JP2014056635A - パターンドメディア上の領域を別々に加工する方法 - Google Patents

パターンドメディア上の領域を別々に加工する方法 Download PDF

Info

Publication number
JP2014056635A
JP2014056635A JP2013188996A JP2013188996A JP2014056635A JP 2014056635 A JP2014056635 A JP 2014056635A JP 2013188996 A JP2013188996 A JP 2013188996A JP 2013188996 A JP2013188996 A JP 2013188996A JP 2014056635 A JP2014056635 A JP 2014056635A
Authority
JP
Japan
Prior art keywords
region
pattern
area
patterned
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013188996A
Other languages
English (en)
Inventor
Kurt A Rubin
エー.ルビン カート
Ricardo Ruiz
ルイズ リカルド
S Rele Jeffrey
エス.リール ジェフリー
Lei Wang
ワン レイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
HGST Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HGST Netherlands BV filed Critical HGST Netherlands BV
Publication of JP2014056635A publication Critical patent/JP2014056635A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/743Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching

Abstract

【課題】パターンドメディア上に凹凸構造密度の異なる領域を加工する方法を提供する。
【解決手段】本発明は、リソグラフィによりパターン形成された表面層(第一の領域内の第一のパターンと第二の領域内の第二のパターンを含む)の下に外側層を有する基板を提供するステップと、第一の領域上に第一のマスキング材料を塗布するステップと、第二のパターンを第二の領域内の外側層に転写するステップと、リソグラフィによりパターン形成された表面層の上に前記第一のパターンと整合する自己組織化ブロックコポリマ構造を形成するステップと、第二のマスキング材料を第二の領域の上に塗布するステップと、ポリマブロックパターンを第一の領域内の外側層に転写するステップと、第二の領域内の外側層に転写された第二のパターンと第一の領域内の外側層に転写されたポリマブロックパターンに従って基板をエッチングするステップとを含む。
【選択図】図6

