JP2014060035A - プラズマ処理方法及びプラズマ処理装置 - Google Patents

プラズマ処理方法及びプラズマ処理装置 Download PDF

Info

Publication number
JP2014060035A
JP2014060035A JP2012204062A JP2012204062A JP2014060035A JP 2014060035 A JP2014060035 A JP 2014060035A JP 2012204062 A JP2012204062 A JP 2012204062A JP 2012204062 A JP2012204062 A JP 2012204062A JP 2014060035 A JP2014060035 A JP 2014060035A
Authority
JP
Japan
Prior art keywords
plasma
substrate
gas
base material
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012204062A
Other languages
English (en)
Inventor
Tomohiro Okumura
智洋 奥村
Mitsuhisa Saito
光央 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012204062A priority Critical patent/JP2014060035A/ja
Publication of JP2014060035A publication Critical patent/JP2014060035A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理方法及び装置を提供することを目的としている。
【解決手段】誘導結合型プラズマトーチユニットTにおいて、ソレノイドコイル3が第一石英ブロック4及び第二石英ブロック5の近傍に配置され、長尺チャンバ内部の空間7は環状である。長尺で線状のプラズマ噴出口から基材2に照射されるプラズマジェットの向きが、相対的な移動の方向に対して傾斜するように構成した。
【選択図】図3

