JP2014043597A - Ni-BASED ALLOY HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND METHOD OF MANUFACTURING Ni-BASED ALLOY MATERIAL HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE - Google Patents

Ni-BASED ALLOY HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND METHOD OF MANUFACTURING Ni-BASED ALLOY MATERIAL HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE Download PDF

Info

Publication number
JP2014043597A
JP2014043597A JP2012184966A JP2012184966A JP2014043597A JP 2014043597 A JP2014043597 A JP 2014043597A JP 2012184966 A JP2012184966 A JP 2012184966A JP 2012184966 A JP2012184966 A JP 2012184966A JP 2014043597 A JP2014043597 A JP 2014043597A
Authority
JP
Japan
Prior art keywords
hydrogen embrittlement
based alloy
embrittlement resistance
hydrogen
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012184966A
Other languages
Japanese (ja)
Other versions
JP5599850B2 (en
Inventor
Koichi Takazawa
孝一 高澤
Eiji Maeda
榮二 前田
Shinya Sato
慎也 佐藤
Takashi Hatano
隆司 波多野
Tatsuya Takahashi
達也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2012184966A priority Critical patent/JP5599850B2/en
Priority to EP13831112.1A priority patent/EP2889387B1/en
Priority to PCT/JP2013/072431 priority patent/WO2014030705A1/en
Priority to CN201380044315.XA priority patent/CN104583432B/en
Priority to KR1020157004576A priority patent/KR101704312B1/en
Priority to US14/423,328 priority patent/US20150225827A1/en
Publication of JP2014043597A publication Critical patent/JP2014043597A/en
Application granted granted Critical
Publication of JP5599850B2 publication Critical patent/JP5599850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material having excellent hydrogen embrittlement properties at a high temperature and usable for a pressure container of ammonothermal and the like.SOLUTION: A material contains, by mass%, Fe:30 to 40%, Cr:14 to 16%, Ti:1.2 to 1.7%, Al:1.1 to 1.5%, Nb:1.9 to 2.7%, by mass ppm, P:40 to 150 pp, and the remainder Ni with inevitable impurities, and as desired, Mg:0.01% or less and Zr:0.1% or less, and has excellent hydrogen embrittlement resistance with a hydrogen embrittlement index EI defined by EI=(RA-RA)/RA, where RAand RAare contractions in a tensile test of a hydrogen charge material and a non-hydrogen charge material respectively, of 0.1 or less at 625°C, and excellent high temperature creep properties with a creep fracture time at 700°C and 333 MPa of 1,500 hours or longer and a minimum creep speed of 1×10sor less.

Description

この発明は、耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法に関するものである。   The present invention relates to a Ni-base alloy having excellent hydrogen embrittlement resistance and a method for producing a Ni-base alloy material.

単結晶育成法の一種としてアモノサーマル法が知られており、該アモノサーマル法は、例えば青色発光ダイオード用窒化物半導体である窒化ガリウムの単結晶育成などに応用されている。
窒化ガリウムは、高輝度LEDや半導体レーザなどの光学デバイス、あるいは電気自動車用トランジスタ、携帯電話基地局用アンプなどに用いられる電子デバイスとして利用が期待されている。これらのデバイスに応用するためには、窒化ガリウム単結晶のサイズを大きくする必要があり、2インチ以上から6インチ以上、さらにはそれ以上の大きさが求められている。
従来、窒化ガリウム単結晶の育成には気相成長法が主流であったが、上記のような結晶の大型化や量産化、あるいは低コスト化に対応するために、高温、高圧のアンモニア中で結晶を成長させるアモノサーマル法に置き換わりつつある。アモノサーマル法での合成条件は概ね温度が600〜650℃、圧力が200〜250MPaであることから、高温環境下で高い強度をもつ圧力容器材料としてNiーFe基合金の適用が図られている。
アモノサーマル法では高温、高圧下での操業となるため、原料のアンモニアが分解されて大量の高圧水素が発生する。従って、圧力容器材料に求められる特性としてはまず高温で優れた耐水素脆化特性を有することが挙げられる。また、高温環境下であることからクリープ特性も要求される。
An ammonothermal method is known as a kind of single crystal growth method, and the ammonothermal method is applied to, for example, single crystal growth of gallium nitride which is a nitride semiconductor for blue light-emitting diodes.
Gallium nitride is expected to be used as an optical device such as a high-brightness LED or a semiconductor laser, or an electronic device used in a transistor for an electric vehicle or an amplifier for a mobile phone base station. In order to apply to these devices, it is necessary to increase the size of the gallium nitride single crystal, and a size of 2 inches or more to 6 inches or more and further larger is required.
Conventionally, vapor phase epitaxy has been the mainstream for growing gallium nitride single crystals. However, in order to cope with the above-mentioned enlargement, mass production, and cost reduction of crystals, it can be performed in high-temperature and high-pressure ammonia. It is being replaced by the ammonothermal method of growing crystals. Since the synthesis conditions in the ammonothermal method are generally a temperature of 600 to 650 ° C. and a pressure of 200 to 250 MPa, the application of a Ni-Fe based alloy as a pressure vessel material having high strength in a high temperature environment has been attempted. Yes.
Since the ammonothermal method operates at high temperature and high pressure, the raw material ammonia is decomposed and a large amount of high-pressure hydrogen is generated. Therefore, as a characteristic required for the pressure vessel material, firstly, it has excellent hydrogen embrittlement resistance at a high temperature. Moreover, since it is in a high temperature environment, creep characteristics are also required.