Description

本発明の主旨は、パターンドメディアの製造方法に関し、より詳しくは、凹凸構造密度が異なる領域を有するパターンドメディアと集積回路の製造に関する。
長年にわたり、データと情報の記録には従来の磁気記録装置が使用されている。磁気記録装置は一般に、磁性材料の単位(「ビット」という)を含み、これは異なる磁性状態、たとえば正の状態と負の状態に磁化することができる。各ビットは、そのビットの磁化状態に応じて情報(一般に、1または0の形の二値情報)を保存できる。したがって、磁気記録装置は一般に、磁性材料の上方を通過して各ビットの磁化状態を認識する「読取り」要素と、磁性材料の上方を通過して各ビットの磁化状態を変化させることにより、個々の単位の情報を記録する「書込み」要素を含む。そのため、磁気記録装置に記憶できる情報の量は、磁気記録装置上の磁気ビットの数に正比例する。
多様な磁気記憶装置が存在し、種類ごとに製造工程が異なる。たとえば、従来のグラニュラ磁気記録装置は、各ビット上に複数の磁気微粒子を持つ磁気層ビットを有するディスクである。グラニュラ磁気装置では、ビットのすべてが同一平面上にあり、ディスクの表面は平滑で連続的である。グラニュラ磁気ディスク上に記憶できる情報量を増大させるために、微粒子の大きさを一定に保ちながら、ビットの大きさを縮小することができる。しかしながら、ビットが小さくなると、各ビット上の微粒子の数が減り、これによって信号対ノイズ比が低下する(信号が減少し、ノイズが増大する)。信号対ノイズ比を改善するために、ビットの大きさと微粒子の大きさの両方を縮小し、それゆえ各ビット上の微粒子の数を同じままとする方法が開発されてきた。しかしながら、微粒子が小さくなりすぎると、熱揺らぎによって微粒子が自然に極性を反転させる可能性があり、その結果、記憶が不安定となり、情報が失われる。
ビットパターンドメディア装置は、磁気記憶装置の別の例である。ビットパターンドメディアでは、ビットが従来のリソグラフィとエッチング技術を使って表面に物理的にエッチングされる。グラニュラ磁気記録装置と異なり、ビットパターンドメディア装置は、交差する溝と隆起したビット島状構造とで地形的にパターン形成される。ある場合には、溝が磁性材料に直接エッチングされ、他の場合には、物理的パターンが基板にエッチングされてから、パターン形成されたその基板が磁性材料でコーティングされる。隆起したビット島状構造と溝の間が物理的に分離されているため、各個別ビットアイランドの幅を縮小することにより、高い信号対ノイズ比と高い熱安定性を維持しながら装置の面記録密度を高めることができる。
実際、従来のビットパターンドメディアの面記録密度を制限するのは従来のリソグラフィ技術の解像限界だけであり、グラニュラ磁気記録装置のように安定性の問題では制約されない。たとえば、磁気記録用ビットパターンドメディアは、1平方インチ当たり1兆ビット(Tbit/in)を超えるビット密度で熱的および磁気的に安定しうる。しかしながら、従来のリソグラフィで実現可能なビットパターン密度とそれに伴うサーボ凹凸構造は、最高でも約0.5Tbit/in程度である。
リソグラフィには、パターン形成対象の媒体をレジスト材料で被覆し、照射物(光または電子ビーム)をレジスト材料に向けて特定のパターンで放出して、レジスト材料の特定の部分を現像することが関わる。この照射により、レジスト材料の一部を選択的に除去できる状態となる。レジスト材料が除去された部分から、媒体のうちパターン形成された部分が露出し、そこがさらに加工される。従来のリソグラフィ工程は、約30ナノメートル程度の微細な凹凸構造のパターン形成が可能であるが、ビットパターンドメディアにはこれよりはるかに微細な凹凸構造と、より高密度のパターンが求められているため、すでに従来のリソグラフィ技術はその解像限界に達している。
したがって、ビットパターンドメディアのパターン密度を増大させるために、その他の技術がこれまでに開発され、現在も開発中である。たとえば、ブロックコポリマ(block copolymers)の自己組織化(directed self-assembly)によって、1Tbit/inを超えるビット密度が実現されている。いずれも本出願と同じ譲受人に譲渡された(特許文献1)と(特許文献2)に詳しく述べられているように、ブロックコポリマの誘導自己組織化は、面記録密度を増大させ、および/または従来のリソグラフィによるビットパターンを修正するために使用できる。ブロックコポリマの自己組織化に関するその他の詳細と説明は、本発明の主旨に関して以下の詳細な説明の中に含める。
しかしながら、ブロックコポリマの誘導自己組織化等の高密度化技術を用いてパターンドメディアを作製する場合、パターンドメディアは1つの凹凸構造密度に限定される可能性がある。換言すれば、特定の用途で凹凸構造密度の高い領域と凹凸構造密度の低い領域の両方を有するパターンドメディアを必要とする場合、従来の高密度化技術は使用できない。たとえば、従来のビットパターンド磁気記録ハードディスクドライブは一般に、データ領域とサーボ領域を含む。データ領域は一般に情報の読取り/書込みを行うための反復的なビット島状構造を含み、サーボ領域は、位置誤差信号発生(PES)がその1つの目的とされる。ビットパターンド磁気ハードディスクドライブの記録能力と性能を改善するためには、サーボ凹凸構造の密度を従来のリソグラフィの解像限度内に保ちながら、データビット島状構造の密度は従来のリソグラフィの解像限界より高くすることが有利であろう。従来の高密度化技術はパターンドメディアの表面全体に影響を与えるため、これらの技術は使用できない。
他の例として、集積回路にはしばしば、不均一で反復的でない多様な凹凸構造が含まれる。ブロックコポリマの自己組織化等の従来の高密度化技術は集積回路の製造には有益ではなく、これは、集積回路の表面上の異なる領域におそらく異なる凹凸構造密度がそれぞれ必要となるからである。
米国特許第8,059,350号明細書 米国特許第8,119,017号明細書
上記の説明から、パターンドメディアの領域を別々に加工して領域ごとに異なる凹凸構造密度を実現する方法が求められていることが明らかであろう。本出願の主旨は、現在の技術に応答して、特に現時点で利用可能なマイクロ加工およびナノ加工技術ではまだ十分に解決されていない当業界での問題とニーズに対応して開発された。したがって、本発明は、当業界における上記の問題の多くまたは全部を克服する、パターンドメディアの領域を別々に加工する方法を提供するために開発された。
1つの実施形態によれば、パターンドメディアの製造方法は、リソグラフィによりパターン形成された表面層の下の外側層を有する基板を提供するステップであって、リソグラフィによりパターン形成された表面層が第一の領域内の第一のパターンと第二の領域内の第二のパターンを含むようなステップと、第一の領域の上に第一のマスキング材料を塗布するステップと、第二のパターンを第二の領域内の外側層に転写するステップと、第一のマスキング材料を除去するステップと、リソグラフィによりパターン形成された表面層の上に自己組織化ブロックコポリマ構造を形成するステップであって、自己組織化ブロックコポリマ構造が第一の領域内の第一のパターンと整合し、ポリマブロックパターンを含むようなステップと、第二の領域上に第二のマスキング材料を塗布するステップと、ポリマブロックパターンを第一の領域内の外側層に転写するステップと、第二のマスキング材料と自己組織化ブロックコポリマ構造を除去するステップと、第二の領域内の外側層に転写された第二のパターンと第一の領域内の外側層に転写されたポリマブロックパターンにしたがって基板をエッチングするステップと、を含む。
1つの実施形態において、テンプレートの製造方法を他のパターンドメディアの製造に使用してもよい。また、第一の領域はデータ領域であってもよく、第二の領域はサーボ領域であってもよい。他の実施形態において、第一の領域は第一の密度のデータ領域であり、第二の領域は第二の密度のデータ領域である。また別の実施形態において、第一の領域は第一の密度のサーボ領域であり、第二の領域は第二の密度のサーボ領域である。この方法はまた、フォトレジスト材料または電子ビームレジスト材料、たとえばZEP 520またはポリメチルメタクリレート(poly methyl-methacrylate)(「PMMA」という)を使用するステップも含んでいてよい。
他の実施形態によれば、パターンドメディアの製造方法は、リソグラフィによりパターン形成された表面層の下の外側層を有する基板を提供するステップであって、リソグラフィによりパターン形成された表面層が第一の領域内の第一のパターンと第二の領域内の第二のパターンを含むようなステップと、リソグラフィによりパターン形成された表面層の上に保護層を塗布するステップと、第一の領域の上に第一のマスキング材料を塗布するステップと、第二のパターンにしたがって、リソグラフィによりパターン形成された層の第二の領域内の一部をリフトオフすることによって第二の領域内に保護層パターンを形成するステップと、保護層パターンを第二の領域内の外側層に転写するステップと、第一のマスキング材料と保護層を除去するステップと、リソグラフィによりパターン形成された表面層の上に自己組織化ブロックコポリマ構造を形成するステップであって、自己組織化ブロックコポリマ構造が第一の領域内の第一のパターンと整合し、ポリマブロックパターンを含むようなステップと、第二の領域の上に第二のマスキング材料を塗布するステップと、ポリマブロックパターンを第一の領域内の外側層に転写するステップと、第二のマスキング材料と自己組織化ブロックコポリマ構造を除去するステップと、第二の領域内の外側層に転写された保護層パターンと第一の領域内の外側層に転写されたポリマブロックパターンにしたがって基板をエッチングするステップと、を含む。
1つの実施形態において、テンプレートの製造方法を他のパターンドメディアの製造に使用してもよい。また、第一の領域はデータ領域であってもよく、第二の領域はサーボ領域であってもよい。他の実施形態において、第一の領域は第一の密度のデータ領域であり、第二の領域は第二の密度のデータ領域である。また別の実施形態において、第一の領域は第一の密度のサーボ領域であり、第二の領域は第二の密度のサーボ領域である。この方法はまた、フォトレジスト材料または電子ビームレジスト材料、たとえばZEPまたはポリメチルメタクリレート(PMMA)を使用するステップも含んでいてよい。この方法はさらに、金属保護層を使用するステップを含んでいてもよい。
本発明の主旨はまた、基板と、基板の上に塗布された外側層と、外側層の上に形成された、リソグラフィによりパターン形成された表面層であって、第一の領域内の第一のパターンと第二の領域内の第二のパターンを含み、第二の領域内の第二のパターンが外側層に転写されるような、リソグラフィによりパターン形成された表面層と、第一の領域内の第一のパターンと整合する自己組織化ブロックコポリマ構造と、を含むパターンドメディアに関する。パターンドメディアの第一の領域はデータ領域であってもよく、第二の領域はサーボ領域であってもよい。他の実施形態において、第一の領域は第一の密度のデータ領域であり、第二の領域は第二の密度のデータ領域である。さらに別の実施形態において、第一の領域は第一の密度のサーボ領域であり、第二の領域は第二の密度のサーボ領域である。
本明細書中の特徴、利点への言及またはこれに類する文言は、本発明により実現可能な特徴と利点のすべてが本発明のいずれか1つの実施形態の中に存在すべきこと、または存在することを示唆するものではない。むしろ、特徴と利点に関する文言は、ある実施形態に関連して記された具体的な特徴、利点または特性が本明細書で開示されている主旨の少なくとも1つの実施形態の中に含まれることを意味していると理解するものとする。それゆえ、本明細書全体を通じて、特徴および利点の議論および同様の文言は、同一の実施形態を指しているかもしないが、必ずしもそうとはかぎらない。
さらに、開示された本発明の特徴、利点、特性は、1つまたは複数の実施形態において、どのように適当に組み合わせてもよい。当業者であれば、本明細書の主旨がある特定の実施形態の具体的な特徴または利点の1つまたは複数がなくても実施可能であることがわかるであろう。他の例では、特定の実施形態の中で、本発明のすべての実施形態の中に存在するとはかぎらない、他の特徴と利点が認められるかもしれない。
本発明のこのような特徴と利点は、以下の説明と付属の特許請求の範囲からより十分に明らかとなり、または以下に記されている本発明の実践からわかるであろう。
