JPS5839760A - Heat resistant ni alloy - Google Patents

Heat resistant ni alloy

Info

Publication number
JPS5839760A
JPS5839760A JP13784181A JP13784181A JPS5839760A JP S5839760 A JPS5839760 A JP S5839760A JP 13784181 A JP13784181 A JP 13784181A JP 13784181 A JP13784181 A JP 13784181A JP S5839760 A JPS5839760 A JP S5839760A
Authority
JP
Japan
Prior art keywords
alloy
creep rupture
phase
rupture strength
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13784181A
Other languages
Japanese (ja)
Inventor
Toshio Okuno
奥野利夫
Michio Yamazaki
原田広史
Katsuyuki Kusunoki
山崎道夫
Koji Harada
楠克之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP13784181A priority Critical patent/JPS5839760A/en
Publication of JPS5839760A publication Critical patent/JPS5839760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To enhance the creep rupture strength of the resulting heat resistant Ni alloy by removing Re from ''NASA VI-A '' alloy, reducing the Ta content, and increasing the W content to provide a specified composition. CONSTITUTION:This heat resistant Ni alloy has a composition consisting of, by weight, <=18% Co, 3-7% Cr, 11-22% W, 3.5-6.5% Al, <=2% Ti, 0.5-9% Ta, 0.001-0.2% C, 0.001-0.05% B, 0.001-0.2% Zr and the balance essentially Ni while satisfying W+Ta=14-25%. Mo may be substituted for <=5% of said W, Nb may be substituted for <=2% of said Ta, and <=2% Hf may be added to said composition. A heat resistant alloy with superior creep rupture strength is similarly obtd.

Description

【発明の詳細な説明】 本発明はクリープ破断強度が優れたNi基耐熱合金に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Ni-based heat-resistant alloy with excellent creep rupture strength.

ジェットエンジンや発電設備などに用いられるJスター
ビンの出力、熱効率を上げるには、燃焼ガス温度を上昇
させるのが最も有効である。
The most effective way to increase the output and thermal efficiency of J-turbines used in jet engines and power generation equipment is to increase the combustion gas temperature.

そのためには、クリープ破断強度の大きい動翼材が必要
である。
For this purpose, a moving blade material with high creep rupture strength is required.

現在、発電用大獄ガスタービンの動翼材にはlN−73
8LC(インーコ社製、組成後記)が使用されており、
またジェットエンジンの動員材にはMarM200 (
マーチンマリエタ社製、組成後記)が優れたものとして
使用され、またMarM247(マーチンマリエタ社製
、組成後記)の実用化が検討されている。
Currently, lN-73 is used as the rotor blade material for the Daigoku gas turbine for power generation.
8LC (manufactured by Inco, composition listed below) is used,
In addition, MarM200 (
MarM247 (manufactured by Martin Murrieta, composition described below) is used as an excellent one, and the practical use of MarM247 (manufactured by Martin Murrieta, composition described later) is being considered.

しかし、これらの合金はクリープ破断強度が優れないた
め、出力や熱効率を上げるのに限度がある。
However, these alloys do not have excellent creep rupture strength, so there is a limit to their ability to increase output and thermal efficiency.

優れたクリープ破断強度を持つ既存合金としてはNAS
A■−A合金(米国NAS人製、組成後記)がある。し
かし、この合金は高価なReを使用するため、合金が高
価となる問題点がある。
NAS is an existing alloy with excellent creep rupture strength.
There is an A■-A alloy (manufactured by NAS in the United States, composition listed below). However, since this alloy uses expensive Re, there is a problem that the alloy is expensive.

本発明はNASA■−人合金における如きReを使用す
ることなく、クリープ破断強度の優れたNi基耐熱合金
を提供するにある。
The object of the present invention is to provide a Ni-based heat-resistant alloy with excellent creep rupture strength without using Re as in the NASA alloy.

本発明のNi基耐熱合金は、C018−以下、Cr3〜
7%、Wll 〜221、Al 3.5〜8.5%、T
i2−以下、Ta0.5〜911、C0,001〜0.
2−1B O,001〜0.05III、 Zr 0.
001〜0.2%を含み、残部は実質的にNiよりなり
、同時にW+Ta=14〜25慢を満たすNi基耐熱合
金である。
The Ni-based heat-resistant alloy of the present invention is C018- or less, Cr3-
7%, Wll ~221, Al 3.5~8.5%, T
i2- or less, Ta0.5-911, C0,001-0.
2-1B O,001-0.05III, Zr 0.
It is a Ni-based heat-resistant alloy containing 0.001 to 0.2%, the remainder substantially consisting of Ni, and satisfying W+Ta=14 to 25.