従来、高強度で耐水素脆化特性に優れたNiーFe基合金に関する技術はいくつか開発されている。例えば、特許文献1では、水素ステーション用高圧水素配管材料として用いられる高強度で耐水素脆化特性に優れたFe−Ni基合金に関する技術が開示されている。該文献では時効により高強度を付与した外層と、耐水素脆化特性を付与した内層から成る2層構造の配管材料が提示されている。
特許文献2では、γ´相の粒径や各析出相の分率を制御して高強度や耐水素脆化特性を発現させたNi−Fe合金が開示されている。
また、高温における水素脆化特性などを扱った技術として特許文献3が開示されている。
Conventionally, several technologies related to Ni-Fe base alloys having high strength and excellent hydrogen embrittlement resistance have been developed. For example, Patent Document 1 discloses a technique related to a Fe—Ni-based alloy having high strength and excellent hydrogen embrittlement resistance used as a high-pressure hydrogen piping material for a hydrogen station. In this document, a pipe material having a two-layer structure composed of an outer layer imparted with high strength by aging and an inner layer imparted with hydrogen embrittlement resistance is presented.
Patent Document 2 discloses a Ni—Fe alloy in which the particle size of the γ ′ phase and the fraction of each precipitated phase are controlled to exhibit high strength and hydrogen embrittlement resistance.
Further, Patent Document 3 is disclosed as a technique dealing with hydrogen embrittlement characteristics at high temperatures.

特開2010−174360号公報JP 2010-174360 A 特開2009−68031号公報JP 2009-68031 A 特開平5−255788号公報JP-A-5-255788

しかし、特許文献1、2で高強度と耐水素脆化特性に優れるとされる温度は室温であり、高温高圧下ではそれらの特性を保証できるかは不明である。
また、特許文献3では、200〜500℃で使用できる高強度で耐水素脆化特性に優れた高Ni基合金を扱っているが、本発明の課題である600〜650℃における特性は担保できないと考えられ、また高圧下での特性については何ら保証できるものでない。
前記のように、これまで高強度で耐水素脆化特性に優れたNi−Fe基合金はいくつか開発されているが、いずれも本発明が扱う条件下でそれらの特性が保証できるものではない。
However, in Patent Documents 1 and 2, the temperature considered to be excellent in high strength and hydrogen embrittlement resistance is room temperature, and it is unclear whether these characteristics can be guaranteed under high temperature and high pressure.
Further, Patent Document 3 deals with a high Ni-base alloy having high strength and excellent hydrogen embrittlement resistance that can be used at 200 to 500 ° C., but the characteristics at 600 to 650 ° C., which is the subject of the present invention, cannot be guaranteed. In addition, the characteristics under high pressure cannot be guaranteed at all.
As described above, several Ni-Fe based alloys having high strength and excellent hydrogen embrittlement resistance have been developed so far, but none of them can guarantee the characteristics under the conditions handled by the present invention. .

本発明は、上記事情を背景としてなされたものであり、600〜650℃、200〜250MPaのような高温、高圧の環境においても高強度で耐水素脆化特性に優れたNi基合金およびNi基合金材の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and Ni-base alloys and Ni-bases having high strength and excellent hydrogen embrittlement resistance even in high-temperature and high-pressure environments such as 600 to 650 ° C. and 200 to 250 MPa. It aims at providing the manufacturing method of an alloy material.

すなわち、本発明の耐水素脆化特性に優れたNi基合金のうち、第1の本発明は、質量%で、Fe:30〜40%、Cr:14〜16%、Ti:1.2〜1.7%、Al:1.1〜1.5%、Nb:1.9〜2.7%を含有し、質量ppmで、P:40〜150ppmを含有し、残部がNiおよび不可避不純物からなることを特徴とする。   That is, among the Ni-based alloys excellent in hydrogen embrittlement resistance of the present invention, the first present invention is in mass%, Fe: 30-40%, Cr: 14-16%, Ti: 1.2- 1.7%, Al: 1.1 to 1.5%, Nb: 1.9 to 2.7%, mass ppm, P: 40 to 150 ppm, the balance from Ni and inevitable impurities It is characterized by becoming.

第2の本発明の耐水素脆化特性に優れたNi基合金は、前記第1の本発明において、質量%で、さらにMg:0.01%以下、Zr:0.1%以下の1種または2種を含有することを特徴とする。   The Ni-based alloy having excellent hydrogen embrittlement resistance according to the second aspect of the present invention is the same as that of the first aspect of the present invention, which is 1% by mass, Mg: 0.01% or less, and Zr: 0.1% or less. Or it contains 2 types, It is characterized by the above-mentioned.

第3の本発明の耐水素脆化特性に優れたNi基合金は、前記第1または第2の本発明のいずれかにおいて、水素チャージ材および非水素チャージ材の引張試験における絞りをそれぞれRAおよびRAとしたとき、EI=(RA−RA)/RAで定義される水素脆化指数EIが625℃にて0.1以下であることを特徴とする。 Third Ni-based alloy having excellent hydrogen embrittlement resistance of the present invention, in any one of the first or second invention, respectively an aperture in a tensile test of a hydrogen-charged material and a non-hydrogen-charged material RA H And RA A , the hydrogen embrittlement index EI defined by EI = (RA A −RA H ) / RA A is characterized by 0.1 or less at 625 ° C.

