JPS6250429A - Nickel-base casting alloy for hot forging die - Google Patents

Nickel-base casting alloy for hot forging die

Info

Publication number
JPS6250429A
JPS6250429A JP19146985A JP19146985A JPS6250429A JP S6250429 A JPS6250429 A JP S6250429A JP 19146985 A JP19146985 A JP 19146985A JP 19146985 A JP19146985 A JP 19146985A JP S6250429 A JPS6250429 A JP S6250429A
Authority
JP
Japan
Prior art keywords
alloy
forging
oxidation resistance
casting alloy
forging die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19146985A
Other languages
Japanese (ja)
Inventor
Rikizo Watanabe
力蔵 渡辺
Takehiro Oono
丈博 大野
Toshiaki Nonomura
敏明 野々村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19146985A priority Critical patent/JPS6250429A/en
Priority to PCT/JP1985/000587 priority patent/WO1987001395A1/en
Publication of JPS6250429A publication Critical patent/JPS6250429A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To obtain a material for hot forging die excellent in both oxidation resistance and hot pressing strength and sufficiently practicable in the air by incorporating prescribed amounts of Al, Mo, W, Y and rare earth elements to Ni. CONSTITUTION:The Ni-base casting alloy for hot forging die has a composition consisting of, by weight, 4-8% Al, 7-13% Mo, 9-15% W, <=0.1% Y or >=1 kind among rare earth elements and the balance Ni. This alloy is excellent in both oxidation resistance and hot pressing strength and sufficiently practicable in the air even in case of heating up to about 1,000-1,150 deg.C and, in addition, it has superior machinability as compared with conventional alloys. Consequently, by use of this alloy as die material, the forging of super heat-resisting alloys at a high temp. of >=1,000 deg.C hitherto impossible except in vacuum or in an inert gas is made possible in the air. Accordingly, forging equipment is made simple and inexpensive and work efficiency is remarkably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、おもに1000〜1150’Cの高温に金型
を加熱して鍛造を行なう超耐熱合金の高温鍛造に用いら
れる金型材料に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a mold material used for high-temperature forging of super heat-resistant alloys, which is performed by heating the mold to a high temperature of 1000 to 1150'C. It is.

〔従来の技術〕[Conventional technology]

従来超耐熱合金の高温鍛造など金型を1000 ”C以
上の高温に加熱して鍛造する場合の金型材料には。
Conventional mold materials used in high-temperature forging of super heat-resistant alloys where the mold is heated to a high temperature of 1000"C or higher.

TZMなどのMo基合金が使われている。Mo-based alloys such as TZM are used.

一方、Ti合金の高温鍛造など金型温度が1000℃以
下の場合は、M ar −M 200などのCrを含む
従来型の超耐熱合金が金型材料として使われている。
On the other hand, when the mold temperature is 1000° C. or lower, such as in high-temperature forging of Ti alloys, conventional super heat-resistant alloys containing Cr, such as Mar-M 200, are used as the mold material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

Mo基合金は、高温強度は十分高いが耐酸化性が劣るた
めに、これを金型材料とした場合の高温鍛造は真空また
は不活性ガス中で行なわれなければならず、高温鍛造装
置が複雑で作業性が悪く、また設備費も高価であるとい
う欠点があったが、一方M ar −M 200などの
Crを含む従来型の超耐熱合金は、耐酸化性は良好なも
のの高温圧縮強度が十分でないために1000℃以上の
高温鍛造用金型には使えない。
Mo-based alloys have sufficiently high high-temperature strength but poor oxidation resistance, so high-temperature forging when used as a mold material must be performed in a vacuum or inert gas, making high-temperature forging equipment complicated. However, conventional super heat-resistant alloys containing Cr, such as Mar-M 200, have good oxidation resistance but low high-temperature compressive strength. Because it is insufficient, it cannot be used for high-temperature forging molds at temperatures of 1000°C or higher.