Description

本発明は、熱プラズマを基材に照射して基材を処理する熱プラズマ処理などの、プラズマ処理方法及びプラズマ処理装置に関するものである。
従来、多結晶シリコン(poly−Si)等の半導体薄膜は薄膜トランジスタ(TFT:Thin Film TransisTor)や太陽電池に広く利用されている。とりわけ、poly−SiTFTは、キャリア移動度が高いうえ、ガラス基板のような透明の絶縁基板上に作製できるという特徴を活かして、例えば、液晶表示装置、液晶プロジェクタや有機EL表示装置などの画素回路を構成するスイッチング素子として、或いは液晶駆動用ドライバの回路素子として広く用いられている。
ガラス基板上に高性能なTFTを作製する方法としては、一般に「高温プロセス」と呼ばれる製造方法がある。TFTの製造プロセスの中でも、工程中の最高温度が1000℃程度の高温を用いるプロセスを一般的に「高温プロセス」と呼んでいる。高温プロセスの特徴は、シリコンの固相成長により比較的良質の多結晶シリコンを成膜することができる点、シリコンの熱酸化により良質のゲート絶縁層を得ることができる点、及び清浄な多結晶シリコンとゲート絶縁層との界面を形成できる点である。高温プロセスではこれらの特徴により、高移動度でしかも信頼性の高い高性能TFTを安定的に製造することができる。
他方、高温プロセスは固相成長によりシリコン膜の結晶化を行うプロセスであるために、600℃程度の温度で48時間程度の長時間の熱処理を必要とする。これは大変長時間の工程であり、工程のスループットを高めるためには必然的に熱処理炉を多数必要とし、低コスト化が難しいという点が課題である。加えて、耐熱性の高い絶縁性基板として石英ガラスを使わざるを得ないため基板のコストが高く、大面積化には向かないとされている。
一方、工程中の最高温度を下げ、安価な大面積のガラス基板上にpoly−SiTFTを作製するための技術が「低温プロセス」と呼ばれる技術である。TFTの製造プロセスの中でも、最高温度が概ね600℃以下の温度環境下において比較的安価な耐熱性のガラス基板上にpoly−SiTFTを製造するプロセスは、一般に「低温プロセス」と呼ばれている。低温プロセスでは、発振時間が極短時間のパルスレーザーを用いてシリコン膜の結晶化を行うレーザー結晶化技術が広く使われている。レーザー結晶化とは、基板上のシリコン薄膜に高出力のパルスレーザー光を照射することによって瞬時に溶融させ、これが凝固する過程で結晶化する性質を利用する技術である。
しかしながら、このレーザー結晶化技術には幾つかの大きな課題がある。一つは、レーザー結晶化技術によって形成したポリシリコン膜の内部に局在する多量の捕獲準位である。この捕獲準位の存在により、電圧の印加によって本来能動層を移動するはずのキャリアが捕獲され、電気伝導に寄与できず、TFTの移動度の低下、閾値電圧の増大といった悪影響を及ぼす。更に、レーザー出力の制限によって、ガラス基板のサイズが制限されるといった課題もある。レーザー結晶化工程のスループットを向上させるためには、一回で結晶化できる面積を増やす必要がある。しかしながら、現状のレーザー出力には制限があるため、第7世代(1800mm×2100mm)といった大型基板にこの結晶化技術を採用する場合には、基板一枚を結晶化するために長時間を要する。
また、レーザー結晶化技術は一般的にライン状に成形されたレーザーが用いられ、これを走査させることによって結晶化を行なう。このラインビームは、レーザー出力に制限があるため基板の幅よりも短く、基板全面を結晶化するためには、レーザーを数回に分けて走査する必要がある。これによって基板内にはラインビームの継ぎ目の領域が発生し、二回走査されてしまう領域ができる。この領域は一回の走査で結晶化した領域とは結晶性が大きく異なる。そのため両者の素子特性は大きく異なり、デバイスのバラツキの大きな要因となる。
最後に、レーザー結晶化装置は装置構成が複雑であり且つ、消耗部品のコストが高いため、装置コストおよびランニングコストが高いという課題がある。これによって、レーザー結晶化装置によって結晶化したポリシリコン膜を使用したTFTは製造コストが高い素子になってしまう。
このような基板サイズの制限、装置コストが高いといった課題を克服するため、「熱プラズマジェット結晶化法」と呼ばれる結晶化技術が研究されている(例えば、非特許文献1を参照)。本技術を以下に簡単に説明する。タングステン(W)陰極と水冷した銅(Cu)陽極を対向させ、DC電圧を印加すると両極間にアーク放電が発生する。この電極間に大気圧下でアルゴンガスを流すことによって、銅陽極に空いた噴出孔から熱プラズマが噴出する。
熱プラズマとは、熱平衡プラズマであり、イオン、電子、中性原子などの温度がほぼ等しく、それらの温度が10000K程度を有する超高温の熱源である。このことから、熱プラズマは被熱物体を容易に高温に加熱することが可能であり、a−Si膜を堆積した基板が超高温の熱プラズマ前面を高速走査することによってa−Si膜を結晶化することができる。
このように装置構成が極めて単純であり、且つ大気圧下での結晶化プロセスであるため、装置を密閉チャンバ等の高価な部材で覆う必要が無く、装置コストが極めて安くなることが期待できる。また結晶化に必要なユーティリティは、アルゴンガスと電力と冷却水であるため、ランニングコストも安い結晶化技術である。
図19は、この熱プラズマを用いた半導体膜の結晶化方法を説明するための模式図である。
同図において、熱プラズマ発生装置31は、陰極32と、この陰極32と所定距離だけ離間して対向配置される陽極33とを備え構成される。陰極32は、例えばタングステン等の導電体からなる。陽極33は、例えば銅などの導電体からなる。また、陽極33は、中空に形成され、この中空部分に水を通して冷却可能に構成されている。また、陽極33には噴出孔(ノズル)34が設けられている。陰極32と陽極33の間に直流(DC)電圧を印加すると両極間にアーク放電が発生する。この状態において、陰極32と陽極33の間に大気圧下でアルゴンガス等のガスを流すことによって、上記の噴出孔34から熱プラズマ35を噴出させることができる。ここで「熱プラズマ」とは、熱平衡プラズマであり、イオン、電子、中性原子などの温度がほぼ等しく、それらの温度が10000K程度を有する超高温の熱源である。
このような熱プラズマを半導体膜の結晶化のための熱処理に利用することができる。具体的には、基板36上に半導体膜37(例えば、アモルファスシリコン膜)を形成しておき、当該半導体膜37に熱プラズマ(熱プラズマジェット)35を当てる。このとき、熱プラズマ35は、半導体膜37の表面と平行な第1軸(図示の例では左右方向)に沿って相対的に移動させながら半導体膜37に当てられる。すなわち、熱プラズマ35は第1軸方向に走査しながら半導体膜37に当てられる。
ここで「相対的に移動させる」とは、半導体膜37(及びこれを支持する基板36)と熱プラズマ35とを相対的に移動させることを言い、一方のみを移動させる場合と両者をともに移動させる場合のいずれも含まれる。このような熱プラズマ35の走査により、半導体膜37が熱プラズマ35の有する高温によって加熱され、結晶化された半導体膜38(本例ではポリシリコン膜)が得られる(例えば、特許文献1を参照)。
図20は、最表面からの深さと温度の関係を示す概念図である。同図に示すように、熱プラズマ35を高速で移動させることにより、表面近傍のみを高温で処理することができる。熱プラズマ35が通り過ぎた後、加熱された領域は速やかに冷却されるので、表面近傍はごく短時間だけ高温になる。
このような熱プラズマは、点状領域に発生させるのが一般的である。熱プラズマは、陰極32からの熱電子放出によって維持されており、プラズマ密度の高い位置では熱電子放出がより盛んになるため、正のフィードバックがかかり、ますますプラズマ密度が高くなる。つまり、アーク放電は陰極の1点に集中して生じることとなり、熱プラズマは点状領域に発生する。
半導体膜の結晶化など、平板状の基材を一様に処理したい場合には、点状の熱プラズマを基材全体に渡って走査する必要があるが、走査回数を減らしてより短時間で処理できるプロセスを構築するには、熱プラズマの照射領域を広くすることが有効である。このため、長尺の熱プラズマを発生させ、一方向にのみ走査する技術が検討されている(例えば、特許文献2〜7を参照)。
なお、DCプラズマトーチにおいて、トーチを基材に対して傾斜させるものが開示されている(例えば、特許文献8、9を参照)が、基材の熱プロファイルを制御しようとするものではない。
特開2008−53634号公報 国際公開第2011/142125号 特開2012−38839号公報 特開2012−54129号公報 特開2012−54130号公報 特開2012−54131号公報 特開2012−54132号公報 特開昭55−84270号公報 特開平2−52183号公報
S.Higashi, H.Kaku,T.Okada,H.Murakami and S.Miyazaki,Jpn.J.Appl.Phys.45,5B(2006)pp.4313−4320
しかしながら、半導体の結晶化など、ごく短時間だけ基材の表面近傍を高温処理する用途に対して、従来の熱プラズマを大面積に発生させる技術では、基材の温度プロファイルの再現性が悪く、また、温度制御性に制約があるという問題点があった。
従来例に示した特許文献2〜7に記載の、長尺の熱プラズマを発生させる技術においては、長尺の熱プラズマの流れが基材に対して垂直に噴出するが、基材に達した後の高温のガス流れの向きが不安定で、基材上のプラズマが未だ照射されていない部分の予備的な加熱に供する場合や、基材上のプラズマが既に照射された部分の除冷に供する場合、あるいはその両方が発生する場合があった。これは、基材に達した後の高温のガス流れの向きが、プラズマトーチユニットの周囲の対流の状態、構造物の配置、排気系統の配置などの影響で変化しやすいためである。
本発明はこのような課題に鑑みなされたもので、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理方法及びプラズマ処理装置を提供することを目的としている。
本願の第1発明のプラズマ処理方法は、チャンバ内にガスを供給しつつ、前記チャンバに形成された長尺の開口部から基材に向けてガスを噴出すると共に、前記チャンバ内にプラズマを発生させ、前記開口部から基材に向けてプラズマジェットを照射しつつ、前記チャンバと前記基材とを、前記開口部がなす長尺方向とは垂直な方向に相対的に移動しながら前記基材の表面を処理する方法である。このとき、上述の方法において、基材の表面に、前記相対的な移動の方向にガスの流れを形成しつつ処理することを特徴とする。
このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
本願の第1発明のプラズマ処理方法において、好適には、前記プラズマジェットの照射の向きが、前記相対的な移動の方向に対して傾斜していることが望ましい。
このような構成により、相対的な移動の方向にガスの流れを形成しつつ処理することが可能となる。
この場合、処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、前記開口部の中心に向かう半直線と、前記基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角が、鋭角であってもよいし、あるいは、鈍角であってもよい。
鋭角である場合は、垂直である場合に比べてより急峻な加熱、または除冷を行うことができる。鈍角である場合は、垂直である場合に比べてより急峻な冷却、または予備的な加熱を行うことができる。
あるいは、プラズマジェットが照射された基材上の部分にエネルギーを加えるとともに、前記エネルギーを徐々に減じてもよい。
このような構成により、除冷を行うことができる。
あるいは、プラズマジェットが照射される前の基材上の部分にエネルギーを加えるとともに、前記エネルギーを徐々に増してもよい。
このような構成により、予備的な加熱を行うことができる。
本願の第1発明のプラズマ処理方法は、基材の表面がシリコン膜であり、プラズマジェットの照射によって非晶質シリコン膜を結晶膜に変化させるプラズマ処理である場合に特に格別の効果を奏する。
本願の第2発明のプラズマ処理装置は、基材載置台と、チャンバ及びチャンバに連通する長尺の開口部を備えたプラズマトーチと、前記チャンバと前記基材載置台とを前記開口部がなす長尺方向とは垂直な方向に相対的に移動可能とする移動機構を備えた装置において、前記チャンバから前記開口部へ向かうプラズマジェットの照射の向きと、前記相対的に移動する向きが、垂直ではなく傾斜していることを特徴とする。
このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