第4の本発明の耐水素脆化特性に優れたNi基合金は、前記第1〜第3の本発明のいずれかにおいて、700℃、333MPaにおけるクリープ破断時間が1,500時間以上であることを特徴とする。   The Ni-based alloy having excellent hydrogen embrittlement resistance according to the fourth aspect of the present invention has a creep rupture time of 1,500 hours or more at 700 ° C. and 333 MPa in any of the first to third aspects of the present invention. It is characterized by.

第5の本発明の耐水素脆化特性に優れたNi基合金は、前記第1〜第4の本発明のいずれかにおいて、700℃、333MPaにおける最小クリープ速度が1×10−8−1以下であることを特徴とする。 The Ni-based alloy having excellent hydrogen embrittlement resistance according to the fifth aspect of the present invention has a minimum creep rate of 1 × 10 −8 s −1 at 700 ° C. and 333 MPa in any of the first to fourth aspects of the present invention. It is characterized by the following.

第6の本発明の耐水素脆化特性に優れたNi基合金は、前記第1〜第5の本発明のいずれかにおいて、アモノサーマル圧力容器材料に用いるものであることを特徴とする。   The Ni-based alloy having excellent hydrogen embrittlement resistance according to the sixth aspect of the present invention is characterized by being used for an ammonothermal pressure vessel material in any of the first to fifth aspects of the present invention.

第7の本発明の耐水素脆化特性に優れたNi基合金材の製造方法の発明は、第1または第2の発明におけるNi基合金を溶体化処理後、825〜855℃の温度と710〜740℃の温度で2回時効処理を行うことを特徴とする。   The invention of the manufacturing method of the Ni-based alloy material having excellent hydrogen embrittlement resistance according to the seventh aspect of the present invention includes a temperature of 825 to 855 ° C. and 710 after the solution treatment of the Ni-based alloy in the first or second invention. An aging treatment is performed twice at a temperature of ˜740 ° C.

以下に本発明の合金組成を決定した理由を説明する。以降、P以外の各元素の含有量は質量%で示し、Pは、質量ppmで示す。   The reason for determining the alloy composition of the present invention will be described below. Hereinafter, the content of each element other than P is indicated by mass%, and P is indicated by mass ppm.

Fe:30〜40%
Feは含有量を多くすると合金のコスト低減に効果があるが、Nb含有とともに過剰にFeを含有するとLaves相が生成し、水素脆化感受性の増大など材料特性の悪化を招く。そのため、Feの含有量は30〜40%とする。なお、同様の理由で下限を33%、上限を38%とするのが望ましい。
Fe: 30-40%
Increasing the content of Fe is effective in reducing the cost of the alloy. However, if Fe is contained excessively together with Nb, a Laves phase is generated, which leads to deterioration of material properties such as increased hydrogen embrittlement sensitivity. Therefore, the content of Fe is set to 30 to 40%. For the same reason, it is desirable to set the lower limit to 33% and the upper limit to 38%.

Cr:14〜16%
Crは合金の耐酸化性、耐食性、強度を高めるために必要な元素である。また、Cと結合して炭化物を生成し高温強度を高める。しかし、含有量が多すぎるとマトリクスの不安定化を招き、σ相やα−Crなどの有害なTCP相の生成を助長して延性や靭性に悪影響をもたらす。またσ相は合金中で水素集積サイトとして働き水素脆化感受性を高めるおそれがある。従って、Crの含有量は14〜16%に限定する。
Cr: 14-16%
Cr is an element necessary for increasing the oxidation resistance, corrosion resistance, and strength of the alloy. Moreover, it combines with C to form carbides and increase the high temperature strength. However, when the content is too large, the matrix is destabilized, and the generation of harmful TCP phases such as σ phase and α-Cr is promoted to adversely affect ductility and toughness. In addition, the σ phase may act as a hydrogen accumulation site in the alloy and may increase hydrogen embrittlement sensitivity. Therefore, the Cr content is limited to 14 to 16%.

Ti:1.2〜1.7%
Tiは主にMC炭化物を形成して合金の結晶粒粗大化を抑制するとともに、Niと結合してγ´相を析出させ、合金の析出強化に寄与する。しかし過度に含有させると高温でのγ´相の安定性を低下させ、さらにη相を生成し強度や延性、靭性、高温長時間での組織安定性を損ねる。また、η相も合金中で水素集積サイトとして働き水素脆化感受性を高めるおそれがある。従って、Tiの含有量は1.2〜1.7%の範囲に限定する。
Ti: 1.2-1.7%
Ti mainly forms MC carbides to suppress the grain coarsening of the alloy, and combines with Ni to precipitate a γ ′ phase, contributing to the precipitation strengthening of the alloy. However, if it is contained excessively, the stability of the γ ′ phase at high temperature is lowered, and further, the η phase is generated, and the strength, ductility, toughness, and structure stability at high temperature for a long time are impaired. In addition, the η phase also acts as a hydrogen accumulation site in the alloy and may increase the sensitivity to hydrogen embrittlement. Therefore, the Ti content is limited to the range of 1.2 to 1.7%.

Al:1.1〜1.5%
AlはNiと結合してγ´相を析出させ、合金の析出強化に寄与する。しかし含有量が多すぎるとγ´相が粒界に凝集して粗大化し、高温での機械的特性を著しく損ねるほか、熱間加工性も低下させる。従って、Al含有量は1.1〜1.5%に限定する。
Al: 1.1 to 1.5%
Al combines with Ni to precipitate a γ ′ phase, contributing to precipitation strengthening of the alloy. However, if the content is too large, the γ 'phase aggregates and becomes coarse at the grain boundaries, which significantly impairs the mechanical properties at high temperatures and also reduces hot workability. Therefore, the Al content is limited to 1.1 to 1.5%.

