に
分離する方法として膜分離技術が広く用いられている。
中でも逆浸透膜は、被処理水を脱塩して工業用、農業
用、あるいは家庭用の用水を提供する技術として広く利
用されている。
【0003】逆浸透膜は、溶液中の一価イオンまで排除
できる膜で、溶液の浸透圧よりも高い圧力を溶液側から
加えることにより、溶液中の物質は排除することができ
る。溶液が海水であれば、ナトリウムイオン、塩化物イ
オンなどをほぼ排除した水を得ることができる。したが
って、従来の蒸発法のような相変化を起こすことなく溶
液中からイオンを排除し水を取り出すことができるの
で、エネルギ的に有利であり、運転管理が容易であると
いう利点がある。
【0004】また、近年、ナノろ過膜と呼ばれる膜も試
用されつつある。このナノろ過膜は、分子量数百から数
千程度以上の中〜高分子量の分子や二価イオン、中金属
イオンなどの多価イオンの排除性能は高いが、一価イオ
ンや低分子量物質は透過する性質を持った膜である。逆
浸透膜と同様に溶液側から圧力を加えることにより、排
除性能の高い溶液中の物質を排除して、水を取り出すこ
とができる。
【0005】このように逆浸透膜およびナノろ過膜は、
ともに、膜透過水として高品位な水を得ることができる
ため、様々な分野における利用が期待されている。そし
て、近年では、廃水処理へも適用されつつある。
【0006】従来、廃水処理においては、水中の汚濁物
質であるBOD(Biological Oxygen
Demand=生物学的酸素要求量)成分やSS(S
uspended Solid=浮遊物質)成分、窒
素、リンなどを、生物処理して分解したり凝集剤等を添
加することによりフロック化して沈降分離することによ
り除去し、汚濁物質の濃度を所定値以下として放流して
いたが、これらの方法では、COD(Chemical
Oxygen Demand=化学的酸素要求量)成
分のうち生物難分解性物質を除去することができないの
で、活性炭を用いてそれら有機物質を法規制などに基づ
く所定濃度以下まで吸着除去して放流する。
【0007】ところで、近年は、廃水量の増大、汚濁物
質の多様化、環境規制の強化などの背景から、処理・放
流に代わって、使用した水の再利用を推進する気運があ
り、水の再利用技術に対する要望が社会的にも高まって
きている。しかしながら、再利用水には高い水質が要求
されることが多いため、上述のように、生物難分解性物
質を活性炭により除去する場合、大きな活性炭設備を付
与したり、小さい場合は負荷の高い運転が必要となるな
ど、従来の処理プロセスをより高度にする必要がある。
さらに、処理水に、活性炭では吸着されない微量な物質
が含まれる場合があり、使用用途によっては処理水を再
利用することが難しい。
【0008】しかしながら、高度な分離膜を用いた処理
技術では、透過水として高度な透過水が得られる反面、
濃縮水が生じ、この濃縮水の処理が必要となってくる。
【0009】濃縮水には、原水中に含まれていたBOD
成分やCOD成分などの有機物質が濃縮してりるので、
放流するためにはBOD成分やCOD成分などの有機物
質を分解あるいは除去する必要がある。そして、活性炭
を用いてこの濃縮水中の有機物質を吸着除去するために
は、前述の場合と同様に、設備は負荷の大きなものにな
る。また、近年は、廃水中の微量な有機物からなる有害
物質について議論されることが多くなってきており、原
水が従来の処理プロセスでは分解が難しい有機塩素化合
物を含んでいたり、微量ではあるが内分泌撹乱物質とい
った高分子量の難分解性物質を含む場合もある。このよ
うな物質を含む可能性があるため、無害化する必要があ
る。
【0010】
【発明が解決しようとする課題】本発明は、ナノろ過膜
や逆浸透膜を用いて水中のイオンを除去するとともに、
排出される濃縮水中のBOD成分やCOD成分などの有
機物質を設備負荷を抑えたままで十分に分解、除去する
水処理方法を提供することを目的とする。
【0011】
【課題を解決するための手段】上記した目的を達成する
ための本発明は、被処理水をナノろ過膜および/または
逆浸透膜を用いて透過水と濃縮水とに分離し、濃縮水を
酸化処理処理する水処理方法を特徴とするものである。
【0012】また、本発明は、被処理水を生物処理した
後に固液分離し、その分離水をナノろ過膜および/また
は逆浸透膜を用いて透過水と濃縮水とに分離し、濃縮水
を酸化処理する水処理方法を特徴とするものである。そ
して、このとき、固液分離を精密ろ過膜および/または
限外ろ過膜を用いて行うこと、凝集剤を添加して固液分
離をすること、固液分離した分離水をさらに精密ろ過お
よび/または限外ろ過膜を用いて処理した後にナノろ過
膜および/または逆浸透膜に供給すること、酸化処理し
た水の少なくとも一部を生物処理の被処理水として還流
することが好ましい。
【0013】また、上記いずれかの水処理方法におい
て、酸化処理は、オゾン処理、紫外線処理、過酸化水素
処理、触媒処理の少なくとも2つを組み合わせて行う促
進酸化処理であることが好ましい。
【0014】さらに、本発明は、被処理水を透過水と濃
縮水とに分離するナノろ過膜および/または逆浸透膜を
有する膜処理装置と、この膜処理装置の濃縮水を酸化処
理する酸化処理装置とを設けた水処理装置を特徴とする
ものである。
【0015】さらにまた、本発明は、被処理水を生物処
理する生物処理槽を備えた生物処理装置と、生物処理し
た被処理水を固液分離する固液分離装置と、固液分離に
より得られた分離水を透過水と濃縮水とに分離するナノ
ろ過膜および/または逆浸透膜を備えた膜処理装置と、
膜処理装置により得られた濃縮水を酸化処理する酸化処
理装置とを設けた水処理装置を特徴とするものである。
ここで、固液分離装置は、精密ろ過膜および/または限
外ろ過膜を備えていること、精密ろ過膜および/または
限外ろ過膜を生物処理槽内に設けていることが好まし
い。また、固液分離した固形分の少なくとも一部を処理
する余剰生物処理装置を設けていることも好ましく、こ
の余剰生物処理装置はコンポスト化装置を備えているこ
とがより好ましい。
【0016】そして、上記いずれかの方法または装置を
用いる造水方法および上記の装置を用いて得られたコン
ポストも好ましい態様である。
【0017】
【発明の実施の形態】以下、本発明に係る水処理方法を
図1に基づいて説明する。
【0018】本発明の水処理方法は、被処理水50が、
ポンプにより、ナノろ過膜および/または逆浸透膜を備
えた膜処理装置1で処理され、透過水60aと濃縮水6
0bとの分離される。その後、濃縮水60bは酸化処理
装置2で処理され、酸化処理水70が得られる。
【0019】このような水処理により得られる透過水6