本願の第3発明のプラズマ処理装置は、基材載置台と、チャンバ及びチャンバに連通する長尺の開口部を備えたプラズマトーチと、前記プラズマトーチと前記基材載置台とを前記開口部がなす長尺方向とは垂直な方向に相対的に移動可能とする移動機構を備えた装置において、前記開口部と平行に設けられたガス噴出口を備え、前記ガス噴出口から噴出するガスの流れ方向が、基材がなす平面と垂直でないことを特徴とする。
このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
本願の第4発明のプラズマ処理装置は、基材載置台と、チャンバ及びチャンバに連通する長尺の開口部を備えたプラズマトーチと、前記プラズマトーチと前記基材載置台とを前記開口部がなす長尺方向とは垂直な方向に相対的に移動可能とする移動機構を備えた装置において、前記開口部と平行に設けられたガス排気口を備え、前記ガス排気口が吸引するガスの流れ方向が、基材がなす平面と垂直でないことを特徴とする。
このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
本願の第5発明のプラズマ処理装置は、基材載置台と、チャンバ及びチャンバに連通する長尺の開口部を備えたプラズマトーチと、前記プラズマトーチと前記基材載置台とを前記開口部がなす長尺方向とは垂直な方向に相対的に移動可能とする移動機構を備えた装置である。このとき、上記装置において、前記開口部と平行に設けられたガス噴出口と、前記開口部と平行に設けられたガス排気口を備え、前記噴出口と前記ガス排気口との間に前記開口部を配置した点に特徴を有する。
このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
本願の第2、第3、第4または第5発明のプラズマ処理装置において、好適には、前記プラズマトーチとは別の熱源と、前記熱源と前記プラズマトーチとの相対位置とを固定したまま、前記プラズマトーチと基材載置台とを相対的に移動可能とすることが望ましい。あるいは、前記プラズマトーチとは別の熱源と、前記熱源と前記基材載置台とを熱的に遮蔽する遮蔽機構とを備え、かつ、前記プラズマトーチと前記遮蔽機構との相対位置を固定しつつ前記熱源と前記基材載置台との相対位置を固定したまま、前記プラズマトーチと基材載置台とを相対的に移動可能としてもよい。
このような構成により、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、より温度制御性に優れたプラズマ処理を実現できる。
本発明によれば、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
本発明の実施の形態1における誘導結合型プラズマトーチユニットの構成を示す断面図 本発明の実施の形態1における誘導結合型プラズマトーチユニットの構成を示す斜視図 本発明の実施の形態1におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態2におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態3におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態4におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態5におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態6におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態7におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態8におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態9におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態10におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態11におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態12におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態13におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態14におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態15におけるプラズマ処理装置の構成を示す断面図 本発明の実施の形態16におけるプラズマ処理装置の構成を示す断面図 従来例におけるプラズマ処理装置の構成を示す断面図 従来例における最表面からの深さと温度の関係を示す概念図
以下、本発明の実施の形態におけるプラズマ処理装置について図面を用いて説明する。
(実施の形態1)
以下、本発明の実施の形態1について、図1〜図3を参照して説明する。
図1(a)は、本発明の実施の形態1における誘導結合型プラズマトーチユニットの構成を示すもので、誘導結合型プラズマトーチユニットの長尺方向に垂直な面で切った断面図である。図1(b)及び(c)は、誘導結合型プラズマトーチユニットの長尺方向に平行で、かつ、基材に垂直な面で切った断面図である。図1(a)は図1(b)の破線A−A’で切った断面図である。図1(b)は図1(a)の破線B−B’で切った断面図、図1(c)は図1(a)の破線C−C’で切った断面図、また、図2は、図1に示した誘導結合型プラズマトーチユニットの組立構成図であり、各部品(一部)の斜視図を並べたものである。また、図3は、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図1及び図2に示す誘導結合型プラズマトーチユニットTにおいて、導体製のソレノイドコイル3が第一石英ブロック4及び第二石英ブロック5の近傍に配置される。誘電体製の長尺チャンバは、第一石英ブロック4、第二石英ブロック5及び基材2の表面によって囲まれた空間(長尺チャンバ内部の空間7)により画定される。長尺チャンバのソレノイドコイル3に近い側の内壁面は、ソレノイドコイル3と平行な曲面である。このような構成では、ソレノイドコイル3の任意の部位において、ソレノイドコイル3から長尺チャンバまでの距離が等しくなるので、小さい高周波電力で誘導結合性プラズマの発生が可能となり、効率の良いプラズマ生成が実現できる。
誘導結合型プラズマトーチユニットTは、全体が接地された導体製のシールド部材(図示しない)で囲われ、高周波の漏洩(ノイズ)が効果的に防止できるとともに、好ましくない異常放電などを効果的に防止できる。
長尺チャンバ内部の空間7は、内部誘電体ブロックとしての第二石英ブロック5の外壁面と、これが挿入された外部誘電体ブロックとしての第一石英ブロック4の内壁面に囲まれている。また、長尺チャンバ内部の空間7は環状である。ここでいう環状とは、一続きの閉じたヒモ状をなす形状を意味し、円形に限定されるものではない。本実施の形態においては、レーストラック形(2つの長辺をなす直線部と、その両端に2つの短辺をなす円、楕円、または直線が連結されてなる、一続きの閉じたヒモ状の形状)の長尺チャンバを例示している。プラズマ噴出口8からプラズマが噴出される。
第二石英ブロック5の内部にプラズマガスマニホールド9が設けられている。プラズマガス供給配管10よりプラズマガスマニホールド9に供給されたガスは、第二石英ブロック5に設けられたガス導入部としてのプラズマガス供給穴11(貫通穴)を介して、長尺チャンバ内部の空間7に導入される。このような構成により、長手方向に均一なガス流れを簡単に実現できる。プラズマガス供給配管10へ導入するガスの流量は、その上流にマスフローコントローラなどの流量制御装置を備えることにより制御される。
プラズマガス供給穴11は、丸い穴状のものを長手方向に複数設けたものであるが、長尺のスリットであってもよい。
ソレノイドコイル3は中空の銅管からなり、内部が冷媒流路となっている。すなわち、水などの冷媒を流すことで、冷却が可能である。また、第一石英ブロック4及び第二石英ブロック5には、プラズマ噴出口の長手方向に対して平行に冷媒流路15が設けられている。また、第一石英ブロック4には、プラズマ噴出口の長手方向に対して垂直な向きにも冷媒流路15が設けられ、プラズマ噴出口の長手方向に対して平行な冷媒流路15と立体的に交差し、外部との間で冷媒の給排水が行われる。
また、第二石英ブロック5内においては、図1(c)に示すように、冷媒流路が合流して束ねられ、外部との冷媒の給排水が行われる。これらの冷媒流路は、その断面が円であるから、大量の冷媒を流した際もその内圧によって構成部材の変形が起きにくい。つまり、本実施の形態においては、大量の冷媒を流すことができ、効果的な冷却が可能である。
図3において、基材載置台1上に基材2が載置され、誘導結合型プラズマトーチユニットTが、環状チャンバからプラズマ噴出口へ向かうプラズマジェットの照射の向きと、相対的に移動する向きが、垂直ではなく傾斜している。なお、本実施の形態においては、誘導結合型プラズマトーチユニットTを、基材に対して紙面の左から右へ(図中の太い矢印の向きへ)走査する。そして、処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、プラズマ噴出口の中心に向かう半直線と、基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角θが鋭角となっている。したがって、基材2の表面に、相対的な移動の方向、より詳しくは、引き続き処理される基材2の表面から既に処理された基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、引き続き処理される基材2の表面へはほとんど流れず、既に処理された基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。よって、角θが90°(垂直)である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な加熱、または除冷を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
このような構成において、長尺チャンバ内にガスを供給しつつ、プラズマ噴出口から基材2に向けてガスを噴出させながら、図示していない高周波電源よりソレノイドコイル3に高周波電力を供給することにより、長尺チャンバ内部の空間7にプラズマPを発生させ、プラズマ噴出口から噴出するプラズマジェットを基材2に照射することにより、基材2上の薄膜などをプラズマ処理することができる。プラズマ噴出口の長手方向に対して垂直な向きに、長尺チャンバと基材載置台1とを相対的に移動させることで、基材2を処理する。
長尺チャンバ内に供給するガスとして種々のものが使用可能だが、プラズマの安定性、着火性、プラズマに暴露される部材の寿命などを考えると、不活性ガス主体であることが望ましい。なかでも、Arガスが典型的に用いられる。Arのみでプラズマを生成させた場合、プラズマは相当高温となる(10,000K以上)。
プラズマ発生の条件としては、走査速度=50〜3000mm/s、プラズマガス総流量=1〜100SLM、Ar+H2ガス中のH2濃度=0〜10%、高周波電力=0.5〜10kW程度の値が適切である。ただし、これらの諸量のうち、ガス流量及び電力は、プラズマ噴出口の長さ100mm当たりの値である。ガス流量や電力などのパラメータは、プラズマ噴出口の長さに比例した量を投入することが適切と考えられるためである。
また、本実施の形態においては、長尺チャンバ内部の空間7は環状である。一塊の直方体形状の空間に大気圧誘導結合型プラズマを発生させると、円環状の(ドーナツ形状の)プラズマがチャンバ内に発生しやすい。すなわち、直方体形状のチャンバ内に円環状のプラズマが発生するので、チャンバ内はその一部のみが非常に高密度のプラズマとなり、長尺方向に均一な処理を行うことが困難である。一方、本実施の形態においては、長尺の環状チャンバを構成しているため、その形状に沿ってレーストラック形の細長い長尺のプラズマPが発生する。したがって、従来例に比べて、格段に長尺方向に均一な処理を行うことができる。また、チャンバの体積が従来例に比べて小さくなることから、単位体積当たりに作用する高周波電力が増すので、プラズマ発生効率がよくなるという利点もある。
また、誘導結合型プラズマトーチユニットTを、基材載置台1に対して傾斜させる角度θを可変としてもよい。このような構成により、より精密なガス流れ制御が可能となる。
(実施の形態2)
以下、本発明の実施の形態2について、図4を参照して説明する。