本発明の利点が理解しやすいように、上で簡単に説明した本発明を、添付の図面に描かれている具体的な実施形態を参照しながらより詳しく説明する。これらの図面は本発明の代表的な実施形態を描いたにすぎず、したがって、その範囲を限定するものとはみなされないことを理解した上で、添付の図面を使って本出願の主旨をさらに具体的かつ詳細に述べ、説明する。
ビットパターンド磁気記録ドライブの1つの実施形態の斜視図とパターン形成された表面の拡大図である。 パターンドメディアの1つの実施形態の側方断面図であり、外側層が基板上に塗布された状態を示す。 図2Aのパターンドメディアの側方断面図であり、1つの実施形態により外側層の上に表面層が塗布された状態を示す。 図2Bのパターンドメディアの側方断面図であり、1つの実施形態により表面層がレジスト層でコーティングされた状態を示す。 図2Cのパターンドメディアの側方断面図であり、1つの実施形態によりリソグラフィでのパターン形成工程を実施した後のレジスト層のパターンを示す。 図2Dのパターンドメディアの側方断面図であり、1つの実施形態による表面層とレジスト層のパターンを示す。 図2Eのパターンドメディアの側方断面図であり、1つの実施形態によりレジスト層が除去された後の表面層のパターンを示す。 外側層と基板に当初のリソグラフィパターンにしたがってエッチングされたパターンが形成された、単純なエッチングの1つの実施形態の側方断面図である。 パターンドメディアの1つの実施形態の側方断面図であり、基板の第一の領域上に新たなマスキング材料が選択的に塗布された状態を示す。 図4Aのパターンドメディアの側方断面図であり、1つの実施形態により第二の領域内の表面層の当初のリソグラフィパターンにしたがって外側層がエッチングされた状態を示す。 図4Bのパターンドメディアの側方断面図であり、1つの実施形態により第二の領域内の基板から表面層が除去され、第一の領域から新たなマスキング材料が除去された状態を示す。 図4Cのパターンドメディアの側方断面図であり、1つの実施形態により、第一の領域内のリソグラフィでパターン形成された表面層の上と第二の領域内のリソグラフィでパターン形成された外側層の上にブロックコポリマが塗布された状態を示す。 図4Dのパターンドメディアの側方断面図であり、1つの実施形態により熱処理を行った後のブロックコポリマを示す。 図4Eのパターンドメディアの側方断面図であり、1つの実施形態により基板の第二の領域上に選択的に他のマスキング材料が塗布された状態を示す。 図4Fのパターンドメディアの側方断面図であり、1つの実施形態による第一の領域内の高密度化パターンを示す。 図4Gのパターンドメディアの側方側面図であり、1つの実施形態により、高密度化パターンで第一の領域内の表面層と外側層をエッチングした状態を示す。 図4Hのパターンドメディアの側方側面図であり、1つの実施形態による第一の領域内の外側層の高密度化パターンと第二の領域内の外側層の当初のリソグラフィパターンを示す。 図4Jのパターンドメディアの側方断面図であり、1つの実施形態により、基板が第一の領域内の高密度化パターンと第二の領域の当初のリソグラフィパターンでエッチングされた状態を示す。 図4Kのパターンドメディアの側方断面図であり、1つの実施形態により、加工層のすべてが剥離され、基板の第一の領域に高密度化パターンがエッチングされ、第二の領域に当初のリソグラフィパターンがエッチングされた状態を示す。 図2Eのパターンドメディアの側方断面図であり、1つの実施形態により、レジスト層と外側層の上に保護層が塗布された状態を示す。 図5Aのパターンドメディアの側方断面図であり、1つの実施形態により、レジスト層がパターンドメディアからリフトオフされた状態と、その後、第一の領域上にマスキング材料が塗布された状態を示す。 図5Bのパターンドメディアの側方断面図であり、1つの実施形態により、外側層が第二の領域内の保護層パターンにしたがってエッチングされた状態を示す。 図5Cのパターンドメディアの側方断面図であり、マスキング材料が除去された状態を示す。 パターンドメディアの製造方法の1つの実施形態を示す概略フローチャートである。
本発明の主旨は一般に、媒体に物理的にパターン形成することに関する。本明細書を通じて、「パターンドメディア」という用語は、物理的にパターン形成された凹凸構造を含む任意の装置またはデバイスを指す。たとえば、1つの実施形態において、パターンドメディアは、物理的にパターン形成されたデータビットとサーボ凹凸構造を有する磁気記憶ハードディスクドライブを指す。他の実施形態において、パターンドメディアは、ハードディスクドライブ内に構築可能なパターンドディスクの製造に使用できるテンプレート、型またはダイを指す。また別の実施形態において、パターンドメディアは、物理的にパターン形成された各種の凹凸構造を含む集積回路を指す。
本開示を通じて、「基板」という用語は、ビットパターンドメディアの構成要素、特に最終的に凹凸構造が物理的にパターン形成される構成要素を指す。たとえば、1つの実施形態において、基板という用語は、物理的にパターン形成された数百万個の凹凸構造がエッチングされ、磁気記憶ハードディスクドライブ(パターンドメディアの1種)を作製するためにその上に磁性材料のコーティングを塗布できる土台を形成するシリコンウェハを指す。他の実施形態において、基板という用語は磁性層自体を指し、これは磁性層が物理的にパターン形成された凹凸構造を実際に受ける材料であるからである。他の実施形態において、基板という用語は、集積回路(パターンドメディアの1種)を作製するための準備としてパターン形成される半導体材料を指す。
図1に示されるように、1つの実施形態によれば、ハードディスクドライブ100は、パターン形成された複数の基板、すなわちハードディスク102を含む。ハードディスクドライブ100の基板102のほか、他のパターンドメディアデバイスの基板も、物理的にパターン形成された個別の(distinct)凹凸構造152を少なくとも100万単位で含む。凹凸構造152は基板102に沿って配置され、物理的パターンを形成する。集積回路上の凹凸構造と同様に、凹凸構造152の物理的パターンは様々な方法で形成できる。本発明の主旨は一般に、このような凹凸構造のパターンをパターンドメディアの基板に作製する方法に関する。作製されるパターン形成基板はテンプレートとして使用できる。すると、テンプレートは他のディスクにインプリントレジストのパターンをインプリントするために使用される。このような他のディスクには、磁性層を含めることができる。パターン形成されたインプリント層は、エッチングまたはイオンインプランテーション等の各種のパターン形成法の1つを使って、これらの磁気ディスクにパターン形成するためのマスクとして使用される。
図1に示されるように、パターンドメディアは一般に基板102を含み、基板102の表面には少なくとも100万単位のピラー152および/または凹凸構造152がエッチングにより形成されている。いくつかの実施形態において、不活性充填材料(図示せず)を基板102の凹凸構造152間(溝)に加えることによって、実質的に平滑な表面を作ってもよく、それによって凹凸構造152の上部が充填材料の表面と同一平面となる。本明細書を通じて、「凹凸構造」という用語は、パターンドメディアの基板にエッチングにより形成された個別の(distinct)ピラーを指すために使用されている。それゆえ、図1に示される磁気ハードディスクドライブ等のパターンドメディアでは、「凹凸構造」は実質的に均一で反復的なデータ用島状構造および/またはサーボ用凹凸構造として定義されるであろう。テンプレート、型、ダイでは、「特徴(凹凸)構造」はあるパターンを別の基板にスタンプまたはインプリントするために使用される溝および島状構造と定義されるであろう。集積回路では、「特徴(凹凸)構造」は、ゲート、コンタクタ(contactor)、またはその後のエッチング/ドーピングのためのマーカ等の表面素子と定義されるであろう。
基板102は1つの実施形態において、ある種の半導体、たとえばシリコンである。他の実施形態では、基板102は石英、二酸化シリコン(SiO)、ガラス、アルミニウム合金、ニッケル合金、シリコン合金およびその他を含んでいてもよい。凹凸構造152は、各用途の詳細に応じて異なる幅、高さ、大きさ、濃度とすることができる。たとえば、凹凸構造152は図のように実質的に円柱形であってもよく、またはビットは実質的に長方形、円錐形、楕円形またはピラミッド状であってもよい。リソグラフィによるパターン形成では、ビットピッチと呼ばれる凹凸構造152間の距離を5〜10ナノメートルと小さくすることができる。高密度化技術、たとえばブロックコポリマの自己組織化を用いて、ビットピッチを縮小し、したがって面記録ビット/凹凸構造密度を高めてもよい。図1には、基板102の表面に沿った図を描くための視点154も含まれている。
図2A〜2Fは、1つの実施形態によるパターンドメディアの製造方法の各種の段階を示している。図2Aは、パターンドメディアの1つの実施形態の側方断面図であり、基板102の上に塗布された外側層104を示している。上で簡単に述べたように、1つの実施形態の基板102は、どのような適当な半導体様材料であってもよく、各用途の詳細に応じて選択可能である。一般に、基板102の材料は固体であり、平滑な表面を有する。シリコンは一般に基板として使用され、したがって、本明細書の全ページを通じて、基板、シリコン、ウェハという用語は互換的に使用され、すべて、1つの実施形態において、パターン形成された凹凸構造で最終的にエッチングされる土台となる半導体材料を指す。他の実施形態において、基板102は、磁気記録ハードディスクドライブを作製するためにパターン形成される磁性材料であってもよい。
外側層104は、基板102を早まった(pre-mature)エッチングから実質的に保護し、基板102の表面を欠陥のない状態に保持するどのようなマスキング材料であってもよい。1つの実施形態において、外側層104は1層のマスキング材料を含む。他の実施形態において、外側層104は複数の層のマスキング材料を含む。たとえば、クロムを第一のマスキング材料として選択してもよく、基板102の表面上に塗布してもよい。クロムを塗布した後、クロムの上に1層の二酸化シリコンを塗布し、それゆえ二重のコーティングからなる外側層104が形成されるようにしてもよい。1つの実施形態において、外側層104は基板102と実質的に同じであり、これは、外側層104が基板102の構成要素であるからである。他の実施形態において、外側層104は基板102から実質的に分離していてもよい。1つの実施形態において、クロムの代わりにアルミニウムが使用される。
二酸化シリコンとクロムは、実質的に耐久性のある「硬質の」マスキング材料の例であり、パターンドメディアがその後の加工ステップ中に反応ガスまたは化学溶剤で処理された時に損傷を受けず、または破壊されない。このような「硬質の」マスキング材料は一般に、外側層に薬液洗浄とエッチングが施行されている間に基板を保護するために使用される。このような「硬質の」外側層104により、製造者は基板のパターン形成と加工をよりコントロールしやすくなり、それは、「硬質の」外側層104によって製造者が特定のエッチングまたは洗浄工程で外側層104をいつ浸食させるか、したがって、実際に基板102をいつエッチングするかをコントロールできるからである。
また、外側層104が「軟質の」マスキング材料、たとえばポリマ膜、レジスト層等を含んでいてもよいことも想定される。このような「軟質の」マスキング材料は、洗浄とエッチングおよびその他の除去処理に対する感受性がより強く、したがって、「硬質の」外側層104と同等の保護を提供できないかもしれない。「軟質の」マスキング材料、洗浄、エッチングに関するその他の詳細事項は、図2B、2C、2Eを参照しながら以下により詳しく説明する。他の材料を使って外側層104を形成してもよく、このような他の材料は当業者であれば気付くであろう。
図2Bは、図2Aのパターンドメディアの1つの実施形態の側方断面図であるが、表面層106が外側層104の上に塗布された状態を示している。表面層106はポリマ膜であってもよく、これに対して複数のパターン形成と加工ステップを施行して、最終的に所望のパターンを得る。表面層106は加工面またはマップとしての機能を果たしてもよく、これを製造者が加工して、最終パターンが実現されるようにする。表面層106に最終パターンがマッピングされると、最終パターンは次に外側層104を通じて(外側層をエッチングすることによって)、基板102上に転写してもよい。しかしながら、いくつかの実施形態において、表面層106、外側層104、基板102は、同じ加工ステップ中に、実質的に同時にエッチングしてもよい。他の実施形態において、表面層106と外側層104は、具体的な製造工程の要求事項に応じて、単独の保護またはシールド層となるように合成してもよい。