本発明は耐酸化性と高温圧縮強度の両方に優れ、100
0〜1150℃の温度に加熱される場合でも、大気中で
十分使用可能な高温鍛造用金型材料を提供することを目
的とするものである。
The present invention has excellent both oxidation resistance and high temperature compressive strength, and has a
The object of the present invention is to provide a high-temperature forging mold material that can be sufficiently used in the atmosphere even when heated to a temperature of 0 to 1150°C.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は重量にしてA14−8%、 Mo 7−13%
、W9〜15%、Yまたは希土類元素の1種または2種
以上を0.1%以下含み、残部は不純物を除き本質的に
Niより成る高温鍛造金型用ニッケル基鋳造合金あるい
は上記組成の合金においてさらに粒界に本質的にM6と
Wの固溶体から成る体心立方晶のα−(Mo、W)相を
含むことを特徴とする特許請求の範囲第1項記載の高温
鍛造金型用ニッケル基鋳造合金である。
The present invention has A14-8% and Mo 7-13% by weight.
, W9 to 15%, 0.1% or less of one or more of Y or rare earth elements, and the remainder consists essentially of Ni excluding impurities, or an alloy having the above composition. The nickel for high-temperature forging molds according to claim 1, further comprising a body-centered cubic α-(Mo, W) phase consisting essentially of a solid solution of M6 and W at grain boundaries. It is a base casting alloy.

本発明合金においてAIはNi、MoおよびWと結びつ
いてNi、(Al、MO5W)型のガンマプライム相を
析出し合金の高温強度を高めること1合金の表面にアル
ミナの被膜を生成し、合金に耐酸化性を付与することの
二つの作用がある。これらの作用を十分ならしめるため
に、Alは最低4%は必要であるが、8%を越えると共
晶ガンマプライムが過度に多くなり、高温強度が逆に低
下するので、本発明合金においてAlは4〜8%に限定
する。
In the alloy of the present invention, AI combines with Ni, Mo, and W to precipitate a Ni, (Al, MO5W) type gamma prime phase, thereby increasing the high temperature strength of the alloy. It has two effects: imparting oxidation resistance. In order to make these effects sufficient, Al needs to be at least 4%, but if it exceeds 8%, the eutectic gamma prime will increase excessively and the high temperature strength will decrease, so in the alloy of the present invention, Al is limited to 4-8%.

MoとWはNi、AlとともにNi3(Al、M o。Mo and W are Ni3 (Al, Mo) along with Ni and Al.

W)型のガンマプライム相を析出し合金の高温強度を高
めること、オーステナイトマトリックスに固溶し合金の
高温強度を高めること、粒界に本質的にMoとWの固溶
体から成る体心立方晶のα−(M o、W)相を晶出し
、合金の粒界強度を高め、また合金の被削性も高めるこ
との三つの作用がある。一方これらの元素はいずれも過
度に添加すると耐酸化性が劣化する。MOとWの作用は
きわめて類似しているが、高温強度を高める作用はWの
方が大きく、一方耐酸化性を劣化させる作用もWの方が
大きい。このような相互関係より、高温強度と耐酸化性
の兼ね合いを考慮して1本発明合金におけるMoとWは
それぞれ7〜13%、9〜15%に限定する。
W)-type gamma prime phase is precipitated to increase the high-temperature strength of the alloy; solid solution in the austenite matrix increases the high-temperature strength of the alloy; It has three effects: crystallizes the α-(Mo, W) phase, increases the grain boundary strength of the alloy, and also improves the machinability of the alloy. On the other hand, if any of these elements is added excessively, the oxidation resistance will deteriorate. The effects of MO and W are very similar, but W has a greater effect of increasing high-temperature strength, while W has a greater effect of deteriorating oxidation resistance. From such a mutual relationship, in consideration of the balance between high temperature strength and oxidation resistance, Mo and W in one of the alloys of the present invention are limited to 7 to 13% and 9 to 15%, respectively.

Yはごく微量の添加で合金表面に生成するアルミナ被膜
の緻密性、密着性を改善し耐酸化性を高める作用がある
が、過度に添加すると合金の初期溶融温度を低下させ、
粒界強度を低めて高温強度を低下させるので、本発明合
金にあっては0.1%以下に限定する。
When added in a very small amount, Y has the effect of improving the density and adhesion of the alumina film formed on the alloy surface and increasing oxidation resistance, but when added in excess, it lowers the initial melting temperature of the alloy.
Since it lowers grain boundary strength and high-temperature strength, it is limited to 0.1% or less in the alloy of the present invention.

