JP2016069703A - Nickel-based casting alloy and hot forging mold - Google Patents

Nickel-based casting alloy and hot forging mold Download PDF

Info

Publication number
JP2016069703A
JP2016069703A JP2014201732A JP2014201732A JP2016069703A JP 2016069703 A JP2016069703 A JP 2016069703A JP 2014201732 A JP2014201732 A JP 2014201732A JP 2014201732 A JP2014201732 A JP 2014201732A JP 2016069703 A JP2016069703 A JP 2016069703A
Authority
JP
Japan
Prior art keywords
mass
alloy
content
nickel
cast alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201732A
Other languages
Japanese (ja)
Other versions
JP6476704B2 (en
Inventor
大野 丈博
Takehiro Ono
丈博 大野
力蔵 渡辺
Rikizo Watanabe
力蔵 渡辺
奈翁也 佐藤
Naoya Sato
奈翁也 佐藤
友典 上野
Tomonori Ueno
友典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014201732A priority Critical patent/JP6476704B2/en
Publication of JP2016069703A publication Critical patent/JP2016069703A/en
Application granted granted Critical
Publication of JP6476704B2 publication Critical patent/JP6476704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nickel-based casting alloy capable of being used as a mold material for hot forging conducted by heating a mold to 1000°C or more in atmosphere and suppressing generation of casting cracks, and a hot roll forging mold capable of being used for hot forging conducted by heating a mold to 1000°C or more in atmosphere.SOLUTION: There are provided a nickel-based casting alloy containing W of 10.30 to 11.00 mass%, Mo of 9.00 to 11.00 mass%, Al of 5.80 to 6.80 mass% and Y of 0.00 to 0.02 mass% and the balance Ni with inevitable impurities, and a hot forging mold made of the nickel-based casting alloy.SELECTED DRAWING: None

Description

本発明は、ニッケル基鋳造合金及び熱間鍛造金型に関する。   The present invention relates to a nickel-base casting alloy and a hot forging die.

例えば、航空機のエンジンや、発電用ガスタービン等に用いられる部品は、高温でも高い強度を有する耐熱合金によって製造される。これらの耐熱合金からなる製品を金型を用いて鍛造する場合、鍛造金型は高温でも高い機械的強度が必要である。   For example, parts used in aircraft engines, power generation gas turbines, and the like are manufactured from heat-resistant alloys having high strength even at high temperatures. When forging a product made of these heat-resistant alloys using a mold, the forging mold needs to have high mechanical strength even at a high temperature.

例えば、金型と鍛造素材を共に1000℃以上の温度に加熱して鍛造するいわゆる恒温鍛造において使用する鍛造金型の材料としては、従来、Moをベースとし、TiとZrを添加したTZMと呼ばれるMo基合金が使用されている。しかし、TZMは耐酸化性が劣るため、真空又は不活性ガス中で鍛造を行う必要がある。
また、Ti合金の恒温鍛造に用いる金型として、Niをベースとし、Cr、W、Co、Al、Ti等を含むMar−M200と呼ばれるNi基合金が知られている。しかし、Mar−M200は耐酸化性は高いが、高温圧縮強度が不十分であり、金型温度が1000℃を超える鍛造金型には使用できない。
For example, as a material of a forging die used in so-called constant temperature forging in which both a die and a forging material are heated to a temperature of 1000 ° C. or more, it is conventionally called TZM based on Mo and added with Ti and Zr. Mo-based alloy is used. However, since TZM has poor oxidation resistance, it is necessary to perform forging in a vacuum or an inert gas.
Also, a Ni-based alloy called Mar-M200 based on Ni and containing Cr, W, Co, Al, Ti, and the like is known as a mold used for constant temperature forging of a Ti alloy. However, although Mar-M200 has high oxidation resistance, it has insufficient high-temperature compressive strength and cannot be used for a forging die having a die temperature exceeding 1000 ° C.

一方、高温圧縮強度及び耐酸化性に優れ、1000℃以上の温度で大気中でも使用できる鍛造金型用合金として、Niをベースとし、Mo、W、及びAlを含むNimowal(登録商標)と呼ばれるNi基合金が提案されている(例えば、特許文献1〜3参照)。   On the other hand, as an alloy for forging dies which is excellent in high-temperature compressive strength and oxidation resistance and can be used in the atmosphere at a temperature of 1000 ° C. or higher, Ni is called Ninowal (registered trademark) containing Ni, Mo, W and Al Base alloys have been proposed (see, for example, Patent Documents 1 to 3).

特開昭62−50429号公報JP 62-50429 A 特公昭63−21737号公報Japanese Patent Publication No. 63-21737 米国特許第4740354号明細書U.S. Pat. No. 4,740,354

Nimowal(登録商標)合金は鋳造で製造され、大気中で金型を高温に加熱して行う熱間鍛造の金型として使用できる反面、延性が低いため、鋳造する際の凝固時の応力により割れ(鋳造割れ)が発生し易い。そのため、Nimowal(登録商標)合金を用いて特に大型の製品を製作することが困難であり、また、製造歩留まりが悪いという問題がある。   Nimowal (registered trademark) alloy is manufactured by casting and can be used as a hot forging die by heating the die to high temperature in the atmosphere, but it has low ductility, so it cracks due to the stress during solidification during casting (Casting cracks) easily occur. Therefore, it is difficult to produce a particularly large product using the Nimalal (registered trademark) alloy, and there is a problem that the manufacturing yield is poor.