表面層106は、1つの実施形態において、ポリマブラシ材料であってもよい。ポリマブラシは一般に、ある表面に接着可能な特定の長さのポリマ鎖である。しばしばポリマブラシは「頭」部と「尾」部の両方を含み、頭部が表面に付着し、尾部は自由に垂れ下がり、付近にある他の構成要素と相互作用する。たとえば、ポリメチルメタクリレート(「PMMA」という)を表面層106として使用してもよく、外側層104に塗布してもよい。
ポリマブラシに加えて、MATポリマまたはその他のポリマ膜を使って、外側層104の表面をコーティングしてもよい。MAT材料は、表面に化学的特徴構造(凹凸構造)を有する架橋ポリマであり、これによって後続のブロックコポリマの層が周期的な交互パターンへと自己組織化することができる。適正な表面層106の選択は、その後使用されるパターン形成および高密度化技術に関係していてもよい。たとえば、電子ビームリソグラフィでのパターン形成(図2Cと2Dに関して後述する)には、特定の種類のリソグラフィレジスト材料が必要となり得、これは特定の表面層106の組成物に接着しても、接着しなくてもよい。
図2Cは、図2Bのパターンドメディアの1つの実施形態の側方断面図であるが、レジスト層108により表面層106がコーティングされている状態を示す。レジスト層108は、上で簡単に述べたように、外側層104と同様であっても(すわなち、「硬質の」マスク層)、または異なる種類のポリマ膜であってもよい。これに加えて、レジスト層108は、フォトリソグラフィまたは電子ビームリソグラフィで使用されるようなレジスト材料を含んでいてもよい。このレジスト層108の目的は、1つの実施形態において、最初のパターンを形成することであってもよい。たとえば、PMMAをレジスト層108として使用してもよく、これは電子ビームレジストの1種として機能してもよい。電子があるパターンのPMMAマスキング材料の上を通過すると、PMMAの照射された/影響を受けた部分が「現像された」とみなされ、現像された部分は、選択的な薬液洗浄またはその他の選択的クリーニングまたは分解工程を使って除去してもよい。他のレジスト材料では、現像部分を残してもよく、現像されない部分を選択的に除去してもよい。他のレジスト材料108を使用してもよく、また異なる材料が下地の層102、104、106と異なる相互作用を示してもよく、またはこれらを異なる方法で選択的に除去してもよい。ZEP−520は、電子ビームリソグラフィに使用できる適当なレジスト材料108の別の例である。他の種類のレジスト材料108、たとえばMarlborough,MassachusettsのShipley Companyにより製造されるMicroposit SJR 5440フォトレジストを使用してもよい。
図2Dは、図2Cのパターンドメディアの1つの実施形態の側方断面図であるが、リソグラフィによるパターン形成工程を実行した後の、レジスト層108のパターン114、116を示している。上で簡単に述べたように、リソグラフィは、現像膜の表面にわたって選択的に照射物を発生させて、現像膜の一部を選択的に除去する工程である。図2Dに示されるように、レジスト層108は、レジスト層108の一部が選択的に除去された、いくつかのギャップを含む。レジスト層108の除去された部分は、1つの実施形態において、レジスト層108を横切る溝または谷部を形成してもよい。レジスト層108の残りの部分(すなわち、除去されなかった部分)は、島状構造のリソグラフィパターンを形成し、これがその後のエッチング工程のためのパターン形成用マップとしての役割を果たす。
図の実施形態において、リソグラフィによるパターン形成で、第一の領域110に第一のパターン114、第二の領域112に第二のパターン116が生成される。他の実施形態において、リソグラフィによるパターン形成でレジスト層108全体にわたって延びる1つのパターンが生成されてもよく、またはリソグラフィによるパターン形成でレジスト層108の複数の領域にわたって延びる複数のパターンが生成されてもよい。
第一の領域110は、1つの実施形態において、パターンドメディア、たとえばハードディスクドライブの磁気ディスクまたはハードディスクドライブテンプレートツールの上のデータ領域を表してもよく、第二の領域112はパターンドメディアのサーボ領域を表してもよい。他の実施形態において、第一の領域110は第一の密度のデータ領域を表してもよく、第二の領域112は第二の密度のデータ領域を表してもよい。また別の実施形態では、第一の領域110は第一の密度のサーボ領域を表してもよく、第二の領域112は第二の密度のサーボ領域を表してもよい。第一と第二の領域はまた、磁気RAM(MRAM)またはPhase change erasable(PCE)等のメモリ装置またはその他の種類の集積回路上の異なる領域を表してもよい。図の実施形態では、データパターン114が反復的で実質的に均一なデータ用島状構造を含んでおり、サーボパターン116が任意の、反復的でない、および/または実質的に不均一なサーボ凹凸構造を含んでいる。
図2Eは、図2Dのパターンドメディアの1つの実施形態の側方断面図であるが、第一のパターン114と第二のパターン116が表面層106に転写された状態を示している。レジスト層108をリソグラフィによりパターン形成したら、表面層106をエッチングまたは洗浄して、リソグラフィパターンがレジスト層108から表面層106に転写されるようにしてもよい。レジスト層108の一部を選択的に除去することによってレジスト層108に形成された溝または谷部により、表面層106の特定部分が露出する。したがって、表面層106の露出部分が薬液洗浄またはエッチング工程の影響に対する感受性を有し、これによって表面層106の一部が除去される。
各種のエッチング工程(たとえば、ウェットまたはドライエッチング)を使って、レジスト層108のリソグラフィパターンを他の層(たとえば、表面層106、外側層104、および/または基板102)に転写してもよい。本明細書で開示されるエッチング工程に関する詳細は、ナノ加工に関わる多くの技術とアプローチの例にすぎない。したがって、以下に記すもの以外のエッチング工程や技術も本発明の範囲内に含まれると想定される。さらに、以下に説明するエッチング技術は、表面層のエッチングだけに適用されるのではなく、他の層のエッチング、たとえば外層104の「硬質の」または「軟質の」マスキング材料のエッチングおよび基板102のエッチングにも一般に適用される。
ウェットエッチング(すなわち、薬液洗浄)は、ある層または特定の材料にパターン形成を行うために使用してもよい。ウェットエッチングには一般に、液相溶液(すなわち、エッチング液)が関わる。基板またはエッチング対象材料は、エッチング液の中に浸漬してもよく、材料のうちマスキングされていない領域が溶解、破壊、損壊され、化学的に変性し、またはその他の影響を受けて除去される。エッチング液の中には、特定の材料のエッチングに特に適したものがある。たとえば、緩衝塩酸は二酸化シリコンのエッチングに使用してもよく、水酸化カリウムはシリコンウェハのエッチングに使用してもよい。使用可能なその他のエッチング液としては、これらに限定されないが、塩酸、クエン酸、硫酸と過酸化水素の混合物(すなわち、ピラニアエッチング)、フッ化アンモニウム、フッ化水素酸等がある。
ドライエッチング(すなわち、反応性イオンエッチング)もまた、特定の材料のパターン形成に使用してよい。ドライエッチングでは一般に、表面またはエッチング対象材料に対してエネルギーを有する遊離基またはイオンを放出させる。放出された粒子が材料と反応し、材料が分散し、またはその他の方法で化学変化を起こし(break down)、その後除去される。粒子は放出前に、電界にガスを通過させることによってエネルギーが付与され、または加速されてもよく、これによって粒子はプラズマを形成する。たとえば、酸素または水素プラズマを使って、レジスト層108または表面層106に使用されているようなポリマ膜をエッチングしてもよい。1つの実施形態において、四フッ化炭素等のフッ素含有エッチング液を使って、シリコンまたは二酸化シリコンをエッチングしてもよい。図2Aを参照しながら上述したように、外側層104が1層の二酸化シリコンと別の層のクロムを含んでいる場合、二酸化シリコンはフッ化物プラズマを使ってエッチングしてもよく、クロムはウェットエッチング液または塩素RIEエッチング工程を使ってエッチングしてもよい。
1つの実施形態において、エッチング工程はリフトオフ工程を含んでいてもよい。上述のように、多くのパターン形成技術で、材料のうちマスキングされていない、または露出した領域がエッチングされる。しかしながら、代替ステップとして、すでにパターン形成された層の上に新しいマスキング材料を塗布してもよい。新しいマスキング材料で溝と島状構造の両方をコーティングし、基板を薬液洗浄またはエッチング槽に浸漬してもよい。エッチング液は島状構造の垂直面と反応し、島状構造を構成する材料を溶解/分散させて、これらがリフトオフされ、除去される。この代替的エッチング工程は基本的に、当初パターン形成された島状構造を溝に変換し、当初パターン形成された溝を島状構造に変換する。
図2Fは、図2Eのパターンドメディアの1つの実施形態の側方断面図であるが、レジスト層108が除去された後の表面層106の第一のパターン114と第二のパターン116を示している。レジスト層108の除去は異なる別個のステップとして実行してもよく、またはレジスト層108の除去を他の加工/エッチング/クリーニングステップと同時に行ってもよい。材料の除去(たとえば、剥離またはクリーニング)は一般に、露出されていないパターン形成部分だけではなく、特定の材料全部を分散させ又は分解することを含むため、材料の除去は材料のエッチングとは異なる。除去は、基板102をクリーニング溶剤槽、たとえばアセトン槽またはN−メチル−2−ピロリドン(N-Methyl-2-Pyrrolidone)(「NMP」という)槽等の中に浸漬することによって実行してもよい。他の薬剤と工程を使って材料を基板102から除去してもよく、たとえば酸処理、加熱または熱処理、pH処理、圧力処理等がある。
表面層106をエッチングしたら、パターンドメディアの製造を進めるために一般に2つの方法がある。第一に、図3に示されるように、製造者は単純なエッチングを行ってもよく、その場合、外側層104と基板102が当初のリソグラフィパターン114、116にしたがってエッチングされる。第二に、図4A〜4Lに示されるように、製造者は高密度化技術を行って、当初のリソグラフィパターン114、116の密度を増大させてもよい。1つの実施形態において、製造者は第一の領域114または第二の領域116のいずれかのパターン/凹凸構造密度を増大させてもよい。他の実施形態では、製造者は第一の領域114と第二の領域116の両方のパターン/凹凸構造密度を増大させてもよい。
パターン密度の増大にはいくつかの技術を使用でき、たとえばダブルパターニング法やブロックコポリマの自己組織化がある。ダブルパターニング法は、二重レジスト方式、二重レジスト現像方式、二重露光、二重エッチング等を含み、基板に対してパターン形成、露光および/またはエッチングを複数回行うことによって、パターンドメディアの凹凸構造密度を増大させてもよい。このような技術は凹凸構造の所望の高密度化を実現できるが、時間と材料面の費用と加工ステップの複雑さから、これらの方法は一般に理想的とは言えない。ブロックコポリマの誘導自己組織化は、パターンドメディアの凹凸構造を高密度化するための比較的新しい技術であるが、「背景」の項で上述したように、従来の誘導自己組織化法では、凹凸構造密度が基板の表面全体にわたって均一となる。本発明の主旨は、製造者が高密度化技術、特にブロックコポリマの自己組織化を使用しながら、依然として凹凸構造密度の異なる領域を有する媒体を製造できるようにする方法に関する。
凹凸構造密度や形状の異なる領域のエッチングは、パターンドメディアの有用性、効率、能力を増大させる重要な態様である。しかしながら、用途によっては、ハードディスクドライブのデータ領域とサーボ領域を相互依存的に整合させることが重要である。データ領域とサーボ領域が相互に整合していないと(すなわち、データ領域とサーボ領域との関係が不明であると)、サーボ領域から不正確および/または誤った位置情報がフィードバックされる。サーボ領域とデータ領域の関係は、読取り/書込みヘッドが標的のデータトラック上に保持されるために必要となる。したがって、本発明は、異なる凹凸構造密度の異なる領域を別々にエッチングすることに関するが、領域の当初のパターン形成と整合を単独のステップで行い、領域の相互整合を保持して、データ領域とサーボ領域との空間的関係がわかるようにしなければならない。