ただし、Wの5−までをMoで置き換え、またTmの2
−までをNbで置き換えてもよく、更に前記成分に2−
以下のHfを含ませ【も、同様にクリープ破断強度の優
れたものが得られる。
However, up to 5- of W are replaced with Mo, and 2 of Tm
- may be replaced with Nb, and furthermore, 2-
When the following Hf is included, a product with excellent creep rupture strength can be obtained as well.

本発明のN1基耐熱合金の組成成分の作用ならびに組成
割合の限定理由は次の通りである。
The effects of the compositional components of the N1-based heat-resistant alloy of the present invention and the reason for limiting the composition ratio are as follows.

Coはγ相および化学量論的KNisAtで表わされる
r′相中に固溶して、これらの相の固溶化に寄与すると
共に、γ相中におけるr′相の析出量を増加して析出強
化を助長する作用をする。その量が18%を超えると、
C相などの有害析出物が現われてクリープ破断強度が低
下する欠点を生ずる。その好ましい量は5〜15−であ
る。
Co dissolves in the γ phase and the r' phase represented by stoichiometric KNisAt, contributes to the solid solution of these phases, and increases the amount of r' phase precipitated in the γ phase, resulting in precipitation strengthening. acts to promote If the amount exceeds 18%,
Harmful precipitates such as C phase appear, resulting in a decrease in creep rupture strength. Its preferred amount is 5-15.

Crは合金の耐硫化腐食性を良好にする作用をするもの
であり、その量が7%を超えるとC相やβ相などの有害
相が板上に生成して、クリープ破断強度が低下する欠点
を生ずる。3g4より少なくなると、前記作用が得られ
なくなる。
Cr has the effect of improving the sulfide corrosion resistance of the alloy, and if its amount exceeds 7%, harmful phases such as C phase and β phase will form on the plate, reducing creep rupture strength. produce defects. When the amount is less than 3g4, the above effect cannot be obtained.

ただし、800〜900℃の比較的低温度で5000時
間以上の長時間使用すると前記有害相の生成傾向が強ま
るので、3チ〜6チと低くするのが好ましい。
However, if it is used for a long time of 5,000 hours or more at a relatively low temperature of 800 to 900°C, the tendency to generate the harmful phase increases, so it is preferable to set the temperature as low as 3 to 6 degrees.

Wはγ相およびr′相中に固溶し【、これらの相を著し
く強化する。そのためには11%以上含有させる必要が
あるが、22%を超えると、β相などの有害析出物を生
成し、クリープ破断寿命が低下する欠点を生ずる。
W forms a solid solution in the γ and r' phases and significantly strengthens these phases. For this purpose, it is necessary to contain 11% or more, but if it exceeds 22%, harmful precipitates such as β phase are formed, resulting in a shortened creep rupture life.

この場合、Wの一部をMoで置きかえてもよい。Moは
Wと同様にγ相およびr′相に固溶してこれらの相を強
化する。しかし、5%を超えるとμ相などの有害析出物
を生じ、クリープ破断寿命が低下する欠点を生ずる。
In this case, part of W may be replaced with Mo. Like W, Mo forms a solid solution in the γ phase and r' phase to strengthen these phases. However, if it exceeds 5%, harmful precipitates such as μ phase are produced, resulting in a shortcoming of reduced creep rupture life.

AIはγ′相を生成するために必要な元素であり、r′
相を十分に析出させるためKは、3.5111i以上含
有させることが必要である。しかし、6.5mを超える
と共晶r′と呼ばれる粗大なr′相の量が過多となり、
クリープ破断強度が低下する欠点を生ずる。
AI is an element necessary to generate the γ′ phase, and r′
In order to sufficiently precipitate the phase, K must be contained in an amount of 3.5111i or more. However, if the length exceeds 6.5 m, the amount of coarse r' phase called eutectic r' becomes excessive.
This results in the disadvantage that creep rupture strength decreases.