そこで、本発明は、大気中で1000℃以上に金型を加熱して行う熱間鍛造の金型材料として使用でき、且つ、鋳造割れの発生が抑制されるニッケル基鋳造合金を提供することを目的とする。
また、本発明は、大気中で1000℃以上に金型を加熱して行う熱間鍛造に使用できる熱間鍛造金型を提供することを目的とする。
Therefore, the present invention provides a nickel-base casting alloy that can be used as a die material for hot forging performed by heating a die to 1000 ° C. or higher in the atmosphere and that suppresses the occurrence of casting cracks. Objective.
Moreover, an object of this invention is to provide the hot forging die which can be used for the hot forging performed by heating a die to 1000 degreeC or more in air | atmosphere.

前記目的を達成するため、以下の発明が提供される。
<1> Wの含有量が10.30〜11.00質量%、Moの含有量が9.00〜11.00質量%、Alの含有量が5.80〜6.80質量%、及び、Yの含有量が0.00〜0.02質量%であり、且つ、残部がNi及び不可避的不純物であるニッケル基鋳造合金。
<2> Yの含有量が0.01質量%未満である<1>に記載のニッケル基鋳造合金。
<3> Hfの含有量が0.00〜2.00質量%、Feの含有量が0.00〜1.00質量%、及びMgの含有量が0.000〜0.014質量%、Zrの含有量が0.00〜0.50質量%である<1>又は<2>に記載のニッケル基鋳造合金。
<4> <1>〜<3>のいずれか1つに記載のニッケル基鋳造合金からなる熱間鍛造金型。
In order to achieve the above object, the following invention is provided.
<1> W content is 10.30 to 11.00 mass%, Mo content is 9.00 to 11.00 mass%, Al content is 5.80 to 6.80 mass%, and A nickel-base cast alloy having a Y content of 0.00 to 0.02% by mass and the balance being Ni and inevitable impurities.
<2> The nickel-base cast alloy according to <1>, wherein the Y content is less than 0.01% by mass.
<3> The content of Hf is 0.00 to 2.00 mass%, the content of Fe is 0.00 to 1.00 mass%, and the content of Mg is 0.000 to 0.014 mass%, Zr The nickel-base cast alloy according to <1> or <2>, wherein the content of is 0.00 to 0.50 mass%.
<4> A hot forging die made of the nickel-base cast alloy according to any one of <1> to <3>.

本発明によれば、大気中で1000℃以上に金型を加熱して行う熱間鍛造の金型材料として使用でき、且つ、鋳造割れの発生が抑制されるニッケル基鋳造合金、及び、大気中で1000℃以上に金型を加熱して行う熱間鍛造に使用できる熱間鍛造金型を提供することができる。   According to the present invention, a nickel-base casting alloy that can be used as a die material for hot forging performed by heating a die to 1000 ° C. or higher in the atmosphere and that suppresses the occurrence of casting cracks, and the atmosphere Thus, a hot forging die that can be used for hot forging performed by heating the die to 1000 ° C. or higher can be provided.

比較例2で作製したNi基鋳造合金インゴットの断面を示す図である。6 is a view showing a cross section of a Ni-base cast alloy ingot produced in Comparative Example 2. FIG. 比較例4で作製したNi基鋳造合金インゴットの断面を示す図である。It is a figure which shows the cross section of the Ni base cast alloy ingot produced by the comparative example 4. FIG. 実施例2で作製したNi基鋳造合金インゴットの断面を示す図である。4 is a view showing a cross section of a Ni-based cast alloy ingot produced in Example 2. FIG.

以下、本発明のニッケル基鋳造合金について詳細に説明する。以下の説明において数値範囲を表す「〜」は下限値及び上限値として記載されている数値を含む範囲を意味する。
なお、本発明のニッケル基鋳造合金は、熱間鍛造の金型材料に限らず、熱間で圧縮応力が加わる用途に適用することができるが、以下、最適な用途である熱間鍛造の金型材料として用いる場合について主に説明する。
Hereinafter, the nickel-base cast alloy of the present invention will be described in detail. In the following description, “to” representing a numerical range means a range including numerical values described as a lower limit value and an upper limit value.
The nickel-base cast alloy of the present invention can be applied not only to hot forging die materials but also to applications where compressive stress is applied hot. The case where it is used as a mold material will be mainly described.

本発明者らは、Nimowal(登録商標)合金の成分を詳細に検討した結果、WとYの添加が鋳造割れの発生に大きく影響していることがわかった。その理由は定かでないが、Yは結晶粒界に偏析して粒界延性を低下し、Wは鋳造の凝固終了時に多量の共晶γ’相を形成して延性を低下させていることが鋳造割れを引き起こす原因であると考えられる。
さらに、本発明者らは、鋳造割れの発生を抑制するとともに高温圧縮強度及び耐酸化性に優れたNi基鋳造合金を見出すべく、WとYのほか、他の成分についても鋭意検討を重ねたところ、Ni、W、Mo、Alを必須成分とし、Yを任意成分としてそれぞれ特定の範囲の組成を有するNi基鋳造合金とすることにより、高温圧縮強度及び耐酸化性に優れ、且つ、鋳造割れの発生が抑制されるニッケル基鋳造合金が得られること、また、このニッケル基鋳造合金を切削して金型を製造することで、大気中で1000℃以上に金型を加熱して行う熱間鍛造の金型として好適に使用できることを見出した。
As a result of examining the components of the Nimowal (registered trademark) alloy in detail, the inventors have found that the addition of W and Y greatly affects the occurrence of casting cracks. The reason is not clear, but Y segregates at the grain boundaries to lower the grain boundary ductility, and W forms a large amount of eutectic γ 'phase at the end of casting solidification to reduce the ductility. This is thought to be the cause of cracking.
Furthermore, the present inventors have made extensive studies on other components in addition to W and Y in order to find a Ni-based cast alloy that suppresses the occurrence of casting cracks and is excellent in high-temperature compressive strength and oxidation resistance. However, Ni, W, Mo, Al are essential components, Y is an optional component, and Ni-based casting alloy having a specific range of composition, respectively, is excellent in high-temperature compressive strength and oxidation resistance, and cast cracking. The production of a nickel-base cast alloy that suppresses the generation of heat, and the production of a mold by cutting this nickel-base cast alloy so that the mold is heated to 1000 ° C. or higher in the atmosphere. It has been found that it can be suitably used as a forging die.