0aは、被処理水50中のイオンをまで除去した水質の
高いものとなるので、再利用水として利用することも可
能な水となる。再利用水の用途としては、水洗便所用
水、親水用水、修景用水、散水用水等は当然として、農
業用水、工業用水、更に飲料水とすることもできる。親
水用水は、人が触れることが前提であって噴水、水遊び
などに使用する。修景用水は、人が触れることを前提と
せず公園、池、水量の少ない川などに放流して、修景・
環境維持に利用する。散水用水は、運動施設、公園、植
樹の散水、潅漑に利用する。寒冷地では融雪用水として
利用ができる。更に水質としては水道水以上のものが得
られているため、適切な管理を行えば飲料水としても使
用可能である。なお、ここでいう再利用とは、直接的な
再利用はもちろん、間接的に再利用するため、被処理水
を高度に処理した後、再度、地下や河川から取水するこ
とを前提に、土壌散布や、河川放流する場合も含む。
【0020】また、濃縮水60b中には被処理水50中
の有機物質が濃縮されるが、酸化処理により濃縮水中の
BOD成分やCOD成分などの有機物質を分解、除去す
ることができる。更に、被処理水中に、従来の処理プロ
セスでは分解が難しかった有機塩素化合物や内分泌撹乱
物質といった高分子量の難分解性物を含んでいる場合に
も、酸化処理の種類を適切に選択することで効率的かつ
十分な分解、除去を行うことができ、、河川等への放流
も可能なまでの水を得ることができるので、やはり水洗
便所用水、親水用水、修景用水、散水用水等として再利
用することができる。
【0021】また、本発明においては、濃縮水の処理を
酸化処理に依るので、大きな活性炭設備を設けることな
く十分な浄化を行うことができる。
【0022】膜処理装置1で使用する逆浸透膜、ナノろ
過膜は次のようなものである。
【0023】逆浸透膜は、溶液中の溶媒(水分子)を選
択的に透過させ、溶質(塩)の透過を高い割合で阻止で
きるものであればよい。膜構造としては、たとえば、膜
の少なくとも片面に緻密層を備え、緻密層から離れるに
したがって孔径が徐々に大きくな非対称膜や、この非対
称膜の緻密層の上に別の素材からなる厚みの薄い活性層
を備えた複合膜を用いることができる。そして、膜素材
としては、酢酸セルロース、セルロース系のポリマ、ポ
リアミド、及びビニルポリマ等の高分子材料を用いるこ
とができる。代表的な逆浸透膜としては、酢酸セルロー
ス系またはポリアミド系の非対称膜、及び、ポリアミド
系またはポリ尿素系の活性層を有する複合膜を挙げるこ
とができる。中でも、塩の排除性能が高い、酢酸セルロ
ース系非対称膜、ポリアミド系活性層を有する複合膜ま
たは芳香族ポリアミド系の活性層を有する複合膜が好ま
しく、特に、芳香族ポリアミド複合膜を用いると、取り
扱いが容易で更に好ましい。膜の形態としては平膜、中
空糸膜、管状膜などがある。
【0024】ナノろ過膜は、分子量数百から数千程度以
上の中〜高分子量の分子や二価イオン、中金属イオンな
どの多価イオンの排除性能は高いが、一価イオンや低分
子量物質は透過する性質を有する膜であって、その素材
にはポリアミド系、ポリピペラジンアミド系、ポリエス
テルアミド系、あるいは水溶性のビニルポリマーを架橋
したものなどがある。また、膜構造は、逆浸透膜と同じ
く、非対称膜や複合膜があり、膜形態についても逆浸透
膜と同じく、中空糸膜、管状膜、平膜などとすることが
できる。
【0025】逆浸透膜、ナノろ過膜ともに、運転コスト
の観点から低圧で運転できるものであることが好ましい
が、低圧運転での造水量の大きさを考慮すると、複合膜
が好ましい。さらに好ましくはポリアミド系の複合膜で
あり、ナノろ過膜の場合は、ピペラジンポリアミド系の
複合膜などが透過水量、耐薬品性等の点からより適して
いる。
【0026】そして、上述のナノろ過膜、逆浸透膜は、
平膜状の場合はスパイラル型エレメントやプレート・ア
ンド・フレーム型エレメント、円盤状のディスクを積み
重ねたディスクタイプエレメントに、管状膜の場合はチ
ューブラー型エレメント、中空糸膜の場合は中空糸膜を
U字状やI字状に束ねてケースに収納した中空糸膜エレ
メントにし、単独、あるいは複数個を直列に接続して耐
圧容器に収容してモジュール化し、膜処理装置1を構成
する。本発明においては操作性や互換性の点からスパイ
ラル型エレメントを使用するのが好ましい。
【0027】また、膜処理装置1には、逆浸透膜、ナノ
ろ過膜のいずれか一方使用するのもよいし、両方を用い
るのもよい。両方を用いる場合は、ナノろ過膜で処理し
た後、その透過水を逆浸透膜で処理するようにすること
が好ましい。これらは特に限定するものではなく、被処
理水50および必要な透過水60aの水質、透過水60
aの利用目的に応じて適宜選定するのがよい。
【0028】被処理水50は、ポンプによって、膜処理
に必要な圧力で供給される。そして、運転に際しては、
膜処理装置1には適宜、圧力計や流量計を設け、管理、
制御することが好ましい。また、透過水水質を計測した
り、被処理水水質を計測することもより好ましい。
【0029】酸化処理装置2は、濃縮水60b中の有機
物質を酸化分解する。これにより、膜処理装置1によっ
て濃縮された被処理水50中のBOD成分やCOD成分
などの有機物を分解することができるうえに、酸化処理
の種類によっては、従来の処理プロセスでは分解が難し
い有機塩素化合物、内分泌撹乱物質といった高分子量の
難分解性物質をも分解、除去可能となるので、濃縮水6
0bを河川等に放流可能なまでに汚濁物質を低減、無害
化できる。
【0030】酸化処理装置では、オゾンや紫外線または
ガンマ線照射、フッ素、過酸化水素、次亜塩素酸ソー
ダ、塩素、触媒処理などを使用することができる。環境
への影響を鑑みるとオゾンや紫外線、過酸化水素、触媒
が好ましい。触媒としては、オゾンや過酸化水素と組み
合わせて酸化力を高めることのできる鉄、銅、マンガン
などの触媒や、いわゆる光触媒機能を有する金属酸化
物、例えば酸化チタン等を挙げることができる。そし
て、被処理水50中に有機塩素化合物や内分泌撹乱物質
などの生物難分解性物質が含まれている場合、もしくは
何が含まれているか予測が付かない場合等、含まれてい
る可能性がある場合には、酸化処理2として促進酸化処
理を行うことがより好ましい。
【0031】促進酸化処理とはAOP(=Advanc
ed Oxidation Processes)と称さ
れ、オゾンや紫外線、過酸化水素、触媒(光触媒等)な
どを併用して、酸化力の大きなヒドロキシラジカル(H
Oラジカル)を水中に生成し、この酸化力により有機物
を分解する方法である。HOラジカルは、酸化力が非常