TJはその大部分がr′相に固溶し、r′相を強化する
と共に、r’相の量を増加させて析出強化に寄与する。
Most of TJ dissolves in the r' phase, strengthens the r' phase, increases the amount of the r' phase, and contributes to precipitation strengthening.

しかし、2−を超えると!相を生じてクリープ破断強度
を低下させる欠点を生ずる。
However, if it exceeds 2-! This has the disadvantage of forming phases and lowering the creep rupture strength.

Taはその大部分がr′相に固溶して著しく固溶強化す
ると共に、r′相の量を増加させ又祈出強化に寄与する
。その効果を得るためには0.5−以上必要である。し
かし、9−を超えるとC相などの有害析出物が生じてク
リープ破断寿命が低下する。
Most of Ta dissolves in the r' phase and significantly strengthens it as a solid solution, increases the amount of the r' phase, and contributes to the strength strengthening. In order to obtain this effect, 0.5- or more is required. However, when it exceeds 9-, harmful precipitates such as C phase are generated, resulting in a decrease in creep rupture life.

この場合、Taの一部なNbで置きかえてもよい。Nb
はTJIと同様な作用をする。しかし、Nbの含有量が
2−を超えるとC相などの有害析出物を生じ、クリープ
破断寿命を低下する。
In this case, part of Ta may be replaced with Nb. Nb
has a similar effect to TJI. However, if the Nb content exceeds 2-, harmful precipitates such as C phase are generated, which reduces the creep rupture life.

Cは、よく知られているようにMC型、MtsC6屋、
MsC型の3種類の炭化物を作りて、主として合金の結
晶の粒界を強化する。その効果を得るにはCが0.00
1−以上必要である。しかし、0.2−を超えると粗大
な炭化物を多量に晶出し、かえってクリープ破断強度を
低下させる。好ましい範囲は0.05〜0.2である。
As is well known, C is MC type, MtsC6 type,
Three types of MsC type carbides are created to mainly strengthen the grain boundaries of the alloy crystals. To get that effect, C is 0.00
1- or more is required. However, if it exceeds 0.2-, a large amount of coarse carbides will crystallize, which will actually lower the creep rupture strength. The preferred range is 0.05-0.2.

Bは粒界に偏析して高温での粒界強度を向上させ、クリ
ープ破断強度と破断のびな増加させる作用をする。この
効果を得るためKは0.001−以上必要である。しか
し、0.05%を超えると粒界に低融点の共晶を生成し
、合金の溶融損傷を起こし易くなる欠点を生ずる。
B segregates at grain boundaries, improves grain boundary strength at high temperatures, and functions to increase creep rupture strength and fracture elongation. In order to obtain this effect, K needs to be 0.001- or more. However, if it exceeds 0.05%, a low melting point eutectic is produced at the grain boundaries, resulting in the disadvantage that the alloy is more likely to be damaged by melting.

Zr 4. B同様粒界強化の作用をする。この効果を
得るには0.001−以上必要である。しかし、0.2
−を超えると粒界に金属間化合物が生じ、かえってクリ
ープ破断強度を低下させる欠点を生ずる。
Zr4. Like B, it acts to strengthen grain boundaries. To obtain this effect, a ratio of 0.001- or more is required. However, 0.2
If it exceeds -, intermetallic compounds will be formed at the grain boundaries, resulting in a disadvantage of lowering the creep rupture strength.

前記のような組成のものからなるものに、更にHfを2
1以下含有させてもよい。
Furthermore, 2 Hf was added to the composition as described above.
You may contain 1 or less.

Hfは粒界強化の作用をする。しかし、2−を超えると
有害な金属間化合物が生成し、クリープ破断寿命が低下
するので2−以下であることが必要である。
Hf acts to strengthen grain boundaries. However, if it exceeds 2-, harmful intermetallic compounds will be generated and the creep rupture life will be reduced, so it is necessary that it is 2- or less.

以上、各元素の組成割合について説明したが、クリープ
破断強度の大きい最適組成には複−数の元素に関連した
条件が必要である。
The composition ratios of each element have been explained above, but conditions related to a plurality of elements are required for an optimal composition with a high creep rupture strength.