図4は、本発明の実施の形態2における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図4において、基材載置台1上に基材2が載置され、誘導結合型プラズマトーチユニットTが、環状チャンバからプラズマ噴出口へ向かうプラズマジェットの照射の向きと、相対的に移動する向きが、垂直ではなく傾斜するよう配置される。なお、本実施の形態においては、誘導結合型プラズマトーチユニットTを、基材に対して紙面の左から右へ(図中の太い矢印の向きへ)走査する。そして、処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、プラズマ噴出口の中心に向かう半直線と、基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角θが鈍角となっている。したがって、基材2の表面に、相対的な移動の方向、より詳しくは、既に処理された基材2の表面から引き続き処理される基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、既に処理された基材2の表面へはほとんど流れず、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。よって、角θが90°(垂直)である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な冷却、または予備的な加熱を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
(実施の形態3)
以下、本発明の実施の形態3について、図5を参照して説明する。
図5は、本発明の実施の形態3における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図5において、基材載置台1上に基材2が載置され、誘導結合型プラズマトーチユニットTが、環状チャンバからプラズマ噴出口へ向かうプラズマジェットの照射の向きと、相対的に移動する向きが、垂直ではなく傾斜するよう配置される。なお、本実施の形態においては、誘導結合型プラズマトーチユニットTを、基材に対して紙面の左から右へ(図中の太い矢印の向きへ)走査する。
そして、実施の形態1と同様、処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、プラズマ噴出口の中心に向かう半直線と、基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角が鋭角となっている。加えて、プラズマ噴出口と平行に、プラズマ噴出口よりも、引き続き処理される基材2の表面に近い部分に設けられたガス噴出口12を備え、ガス噴出口12から噴出するガスの流れ方向が、基材2がなす平面と垂直でなく平行になっている。つまり、プラズマ噴出口から流れ出たガスが、基材2の表面に沿って流れる向きと、ガス噴出口12から流れ出たガスが、基材2の表面に沿って流れる向きが一致するように構成している。
したがって、基材2の表面に、相対的な移動の方向、より詳しくは、引き続き処理される基材2の表面から既に処理された基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、引き続き処理される基材2の表面へはほとんど流れず、既に処理された基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な加熱、または除冷を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
なお、本実施の形態においては、実施の形態1よりもさらに、プラズマ噴出口から噴出する高温のガスが、引き続き処理される基材2の表面へ流れにくく、既に処理された基材2の表面へ向かって基材2に熱エネルギーを与えながら流れやすい構成となっており、より精密な温度制御が実現できる。
(実施の形態4)
以下、本発明の実施の形態4について、図6を参照して説明する。
図6は、本発明の実施の形態4における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図6において、基材載置台1上に基材2が載置され、誘導結合型プラズマトーチユニットTが、環状チャンバからプラズマ噴出口へ向かうプラズマジェットの照射の向きと、相対的に移動する向きが、垂直ではなく傾斜するよう配置される。
なお、本実施の形態においては、誘導結合型プラズマトーチユニットTを、基材に対して紙面の左から右へ(図中の太い矢印の向きへ)走査する。そして、実施の形態2と同様、処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、プラズマ噴出口の中心に向かう半直線と、基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角が鈍角となっている。加えて、プラズマ噴出口と平行に、プラズマ噴出口よりも、既に処理された基材2の表面に近い部分に設けられたガス噴出口12を備え、ガス噴出口12から噴出するガスの流れ方向が、基材2がなす平面と垂直でなく平行になっている。つまり、プラズマ噴出口から流れ出たガスが、基材2の表面に沿って流れる向きと、ガス噴出口12から流れ出たガスが、基材2の表面に沿って流れる向きが一致するように構成している。
したがって、基材2の表面に、相対的な移動の方向、より詳しくは、既に処理された基材2の表面から引き続き処理される基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、既に処理された基材2の表面へはほとんど流れず、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な冷却、または予備的な加熱を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
なお、本実施の形態においては、実施の形態2よりもさらに、プラズマ噴出口から噴出する高温のガスが、既に処理された基材2の表面へ流れにくく、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れやすい構成となっており、より精密な温度制御が実現できる。
(実施の形態5)
以下、本発明の実施の形態5について、図7を参照して説明する。
図7は、本発明の実施の形態5における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図7において、基材載置台1上に基材2が載置され、誘導結合型プラズマトーチユニットTが、環状チャンバからプラズマ噴出口へ向かうプラズマジェットの照射の向きと、相対的に移動する向きが、垂直ではなく傾斜するよう配置される。
なお、本実施の形態においては、誘導結合型プラズマトーチユニットTを、基材に対して紙面の左から右へ(図中の太い矢印の向きへ)走査する。そして、実施の形態1と同様、処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、プラズマ噴出口の中心に向かう半直線と、基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角が鋭角となっている。
加えて、プラズマ噴出口と平行に、プラズマ噴出口よりも、既に処理された基材2の表面に近い部分に設けられたガス排気口13を備え、ガス排気口13が吸引するガスの流れ方向が、基材2がなす平面と垂直でなく平行になっている。つまり、プラズマ噴出口から流れ出たガスが、基材2の表面に沿って流れる向きと、ガス排気口13が吸引するガスが、基材2の表面に沿って流れる向きが一致するように構成している。
したがって、基材2の表面に、相対的な移動の方向、より詳しくは、引き続き処理される基材2の表面から既に処理された基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、引き続き処理される基材2の表面へはほとんど流れず、既に処理された基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な加熱、または除冷を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
なお、本実施の形態においては、実施の形態1よりもさらに、プラズマ噴出口から噴出する高温のガスが、引き続き処理される基材2の表面へ流れにくく、既に処理された基材2の表面へ向かって基材2に熱エネルギーを与えながら流れやすい構成となっており、より精密な温度制御が実現できる。
(実施の形態6)
以下、本発明の実施の形態6について、図8を参照して説明する。
図8は、本発明の実施の形態6における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図8において、基材載置台1上に基材2が載置され、誘導結合型プラズマトーチユニットTが、環状チャンバからプラズマ噴出口へ向かうプラズマジェットの照射の向きと、相対的に移動する向きが、垂直ではなく傾斜するよう配置される。
なお、本実施の形態においては、誘導結合型プラズマトーチユニットTを、基材に対して紙面の左から右へ(図中の太い矢印の向きへ)走査する。そして、実施の形態2と同様、処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、プラズマ噴出口の中心に向かう半直線と、基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角が鈍角となっている。
加えて、プラズマ噴出口と平行に、プラズマ噴出口よりも、引き続き処理される基材2の表面に近い部分に設けられたガス排気口13を備え、ガス排気口13が吸引するガスの流れ方向が、基材2がなす平面と垂直でなく平行になっている。つまり、プラズマ噴出口から流れ出たガスが、基材2の表面に沿って流れる向きと、ガス排気口13が吸引するガスが、基材2の表面に沿って流れる向きが一致するように構成している。
したがって、基材2の表面に、相対的な移動の方向、より詳しくは、既に処理された基材2の表面から引き続き処理される基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、既に処理された基材2の表面へはほとんど流れず、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な冷却、または予備的な加熱を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
なお、本実施の形態においては、実施の形態2よりもさらに、プラズマ噴出口から噴出する高温のガスが、既に処理された基材2の表面へ流れにくく、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れやすい構成となっており、より精密な温度制御が実現できる。
(実施の形態7)
以下、本発明の実施の形態7について、図9を参照して説明する。
図9は、本発明の実施の形態7における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図9において、基材載置台1上に基材2が載置され、誘導結合型プラズマトーチユニットTが、環状チャンバからプラズマ噴出口へ向かうプラズマジェットの照射の向きと、相対的に移動する向きが、垂直になるよう配置される。
なお、本実施の形態においては、誘導結合型プラズマトーチユニットTを、基材に対して紙面の左から右へ(図中の太い矢印の向きへ)走査する。そして、処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、プラズマ噴出口の中心に向かう半直線と、基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角が垂直(90°)となっている。一方、プラズマ噴出口と平行に、プラズマ噴出口よりも、引き続き処理される基材2の表面に近い部分に設けられたガス噴出口12を備えている。
よって、プラズマ噴出口から流れ出たガスが、ガス噴出口12から噴出したガスの流れに押され、基材2の表面に沿って、引き続き処理される基材2の表面から既に処理された基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、引き続き処理される基材2の表面へはほとんど流れず、既に処理された基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な加熱、または除冷を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
なお、ガス噴出口12の代わりに、ガス排気口を同じ配置で設けることにより、プラズマ噴出口から流れ出たガスが、ガス排気口が吸引するガスの流れに引っ張られ、基材2の表面に沿って、既に処理された基材2の表面から引き続き処理される基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することもできる。つまり、プラズマ噴出口から噴出する高温のガスは、既に処理された基材2の表面へはほとんど流れず、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、