に強力であるため、水中に存在する高い結合力を有する
有機塩素化合物や分子量が大きい内分泌撹乱物質等の難
分解性物質の分解に有効である。これらの促進酸化処理
は2次廃棄物の発生がなく、処理効果が有機物の分解に
加えて、脱臭、脱色、殺菌等複合的であるという、従来
にない特徴を有している。促進酸化処理の組み合わせと
しては、酸化分解に寄与するHOラジカルをより多く生
成するもが好ましく、過酸化水素と紫外線、オゾンと過
酸化水素、オゾンとUVがより好ましい。そして、オゾ
ン、UV、過酸化水素の3つを組み合わせる場合には、
さらに酸化分解を効率的に行うことができるので好まし
い。
【0032】本発明においては、被処理水50は、直
接、ナノろ過膜や逆浸透膜で処理してもよいが、被処理
水の水質に応じて、適宜、ナノろ過膜や逆浸透膜の前段
で前処理を施して、膜処理装置1に導かれる被処理水の
SDI値が4以下となるようにすることが好ましい。S
DI値とはFI値とも称され、対象水中の微細な濁質濃
度を示し、0.45μmのフィルタにより対象水を0.
2MPaで加圧濾過し、濾過開始から500mlの濾過
水取得に要する時間T0と、その後同じ条件で更に濾過
を継続し、15分間濾過した時点から500mlの濾過
水取得に要する時間T15から、(1−T0/T15)×1
00/15で表される値である。SDI値は濁質が全く
ない場合は0となり、最も汚れた水の場合は6.67と
なる。
【0033】さらに、ナノろ過膜や逆浸透膜で導かれる
被処理水50に生物分解性の有機物が含まれる場合は、
被処理水をあらかじめ生物処理に供し酸化処理装置への
負担を軽減することが好ましい。図2に生物処理を用い
た場合の本発明の一例を示す。
【0034】図2に示す水処理方法は、被処理水50
を、生物処理槽4を備えた生物処理装置3にまず導入
し、含有する生物分解性の有機物を分解する。その後、
生物処理した被処理水を固液分離装置7により、生物
(固形分)と分離水52とに固液分離し、固液分離によ
り得られた分離水52を、図1に示した実施態様と同様
に、ナノろ過膜および逆浸透膜の少なくとも一方を備え
た膜処理装置1で処理し、この膜処理装置1により得ら
れた濃縮水60bを酸化処理装置2で酸化分解処理す
る。
【0035】生物処理では使用する微生物によって好気
的に処理するものや、嫌気的に処理するものなど、さま
ざまな手法がある。代表的なものには、好気的な方法と
して活性汚泥法があり、嫌気的な方法としてメタン発酵
などがあるが、分解できる物質の適用範囲が広く、設備
が簡単な点で、活性汚泥法が好ましい。
【0036】活性汚泥法は、水中の有機物を微生物から
なる活性汚泥により分解し、沈殿などにより活性汚泥と
分離水に固液分離する手法で、安価に水の浄化が図れる
技術であり、広く普及している。この方法によって水中
の汚濁物質であるSS成分を除去、BOD成分、生物易
分解性COD、窒素成分を分解除去できる。活性汚泥法
には様々な変法が見出されており、標準活性汚泥法を始
め、長時間活性汚泥法、オキシデーションディッチ法、
回分式活性汚泥法、好気嫌気活性汚泥法、循環型硝化脱
窒活性汚泥法等がある。さまざまな生物処理があるが、
本発明においては、被処理水中の生物分解性物質が分解
できれば特に限定するものではなく、被処理水の水質に
応じて手法を適宜選定することが好ましい。
【0037】生物処理を好気的に行う場合には、生物処
理装置3の生物処理槽4内に、微生物の活動源となる酸
素含有気体を供給するブロアなどの給気装置5と、水中
に気体を吹き込む散気装置6とを設ける。また、生物処
理槽4は、内部の生物を含む固形分の濃度を調節するた
め、余剰生物80を取り出すことができるように構成す
る。
【0038】固液分離装置7は、被処理水を、生物を含
む固形分と分離水52とに分離するものである。この固
液分離装置7としては、沈降分離や浮上分離、膜分離を
行うものを用いることができる。しかしながら、代表的
な活性汚泥法では、活性汚泥処理をした汚泥と処理水の
混合液を沈殿により固液分離しているが、微生物である
活性汚泥を高濃度にすると、処理性が向上する反面、沈
殿池で沈降不良を生じ、水質が悪化することがある。し
たがって、生物処理として活性汚泥法を採用した場合に
は、固液分離装置7としては分離膜を備えたものを用い
ることが好ましい。分離膜を用いた固液分離では、汚泥
の沈降性に左右されず、汚泥を高濃度に維持でき、処理
水質を効率的に安定化できる。中でも、分離膜として精
密ろ過膜や限外ろ過膜を用いるのが好ましい。なお、精
密ろ過膜とは、細孔径が百分の数μm〜数μm程度の膜
であり、限外ろ過膜とは、阻止できる分子量、分画分子
量が数万から数十万程度のもので、また細孔径としては
数nm〜百分の数μmのものである。
【0039】精密ろ過膜、限外ろ過膜とも、膜形態には
中空糸膜、管状膜、平膜などがあり、いずれの形状のも
のでも本発明に用いることができる。ここで、中空糸膜
とは外径2mm未満の円管状の分離膜、管状膜とは外径
2mm以上の円管状の分離膜である。中空糸膜は装置単
位体積あたりの有効膜面積を大きくできる。平膜は生物
処理液に異物が混入している場合も、絡み付きなどを抑
えて運転できる。
【0040】膜素材としては、ポリアクリロニトリル、
ポリスルフォン、ポリフェニレンスルフォン、ポリフェ
ニレンスルフィドスルフォン、ポリフッ化ビニリデン、
酢酸セルロース、ポリエチレン、ポリプロピレン、セラ
ミック等の無機素材等を挙げることができ、親水性の素
材であるポリアクリロニトリル、酢酸セルロース、ポリ
フェニレンスルフォン、ポリフェニレンスルフィドスル
フォンが、汚れにくく、洗浄回復性も良いため好まし
い。
【0041】固液分離装置7として用いる膜分離装置の
運転には、定流量ろ過および定圧ろ過があり、いずれで
も構わないが、定流量ろ過運転であれば、一定の処理量
を得ることができ、処理プロセスの制御が行いやすいの
でより好ましい。
【0042】また、被処理水の分離膜への供給には、ポ
ンプを用いるが、供給方法には被処理水の全量をろ過す
る全量ろ過運転と膜装置に供給した被処理水の一部を被
処理水に返送するクロスフローろ過運転がある。クロス
フローろ過は被処理水を膜面に循環させることで、膜面
の流れによるせん断応力で、膜分離に伴い膜面に付着す
る汚れを除去しながら運転できる特徴があるので、生物
処理水の固液分離を行ううえで好適である。
【0043】そして、本発明においては、精密ろ過膜や
限外ろ過膜などの分離膜を生物処理槽4内に設け被処理
水中に浸漬させて固液分離を行うことが好ましい。分離
膜を生物処理槽4内に設けることで、生物処理に必要な
