WO1987001395A1 - Nickel-base cast alloy for high-temperature forging die - Google Patents

Nickel-base cast alloy for high-temperature forging die Download PDF

Info

Publication number
WO1987001395A1
WO1987001395A1 PCT/JP1985/000587 JP8500587W WO8701395A1 WO 1987001395 A1 WO1987001395 A1 WO 1987001395A1 JP 8500587 W JP8500587 W JP 8500587W WO 8701395 A1 WO8701395 A1 WO 8701395A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
nickel
temperature
temperature forging
present
Prior art date
Application number
PCT/JP1985/000587
Other languages
French (fr)
Japanese (ja)
Inventor
Rikizo Watanabe
Takehiro Ohno
Toshiaki Nonomura
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Publication of WO1987001395A1 publication Critical patent/WO1987001395A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Definitions

  • the present invention relates to a mold material used for high-temperature forging of a super heat-resistant alloy, in which a mold is heated to a high temperature of 100 to 115 forging.
  • Mo-based alloys such as TZM have been used as mold materials for forging by heating a mold to a high temperature of 100 or more, such as high-temperature forging of a super heat-resistant alloy.
  • the conventional heat-resistant alloy containing Cr such as Mar-M200 is used as the mold material. I'm using it.
  • the present invention is excellent in both oxidation resistance and high temperature compressive strength.
  • An object of the present invention is to provide a high-temperature forging die material that can be sufficiently used in the atmosphere even when it is ripened to a temperature of 115. Disclosure of the invention
  • M 07 to 13%, W 9 to 15%, one or more kinds of Y or rare earth elements are used.
  • the remainder is essentially a nickel-based alloy for high-temperature forging dies consisting of Ni, excluding impurities, in addition to alloys of the above composition, and further from the solid solution of Mo and W at the grain boundaries. Consisting of body-centered cubic or-
  • A combines with Ni, M0 and W to extract a gamma-prime phase of Ni3 (A £, Mo, W) type to enhance the high-temperature strength of the alloy.
  • Ni3 A £, Mo, W
  • an aluminum film is formed on the surface of the alloy, and the effect of imparting oxidation resistance to the alloy is two.
  • A must be at least 4%, but if it exceeds 7%, the eutectic gamma primer becomes excessively large and the high-temperature strength is conversely reduced.
  • AH is limited to 4-7% for alloys.
  • Mo and W work out Ni 3 (A £, Mo, W) type gamma-prime phase together with Ni and ⁇ £ to increase the high-temperature strength of the alloy, and form a solid solution in the austenitic matrix.
  • a body-centered cubic ⁇ paper consisting essentially of a solid solution of M 0 and W at the grain boundaries
  • the three functions are to crystallize the (Mo, W) phase, increase the grain boundary strength of the alloy, and increase the machinability of the alloy.
  • these elements are added excessively, the oxidation resistance deteriorates.
  • M 0 and W are very similar, but the effect of increasing the high-temperature strength is greater in W, and the effect of deteriorating the oxidation resistance is also greater in W.
  • Mo and W in the alloy of the present invention are reduced to 7 to 13% and 9 to 15%, respectively. limit.
  • Y has the effect of improving the denseness and adhesion of the aluminum film formed on the alloy surface and increasing the oxidation resistance when added in a very small amount.However, excessive addition of Y lowers the initial melting temperature of the alloy and reduces the grain boundary. Since the strength is lowered to reduce the high-temperature strength, the content is limited to 0.1% or less for the alloy of the present invention.
  • Ni is an element serving as a base of the alloy of the present invention, and acts as a basic element constituting both the austenitic matrix and the gamma-prime phase.
  • the body-centered cubic crystal essentially consisting of a solid solution of Mo and W at the grain boundaries is obtained.
  • This phase not only strengthens the grain boundaries to increase the high-temperature strength, but also enhances the machinability of the alloy. It is desirable that it be present in a small amount.
  • the alloy of the present invention In order to evaluate the characteristics of the alloy of the present invention as a metal mold, the alloy of the present invention, ⁇ 1 and ⁇ 2, and the ⁇ 1, 11 of the conventional alloy Mar-200 shown in Table 1 were manufactured.
  • the alloy No. ⁇ 4 of the present invention shown in Table 1 and the alloy No. ⁇ 12 of the conventional alloy Mar-M200 were manufactured, and a machinability test was performed as they were.
  • the alloy sample of the present invention has a body-centered cubic (D a — (Mo.W) phase) consisting essentially of a solid solution of ⁇ 0 and W at the grain boundaries, whereas the conventional alloy has an MC type at the grain boundaries.
  • the major difference in the structure is that carbides are contained in.
  • the machinability uses a cemented carbide and a tip coated with TiCN system, cutting speed 10 mZmin, feed 0.3. »/ Rev., Depth of cut 0.5
  • the flank wear width of the insert after turning for 5 minutes under the conditions of « was measured and evaluated. Table 1 shows the flank wear width. Is a conventional alloy New paper The machinability is almost twice as good as that of
  • the alloy of the present invention When the alloy of the present invention is used as a mold material, a high-temperature forging of 100 'c or more of a super-ripened hardened alloy, which was conventionally performed only in a vacuum or an inert gas, is used in the atmosphere.
  • the forging device is simple and inexpensive, and the work efficiency is greatly improved.
  • the alloy of the present invention has good machinability of conventional super heat-resistant alloys, the die cost is low even for high temperature forging below 100'C, such as constant temperature forging of Ti alloys. It has an effect of increasing the intensity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