また、より急峻な冷却、または予備的な加熱を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
(実施の形態8)
以下、本発明の実施の形態8について、図10を参照して説明する。
図10は、本発明の実施の形態8における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図10において、基材載置台1上に基材2が載置され、誘導結合型プラズマトーチユニットTが、環状チャンバからプラズマ噴出口へ向かうプラズマジェットの照射の向きと、相対的に移動する向きが、垂直になるよう配置される。
なお、本実施の形態においては、誘導結合型プラズマトーチユニットTを、基材に対して紙面の左から右へ(図中の太い矢印の向きへ)走査する。そして、処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、プラズマ噴出口の中心に向かう半直線と、基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角が垂直(90°)となっている。
一方、プラズマ噴出口と平行に、プラズマ噴出口よりも、既に処理された基材2の表面に近い部分に設けられたガス排気口13を備えている。よって、プラズマ噴出口から流れ出たガスが、ガス排気口13が吸引するガスの流れに引っ張られ、基材2の表面に沿って、引き続き処理される基材2の表面から既に処理された基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、引き続き処理される基材2の表面へはほとんど流れず、既に処理された基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な加熱、または除冷を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
なお、ガス排気口13の代わりに、ガス噴出口を同じ配置で設けることにより、プラズマ噴出口から流れ出たガスが、ガス噴出口が噴出するガスの流れに押され、基材2の表面に沿って、既に処理された基材2の表面から引き続き処理される基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することもできる。つまり、プラズマ噴出口から噴出する高温のガスは、既に処理された基材2の表面へはほとんど流れず、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な冷却、または予備的な加熱を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
(実施の形態9)
以下、本発明の実施の形態9について、図11を参照して説明する。
図11は、本発明の実施の形態9における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図11において、基材載置台1上に基材2が載置されている。本実施の形態においては、誘導結合型プラズマトーチユニットTを、基材に対して紙面の左から右へ(図中の太い矢印の向きへ)走査する。誘導結合型プラズマトーチユニットTにおいて、導体製のソレノイドコイル3が第一石英ブロック4及び第二石英ブロック5の近傍に配置される。誘電体製の長尺チャンバは、第一石英ブロック4、第二石英ブロック5及び基材2の表面によって囲まれた空間(長尺チャンバ内部の空間7)により画定される。長尺チャンバのソレノイドコイル3に近い側の内壁面は、ソレノイドコイル3と平行な曲面である。このような構成では、ソレノイドコイル3の任意の部位において、ソレノイドコイル3から長尺チャンバまでの距離が等しくなるので、小さい高周波電力で誘導結合性プラズマの発生が可能となり、効率の良いプラズマ生成が実現できる。
長尺チャンバ内部の空間7は、内部誘電体ブロックとしての第二石英ブロック5の外壁面と、これが挿入された外部誘電体ブロックとしての第一石英ブロック4の内壁面に囲まれている。つまり、長尺チャンバは、プラズマ噴出口以外が誘電体で囲まれている構成である。また、長尺チャンバ内部の空間7は環状である。
ここでいう環状とは、一続きの閉じたヒモ状をなす形状を意味し、円形に限定されるものではない。本実施の形態においては、レーストラック形(2つの長辺をなす直線部と、その両端に2つの短辺をなす円、楕円、または直線が連結されてなる、一続きの閉じたヒモ状の形状)の長尺チャンバを例示している。長尺チャンバ内部の空間7に発生したプラズマPは、長尺チャンバにおける長尺で線状のプラズマ噴出口において、基材2に接触する。また、長尺チャンバの長手方向とプラズマ噴出口の長手方向とは平行に配置されている。また、プラズマ噴出口の開口幅は、環状チャンバの太さ(環状チャンバを構成する、一続きの閉じたヒモの太さ)に等しい。
第二石英ブロック5の内部にプラズマガスマニホールド9が設けられている。プラズマガス供給配管10よりプラズマガスマニホールド9に供給されたガスは、第二石英ブロック5に設けられたガス導入部としてのプラズマガス供給穴11(貫通穴)を介して、長尺チャンバ内部の空間7に導入される。このような構成により、長手方向に均一なガス流れを簡単に実現できる。プラズマガス供給配管10へ導入するガスの流量は、その上流にマスフローコントローラなどの流量制御装置を備えることにより制御される。
プラズマガス供給穴11は、丸い穴状のものを長手方向に複数設けたものであるが、長尺のスリットであってもよい。
ソレノイドコイル3は中空の銅管からなり、内部が冷媒流路となっている。すなわち、水などの冷媒を流すことで、冷却が可能である。第一石英ブロック4及び第二石英ブロック5の冷却方法としては、実施の形態1〜8と同様、その内部に冷媒流路を設けてもよいし、ソレノイドコイル3を接着して間接的に冷却してもよい。図では冷却のための構造は省略している。
長方形の線状のプラズマ噴出口が設けられ、基材載置台1(或いは、基材載置台1上の基材2)は、プラズマ噴出口と対向して配置されている。
この状態で、長尺チャンバ内にガスを供給しつつ、プラズマ噴出口から基材2に向けてガスを噴出させながら、図示していない高周波電源よりソレノイドコイル3に高周波電力を供給することにより、長尺チャンバ内部の空間7にプラズマPを発生させ、プラズマ噴出口付近のプラズマを基材2に曝露することにより、基材2上の薄膜などをプラズマ処理することができる。プラズマ噴出口の長手方向に対して垂直な向きに、長尺チャンバと基材載置台1とを相対的に移動させることで、基材2を処理する。
本実施の形態では、プラズマPにおいて電子密度や活性粒子密度の高い部分を基材2の表面に曝露させるので、実施の形態1〜8に比べて、より高速な処理、あるいは、より高温の処理が可能となる。
一方、プラズマPを安定的に基材2に作用させるには、誘導結合型プラズマトーチユニットTを基材2に近接させる必要があるため、実施の形態1〜6のように傾斜配置することができない。そこで、プラズマ噴出口と平行に、プラズマ噴出口よりも、引き続き処理される基材2の表面に近い部分に設けられたガス噴出口12を備えている。ガス噴出口12においては、ガス噴出口12から基材2へ向かうガス流れの向きと、相対的に移動する向きが、垂直ではなく傾斜するよう配置される(ガス噴出口12からプラズマ噴出口へ向かってガスが噴出されるような向きに傾斜させる)。
よって、プラズマ噴出口から流れ出たガスが、ガス噴出口12から噴出したガスの流れに押され、基材2の表面に沿って、引き続き処理される基材2の表面から既に処理された基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、引き続き処理される基材2の表面へはほとんど流れず、既に処理された基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な加熱、または除冷を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
なお、ガス噴出口12の代わりに、ガス排気口を同じ配置で設けることにより、プラズマ噴出口から流れ出たガスが、ガス排気口が吸引するガスの流れに引っ張られ、基材2の表面に沿って、既に処理された基材2の表面から引き続き処理される基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することもできる。つまり、プラズマ噴出口から噴出する高温のガスは、既に処理された基材2の表面へはほとんど流れず、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な冷却、または予備的な加熱を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
また、ガス噴出口12から反応性ガスを噴出することも可能である。この場合、プラズマと反応性ガス流を同時に基材2へ照射し、エッチング、CVD、ドーピングなどのプラズマ処理を実現することができる。エッチングに用いる反応ガスとしては、ハロゲン含有ガス、例えば、Cxy(x、yは自然数)、SF6などがあり、シリコンやシリコン化合物などをエッチングすることができる。反応ガスとしてO2を用いれば、有機物の除去、レジストアッシングなどが可能となる。
CVDに用いる反応ガスとしては、モノシラン、ジシランなどがあり、シリコンやシリコン化合物の成膜が可能となる。あるいは、TEOS(TeTraeThoxysilane)に代表されるシリコンを含有した有機ガスとO2の混合ガスを用いれば、シリコン酸化膜を成膜することができる。
(実施の形態10)
以下、本発明の実施の形態10について、図12を参照して説明する。
図12は、本発明の実施の形態10における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図12において、実施の形態9で説明したものと同様の構造の誘導結合型プラズマトーチユニットTを用いているが、ガス噴出口12を配置せずに、誘導結合型プラズマトーチユニットTの内部にガス排気口13を配置した点が異なる。
すなわち、プラズマ噴出口と平行に、プラズマ噴出口よりも、既に処理された基材2の表面に近い部分に設けられたガス排気口13を備えている。ガス排気口13においては、基材2からガス排気口13へ向かうガス流れの向きと、相対的に移動する向きが、垂直ではなく傾斜するよう配置される(プラズマ噴出口からガス排気口13へ向かってガスが流れていくような向きに傾斜させる)。
よって、プラズマ噴出口から流れ出たガスが、ガス排気口13が吸引するガスの流れに引っ張られ、基材2の表面に沿って、引き続き処理される基材2の表面から既に処理された基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することとなる。つまり、プラズマ噴出口から噴出する高温のガスは、引き続き処理される基材2の表面へはほとんど流れず、既に処理された基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、垂直である場合に比べて、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な加熱、または除冷を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
なお、ガス排気口13の代わりに、ガス噴出口を同じ配置で設けることにより、プラズマ噴出口から流れ出たガスが、ガス噴出口が噴出するガスの流れに押され、基材2の表面に沿って、既に処理された基材2の表面から引き続き処理される基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することもできる。つまり、プラズマ噴出口から噴出する高温のガスは、既に処理された基材2の表面へはほとんど流れず、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な冷却、または予備的な加熱を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
(実施の形態11)
以下、本発明の実施の形態11について、図13を参照して説明する。
図13は、本発明の実施の形態11における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図13において、実施の形態9〜10で説明したものと同様の構造の誘導結合型プラズマトーチユニットTを用いているが、プラズマ噴出口と平行に、プラズマ噴出口よりも、引き続き処理される基材2の表面に近い部分に設けたガス噴出口12と、誘導結合型プラズマトーチユニットTの内部に設けたガス排気口13との両方を配置した点が異なる。また、ガス噴出口12とガス排気口13との間にプラズマ噴出口が配置されるような構成となっている。