散気装置6から出る気体によって膜面に汚れが付着する
のを防止できるので、膜分離の運転動力を大幅に低減で
きる。またこの場合、分離水52を得るための動力を、
生物処理槽4の水位と分離水の取り出し口との水位差に
より得ることができる。得られた分離水52は、膜処理
装置1への供給圧力が高いため、一旦タンク等に貯留し
て、ポンプなどで膜処理装置1に供給するのが好まし
い。
【0044】また、活性汚泥法として、循環式硝化脱窒
活性汚泥法を適用して被処理水50中の窒素を除去する
態様を図3に示す。なお、下記する以外は、図2に示す
態様と同様に構成されている。
【0045】図3の装置は、図2における生物処理装置
3を、散気手段6により好気状態で生物処理を行う硝化
槽4aと、嫌気状態で生物処理を行う脱窒槽4bなどか
ら構成し、硝化槽内の硝化液を前段の脱窒槽4bに循環
するように構成している。脱窒槽4bには、被処理水が
供給されるようになっており、また、硝化槽4aには、
図2における生物処理槽4と同様に、微生物の活動源と
なる酸素含有気体を供給するブロアなどの給気装置5
と、水中に気体を吹き込む散気装置6とを設ける。ま
た、内部の生物を含む固形分の濃度を調節するため、余
剰生物80を取り出すことができるように構成する。
【0046】なお、窒素除去を行う活性汚泥法として
は、そのほか、単槽あるいは複数の槽を好気状態、嫌気
状態に切り替え制御しながら運転する好気嫌気活性汚泥
法がある。また、生物処理に使用する生物処理槽の数や
大きさも、被処理水の水質に応じて適宜設定すればよ
い。
【0047】そして、被処理水が上記態様の水処理では
除去できない物質を含んでいるため、被処理水がなおナ
ノろ過膜、逆浸透膜で処理できない水質である場合もあ
る。
【0048】たとえば、被処理水中の溶解性のリン成分
を除去する場合、図4に示すように、図2における水処
理装置に生物処理装置3への凝集剤添加装置8を設け、
被処理水中に溶解している物質を固液分離可能なように
凝集して分離除去することが好ましい。このようにする
ことで、生物処理と凝集処理とを同時に行うことがで
き、凝集物の固液分離もまとめて行える。凝集剤として
は、ポリ塩化アルミニウム、ポリ硫酸鉄第二鉄、塩化第
2鉄などを用いることができ、被処理水中の汚濁物質の
種類により適宜選定するのがよい。凝集剤によりpHが
変動する場合は、適宜、酸、アルカリを用いて調整する
のがよい。
【0049】また、生物処理装置3にて生物処理した後
の被処理水に固液分離装置7で分離できない懸濁物質等
が多い場合、図5に示すように、図2の水処理装置の固
形分離装置7と膜処理装置1との間に精密ろ過や限外ろ
過膜の濾過装置9をさらに設け、固液分離装置7では除
去しきれなかった懸濁物質等をこの濾過装置9で処理す
る。そして、この濾過装置9による濾過水55を膜処理
装置1に供給し、上述の処理を施す。
【0050】濾過装置9は、被処理水に応じて精密ろ過
および限外ろ過の少なくとも一方を、被処理水と生物処
理後の処理水質、また必要な透過水水質から適宜選定
し、それを単数枚もしくは複数枚適宜用いる。なお、被
処理水を生物処理した後の固液分離装置7が精密ろ過膜
を使用したものであれば、それよりも緻密な精密ろ過膜
や限外ろ過膜を用いたものであればよく、固液分離装置
7が限外ろ過膜を使用したものであれば、それよりも緻
密な限外ろ過膜を用いたものが好ましい。
【0051】また、固液分離装置7として、分離膜を用
いたものではなく図6に示すような沈降分離を採用した
ものを用いてもよいが、この場合、濾過装置9として
は、精密ろ過膜、限外ろ過膜のいずれの膜を用いたもの
であってもよい。なお、図6における生物処理装置3、
膜処理装置1、酸化処理装置1としては、上述したよう
なものを用いることができる。
【0052】そして、酸化処理2は、濃縮水60b中の
有機物質を全量分解するようにしてもよいが、この場
合、オゾンやUVを発生させる動力が大きくなり、過酸
化水素などの薬品や触媒を使用する場合はその使用量が
大きくなる。そこで、生物処理装置3を設ける場合に
は、図7に示すように、膜処理装置1からの濃縮水60
bに含まれる難分解性の物質を酸化処理2で生物で分解
可能なレベルにまで分解し、その後、その処理水の少な
くとも一部を生物処理装置に還流71するように、図7
に示す実施態様においては脱窒槽4bに還流するように
することが好ましい。これは、図2〜6に示す実施態様
においても、同様である。
【0053】なお、全量を還流することもできるが、こ
の場合、膜処理装置1によって透過水から排除され濃縮
水側に蓄積される塩化ナトリウムや塩化カルシウム等の
塩が増加するため、酸化処理装置2の後段にイオン交換
樹脂をさらに設けることが好ましい。このように構成す
ることで、酸化処理の負担を軽減できる。この場合、被
処理水によって、適用が異なるため、酸化処理水70の
成分を予め分析することが好ましい。
【0054】図7に示す水処理装置は、図1の態様の水
処理装置に、図3の水処理装置と同様に、散気手段6に
より好気状態で生物処理を行う硝化槽4aと、嫌気状態
で生物処理を行う脱窒槽4bなどを設け、硝化槽4a内
に固液分離装置7を設けている。脱窒槽4bには、被処
理水が供給されるようになっており、硝化槽4a内の硝
化液が前段の脱窒槽4bに循環するようになっている。
また、硝化槽4aにブロアなどの給気装置5と水中に気
体を吹き込む散気装置6とを設けるとともに、内部の生
物を含む固形分の濃度を調節するため、余剰生物80を
取り出すことができるように構成している。
【0055】そして、取りだした余剰生物80は、別途
減容化して処分する必要があるので、余剰生物処理装置
10を設けることが好ましい。この余剰生物処理装置1
0は、デカンターやフィルタープレスなどの脱水機を備
え、さらに、脱水後の余剰汚泥の焼却手段やコンポスト
化手段を備えている。焼却では燃料費等が多くかかるこ
と、また、余剰生物80は被処理水から除去した窒素、
リンなどを多く含んでおり、コンポスト化すれば余剰生
物を有効利用できるので好ましい。
【0056】コンポスト化手段は、脱水した余剰汚泥を
乾燥機によって含水率を調整した後に、発酵槽内で、発
酵してコンポスト化するもので、得られるコンポスト9
0の一部をコンポスト化装置に循環させるとともに、脱
水後の新しい余剰汚泥を受入れ、コンポスト化するよう
に構成することが好ましい。
【0057】発酵に寄与する微生物が高温好気性菌のよ
うに好気的な環境により活動が促進されるような場合
は、コンポスト化手段にブロアなどのエアー供給装置も
付与する。また、汚泥のさらなる乾燥、水分調節のため