Nb:1.9〜2.7%
Nbはγ´相を安定化させ強度増大に寄与する元素であるが、過剰に含有させると有害相であるη相、σ相およびLaves相の析出が助長され、組織安定性が著しく低下し水素脆化感受性が高まる。したがって、Nbの含有量は1.9〜1.7%に限定する。
Nb: 1.9 to 2.7%
Nb is an element that stabilizes the γ ′ phase and contributes to an increase in strength. However, if excessively contained, the precipitation of harmful η phase, σ phase, and Laves phase is promoted, and the structural stability is remarkably reduced, resulting in hydrogen. Increases embrittlement susceptibility. Therefore, the Nb content is limited to 1.9 to 1.7%.

P:40〜150ppm
Pは粒界の整合性を増大させることにより粒界における水素の過剰集積を抑え、水素脆化感受性を低下させる効果があると考えられるので含有させる。上記の効果を得るには40ppm以上のP含有量が必要である。また、クリープ破断時間を長くし最小クリープ速度を低下させる効果がある。しかし、過剰に含有するとPの粒界偏析が過多となり逆に粒界の整合性を低下させ、水素脆化感受性低減効果を喪失する可能性がある。従って、Pの含有量は40〜150ppmに限定する。なお、同様に理由で、下限を45ppm、上限を140ppmとするのが望ましい。
P: 40 to 150 ppm
P is included because it is considered to have an effect of suppressing the excessive accumulation of hydrogen at the grain boundary and increasing the hydrogen embrittlement sensitivity by increasing the consistency of the grain boundary. To obtain the above effect, a P content of 40 ppm or more is required. It also has the effect of increasing the creep rupture time and reducing the minimum creep rate. However, if it is contained in excess, the grain boundary segregation of P becomes excessive, and on the contrary, the consistency of grain boundaries is lowered, and there is a possibility that the effect of reducing the sensitivity to hydrogen embrittlement is lost. Therefore, the P content is limited to 40 to 150 ppm. For the same reason, it is desirable that the lower limit is 45 ppm and the upper limit is 140 ppm.

Mg:0.01%以下
Mgは主にSと結合して硫化物を形成し、熱間加工性を高めるので所望により含有させる。但し含有量が多すぎると逆に粒界が脆化して熱間加工性を低下させるので、Mgの含有量は0.01%以下にする。なお上記の効果を十分発現させるため、Mg含有量の下限は0.0005%以上とするのが望ましい。
Mg: 0.01% or less Mg is mainly combined with S to form a sulfide and enhance hot workability, so it is contained as desired. However, if the content is too large, the grain boundary becomes brittle and the hot workability is lowered, so the Mg content is 0.01% or less. In order to fully express the above effect, the lower limit of the Mg content is preferably 0.0005% or more.

Zr:0.1%以下
Zrは粒界に偏析して高温特性向上に寄与するので所望により含有させる。但し、過剰に含有させると合金の熱間加工性を低下させるので、所望により含有させるZrは0.1%以下とする。上記の効果を得るためには0.01%以上含有させるのが望ましい。
Zr: 0.1% or less Zr is segregated at the grain boundaries and contributes to the improvement of high temperature characteristics. However, if excessively contained, the hot workability of the alloy is lowered, so that Zr contained if desired is made 0.1% or less. In order to acquire said effect, it is desirable to make it contain 0.01% or more.

本発明のNi基合金は、耐水素脆化特性に優れており、水素環境に晒される材料として好適に使用することができる。また、高温での高強度特性に優れており、アモノサーマル圧力容器材料に好適に用いることができる。   The Ni-based alloy of the present invention has excellent hydrogen embrittlement resistance and can be suitably used as a material exposed to a hydrogen environment. Moreover, it is excellent in high strength characteristics at high temperatures, and can be suitably used for ammonothermal pressure vessel materials.

この発明による主たる効果として、625℃のような高温における耐水素脆化特性が良好で、且つ700℃において優れたクリープ特性を有するNi基合金を提供することが可能となる。さらに従たる効果として、該発明合金をアモノサーマル用圧力容器材料に適用することにより、より高温・高圧の環境に対応可能な圧力容器の製造が可能となり、例えば窒化ガリウム単結晶の大型化、量産化および低コスト化が大きく前進するものと期待される。   As a main effect of the present invention, it is possible to provide a Ni-based alloy having good hydrogen embrittlement resistance at a high temperature such as 625 ° C. and excellent creep properties at 700 ° C. As a further effect, by applying the alloy of the present invention to an ammonothermal pressure vessel material, it becomes possible to produce a pressure vessel that can cope with higher temperature and high pressure environments. For example, the gallium nitride single crystal is enlarged, It is expected that mass production and cost reduction will make great progress.

図1は発明材と比較材の水素脆化指数とP含有量の関係を示したものである。FIG. 1 shows the relationship between the hydrogen embrittlement index and the P content of the inventive material and the comparative material. 図2は発明材と比較材のクリープ応力とクリープ破断時間の関係を示したものである。FIG. 2 shows the relationship between the creep stress and the creep rupture time of the inventive material and the comparative material. 図3は発明材と比較材のクリープ応力とクリープ速度を示したものである。FIG. 3 shows the creep stress and creep rate of the inventive material and the comparative material.