[ニッケル基鋳造合金]
本発明のニッケル基鋳造合金(以下、「Ni基鋳造合金」又は単に「合金」と記す場合がある。)は、Wの含有量が10.30〜11.00質量%、Moの含有量が9.00〜11.00質量%、Alの含有量が5.80〜6.80質量%、及び、Yの含有量が0.00〜0.02質量%であり、且つ、残部がNi及び不可避的不純物で構成されている。
[Nickel-based casting alloy]
The nickel-base cast alloy of the present invention (hereinafter sometimes referred to as “Ni-base cast alloy” or simply “alloy”) has a W content of 10.30 to 11.00 mass% and a Mo content of 10. 9.00 to 11.00% by mass, Al content is 5.80 to 6.80% by mass, Y content is 0.00 to 0.02% by mass, and the balance is Ni and Consists of inevitable impurities.

<W>
Wは、オーステナイトマトリックスに固溶するとともに、析出強化相であるNiAlを基本型とするガンマプライム相にも固溶して合金の高温強度を高める。また、Wは、粒界にWとMoの固溶体からなる体心立方晶のα‐(Mo、W)相を晶出し、合金の粒界強度を高め、合金の被削性を高める作用がある。一方、Wは、耐酸化性を低下させる作用も有し、且つ、11.00質量%を超えて添加すると割れが発生し易くなる。高温強度を高め、耐酸化性の低下を抑制し、且つ、割れの発生をより抑制する観点から、本発明のNi基鋳造合金中のWの含有量は10.30〜11.00質量%とし、10.40〜10.70質量%であることが好ましい。
<W>
W forms a solid solution in the austenite matrix and also forms a solid solution in the gamma prime phase based on Ni 3 Al as a precipitation strengthening phase, thereby increasing the high temperature strength of the alloy. In addition, W crystallizes a body-centered cubic α- (Mo, W) phase consisting of a solid solution of W and Mo at the grain boundary, thereby increasing the grain boundary strength of the alloy and increasing the machinability of the alloy. . On the other hand, W also has an effect of lowering oxidation resistance, and cracks are likely to occur when added in excess of 11.00% by mass. The content of W in the Ni-based cast alloy of the present invention is 10.30 to 11.00% by mass from the viewpoint of increasing the high-temperature strength, suppressing the decrease in oxidation resistance, and further suppressing the occurrence of cracks. It is preferable that it is 10.40-10.70 mass%.

<Mo>
Moは、オーステナイトマトリックスに固溶するとともに、析出強化相であるNiAlを基本型とするガンマプライム相にも固溶して合金の高温強度を高める。一方、Moは、耐酸化性を低下させる作用を有する。高温強度を高め、且つ、耐酸化性の低下をより抑制する観点から、本発明のNi基鋳造合金中のMoの含有量は9.00〜11.00質量%とし、9.50〜10.50質量%であることが好ましく、9.80〜10.20質量%であることがより好ましい。
<Mo>
Mo dissolves in the austenite matrix and also dissolves in the gamma prime phase based on Ni 3 Al, which is a precipitation strengthening phase, to increase the high temperature strength of the alloy. On the other hand, Mo has the effect | action which reduces oxidation resistance. From the viewpoint of increasing the high-temperature strength and further suppressing the decrease in oxidation resistance, the Mo content in the Ni-base cast alloy of the present invention is 9.00 to 11.00% by mass, and 9.50 to 10.5. It is preferable that it is 50 mass%, and it is more preferable that it is 9.80-10.20 mass%.

<Al>
Alは、Niと結合してNiAlからなるガンマプライム相を析出し、合金の高温強度を高め、合金の表面にアルミナの被膜を生成し、合金に耐酸化性を付与する作用がある。一方、Alの含有量が多過ぎると、共晶ガンマプライム相を過度に生成し、合金の高温強度を低める作用もある。耐酸化性及び高温強度を高める観点から、本発明のNi基鋳造合金中のAlの含有量は5.80〜6.80質量%とし、6.00〜6.60質量%であることが好ましく、6.10〜6.40質量%であることがより好ましい。
<Al>
Al binds to Ni and precipitates a gamma prime phase composed of Ni 3 Al, thereby increasing the high temperature strength of the alloy, generating an alumina coating on the surface of the alloy, and imparting oxidation resistance to the alloy. On the other hand, when the content of Al is too large, an eutectic gamma prime phase is excessively generated, and the high temperature strength of the alloy is lowered. From the viewpoint of enhancing oxidation resistance and high temperature strength, the Al content in the Ni-base cast alloy of the present invention is 5.80 to 6.80 mass%, preferably 6.00 to 6.60 mass%. 6-10.40% by mass is more preferable.