にヒータを設けても良いが、高温好気性菌のように発酵
が高温で行われる微生物であれば、発酵熱により乾燥が
促進されるので、ヒータの動力を低減でき、ヒータ自体
も補助的なものとできる。発酵槽内には、パドルなどの
撹拌装置を設けることが好ましい。
【0058】また、発酵の促進ため、助剤を添加するの
も良い。助剤は、カロリーの供給、微生物の保持、水分
の調節の機能を果たす。助剤は他の廃棄物を使用するこ
とが好ましい。具体的には、カロリーの供給のために農
業廃棄物である米糠や鶏糞等、レストランなどの食用廃
油、食品工場のおから等があげられる。生物処理での余
剰生物のように脱水後も水分含有率が高いものは、自己
保有のカロリーが低いため、コンポスト化に必要なカロ
リーが補え、窒素、リン、カリウムの追加もできる米糠
を添加することが非常に好ましい。また、菌の保持剤お
よび水分調節剤として、林業廃棄物である木材チップや
竹チップ、農業廃棄物であるもみ殻等があげられる。
【0059】コンポスト90は、最終的には畑などにま
きやすいようにペレット状に造粒される。また、コンポ
スト90は、そのままの状態でも良いが、配布や販売の
ために袋詰めするのも良い。
【0060】さらに、図7の水処理装置には、図4の水
処理装置と同様に、硝化槽4aへの凝集剤添加装置8を
設け、被処理水中に溶解している物質を固液分離可能な
ように凝集して分離除去する。このとき、凝集剤として
は、コンポストとして土壌へ散布されることを考えると
鉄系の凝集剤を用いることが好ましい。
【0061】また、この水処理装置には、硝化槽4aと
膜処理装置1との間に図5の水処理装置と同様の濾過装
置9を設け、固液分離装置7で除去しきれなかった懸濁
物質等を処理する。
【0062】
【実施例】<実施例1>生活系廃水に内分泌撹乱物質と
されるビスフェノールAを濃度4mg/lとなるように
添加した被処理水について、酸化処理水70を脱窒槽4
bに環流させなかった以外は図7に示したフローと同様
の水処理を行った。
【0063】なお、被処理水は1.0l/minで脱窒
槽4bに供給し、硝化槽からの循環量が12l/min
となるようにした。また、硝化槽4a内には塩化第2鉄
を2.5mg/lで供給するとともに、水酸化ナトリウ
ムを添加し、pH6〜7になるように調整した。さら
に、硝化槽4内の汚泥濃度が12000mg/lになっ
たときには、余剰汚泥の抜き出しを行った。
【0064】また、硝化槽4a内には、孔径0.1μm
の精密ろ過膜(平膜、ポリフッ化ビニリデン)12m2
を、浸漬し、これに被処理水を3.3〜3.6l/mi
nで供給し、分離水を3.5l/minで取り出した。
続いて、精密濾過膜による分離液をタンクに一旦貯留し
た後、孔径0.01μmの限外ろ過膜(中空糸膜、ポリ
アクリロニトリル)3m2を備えた濾過装置9にポンプ
にて供給し、濾過水をタンクに貯留した。なお、限外ろ
過膜の運転は全量ろ過、1.0l/minで行い、定期
的にエアにより洗浄を行った。
【0065】続いて、ポンプでタンクから濾過水をバッ
チ処理で逆浸透膜を備えた膜処理装置1に供給し、回収
率60%となるように透過水を取り出した。なお、膜処
理装置1は、架橋芳香族ポリアミド系の逆浸透複合膜が
総膜面積3m2となるように構成されたスパイラル型エ
レメントを備えたものである。
【0066】そして、膜処理装置1によって排出される
濃縮水には、オゾンとUVからなる促進酸化処理を施し
た。酸化処理装置2は、小型の反応槽内に低圧水銀ラン
プ15W、2本を配置し、濃縮水にUVを照射するとと
もに、オゾンを20mg/lで発生、注入するものであ
った。
【0067】また、生活系廃水そのものを同様の水処理
に供した場合の被処理水50()、濾過水55
()、透過水60a()および濃縮水60b
()、酸化処理水70()の水質は表1のとおりで
あった。
【0068】
【表1】
【0069】上記の水処理の結果、濃縮水60b中には
ビスフェノールAが1mg/l含まれていたが、透過水
60aおよび酸化処理水70にはビスフェノールAが検
出されなかった。 <実施例2>酸化処理装置でのオゾン注入率を10mg
/l、UVランプ1本での照射とするとともにその酸化
処理水70を硝化槽4aに環流させた以外は実施例1と
同条件で水処理を行った。
【0070】その結果、濃縮水60b中にはビスフェノ
ールAが1mg/l含まれていたが、透過水60aおよ
び酸化処理水70にはビスフェノールAが検出されなか
った。これより、酸化処理水を生物処理装置に還流させ
ることで、酸化処理装置での負荷を減らしても実施例1
と同等の水が得られることがわかる。
【0071】なお、生活系廃水そのものを同様の水処理
に供した場合の結果を表2に示す。
【0072】
【表2】
【0073】<実施例3>実施例2で得られた余剰汚泥
をコンポスト化装置でコンポストにした。コンポスト化
装置は発酵槽内に撹拌パドルと通気口を有しており、通
気口にはコンプレッサーにてエアを供給した。発酵槽内
に脱水後の余剰汚泥に、助剤として水分調節剤、発酵菌
の担体を目的におがくず、カロリーの付与に米糠を加え
て発酵させた。なお装置にはヒータを設けておらず、発
酵熱のみでコンポスト化した。
【0074】製作したコンポストは肥料として使用可能
な成分であった。表3に成分を示す。
【0075】
【表3】
【0076】
【発明の効果】本発明は、被処理水をナノろ過膜および
/または逆浸透膜にて透過水と濃縮水とに分離するの
で、水洗便所用水、親水用水、修景用水、散水用水、農
業用水、工業用水、更には飲料水等として再利用が可能
な透過水を得るとともに、また、濃縮水も、酸化処理に
より含有するBOD成分やCOD成分などの有機物質を
分解、除去できるので、河川への放流が可能なまでに無
害化でき、また、水洗便所用水、親水用水、修景用水、
散水用水等として再利用が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施態様を示す水処理装置の概略フ
ロー図である。
【図2】本発明の一実施態様を示す水処理装置の概略フ
ロー図である。
【図3】本発明の一実施態様を示す水処理装置の概略フ
ロー図である。
【図4】本発明の一実施態様を示す水処理装置の概略フ
ロー図である。
【図5】本発明の一実施態様を示す水処理装置の概略フ
ロー図である。
【図6】本発明の一実施態様を示す水処理装置の概略フ
ロー図である。
【図7】本発明の一実施態様を示す水処理装置の概略フ
ロー図である。