本発明のNi基合金は、質量%で、Fe:30〜40%、Cr:14〜16%、Ti:1.2〜1.7%、Al:1.1〜1.5%、Nb:1.9〜2.7%を含有し、質量ppmで、P:40〜150ppmを含有し、さらに所望によりMg:0.01%以下、Zr:0.1%以下の1種または2種を含有し、残部がNiおよび不可避不純物からなる成分に調製される。
本発明のNi基合金は、常法により溶製することができ、本発明としては特に溶製の方法が限定されるものではない。
The Ni-based alloy of the present invention is in mass%, Fe: 30-40%, Cr: 14-16%, Ti: 1.2-1.7%, Al: 1.1-1.5%, Nb: 1.9 to 2.7% in mass, ppm: P: 40 to 150 ppm, further optionally Mg: 0.01% or less, Zr: 0.1% or less one or two of It is contained and the remainder is prepared into a component consisting of Ni and inevitable impurities.
The Ni-based alloy of the present invention can be melted by a conventional method, and the melting method is not particularly limited as the present invention.

該Ni基合金は、所望により鍛造などの加工を行うことができ、また、溶体化処理および時効による熱処理を施すことができる。
溶体化は、例えば1040〜1140℃で4〜10時間の条件で行うことができる。また、時効処理は、少なくとも2段で行う処理が望ましく、825〜855℃の温度と710〜740℃の温度で2段で時効処理を行うことができる。
当該条件を採用することで、室温および625℃における引張強度をそれぞれ1000および820MPaを確保することができる。
なお、前者の温度を825℃未満あるいは855℃超とすると、γ´相が十分成長できず上記の強度を確保することができない。
また、後者の温度を710℃未満とするとM23型の炭化物が過剰に析出し、740℃超とするとMC型炭化物が粗大化することによって、いずれも高温延性の低下など悪影響をもたらすおそれがある。
The Ni-based alloy can be subjected to processing such as forging as desired, and can be subjected to solution treatment and heat treatment by aging.
The solution treatment can be performed, for example, at 1040 to 1140 ° C. for 4 to 10 hours. The aging treatment is desirably performed in at least two stages, and the aging treatment can be performed in two stages at a temperature of 825 to 855 ° C. and a temperature of 710 to 740 ° C.
By adopting the conditions, 1000 and 820 MPa can be secured for the tensile strength at room temperature and 625 ° C., respectively.
If the former temperature is less than 825 ° C. or more than 855 ° C., the γ ′ phase cannot be sufficiently grown and the above strength cannot be ensured.
Further, if the latter temperature is less than 710 ° C., M 23 C 6 type carbide is excessively precipitated, and if it exceeds 740 ° C., MC type carbide is coarsened, which may cause adverse effects such as a decrease in hot ductility. There is.

上記で得られるNi基合金は、水素チャージ材および非水素チャージ材の引張試験における絞りをそれぞれRAおよびRAとしたとき、EI=(RA−RA)/RAで定義される水素脆化指数EIが625℃にて0.1以下となる耐水素脆化特性を得ることが可能になる。水素チャージは、50ppmの水素量侵入が模擬される。 The Ni-based alloy obtained above is a hydrogen defined by EI = (RA A −RA H ) / RA A when the drawing in the tensile test of the hydrogen charge material and the non-hydrogen charge material is RA H and RA A , respectively. Hydrogen embrittlement resistance with an embrittlement index EI of 0.1 or less at 625 ° C. can be obtained. The hydrogen charge simulates an intrusion of 50 ppm of hydrogen.

また、上記で得られるNi基合金は、700℃、333MPaにおけるクリープ破断時間が1,500時間以上となる高温クリープ特性を得ることが可能になる。
さらに、上記で得られるNi基合金は、700℃、333MPaにおける最小クリープ速度が1×10−8−1以下となる高温クリープ特性を得ることが可能になる。
Moreover, the Ni-based alloy obtained as described above can obtain a high temperature creep characteristic in which a creep rupture time at 700 ° C. and 333 MPa is 1,500 hours or more.
Furthermore, the Ni-based alloy obtained as described above can obtain a high temperature creep characteristic in which the minimum creep rate at 700 ° C. and 333 MPa is 1 × 10 −8 s −1 or less.

上記Ni基合金を用いた材料は、塑性加工や機械加工などを経て耐水素脆化特性を発揮できる所望の用途に使用することができ、特にアモノサーマル圧力容器材料に好適に使用することができ、例えば窒化ガリウム単結晶の大型化、量産化および低コスト化を実現することが可能となる。   The material using the Ni-based alloy can be used for a desired application capable of exhibiting hydrogen embrittlement resistance through plastic processing, machining, etc., and particularly preferably used for ammonothermal pressure vessel materials. For example, it is possible to realize enlargement, mass production, and cost reduction of a gallium nitride single crystal.