A nickel-base cast alloy for use in manufacturing a high-temperature forging die, comprising 4 to 7% (by weight, the same applies hereinbelow) of Al, 7 to 13% of Mo, 9 to 15% of W, at most 0.1% of one or more of Y and rare earth elements, and the balance essentially composed of nickel together with same impurities.

Description

明 細 書 高通鍛造金型用ニッケル基铸造合金 技術分野  Description Nickel-base alloy for Takatsu forging die Technical field
本発明は、 ぉもに 1 0 0 0 〜 1 1 5 0 での高温に金型を加熱 して鍛造を行なぅ超耐熱合金の高温鍛造に用ぃられる金型材料 に関するものでぁる。 背景技術  The present invention relates to a mold material used for high-temperature forging of a super heat-resistant alloy, in which a mold is heated to a high temperature of 100 to 115 forging. Background art
従来超耐熱合金の高温鍛造など金型を 1 0 0 0 で以上の高温 に加熱して鍛造する場合の金型材料には、 T Z Mなどの M o基 合金が使ゎれてぃる。  Conventionally, Mo-based alloys such as TZM have been used as mold materials for forging by heating a mold to a high temperature of 100 or more, such as high-temperature forging of a super heat-resistant alloy.
ー方、 T i 合金の高温鍛造など金型温度が 1 0 0 0 で以下の 場合は、 M a r - M 2 0 0などの C rを含む従来型.の超耐熱合 金が金型材料として使ゎれてぃる。  In the case where the mold temperature is 100 and the temperature is below 100, such as high temperature forging of Ti alloy, the conventional heat-resistant alloy containing Cr such as Mar-M200 is used as the mold material. I'm using it.
M o基合金は、 高温強度は十分高ぃが耐酸化性が劣るために、 これを金型材料とした場合の高温鍛造は真空または不活性ガス 中で行なゎれなければならず、 高温鍛造装置が複雑で作業性が 悪く、 また設備費も高価でぁるとぃぅ欠点がぁったが、 ー方  Since Mo-based alloys have sufficiently high high-temperature strength but poor oxidation resistance, high-temperature forging using this as a mold material must be carried out in a vacuum or inert gas. The disadvantages were that the forging equipment was complicated and workability was poor, and the equipment cost was expensive.
M a r - M 2 0 0などの C rを舍む従来型の超耐熱合金は、 耐 酸化性は良好なものの高温圧縮強度が十分でなぃために 1000 ¾ 以上の高温鍛造用金型には使ぇなぃ。 Conventional super heat-resistant alloys such as Mar-M200, which have a Cr, have good oxidation resistance, but have insufficient high-temperature compressive strength. Use it.
本発明は耐酸化性と高温圧縮強度の両方に'優れ、 1 0 0 0 〜 新たな用紙 1 1 5 0での温度に加熟される場合でも、 大気中で十分使用可 能な高温鍛造用金型材料を提供することを目的とするものでぁ る。 発明の開示 The present invention is excellent in both oxidation resistance and high temperature compressive strength, An object of the present invention is to provide a high-temperature forging die material that can be sufficiently used in the atmosphere even when it is ripened to a temperature of 115. Disclosure of the invention
本発明は重量にして A 4〜 7 %、 M 0 7〜1 3 %、 W 9〜 1 5 %, Yまたは希土類元素の 1種まナこは 2種以上を 0. 1 %以 下舍み、 残部は不純物を除き本質的に N i ょり成る高温鍛造金 型用ニッケル基铸造合金ぁるぃは上記組成の合金にぉぃてさら に粒界に本質的に M o と Wの固溶体から成る体心立方晶の or - In the present invention, 4 to 7% by weight, M 07 to 13%, W 9 to 15%, one or more kinds of Y or rare earth elements are used. The remainder is essentially a nickel-based alloy for high-temperature forging dies consisting of Ni, excluding impurities, in addition to alloys of the above composition, and further from the solid solution of Mo and W at the grain boundaries. Consisting of body-centered cubic or-
(Mo 、 W) 相を舍むことを特徴とする高温鍛造金型用ニッケ ル基铸造合金でぁる。 (Mo, W) This is a nickel-based alloy for high-temperature forging dies characterized by having a phase.