【符号の説明】 1 :膜処理装置 2 :酸化処理装置 3 :生物処理装置 4 :生物処理槽 4a:硝化槽 4b:脱窒槽 5 :給気装置 6 :散気装置 7 :固液分離装置 8 :凝集剤添加装置 9 :濾過装置 10 :余剰生物処理装置 50 :被処理水 52 :分離水 55 :濾過水 60a:透過水 60b:濃縮水 70 :酸化処理水 71 :生物処理槽へ還流する酸化処理水 80 :余剰生物 81 :返送生物 90 :コンポスト
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/52 C02F 1/52 E 4D059 Z 1/72 1/72 Z 101 101 1/78 1/78 3/12 3/12 S 11/02 11/02 (72)発明者 辺見 昌弘 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 Fターム(参考) 4D006 GA03 GA06 GA07 HA41 HA61 JA53A JA55A KA52 KA53 KA55 KA57 KA68 KA72 KB04 KB22 KD08 KD21 KD22 MA01 MA02 MA03 MA22 MC03 MC18 MC22 MC23 MC29X MC39X MC54X MC62 PA01 PB08 4D015 BA24 BA29 BB05 CA01 EA37 FA17 FA24 FA26 4D028 BD17 BE01 BE08 4D037 AA11 AB01 BA18 CA03 CA07 CA08 CA11 CA12 4D050 AA13 AA15 AB07 BB02 BB09 BB11 BC04 BC09 BD06 CA09 CA15 CA16 CA17 4D059 AA05 BA01 BA27 BJ01 CC01

Claims (15)

    【特許請求の範囲】
  1. 【請求項1】被処理水をナノろ過膜および/または逆浸
    透膜を用いて透過水と濃縮水とに分離し、濃縮水を酸化
    処理することを特徴とする水処理方法。
  2. 【請求項2】被処理水を生物処理した後に固液分離し、
    その分離水をナノろ過膜および/または逆浸透膜を用い
    て透過水と濃縮水とに分離し、濃縮水を酸化処理するこ
    とを特徴とする水処理方法。
  3. 【請求項3】固液分離を精密ろ過膜および/または限外
    ろ過膜を用いて行う、請求項2に記載の水処理方法。
  4. 【請求項4】凝集剤を添加して固液分離をする、請求項
    2または3に記載の水処理方法。
  5. 【請求項5】固液分離した分離水をさらに精密ろ過およ
    び/または限外ろ過膜を用いて処理した後にナノろ過膜
    および/または逆浸透膜に供給する、請求項2〜4のい
    ずれかに記載の水処理方法。
  6. 【請求項6】酸化処理した水の少なくとも一部を生物処
    理の被処理水として還流する、請求項2〜5のいずれか
    に記載の水処理方法。
  7. 【請求項7】酸化処理は、オゾン処理、紫外線処理、過
    酸化水素処理、触媒処理の少なくとも2つを組み合わせ
    て行う促進酸化処理である、請求項1〜6のいずれかに
    記載の水処理方法。
  8. 【請求項8】被処理水を透過水と濃縮水とに分離するナ
    ノろ過膜および/または逆浸透膜を有する膜処理装置
    と、この膜処理装置の濃縮水を酸化処理する酸化処理装
    置とを設けたことを特徴とする水処理装置。
  9. 【請求項9】被処理水を生物処理する生物処理槽を備え
    た生物処理装置と、生物処理した被処理水を固液分離す
    る固液分離装置と、固液分離により得られた分離水を透
    過水と濃縮水とに分離するナノろ過膜および/または逆
    浸透膜を備えた膜処理装置と、膜処理装置により得られ
    た濃縮水を酸化処理する酸化処理装置とを設けたことを
    特徴とする水処理装置。
  10. 【請求項10】固液分離装置は、精密ろ過膜および/ま
    たは限外ろ過膜を備えている、請求項9に記載の水処理
    装置。
  11. 【請求項11】精密ろ過膜および/または限外ろ過膜を
    生物処理槽内に設けた、請求項10に記載の水処理装
    置。
  12. 【請求項12】固液分離した固形分の少なくとも一部を
    処理する余剰生物処理装置を設けた、請求項9〜11の
    いずれかに記載の水処理装置。
  13. 【請求項13】余剰生物処理装置はコンポスト化装置を
    備えている、請求項12に記載の水処理装置。
  14. 【請求項14】請求項1〜7のいずれかの方法または請
    求項8〜13のいずれかの装置を用いる造水方法。
  15. 【請求項15】請求項13の装置を用いて得られたコン
    ポスト。
JP2001114955A 2001-04-13 2001-04-13 水処理方法および水処理装置 Pending JP2002306930A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114955A JP2002306930A (ja) 2001-04-13 2001-04-13 水処理方法および水処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114955A JP2002306930A (ja) 2001-04-13 2001-04-13 水処理方法および水処理装置

Publications (1)

Publication Number Publication Date
JP2002306930A true JP2002306930A (ja) 2002-10-22

Family

ID=18965930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114955A Pending JP2002306930A (ja) 2001-04-13 2001-04-13 水処理方法および水処理装置

Country Status (1)

Country Link
JP (1) JP2002306930A (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106240A1 (ja) * 2003-05-27 2004-12-09 Asahi Organic Chemicals Industry Co., Ltd. 有機性廃水及び有機性汚泥の処理方法と処理装置
JP2006015236A (ja) * 2004-07-01 2006-01-19 Toray Ind Inc 再生水の製造装置および方法