このような構成により、実施の形態9〜10よりもさらに、プラズマ噴出口から噴出する高温のガスが、引き続き処理される基材2の表面へ流れにくい構成となっており、より精密な温度制御が実現できる。
また、ガス噴出口12とガス排気口13の機能を逆転させることにより、基材2の表面に沿って、既に処理された基材2の表面から引き続き処理される基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することもできる。つまり、プラズマ噴出口から噴出する高温のガスは、既に処理された基材2の表面へはほとんど流れず、引き続き処理される基材2の表面へ向かって基材2に熱エネルギーを与えながら流れていく。
よって、ガスの流れの向きは安定的で再現性に優れ、また、より急峻な冷却、または予備的な加熱を行うことができる。つまり、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の温度プロファイルの再現性に優れ、また、温度制御性に優れたプラズマ処理を実現できる。
また、反応性ガスを用いてエッチング、CVD、ドーピングなどのプラズマ処理を行う場合には、反応性ガスをガス噴出口12から噴出させる一方で、ガス排気口13から効果的に排気することで、一般に毒性・腐食性をもつ反応性ガスの拡がりを抑制することができる。
(実施の形態12)
以下、本発明の実施の形態12について、図14を参照して説明する。
図14は、本発明の実施の形態12における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。
図14において、実施の形態11で説明したものと同様の構造の誘導結合型プラズマトーチユニットTを用いているが、ガス噴出口12から基材2へ向かうガス流れの向きと、相対的に移動する向きが、垂直であるよう配置され、また、基材2からガス排気口13へ向かうガス流れの向きと、相対的に移動する向きが、垂直であるよう配置される点が異なる。
このように、ガス噴出口12とガス排気口13を、プラズマ噴出口を跨いで配置する場合においては、垂直配置であっても、比較的容易に、基材2の表面に沿って、引き続き処理される基材2の表面から既に処理された基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することができる。
また、ガス噴出口12とガス排気口13の機能を逆転させることにより、基材2の表面に沿って、既に処理された基材2の表面から引き続き処理される基材2の表面へ向かう向きに、基材2上にガスの流れを形成しつつ処理することもできる。
(実施の形態13)
以下、本発明の実施の形態13について、図15を参照して説明する。
図15は、本発明の実施の形態13における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。図15(a)は誘導結合型プラズマトーチユニットTの着火シーケンス・加速を実施する準備段階を示し、図15(b)はプラズマ処理中の段階を示し、図15(c)はプラズマ処理が完了した後に減速・失火を実施する段階を示す。また、誘導結合型プラズマトーチユニットTは、実施の形態11で用いたものと同じである。
図15において、基材載置台1の両隣に、平板状のカバー16が設けられている。カバー16は、基材2が配置された際に基材2の縁部を囲うように、基材載置台1の周囲に設けられる。また、カバー16の表面と、基材2の表面が、同一平面上に位置するよう構成される。カバー16の内部には、カバー16を冷却するための冷媒流路15が設けられている。カバー16は、装置をプラズマから保護する機能と、プラズマの着火・失火をスムーズに行えるよう、環状チャンバの形状を一定に保つ機能がある。基材2を基材載置台1上に載置した際に、カバー16と基材2との間に生ずる隙間はできるだけ小さい方が好ましい。
なお、カバー16の少なくとも表面は、絶縁材料から構成されていることが好ましい。あるいは、導体材料で構成する場合は、浮遊電位にすることが好ましい。このような構成により、プラズマとカバー16との間でアーク放電が起きることを効果的に抑制できる。カバー16の少なくとも表面を絶縁材料から構成するに際しては、カバー16全体を石英、セラミックスなどの絶縁体で構成してもよいし、ステンレス、アルミニウムなどの金属(導体)に、溶射、CVD、塗工などにより絶縁皮膜を形成したものを用いてもよい。
また、誘導結合型プラズマトーチユニットTとは別の熱源として、ランプヒーター17、及び、反射板18が設けられ、かつ、ランプヒーター17と誘導結合型プラズマトーチユニットTとの相対位置とを固定したまま、誘導結合型プラズマトーチユニットTと基材載置台1とを相対的に移動可能としている。
このような構成では、基材2はプラズマ未処理段階においてはランプヒーター17による加熱を受けず、プラズマジェットが照射された基材上の部分に順次エネルギー(ランプヒーター17からの熱束)が加えられていく。つまり、プラズマ処理により急速に加熱された基材2の表面の温度が低下しきる前にランプ照射することで、除冷を行うことができる。このとき、ランプ電力を徐々に低下させることにより、与えるエネルギーを徐々に減じてもよい。
このような、プラズマによる加熱と、ランプなどの外部熱源を組合わせる場合は、実施の形態1〜12に示したように、基材2上にガスの流れを形成しつつ処理すると、一層効果的な温度制御が可能となる。
(実施の形態14)
以下、本発明の実施の形態14について、図16を参照して説明する。
図16は、本発明の実施の形態14における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。図16(a)は誘導結合型プラズマトーチユニットTの着火シーケンス・加速を実施する準備段階を示し、図16(b)はプラズマ処理中の段階を示し、図16(c)はプラズマ処理が完了した後に減速・失火を実施する段階を示す。
図16において、装置の構成は実施の形態13とほぼ同じであるが、冷却ガス供給ノズル20が設けられている点と、運転の手順が異なる。基材2はプラズマ未処理段階においてランプヒーター17による加熱を受け(ランプヒーター17からの熱束が加えられ)、プラズマジェットが照射された基材上の部分はランプヒーター17による加熱を受けない構成である。
また、冷却ガス供給ノズル20からプラズマ処理を行った後の基材2の表面に向けて、低温のガスが吹きつけられる。つまり、基材2の表面は予備的に加熱され、プラズマ処理を行った後急速に冷却される。このとき、ランプ電力を徐々に増すことにより、与えるエネルギーを徐々に増してもよい。
このような、プラズマによる加熱と、ランプなどの外部熱源を組み合わせる場合は、実施の形態1〜12に示したように、基材2上にガスの流れを形成しつつ処理すると、一層効果的な温度制御が可能となる。
(実施の形態15)
以下、本発明の実施の形態15について、図17を参照して説明する。
図17は、本発明の実施の形態15における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。図17(a)は誘導結合型プラズマトーチユニットTの着火シーケンス・加速を実施する準備段階を示し、図17(b)はプラズマ処理中の段階を示し、図17(c)はプラズマ処理が完了した後に減速・失火を実施する段階を示す。
誘導結合型プラズマトーチユニットTとは別の熱源として、ランプヒーター17、及び、反射板18が設けられている。また、誘導結合型プラズマトーチユニットTに固定された、ランプヒーター17と基材載置台1とを熱的に遮蔽する遮蔽機構としてのシャッター19が設けられ、かつ、誘導結合型プラズマトーチユニットTとシャッター19との相対位置を固定しつつランプヒーター17と基材載置台1との相対位置を固定したまま、誘導結合型プラズマトーチユニットTと基材載置台1とを相対的に移動可能としている。
このような構成では、基材2はプラズマ未処理段階においてはランプヒーター17による加熱を受けず、プラズマジェットが照射された基材上の部分に順次エネルギー(ランプヒーター17からの熱束)が加えられていく。つまり、プラズマ処理により急速に加熱された基材2の表面の温度が低下しきる前にランプ照射することで、除冷を行うことができる。このとき、ランプ電力を徐々に低下させることにより、与えるエネルギーを徐々に減じてもよい。
このような、プラズマによる加熱と、ランプなどの外部熱源を組合わせる場合は、実施の形態1〜12に示したように、基材2上にガスの流れを形成しつつ処理すると、一層効果的な温度制御が可能となる。
(実施の形態16)
以下、本発明の実施の形態16について、図18を参照して説明する。
図18は、本発明の実施の形態16における、基材を処理している状態のプラズマ処理装置の構成を示す断面図である。図18(a)は誘導結合型プラズマトーチユニットTの着火シーケンス・加速を実施する準備段階を示し、図18(b)はプラズマ処理中の段階を示し、図18(c)はプラズマ処理が完了した後に減速・失火を実施する段階を示す。
図18において、装置の構成は実施の形態15とほぼ同じであるが、冷却ガス供給ノズル20が設けられている点と、運転の手順が異なる。基材2はプラズマ未処理段階においてランプヒーター17による加熱を受け(ランプヒーター17からの熱束が加えられ)、プラズマジェットが照射された基材上の部分はランプヒーター17による加熱を受けない構成である。
また、冷却ガス供給ノズル20からプラズマ処理を行った後の基材2の表面に向けて、低温のガスが吹きつけられる。つまり、基材2の表面は予備的に加熱され、プラズマ処理を行った後急速に冷却される。このとき、ランプ電力を徐々に増すことにより、与えるエネルギーを徐々に増してもよい。
このような、プラズマによる加熱と、ランプなどの外部熱源を組合わせる場合は、実施の形態1〜12に示したように、基材2上にガスの流れを形成しつつ処理すると、一層効果的な温度制御が可能となる。
以上述べたプラズマ処理方法及び装置は、本発明の適用範囲のうちの典型例を例示したに過ぎない。
例えば、誘導結合型プラズマトーチユニットTを、固定された基材載置台1に対して走査してもよいし、固定された誘導結合型プラズマトーチユニットTに対して、基材載置台1を走査してもよい。
また、本発明の種々の構成によって、基材2の表面近傍を高温処理することが可能となる。更に、従来例で詳しく述べたTFT用半導体膜の結晶化や太陽電池用半導体膜の改質に適用可能であることは勿論、プラズマディスプレイパネルの保護層の清浄化や脱ガス低減、シリカ微粒子の集合体からなる誘電体層の表面平坦化や脱ガス低減、種々の電子デバイスのリフロー、固体不純物源を用いたプラズマドーピングなど、さまざまな表面処理に適用できる。また、太陽電池の製造方法としては、シリコンインゴットを粉砕して得られる粉末を基材上に塗布し、これにプラズマを照射して溶融させ多結晶シリコン膜を得る方法にも適用可能である。
また、プラズマの着火を容易にするために、着火源を用いることも可能である。着火源としては、ガス給湯器などに用いられる点火用スパーク装置などを利用できる。
また、説明においては簡単のため「熱プラズマ」という言葉を用いているが、熱プラズマと低温プラズマの区分けは厳密には難しく、また、例えば、田中康規「熱プラズマにおける非平衡性」プラズマ核融合学会誌、Vol.82、No.8(2006)pp.479−483において解説されているように、熱的平衡性のみでプラズマの種類を区分することも困難である。本発明は、基材を熱処理することを一つの目的としており、熱プラズマ、熱平衡プラズマ、高温プラズマなどの用語にとらわれず、高温のプラズマを照射する技術に関するものに適用可能である。
以上のように本発明は、TFT用半導体膜の結晶化や太陽電池用半導体膜の改質に適用可能である。勿論、プラズマディスプレイパネルの保護層の清浄化や脱ガス低減、シリカ微粒子の集合体からなる誘電体層の表面平坦化や脱ガス低減、種々の電子デバイスのリフロー、固体不純物源を用いたプラズマドーピングなど、様々な表面処理において、基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、プラズマを安定的かつ効率的に発生させ、基材の所望の被処理領域全体を短時間で効率よく処理する上で有用な発明である。
また、種々の電子デバイスなどの製造における、エッチング・成膜・ドーピング・表面改質などの低温プラズマ処理において、基材の所望の被処理領域全体を短時間で効率よく処理する上で有用な発明である。
T 誘導結合型プラズマトーチユニット
3 ソレノイドコイル
4 第一石英ブロック
5 第二石英ブロック
7 長尺チャンバ内部の空間
8 プラズマ噴出口
9 プラズマガスマニホールド
10 プラズマガス供給配管
11 プラズマガス供給穴
15 冷媒流路
P プラズマ