本発明合金にぉぃて A は N i、 M 0ぉょび Wと結びっぃて N i 3 (A £、 M o、 W) 型のガンマプラィ ム相を折出し合金 の高温強度を高めるこ と、 合金の表面にァルミ ナの被膜を生成 し、 合金に耐酸化性を付与することのニっの作用がぁる。 これ らの作用を十分ならしめるために、 A は最低 4 %は必要でぁ るが、 7 %を越ぇると共晶ガンマプラィムが過度に多く なり、 高温強度が逆に低下するので、 本発明合金にぉぃては A H は 4 〜 7 %に限定する。  In the alloy of the present invention, A combines with Ni, M0 and W to extract a gamma-prime phase of Ni3 (A £, Mo, W) type to enhance the high-temperature strength of the alloy. Thus, an aluminum film is formed on the surface of the alloy, and the effect of imparting oxidation resistance to the alloy is two. To attain these effects sufficiently, A must be at least 4%, but if it exceeds 7%, the eutectic gamma primer becomes excessively large and the high-temperature strength is conversely reduced. AH is limited to 4-7% for alloys.
M o と Wは N i、 Α £ とともに N i 3 (A £、 M o、 W) 型 のガンマプラィム相を折出し合金の高温強度を高めること、 ォ ーステナィ トマ ト リ ックスに固溶し合金の高温強度を高めるこ と、 粒界に本質的に M 0 と Wの固溶体から成'る体心立方晶の α 新たな用紙 ー (M o、 W ) 相を晶出し、 合金の粒界強度を高め、 また合金 の被削性も高めることの三っの作用がぁる。 ー方これらの元素 はぃずれも過度に添加すると耐酸化性が劣化する。 M 0 と Wの 作用はきゎめて類似してぃるが、 高温強度を高める作用は Wの 方が大き く、 ー方耐酸化性を劣化させる作用も Wの方が大きぃ。 このょぅな相互閔係ょり、 高温強度と耐酸化性の兼ね合ぃを考 盧して、 本発明合金にぉける M o と Wはそれぞれ 7〜 1 3 %、 9〜 1 5 %に限定する。 Mo and W work out Ni 3 (A £, Mo, W) type gamma-prime phase together with Ni and Α £ to increase the high-temperature strength of the alloy, and form a solid solution in the austenitic matrix. By increasing the high-temperature strength, a body-centered cubic α paper consisting essentially of a solid solution of M 0 and W at the grain boundaries The three functions are to crystallize the (Mo, W) phase, increase the grain boundary strength of the alloy, and increase the machinability of the alloy. On the other hand, if these elements are added excessively, the oxidation resistance deteriorates. The actions of M 0 and W are very similar, but the effect of increasing the high-temperature strength is greater in W, and the effect of deteriorating the oxidation resistance is also greater in W. Considering the combination of high-temperature strength and oxidation resistance, Mo and W in the alloy of the present invention are reduced to 7 to 13% and 9 to 15%, respectively. limit.
Yはごく微量の添加で合金表面に生成するァルミナ被膜の緻 密性、 密着性を改善し耐酸化性を高める作用がぁるが、 過度に 添加すると合金の初期溶融温度を低下させ、 粒界強度を低めて 高温強度を低下させるので、 本発明合金にぁっては 0. 1 %以下 に限定する。  Y has the effect of improving the denseness and adhesion of the aluminum film formed on the alloy surface and increasing the oxidation resistance when added in a very small amount.However, excessive addition of Y lowers the initial melting temperature of the alloy and reduces the grain boundary. Since the strength is lowered to reduce the high-temperature strength, the content is limited to 0.1% or less for the alloy of the present invention.
N i は本発明合金のべースとなる元素でぁり、 ォーステナィ トマ ト リ ックスとガンマプラィ ム相の両方を構成する基本元素 として作用する。  Ni is an element serving as a base of the alloy of the present invention, and acts as a basic element constituting both the austenitic matrix and the gamma-prime phase.