以下に、本発明の実施例を説明する。
表1に示す組成となるように、真空誘導溶解法で50kg丸型鋼塊の素材をそれぞれ発明材2種と比較材2種として溶製した。これらの素材を鍛造して板とした。
鍛造板を適当な大きさに切り出し、1040℃×4時間の溶体化処理と、840℃×10時間および730℃×24時間の2段時効を行い試験材とした。続いて試験材を機械加工し、水素脆化特性評価用引張試験片とクリープ試験片とした。
Examples of the present invention will be described below.
In order to obtain the composition shown in Table 1, 50 kg round steel ingot materials were melted by vacuum induction melting as 2 types of invention materials and 2 types of comparative materials, respectively. These materials were forged into plates.
A forged plate was cut into a suitable size and subjected to a solution treatment at 1040 ° C. for 4 hours and two-stage aging at 840 ° C. for 10 hours and 730 ° C. for 24 hours to obtain a test material. Subsequently, the test material was machined to obtain a tensile test piece and a creep test piece for evaluating hydrogen embrittlement characteristics.

Figure 2014043597
Figure 2014043597

耐水素脆化特性の評価は以下の手順で行った。
先ず、平行部の直径と長さがそれぞれ10mmおよび50mmの試験片を、温度450℃、水素圧力25MPaの雰囲気にて72時間保持し、水素をチャージした。この水素チャージ条件は実際のアモノサーマル法で材料内に侵入すると想定されている水素量である50ppmを模擬するように設定している。水素チャージ後、625℃にて引張試験を行い、引張強度や絞りを測定した。耐水素脆化特性は、非水素チャージ材の625℃における引張試験結果も用いて、次式で定義する水素脆化指数EIを算出して評価した。
水素脆化指数EI=(RA−RA)/RA ・・・(1)
ここで、RAは非水素チャージ材の絞り、RAは水素チャージ材の絞りである。
(1)式は、水素脆化指数が小さいほど耐水素脆化特性に優れることを示している。
The hydrogen embrittlement resistance was evaluated according to the following procedure.
First, test pieces having a parallel part diameter and length of 10 mm and 50 mm, respectively, were held for 72 hours in an atmosphere at a temperature of 450 ° C. and a hydrogen pressure of 25 MPa to charge hydrogen. This hydrogen charge condition is set so as to simulate 50 ppm which is the amount of hydrogen assumed to enter the material by the actual ammonothermal method. After hydrogen charging, a tensile test was performed at 625 ° C., and tensile strength and drawing were measured. The hydrogen embrittlement resistance was evaluated by calculating the hydrogen embrittlement index EI defined by the following equation using the tensile test result at 625 ° C. of the non-hydrogen charge material.
Hydrogen embrittlement index EI = (RA A −RA H ) / RA A (1)
Here, RA A is a restriction for a non-hydrogen charge material, and RA H is a restriction for a hydrogen charge material.
The formula (1) shows that the smaller the hydrogen embrittlement index, the better the hydrogen embrittlement resistance.

クリープ特性はクリープラプチャー試験とクリープレート試験を行って評価した。いずれの試験も試験温度は700℃とし、試験応力はラプチャー試験では333MPaと275MPa、レート試験では333MPaとした。
表2に水素チャージ材と非水素チャージ材の625℃における引張強度、絞りおよび水素脆化指数を示す。なお発明材P1の水素脆化指数は負になるが、表2では便宜上これを0として表示している。
Creep characteristics were evaluated by performing creep rupture test and creep plate test. In all the tests, the test temperature was 700 ° C., the test stress was 333 MPa and 275 MPa in the rupture test, and 333 MPa in the rate test.
Table 2 shows the tensile strength, drawing, and hydrogen embrittlement index at 625 ° C. for the hydrogen charge material and the non-hydrogen charge material. Although the hydrogen embrittlement index of the inventive material P1 is negative, in Table 2, this is displayed as 0 for convenience.

Figure 2014043597
Figure 2014043597

図1に発明材と比較材の625℃における水素脆化指数とP含有量の関係を示す。同図より、発明材の水素脆化指数は比較材に比べて著しく小さく、発明材は高温での耐水素脆化特性に極めて優れることが判った。同図中の網掛け部で示すように、P含有量が40ppm以上になると水素脆化指数が0.1以下となり、水素の影響がほぼ無視できるまで水素脆化感受性が低減する。これより、P含有量を増やして耐水素脆化特性を改善するためには、40ppm以上のP含有量が必要であることが判った。   FIG. 1 shows the relationship between the hydrogen embrittlement index and the P content at 625 ° C. for the inventive material and the comparative material. From the figure, it was found that the hydrogen embrittlement index of the inventive material is significantly smaller than that of the comparative material, and the inventive material is extremely excellent in hydrogen embrittlement resistance at high temperatures. As indicated by the shaded portion in the figure, when the P content is 40 ppm or more, the hydrogen embrittlement index becomes 0.1 or less, and the hydrogen embrittlement sensitivity is reduced until the influence of hydrogen can be almost ignored. From this, it was found that in order to improve the hydrogen embrittlement resistance by increasing the P content, a P content of 40 ppm or more is necessary.

図2および図3にクリープラプチャー試験結果とクリープレート試験結果をそれぞれ示す。発明材の破断時間は比較材を大幅に上回っており、試験応力が333MPaの場合の破断時間は比較材の少なくとも10倍以上である。また、発明材の最小クリープ速度は比較材に比べて少なくとも4分の1以下であり、発明材は優れたクリープ特性を有していることが明らかとなった。   2 and 3 show the creep rupture test results and the creep plate test results, respectively. The break time of the inventive material is significantly longer than that of the comparative material, and the break time when the test stress is 333 MPa is at least 10 times that of the comparative material. In addition, the minimum creep rate of the inventive material is at least 1/4 or less than that of the comparative material, and it has been clarified that the inventive material has excellent creep characteristics.