<Y>
Yは合金の表面に生成するアルミナ被膜の緻密性及び密着性を改善し、耐酸化性を高める作用があるが、本発明者らの研究によればYは合金の内部の割れ(鋳造割れ)の原因になり、Yの含有量が0.03質量%以上であると鋳造割れが発生し易くなる。Ni基鋳造合金の耐酸化性はAlによっても得られるため、本発明のNi基鋳造合金におけるYの含有量は、割れの発生を抑制する観点から0.02質量%以下とし、0.01質量%未満であることが好ましく、0.00%(検出限界以下)であることがより好ましい。
<Y>
Y has the effect of improving the denseness and adhesion of the alumina coating formed on the surface of the alloy and enhancing the oxidation resistance, but according to the study by the present inventors, Y is a crack inside the alloy (cast crack). If the Y content is 0.03% by mass or more, casting cracks are likely to occur. Since the oxidation resistance of the Ni-base cast alloy can be obtained also by Al, the content of Y in the Ni-base cast alloy of the present invention is set to 0.02 mass% or less from the viewpoint of suppressing the occurrence of cracks, and 0.01 mass % Is preferable, and 0.00% (below the detection limit) is more preferable.

<Ni>
本発明のNi基鋳造合金は、基本的に、必須成分であるAl、W、Moと任意成分であるY、さらに不可避的不純物を除く残部がNiで構成される。本発明のNi基鋳造合金においてNiはガンマ相を構成する主要元素であるとともに、Al、Mo、Wとともにガンマプライム相を構成する。
高温強度を高め、且つ、耐酸化性の低下をより抑制する観点から、本発明のNi基鋳造合金におけるNiの含有量は67質量%以上であることが好ましく、68〜74質量%であることがより好ましい。
<Ni>
The Ni-based cast alloy of the present invention basically comprises Al, W, Mo, which are essential components, Y, which is an optional component, and the balance other than unavoidable impurities, which is Ni. In the Ni-based cast alloy of the present invention, Ni is a main element constituting a gamma phase and constitutes a gamma prime phase together with Al, Mo and W.
From the viewpoint of increasing the high-temperature strength and further suppressing the decrease in oxidation resistance, the Ni content in the Ni-based cast alloy of the present invention is preferably 67% by mass or more, and 68 to 74% by mass. Is more preferable.

本発明のNi基鋳造合金は、Ni、Mo、W、Al、Yのほか、不可避的不純物又は任意の微量成分として、Ni、Mo、W、Al、Y以外の成分(以下、「その他の成分」と記す。)を含むことができる。
その他の成分としては、例えば、C、Si、Mn、P、S、Cr、Fe、Zr、Hf、Mg、B、O、N等が挙げられるが、これらの元素に限定されるものではない。
本発明のNi基鋳造合金は、その他の成分として、特に、Hf、Fe、Mg、及びZrから選ばれる少なくとも1種をそれぞれ鋳造割れの発生が抑制される範囲で含有することができる。なお、本発明のNi基鋳造合金におけるその他の成分の合計含有量は、2質量%以下が好ましく、1質量%以下がより好ましい。
In addition to Ni, Mo, W, Al, and Y, the Ni-based cast alloy of the present invention includes components other than Ni, Mo, W, Al, and Y as unavoidable impurities or optional trace components (hereinafter “other components”). Can be included.).
Examples of other components include C, Si, Mn, P, S, Cr, Fe, Zr, Hf, Mg, B, O, and N, but are not limited to these elements.
The Ni-based cast alloy of the present invention can contain, as other components, at least one selected from Hf, Fe, Mg, and Zr, as long as the occurrence of casting cracks is suppressed. In addition, 2 mass% or less is preferable and, as for the total content of the other component in the Ni base cast alloy of this invention, 1 mass% or less is more preferable.

<Hf>
本発明のNi基鋳造合金は、Hfを0.00〜2.00質量%の範囲で含んでもよい。本発明のNi基鋳造合金にHfが2.00質量%以下の範囲で含まれていても割れの発生を抑制することができる。また、Hfが0.50質量%以下の範囲で含まれていることで、耐酸化性を向上させる効果を期待することができる。
<Hf>
The Ni-based cast alloy of the present invention may contain Hf in the range of 0.00 to 2.00% by mass. Even if Hf is contained in the range of 2.00% by mass or less in the Ni-base cast alloy of the present invention, the occurrence of cracks can be suppressed. Moreover, the effect which improves oxidation resistance can be anticipated because Hf is contained in 0.50 mass% or less.

<Fe>
Feは、鋳造する際に原料等から混入し易い。本発明のNi基鋳造合金は、Feを0.00〜1.00質量%の範囲で含んでもよい。本発明のNi基鋳造合金にFeが1.0質量%以下の範囲で含まれていても、割れの発生を抑制することができる。また、Feが1.00質量%以下の範囲で含まれていることでスクラップ使用によるコスト低減効果を期待することができる。
<Fe>
Fe is likely to be mixed from raw materials and the like during casting. The Ni-based cast alloy of the present invention may contain Fe in the range of 0.00 to 1.00% by mass. Even if Fe is contained in the range of 1.0 mass% or less in the Ni-based cast alloy of the present invention, the occurrence of cracks can be suppressed. Moreover, the cost reduction effect by scrap use can be anticipated because Fe is contained in the range of 1.00 mass% or less.