本発明合金にぉぃて A t、 M oぉょび Wの含有量ゃ铸造条件 を適正化することにょって粒界に本質的には M o と Wの固溶体 でぁる体心立方晶の α— ( M o . W ) 相を晶出させることがで きるが、 この相は粒界を強化して高温強度を高める作用のほか に合金の被削性を高める作用がぁるので、 若干量存在すること が望ましぃ。  By optimizing the content of At, Mo, and W in the alloy of the present invention, the body-centered cubic crystal essentially consisting of a solid solution of Mo and W at the grain boundaries is obtained. Can be crystallized, but this phase not only strengthens the grain boundaries to increase the high-temperature strength, but also enhances the machinability of the alloy. It is desirable that it be present in a small amount.
新たな用紙 発明を実施するための最良の形態 New paper BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1 Example 1
本発明合金の萵温锻造金型としての特性を評価するために第 1表の本発明合金 Να 1ぉょび α 2 と従来合金 M a r - 2 0 0 の Να 1 1を铸造し、 铸造ままの状態で 1 O « 0 X 1 2 «ぁるぃ は 1 0 « ø X 2 0 «■の試験片を切り出し、 1 0 5 0 〜 1 1 0 0 でにぉける 1 0 - 3Zsec の圧縮試験 ( 1. 0 « ø X 1 2 «) 、 In order to evaluate the characteristics of the alloy of the present invention as a metal mold, the alloy of the present invention, α1 and α2, and the α1, 11 of the conventional alloy Mar-200 shown in Table 1 were manufactured. the 1 O «0 X 1 2« Arui in the state cut out 1 0 «ø X 2 0« ■ specimens, Okeru 1 0 in 1 0 5 0 ~ 1 1 0 0 - 3 ZSEC compression Test (1.0 «ø X 1 2«),
1 0 5 0〜 1 1 0 0 'Cにぉける圧縮ク リ 一ブ試験 ( 1 0™ X 1 2 «) ぉょび 1 1 0 0 *c x 6 h空冷なる加熱冷却を 5回繰返 す耐酸化試験 ( 1 0 «■ ø X 2 0 «) を行なぃ、 圧縮変形抵抗、 圧縮ク リ ープ歪ぉょび酸化減量を測定した。 結果を第 1表にぁ ゎせて示すが、 本発明合金は従来合金に比し、 1 0 0 0 でを越 ぇる高温での圧縮変形抵抗が大で、 圧縮ク リ ープ抵抗も格段に 高ぃことがゎかる。 また耐酸化性も従来合金と同様良好でぁる。 実施例 2  Compression creep test at 1 0 5 0 to 1 1 0 0 'C (1 0 ™ X 1 2 «) 1 1 0 0 * cx 6 h Air-cooled heating and cooling repeated 5 times Oxidation resistance tests (10 ■ X 2 X 20 «) were performed to measure the compression deformation resistance, compression creep strain, and oxidation loss. The results are shown in Table 1. As compared with the conventional alloy, the alloy of the present invention has higher compressive deformation resistance at high temperatures exceeding 100,000, and also has significantly higher compressive creep resistance. You can see what you are doing. Also, the oxidation resistance is as good as the conventional alloy. Example 2
第 1表の本発明合金 Να 4 と従来合金 M a r - M 2 0 0 の Να12 を铸造し、 铸造ままの状態で被削性試験を行なった。 本発明合 金試料は粒界に本質的に Μ 0 と Wの固溶体から成る体心立方晶 (D a — (M o . W) 相を舍むのに対し、 従来合金は粒界に M C 型炭化物を舍む点が組織上の大きな相違点でぁる。 被削性は超 硬合金と T i C N系のコーティ ングを施したチップを使ぃ、 切 削速度 1 0 mZmin 、 送り 0. 3 »/rev.、 切込み 0. 5 «の条件 下で 5分間旋削後のチップのフランク摩耗幅を測定して評価し た。 第 1表にフ ラ ンク摩耗幅を示すが、 本発'明合金は従来合金 新たな用紙 に比べ、 被削性が約 2倍近く優れてぃることがゎかる。 The alloy No. α4 of the present invention shown in Table 1 and the alloy No. α12 of the conventional alloy Mar-M200 were manufactured, and a machinability test was performed as they were. The alloy sample of the present invention has a body-centered cubic (D a — (Mo.W) phase) consisting essentially of a solid solution of Μ0 and W at the grain boundaries, whereas the conventional alloy has an MC type at the grain boundaries. The major difference in the structure is that carbides are contained in. The machinability uses a cemented carbide and a tip coated with TiCN system, cutting speed 10 mZmin, feed 0.3. »/ Rev., Depth of cut 0.5 The flank wear width of the insert after turning for 5 minutes under the conditions of« was measured and evaluated. Table 1 shows the flank wear width. Is a conventional alloy New paper The machinability is almost twice as good as that of