以上、本発明について上記実施形態および実施例に基づいて説明を行ったが、本発明は上記実施形態および実施例の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。   The present invention has been described based on the above-described embodiments and examples. However, the present invention is not limited to the contents of the above-described embodiments and examples, and is appropriate as long as it does not depart from the scope of the present invention. It can be changed.

Claims (7)

質量%で、Fe:30〜40%、Cr:14〜16%、Ti:1.2〜1.7%、Al:1.1〜1.5%、Nb:1.9〜2.7%を含有し、質量ppmで、P:40〜150ppmを含有し、残部がNiおよび不可避不純物からなることを特徴とする耐水素脆化特性に優れたNi基合金。   In mass%, Fe: 30-40%, Cr: 14-16%, Ti: 1.2-1.7%, Al: 1.1-1.5%, Nb: 1.9-2.7% A Ni-based alloy having excellent hydrogen embrittlement resistance, characterized by containing, in mass ppm, P: 40 to 150 ppm, the balance being made of Ni and inevitable impurities. 質量%で、さらにMg:0.01%以下、Zr:0.1%以下の1種または2種を含有することを特徴とする請求項1に記載の耐水素脆化特性に優れたNi基合金。   The Ni group having excellent hydrogen embrittlement resistance according to claim 1, further comprising one or two of Mg: 0.01% or less and Zr: 0.1% or less. alloy. 水素チャージ材および非水素チャージ材の引張試験における絞りをそれぞれRAおよびRAとしたとき、EI=(RA−RA)/RAで定義される水素脆化指数EIが625℃にて0.1以下であることを特徴とする請求項1または2に記載の耐水素脆化特性に優れたNi基合金。 The hydrogen embrittlement index EI defined by EI = (RA A −RA H ) / RA A is 625 ° C. when the drawing in the tensile test of the hydrogen charge material and the non-hydrogen charge material is RA H and RA A , respectively. The Ni-based alloy having excellent hydrogen embrittlement resistance according to claim 1 or 2, wherein the Ni-base alloy has a resistance to hydrogen embrittlement. 700℃、333MPaにおけるクリープ破断時間が1,500時間以上であることを特徴とする請求項1〜3のいずれかに記載の耐水素脆化特性に優れたNi基合金。   The Ni-based alloy having excellent hydrogen embrittlement resistance according to any one of claims 1 to 3, wherein a creep rupture time at 700 ° C and 333 MPa is 1,500 hours or more. 700℃、333MPaにおける最小クリープ速度が1×10−8−1以下であることを特徴とする請求項1〜4のいずれかに記載の耐水素脆化特性に優れたNi基合金。 5. The Ni-based alloy having excellent hydrogen embrittlement resistance according to claim 1, wherein a minimum creep rate at 700 ° C. and 333 MPa is 1 × 10 −8 s −1 or less. アモノサーマル圧力容器材料に用いるものであることを特徴とする請求項1〜5のいずれかに記載の耐水素脆化特性に優れたNi基合金。   The Ni-based alloy having excellent hydrogen embrittlement resistance according to any one of claims 1 to 5, which is used for an ammonothermal pressure vessel material. 請求項1または2に記載のNi基合金を溶体化処理後、825〜855℃の温度と710〜740℃の温度で2回時効処理を行うことを特徴とする耐水素脆化特性に優れたNi基合金材の製造方法。   The Ni-based alloy according to claim 1 is excellent in hydrogen embrittlement resistance, characterized by performing aging treatment twice at a temperature of 825 to 855 ° C and a temperature of 710 to 740 ° C after solution treatment. Manufacturing method of Ni-based alloy material.
JP2012184966A 2012-08-24 2012-08-24 Ni-base alloy excellent in hydrogen embrittlement resistance and method for producing Ni-base alloy material excellent in hydrogen embrittlement resistance Active JP5599850B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012184966A JP5599850B2 (en) 2012-08-24 2012-08-24 Ni-base alloy excellent in hydrogen embrittlement resistance and method for producing Ni-base alloy material excellent in hydrogen embrittlement resistance
EP13831112.1A EP2889387B1 (en) 2012-08-24 2013-08-22 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
PCT/JP2013/072431 WO2014030705A1 (en) 2012-08-24 2013-08-22 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
CN201380044315.XA CN104583432B (en) 2012-08-24 2013-08-22 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
KR1020157004576A KR101704312B1 (en) 2012-08-24 2013-08-22 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material
US14/423,328 US20150225827A1 (en) 2012-08-24 2013-08-22 Ni-based alloy having excellent hydrogen embrittlement resistance, and method for producing ni-based alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184966A JP5599850B2 (en) 2012-08-24 2012-08-24 Ni-base alloy excellent in hydrogen embrittlement resistance and method for producing Ni-base alloy material excellent in hydrogen embrittlement resistance

Publications (2)

Publication Number Publication Date
JP2014043597A true JP2014043597A (en) 2014-03-13
JP5599850B2 JP5599850B2 (en) 2014-10-01

Family

ID=50150009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184966A Active JP5599850B2 (en) 2012-08-24 2012-08-24 Ni-base alloy excellent in hydrogen embrittlement resistance and method for producing Ni-base alloy material excellent in hydrogen embrittlement resistance

Country Status (6)