<Mg>
本発明のNi基鋳造合金は、Mgを0.000〜0.014質量%の範囲で含んでもよい。本発明のNi基鋳造合金にMgが0.014質量%以下の範囲で含まれていても割れの発生を抑制することができる。また、Mgが0.014質量%以下の範囲で含まれていることで結晶粒界を強化する効果を期待することができる。
<Mg>
The Ni-based cast alloy of the present invention may contain Mg in the range of 0.000 to 0.014% by mass. Even if Mg is contained in the Ni-base cast alloy of the present invention in a range of 0.014% by mass or less, generation of cracks can be suppressed. Moreover, the effect which strengthens a crystal grain boundary can be anticipated because Mg is contained in 0.014 mass% or less.

<Zr>
本発明のNi基鋳造合金は、Zrを0.00〜0.50質量%の範囲で含んでもよい。本発明のNi基鋳造合金にZrが0.50質量%以下の範囲で含まれていても割れの発生を抑制することができる。また、Zrが0.50質量%以下の範囲で含まれていることで耐酸化性を向上させる効果を期待することができる。
<Zr>
The Ni-base cast alloy of the present invention may contain Zr in a range of 0.00 to 0.50 mass%. Even if Zr is contained in the Ni-based cast alloy of the present invention in the range of 0.50% by mass or less, generation of cracks can be suppressed. Moreover, the effect which improves oxidation resistance can be anticipated because Zr is contained in 0.50 mass% or less.

<O>
本発明のNi基鋳造合金は、O(酸素)の含有量が少ないことが好ましい。本発明のNi基鋳造合金に酸素が多く存在すると酸化物(非金属介在物)を形成し、鍛造用の金型とした場合に非金属介在物が起点となって疲労強度を低下させる原因となり得る。そのため、本発明のNi基鋳造合金に含まれる酸素濃度は、30ppm以下であることが好ましく、8ppm以下であることがより好ましい。
本発明のNi基鋳造合金は、鋳造において原料を溶解する際に雰囲気中の酸素濃度を低くすること、溶湯を鋳型に注入する際に雰囲気中の酸素を巻き込まないようにすることなどでNi基鋳造合金中の酸素濃度を低くすることができる。
<O>
The Ni-based cast alloy of the present invention preferably has a low O (oxygen) content. When a large amount of oxygen is present in the Ni-based cast alloy of the present invention, oxides (non-metallic inclusions) are formed, and when a forging die is formed, non-metallic inclusions are the starting point and cause fatigue strength to decrease. obtain. Therefore, the oxygen concentration contained in the Ni-based cast alloy of the present invention is preferably 30 ppm or less, and more preferably 8 ppm or less.
The Ni-base cast alloy of the present invention is made of a Ni-base by reducing the oxygen concentration in the atmosphere when melting the raw material in casting, and preventing the oxygen in the atmosphere from being involved when the molten metal is injected into the mold. The oxygen concentration in the cast alloy can be lowered.

−ニッケル基鋳造合金の製造方法−
本発明のニッケル基鋳造合金は、Ni、Mo、W、Al、さらに、必要に応じてY等の任意成分を含む原料を用いて溶解し、鋳造することができる。鋳造方法としては公知の方法を採用することができる。
-Manufacturing method of nickel-base casting alloy-
The nickel-base cast alloy of the present invention can be melted and cast using a raw material containing optional components such as Ni, Mo, W, Al and, if necessary, Y. As a casting method, a known method can be employed.

具体的には、所定の量の原料を合金の融点以上に加熱して溶解する。   Specifically, a predetermined amount of the raw material is heated to the melting point of the alloy or higher to dissolve.

溶湯を鋳型に流し込み、徐冷する。鋳型の材質、大きさ、形状等は特に限定されず、Ni基鋳造合金の用途、製造コスト等に応じて選択すればよい。また、鋳造における雰囲気も特に限定されず、大気中、真空中、Ar等の不活性ガス雰囲気中で行うことができる。なお、Ni基鋳造合金中の酸素の含有量を低く抑える観点から、真空中、Ar等の不活性ガス雰囲気中で鋳造することが好ましい。   Pour molten metal into mold and cool slowly. The material, size, shape, and the like of the mold are not particularly limited, and may be selected according to the use of the Ni-base cast alloy, the manufacturing cost, and the like. Moreover, the atmosphere in casting is not specifically limited, It can carry out in air | atmosphere, a vacuum, and inert gas atmosphere, such as Ar. Note that, from the viewpoint of keeping the oxygen content in the Ni-based casting alloy low, it is preferable to perform casting in vacuum or in an inert gas atmosphere such as Ar.

冷却により凝固した後、合金と鋳型を分離することにより鋳造割れの発生が抑制された本発明のNi基鋳造合金を得ることができる。   After solidifying by cooling, the Ni-based cast alloy of the present invention in which the occurrence of casting cracks is suppressed can be obtained by separating the alloy and the mold.

[熱間鍛造金型]
本発明のNi基鋳造合金は、鋳造したときに内部における割れの発生が抑制されるため、高い歩留りで製造することができる。そして、本発明のNi基鋳造合金は高温圧縮強度及び耐酸化性に優れ、熱間鍛造用の金型材料として好適に用いることができる。
上記のようにして鋳造した本発明のNi基鋳造合金を切削加工等によって成形して所望の形状の金型とすればよい。
本発明のNi鋳造基合金からなる熱間鍛造金型は、例えば、航空機のジェットエンジン部品や、発電機用ガスタービン部品等を大気中で1000℃以上に金型を加熱して熱間鍛造する際に用いる金型として好適に使用することができる。
なお、本発明のNi基鋳造合金は、熱間鍛造用の金型材料に最適であるが、熱間鍛造用金型に限定されず、熱間で圧縮応力が加わる用途に適用可能である。
[Hot forging die]
The Ni-based cast alloy of the present invention can be produced with a high yield because the occurrence of internal cracks is suppressed when cast. The Ni-based cast alloy of the present invention is excellent in high-temperature compressive strength and oxidation resistance, and can be suitably used as a mold material for hot forging.
The Ni-base cast alloy of the present invention cast as described above may be formed by cutting or the like to obtain a mold having a desired shape.
The hot forging die made of the Ni casting base alloy of the present invention is, for example, hot forging by heating the die to 1000 ° C. or higher in the air for jet engine parts of aircraft, gas turbine parts for generators, etc. It can be suitably used as a mold used for the occasion.
The Ni-based cast alloy of the present invention is optimal for a hot forging die material, but is not limited to a hot forging die, and can be applied to applications where compressive stress is applied hot.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