実施例 3 Example 3
第 1表の本発明合金 Να 3 の铸造材で金型を作成し、 I N - 1 0 0粉末押出材を铸造素材として、 1 0 7 0 で、 1 0 -3 *c の条件で B Nを潤滑離型材として大気中恒温鍛造を行なぃ、 Φ 1 4 X 1 7 «の円筒素材から 《J 2 6. 2 «の複雑形状の铸造品 を得た。 金型に損傷はなかった。 Create a mold at铸造material of the present invention alloy Nyuarufa 3 of Table 1, IN - 1 0 0 powder extruded material as铸造material in 1 0 7 0, 1 0 - 3 * c conditions lubricate the BN of As a mold release material, constant temperature forging was performed in the atmosphere, and a complex product of << J26.2 >> was obtained from a cylindrical material of Φ14 × 17 1. The mold was not damaged.
実施例 4 Example 4
第 1 表の本発明合金 Να 5 の铸造材で金型を製作し、 1 0 2 0 〜 1 0 8 0 'C、 1 0 - 3 / ΐの条件で Waspaloyの 0 7 5 x 1 5 2 « の素材から 0 1 6 0 X 3 5 ι«のディ ス クを数偭大気中恒温鍛 造にょり作製したが、 金型に損傷はなかった。 産業上の利用可能性 To prepare a mold at铸造material of the present invention alloy Nyuarufa 5 of Table 1, 1 0 2 0 ~ 1 0 8 0 'C, 1 0 - 3 / ΐ conditions of Waspaloy of 0 7 5 x 1 5 2 « A disk of 0 16 0 X 3 5 ι «was made from this material by constant-temperature forging in the atmosphere for several minutes, but the die was not damaged. Industrial applicability
本発明合金を金型材と して使用する こ とにょり、 従来真空ま たは不活性ガス中でしか行なぇなかった超耐熟合金の 1 0 0 0 'c以上の高温鍛造が大気中で可能となり、 鍛造装置が簡単で安 価になり、 また作業能率が大幅に向上する。 さ らに本発明合金 は従来の超耐熱合金ょり被削性が良好な こ とから、 T i 合金の 恒温鍛造など 1 0 0 0 'C以下の高温鍛造用にも金型費を低 '减さ せる効果がぁる。  When the alloy of the present invention is used as a mold material, a high-temperature forging of 100 'c or more of a super-ripened hardened alloy, which was conventionally performed only in a vacuum or an inert gas, is used in the atmosphere. The forging device is simple and inexpensive, and the work efficiency is greatly improved. Furthermore, since the alloy of the present invention has good machinability of conventional super heat-resistant alloys, the die cost is low even for high temperature forging below 100'C, such as constant temperature forging of Ti alloys. It has an effect of increasing the intensity.
新た な用紙 f ¾ ¾ New paper f ¾ ¾
第 化 学 組 成 (%)
Figure imgf000008_0001
赚リーフ歪 (%) 酸 化 フランク
Chemical composition (%)
Figure imgf000008_0001
赚 Leaf strain (%) Oxidation Frank
(kgf/i«z) 滅 量 離巾(kgf / i « z )
Να 1050'c 11 OO'c Να 1050'c 11 OO'c
Ni ki Mo W Y そ の 他 1050-c llOO'c 15kgf/i«2 lOkgf/m2 (««) 本 1 Bal. 6.22 10.08 11.97 0,01 59.7 57.3 0.58 0.33 -1.23 発 2 6.16 9.90 12.22 0.002 0.60 0.10 明 3 6.41 9.98 11.60 0.006 合 4 5.95 9.56 10.00 0.02 Ni ki Mo WY Others 1050-c llOO'c 15kgf / i « 2 lOkgf / m 2 (« «) 1 Bal. 6.22 10.08 11.97 0,01 59.7 57.3 0.58 0.33 -1.23 Dep.2 6.16 9.90 12.22 0.002 0.60 0.10 Light 3 6.41 9.98 11.60 0.006 Total 4 5.95 9.56 10.00 0.02
0.24 金 5 〃 6.70 10.40 11.25 0.01 従 Cr 856,Co 9.80,Ti 2.23,  0.24 Gold 5 〃 6.70 10.40 11.25 0.01 Secondary Cr 856, Co 9.80, Ti 2.23,
11 Bal. 5.08 11.76 Nb 1,05, B 0.015,Zr 0.10, 39.4 25.0 2.08 >10 0.25  11 Bal. 5.08 11.76 Nb 1,05, B 0.015, Zr 0.10, 39.4 25.0 2.08> 10 0.25
来 C 0.14  Since C 0.14
合 Cr 9.00,Co 9.95, Ti 1.96, 0.43 Combination Cr 9.00, Co 9.95, Ti 1.96, 0.43
12 〃 5.12 11.26 Nb 1.03.B 0.016'Zr 0.12, 12 〃 5.12 11.26 Nb 1.03.B 0.016'Zr 0.12,
金 C 0.12 0.45  Gold C 0.12 0.45