即ち、r相またはr′相の固溶強化に有効な元素である
WとTaの合計量が14−〜259Gであることが必要
である。W+Taが14−未満であると、固溶強化量が
不足し、十分なりリープ破断強度が得られない。逆にそ
の合計量が25−を超えるとC相、μ相などの有害析出
物が生成し、クリープ破断強度が低下する欠点を生ずる
That is, it is necessary that the total amount of W and Ta, which are elements effective for solid solution strengthening of the r phase or r' phase, is 14-259G. When W+Ta is less than 14-, the amount of solid solution strengthening is insufficient and sufficient leap rupture strength cannot be obtained. On the other hand, if the total amount exceeds 25 -, harmful precipitates such as C phase and μ phase are formed, resulting in a disadvantage that the creep rupture strength is reduced.

W、Taの1部をNb、Moのどちらか一方あるいは両
者置きかえた場合においても、それらの全体の合計量が
同じ理由で1.41〜25秦の範囲である必要がある。
Even when a part of W and Ta is replaced with one or both of Nb and Mo, the total amount of them needs to be in the range of 1.41 to 25 squares for the same reason.

以下、実施例を挙げると共に従来のNJ基耐熱合金との
比較を示す。
Examples will be given below, as well as a comparison with conventional NJ-based heat-resistant alloys.

実施例 本発明合金9種と既存合金4種を溶解鋳造し、クリープ
破断試験を行りた。溶解は高周波真空溶解炉で行い、8
00’CK保温した6mm−クリープ破断試験片12本
とりのロストワックス歴に鋳込んだ。試験片は鋳造のま
まクリープ破断試験に供した。しかし、粉末冶金法によ
っても製造し得られる。
EXAMPLE Nine types of alloys of the present invention and four types of existing alloys were melted and cast, and creep rupture tests were conducted. Melting is carried out in a high frequency vacuum melting furnace.
12 pieces of 6 mm creep rupture test specimens kept at 00'CK temperature were cast into lost wax history. The test piece was subjected to a creep rupture test as cast. However, it can also be produced by powder metallurgy.

クリープ破断試験はJISZ−2272に基づいて行っ
た。
The creep rupture test was conducted based on JISZ-2272.

その試験結果は次の表に示す通りでありた。The test results were as shown in the following table.

表中の破断寿命のうち、ψ印はラーソンミラーパラメー
タ(定数=20)を用いた推定値である。
Among the fracture lives in the table, the ψ symbol is an estimated value using the Larson-Miller parameter (constant=20).

前記衣の結果が示すように、本発明合金のクリープ破断
寿命は、lN−738LC,Ms+rM200゜Mar
M247の現在最強合金とされている合金よりも大きい
ことが分かる。この原因は主として固溶強化量(W+M
o+Ta+Nb)Kよっ”C説明することができる。(
ここにMoとNbは1−当りW、Taと同等の固溶強化
の効果をもつので、W十Mo+Ta+Nbを固溶強化量
とみ【よい。)IN−738LCは固溶強化量が本発明
合金に比べ大巾に少なく、またW量も少なり、Crが多
い。
As shown in the above results, the creep rupture life of the alloy of the present invention is lN-738LC, Ms+rM200°Mar.
It can be seen that it is larger than M247, which is currently considered the strongest alloy. This is mainly due to the amount of solid solution strengthening (W+M
o+Ta+Nb)K can be explained.(
Here, Mo and Nb have the same solid solution strengthening effect as W and Ta per 1 -, so W0Mo+Ta+Nb can be regarded as the amount of solid solution strengthening. ) IN-738LC has a much smaller amount of solid solution strengthening than the alloy of the present invention, and also has a smaller amount of W and a larger amount of Cr.

Mar M200合金とMarM247合金も本発明合
金に比べてW+Mo+Ta+Nb量が少な(、Cr量が
多い。そのため、以上の3種合金は本発明合金に比べて
クリープ破断強度が小さいと考えられる。
The Mar M200 alloy and the Mar M247 alloy also have a smaller amount of W + Mo + Ta + Nb (and a larger amount of Cr) than the alloy of the present invention. Therefore, it is thought that the above three alloys have lower creep rupture strength than the alloy of the present invention.