<実施例1、2および比較例1〜4>
真空中で誘導溶解により原料を溶解し、金型に鋳造して、表1に示す成分で底面が1辺約80mmの正方形、上面が1辺約90mmの正方形、高さ約130mmの角型形状のインゴットを得た。
<Examples 1 and 2 and Comparative Examples 1 to 4>
The raw material is melted by induction melting in a vacuum, cast into a mold, and the components shown in Table 1 have a square shape with a bottom of about 80 mm on one side, a square with about 90 mm on one side, and a height of about 130 mm. Got the ingot.

<実施例3>
真空中で誘導溶解により原料を溶解し、鋳型として500℃に加熱した砂型を用いて鋳造し、直径110〜160mm、長さ515mmの所定成分のインゴットを得た。
<Example 3>
The raw material was melted by induction melting in vacuum and cast using a sand mold heated to 500 ° C. as a mold to obtain an ingot of a predetermined component having a diameter of 110 to 160 mm and a length of 515 mm.

<比較例5および6>
大気下で溶解および鋳造したこと以外は実施例1と同様にして所定成分のインゴットを得た。なお、比較例6はMar−M200合金相当成分である。
<Comparative Examples 5 and 6>
An ingot of a predetermined component was obtained in the same manner as in Example 1 except that it was melted and cast under the atmosphere. Comparative Example 6 is a component equivalent to Mar-M200 alloy.

<比較例7>
粉末冶金法で製造された市販のTZM合金を評価した。
<Comparative Example 7>
A commercial TZM alloy produced by powder metallurgy was evaluated.

(鋳造割れ)
実施例1−3及び比較例1−5で得られたインゴットの略中心を通るように長手方向に切断し、浸透探傷法(カラーチェック)により断面における内部割れ(鋳造割れ)の発生を評価した。
なお、比較例2で得たインゴットにおける割れを基準とし、割れが発生しなかった場合はA、割れが発生したが比較例2よりも割れが明らかに少ない場合はB、比較例2と同等レベルで割れが発生した場合はC、比較例2よりも割れが明らかに多かった場合はDとして評価した。
図1〜図3は、比較例2、比較例4、実施例2でそれぞれ得られたインゴットの断面を示している。
(Casting crack)
Cut in the longitudinal direction so as to pass through the approximate center of the ingot obtained in Example 1-3 and Comparative Example 1-5, and evaluated the occurrence of internal cracks (casting cracks) in the cross section by the penetrant flaw detection method (color check). .
In addition, on the basis of the crack in the ingot obtained in Comparative Example 2, A when the crack did not occur, B when crack occurred but the crack was clearly less than Comparative Example 2, B, the level equivalent to Comparative Example 2 In the case where cracks occurred, C was evaluated, and in the case where cracks were clearly more than Comparative Example 2, D was evaluated.
1 to 3 show cross sections of the ingots obtained in Comparative Example 2, Comparative Example 4, and Example 2, respectively.

実施例及び比較例で得られたインゴットの組成及び割れの評価結果を表1に示す。
O以外の成分の含有量は質量%、Oの含有量の単位はppmであり、Balは残部を意味する。また、表1において「−」は、分析を行わなかったこと意味する。
なお、比較例6、7のインゴットは、実施例のインゴットの高温機械的性質及び耐酸化性を比較評価するために用意したものであり、割れの評価は行わなかった。
Table 1 shows the composition and crack evaluation results of the ingots obtained in the examples and comparative examples.
The content of components other than O is mass%, the unit of the content of O is ppm, and Bal means the balance. In Table 1, “-” means that no analysis was performed.
The ingots of Comparative Examples 6 and 7 were prepared for comparative evaluation of the high-temperature mechanical properties and oxidation resistance of the ingots of Examples, and cracks were not evaluated.


表1に示すように、Wの含有量が10.30〜11.00質量%、Moの含有量が9.00〜11.00質量%、Alの含有量が5.80〜6.80質量%、及び、Yの含有量が0.02質量%以下である実施例1、2のNi基鋳造合金インゴットは、比較例1−5のNi基鋳造合金インゴットに比べて割れの発生が少なく、実施例3のNi基鋳造合金インゴットでは割れが観察されなかった。   As shown in Table 1, the W content is 10.30 to 11.00 mass%, the Mo content is 9.00 to 11.00 mass%, and the Al content is 5.80 to 6.80 mass%. %, And the content of Y is 0.02% by mass or less, the Ni-base cast alloy ingots of Examples 1 and 2 have less cracking than the Ni-base cast alloy ingot of Comparative Example 1-5. In the Ni-base cast alloy ingot of Example 3, no cracks were observed.