WO2007055011A1 (ja) * 2005-11-10 2007-05-18 Kenji Mayuzumi 炭化トイレ
JP2007130567A (ja) * 2005-11-10 2007-05-31 Toray Ind Inc 膜利用による水循環使用システム
JP2007244930A (ja) * 2006-03-13 2007-09-27 Kurita Water Ind Ltd 有機物含有排水の処理方法及び処理装置
JP2007253115A (ja) * 2006-03-24 2007-10-04 Kurita Water Ind Ltd 有機物含有排水の処理方法及び処理装置
JP2008302333A (ja) * 2007-06-11 2008-12-18 Hitachi Plant Technologies Ltd 造水方法及びその装置
KR100882230B1 (ko) * 2008-03-04 2009-02-09 새한인텍 (주) 축산 폐수 처리 장치 및 그 처리 방법
JP2009072766A (ja) * 2007-08-30 2009-04-09 Toray Ind Inc 水処理方法
JP4525857B1 (ja) * 2009-12-11 2010-08-18 住友電気工業株式会社 水処理システムの前処理装置及び前処理方法
WO2011016410A1 (ja) * 2009-08-06 2011-02-10 住友電気工業株式会社 水処理装置及び水処理方法
JP2011088151A (ja) * 2011-02-09 2011-05-06 Toray Ind Inc 再生水の製造装置および方法
EP2350400A1 (en) * 2008-09-10 2011-08-03 European Space Agency Instalation for the treatment of urea containing water, toilet, stable and method
JP2011212520A (ja) * 2010-03-31 2011-10-27 Kobelco Eco-Solutions Co Ltd 排水処理方法及び排水処理装置
CN102976566A (zh) * 2012-12-24 2013-03-20 北京桑德环境工程有限公司 一种好氧堆肥场高浓度垃圾渗滤液处理系统及方法
JP2013188664A (ja) * 2012-03-13 2013-09-26 Takasago Thermal Eng Co Ltd 排水処理システムおよび方法
JP2014061506A (ja) * 2012-09-24 2014-04-10 Hitachi Ltd 液体処理設備
JP2014180628A (ja) * 2013-03-19 2014-09-29 Kubota Corp 水処理方法および水処理システム
CN104118973A (zh) * 2014-08-20 2014-10-29 威海百克环保工程有限公司 一种反渗透浓水处理工艺
JP2015155097A (ja) * 2015-04-20 2015-08-27 株式会社神鋼環境ソリューション 排水処理方法及び排水処理装置
JP2015163389A (ja) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 廃水処理方法および廃水処理システム
JP2015163388A (ja) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 廃水処理方法および廃水処理システム
JP2018113925A (ja) * 2017-01-19 2018-07-26 オルガノ株式会社 水処理装置、水処理方法、および水中生物の飼育水の製造装置
CN109020010A (zh) * 2018-08-24 2018-12-18 湖南湘奈环保科技有限责任公司 一种焦化废水生化出水深度处理工艺
WO2019059449A1 (ko) * 2017-09-20 2019-03-28 한국지역난방공사 전오존 처리를 적용한 수처리 장치 및 공법
JP2020001984A (ja) * 2018-06-29 2020-01-09 三菱瓦斯化学株式会社 過酸化水素の製造方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106240A1 (ja) * 2003-05-27 2004-12-09 Asahi Organic Chemicals Industry Co., Ltd. 有機性廃水及び有機性汚泥の処理方法と処理装置
JP2006015236A (ja) * 2004-07-01 2006-01-19 Toray Ind Inc 再生水の製造装置および方法
WO2007055011A1 (ja) * 2005-11-10 2007-05-18 Kenji Mayuzumi 炭化トイレ
JP2007130567A (ja) * 2005-11-10 2007-05-31 Toray Ind Inc 膜利用による水循環使用システム
JP2007244930A (ja) * 2006-03-13 2007-09-27 Kurita Water Ind Ltd 有機物含有排水の処理方法及び処理装置
JP2007253115A (ja) * 2006-03-24 2007-10-04 Kurita Water Ind Ltd 有機物含有排水の処理方法及び処理装置
KR101353002B1 (ko) * 2006-03-24 2014-01-22 쿠리타 고교 가부시키가이샤 유기물 함유 배수의 처리방법 및 처리장치
JP2008302333A (ja) * 2007-06-11 2008-12-18 Hitachi Plant Technologies Ltd 造水方法及びその装置
JP2009072766A (ja) * 2007-08-30 2009-04-09 Toray Ind Inc 水処理方法
KR100882230B1 (ko) * 2008-03-04 2009-02-09 새한인텍 (주) 축산 폐수 처리 장치 및 그 처리 방법
EP2350400A1 (en) * 2008-09-10 2011-08-03 European Space Agency Instalation for the treatment of urea containing water, toilet, stable and method
JPWO2011016410A1 (ja) * 2009-08-06 2013-01-10 住友電気工業株式会社 水処理装置及び水処理方法