Njは本発明合金のベースとなる元素であり、オーステ
ナイトマトリックスとガンマプライム相の両方を構成す
る基本元素として作用する。
Nj is a base element of the alloy of the present invention, and acts as a basic element constituting both the austenite matrix and the gamma prime phase.

本発明合金においてA1、MoおよびWの含有量や鋳造
条件を適正化することによって粒界に本質的にはMoと
Wの固溶体である体心立方晶のα−(M o、W)相を
晶出させることができるが、この相は粒界を強化して高
温強度を高める作用のほかに合金の被削性を高める作用
があるので、若干量存在することが望ましい。
By optimizing the contents of A1, Mo, and W and the casting conditions in the alloy of the present invention, a body-centered cubic α-(Mo, W) phase, which is essentially a solid solution of Mo and W, is created at the grain boundaries. Although it can be crystallized, this phase has the effect of strengthening grain boundaries and increasing high-temperature strength as well as increasing the machinability of the alloy, so it is desirable that it be present in a small amount.

〔実施例〕〔Example〕

実施例1 本発明合金の高温鍛造金型としての特性を評価するため
に第1表の本発明合金N001およびNo、2と従来合
金M ar −M 200のNo、11を鋳造し、鋳造
ままの状態で10+nmφ×12mあるいは10圃φX
20mの試験片を切り出し、1050〜1100℃にお
ける1017secの圧縮試験(10mφX12mm)
、1050〜1100℃における圧縮クリープ試験(1
0+nmφX12mo+)および1100℃X6h空冷
なる加熱冷却を5回繰返す耐酸化試験(10圓φx20
mm)を行ない、圧縮変形抵抗、圧縮クリープ歪および
酸化減量を測定した。結果を第1表にあわせて示すが1
本発明合金は従来合金に比し、1000℃を越える高温
での圧縮変形抵抗が大で、圧縮クリープ抵抗も格段に高
いことがわかる。また耐酸化性も従来合金と同様良好で
ある8実施例2 第1表の本発明合金N004と従来合金Mar−M20
0のN o、 Hを鋳造し、鋳造ままの状態で被削性試
験を行なった0本発明合金試料は粒界に本質的1・ご二
MOとWの固溶体から成る体心立方晶のび−(Mo。
Example 1 In order to evaluate the characteristics of the present invention alloy as a high-temperature forging mold, the present invention alloys No. 001 and No. 2 in Table 1 and the conventional alloy Mar-M 200 No. 11 were cast, and the as-cast 10+nmφ×12m or 10 fieldsφX
Cut out a 20m test piece and conduct a compression test for 1017 seconds at 1050 to 1100°C (10mφ x 12mm)
, compression creep test at 1050-1100°C (1
Oxidation resistance test (10 mmφ x 20
mm), and the compressive deformation resistance, compressive creep strain, and oxidation loss were measured. The results are shown in Table 1.
It can be seen that the alloy of the present invention has a higher compressive deformation resistance at high temperatures exceeding 1000° C. and a much higher compressive creep resistance than conventional alloys. In addition, the oxidation resistance is as good as that of the conventional alloy.8 Example 2 Inventive alloy N004 and conventional alloy Mar-M20 in Table 1
The alloy samples of the present invention, which were cast with 0 NO and H and subjected to machinability tests in the as-cast state, had body-centered cubic crystals essentially consisting of a solid solution of 1 and 2 MO and W at the grain boundaries. (Mo.

W)相を含むのに対し、従来合金は粒界にMC型炭化物
を含む点が組織上の大きな相違点である。
The major difference in structure is that conventional alloys contain MC-type carbides at grain boundaries, whereas conventional alloys contain MC-type carbides at grain boundaries.