(高温機械的性質)
実施例2、3及び比較例6、7のインゴットから、直径10mm×長さ12mmの試験片Aと、直径10mm×長さ20mmの試験片Bをそれぞれ切り出した。
試験片Aを用い、1100℃、歪速度10−3/sで10%までの圧縮試験及び1100℃、10kgf/mmで20時間までの圧縮クリープ試験を行った。なお、クリープ試験は実施例3と比較例6の各試験片Bに対して行った。
結果を下記表2に示す。
(High temperature mechanical properties)
A test piece A having a diameter of 10 mm × a length of 12 mm and a test piece B having a diameter of 10 mm × a length of 20 mm were cut out from the ingots of Examples 2 and 3 and Comparative Examples 6 and 7, respectively.
Using the test piece A, a compression test up to 10% at 1100 ° C. and a strain rate of 10 −3 / s and a compression creep test up to 20 hours at 1100 ° C. and 10 kgf / mm 2 were performed. The creep test was performed on each test piece B of Example 3 and Comparative Example 6.
The results are shown in Table 2 below.

(耐酸化性)
さらに、実施例2、3、比較例6の各試験片Bを用い、1100℃×16時間の空冷なる加熱冷却を5回繰り返す耐酸化試験を行って酸化減量を測定した。
実施例2、3の試験片Bの酸化減量は、比較例6の試験片Bの酸化減量に比べほぼ同等レベルであり、大気中の熱間鍛造金型として使用しても問題ないレベルであった。
(Oxidation resistance)
Furthermore, using each test piece B of Examples 2 and 3 and Comparative Example 6, an oxidation resistance test was performed by repeating heating and cooling at 1100 ° C. × 16 hours for 5 times to measure oxidation loss.
The oxidation weight loss of the test piece B of Examples 2 and 3 is almost the same level as the oxidation weight loss of the test piece B of Comparative Example 6, and it is a level that can be used as a hot forging die in the atmosphere. It was.

Claims (4)

Wの含有量が10.30〜11.00質量%、Moの含有量が9.00〜11.00質量%、Alの含有量が5.80〜6.80質量%、及び、Yの含有量が0.00〜0.02質量%であり、且つ、残部がNi及び不可避的不純物であるニッケル基鋳造合金。   W content is 10.30 to 11.00% by mass, Mo content is 9.00 to 11.00% by mass, Al content is 5.80 to 6.80% by mass, and Y content A nickel-base casting alloy having an amount of 0.00 to 0.02% by mass and the balance being Ni and inevitable impurities. Yの含有量が0.01質量%未満である請求項1に記載のニッケル基鋳造合金。   The nickel-base cast alloy according to claim 1, wherein the Y content is less than 0.01% by mass. Hfの含有量が0.00〜2.00質量%、Feの含有量が0.00〜1.00質量%、及びMgの含有量が0.000〜0.014質量%、Zrの含有量が0.00〜0.50質量%である請求項1又は請求項2に記載のニッケル基鋳造合金。   Content of Hf is 0.00 to 2.00% by mass, content of Fe is 0.00 to 1.00% by mass, content of Mg is 0.000 to 0.014% by mass, content of Zr The nickel-base cast alloy according to claim 1 or 2, wherein the content is 0.00 to 0.50 mass%. 請求項1〜請求項3のいずれか1項に記載のニッケル基鋳造合金からなる熱間鍛造金型。   A hot forging die made of the nickel-base cast alloy according to any one of claims 1 to 3.
JP2014201732A 2014-09-30 2014-09-30 Nickel base casting alloy and hot forging die Active JP6476704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201732A JP6476704B2 (en) 2014-09-30 2014-09-30 Nickel base casting alloy and hot forging die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201732A JP6476704B2 (en) 2014-09-30 2014-09-30 Nickel base casting alloy and hot forging die

Publications (2)

Publication Number Publication Date
JP2016069703A true JP2016069703A (en) 2016-05-09
JP6476704B2 JP6476704B2 (en) 2019-03-06

Family

ID=55866212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201732A Active JP6476704B2 (en) 2014-09-30 2014-09-30 Nickel base casting alloy and hot forging die

Country Status (1)

Country Link
JP (1) JP6476704B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204286A1 (en) * 2016-05-26 2017-11-30 日立金属株式会社 HOT DIE Ni-BASED ALLOY, HOT FORGING DIE USING SAME, AND FORGED PRODUCT MANUFACTURING METHOD
WO2018117226A1 (en) * 2016-12-21 2018-06-28 日立金属株式会社 Method for producing hot-forged material
WO2019106922A1 (en) 2017-11-29 2019-06-06 日立金属株式会社 Ni-BASED ALLOY FOR HOT-WORKING DIE, AND HOT-FORGING DIE USING SAME
WO2019107502A1 (en) 2017-11-29 2019-06-06 日立金属株式会社 Hot-die ni-based alloy, hot-forging die employing same, and forged-product manufacturing method
JPWO2019065543A1 (en) * 2017-09-29 2019-11-21 日立金属株式会社 Manufacturing method of hot forging
JPWO2019065542A1 (en) * 2017-09-29 2019-12-19 日立金属株式会社 Manufacturing method of hot forging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119257A4 (en) 2020-03-13 2023-08-09 Proterial, Ltd. Method for manufacturing hot-forged member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221542A (en) * 1984-04-17 1985-11-06 Hitachi Metals Ltd Nickel base casting alloy for high temperature forging die usable in air
JPS6250429A (en) * 1985-08-30 1987-03-05 Hitachi Metals Ltd Nickel-base casting alloy for hot forging die
US4740354A (en) * 1985-04-17 1988-04-26 Hitachi, Metals Ltd. Nickel-base alloys for high-temperature forging dies usable in atmosphere
JPH04341533A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Super heat resisting skid button