NA8AVl−人合金は本発明合金と同等穐度のクリー
プ破断寿命を示している。この合金はTaによるr′相
の固溶強化とReの添加による粒界強化とを利用したも
のである。一方、本発明合金は高価なReを使用せず、
またTaの使用量も少ないものであり、主として安価な
Wの固溶強化を利用したものである。従って、本発明合
金はNASAvi−人合金に比べて極めて安価に製造し
得られる。しかも、工場での製造の生臘管理において、
例えばスクラップの他合金への転用等においても本発明
合金の方が有利である等の優れた効果を有する。
The NA8AVl-man alloy exhibits a creep rupture life of comparable toughness to the invention alloy. This alloy utilizes solid solution strengthening of the r' phase by Ta and grain boundary strengthening by adding Re. On the other hand, the alloy of the present invention does not use expensive Re,
Further, the amount of Ta used is small, and solid solution strengthening of inexpensive W is mainly utilized. Therefore, the alloy of the present invention can be manufactured at a much lower cost than the NASA alloy. Moreover, in the management of raw carrots during manufacturing at the factory,
For example, the alloy of the present invention has excellent effects, such as being more advantageous when converting scrap to other alloys.

本発明合金は、これを動翼材として用いることによって
、ジェットエンジンや発電設備などの各種ガスタービン
の高効率化が可能となる。
By using the alloy of the present invention as a moving blade material, it is possible to improve the efficiency of various gas turbines such as jet engines and power generation equipment.

また、この合金は耐酸化あるいは耐硫化コーティングを
行って使用することも可能である。
This alloy can also be used with an oxidation-resistant or sulfur-resistant coating.

更に一方向凝固材あるいは単結晶材とし【の使用も可能
であり、これによって高温での強度と延性の向上が得ら
れる。このほか粒子分散強化合金の基地としての使用も
可能である。
Furthermore, it is also possible to use it as a directionally solidified material or a single crystal material, which improves strength and ductility at high temperatures. In addition, it can also be used as a base for particle dispersion strengthened alloys.

Claims (1)

【特許請求の範囲】 (ただし、5−以下をNoで代えることができる。)、
Al1.5〜6.5911Ti2−以下、T10.5〜
9−(ただし、2チ以下なNbで代えることができる。 )、CO,001〜0.2Is、B O,001〜0.
059g、ZrO,001〜0.2−を含み、残部は実
質的KN轟よりなり、同時に W+Ta==14〜251g (ただし、5−以下をMoで代えることができる。)、
Al1.5〜6.5%、Ti21以下、Ta0.5〜9
1G(ただし、2%以下なNbで代えることができる。 )、C0,001〜0.2−1B O,001〜0.0
51.ZrO,001〜0.2*、Hf2−以下を含み
、残部は実質的KNiよりなり、同時に W+Ta=14〜25m を満たすNi基耐熱合金。
[Claims] (However, 5- or less can be replaced with No.),
Al1.5~6.5911Ti2- or less, T10.5~
9- (However, it can be replaced with 2 or less Nb.), CO,001~0.2Is, BO,001~0.
059 g, ZrO, 001 to 0.2-, the remainder substantially consists of KN metal, and at the same time W + Ta = 14 to 251 g (however, 5- or less can be replaced with Mo),
Al1.5-6.5%, Ti21 or less, Ta0.5-9
1G (however, it can be replaced with 2% or less Nb), C0,001~0.2-1B O,001~0.0
51. A Ni-based heat-resistant alloy containing ZrO,001~0.2*, Hf2- or less, the remainder being substantially KNi, and satisfying W+Ta=14~25m.
JP13784181A 1981-09-03 1981-09-03 Heat resistant ni alloy Pending JPS5839760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13784181A JPS5839760A (en) 1981-09-03 1981-09-03 Heat resistant ni alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13784181A JPS5839760A (en) 1981-09-03 1981-09-03 Heat resistant ni alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15519885A Division JPS6152339A (en) 1985-07-16 1985-07-16 Heat resistant ni alloy

Publications (1)

Publication Number Publication Date
JPS5839760A true JPS5839760A (en) 1983-03-08

Family

ID=15208065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13784181A Pending JPS5839760A (en) 1981-09-03 1981-09-03 Heat resistant ni alloy

Country Status (1)