被削性は超硬合金とTjCN系のコーティングを施した
チップを使い、切削速度10m/win、送り093u
++/rev、、切込み0.5nnの条件下で5分間旋
削後のチップのフランク摩耗幅を測定して評価した6第
1表にフランク摩耗幅を示すが1本発明合金は従来合金
に比べ、被削性が約2倍近く優れていることがわかる。
Machinability was determined using cemented carbide and TjCN-based coating tips, cutting speed 10m/win, feed rate 093u.
The flank wear width of the insert was measured and evaluated after turning for 5 minutes under conditions of ++/rev, depth of cut of 0.5 nn.6 The flank wear width is shown in Table 1.1 Compared to the conventional alloy, the alloy of the present invention was It can be seen that the machinability is approximately twice as good.

実施例3 第1表の本発明合金N o 、 3の鋳造材で金型を作
成し、I N−100粉末押出材を鋳造素材として、1
070℃、10−3/’Cの条件でBNを潤滑離型材と
して大気中恒温鍛造を行ない、φ14 X 17nnの
円筒素材からφ2G、2n*の複雑形状の鋳造品を得た
。金型に損傷はなかった。
Example 3 A mold was made using the casting material of the present invention alloy No. 3 shown in Table 1, and I N-100 powder extrusion material was used as the casting material.
Isothermal forging was carried out in the atmosphere at 070°C and 10-3/'C using BN as a lubricating mold release agent to obtain a cast product with a complex shape of 2G and 2n* from a cylindrical material of 14mm x 17nn. There was no damage to the mold.

実施例4 第1表の本発明合金N005の鋳造材で金型を製作し、
1020−1080℃、1O−3/’Cの条件でWas
paloyのφ75 X 152mmの素材からφ16
0 X 35mmのディスクを数個大気中恒!鍛造によ
り作製したが、金型に損傷はなかった。
Example 4 A mold was manufactured using a cast material of the invention alloy N005 shown in Table 1,
Was under the conditions of 1020-1080℃, 1O-3/'C
From paloy's φ75 x 152mm material to φ16
Several 0 x 35mm disks in the atmosphere! Although it was manufactured by forging, there was no damage to the mold.

【発明の効果〕【Effect of the invention〕

本発明合金を金型材として使用することにより、従来真
空または不活性ガス中でしか行なえなかった超耐熱合金
の1000℃以上の高温鍛造が大気中で可能となり、鍛
造装置が簡単で安価になり、また作業能率が大幅に向上
する。さらに本発明合金は従来の超耐熱合金より被剛性
が良好なことから、Ti合金の恒温鍛造など1000℃
以下の高温鍛造用にも金型費を低減させる効果がある。
By using the alloy of the present invention as a mold material, high-temperature forging of super heat-resistant alloys of 1000°C or higher, which could previously only be done in vacuum or inert gas, becomes possible in the atmosphere, and the forging equipment becomes simple and inexpensive. Also, work efficiency is greatly improved. Furthermore, since the alloy of the present invention has better rigidity than conventional super heat-resistant alloys, it can be
The following high-temperature forging also has the effect of reducing mold costs.

代理人 弁理士 高石橘馬 ;二 “。Agent: Patent attorney Tachibana Takaishi;

ゝ、− ゛ゞ−ゝ、− ゛ゞ-

Claims (1)

【特許請求の範囲】 1 重量にしてAl4〜8%、Mo7〜13%、W9〜
15%、Yまたは希土類元素の1種または2種以上を0
.1%以下含み、残部は不純物を除き本質的にNiより
成る高温鍛造金型用ニッケル基鋳造合金。 2 粒界に本質的にMoとWの固溶体から成る体心立方
晶のα−(Mo、W)相を含むことを特徴とする特許請
求の範囲第1項記載の高温鍛造金型用ニッケル基鋳造合
金。
[Claims] 1 Al: 4-8%, Mo: 7-13%, W: 9-8% by weight
15%, Y or one or more rare earth elements 0
.. A nickel-based casting alloy for high-temperature forging molds, containing 1% or less of Ni, with the remainder essentially consisting of Ni excluding impurities. 2. The nickel base for high-temperature forging molds according to claim 1, characterized in that the grain boundaries contain a body-centered cubic α-(Mo, W) phase consisting essentially of a solid solution of Mo and W. Casting alloy.
JP19146985A 1985-08-30 1985-08-30 Nickel-base casting alloy for hot forging die Pending JPS6250429A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19146985A JPS6250429A (en) 1985-08-30 1985-08-30 Nickel-base casting alloy for hot forging die
PCT/JP1985/000587 WO1987001395A1 (en) 1985-08-30 1985-10-18 Nickel-base cast alloy for high-temperature forging die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19146985A JPS6250429A (en) 1985-08-30 1985-08-30 Nickel-base casting alloy for hot forging die