データ領域110は、概して円周方向の線または概して半径方向の線を含んでいてもよく、これらが後にデータビットを形成するための基本要素となる。サーボ領域112は従来のサーボパターンを含んでいてもよく、これはデータ領域110と同時に露光されて、オーバーレイを導入しない用途で必要なレベルの整合性が保証される。ここでの加工によって、材料および工程とブロックコポリマ加工との両立性も確認される。
ブロックコポリマを使用することによる高密度化および/またはパターン修正のより詳しい説明は(特許文献1)と(特許文献2)にあり、これらはどちらも本出願と同じ譲受人に譲渡されており、参照によって本出願に援用される。ブロックコポリマは一般に、2つまたはそれ以上のポリマブロックを含み、これらは熱処理によって異なる形態を持つ反復的パターンへと分離する。この分離は、実質的にマイクロスケールで配列されるように見えるが、マクロスケールでの長範囲整列は完璧でなく、交互に配置されるポリマブロックの連続体には不規則箇所や欠陥がありうる。しかしながら、ブロックコポリマをリソグラフィによりパターン形成された基板上に塗布し、その後熱処理すると、基板表面上の対照的なリソグラフィパターンによってポリマブロックの長範囲整列が容易となり、促進される。1つの実施形態において、ブロックコポリマの熱処理後、交互に配置されたポリマブロックの一方を除去し、それゆえ、下にあるリソグラフィパターンと整合したパターンを形成する。他の実施形態において、ブロックコポリマを熱処理したところで、ポリマブロックを架橋してもよく、その後、交互に配置されたポリマブロックの一方を除去してもよい。
たとえば、ブロックコポリマ120がポリマブロック成分A 122とポリマブロック成分B 124(図4E参照)を含む場合、コポリマを熱処理すると、ポリマブロック成分の交互の整合した連続体は、−−A−B−A−B−A−−となる。熱処理すると、ポリマブロック成分の一方、たとえばブロック成分B 124をその連続体から選択的に除去(たとえば分解)してもよく、それゆえ、ブロック連続体は−−A−(ギャップ)−A−(ギャップ)−A−−となる。他の実施形態において、交互に配置されたポリマブロックの連続体からのパターンを、原子層堆積、薄膜堆積、化学蒸着およびその他によって異なる層に転写してもよい。
交互のポリマブロックの周期と一般的な寸法は、ポリマブロックの分子量、体積分率、ポリマ相互作用に応じて異なる。たとえば、ブロックコポリマは一般に平衡周期(「L」、図4E参照)を有し、これはコポリマが熱処理され、交互に配置された個々のポリマブロックに相分離された後の、交互に配置されたポリマブロック両方をカバーする距離を示す。この周期は、エネルギーが最小のポリマブロックの交互の連続体の寸法を表す。この周期は、ブロックコポリマを含むポリマの大きさと分子量およびポリマブロック間のポリマ相互作用(すなわち、Flory−Hugginsの相互作用パラメータ)によって異なる。
したがって、リソグラフィによってパターン形成されたビットピッチ(リソグラフィによってパターン形成された1つのビットとリソグラフィによってパターン形成された1つの溝とをカバーする距離)がブロックコポリマの周期と同じ場合、リソグラフィパターン密度は増大せず、修正されるだけとなる(大きさ、位置、整合精度)。しかしながら、リソグラフィによりパターン形成されたビットピッチがブロックコポリマの周期の2倍の長さである場合、リソグラフィパターン密度は線パターンで2倍、ドットパターンで4倍となる。
使用可能なブロックコポリマの具体的な例としては、ポリ(スチレン−ブロック−メチルメタクリレート)(PS−b−MMA)、ポリ(酸化エチレン−ブロック−イソプレン)(PEO−b−PI)、ポリ(酸化エチレン−ブロック−ブタジエン)(PEO−b−PBD)、ポリ(酸化エチレン−ブロック−スチレン)(PEO−b−PS)等がある。適当なブロックコポリマの選択はいくつかの要素に関係していてもよく、これには周期(L)、ブロックコポリマの形態、リソグラフィの解像度、熱処理の容易さと方法、交互に配置されたポリマブロックの連続体への相分離中に連続体が適正に整合する可能性、架橋の安定性、パターン転写の信頼性、連続体中のポリマユニットの1つを除去する容易さと方法、ポリマと周囲の材料(たとえば、パターン形成されたレジスト層、パターン形成された表面層、パターン形成された外側層等)との相互作用、加工後にブロックコポリマを除去する容易さと方法が含まれる。
図4A〜4Lは、第二の領域112では従来のリソグラフィ密度を維持しながら、第一の領域110の高密度化を実現するためにブロックコポリマの自己組織化を用いる方法の1つの実施形態を示す。図には示されていないが、本発明はまた、基板102の異なる領域に対して異なる高密度化技術を使って異なる凹凸構造密度を実現することにも関すると想定される。他の実施形態において、本発明は、1つの領域内のパターンを修正するため実施してもよく、他の領域のパターンを高密度化するために実施してもよい。
図4Aは、パターンドメディアの1つの実施形態の側方断面図であり、基板102の第一の領域110の上に新しいマスキング材料118が選択的に塗布された状態を示している。1つの実施形態において、新しいマスキング材料118は、第一の領域110と第二の領域112の間の境界を画定するフォトレジスト材料であってもよい。他の実施形態において、マスキング材料118はさらに、基板の一部を必要となる前にエッチングされないようにさらに保護し、その後の加工ステップ中に除去される犠牲層を含んでいてもよい。図4Bは、図4Aのパターンドディアの1つの実施形態の側方断面図であるが、外側層104が第二の領域112内の表面層106の当初のリソグラフィパターン116にしたがってエッチングされた状態を示している。図の実施形態において、高密度化またはパターン修正は行われておらず、当初のリソグラフィパターン116がエッチングされているか、またはその他の方法で第二の領域112内の外側層104に転写される。
1つの実施形態において、保護層(たとえば金属)をリソグラフィパターン116の「溝」と「島状構造」の上に塗布してもよい。その後、図2Eに関して上で簡単に述べたリフトオフ工程によって、リソグラフィパターン「島状構造」を除去/リフトオフしてもよく、その結果、パターン形成された保護層が残り、これらが第二の領域112内の外側層104をエッチングする際のマスキング層として機能してもよい。この工程のより詳細な説明は、図5A〜5Dと図6を参照しながら後述する。図4Cは、図4Bのパターンドメディアの1つの実施形態の側方断面図であるが、表面層106が第二の領域112内の基板102から除去され、また新しいマスキング材料118が領域110から除去された状態を示している。第二の領域112内の表面層106の除去は一般に、第一の領域110の新しいマスキング材料118の除去より前に行われ、第一の領域110内の表面層106がその場に残る。1つの実施形態(図示せず)では、第二の領域内の表面層106を方法の中のこのステップ中に除去すべきではなく、後程、第一の領域内の表面層106を除去する時に除去すべきである。
図4Dは、図4Cのパターンドメディアの1つの実施形態の側方断面図であるが、ブロックコポリマ120が第一の領域110内のリソグラフィによりパターン形成された表面層106の上と第二の領域112のリソグラフィによりパターン形成された外側層104の上に塗布された状態を示している。図4Eは、図4Dのパターンドメディアの1つの実施形態の側方断面図であるが、ブロックコポリマを熱処理した後のブロックコポリマ120を示している。ブロックコポリマ120のポリマユニット122、124が第一のポリマユニット122と第二のポリマユニット124の交互の連続体に分離されている。ポリマユニット122、124が交互に配置される連続体には、第一の領域110において実質的に欠陥がなく、これはリソグラフィによりパターン形成された、下地となる表面層106により、長範囲の配列と整合が容易になるからである。図の実施形態では、第二の領域112のポリマ連続体たるポリマユニット122、124の配列と整合は、第二の領域112の外側層104がすでにエッチングされ、第二の領域112では基板102のエッチングだけが残っていため、重要ではない。
図の実施形態において、ブロックコポリマ120の周期(L)はビットピッチの半分であり、これは、交互の連続体の2周期分が第一の領域110のビットピッチと整合することを意味する。このような配列と整合は、表面層106の島状構造と外側層104の溝の間の対照的な化学的性質(contrasting chemistries)によって促進される。他の実施形態では、ブロックコポリマの周期とビットピッチの割合は異なる比であってもよい。
図4Fは、図4Eのパターンドメディアの1つの実施形態の側方断面図であるが、他のマスキング材料128が基板102の第二の領域112の上に選択的に塗布された状態を示している。1つの実施形態において、新しいマスキング材料128は、第一の領域110と第二の領域112の間の境界を画定するフォトレジスト材料であってもよい。他の実施形態において、新しいマスキング材料128は、硬質のマスキング材料(すなわち、二酸化シリコン、アルミナ、アルミニウム、銅、クロム等)であっても、軟質のマスキング材料(すなわちポリマ膜)であってもよい。ブロックコポリマ120(第一のポリマユニット122と第二のポリマユニット124の交互の連続体)を架橋させて、ポリマを一体に融合させて、適正な連続体としてもよい。架橋は、たとえば熱、圧力、pHまたは光等によって開始してもよい。1つの実施形態において、ポリマ122、124の架橋は、新しいマスキング材料128を塗布した後に行われる。他の実施形態では、ポリマ122、124の架橋は、新しいマスキング材料128を塗布する前に行われる。
図4Gは、図4Fのパターンドメディアの1つの実施形態の側方断面図であるが、第一の領域110内の高密度化パターン115を示している。高密度化パターン115は、第二のポリマユニット124を選択的に除去した後の残りの第一のポリマユニット122によって形成される。薬液洗浄またはその他の剥離工程で第二のポリマユニット124を除去してもよい。再び、図の実施形態において、第二の領域112のポリマ連続体の配列と整合は重要ではなく、整合していなくてもよい。また、1つの実施形態において、第二のポリマユニット124は、保護のためのマスキング材料128によって、第二の領域112から除去されていない。
図4Hは、図4Gのパターンドメディアの1つの実施形態の側方断面図であるが、高密度化パターン115が第一の領域110内の表面層106と外側層104にエッチングされた状態を示している。前述のように、エッチングはウェットエッチングでもドライエッチングでもよい。図4Jは、図4Hのパターンドメディアの1つの実施形態の側方断面図であるが、第一の領域110内の外側層104の高密度化パターン115と第二の領域112内の外側層104の当初のリソグラフィパターン116を示している。図の実施形態において、残りの(もしあれば)マスキング、レジスト、表面層118、128、108、106のすべてが除去されており、パターン形成された外側層104と基板が残っている。図4Kは、図4Jのパターンドメディアの1つの実施形態の側方断面図であるが、基板102が第一の領域110内の高密度化パターン115と第二の領域112内の当初のリソグラフィパターン116でエッチングされている状態を示している。図4Lは、図4Kのパターンドメディアの1つの実施形態の側方断面図であるが、基板102からすべての加工層が剥離されており、第一の領域110がエッチングされた高密度化パターン115を有し、第二の領域112がエッチングされた当初のリソグラフィパターン116を有する状態を示している。
図5Aは、図2Eのパターンドメディアの側方断面図であるが、1つの実施形態により、第二の領域112内の外側層104を加工する代替的ステップを示すために、保護層130がレジスト層108と外側層104の上に塗布された状態を示している。それゆえ、図5A〜5Dは、第二の領域112内の外側層104を処理するための、図4A〜4Cに示される実施形態とは異なる実施形態を示す。1つの実施形態において、保護層130は金属、アルミニウム、クロム、銅およびその他であってもよい。