Claims (13)

  1. チャンバ内にガスを供給しつつ、前記チャンバに形成された長尺の開口部から基材に向けてガスを噴出すると共に、前記チャンバ内にプラズマを発生させ、前記開口部から基材に向けてプラズマジェットを照射しつつ、前記チャンバと前記基材とを、前記開口部がなす長尺方向とは垂直な方向に相対的に移動しながら前記基材の表面を処理するプラズマ処理方法であって、
    基材の表面に、前記相対的な移動の方向にガスの流れを形成しつつ処理すること、
    を特徴とするプラズマ処理方法。
  2. 前記プラズマジェットの照射の向きが、前記相対的な移動の方向に対して傾斜している、請求項1記載のプラズマ処理方法。
  3. 処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、前記開口部の中心に向かう半直線と、前記基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角が、鋭角である、請求項2記載のプラズマ処理方法。
  4. 処理中のある時点において、基材上のプラズマジェットが照射されている部分の中心から、前記開口部の中心に向かう半直線と、前記基材上のプラズマジェットが照射されている部分の中心から、引き続き処理される基材上の部分の中心に向かう半直線とのなす角が、鈍角である、請求項2記載のプラズマ処理方法。
  5. プラズマジェットが照射された基材上の部分にエネルギーを加えるとともに、前記エネルギーを徐々に減じる、請求項1記載のプラズマ処理方法。
  6. プラズマジェットが照射される前の基材上の部分にエネルギーを加えるとともに、前記エネルギーを徐々に増す、請求項4記載のプラズマ処理方法。
  7. 基材の表面がシリコン膜であり、プラズマジェットの照射によって非晶質シリコン膜を結晶膜に変化させるプラズマ処理である、請求項5記載のプラズマ処理方法。
  8. 基材載置台と、
    チャンバ及びチャンバに連通する長尺の開口部を備えたプラズマトーチと、
    前記チャンバと前記基材載置台とを前記開口部がなす長尺方向とは垂直な方向に相対的に移動可能とする移動機構と、を備えたプラズマ処理装置において、
    前記チャンバから前記開口部へ向かうプラズマジェットの照射の向きと、前記相対的に移動する向きが、垂直ではなく傾斜していること、
    を特徴とするプラズマ処理装置。
  9. 基材載置台と、
    チャンバ及びチャンバに連通する長尺の開口部を備えたプラズマトーチと、
    前記プラズマトーチと前記基材載置台とを前記開口部がなす長尺方向とは垂直な方向に相対的に移動可能とする移動機構と、を備えた装置において、
    前記開口部と平行に設けられたガス噴出口を備え、
    前記ガス噴出口から噴出するガスの流れ方向が、基材がなす平面と垂直でないこと、
    を特徴とするプラズマ処理装置。
  10. 基材載置台と、
    チャンバ及びチャンバに連通する長尺の開口部を備えたプラズマトーチと、
    前記プラズマトーチと前記基材載置台とを前記開口部がなす長尺方向とは垂直な方向に相対的に移動可能とする移動機構と、を備えた装置において、
    前記開口部と平行に設けられたガス排気口を備え、
    前記ガス排気口が吸引するガスの流れ方向が、基材がなす平面と垂直でないこと、
    を特徴とするプラズマ処理装置。
  11. 基材載置台と、
    チャンバ及びチャンバに連通する長尺の開口部を備えたプラズマトーチと、
    前記プラズマトーチと前記基材載置台とを前記開口部がなす長尺方向とは垂直な方向に相対的に移動可能とする移動機構と、を備えた装置において、
    前記開口部と平行に設けられたガス噴出口と、前記開口部と平行に設けられたガス排気口を備え、前記噴出口と前記ガス排気口との間に前記開口部を配置したこと、
    を特徴とするプラズマ処理装置。
  12. 前記プラズマトーチとは別の熱源と、前記熱源と前記プラズマトーチとの相対位置とを固定したまま、前記プラズマトーチと基材載置台とを相対的に移動可能とした、請求項8、9、10または11に記載のプラズマ処理装置。
  13. 前記プラズマトーチとは別の熱源と、前記熱源と前記基材載置台とを熱的に遮蔽する遮蔽機構とを備え、かつ、前記プラズマトーチと前記遮蔽機構との相対位置を固定しつつ前記熱源と前記基材載置台との相対位置を固定したまま、前記プラズマトーチと基材載置台とを相対的に移動可能とした、請求項8、9、10または11に記載のプラズマ処理装置。
JP2012204062A 2012-09-18 2012-09-18 プラズマ処理方法及びプラズマ処理装置 Pending JP2014060035A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204062A JP2014060035A (ja) 2012-09-18 2012-09-18 プラズマ処理方法及びプラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204062A JP2014060035A (ja) 2012-09-18 2012-09-18 プラズマ処理方法及びプラズマ処理装置