Publications (1)

Publication Number Publication Date
JPS6250429A true JPS6250429A (en) 1987-03-05

Family

ID=16275170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19146985A Pending JPS6250429A (en) 1985-08-30 1985-08-30 Nickel-base casting alloy for hot forging die

Country Status (2)

Country Link
JP (1) JPS6250429A (en)
WO (1) WO1987001395A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104294328A (en) * 2014-10-23 2015-01-21 上海应用技术学院 Nickel-molybdenum-aluminum-rare earth coating and preparation method thereof
JP2016069703A (en) * 2014-09-30 2016-05-09 日立金属株式会社 Nickel-based casting alloy and hot forging mold
JP2016069702A (en) * 2014-09-30 2016-05-09 日立金属株式会社 Method for manufacturing nickel-based casting alloy
JP6108260B1 (en) * 2015-09-29 2017-04-05 日立金属株式会社 Mold for hot forging, method for producing forged product using the same, and method for producing hot forging die
CN106925708A (en) * 2017-04-18 2017-07-07 武汉理工大学 Self-lubricating dissimilar materials composite construction hot-forging die and preparation method thereof
WO2018117226A1 (en) 2016-12-21 2018-06-28 日立金属株式会社 Method for producing hot-forged material
WO2019065542A1 (en) 2017-09-29 2019-04-04 日立金属株式会社 Method for manufacturing hot forging material
WO2019065543A1 (en) 2017-09-29 2019-04-04 日立金属株式会社 Method for producing hot-forging material
WO2019106922A1 (en) 2017-11-29 2019-06-06 日立金属株式会社 Ni-BASED ALLOY FOR HOT-WORKING DIE, AND HOT-FORGING DIE USING SAME
WO2019107502A1 (en) 2017-11-29 2019-06-06 日立金属株式会社 Hot-die ni-based alloy, hot-forging die employing same, and forged-product manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441641A (en) * 1990-06-07 1992-02-12 Kobe Steel Ltd Nickel-base superalloy for die

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH621952A5 (en) * 1977-09-01 1981-03-13 Bbc Brown Boveri & Cie