図5Bは、図5Aのパターンドメディアの側方断面図であるが、レジスト層108とレジスト層108をコーティングするすべての保護層130がリフトオフされた状態を示している。図5Bはまた、1つの実施形態により、続いて第一の領域110の上にマスキング材料118が塗布された状態も示している。リフトオフは、ウェットエッチング法またはその他の除去工程で行ってもよい。マスキング材料118は、前述のように、レジスト材料または選択的に塗布可能なポリマ膜であってもよい。
図5Cは、図5Bのパターンドメディアの側方断面図であるが、1つの実施形態により、外側層104が第二の領域112内の保護層パターン132にしたがってエッチングされた状態を示している。第一の領域110をマスキングした状態で、第二の領域112内の外側層104をエッチングしてもよい。このエッチング手順は、パターン形成された保護層材料130間のパターン形成された表面層106の材料をエッチング/除去することを含む。第二の領域112の中で表面層106を除去した後、第二の領域112内で露出した外側層104をエッチングしてもよい。それゆえ、図2Eに関して上述したように、残りのパターン(保護層パターン)132は基本的に、リソグラフィによって生成された当初の第二のパターン116の反転パターンである。
図5Dは、図5Cのパターンドメディアの側方断面図であるが、マスキング材料118が除去された状態を示している。図5Dは、第二の領域112内の保護層パターン132を除き、実質的に図4Cと同じである。それゆえ、1つの実施形態において、図5A〜5Dは、図2Eに示されるパターン形成された媒体を、第二の領域に反転パターンを有する、図4Cに示されるパターンドメディアに変形させるための代替的実施形態を示している。
図6は、パターンドメディアの製造方法600の1つの実施形態の概略フローチャートである。方法600は、リソグラフィによりパターン形成された表面層の下に外側層を有する基板を提供するステップ602を含む。リソグラフィによりパターン形成された表面層は、少なくとも1つの第一の領域と1つの第二の領域を含む。1つの実施形態において、第一の領域と第二の領域は実質的に同じリソグラフィパターンを含む。別の実施形態において、第一の領域と第二の領域は実質的に異なるリソグラフィパターンを含む。
1つの実施形態において、基板102を提供するステップ602の後、方法600は、第二の領域112内の外側層104をパターン形成するための2つの方法のうちの一方に進むことができる。第二の領域112内の外側層104をパターン形成するための第一の選択肢(図4A〜4Cに示される)は、第一の領域上にマスキング材料を塗布するステップ604を含む。図2Aに関して上述したように、マスキング材料118は、表面層106の第一の領域110または第二の領域112のいずれかに接着可能であり、第一または第二の領域を特定の種類の薬液洗浄またはエッチング工程から一時的に保護可能ないずれの材料であってもよい。マスキング材料を第一の領域110に塗布するステップ604の後、第二のパターン116を第二の領域内の外側層に転写する(606)。転写は、ウェットまたはドライエッチングにより実行してもよく、また高密度化技術、たとえばブロックコポリマの自己組織化を含んでいてもよい。
方法600において、第二の領域112内の外側層にパターン形成するための第二の選択肢(図5A〜5Dに示される)は、表面層106の上に保護層130を塗布するステップ703を含む。保護層130はアルミナ、銅、ニッケルおよびその他であってもよい。次に第一のマスキング材料118を第一の領域110の上に塗布し(704)、次に方法600は、第二のパターン116にしたがって第二の領域内の表面層106の特定の部分をリフトオフすることによって、保護層パターン132を形成するステップ705を含む。保護層パターン132を形成した後、方法600は、保護層パターン132を第二の領域112内の外側層104に転写するステップ706を含む。
第二の領域112内の外側層104をパターン形成した後、方法600は、第一のマスキング材料118を除去するステップ608と、ポリマブロックパターン115を形成して、このポリマブロックパターンを第一の領域110内の第一のパターン114と整合させるステップ610を含む。ポリマブロックパターン115を形成するステップ610は、表面層106の上に自己組織化ブロックコポリマ構造を形成するステップを含み、これについては図4D〜4Jに関して上述した。方法600は、第二の領域112の上に第二のマスキング材料128を塗布するステップ612と、第一の領域110内の外側層104にポリマブロックパターン115を転写するステップ614と、その後、第二のマスキング材料128を除去するステップ616を含む。
第一の領域110内の外側層104をパターン形成した後、この方法は最後に、基板102をエッチングするステップ618、718を含む。第二の領域112内の外側層104をパターン形成するステップに応じて、方法600は、1つの実施形態において、第二の領域112内の第二のパターン116および第一の領域110内のポリマブロックパターン115にしたがって基板をエッチングするステップ618または、第二の領域112内の保護層パターン132と第一の領域110内のポリマブロックパターン115にしたがって基板をエッチングするステップ718のいずれかを含む。
以下の例を上述の本発明の説明と詳細にしたがって実行した。シリコンウェハにクロムの硬質マスキング層で被覆した。クロム層の上に、二酸化シリコンの他の硬質マスキング層を追加した。その後、マットポリマ膜を硬質マスキング層の上に追加した。マットポリマはほとんどがポリスチレンを含み、硬質マスクの表面上に7〜9nmの厚さにスピンコートし、その後架橋させた。マットポリマを塗布した後、ポリ(メチルメタクリレート)(poly methyl methacrylate)(「PMMA」という)(電子ビームレジスト材料)をポリスチレンマット層の上に塗布した。
電子をPMMAレジスト材料全体にわたってパターン化した状態で放出し、レジスト材料の一部を露光させ、現像した。レジスト材料のうち現像された部分を除去して、最終的にレジスト材料の残りの部分が第一のリソグラフィパターンを形成するようにした。第一のリソグラフィパターンは、ウェハのデータ領域において実質的に均一な反復的ピラーと、サーボ領域において反復的でない実質的に不均一な凹凸構造を含んでいた。レジスト材料がパターン形成された状態で、酸素プラズマをウェハの上に放出し、マットポリマの露出部分をレジスト材料パターンにしたがってエッチングした。マットポリマをエッチングした後、レジスト材料をN−メチル−2−ピロリドン(N-Methyl-2-Pyrrolidone)(NMP溶剤)で除去した。NMP溶剤はマットポリマには影響を与えなかった。
次にSJR 5440(光学的レジスト材料)を、リソグラフィによりパターン形成されたデータ領域のマットポリマ上にのみ塗布した。光学的レジスト材料は厚さ約0.7マイクロメートルであった。この光学的レジスト材料は、データ領域とサーボ領域の間の境界を画定し、基本的にデータ領域がさらに処理されないように一時的にマスキングした。サーボ領域は光学的レジスト材料で被覆せず、マットポリマが硬質マスク層を部分的にのみ被覆するため、サーボ領域内の硬質マスクのシリコン層を、四フッ化炭素プラズマ(またはその他のフッ化物含有プラズマ)を使ってエッチングした。次に、硬質マスクのクロム層を、塩素含有プラズマを使ってエッチングした。このクロムエッチングではまた、サーボ領域内のマットポリマ層も除去され、その結果、サーボ領域内にパターン形成されたクロム層だけが残る。ウェハを再びNMPで洗浄して、データ領域内の光学的レジスト材料を除去した。
次に、ポリスチレンPMMAブロックコポリマをウェハの表面全体に塗布した。その後、ブロックコポリマを加熱/熱処理し、2つのポリマが相分離して個々のポリマユニットの交互の連続体とした。個々のポリマユニットの交互の連続体は、大きな欠陥のない状態で配列、整合したが、これはリソグラフィによりパターン形成されたデータ領域内のマットポリマ層が連続体の長範囲の配列と整合を支援したからである。サーボ領域内の配列は、サーボ領域のリソグラフィパターンがすでにクロムの硬質マスク層に転写済みであるため、重要ではなかった。マットポリマのピラーと二酸化シリコンの溝の対照的な化学成分(contrasting chemical composition)により、ポリマユニットの連続体が配列、整合された。次に、ブロックコポリマを架橋させ、それによって個々のポリマユニットが一体に融合/連結された。光学的レジストの別のコーティングを、今度はウェハのサーボ領域に塗布した。PMMAポリマユニットを、紫外線を照射し、その後ウェハを酢酸で洗浄することによって除去し、離間されたポリスチレンポリマユニットだけを残した。この残りのポリスチレンは、硬質マスク層のための新しい高密度化エッチングマップとなった。
再び、二酸化シリコン層をエッチングし、クロムのエッチング中にマットポリマ層と残りのポリスチレンユニットを除去した。ウェハを再びNMPで洗浄し、サーボ領域から光学的レジスト層と、他の残りの不純物等を除去した。次に、基板をウェットエッチング法によってエッチングし、その後、ウェハをピラニア溶液(硫酸と過酸化水素)で洗浄した。次に、ウェハを、個々のパターンドメディアを製造するためのマスタテンプレートとして使用した。
本明細書を通じて、「1つの実施形態」、「ある実施形態」またはこれらに類する文言は、その実施形態に関連して説明された特定の特徴、構造または特性が本発明の少なくとも1つの実施形態に含まれていることを意味する。それゆえ、本明細書を通じた「1つの実施形態において」、「ある実施形態において」という語句、および同様の文言は、すべてが同一の実施形態を指していてもよく、ただし必ずしもそうとはかぎらない。
さらに、上述の本発明の特徴、構造または特性は、1つまたは複数の実施形態において、どのように適当に組み合わせてもよい。以上の説明の中では多数の具体的な詳細が示されている。しかしながら、当業者であれば、本発明の主旨は具体的な詳細の1つまたは複数がなくても、またはその他の方法、構成要素、材料およびその他によっても実施可能であることがわかるであろう。他の場合には、周知の構造、材料または作業は、本発明の態様を不明瞭にしないように、詳しく図示または説明されていない。
本明細書に含まれる概略フローチャートは一般に、論理的なフローチャートとして示されている。したがって、図の順番と見出しのついたステップは、本発明の方法の1つの実施形態を示している。図に示された方法の1つまたは複数のステップまたはその一部と機能、ロジックまたは効果の点で均等な、他のステップや方法が考案されてもよい。これに加えて、使用されたフォーマットと記号は、方法の論理的ステップを説明するために提供され、この方法の範囲を限定するとは解釈しない。様々な種類の矢印と線がフローチャートで使用されているが、これらはそれに対応する方法の範囲を限定するとは解釈しない。実際、いくつかの矢印またはその他の接続線は、この方法の論理的な流れのみを示すために使用されているかもしれない。たとえば、矢印は、図示された方法の一連のステップ間の、長さが指定されていない待機またはモニタ期間を示す場合がある。これに加えて、特定の方法が実行される順番は、図示された、それに対応するステップの順番と厳格に一致していても、いなくてもよい。
本発明の主旨は、その主旨と基本的特性から逸脱することなく、他の具体的な形態で実施してもよい。開示された実施形態はすべての点において例示的と考え、限定的と考えるべきではない。したがって、本発明の範囲は、上記の説明ではなく、付属の特許請求の範囲によって示される。特許請求の範囲の意味とその均等性の範囲に含まれるすべての変更は、その範囲内に包含されるものとする。
100 ハードディスクドライブ
102 基板
104 外側層
106 表面層
108 レジスト層
110 第一の領域
112 第二の領域
114 第一のパターン
115 高密度化パターン/ポリマブロックパターン
116 第二のパターン
118 マスキング材料
120 ブロックコポリマ
122 第一のポリマユニット
124 第二のポリマユニット
128 マスキング材料
130 保護層
132 保護層パターン
152 凹凸構造
154 視点
600 製造方法
A ポリマブロック成分
B ポリマブロック成分
PMMA ポリメチルメタクリレート