CN102471103A (zh) * 2009-08-06 2012-05-23 住友电气工业株式会社 水处理装置和水处理方法
WO2011016410A1 (ja) * 2009-08-06 2011-02-10 住友電気工業株式会社 水処理装置及び水処理方法
JP4525857B1 (ja) * 2009-12-11 2010-08-18 住友電気工業株式会社 水処理システムの前処理装置及び前処理方法
JP2011121007A (ja) * 2009-12-11 2011-06-23 Sumitomo Electric Ind Ltd 水処理システムの前処理装置及び前処理方法
JP2011212520A (ja) * 2010-03-31 2011-10-27 Kobelco Eco-Solutions Co Ltd 排水処理方法及び排水処理装置
JP2011088151A (ja) * 2011-02-09 2011-05-06 Toray Ind Inc 再生水の製造装置および方法
JP2013188664A (ja) * 2012-03-13 2013-09-26 Takasago Thermal Eng Co Ltd 排水処理システムおよび方法
JP2014061506A (ja) * 2012-09-24 2014-04-10 Hitachi Ltd 液体処理設備
CN102976566A (zh) * 2012-12-24 2013-03-20 北京桑德环境工程有限公司 一种好氧堆肥场高浓度垃圾渗滤液处理系统及方法
JP2014180628A (ja) * 2013-03-19 2014-09-29 Kubota Corp 水処理方法および水処理システム
JP2015163389A (ja) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 廃水処理方法および廃水処理システム
JP2015163388A (ja) * 2014-01-31 2015-09-10 三菱レイヨン株式会社 廃水処理方法および廃水処理システム
CN104118973A (zh) * 2014-08-20 2014-10-29 威海百克环保工程有限公司 一种反渗透浓水处理工艺
JP2015155097A (ja) * 2015-04-20 2015-08-27 株式会社神鋼環境ソリューション 排水処理方法及び排水処理装置
JP2018113925A (ja) * 2017-01-19 2018-07-26 オルガノ株式会社 水処理装置、水処理方法、および水中生物の飼育水の製造装置
JP6996846B2 (ja) 2017-01-19 2022-01-17 オルガノ株式会社 水処理装置、水処理方法、および水中生物の飼育水の製造装置
WO2019059449A1 (ko) * 2017-09-20 2019-03-28 한국지역난방공사 전오존 처리를 적용한 수처리 장치 및 공법
JP2020001984A (ja) * 2018-06-29 2020-01-09 三菱瓦斯化学株式会社 過酸化水素の製造方法
JP7187839B2 (ja) 2018-06-29 2022-12-13 三菱瓦斯化学株式会社 過酸化水素の製造方法
CN109020010A (zh) * 2018-08-24 2018-12-18 湖南湘奈环保科技有限责任公司 一种焦化废水生化出水深度处理工艺

Similar Documents

Publication Publication Date Title
JP2002306930A (ja) 水処理方法および水処理装置
JP5194771B2 (ja) 有機物含有水の生物処理方法および装置
US5837142A (en) Membrane process for treating sanitary wastewater
Ding et al. Effects of GAC layer on the performance of gravity-driven membrane filtration (GDM) system for rainwater recycling
CN102139996B (zh) 农村垃圾渗滤液一体化处理工艺
JP2009507625A (ja) 酸化剤の添加による廃水の浄化方法
Tatoulis et al. A hybrid system comprising an aerobic biological process and electrochemical oxidation for the treatment of black table olive processing wastewaters
JP5444684B2 (ja) 有機排水の処理方法及び処理装置
WO2018066443A1 (ja) 汚排水浄化システム
KR100294075B1 (ko) 침출수처리방법및장치
JP2005169304A (ja) 高濃度着色有機排水の処理方法
JP2006239627A (ja) 窒素含有有機性廃水処理システム
KR100747682B1 (ko) 고온호기발효화와 석회 고형화 및 역삼투 막분리를 이용한가축 배설물의 처리방법
CN206188442U (zh) 基于纳米光电催化技术的循环海水养殖水处理系统
JP2003260449A (ja) 高濃度有機性廃棄物の処理方法
JP2002086193A (ja) 水処理方法とその装置
Attiogbe Comparison of membrane bioreactor technology and conventional activated sludge system for treating bleached kraft mill effluent
JP2003103297A (ja) 水処理プラント
CN1931750B (zh) 石油化工污水回用处理工艺
JP2007130567A (ja) 膜利用による水循環使用システム
CN111675450A (zh) 一种曝气生物滤池与紫外消毒设备一体化系统
KR20030097075A (ko) 생물막활성탄과 마이크로필터모듈을 이용한 오·폐수고도처리장치
JP2887284B2 (ja) 超純水の製造方法
Whang et al. The removal of residual organic matter from biologically treated swine wastewater using membrane bioreactor process with powdered activated carbon
CN109956613B (zh) 达到地表水三类水标准的生活污水处理系统及方法