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221542A (en) * 1984-04-17 1985-11-06 Hitachi Metals Ltd Nickel base casting alloy for high temperature forging die usable in air
US4740354A (en) * 1985-04-17 1988-04-26 Hitachi, Metals Ltd. Nickel-base alloys for high-temperature forging dies usable in atmosphere
JPS6250429A (en) * 1985-08-30 1987-03-05 Hitachi Metals Ltd Nickel-base casting alloy for hot forging die
JPH04341533A (en) * 1991-05-17 1992-11-27 Kobe Steel Ltd Super heat resisting skid button

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204286A1 (en) * 2016-05-26 2017-11-30 日立金属株式会社 HOT DIE Ni-BASED ALLOY, HOT FORGING DIE USING SAME, AND FORGED PRODUCT MANUFACTURING METHOD
WO2018117226A1 (en) * 2016-12-21 2018-06-28 日立金属株式会社 Method for producing hot-forged material
US11919065B2 (en) 2016-12-21 2024-03-05 Proterial, Ltd. Method for producing hot-forged material
EP3560622A4 (en) * 2016-12-21 2020-09-02 Hitachi Metals, Ltd. Method for producing hot-forged material
CN110337335A (en) * 2016-12-21 2019-10-15 日立金属株式会社 It is hot-forged the manufacturing method of material
CN111163876A (en) * 2017-09-29 2020-05-15 日立金属株式会社 Method for producing hot forged material
CN111148583B (en) * 2017-09-29 2022-04-01 日立金属株式会社 Method for producing hot forged material
US11358209B2 (en) 2017-09-29 2022-06-14 Hitachi Metals, Ltd. Method for producing hot forged material
JPWO2019065542A1 (en) * 2017-09-29 2019-12-19 日立金属株式会社 Manufacturing method of hot forging
CN111148583A (en) * 2017-09-29 2020-05-12 日立金属株式会社 Method for producing hot forged material
JPWO2019065543A1 (en) * 2017-09-29 2019-11-21 日立金属株式会社 Manufacturing method of hot forging
CN111163876B (en) * 2017-09-29 2022-04-01 日立金属株式会社 Method for producing hot forged material
US11278953B2 (en) 2017-09-29 2022-03-22 Hitachi Metals, Ltd. Method for producing hot forged material
WO2019107502A1 (en) 2017-11-29 2019-06-06 日立金属株式会社 Hot-die ni-based alloy, hot-forging die employing same, and forged-product manufacturing method
CN111433378A (en) * 2017-11-29 2020-07-17 日立金属株式会社 Ni-based alloy for hot die, hot forging die using same, and method for producing forged product
JPWO2019106922A1 (en) * 2017-11-29 2019-12-12 日立金属株式会社 Ni-based alloy for hot mold and hot forging mold using the same
CN111417736A (en) * 2017-11-29 2020-07-14 日立金属株式会社 Ni-based alloy for hot die and hot forging die using same
US11326231B2 (en) 2017-11-29 2022-05-10 Hitachi Metals, Ltd. Ni-based alloy for hot-working die, and hot-forging die using same
JPWO2019107502A1 (en) * 2017-11-29 2019-12-12 日立金属株式会社 Hot forging molds and methods for manufacturing forged products
US11692246B2 (en) 2017-11-29 2023-07-04 Proterial, Ltd. Ni-based alloy for hot-working die, and hot-forging die using same
WO2019106922A1 (en) 2017-11-29 2019-06-06 日立金属株式会社 Ni-BASED ALLOY FOR HOT-WORKING DIE, AND HOT-FORGING DIE USING SAME

Also Published As

Publication number Publication date
JP6476704B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6499546B2 (en) Ni-based superalloy powder for additive manufacturing
JP6476704B2 (en) Nickel base casting alloy and hot forging die
JP6393993B2 (en) Ni-base superalloy with high temperature strength and capable of hot forging
JP5869034B2 (en) Nickel superalloys and parts made from nickel superalloys
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
US20130206287A1 (en) Co-based alloy
JPWO2016129485A1 (en) Method for producing Ni-base superalloy
JP2015224394A (en) Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
JPWO2006059805A1 (en) Heat resistant superalloy
JP4417977B2 (en) Gas turbine blade and method for manufacturing the same
KR101832654B1 (en) Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
CN103252593B (en) Oxidation-resistant low-expansion high-temperature alloy welding wire for gas shielded welding
JP6645627B2 (en) Ni-base alloy for hot die and hot forging die using the same
KR102274865B1 (en) Titanium-free superalloys, powders, methods and components
WO2017204286A1 (en) HOT DIE Ni-BASED ALLOY, HOT FORGING DIE USING SAME, AND FORGED PRODUCT MANUFACTURING METHOD
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
JPWO2019107502A1 (en) Hot forging molds and methods for manufacturing forged products
JP2017514998A (en) Precipitation hardening nickel alloy, parts made of said alloy, and method for producing the same
JP6428116B2 (en) Die for forging and manufacturing method thereof
JP2016069702A (en) Method for manufacturing nickel-based casting alloy
JPWO2018061317A1 (en) Method for producing extruded Ni-base superalloy and extruded Ni-base superalloy
JP6213185B2 (en) Nickel base alloy
JP6769341B2 (en) Ni-based superalloy
RU2685926C1 (en) Nickel-based intermetallic alloy and article made from it
JP2023018394A (en) Ni-BASED SUPERALLOY, AND TURBINE WHEEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6476704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350