Country Link
JP (1) JPS5839760A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159143A (en) * 1983-12-29 1985-08-20 アソシアシオン・プール・ラ・ルシエルシユ・エ・ル・デヴロプマン・デ・メトド・エ・プロセシユ・アンデユストリエル(ア.エール.エム.イ.エヌ.ウ.エス.) Single crystal metal using nickel-base mother material
JPS6148550A (en) * 1984-08-14 1986-03-10 Natl Res Inst For Metals Gamma-phase precipitation-strengthened nickel base heat-resistant alloy containing dispersed yttria particles
JPS63213632A (en) * 1987-03-02 1988-09-06 Natl Res Inst For Metals Super plasticity heat resisting ni based alloy for forging and its production
JP2016056448A (en) * 2014-09-05 2016-04-21 ゼネラル・エレクトリック・カンパニイ Nickel-base superalloy article, and method for forming the article
US9359658B2 (en) 2009-07-29 2016-06-07 Nuovo Pignone S.P.A Nickel-based superalloy, mechanical component made of the above mentioned super alloy, piece of turbomachinery which includes the above mentioned component and related methods

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159143A (en) * 1983-12-29 1985-08-20 アソシアシオン・プール・ラ・ルシエルシユ・エ・ル・デヴロプマン・デ・メトド・エ・プロセシユ・アンデユストリエル(ア.エール.エム.イ.エヌ.ウ.エス.) Single crystal metal using nickel-base mother material
JPH0561337B2 (en) * 1983-12-29 1993-09-06 Ass Ra Rusherushu E Ru Dev De
JPS6148550A (en) * 1984-08-14 1986-03-10 Natl Res Inst For Metals Gamma-phase precipitation-strengthened nickel base heat-resistant alloy containing dispersed yttria particles
JPH0352525B2 (en) * 1984-08-14 1991-08-12 Kagaku Gijutsucho Kinzoku Zairyo Gijutsu Kenkyu Shocho
JPS63213632A (en) * 1987-03-02 1988-09-06 Natl Res Inst For Metals Super plasticity heat resisting ni based alloy for forging and its production
JPH0338330B2 (en) * 1987-03-02 1991-06-10 Kagaku Gijutsucho Kinzoku Zairyo Gijutsu Kenkyu Shocho
US9359658B2 (en) 2009-07-29 2016-06-07 Nuovo Pignone S.P.A Nickel-based superalloy, mechanical component made of the above mentioned super alloy, piece of turbomachinery which includes the above mentioned component and related methods
JP2016056448A (en) * 2014-09-05 2016-04-21 ゼネラル・エレクトリック・カンパニイ Nickel-base superalloy article, and method for forming the article

Similar Documents

Publication Publication Date Title
US7169241B2 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
JPWO2007037277A1 (en) Ni-base superalloy with excellent oxidation resistance
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
JP5252348B2 (en) Ni-base superalloy, manufacturing method thereof, and turbine blade or turbine vane component
JPWO2007122931A1 (en) Ni-base superalloy and manufacturing method thereof
JP5024797B2 (en) Cobalt-free Ni-base superalloy
TWI452149B (en) High heat-resistant and high-strength rh group alloy and method for manufacturing the same
JP3944582B2 (en) Ni-base superalloy
JP2005097650A (en) Ni-BASED SUPERALLOY
US5167732A (en) Nickel aluminide base single crystal alloys
US4597809A (en) High strength hot corrosion resistant single crystals containing tantalum carbide
US9103003B2 (en) Nickel-based superalloy and gas turbine blade using the same
JPS5839760A (en) Heat resistant ni alloy
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
JPS58120758A (en) High strength nickel base superalloy product
JP2005060731A (en) SINGLE CRYSTAL Ni-BASED SUPERALLOY HAVING EXCELLENT STRENGTH, CORROSION RESISTANCE AND OXIDATION RESISTANCE
JP2579316B2 (en) Single crystal Ni-base superalloy with excellent strength and corrosion resistance
JP2011174123A (en) Nickel-base alloy and gas turbine component for land using the same
JPS6152339A (en) Heat resistant ni alloy
JP5636639B2 (en) Ni-base superalloy
US4519979A (en) Nickel-chromium-cobalt base alloys and castings thereof
GB2153848A (en) High strength hot corrosion resistant single crystals
JPS6014824B2 (en) Ni-based heat-resistant alloy
JPH0310039A (en) Ni-base single crystal superalloy having excellent high temperature strength and high temperature corrosion resistance