Country Link
US (1) US20150225827A1 (en)
EP (1) EP2889387B1 (en)
JP (1) JP5599850B2 (en)
KR (1) KR101704312B1 (en)
CN (1) CN104583432B (en)
WO (1) WO2014030705A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155561A (en) * 2014-02-20 2015-08-27 株式会社日本製鋼所 Ni-Fe-BASED ALLOY AND MANUFACTURING METHOD OF Ni-Fe-BASED ALLOY MATERIAL

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164946A (en) * 2001-11-29 2003-06-10 Daido Steel Co Ltd Manufacturing method for nickel-group superalloy ingot
JP2012046787A (en) * 2010-08-26 2012-03-08 Hitachi Ltd Forged alloy for steam turbine and steam turbine rotor using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149441A (en) * 1981-03-12 1982-09-16 Res Inst Electric Magnetic Alloys Elinver type alloy for high temperature and preparation thereof
JPH05255788A (en) 1992-03-12 1993-10-05 Sumitomo Metal Ind Ltd Hydrogen induced embrittlement resistant high ni-base alloy and its manufacture
JP3058794B2 (en) * 1993-08-19 2000-07-04 日立金属株式会社 Fe-Ni-Cr based super heat resistant alloy, knit mesh for engine valve and exhaust gas catalyst
JP4123064B2 (en) * 2003-06-13 2008-07-23 株式会社日立製作所 Steam turbine rotor and steam turbine plant
JP4773773B2 (en) * 2005-08-25 2011-09-14 東京電波株式会社 Corrosion-resistant material for supercritical ammonia reaction equipment
JP5147037B2 (en) * 2006-04-14 2013-02-20 三菱マテリアル株式会社 Ni-base heat-resistant alloy for gas turbine combustor
JP4261562B2 (en) * 2006-08-25 2009-04-30 株式会社日立製作所 Ni-Fe based forged superalloy excellent in high temperature strength and high temperature ductility, its manufacturing method, and steam turbine rotor
JP4784501B2 (en) * 2006-12-12 2011-10-05 株式会社日立製作所 High pressure hydrogen flow meter
JP2009068031A (en) 2007-09-11 2009-04-02 Hitachi Ltd HIGH STRENGTH FeNi-BASED ALLOY
SE533124C2 (en) * 2008-05-28 2010-06-29 Westinghouse Electric Sweden Nuclear fuel rods spreader
JP2010174360A (en) 2009-02-02 2010-08-12 Hitachi Ltd Hydrogen embrittlement resistant material, and method for producing the same
JP5561583B2 (en) * 2009-12-21 2014-07-30 日立金属株式会社 High pressure hydrogen components

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164946A (en) * 2001-11-29 2003-06-10 Daido Steel Co Ltd Manufacturing method for nickel-group superalloy ingot
JP2012046787A (en) * 2010-08-26 2012-03-08 Hitachi Ltd Forged alloy for steam turbine and steam turbine rotor using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155561A (en) * 2014-02-20 2015-08-27 株式会社日本製鋼所 Ni-Fe-BASED ALLOY AND MANUFACTURING METHOD OF Ni-Fe-BASED ALLOY MATERIAL

Also Published As

Publication number Publication date
KR101704312B1 (en) 2017-02-07
WO2014030705A1 (en) 2014-02-27
JP5599850B2 (en) 2014-10-01
CN104583432A (en) 2015-04-29
CN104583432B (en) 2017-05-24
US20150225827A1 (en) 2015-08-13
EP2889387A1 (en) 2015-07-01
EP2889387B1 (en) 2018-05-02
KR20150034282A (en) 2015-04-02
EP2889387A4 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5582532B2 (en) Co-based alloy
JP6393993B2 (en) Ni-base superalloy with high temperature strength and capable of hot forging
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP6733210B2 (en) Ni-based superalloy for hot forging
JP2018131667A (en) Ni-BASED ALLOY, GAS TURBINE MATERIAL, AND METHOD FOR PRODUCING Ni-BASED ALLOY HAVING EXCELLENT CREEP PROPERTY
JP2016069703A (en) Nickel-based casting alloy and hot forging mold
JP6293682B2 (en) High strength Ni-base superalloy
JP5769204B2 (en) Fe-Ni base alloy having excellent high temperature characteristics and hydrogen embrittlement resistance and method for producing the same
TW201319276A (en) High heat-resistant and high-strength Rh group alloy and method for manufacturing the same
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP6733211B2 (en) Ni-based superalloy for hot forging
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
EP3249063B1 (en) High strength ni-based superalloy
JP5599850B2 (en) Ni-base alloy excellent in hydrogen embrittlement resistance and method for producing Ni-base alloy material excellent in hydrogen embrittlement resistance
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP2002097537A (en) Co-ni based heat resistant alloy and manufacturing method
JP2015155561A (en) Ni-Fe-BASED ALLOY AND MANUFACTURING METHOD OF Ni-Fe-BASED ALLOY MATERIAL
US20170342525A1 (en) High strength ni-based superalloy
JP2013209721A (en) Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2015108177A (en) Nickel-based alloy
JP2015042770A (en) HIGH-STRENGTH Ni-BASED ALLOY
JP2016003387A (en) Fe-Ni BASE ALLOY AND METHOD FOR PRODUCING Fe-Ni BASE ALLOY
JP2012201892A (en) Ni3(Si,Ti) INTERMETALLIC COMPOUND ALLOY TO WHICH Re IS ADDED, AND METHOD OF PRODUCING THE SAME

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140813

R150 Certificate of patent or registration of utility model

Ref document number: 5599850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250