Publications (1)

Publication Number Publication Date
JP2014060035A true JP2014060035A (ja) 2014-04-03

Family

ID=50616328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204062A Pending JP2014060035A (ja) 2012-09-18 2012-09-18 プラズマ処理方法及びプラズマ処理装置

Country Status (1)

Country Link
JP (1) JP2014060035A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004513U (ko) * 2016-12-07 2016-12-28 주식회사 나래나노텍 개선된 저온 미스트 cvd 장치
WO2017056184A1 (ja) * 2015-09-29 2017-04-06 富士機械製造株式会社 プラズマ照射方法、およびプラズマ照射システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056184A1 (ja) * 2015-09-29 2017-04-06 富士機械製造株式会社 プラズマ照射方法、およびプラズマ照射システム
KR20160004513U (ko) * 2016-12-07 2016-12-28 주식회사 나래나노텍 개선된 저온 미스트 cvd 장치
KR200485392Y1 (ko) 2016-12-07 2018-01-31 주식회사 나래나노텍 개선된 저온 미스트 cvd 장치

Similar Documents

Publication Publication Date Title
JP5467371B2 (ja) 誘導結合型プラズマ処理装置及び誘導結合型プラズマ処理方法
JP5429268B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP5510436B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP6191887B2 (ja) プラズマ処理装置
JP6064174B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2012174500A (ja) プラズマ処理装置及び方法
JP5861045B2 (ja) プラズマ処理装置及び方法
JP2013229211A (ja) プラズマ処理装置及び方法
JP5617817B2 (ja) 誘導結合型プラズマ処理装置及び誘導結合型プラズマ処理方法
JP2013120687A (ja) プラズマ処理装置及びプラズマ処理方法
JP5500097B2 (ja) 誘導結合型プラズマ処理装置及び方法
JP2014060035A (ja) プラズマ処理方法及びプラズマ処理装置
JP5899422B2 (ja) 誘導結合型プラズマ処理装置及び方法
JP5821984B2 (ja) 電子デバイスの製造方法
JP6264762B2 (ja) プラズマ処理装置及び方法
JP2013098067A (ja) プラズマ処理装置及び方法
JP5578155B2 (ja) プラズマ処理装置及び方法
JP5617818B2 (ja) 誘導結合型プラズマ処理装置及び誘導結合型プラズマ処理方法
JP6064176B2 (ja) 誘導結合型プラズマ処理装置及び方法
JP6074668B2 (ja) プラズマ処理装置及び方法
JP5056926B2 (ja) プラズマ処理装置及び方法
JP5182340B2 (ja) プラズマ処理装置及び方法
JP5906391B2 (ja) プラズマ処理装置及び方法
JP2013037977A (ja) プラズマ処理装置及びプラズマ処理方法
JP2014060037A (ja) プラズマ処理装置及び方法