Claims

請 求 の 範 囲 The scope of the claims
1 重量にして A 4〜 7 %、 M o 7〜 1 3 %、 W 9〜 1 5 %、 Yまたは希土類元素の 1種または 2種以上を 0. 1以下%舍み、 残部は不純物を除き本質的に N i ょり成る高温鍛造金型用ニッ ケル基铸造合金。 A 4 to 7% by weight, Mo 7 to 13%, W 9 to 15%, Y or one or more of rare earth elements 0.1% or less, the remainder excluding impurities Nickel-based alloy for high-temperature forging dies consisting essentially of Ni.
2 粒界に本質的に M o と Wの固溶体から成る体心立方晶の α - ( M o 、 W ) 相を含むことを特徴とする特許請求の範囲第 1 項記載の高温鍛造金型用ニッケル基铸造合金。  2. The high-temperature forging die according to claim 1, wherein the grain boundary contains a body-centered cubic α- (Mo, W) phase essentially consisting of a solid solution of Mo and W. Nickel-based alloy.
新た な甩弒 New 甩 弒
PCT/JP1985/000587 1985-08-30 1985-10-18 Nickel-base cast alloy for high-temperature forging die WO1987001395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60/191469 1985-08-30
JP19146985A JPS6250429A (en) 1985-08-30 1985-08-30 Nickel-base casting alloy for hot forging die

Publications (1)

Publication Number Publication Date
WO1987001395A1 true WO1987001395A1 (en) 1987-03-12

Family

ID=16275170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1985/000587 WO1987001395A1 (en) 1985-08-30 1985-10-18 Nickel-base cast alloy for high-temperature forging die

Country Status (2)