Claims (23)

  1. パターンドメディアの製造方法において、
    リソグラフィによってパターン形成された表面層の下に外側層を有する基板を提供するステップであって、前記リソグラフィによりパターン形成された表面層が第一の領域内の第一のパターンと第二の領域内の第二のパターンとを含むステップと、
    前記第一の領域上に第一のマスキング材料を塗布するステップと、
    前記第二のパターンを前記第二の領域内の前記外側層に転写するステップと、
    前記第一のマスキング材料を除去するステップと、
    前記リソグラフィによってパターン形成された表面層の上に自己組織化ブロックコポリマ構造を形成するステップであって、前記自己組織化ブロックコポリマ構造が前記第一の領域内の前記第一のパターンと整合し、ポリマブロックパターンを含むステップと、
    前記第二のマスキング材料を前記第二の領域の上に塗布するステップと、
    前記ポリマブロックパターンを前記第一の領域内の前記外側層に転写するステップと、
    前記第二のマスキング材料と前記自己組織化ブロックコポリマ構造を除去するステップと、
    前記第二の領域内の前記外側層に転写された前記第二のパターンと前記第一の領域内の前記外側層に転写された前記ポリマブロックパターンにしたがって前記基板をエッチングするステップと、を含む方法。
  2. 請求項1に記載の方法において、
    前記パターンドメディアが他のパターンドメディアを製造するためのテンプレートである方法。
  3. 請求項1に記載の方法において、
    前記第一の領域がデータ領域であり、前記第二の領域がサーボ領域である方法。
  4. 請求項1に記載の方法において、
    前記第一の領域が第一の密度のデータ領域であり、前記第二の領域が第二の密度のデータ領域である方法。
  5. 請求項1に記載の方法において、
    前記第一の領域が第一の密度のサーボ領域であり、前記第二の領域が第二の密度のサーボ領域である方法。
  6. 請求項1に記載の方法において、
    前記第一のマスキング材料と前記第二のマスキング材料の少なくとも一方がフォトレジストを含む方法。
  7. 請求項1に記載の方法において、
    前記第一のマスキング材料と前記第二のマスキング材料の少なくとも一方が電子ビームレジストを含む方法。
  8. 請求項7に記載の方法において、
    前記電子ビームレジストがZEPまたはポリメチル−メタクリレートを含む方法。
  9. パターンドメディアの製造方法において、
    リソグラフィによってパターン形成された表面層の下に外側層を有する基板を提供するステップであって、前記リソグラフィによりパターン形成された表面層が第一の領域内の第一のパターンと第二の領域内の第二のパターンとを含むステップと、
    前記リソグラフィによりパターン形成された表面層の上に保護層を塗布するステップと、
    前記第一の領域の上に第一のマスキング材料を塗布するステップと、
    前記第二のパターンにしたがって前記第二の領域内の前記リソグラフィによりパターン形成された表面層の一部をリフトオフすることによって、前記第二の領域内に保護層パターンを形成するステップと、
    前記保護層パターンを前記第二の領域内の前記外側層に転写するステップと、
    前記第一のマスキング材料と前記保護層を除去するステップと、
    前記リソグラフィによりパターン形成された表面層の上に自己組織化ブロックコポリマ構造を形成するステップであって、前記自己組織化ブロックコポリマ構造が前記第一の領域内の前記第一のパターンと整合し、ポリマブロックパターンを含むステップと、
    前記第二の領域上に第二のマスキング材料を塗布するステップと、
    前記ポリマブロックパターンを前記第一の領域内の前記外側層に転写するステップと、
    前記第二のマスキング材料と自己組織化ブロックコポリマ構造を除去するステップと、
    前記第二の領域内の前記外側層に転写された前記保護層パターンと前記第一の領域内の前記外側層に転写された前記ポリマブロックパターンにしたがって前記基板をエッチングするステップと、
    を含む方法。
  10. 請求項9に記載の方法において、
    前記パターンドメディアが他のパターンドメディアを製造するためのテンプレートである方法。
  11. 請求項9に記載の方法において、
    前記第一の領域がデータ領域であり、前記第二の領域がサーボ領域である方法。
  12. 請求項9に記載の方法において、
    前記第一の領域が第一の密度のデータ領域であり、前記第二の領域が第二の密度のデータ領域である方法。
  13. 請求項9に記載の方法において、
    前記第一の領域が第一の密度のサーボ領域であり、前記第二の領域が第二の密度のサーボ領域である方法。
  14. 請求項9に記載の方法において、
    前記第一のマスキング材料と前記第二のマスキング材料の少なくとも一方がフォトレジストを含む方法。
  15. 請求項9に記載の方法において、
    前記第一のマスキング材料と前記第二のマスキング材料の少なくとも一方が電子ビームレジストを含む方法。
  16. 請求項15に記載の方法において、
    前記電子ビームレジストがZEPまたはポリメチル−メタクリレートを含む方法。
  17. 請求項9に記載の方法において、
    前記保護層が金属を含む方法。
  18. パターンドメディアにおいて、
    基板と、
    前記基板上に塗布された外側層と、
    前記外側層上に塗布された、リソグラフィによりパターン形成された表面層であって、第一の領域内の第一のパターンと第二の領域内の第二のパターンを含み、前記第二の領域内の前記第二のパターンが前記外側層に転写される、前記リソグラフィによりパターン形成された表面層と、
    前記第一の領域内の前記第一のパターンと整合する自己組織化ブロックコポリマ構造と、
    を含むパターンドメディア。
  19. 請求項18に記載のパターンドメディアにおいて、
    前記第一の領域がデータ領域であり、前記第二の領域がサーボ領域であるパターンドメディア。
  20. 請求項18に記載のパターンドメディアにおいて、
    前記第一の領域が第一の密度のデータ領域であり、前記第二の領域が第二の密度のデータ領域であるパターンドメディア。
  21. 請求項18に記載のパターンドメディアにおいて、
    前記第一の領域が第一の密度のサーボ領域であり、前記第二の領域が第二の密度のサーボ領域であるパターンドメディア。
  22. 請求項18に記載のパターンドメディアにおいて、
    前記基板が磁性層と非磁性層を含むパターンドメディア。
  23. 請求項18に記載のパターンドメディアにおいて、
    前記第二の領域が非反復的構造を含むパターンドメディア。
JP2013188996A 2012-09-13 2013-09-12 パターンドメディア上の領域を別々に加工する方法 Pending JP2014056635A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/615,131 2012-09-13
US13/615,131 US9034197B2 (en) 2012-09-13 2012-09-13 Method for separately processing regions on a patterned medium