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069703A (en) * 2014-09-30 2016-05-09 日立金属株式会社 Nickel-based casting alloy and hot forging mold
JP2016069702A (en) * 2014-09-30 2016-05-09 日立金属株式会社 Method for manufacturing nickel-based casting alloy
CN104294328A (en) * 2014-10-23 2015-01-21 上海应用技术学院 Nickel-molybdenum-aluminum-rare earth coating and preparation method thereof
CN104294328B (en) * 2014-10-23 2017-02-01 上海应用技术学院 Nickel-molybdenum-aluminum-rare earth coating and preparation method thereof
JP6108260B1 (en) * 2015-09-29 2017-04-05 日立金属株式会社 Mold for hot forging, method for producing forged product using the same, and method for producing hot forging die
US11207725B2 (en) 2015-09-29 2021-12-28 Hitachi Metals, Ltd. Hot forging die and manufacturing process for forged product using the same, and manufacturing process for hot forging die
CN108136482B (en) * 2015-09-29 2019-09-17 日立金属株式会社 Warm and hot forging mold, using the warm and hot forging mold forged article manufacturing method and warm and hot forging mold manufacturing method
CN108136482A (en) * 2015-09-29 2018-06-08 日立金属株式会社 Warm and hot forging mold uses the manufacturing method of forged article of the warm and hot forging mold and the manufacturing method of warm and hot forging mold
WO2017057453A1 (en) * 2015-09-29 2017-04-06 日立金属株式会社 Die for hot forging, method for manufacturing forged product using same, and method for manufacturing die for hot forging
WO2018117226A1 (en) 2016-12-21 2018-06-28 日立金属株式会社 Method for producing hot-forged material
US11919065B2 (en) 2016-12-21 2024-03-05 Proterial, Ltd. Method for producing hot-forged material
CN106925708B (en) * 2017-04-18 2019-05-24 武汉理工大学 Self-lubricating dissimilar materials composite construction hot-forging die and preparation method thereof
CN106925708A (en) * 2017-04-18 2017-07-07 武汉理工大学 Self-lubricating dissimilar materials composite construction hot-forging die and preparation method thereof
WO2019065543A1 (en) 2017-09-29 2019-04-04 日立金属株式会社 Method for producing hot-forging material
WO2019065542A1 (en) 2017-09-29 2019-04-04 日立金属株式会社 Method for manufacturing hot forging material
JPWO2019065542A1 (en) * 2017-09-29 2019-12-19 日立金属株式会社 Manufacturing method of hot forging
US11358209B2 (en) 2017-09-29 2022-06-14 Hitachi Metals, Ltd. Method for producing hot forged material
US11278953B2 (en) 2017-09-29 2022-03-22 Hitachi Metals, Ltd. Method for producing hot forged material
WO2019106922A1 (en) 2017-11-29 2019-06-06 日立金属株式会社 Ni-BASED ALLOY FOR HOT-WORKING DIE, AND HOT-FORGING DIE USING SAME
EP3719153A4 (en) * 2017-11-29 2021-04-07 Hitachi Metals, Ltd. Hot-die ni-based alloy, hot-forging die employing same, and forged-product manufacturing method
EP3719152A4 (en) * 2017-11-29 2021-03-31 Hitachi Metals, Ltd. Ni-BASED ALLOY FOR HOT-WORKING DIE, AND HOT-FORGING DIE USING SAME
US11326231B2 (en) 2017-11-29 2022-05-10 Hitachi Metals, Ltd. Ni-based alloy for hot-working die, and hot-forging die using same
EP3719152A1 (en) * 2017-11-29 2020-10-07 Hitachi Metals, Ltd. Ni-BASED ALLOY FOR HOT-WORKING DIE, AND HOT-FORGING DIE USING SAME
US11692246B2 (en) 2017-11-29 2023-07-04 Proterial, Ltd. Ni-based alloy for hot-working die, and hot-forging die using same
WO2019107502A1 (en) 2017-11-29 2019-06-06 日立金属株式会社 Hot-die ni-based alloy, hot-forging die employing same, and forged-product manufacturing method

Also Published As

Publication number Publication date
WO1987001395A1 (en) 1987-03-12

Similar Documents

Publication Publication Date Title
US3260505A (en) Gas turbine element
US4222794A (en) Single crystal nickel superalloy
US4292076A (en) Transverse ductile fiber reinforced eutectic nickel-base superalloys
JPS6250429A (en) Nickel-base casting alloy for hot forging die
US3567526A (en) Limitation of carbon in single crystal or columnar-grained nickel base superalloys
US4288247A (en) Nickel-base superalloys
US3564940A (en) Anisotropic polyphase structure of monovariant eutectic composition
US5908516A (en) Titanium Aluminide alloys containing Boron, Chromium, Silicon and Tungsten
JPH04107233A (en) Ti-al series lightweight heat resistant material
JPS60159144A (en) Superalloy
GB2235697A (en) Nickel-base superalloys
US4465530A (en) Gas turbine nozzle having superior thermal fatigue resistance
JP3517462B2 (en) Iron-aluminum alloys and their uses
JPS58120758A (en) High strength nickel base superalloy product
JPH0441641A (en) Nickel-base superalloy for die
US2881069A (en) Niobium base high temperature alloys
US3552479A (en) Casting process involving cooling of a shell mold prior to casting metal therein
US3314784A (en) Cobalt-base alloy resistant to thermal shock
JP2579316B2 (en) Single crystal Ni-base superalloy with excellent strength and corrosion resistance
KR20180081313A (en) Directional solidification ni base superalloy and manufacturing method therefor
JPH05156394A (en) Titanium-aluminum alloy
US3415641A (en) Wrought nickel base alloy
US3110588A (en) Brazing alloy
JPS5839760A (en) Heat resistant ni alloy
US3026198A (en) Nickel base casting alloy