Country Link
JP (1) JPS6250429A (en)
WO (1) WO1987001395A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460678A1 (en) * 1990-06-07 1991-12-11 Kabushiki Kaisha Kobe Seiko Sho Nickel-based heat-resistant alloy for dies
EP3357601A4 (en) * 2015-09-29 2019-05-01 Hitachi Metals, Ltd. Die for hot forging, method for manufacturing forged product using same, and method for manufacturing die for hot forging
CN110337335A (en) * 2016-12-21 2019-10-15 日立金属株式会社 It is hot-forged the manufacturing method of material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6476704B2 (en) * 2014-09-30 2019-03-06 日立金属株式会社 Nickel base casting alloy and hot forging die
JP2016069702A (en) * 2014-09-30 2016-05-09 日立金属株式会社 Method for manufacturing nickel-based casting alloy
CN104294328B (en) * 2014-10-23 2017-02-01 上海应用技术学院 Nickel-molybdenum-aluminum-rare earth coating and preparation method thereof
CN106925708B (en) * 2017-04-18 2019-05-24 武汉理工大学 Self-lubricating dissimilar materials composite construction hot-forging die and preparation method thereof
WO2019065542A1 (en) 2017-09-29 2019-04-04 日立金属株式会社 Method for manufacturing hot forging material
WO2019065543A1 (en) 2017-09-29 2019-04-04 日立金属株式会社 Method for producing hot-forging material
JP6646885B2 (en) 2017-11-29 2020-02-14 日立金属株式会社 Manufacturing method of hot forging dies and forged products
US11326231B2 (en) 2017-11-29 2022-05-10 Hitachi Metals, Ltd. Ni-based alloy for hot-working die, and hot-forging die using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443156A (en) * 1977-09-01 1979-04-05 Bbc Brown Boveri & Cie Metal mold for constantttemperatureeforging and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443156A (en) * 1977-09-01 1979-04-05 Bbc Brown Boveri & Cie Metal mold for constantttemperatureeforging and method of making same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460678A1 (en) * 1990-06-07 1991-12-11 Kabushiki Kaisha Kobe Seiko Sho Nickel-based heat-resistant alloy for dies
EP3357601A4 (en) * 2015-09-29 2019-05-01 Hitachi Metals, Ltd. Die for hot forging, method for manufacturing forged product using same, and method for manufacturing die for hot forging
US11207725B2 (en) * 2015-09-29 2021-12-28 Hitachi Metals, Ltd. Hot forging die and manufacturing process for forged product using the same, and manufacturing process for hot forging die
CN110337335A (en) * 2016-12-21 2019-10-15 日立金属株式会社 It is hot-forged the manufacturing method of material
CN110337335B (en) * 2016-12-21 2021-04-20 日立金属株式会社 Method for producing hot forged material
US11919065B2 (en) 2016-12-21 2024-03-05 Proterial, Ltd. Method for producing hot-forged material

Also Published As

Publication number Publication date
JPS6250429A (en) 1987-03-05

Similar Documents

Publication Publication Date Title
CA1171695A (en) Platinum group metal-containing alloy
US5286443A (en) High temperature alloy for machine components based on boron doped TiAl
GB2056488A (en) Ni-based superalloy
US6913655B2 (en) Niobium-silicide based composities resistant to high temperature oxidation
US6419765B1 (en) Niobium-silicide based composites resistant to low temperature pesting
JPS6369935A (en) Nickel base hard alloy for turbine disc
WO1987001395A1 (en) Nickel-base cast alloy for high-temperature forging die
EP0363598B1 (en) Heat-resistant titanium-aluminium alloy with a high fracture toughness at room temperature and with good oxidation resistance and strength at high temperatures
GB2024858A (en) Hightemperature nickel-base alloys
GB2116211A (en) Oxidation resistant nickel alloy
US5167732A (en) Nickel aluminide base single crystal alloys
US4012241A (en) Ductile eutectic superalloy for directional solidification
JPS6179742A (en) Heat resistant alloy
JP6970438B2 (en) Ni-based superalloy
JPS58120758A (en) High strength nickel base superalloy product
JPH02190437A (en) High temperature alloy consisting of hafnium-containing niobium- titanium-aluminum
KR100359187B1 (en) Intermetallic Nickel-Aluminum Alloy
JPH02200751A (en) Hafnium alloy for high-temparature use
JPH0441641A (en) Nickel-base superalloy for die
EP0545518A1 (en) Titanium/aluminium alloy
JPS6130645A (en) Tantalum-niobium-molybdenum-tangsten alloy
US3486887A (en) Nickel base heat-resisting alloy
JP2732934B2 (en) Constant temperature forging die made of Ni-base alloy with excellent high-temperature strength and high-temperature oxidation resistance
JP2001501256A (en) Nickel-based alloys and their products
US3026199A (en) Metal alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642