Publications (1)

Publication Number Publication Date
JP2014056635A true JP2014056635A (ja) 2014-03-27

Family

ID=50233581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013188996A Pending JP2014056635A (ja) 2012-09-13 2013-09-12 パターンドメディア上の領域を別々に加工する方法

Country Status (4)

Country Link
US (1) US9034197B2 (ja)
JP (1) JP2014056635A (ja)
CN (1) CN103680527A (ja)
SG (1) SG2013068531A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019519107A (ja) * 2016-05-27 2019-07-04 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ グラフォエピタキシー方法のための機能化されたガイドパターンを形成する方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9928867B2 (en) * 2011-01-31 2018-03-27 Seagate Technology Llc Templates for patterned media
TWI672788B (zh) * 2013-03-27 2019-09-21 日商尼康股份有限公司 標記形成方法、標記檢測方法、及元件製造方法
US9281203B2 (en) * 2013-08-23 2016-03-08 Taiwan Semiconductor Manufacturing Co., Ltd. Silicon dot formation by direct self-assembly method for flash memory
US9064821B2 (en) 2013-08-23 2015-06-23 Taiwan Semiconductor Manufacturing Co. Ltd. Silicon dot formation by self-assembly method and selective silicon growth for flash memory
JP6452136B2 (ja) 2013-09-04 2019-01-16 東京エレクトロン株式会社 誘導自己組織化用の化学テンプレートを形成するための硬化フォトレジストのuv支援剥離
US9793137B2 (en) 2013-10-20 2017-10-17 Tokyo Electron Limited Use of grapho-epitaxial directed self-assembly applications to precisely cut logic lines
US9349604B2 (en) * 2013-10-20 2016-05-24 Tokyo Electron Limited Use of topography to direct assembly of block copolymers in grapho-epitaxial applications
US9640397B2 (en) * 2014-03-14 2017-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a semiconductor integrated circuit using a directed self-assembly block copolymer
US11049725B1 (en) * 2014-05-29 2021-06-29 Corporation For National Research Initiatives Method for etching deep, high-aspect ratio features into silicon carbide and gallium nitride
CN106298461B (zh) * 2015-05-20 2020-07-28 联华电子股份有限公司 制作不连续直线图案的方法与不连续直线图案结构
US9865294B2 (en) * 2015-09-22 2018-01-09 Seagate Technology Llc Servo integrated BPM template
WO2017053316A1 (en) * 2015-09-24 2017-03-30 Tokyo Electron Limited Methods of forming etch masks for sub-resolution substrate patterning
WO2017087066A1 (en) * 2015-11-20 2017-05-26 Tokyo Electron Limited Methods of forming etch masks for sub-resolution substrate patterning
US9947597B2 (en) 2016-03-31 2018-04-17 Tokyo Electron Limited Defectivity metrology during DSA patterning
US10310144B2 (en) * 2016-06-09 2019-06-04 Intel Corporation Image sensor having photodetectors with reduced reflections
US10170591B2 (en) * 2016-06-10 2019-01-01 International Business Machines Corporation Self-aligned finFET formation
US10395978B2 (en) * 2017-02-27 2019-08-27 Imec Vzw Method of patterning target layer
KR102191611B1 (ko) * 2017-09-13 2020-12-15 주식회사 엘지화학 패턴화 기판의 제조 방법
US11567401B2 (en) * 2019-12-20 2023-01-31 Canon Kabushiki Kaisha Nanofabrication method with correction of distortion within an imprint system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746825B2 (en) 2001-10-05 2004-06-08 Wisconsin Alumni Research Foundation Guided self-assembly of block copolymer films on interferometrically nanopatterned substrates
US7829262B2 (en) * 2005-08-31 2010-11-09 Micron Technology, Inc. Method of forming pitch multipled contacts
US7723009B2 (en) 2006-06-02 2010-05-25 Micron Technology, Inc. Topography based patterning
US7605081B2 (en) 2006-06-19 2009-10-20 International Business Machines Corporation Sub-lithographic feature patterning using self-aligned self-assembly polymers
US7964107B2 (en) 2007-02-08 2011-06-21 Micron Technology, Inc. Methods using block copolymer self-assembly for sub-lithographic patterning
US7969686B2 (en) * 2007-12-26 2011-06-28 Hitachi Global Storage Technologies Netherlands, B.V. Self-assembly structures used for fabricating patterned magnetic media
US7993816B2 (en) * 2008-03-17 2011-08-09 International Business Machines Corporation Method for fabricating self-aligned nanostructure using self-assembly block copolymers, and structures fabricated therefrom
US7976715B2 (en) 2008-06-17 2011-07-12 Hitachi Global Storage Technologies Netherlands B.V. Method using block copolymers for making a master mold with high bit-aspect-ratio for nanoimprinting patterned magnetic recording disks
US8119017B2 (en) 2008-06-17 2012-02-21 Hitachi Global Storage Technologies Netherlands B.V. Method using block copolymers for making a master mold with high bit-aspect-ratio for nanoimprinting patterned magnetic recording disks
JP2010049745A (ja) 2008-08-21 2010-03-04 Fuji Electric Device Technology Co Ltd ナノインプリント用モールドおよびこれを用いて作製された磁気記録媒体
US8362179B2 (en) 2008-11-19 2013-01-29 Wisconsin Alumni Research Foundation Photopatternable imaging layers for controlling block copolymer microdomain orientation
US8059350B2 (en) 2009-10-22 2011-11-15 Hitachi Global Storage Technologies Netherlands B.V. Patterned magnetic recording disk with patterned servo sectors having chevron servo patterns
US20110292546A1 (en) 2010-05-25 2011-12-01 Seagate Technology Llc Timing track for master template substrate
US8673541B2 (en) * 2010-10-29 2014-03-18 Seagate Technology Llc Block copolymer assembly methods and patterns formed thereby
US20120196094A1 (en) * 2011-01-31 2012-08-02 Seagate Technology Llc Hybrid-guided block copolymer assembly
US8815105B2 (en) 2011-02-28 2014-08-26 HGST Netherlands B.V. Method using block copolymers for making a master mold for nanoimprinting patterned magnetic recording disks with chevron servo patterns
US8475670B2 (en) 2011-07-11 2013-07-02 HGST Netherlands B.V. Method for manufacturing a patterned magnetic media with offset data and servo regions
US8501022B2 (en) 2011-11-02 2013-08-06 HGST Netherlands B.V. Method using block copolymers for making a master disk with radial nondata marks for nanoimprinting patterned magnetic recording disks
US8623223B2 (en) 2011-11-18 2014-01-07 HGST Netherlands B.V. Method using block copolymers for making a master disk with radial binary encoded nondata marks for nanoimprinting patterned magnetic recording disks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019519107A (ja) * 2016-05-27 2019-07-04 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ グラフォエピタキシー方法のための機能化されたガイドパターンを形成する方法

Also Published As

Publication number Publication date
CN103680527A (zh) 2014-03-26
US20140072830A1 (en) 2014-03-13
SG2013068531A (en) 2014-04-28
US9034197B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
JP2014056635A (ja) パターンドメディア上の領域を別々に加工する方法
JP5819059B2 (ja) ナノメートルスケールの自己組織化膜上の支持メンブラン
JP6034355B2 (ja) ブロック共重合体自己組織化方法、パターン化基板およびパターン化テンプレート
JP3926360B2 (ja) パターン形成方法およびそれを用いた構造体の加工方法
US8475669B2 (en) System, method and apparatus for master pattern generation, including servo patterns, for ultra-high density discrete track media using e-beam and self-assembly of block copolymer microdomains
JP5053007B2 (ja) インプリント用モールド構造体、及び該インプリント用モールド構造体を用いたインプリント方法、並びに、磁気記録媒体
JP2010251601A (ja) テンプレート及びその製造方法、並びにパターン形成方法
JP4482047B2 (ja) インプリント方法
JP2014067479A (ja) ナノインプリンティングマスタテンプレートとその作製方法
KR102247829B1 (ko) 임프린트 템플레이트 복제 프로세스 중에 압출을 제어하기 위한 방법
JP5114962B2 (ja) インプリントモールド、これを用いたインプリント評価装置、レジストパターン形成方法及びインプリントモールドの製造方法
JP5651616B2 (ja) 磁気記録媒体、及びその製造方法
WO2012060375A1 (ja) ビットパターンドメディア製造用のインプリントモールド及びその製造方法
Yang et al. Directed self-assembly of block copolymer for bit patterned media with areal density of 1.5 Teradot/Inch2 and beyond
Yang et al. Advanced lithography for bit patterned media
JP2013200912A (ja) 磁気記録媒体、及びその製造方法
US9349406B2 (en) Combining features using directed self-assembly to form patterns for etching
JP2009208447A (ja) インプリント用モールド構造体、並びにインプリント方法、磁気記録媒体及びその製造方法
JP2012064878A (ja) パターン形成方法およびインプリント用モールドの製造方法
JP2005038477A (ja) 磁気記録媒体用スタンパーの製造方法および磁気記録媒体用スタンパーの製造装置
US8404432B2 (en) Lithography process
JP2010080010A (ja) 情報記録媒体基板の製造方法
JP2010077476A (ja) スタンパの製造方法
JP5758842B2 (ja) 単一の記録マスタから両面テンプレートを作成する方法および装置ならびに第二面テンプレート
JP2006286122A (ja) 転写用原盤及びその製造技術